WorldWideScience

Sample records for actin 88f gene

  1. Actin gene family in Branchiostoma belched

    2016-01-01

    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  2. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  3. 21 CFR 520.88f - Amoxicillin trihydrate tablets.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Amoxicillin trihydrate tablets. 520.88f Section... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88f Amoxicillin trihydrate tablets. (a) Specifications. Each tablet contains amoxicillin trihydrate equivalent to 50,...

  4. Structure, chromosome location, and expression of the human. gamma. -actin gene: Differential evolution, location, and expression of the cytoskeletal BETA- and. gamma. -actin genes

    Erba, H.P.; Eddy, R.; Shows, T.; Kedes, L.; Gunning, P.

    1988-04-01

    The accumulation of the cytoskeletal ..beta..-and ..gamma..-actin mRNAs was determined in a variety of mouse tissues and organs. The ..beta..-iosform is always expressed in excess of the ..gamma..-isoform. However, the molar ratio of ..beta..- to ..gamma..-actin mRNA varies from 1.7 in kidney and testis to 12 in sarcomeric muscle to 114 in liver. The authors conclude that, whereas the cytoskeletal ..beta..- and ..gamma..-actins are truly coexpressed, their mRNA levels are subject to differential regulation between different cell types. The human ..gamma..-actin gene has been cloned and sequenced, and its chromosome location has been determined. The gene is located on human chromosome 17, unlike ..beta..-actin which is on chromosome 7. Thus, if these genes are also unlinked in the mouse, the coexpression of the ..beta..- and ..gamma..-actin genes in rodent tissues cannot be determined by gene linkage. Comparison of the human ..beta..- and ..gamma..-actin genes reveals that noncoding sequences in the 5'-flanking region and in intron III have been conserved since the duplication that gave rise to these two genes. In contrast, there are sequences in intron III and the 3'-untranslated region which are not present in the ..beta..-actin gene but are conserved between the human ..gamma..-actin and the Xenopus borealis type 1 actin genes. Such conserved noncoding sequences may contribute to the coexpression of ..beta..- and ..gamma..-actin or to the unique regulation and function of the ..gamma..-actin gene. Finally, the authors demonstrate that the human ..gamma..-actin gene is expressed after introduction into mouse L cells and C2 myoblasts and that, upon fusion of C2 cells to form myotubes, the human ..gamma..-actin gene is appropriately regulated.

  5. Structure, chromosome location, and expression of the human smooth muscle (enteric type). gamma. -actin gene: Evolution of six human actin genes

    Miwa, Takeshi; Manabe, Yoshihisa; Kamada, Shinji; Kakunaga, Takeo (Osaka Univ. (Japan)); Kurokawa, Kiyoshi; Ueyama, Hisao (Shiga Univ. of Medical Science, Seta (Japan)); Kanda, Naotoshi (Tokyo Women' s Medical Coll. (Japan)); Bruns, G. (Children' s Hospital, Boston, MA (United States))

    1991-06-01

    Recombinant phages that carry the human smooth muscle (enteric type) {gamma}-actin gene were isolated from human genomic DNA libraries. The amino acid sequence deduced from the nucleotide sequence matches those of cDNAs but differs from the protein sequence previously reported at one amino acid position, codon 359. The gene containing one 5{prime} untranslated exon and eight coding exons extends for 27 kb on human chromosome 2. The intron between codons 84 and 85 (site 3) is unique to the two smooth muscle actin genes. From characterized molecular structures of the six human actin isoform genes, the authors propose a hypothesis of evolutionary pathway of the actin gene family. A presumed ancestral actin isoform gene had introns at least sites, 1, 2, and 4 through 8. Cytoplasmic actin genes may have directly evolved from it through loss of introns at sites 5 and 6. However, through duplication of the ancestral actin gene with substitutions of many amino acids, a prototype of muscle actin genes had been created. Subsequently, striated muscle actin and smooth muscle actin genes may have evolved from this prototype by loss of an intron at site 4 and acquisition of a new intron at site 3, respectively.

  6. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  7. Cloning and characterization of an actin gene of Chlamys farreri and the phylogenetic analysis of mollusk actins

    2007-01-01

    An actin gene (CfACT1) was cloned by using RT-PCR, 3' and 5'RACE from hemocytes of the sea scallop Chlamys farreri. The full length of the transcript is 1535 bp, which contains a long 3' un-translated region of 436bp and 59bp of a 5' un-translated sequence. The open reading frame encodes a polypeptide of 376 amino acids. Sequence comparisons indicated that CfACT1 is more closely related to vertebrate cytoplasmic actins than muscle types. Phylogenetic analysis showed that molluscan actins could be generally divided into two categories: muscle and cytoplasmic, although both are similar to vertebrate cytoplasmic actins. It was also inferred that different isotypes existed in muscle or cytoplasma in mollusks. The genomic sequence of CfACT1 was cloned and sequenced. Only one intron was detected:it was located between codons 42 and 43 and different from vertebrate actin genes.

  8. Actin gene expression in developing sea urchin embryos.

    Crain, W R; Durica, D S; Van Doren, K

    1981-01-01

    We show that the synthesis of actin is regulated developmentally during early sea urchin embryogenesis and that the level of synthesis of this protein parallels the steady-state amounts of the actin messenger ribonucleic acids (RNA). An in vitro translation and RNA blotting analysis of embryo RNA from several stages of early development indicated that during the first 8 h after fertilization there was a low and relatively constant level of actin messenger RNA in the embryo. Between 8 and 13 h...

  9. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  10. The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load.

    Black, F M; Packer, S E; Parker, T G; Michael, L H; Roberts, R; R J Schwartz; Schneider, M D

    1991-01-01

    Cardiac hypertrophy triggered by mechanical load possesses features in common with growth factor signal transduction. A hemodynamic load provokes rapid expression of the growth factor-inducible nuclear oncogene, c-fos, and certain peptide growth factors specifically stimulate the "fetal" cardiac genes associated with hypertrophy, even in the absence of load. These include the gene encoding vascular smooth muscle alpha-actin, the earliest alpha-actin expressed during cardiac myogenesis; howeve...

  11. Actin gene identification from selected medicinal plants for their use as internal controls for gene expression studies

    Internal control genes are the constitutive genes which maintain the basic cellular functions and regularly express in both normal and stressed conditions in living organisms. They are used in normalization of gene expression studies in comparative analysis of target genes, as their expression remains comparatively unchanged in all varied conditions. Among internal control genes, actin is considered as a candidate gene for expression studies due to its vital role in shaping cytoskeleton and plant physiology. Unfortunately most of such knowledge is limited to only model plants or crops, not much is known about important medicinal plants. Therefore, we selected seven important medicinal wild plants for molecular identification of actin gene. We used gene specific primers designed from the conserved regions of several known orthologues or homologues of actin genes from other plants. The amplified products of 370-380 bp were sequenced and submitted to GeneBank after their confirmation using different bioinformatics tools. All the novel partial sequences of putative actin genes were submitted to GeneBank (Parthenium hysterophorus (KJ774023), Fagonia indica (KJ774024), Rhazya stricta (KJ774025), Whithania coagulans (KJ774026), Capparis decidua (KJ774027), Verbena officinalis (KJ774028) and Aerva javanica (KJ774029)). The comparisons of these partial sequences by Basic Local Alignment Search Tool (BLAST) and phylogenetic trees demonstrated high similarity with known actin genes of other plants. Our findings illustrated highly conserved nature of actin gene among these selected plants. These novel partial fragments of actin genes from these wild medicinal plants can be used as internal controls for future gene expression studies of these important plants after precise validations of their stable expression in such plants. (author)

  12. Cloning and sequence analysis of β-actin gene from Aedes albopictus (Diptera: Culicidae)

    Weijie Wang; Xiaobang Hu; Donghui Zhang; Jianhua Jiao; Yan Sun; Lei Ma; Changliang Zhu

    2007-01-01

    Objective: To obtain the complete β-actin gene from Aedes albopictus. Methods: Total RNA was extracted from C6/36 cells. Degenerate primers were designed based on the β-actin sequences of An. gambiae, Ae. aegypti, Cx. pipiens pallens and D.melanogaster. By RT-PCR, the product was amplified, purified, cloned into the pGT vector and sequenced. The β-actin sequence was aligned and phylogenetically analyzed by the BLAST program and the CLUSTAL W program. Results: A sequence of 1132 bp including an open reading frame of 1131 bp was obtained (GenBank DQ657949). The deduced protein had 376 amino acids.Aligned to SWISS-PROT, it exhibited a high level of identity with β-actins from Anopheles, Drosophila and Culex at the amino acid sequence level. Phylogenetic analysis indicated that Ae. albopictus β-actin was much more homologous with invertebrate β-actin than with vertebrate β-actin. Conclusion: The gene may be used as the internal control in the experiments of Ae. albopictus.

  13. Expression of Chlamydomonas actin-gfp fusion gene in to-bacco suspension cell and polymerization of the actin-gfp protein in vitro

    2001-01-01

    The fusion gene of actin (cDNA of Chlamydo- monas reinhardtii) and green fluorescence protein (gfp) had been constructed into two expression vectors which could be expressed in E. coli and tobacco suspension cells BY2. The correct expression was observed in E. coli and BY2 with a fluorescence microscopy. The fusion protein, which took part in the membrane skeleton, was mainly located peripherally along the membrane, specially the fusion protein was dis-tributed around nucleus and cell plate, while the fusion pro-tein also forms F-actin in the cell. The fusion protein was purified from Bl21plus by ammonium sulfate fractionation, ion exchange chromatography and hydrophobic interaction chromatography. The purified production could polymerize into F-actin when the actin polymerizing buffer was added. It was demonstrated that the characteristics and function of actin in Chlamydomonas was similar with those of animals and higher plants.

  14. Expression of actin genes in the arrow worm Paraspadella gotoi (Chaetognatha).

    Yasuda, E; Goto, T; Makabe, K W; Satoh, N

    1997-12-01

    Arrow worms (the phylum Chaetognatha), one of the major marine planktonic animals, exhibit features characteristic to both deuterostomes and protostomes, and their ancestry therefore remains unknown. As the first step to elucidate the molecular bases of arrow worm phylogeny, physiology and embryology, we isolated cDNA clones for three different actin genes (PgAct1, PgAct2 and PgAct3) from the benthic species Paraspadella gotoi, and examined their expression patterns in adults and juveniles. The amino acid sequences of the three actins resembled each other, with identities ranging from 86% to 92%. However, the patterns of the spatial expression of the genes were independent. The PgAct1 gene might encode a cytoplasmic actin and was expressed in oogenic cells, spermatogenic cells, and cells in the ventral ganglion. The PgAct2 and PgAct3 genes encoded actins of divergent types. The former was expressed in well-developed muscle of the head (gnathic) region and trunk muscle cells, whereas the latter was expressed in muscle of the trunk and tail regions and oogenic cells. These results suggest that, similarly to other metazoans, the chaetognath contains multiple forms of actins, which are expressed in various manners in the adult and juvenile arrow worm. PMID:9520638

  15. Cloning and characterization of a new actin gene from Oryza sativa L.

    LIANG Weihong; TANG Chaorong; WU Naihu

    2004-01-01

    Using Rho family member osRACD as bait, a new member of actin gene family -Act was isolated from Oryza sativa by yeast two-hybrid system. The full-length cDNA was cloned with 5' RACE technology, which contains an open reading frame of 1134 bp with a predicted protein of 377 amino acids. Sequence alignment revealed 96% to 81.8% identities with some known actin proteins in plants. The method of bioinformatics was used to analyze the protein modification sites, structure and evolution of the gene. Southern blot analysis showed that Act is a single-copy gene in the genome. The result of RT-PCR showed it is ubiquitously expressed in root, shoot, callus and panicle in a temporal fashion. The relationship between Rho family and actin family in evolution and function was also studied.

  16. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-RFLP in Iran.

    Momeni, Zohreh; Sadraei, Javid; Kazemi, Bahram; Dalimi, Abdolhossein

    2015-12-01

    Trichomonas vaginalis is a human urogenital pathogen that causes trichomoniasis, the most common nonviral, parasitic sexually transmitted infection in the world. At present, little is known regarding the degree of strain variability of T. vaginalis. A classification method for T. vaginalis strains would be a useful tool in the study of the epidemiology, drug resistance, pathogenesis and transmission of T. vaginalis. Eight different types of actin genes have been identified by PCR-RFLP in T. vaginalis; the purpose of this study is to determine the genotypes of this parasite in Karaj city, Iran. Forty-five clinical T. vaginalis isolates from vaginal secretions and urine sediment were collected from Karaj city from 2012 through 2014. DNA was extracted and the actin gene was amplified by nested-PCR; all samples were positive. To determine the genetic differences, sequencing on seven samples was conducted. Then, all PCR products were digested with HindII, MseI, and RsaI restriction enzymes. Of 45 isolates, 23 samples (51.1%) were of actin genotype G, 11 samples (24.4%) of genotype E, six samples (13.3%) of genotype H, three samples (6.6%) of genotype I, and two samples (4.4%) were mixed genotypes of G and E. Genetic diversity of T. vaginalis isolates is notable. The actin genotype G may be the dominant genotype in Karaj city, Iran. PMID:26542260

  17. Impact of altered actin gene expression on vinculin, talin, cell spreading, and motility.

    Schevzov, G; Lloyd, C; Gunning, P

    1995-08-01

    Previous studies have demonstrated a strong correlation between the expression of vinculin and the shape and motility of a cell (Rodriguez Fernandez et al., 1992a, b, 1993). This hypothesis was tested by comparing the expression of vinculin and talin with the motility of morphologically altered myoblasts. These mouse C2 myoblasts were previously generated by directly perturbing the cell cytoskeleton via the stable transfection of a mutant-form of the beta-actin gene (beta sm) and three different forms of the gamma-actin gene; gamma, gamma minus 3'UTR (gamma delta'UTR), and gamma minus intron III (gamma delta IVSIII) (Schevzov et al., 1992; Lloyd and Gunning, 1993). In the case of the beta sm and gamma-actin transfectants, a two-fold decrease in the cell surface area was coupled, as predicted, with a decrease in vinculin and talin expression. In contrast, the gamma delta IVSIII transfectants with a seven-fold decrease in the cell surface area showed an unpredicted slight increase in vinculin and talin expression and the gamma delta 3'-UTR transfectants with a slight increase in the cell surface area showed no changes in talin expression and a decrease in vinculin expression. We conclude that changes in actin gene expression alone can impact on the expression of vinculin and talin. Furthermore, we observed that these actin transfectants failed to show a consistent relationship between cell shape, motility, and the expression of vinculin. However, a relationship between talin and cell motility was found to exist, suggesting a role for talin in the establishment of focal contacts necessary for motility. PMID:7646816

  18. A LIM Domain Protein from Tobacco Involved in Actin-Bundling and Histone Gene Transcription

    Danièle Moes; Sabrina Gatti; Céline Hoffmann; Monika Dieterle; Flora Moreau; Katrin Neumann; Marc Schumacher

    2013-01-01

    The two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear distribution,suggesting that,in addition to their previously described roles in actin cytoskeleton organization,they participate in nuclear processes.Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters,we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA.Using both green fluorescent protein (GFP) fusion-and immunology-based strategies,we provide clear evidence that NtWLIM2 localizes to the actin cytoskeleton,the nucleus,and the nucleolus.Interestingly,the disruption of the actin cytoskeleton by latrunculin B significantly increases NtWLIM2 nuclear fraction,pinpointing a possible novel cytoskeletal-nuclear crosstalk.Biochemical and electron microscopy experiments reveal the ability of NtWLIM2 to directly bind to actin filaments and to crosslink the latter into thick actin bundles.Electrophoretic mobility shift assays show that NtWLIM2 specifically binds to the conserved octameric cis-elements (Oct) of the Arabidopsis histone H4A748 gene promoter and that this binding largely relies on both LIM domains.Importantly,reporter-based experiments conducted in Arabidopsis and tobacco protoplasts confirm the ability of NtWLIM2 to bind to and activate the H4A748 gene promoter in live cells.Expression studies indicate the constitutive presence of NtWLIM2 mRNA and NtWLIM2 protein during tobacco BY-2 cell proliferation and cell cycle progression,suggesting a role of NtWLIM2 in the activation of basal histone gene expression.Interestingly,both live cell and in vitro data support NtWLIM2 di/oligomerization.We propose that NtWLIM2 functions as an actin-stabilizing protein,which,upon cytoskeleton remodeling,shuttles to the nucleus in order to modify gene expression.

  19. Genetic Identification of Trichomonas vaginalis by Using the Actin Gene and Molecular Based Methods

    Mohammad Matini; Sassan Rezaie; Mahdi Mohebali; Amir-Hossein Maghsood; Soghra Rabiee; Mohammad Fallah; Mostafa Rezaeian

    2014-01-01

    Background Trichomonas vaginalis is the agent of urogenital tract infection that causes human trichomoniasis with some serious health complications. More understanding about genetic features of the parasite can be helpful in the study of the pathogenesis, drug susceptibility and epidemiology of the infection. For this end, we conducted analysis of the actin gene of T. vaginalis by applying the PCR-SSCP (PCR-Single Stranded Conformational Polymorphism) and nucleotide sequencing method. Methods...

  20. Expression of actin genes in the arrow worm Paraspadella gotoi (Chaetognatha)

    Yasuda, Etsuko; Goto, Taichiro; Makabe, Kazuhiro W.; Satoh, Noriyuki

    1997-01-01

    Arrow worms (the phylum Chaetognatha), one of the major marine planktonic animals, exhibit features characteristic to both deuterostomes and protostomes, and their ancestry therefore remains unknown. As the first step to elucidate the molecular bases of arrow worm phylogeny, physiology and embryology, we isolated cDNA clones for three different actin genes (PgAct1, PgAct2 and PgAct3) from the benthic species Paraspadella gotoi, and examined their expression patterns in adults and juveniles. T...

  1. Genetic Identification of Trichomonas vaginalis by Using the Actin Gene and Molecular Based Methods.

    Mohammad Matini

    2014-09-01

    Full Text Available Trichomonas vaginalis is the agent of urogenital tract infection that causes human trichomoniasis with some serious health complications. More understanding about genetic features of the parasite can be helpful in the study of the pathogenesis, drug susceptibility and epidemiology of the infection. For this end, we conducted analysis of the actin gene of T. vaginalis by applying the PCR-SSCP (PCR-Single Stranded Conformational Polymorphism and nucleotide sequencing method.Fifty T. vaginalis samples were collected from 950 women attending gynecology clinics in two cities of Iran, Hamadan and Tehran, from November 2010 to July 2011. After axenisation of isolates, all samples subjected to PCR-SSCP and nucleotide sequencing.According to the SSCP banding patterns and nucleotide sequencing, seven sequence types were detected among the isolates. Alignment of the nucleotide sequences showed five polymorphic sites in the different strain types. Amino acid substitution was not observed in the nucleotide sequence translation of the all sequences.The actin gene analysis represents genetic diversity of T. vaginalis and it suggests that various strains can be responsible for clinically different trichomoniasis in infected individuals. It is expected that further studies will be conducted to increase our knowledge about relationship between the actin gene polymorphism and different biological behavior of the parasite.

  2. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation. (paper)

  3. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    Fonseca, A. S.; Mencalha, A. L.; Campos, V. M. A.; Ferreira-Machado, S. C.; Peregrino, A. A. F.; Magalhães, L. A. G.; Geller, M.; Paoli, F.

    2013-02-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation.

  4. Xenopus cytoskeletal actin and human c-fos gene promoters share a conserved protein-binding site.

    Mohun, T; Garrett, N; Treisman, R

    1987-03-01

    Xenopus laevis cytoskeletal actin gene promoters contain a 20-bp sequence homologous to the serum response element (SRE) required for transient human c-fos gene transcription in response to serum factors. Both sequences bind the same factor in HeLa cell extracts, as shown by binding competition, DNase I and dimethylsulphate (DMS) protection and DMS interference assays. A similar protein is present in Xenopus laevis oocytes. Sequences containing the SRE homology are essential for constitutive activity of the actin promoter in both Xenopus and mouse cells, and a synthetic SRE functions as a promoter element in these cells. In mouse cells, transcription of both transfected Xenopus actin and actin/c-fos fusion genes is activated following serum stimulation. These data suggest that the SRE and its cognate protein form part of a regulatory pathway that has been highly conserved during evolution. PMID:3582369

  5. Molecular Cloning and Characterization of the Actin-depolymerizing Factor Gene in Gossypium barbadense

    MA Zhi-ying; CHI Ji-na; WANG Xing fen; ZHOU Hong-mei; ZHANG Gui-yin

    2008-01-01

    @@ Sea Island cotton (Gossypium barbadense L.) has been highly valued in Verticillium wilt resistance and many fiber qualities including fiber length,strength,and fineness.To identify whether it had some special genes in fiber development in comparison with the upland cotton (G.hirsutum L.),an actin-depolymerizing factor (ADF) gene was cloned and characterized in this research.A 420 bp open reading frame of the cloned gene,termed GbADF1,encoded a protein of 139 amino acids,which included39.57% nonpolar amino acids,17.27% acidic amino acids,15.83% basic amino acids,and 31.92% hydrophobic amino aids.

  6. Evolutionary History of the Chaetognaths Inferred from Actin and 18S-28S rRNA Paralogous Genes

    J.P. Casanova

    2006-01-01

    Full Text Available The chaetognaths constitute a small and enigmatic phylum of marine invertebrates whose phylogenetic affinities remain uncertain. Our phylogenetical investigations inferred from partial paralogous 18S-28S rRNA genes suggest that the event resulting in the presence of two classes of rRNA genes would have occurred at approximately 300-400 million years and prior to the radiation of extant chaetognath, whereas the taxon, according to both molecular and paleontological data, would be dated from at least the Early Cambrian. These divergent rRNA genes could be the result of a whole ribosomal cluster duplication or of an allopolyploid event during a crisis period, since, the fossil are lacking posterioly to the post-Carboniferous period (c.a., 300 million years. In addition, actin phylogeny evidenced that the cytoplasmic chaetognath actin clustered with the cytoplasmic insect actins, while the muscular chaetognath actins are placed basal to all muscular vertebrate actins. The present study suggests that the gene conversion mechanisms could be inefficient in this taxon; this could explain the conservation of extremely divergent paralogous sequences in the chaetognath genomes which could be correlated to the difficulties to identify a sister group between chaetognaths and other taxa among metazoans.

  7. Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

    Hyoun-Sub Lim

    2013-03-01

    Full Text Available Barley stripe mosaic virus (BSMV induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW. BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

  8. Expression of the human amylase genes: Recent origin of a salivary amylase promoter from an actin pseudogene

    Samuelson, L.C.; Gumucio, D.L.; Meisler, M.H. (Univ. of Michigan, Ann Arbor (USA)); Wiebauer, K. (Friedrich Miescher Institut, Basel (Switzerland))

    1988-09-12

    The human genes encoding salivary amylase (AMY1) and pancreatic amylase (AMY2) are nearly identical in structure and sequence. The authors have used ribonuclease protection studies to identify the functional gene copies in this multigene family. Riboprobes derived from each gene were hybridized to RNA from human pancreas, parotid and liver. The sizes of the protected fragments demonstrated that both pancreatic genes are expressed in pancreas. One of the pancreatic genes, AMY2B, is also transcribed at a low level in liver, but not from the promoter used in pancreas. AMY1 transcripts were detected in parotid, but not in pancreas or liver. Unexpected fragments protected by liver RNA led to the discovery that the 5{prime} regions of the five human amylase genes contain a processed {gamma}-actin pseudogene. The promoter and start site for transcription of AMY1 are recently derived from the 3{prime} untranslated region of {gamma}-actin. In addition, insertion of an endogenous retrovirus has interrupted the {gamma}-actin pseudogene in four of the five amylase genes.

  9. The Internally Self-fertilizing Hermaphroditic Teleost Rivulus marmoratus (Cyprinodontiformes, Rivulidae) beta-Actin Gene: Amplification and Sequence Analysis with Conserved Primers.

    Lee

    2000-03-01

    To determine the ease and feasibility of amplifying the beta-actin gene in fish by the polymerase chain reaction (PCR), genomic DNAs of several fish (Rivulus, Southern top mouth minnow, common fat minnow, oily bitterling, carp, Far Eastern catfish, medaka, and European flounder) were extracted and used as a template with conserved primers, designed on the basis of high amino acid homology (approximately 98% or more). Among them, the self-fertilizing hermaphroditic fish Rivulus marmoratus was chosen for further characterization. After amplification of the Rivulus beta-actin PCR product with Taq polymerase, PCR product was subcloned to pCRII vector. After restriction enzyme mapping of Rivulus beta-actin gene, the amplified insert was sequenced using ALF Express automatic DNA sequencer with conserved internal primers. The R. marmoratus beta-actin gene consists of 1763 bp encoding 375 amino acids including 5 exons and 4 introns. The splicing and acceptance sites of the exon and intron boundaries of the Rivulus beta-actin gene were highly conserved with consensus sequences (GT/AG). The amino acid homology of R. marmoratus beta-actin to other species was high: 98.93% to human; 98.93%, Atlantic salmon; 98.93%, common carp; 98.93%, grass carp; 98.93%, zebrafish; 98.67%, medaka; and 98.40%, sea bream. To determine the expression of the R. marmoratus beta-actin gene in liver and ovary, reverse transcriptase-polymerase chain reaction was carried out with internal primers. In conclusion, these universal primers are successful in the rapid cloning of the fish beta-actin gene by PCR, based on a high homology of the beta-actin gene conserved through evolution. This approach will be applicable to the isolation of other beta-actin homologues in the investigation of phylogenetic comparisons of fish species, along with a possible application to cloning strategy in other conserved genes. PMID:10811955

  10. Cloning and characterization of the actin gene from Puccinia striiformis f. sp. tritici.

    Liu, Jie; Zhang, Qiong; Chang, Qing; Zhuang, Hua; Huang, Li-Li; Kang, Zhen-Sheng

    2012-06-01

    The fungus Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, is an obligate biotrophic basidiomycete. Urediniospores are the most common spore type involved in the epidemiology of this disease. Tip growth of germ tubes of germinated urediniospores is a key step during infection of wheat, but few studies have investigated it so far. Recent research has found that actin is closely associated with hyphal tip growth. In this study, we have cloned and obtained the full-length actin cDNA from P. striiformis f. sp. tritici and characterized its expression. Furthermore, actin filament (F-actin) patterns were visualized microscopically during germ tube formation. The most conspicuous actin-containing structures were actin patches. They were mainly concentrated near the hyphal tip and scattered throughout the cortex. By using cytochalasin B, we observed that depolymerization of F-actin greatly reduced the germination rate of urediniospores and disrupted the transport of vesicles to the germ tube tip, indicating that F-actin played a key role in the tip growth of P. striiformis f. sp. tritici. This work helps us to understand the tip growth mechanism of P. striiformis f. sp. tritici, and may provide a theoretical framework for designing novel pesticides. PMID:22806107

  11. The Neurofibromatosis Type 2 Gene Product, merlin, Reverses the F-Actin Cytoskeletal Defects in Primary Human Schwannoma Cells

    Bashour, Anne-Marie; Meng, J.-J.; Ip, Wallace; MacCollin, Mia; Ratner, Nancy

    2002-01-01

    Schwannoma tumors, which occur sporadically and in patients with neurofibromatosis, account for 8% of intracranial tumors and can only be treated by surgical removal. Most schwannomas have biallelic mutations in the NF2 tumor suppressor gene. We previously showed that schwannoma-derived Schwann cells exhibit membrane ruffling and aberrant cell spreading when plated onto laminin, indicative of fundamental F-actin cytoskeletal defects. Here we expand these observations to a large group of spora...

  12. Phylogenetic Patterns of Codon Evolution in the ACTIN-DEPOLYMERIZING FACTOR/COFILIN (ADF/CFL Gene Family.

    Eileen M Roy-Zokan

    Full Text Available The actin-depolymerizing factor/cofilin (ADF/CFL gene family encodes a diverse group of relatively small proteins. Once known strictly as modulators of actin filament dynamics, recent research has demonstrated that these proteins are involved in a variety of cellular processes, from signal transduction to the cytonuclear trafficking of actin. In both plant and animal lineages, expression patterns of paralogs in the ADF/CFL gene family vary among tissue types and developmental stages. In this study we use computational approaches to investigate the evolutionary forces responsible for the diversification of the ADF/CFL gene family. Estimating the rate of non-synonymous to synonymous mutations (dN/dS across phylogenetic lineages revealed that the majority of ADF/CFL codon positions were under strong purifying selection, with rare episodic events of accelerated protein evolution. In both plants and animals these instances of accelerated evolution were ADF/CFL subclass specific, and all of the sites under selection were located in regions of the protein that could serve in new functional roles. We suggest these sites may have been important in the functional diversification of ADF/CFL proteins.

  13. Evolution of the actin gene family in testate lobose amoebae (Arcellinida) is characterized by two distinct clades of paralogs and recent independent expansions.

    Lahr, Daniel J G; Nguyen, Truc B; Barbero, Erika; Katz, Laura A

    2011-01-01

    The evolution of actin gene families is characterized by independent expansions and contractions across the eukaryotic tree of life. Here, we assess diversity of actin gene sequences within three lineages of the genus Arcella, a free-living testate (shelled) amoeba in the Arcellinida. We established four clonal lines of two morphospecies, Arcella hemisphaerica and A. vulgaris, and assessed their phylogenetic relationship within the "Amoebozoa" using small subunit ribosomal DNA (SSU-rDNA) genealogy. We determined that the two lines of A. hemisphaerica are identical in SSU-rDNA, while the two A. vulgaris are independent genetic lineages. Furthermore, we characterized multiple actin gene copies from all lineages. Analyses of the resulting sequences reveal numerous diverse actin genes, which differ mostly by synonymous substitutions. We estimate that the actin gene family contains 40-50 paralogous members in each lineage. None of the three independent lineages share the same paralog with another, and divergence between actins reaches 29% in contrast to just 2% in SSU-rDNA. Analyses of effective number of codons (ENC), compositional bias, recombination signatures, and genetic diversity in the context of a gene tree indicate that there are two groups of actins evolving with distinct patterns of molecular evolution. Within these groups, there have been multiple independent expansions of actin genes within each lineage. Together, these data suggest that the two groups are located in different regions of the Arcella genome. Furthermore, we compare the Arcella actin gene family with the relatively well-described gene family in the slime mold Dictyostelium discoideum and other members of the Amoebozoa clade. Overall patterns of molecular evolution are similar in Arcella and Dictyostelium. However, the separation of genes in two distinct groups coupled with recent expansion is characteristic of Arcella and might reflect an unusual pattern of gene family evolution in the lobose

  14. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    CB Toaldo

    2001-01-01

    Full Text Available The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70 and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  15. Actinic Cheilitis

    ... actinic cheilitis. Overview Actinic cheilitis, sometimes known as "farmer's lip" or "sailor's lip," is a precancerous condition ... Last Updated: 22 Dec 2008 Information for other ages: Table of Contents: Overview Who's At Risk Signs ...

  16. Electrophoresis and orientation of F-actin in agarose gels.

    Borejdo, J; Ortega, H.

    1989-01-01

    F-Actin was electrophoresed on agarose gels. In the presence of 2 mM MgCl2 and above pH 8.5 F-actin entered 1% agarose; when the electric field was 2.1 V/cm and the pH was 8.8, F-actin migrated through a gel as a single band at a rate of 2.5 mm/h. Labeling of actin with fluorophores did not affect its rate of migration, but an increase in ionic strength slowed it down. After the electrophoresis actin was able to bind phalloidin and heavy meromyosin (HMM) and it activated Mg2+-dependent ATPase...

  17. Actinic keratosis

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... laser treatment called photodynamic therapy Chemical peels Skin creams such as 5-fluorouracil (5-FU) and imiquimod

  18. Progresses in studies of nuclear actin

    ZHU Xiaojuan; ZENG Xianlu; SONG Zhaoxia; HAO Shui

    2004-01-01

    Actin is a protein abundant in cells. Recently, it has been proved to be universally existent in the nuclei of many cell types. Actin and actin-binding proteins, as well as actin-related proteins, are necessary for the mediation of the conformation and function of nuclear actin, including the transformation of actin between unpolymerized and polymerized, chroinatin remodeling, regulation of gene expression and RNA processing as well as RNA transportation. In this paper, we summarized the progresses in the research of nu clear actin.

  19. Isolation of a strawberry gene fragment encoding an actin depolymerizing factor-like protein from genotypes resistant to Colletotrichum acutatum.

    Ontivero, Marta; Zamora, Gustavo Martínez; Salazar, Sergio; Ricci, Juan Carlos Díaz; Castagnaro, Atilio Pedro

    2011-12-01

    Actin depolymerizing factors (ADFs) have been recently implicated in plant defense against pathogenic fungi, associated with the cytoskeletal rearrangements that contribute to establish an effective barrier against fungal ingress. In this work, we identified a DNA fragment corresponding to a part of a gene predicted to encode an ADF-like protein in genotypes of Fragaria ananassa resistant to the fungus Colletotrichum acutatum. Bulked segregant analysis combined with AFLP was used to identify polymorphisms linked to resistance in hybrids derived from the cross between the resistant cultivar 'Sweet Charlie' and the susceptible cultivar 'Pájaro'. The sequence of one out of three polymorphic bands detected showed significant BLASTX hits to ADF proteins from other plants. Two possible exons were identified and bioinformatic analysis revealed the presence of the ADF homology domain with two actin-binding sites, an N-terminal phosphorylation site, and a nuclear localization signal. In addition to its possible application in strawberry breeding programs, these finding may contribute to investigate the role of ADFs in plant resistance against fungi. PMID:22107362

  20. Polymorphism in the alpha cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy.

    Amanda Farage Frade

    Full Text Available AIMS: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to a life-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC. One third of T. cruzi-infected individuals progress to CCC while the others remain asymptomatic (ASY. A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Since mutations in multiple sarcomeric genes, including alpha-cardiac actin (ACTC1 have been involved in hereditary dilated cardiomyopathy, we investigated the involvement of the ACTC1 gene in CCC pathogenesis. METHODS AND RESULTS: We conducted a proteomic and genetic study on a Brazilian study population. The genetic study was done on a main cohort including 118 seropositive asymptomatic subjects and 315 cases and the replication was done on 36 asymptomatic and 102 CCC cases. ACTC1 protein and mRNA levels were lower in myocardial tissue from patients with end-stage CCC than those found in hearts from organ donors. Genotyping a case-control cohort of CCC and ASY subjects for all informative single nucleotide polymorphism (SNP in the ACTC1 gene identified rs640249 SNP, located at the 5' region, as associated to CCC. Associations are borderline after correction for multiple testing. Correlation and haplotype analysis led to the identification of a susceptibility haplotype. Functional assays have shown that the rs640249A/C polymorphism affects the binding of transcriptional factors in the promoter regions of the ACTC1 gene. Confirmation of the detected association on a larger independent replication cohort will be useful. CONCLUSIONS: Genetic variations at the ACTC1 gene may contribute to progression to chronic Chagas Cardiomyopathy among T. cruzi-infected patients, possibly by modulating transcription factor binding to ACTC1 promoter regions.

  1. Post irradiation examinations of uranium-plutonium mixed nitride fuel irradiated in JMTR (88F-5A capsule)

    Two helium-bonded fuel pins filled with uranium-plutonium mixed nitride pellets were encapsulated in 88F-5A and irradiated in JMTR up to 4.1%FIMA at a maximum linear power of 65 kW/m. The capsule cooled for ∼4 months was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pins. It was found from the temperature change at pellet center that the helium gap between the pellets and the cladding tube was gradually closed during irradiation. Very low fission gas release rate of about 2-3% was observed, while the diametric increase of fuel pin was limited to ∼0.4% at the position of maximum reading. The inner surface of cladding tube did not show the signs of chemical interaction with fuel. In addition, some information on restructuring of fuel pellets was obtained. (author)

  2. Comprehensive phylogenetic reconstruction of amoebozoa based on concatenated analyses of SSU-rDNA and actin genes.

    Daniel J G Lahr

    Full Text Available Evolutionary relationships within Amoebozoa have been the subject of controversy for two reasons: 1 paucity of morphological characters in traditional surveys and 2 haphazard taxonomic sampling in modern molecular reconstructions. These along with other factors have prevented the erection of a definitive system that resolves confidently both higher and lower-level relationships. Additionally, the recent recognition that many protosteloid amoebae are in fact scattered throughout the Amoebozoa suggests that phylogenetic reconstructions have been excluding an extensive and integral group of organisms. Here we provide a comprehensive phylogenetic reconstruction based on 139 taxa using molecular information from both SSU-rDNA and actin genes. We provide molecular data for 13 of those taxa, 12 of which had not been previously characterized. We explored the dataset extensively by generating 18 alternative reconstructions that assess the effect of missing data, long-branched taxa, unstable taxa, fast evolving sites and inclusion of environmental sequences. We compared reconstructions with each other as well as against previously published phylogenies. Our analyses show that many of the morphologically established lower-level relationships (defined here as relationships roughly equivalent to Order level or below are congruent with molecular data. However, the data are insufficient to corroborate or reject the large majority of proposed higher-level relationships (above the Order-level, with the exception of Tubulinea, Archamoebae and Myxogastrea, which are consistently recovered. Moreover, contrary to previous expectations, the inclusion of available environmental sequences does not significantly improve the Amoebozoa reconstruction. This is probably because key amoebozoan taxa are not easily amplified by environmental sequencing methodology due to high rates of molecular evolution and regular occurrence of large indels and introns. Finally, in an effort

  3. From pollen actin to crop male sterility

    2000-01-01

    Actin plays an important role in the life activity of animal and plant cells. Pollen cells have plenty of actin whose structure and characteristics are very similar to the animal actin. The nucleotide sequence and amino acid sequence of plant actin gene are very similar to those of the animal gene. The content of pollen actin from male sterile plants is much more lower than that from its maintainer plants. The expression of actin gene is organ-specific during the plant development. The expression quantity of actin gene in pollen is much more higher than those from root, stem and leaf. The expression plasmid of the anti-sense actin gene was constructed, transferred to the protoplasts of wheat and tomato to inhibit the expression of actin gene in pollen and thus the male sterile plants of wheat and tomato were obtained. The actin in pollens from the transgenic plants was reduced significantly, whereas the pistil was not affected. This study might pave a new way to breeding male sterile lines for the application of hybrid vigor of wheat and tomato.

  4. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J;

    2014-01-01

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is...

  5. Isolation and Characterization of Actin Gene Fragment from Agropyron mongolicum Keng%蒙古冰草Actin基因片段的克隆及序列分析

    赵彦; 云锦凤; 石凤敏; 刘亚玲

    2009-01-01

    In this study,Actin gene homology fragment from Mongo1ian wheatgrass(Agropyron mongolicum Keng)was isolated using homology-based method, so that it can be used as internal standard when study other genes' expression and regulation in Mongo1ian wheatgrass.Two pairs of primers A4 and A5 was designed according to the amino acid conserved regions of the cloned actin gene of Gramineae plant wheat, and two partials gene sequences were obtained by reverse transcription polymerase chain reaction(RT-PCR),the product of which was named as MwACT.The sequences was 962 bp after merging two partials gene repeat sequences,which encoded 237 amino acids. Homology comparison with Actin gene sequences in other plants was over 79%,which was 94% identical to wheat and barley.Over 90%amino acid sequence homology was showed with other plants.%旨在利用同源序列法分离蒙古冰草(Agropyron mongolicum Keng)Actin基因同源片段,为研究其他基因在蒙古冰草中的表达和调控提供内标参照.根据禾本科植物小麦Actin基因(AB181991)的保守序列设计2对引物A4和A5,采用RT-PCR扩增蒙古冰草的Actin基因片段,分别得到656 bp和848 bp的片段,使用DNAman和DNAuser等分子生物学软件进行序列分析,将2个片段的重复序列合并后获得一段长度为962 bp的基因片段,编码237个氨基酸,将克隆的Actin基因片段命名为MwACT.该序列与其它植物Actin基因核苷酸序列的同源性均在80%以上,其中与小麦、大麦的同源性达到94%;与氨基酸序列的同源性均在90%以上.

  6. Expression of the human amylase genes: recent origin of a salivary amylase promoter from an actin pseudogene.

    Samuelson, L C; Wiebauer, K; Gumucio, D L; Meisler, M H

    1988-01-01

    The human genes encoding salivary amylase (AMY1) and pancreatic amylase (AMY2) are nearly identical in structure and sequence. We have used ribonuclease protection studies to identify the functional gene copies in this multigene family. Riboprobes derived from each gene were hybridized to RNA from human pancreas, parotid and liver. The sizes of the protected fragments demonstrated that both pancreatic genes are expressed in pancreas. One of the pancreatic genes, AMY2B, is also transcribed at ...

  7. Comparative study of type-II superconducting properties in polycrystalline NdFeAsO 0.88F 0.12 prepared by different methods

    Ding, Y.; Sun, Y.; Wang, X. D.; Wang, H. C.; Shi, Z. X.; Ren, Z. A.; Yang, J.; Lu, W.

    2010-12-01

    Polycrystalline NdFeAsO 0.88F 0.12 superconductors prepared by high pressure (HP) and ambient pressure (AP) methods were comparatively studied by magnetization and transport measurements. Upper critical field Hc2, irreversibility field Hirr and the anisotropy parameter Γ were estimated from resistance transition curves. The broadening of transition width was observed, and was ascribed to both Hc2 anisotropy and superconductivity inhomogeneity of samples. Magnetic hysteresis loops (MHLs) in low fields were measured to detect the trace of weak-link behavior. The reclosed hysteresis loops in low fields indicate that there are weak links in both samples. Magnetization critical current density Jcm were derived from MHLs. Sample HP shows higher Jcm than sample AP. Direct transport I- V measurements show that the transport critical current density Jct are very low but persist up to 9 T, suggesting intrinsic strong-link existing in both samples.

  8. Hypothyroidism decreases proinsulin gene expression and the attachment of its mRNA and eEF1A protein to the actin cytoskeleton of INS-1E cells

    Goulart-Silva, F.; C. Serrano-Nascimento; Nunes, M.T.

    2011-01-01

    The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cyto...

  9. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes

  10. Polymorphism in the Alpha Cardiac Muscle Actin 1 Gene Is Associated to Susceptibility to Chronic Inflammatory Cardiomyopathy

    Amanda Farage Frade; Priscila Camilo Teixeira; Barbara Maria Ianni; Cristina Wide Pissetti; Bruno Saba; Lin Hui Tzu Wang; Andréia Kuramoto; Luciana Gabriel Nogueira; Paula Buck; Fabrício Dias; Helene Giniaux; Agnes Llored; Sthefanny Alves; Andre Schmidt; Eduardo Donadi

    2013-01-01

    AIMS: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to a life-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC). One third of T. cruzi-infected individuals progress to CCC while the others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Since mutations i...

  11. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea).

    Souza, Ligia Cristina Kalb; Pinho, Rosana Elisa Gonçalves Gonçalves; Lima, Carla Vanessa de Paula; Fragoso, Stênio Perdigão; Soares, Maurilio José

    2013-08-01

    Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids. PMID:23903980

  12. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea

    Ligia Cristina Kalb Souza

    2013-08-01

    Full Text Available Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major, insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis and plants (Phytomonas serpens. A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.

  13. The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor.

    Wang, X; Richards, J; Gross, T; Druka, A; Kleinhofs, A; Steffenson, B; Acevedo, M; Brueggeman, R

    2013-04-01

    The rpg4 gene confers recessive resistance to several races of wheat stem rust (Puccinia graminis f. sp. tritici) and Rpg5 provides dominant resistance against isolates of the rye stem rust (P. graminis f. sp. secalis) in barley. The rpg4 and Rpg5 genes are tightly linked on chromosome 5H, and positional cloning using high-resolution populations clearly separated the genes, unambiguously identifying Rpg5; however, the identity of rpg4 remained unclear. High-resolution genotyping of critical recombinants at the rpg4/Rpg5 locus, designated here as rpg4-mediated resistance locus (RMRL) delimited two distinct yet tightly linked loci required for resistance, designated as RMRL1 and RMRL2. Utilizing virus-induced gene silencing, each gene at RMRL1, i.e., HvRga1 (a nucleotide-binding site leucine-rich repeat [NBS-LRR] domain gene), Rpg5 (an NBS-LRR-protein kinase domain gene), and HvAdf3 (an actin depolymerizing factor-like gene), was individually silenced followed by inoculation with P. graminis f. sp. tritici race QCCJ. Silencing each gene changed the reaction type from incompatible to compatible, indicating that all three genes are required for rpg4-mediated resistance. This stem rust resistance mechanism in barley follows the emerging theme of unrelated pairs of genetically linked NBS-LRR genes required for specific pathogen recognition and resistance. It also appears that actin cytoskeleton dynamics may play an important role in determining resistance against several races of stem rust in barley. PMID:23216085

  14. Genetic variability and mycohost association of Ampelomyces quisqualis isolates inferred from phylogenetic analyses of ITS rDNA and actin gene sequences.

    Park, Mi-Jeong; Choi, Young-Joon; Hong, Seung-Beom; Shin, Hyeon-Dong

    2010-01-01

    Ampelomyces quisqualis complex is well known as the most common and widespread hyperparasite of the family Erysiphaceae, the cause of powdery mildew diseases. As commercial biopesticide products it is widely used to control the disease in field and plastic houses. Although genetic diversity within Ampelomyces isolates has been previously recognized, a single name A. quisqualis is still applied to all pycnidial intracellular hyperparasites of powdery mildew fungi. In this study, the phylogenetic relationships among Ampelomyces isolates originating from various powdery mildew fungi in Korea were inferred from Bayesian and maximum parsimony analyses of the sequences of ITS rDNA region and actin gene. In the phylogenetic trees, the Ampelomyces isolates could be divided into four distinct groups with high sequence divergences in both regions. The largest group, Clade 1, mostly accommodated Ampelomyces isolates originating from the mycohost Podosphaera spp. (sect. Sphaerotheca). Clade 2 comprised isolates from several genera of powdery mildews, Golovinomyces, Erysiphe (sect. Erysiphe), Arthrocladiella, and Phyllactinia, and was further divided into two subclades. An isolate obtained from Podosphaera (sect. Sphaerotheca) pannosa was clustered into Clade 3, with those from powdery mildews infecting rosaceous hosts. The mycohosts of Ampelomyces isolates in Clade 4 mostly consisted of species of Erysiphe (sect. Erysiphe, sect. Microsphaera, and sect. Uncinula). The present phylogenetic study demonstrates that Ampelomyces hyperparasite is indeed an assemblage of several distinct lineages rather than a sole species. Although the correlation between Ampelomyces isolates and their mycohosts is not obviously clear, the isolates show not only some degree of host specialization but also adaptation to their mycohosts during the evolution of the hyperparasite. PMID:20943134

  15. Effect of pressure on the superconducting critical temperature of La[O0.89F0.11]FeAs and Ce[O0.88F0.12]FeAs

    We have performed several high-pressure resistivity experiments on the recently discovered superconductors La[O0.89F0.11]FeAs and Ce[O0.88F0.12]FeAs. At ambient pressure, these materials have superconducting onset temperatures Tc of 28 K and 44 K, respectively. While the Tc of La[O0.89F0.11]FeAs goes through a maximum between 10 and 68 kbar, in qualitative agreement with a recent report by Takahashi et al., the Tc of Ce[O0.88F0.12]FeAs decreases monotonically over the measured pressure range. At 265 kbar, the Tc of the cerium-based compound has been suppressed below 1.1 K

  16. Control of actin-based motility through localized actin binding

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it, if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disc. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young’s modulus of the actin network and can explain several aspects of actin-based motility. (paper)

  17. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus and other eukaryote species revealed by nucleotide and amino acid sequence analyses

    Andréia B. Poletto

    2008-01-01

    Full Text Available Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus were isolated by RT-PCR using total RNA samples of different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa sequence analysis. Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance was observed between O. niloticus and O. mossambicus a-actin and b-actin genes. Analysis of the predicted aa sequences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile tilapia actin genes and diverse other organisms is discussed.

  18. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  19. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53.

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1-393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using "hot-spot" p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  20. The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1

    Mariani, Luca; Lussi, Yvonne C.; Vandamme, Julien;

    2016-01-01

    The dynamic regulation of histone modifications is important for modulating transcriptional programs during development. Aberrant H3K4 methylation is associated with neurological disorders, but how the levels and the recognition of this modification affect specific neuronal processes is unclear....... Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1. Loss of rbr-2 results in increased levels of H3K4me3 at the transcriptional start site of wsp-1...... levels, the NURF complex and the expression of WSP-1....

  1. Hypothyroidism decreases proinsulin gene expression and the attachment of its mRNA and eEF1A protein to the actin cytoskeleton of INS-1E cells

    F. Goulart-Silva

    2011-10-01

    Full Text Available The actions of thyroid hormone (TH on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a proinsulin mRNA expression, b proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c actin cytoskeleton arrangement, and d proinsulin mRNA poly(A tail length modulation in INS-1E cells cultured in different media containing: i normal fetal bovine serum - FBS (control; ii normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii FBS depleted of TH for 24 h (Tx. A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.

  2. Mammalian Fat1 cadherin regulates actin dynamics and cell–cell contact

    Tanoue, Takuji; Takeichi, Masatoshi

    2004-01-01

    Fat cadherins form a distinct subfamily of the cadherin gene superfamily, and are featured by their unusually large extracellular domain. In this work, we investigated the function of a mammalian Fat cadherin. Fat1 was localized at filopodial tips, lamellipodial edges, and cell–cell boundaries, overlapping with dynamic actin structures. RNA interference–mediated knockdown of Fat1 resulted in disorganization of cell junction–associated F-actin and other actin fibers/cables, disturbance of cell...

  3. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.

    Dopie, Joseph; Rajakylä, Eeva K; Joensuu, Merja S; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K

    2015-07-01

    Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes. PMID:26021350

  4. β-Actin protein expression differs in the submandibular glands of male and female mice.

    Chen, Gang; Zou, Ye; Zhang, Xuan; Xu, Lingfei; Hu, Qiaoyun; Li, Ting; Yao, Chenjuan; Yu, Shali; Wang, Xiaoke; Wang, Chun

    2016-07-01

    β-actin, a cytoskeletal protein, is the most widely used housekeeping gene. Although housekeeping genes are expressed in all tissues, the β-actin gene is expressed in certain cell types because of differential binding of transcriptional factors to the regulatory elements of the gene. The expression and localization of β-actin protein in the submandibular glands (SMG) of mice were investigated in this study, using Western blot analysis and immunohistochemistry. In ICR and C57BL/6J mice, the levels of β-actin protein in the SMG of females are significantly higher than those in the SMG of males. β-actin protein is majorly distributed in acinar cells of SMG. There is no significant difference in the expression level of β-actin protein between females and castrated males. After castrated male ICR mice are treated with 10 mg/kg/day testosterone propionate (TP) for 3 weeks, the levels of β-actin protein in SMG decrease. The numbers of duct per unit area increase, whereas the numbers of acinus per unit area decrease after TP administration. These data suggest that β-actin protein is mainly distributed in acinar cells of SMG and results in a marked sexual dimorphism in mice. PMID:27079296

  5. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    Chen, Li; Shi, Kaikai; Frary, Charles Edward;

    2015-01-01

    Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene...... expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...... polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1...

  6. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesi...

  7. Gene Related to Anergy in Lymphocytes (GRAIL) Expression in CD4+ T Cells Impairs Actin Cytoskeletal Organization during T Cell/Antigen-presenting Cell Interactions*

    Schartner, Jill M.; Simonson, William T; Wernimont, Sarah A.; Nettenstrom, Lauren M.; Huttenlocher, Anna; Seroogy, Christine M.

    2009-01-01

    GRAIL (gene related to anergy in lymphocytes), is an E3 ubiquitin ligase with increased expression in anergic CD4+ T cells. The expression of GRAIL has been shown to be both necessary and sufficient for the induction of T cell (T) anergy. To date, several subsets of anergic T cells have demonstrated altered interactions with antigen-presenting cells (APC) and perturbed TCR-mediated signaling. The role of GRAIL in mediating these aspects of T cell anergy remains unclear. We used flow cytometry...

  8. Regulation of water flow by actin-binding protein-induced actin gelatin.

    Ito, T.; Suzuki, A.; Stossel, T. P.

    1992-01-01

    Actin filaments inhibit osmotically driven water flow (Ito, T., K.S. Zaner, and T.P. Stossel. 1987. Biophys. J. 51: 745-753). Here we show that the actin gelation protein, actin-binding protein (ABP), impedes both osmotic shrinkage and swelling of an actin filament solution and reduces markedly the concentration of actin filaments required for this inhibition. These effects depend on actin filament immobilization, because the ABP concentration that causes initial impairment of water flow by a...

  9. Boolean gates on actin filaments

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  10. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity

    Alon Kalo

    2015-04-01

    Full Text Available The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

  11. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  12. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1 and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    Oscar Rodríguez-Lima

    Full Text Available TATA-box binding protein (TBP is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1. Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5 and 2-Cys peroxiredoxin (Ts2-CysPrx gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.

  13. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene. PMID:26529408

  14. Calponin 3 regulates actin cytoskeleton rearrangement in trophoblastic cell fusion.

    Shibukawa, Yukinao; Yamazaki, Natsuko; Kumasawa, Keiichi; Daimon, Etsuko; Tajiri, Michiko; Okada, Yuka; Ikawa, Masahito; Wada, Yoshinao

    2010-11-15

    Cell-cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted BeWo cell fusion. CNN3 at the cytoplasmic face of cytoskeleton was dislocated from F-actin with forskolin treatment and diffused into the cytoplasm in a phosphorylation-dependent manner. Phosphorylation sites were located at Ser293/296 in the C-terminal region, and deletion of this region or site-specific disruption of Ser293/296 suppressed syncytium formation. These CNN3 mutants were colocalized with F-actin and remained there after forskolin treatment, suggesting that dissociation of CNN3 from F-actin is modulated by the phosphorylation status of the C-terminal region unique to CNN3 in the CNN family proteins. The mutant missing these phosphorylation sites displayed a dominant negative effect on cell fusion, while replacement of Ser293/296 with aspartic acid enhanced syncytium formation. These results indicated that CNN3 regulates actin cytoskeleton rearrangement which is required for the plasma membranes of trophoblasts to become fusion competent. PMID:20861310

  15. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling. PMID:26900020

  16. Steady-state nuclear actin levels are determined by export competent actin pool.

    Skarp, Kari-Pekka; Huet, Guillaume; Vartiainen, Maria K

    2013-10-01

    A number of studies in the last decade have irrevocably promoted actin into a fully fledged member of the nuclear compartment, where it, among other crucial tasks, facilitates transcription and chromatin remodeling. Changes in nuclear actin levels have been linked to different cellular processes: decreased nuclear actin to quiescence and increased nuclear actin to differentiation. Importin 9 and exportin 6 transport factors are responsible for the continuous nucleocytoplasmic shuttling of actin, but the mechanisms, which result in modulated actin levels, have not been characterized. We find that in cells growing under normal growth conditions, the levels of nuclear actin vary considerably from cell to cell. To understand the basis for this, we have extensively quantified several cellular parameters while at the same time recording the import and export rates of green fluorescent protein (GFP)-tagged actin. Surprisingly, our dataset shows that the ratio of nuclear to cytoplasmic fluorescence intensity, but not nuclear shape, size, cytoplasm size, or their ratio, correlates negatively with both import and export rate of actin. This suggests that high-nuclear actin content is maintained by both diminished import and export. The high nuclear actin containing cells still show high mobility of actin, but it is not export competent, suggesting increased binding of actin to nuclear complexes. Creation of such export incompetent actin pool would ensure enough actin is retained in the nucleus and make it available for the various nuclear functions described for actin. PMID:23749625

  17. Effect of pressure on the superconducting critical temperature of La[O{sub 0.89}F{sub 0.11}]FeAs and Ce[O{sub 0.88}F{sub 0.12}]FeAs

    Zocco, D.A.; Hamlin, J.J.; Baumbach, R.E. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California at San Diego, La Jolla, CA 92093 (United States); Maple, M.B. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California at San Diego, La Jolla, CA 92093 (United States)], E-mail: mbmaple@ucsd.edu; McGuire, M.A.; Sefat, A.S.; Sales, B.C.; Jin, R.; Mandrus, D. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jeffries, J.R.; Weir, S.T. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Vohra, Y.K. [Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2008-10-01

    We have performed several high-pressure resistivity experiments on the recently discovered superconductors La[O{sub 0.89}F{sub 0.11}]FeAs and Ce[O{sub 0.88}F{sub 0.12}]FeAs. At ambient pressure, these materials have superconducting onset temperatures T{sub c} of 28 K and 44 K, respectively. While the T{sub c} of La[O{sub 0.89}F{sub 0.11}]FeAs goes through a maximum between 10 and 68 kbar, in qualitative agreement with a recent report by Takahashi et al., the T{sub c} of Ce[O{sub 0.88}F{sub 0.12}]FeAs decreases monotonically over the measured pressure range. At 265 kbar, the T{sub c} of the cerium-based compound has been suppressed below 1.1 K.

  18. Actinic Keratoses: A Comprehensive Update

    Ibrahim, Sherrif F.; Brown, Marc D.

    2009-01-01

    Actinic keratoses are common intra-epidermal neoplasms that lie on a continuum with squamous cell carcinoma. Tightly linked to ultraviolet irradiation, they occur in areas of chronic sun exposure, and early treatment of these lesions may prevent their progression to invasive disease. A large variety of effective treatment modalities exist, and the optimal therapeutic choice is dependent on a variety of patient- and physician-associated variables. Many established and more recent approaches ar...

  19. Reactive oxygen species (ROS)-induced actin glutathionylation controls actin dynamics in neutrophils

    Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K.; Mondal, Subhanjan; Bajrami, Besnik; Hattori, Hidenori; Jia, Yonghui; Dickinson, Bryan C.; Zhong, Jia; Ye, Keqiang; Chang, Christopher J; Ho, Ye-Shih; Zhou, Jun; Luo, Hongbo R.

    2012-01-01

    Summary The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis, and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, however the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils. PMID:23159440

  20. Mesoscopic model of actin-based propulsion.

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  1. Calponin 3 Regulates Actin Cytoskeleton Rearrangement in Trophoblastic Cell Fusion

    Shibukawa, Yukinao; Yamazaki, Natsuko; Kumasawa, Keiichi; Daimon, Etsuko; Tajiri, Michiko; Okada, Yuka; Ikawa, Masahito; Wada, Yoshinao

    2010-01-01

    Cell–cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted Be...

  2. Mechanosensitive kinetic preference of actin-binding protein to actin filament

    Inoue, Yasuhiro; Adachi, Taiji

    2016-04-01

    The kinetic preference of actin-binding proteins to actin filaments is altered by external forces on the filament. Such an altered kinetic preference is largely responsible for remodeling the actin cytoskeletal structure in response to intracellular forces. During remodeling, actin-binding proteins and actin filaments interact under isothermal conditions, because the cells are homeostatic. In such a temperature homeostatic state, we can rigorously and thermodynamically link the chemical potential of actin-binding proteins to stresses on the actin filaments. From this relationship, we can construct a physical model that explains the force-dependent kinetic preference of actin-binding proteins to actin filaments. To confirm the model, we have analyzed the mechanosensitive alternation of the kinetic preference of Arp2/3 and cofilin to actin filaments. We show that this model captures the qualitative responses of these actin-binding proteins to the forces, as observed experimentally. Moreover, our theoretical results demonstrate that, depending on the structural parameters of the binding region, actin-binding proteins can show different kinetic responses even to the same mechanical signal tension, in which the double-helix nature of the actin filament also plays a critical role in a stretch-twist coupling of the filament.

  3. Actin as deathly switch? How auxin can suppress cell-death related defence.

    Xiaoli Chang

    Full Text Available Plant innate immunity is composed of two layers--a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death.

  4. Packaging of actin into Ebola virus VLPs

    Harty Ronald N

    2005-12-01

    Full Text Available Abstract The actin cytoskeleton has been implicated in playing an important role assembly and budding of several RNA virus families including retroviruses and paramyxoviruses. In this report, we sought to determine whether actin is incorporated into Ebola VLPs, and thus may play a role in assembly and/or budding of Ebola virus. Our results indicated that actin and Ebola virus VP40 strongly co-localized in transfected cells as determined by confocal microscopy. In addition, actin was packaged into budding VP40 VLPs as determined by a functional budding assay and protease protection assay. Co-expression of a membrane-anchored form of Ebola virus GP enhanced the release of both VP40 and actin in VLPs. Lastly, disruption of the actin cytoskeleton with latrunculin-A suggests that actin may play a functional role in budding of VP40/GP VLPs. These data suggest that VP40 may interact with cellular actin, and that actin may play a role in assembly and/or budding of Ebola VLPs.

  5. Architecture and Connectivity Govern Actin Network Contractility.

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-01

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions. PMID:26898468

  6. Genomic instability in human actinic keratosis and squamous cell carcinoma

    Luciana Sanches Cabral

    2011-01-01

    Full Text Available OBJECTIVE: To compare the repetitive DNA patterns of human actinic keratoses and squamous cell carcinomas to determine the genetic alterations that are associated with malignant transformation. INTRODUCTION: Cancer cells are prone to genomic instability, which is often due to DNA polymerase slippage during the replication of repetitive DNA and to mutations in the DNA repair genes. The progression of benign actinic keratoses to malignant squamous cell carcinomas has been proposed by several authors. MATERIAL AND METHODS: Eight actinic keratoses and 24 squamous cell carcinomas (SCC, which were pair-matched to adjacent skin tissues and/or leucocytes, were studied. The presence of microsatellite instability (MSI and the loss of heterozygosity (LOH in chromosomes 6 and 9 were investigated using nine PCR primer pairs. Random Amplified Polymorphic DNA patterns were also evaluated using eight primers. RESULTS: MSI was detected in two (D6S251, D9S50 of the eight actinic keratosis patients. Among the 8 patients who had squamous cell carcinoma-I and provided informative results, a single patient exhibited two LOH (D6S251, D9S287 and two instances of MSI (D9S180, D9S280. Two LOH and one example of MSI (D6S251 were detected in three out of the 10 patients with squamous cell carcinoma-II. Among the four patients with squamous cell carcinoma-III, one patient displayed three MSIs (D6S251, D6S252, and D9S180 and another patient exhibited an MSI (D9S280. The altered random amplified polymorphic DNA ranged from 70% actinic keratoses, 76% squamous cell carcinoma-I, and 90% squamous cell carcinoma-II, to 100% squamous cell carcinoma-III. DISCUSSION: The increased levels of alterations in the microsatellites, particularly in D6S251, and the random amplified polymorphic DNA fingerprints were statistically significant in squamous cell carcinomas, compared with actinic keratoses. CONCLUSION: The overall alterations that were observed in the repetitive DNA of actinic

  7. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  8. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    Rasmussen Izabela

    2010-09-01

    Full Text Available Abstract Background Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton. Results Here, we in addition to toxins use conditional expression of the major actin regulatory protein LIM kinase-1 (LIMK1, and shRNA knock-down of cofilin to modulate the cellular F/G-actin ratio in the Ra2 microglia cell line, and we use Fluorescence Recovery after Photobleaching (FRAP in β-actin-YFP-transduced cells to obtain a dynamic measure of actin recovery rates (actin turn-over rates in different F/G-actin states of the actin cytoskeleton. Our data demonstrate that stimulated NADPH oxidase function was severely impaired only at extreme actin recovery rates and F/G-actin ratios, and surprisingly, that any moderate changes of these parameters of the actin cytoskeleton invariably resulted in an increased NADPH oxidase activity. Conclusion moderate actin polymerization and depolymerization both increase the FMLP and PMA-stimulated NADPH oxidase activity of microglia, which is directly correlated with neither actin recovery rate nor F/G- actin ratio. Our results indicate that NADPH oxidase functions in an enhanced state of activity in stimulated phagocytes despite widely different states of the actin cytoskeleton.

  9. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise;

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...

  10. Dynamics of active actin networks

    Koehler, Simone

    2014-03-01

    Local mechanical and structural properties of a eukaryotic cell are determined by its cytoskeleton. To adapt to their environment, cells rely on constant self-organized rearrangement processes of their actin cytoskeleton. To shed light on the principles underlying these dynamic self-organization processes we investigate a minimal reconstituted active system consisting of actin filaments, crosslinking molecules and molecular motor filaments. Using quantitative fluorescence microscopy and image analysis, we show, that these minimal model systems exhibit a generic structure formation mechanism. The competition between force generation by molecular motors and the stabilization of the network by crosslinking proteins results in a highly dynamic reorganization process which is characterized by anomalous transport dynamics with a superdiffusive behavior also found in intracellular dynamics. In vitro, these dynamics are governed by chemical and physical parameters that alter the balance of motor and crosslinking proteins, such as pH. These findings can be expected to have broad implications in our understanding of cytoskeletal regulation in vivo.

  11. Force of an actin spring

    Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul

    2003-03-01

    The acrosomal process of the horseshoe crab sperm is a novel mechanochemical molecular spring that converts its elastic stain energy to mechanical work upon the chemical activation by Ca2+. Twisted and bent, the initial state of the acrosomal bundle features a high degree of complexity in its structure and the energy is believed to be stored in the highly strained actin filaments as an elastic potential energy. When activated, the bundle relaxes from the coil of the highly twisted and bent filaments to its straight conformation at a mean velocity of 15um/s. The mean extension velocity increases dramatically from 3um/s to 27um/s when temperature of the medium is changed from 9.6C to 32C (respective viscosities of 1.25-0.75cp), yet it exhibits a very weak dependence on changes in the medium viscosity (1cp-33cp). These experiments suggest that the uncoiling of the actin spring should be limited not by the viscosity of the medium but by the unlatching events of involved proteins at a molecular level. Unlike the viscosity-limited processes, where force is directly related to the rate of the reaction, a direct measurement is required to obtain the spring force of the acrosomal process. The extending acrosomal bundle is forced to push against a barrier and its elastic buckling response is analyzed to measure the force generated during the uncoiling.

  12. A radioimmunoassay for determination of anti-actin antibodies

    The reaction of spontaneously occurring human anti-actin antibodies and experimentally produced rabbit anti-actin antibodies was investigated in a solid-phase radioimmunoassay (RIA). Three structurally different in vitro forms of actin, monomeric G-actin, filamentous F-actin and aggregated denatured actin were used as antigens. Human anti-actin antibodies reacted with F- and G-actin but not with aggregated actin, while rabbit anti-actin antibodies gave a strong reaction with all 3 forms of actin indicating differences in antibody specificities. The results of the anti-actin RIA were compared with those obtained by indirect immunofluorescence (IFL) on cryostat sections of rat stomach. The anti-actin RIA discriminated between patients' sera and control sera in most cases, although the indirect IFL test gave more conclusive results. The seemingly low sensitivity of the anti-actin RIA compared with that of indirect IFL test for detection of human anti-actin antibodies is probably due to favourable antigen distribution in tissue, not available in the solid phase. The anti-actin RIA was able to detect anti-actin antibodies in 8 out of 8 immunized rabbits although only two produced antibodies detectable by indirect IFL. The differences in reactivity between the two methods may depend on the presence of aggregated denatured actin in the antigen preparation used for immunization and exposure of the corresponding antigenic determinants of actin on the solid phase. (Auth.)

  13. Stain Free Total Protein Staining is a Superior Loading Control to β-Actin for Western Blots

    Gilda, Jennifer E.; Aldrin V. Gomes

    2013-01-01

    Semi-Quantification of proteins using Western blots typically involves normalization against housekeeping genes such as β-actin. More recently, ponceau S and Coomassie blue staining have both been shown to be suitable alternatives to housekeeping genes as loading controls. Stain free total protein staining offers the advantage of no staining or destaining steps. Evaluation of the use of Stain free staining as an alternative to β-actin or the protein stain ponceau S showed that Stain free stai...

  14. Dynamics of an actin spring

    Riera, Christophe; Mahadevan, L.; Shin, Jennifer; Matsudaira, Paul

    2003-03-01

    The acrosome of the sperm of the horseshoe crab (Limulus Polyphemus) is an unusual actin based system that shows a spectacular dynamical transition in the presence of Ca++ that is present in abundance in the neighborhood of the egg. During this process, the bundle, which is initially bent and twisted uncoils and becomes straight in a matter of a few seconds. Based on microstructural data, we propose a model for the dynamics of uncoiling that is best represented by a triple-well potential corresponding to the different structural arrangements of the supertwisted filaments. Each of the false, true and coiled states corresponds to a local minimum of the energy, with the true state being the one with the lowest energy. Using an evolution equation derived by balancing torques, we investigate the nucleation and propagation of the phase transition and compare the results with those of experiments. Our model quantifies the hypothesis that the acrosomal bundle behaves like a mechano-chemical spring.

  15. A Short Splice Form of Xin-Actin Binding Repeat Containing 2 (XIRP2) Lacking the Xin Repeats Is Required for Maintenance of Stereocilia Morphology and Hearing Function

    Francis, Shimon P.; Krey, Jocelyn F.; Krystofiak, Evan S.; Cui, Runjia; Nanda, Sonali; Xu, Wenhao; Kachar, Bechara; Barr-Gillespie, Peter G.; Shin, Jung-Bum

    2015-01-01

    Approximately one-third of known deafness genes encode proteins located in the hair bundle, the sensory hair cell's mechanoreceptive organelle. In previous studies, we used mass spectrometry to characterize the hair bundle's proteome, resulting in the discovery of novel bundle proteins. One such protein is Xin-actin binding repeat containing 2 (XIRP2), an actin-cross-linking protein previously reported to be specifically expressed in striated muscle. Because mutations in other actin-cross-lin...

  16. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    Rasmussen Izabela; Pedersen Line H; Byg Luise; Suzuki Kazuhiro; Sumimoto Hideki; Vilhardt Frederik

    2010-01-01

    Abstract Background Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton. Results Here, we in addition to toxins use conditional expression of the ma...

  17. Design and evaluation of Actichip, a thematic microarray for the study of the actin cytoskeleton

    Chalmel Frédéric

    2007-08-01

    Full Text Available Abstract Background The actin cytoskeleton plays a crucial role in supporting and regulating numerous cellular processes. Mutations or alterations in the expression levels affecting the actin cytoskeleton system or related regulatory mechanisms are often associated with complex diseases such as cancer. Understanding how qualitative or quantitative changes in expression of the set of actin cytoskeleton genes are integrated to control actin dynamics and organisation is currently a challenge and should provide insights in identifying potential targets for drug discovery. Here we report the development of a dedicated microarray, the Actichip, containing 60-mer oligonucleotide probes for 327 genes selected for transcriptome analysis of the human actin cytoskeleton. Results Genomic data and sequence analysis features were retrieved from GenBank and stored in an integrative database called Actinome. From these data, probes were designed using a home-made program (CADO4MI allowing sequence refinement and improved probe specificity by combining the complementary information recovered from the UniGene and RefSeq databases. Actichip performance was analysed by hybridisation with RNAs extracted from epithelial MCF-7 cells and human skeletal muscle. Using thoroughly standardised procedures, we obtained microarray images with excellent quality resulting in high data reproducibility. Actichip displayed a large dynamic range extending over three logs with a limit of sensitivity between one and ten copies of transcript per cell. The array allowed accurate detection of small changes in gene expression and reliable classification of samples based on the expression profiles of tissue-specific genes. When compared to two other oligonucleotide microarray platforms, Actichip showed similar sensitivity and concordant expression ratios. Moreover, Actichip was able to discriminate the highly similar actin isoforms whereas the two other platforms did not. Conclusion Our

  18. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila.

    Shruti Haralalka

    Full Text Available The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs, and cell adhesion molecules Kin-of-IrreC (Kirre and Sticks-and-stones (Sns on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and

  19. Erbium laser resurfacing for actinic cheilitis.

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA). PMID:24196339

  20. Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream

    Raghavan Shalini

    2007-01-01

    Full Text Available Abstract Background The objective of this study was to identify the molecular processes responsible for the anti-lesional activity of imiquimod in subjects with actinic keratosis using global gene expression profiling. Methods A double-blind, placebo-controlled, randomized study was conducted to evaluate gene expression changes in actinic keratosis treated with imiquimod 5% cream. Male subjects (N = 17 with ≥ 5 actinic keratosis on the scalp applied placebo cream or imiquimod 3 times a week on nonconsecutive days for 4 weeks. To elucidate the molecular processes involved in actinic keratosis lesion regression by imiquimod, gene expression analysis using oligonucleotide arrays and real time reverse transcriptase polymerase chain reaction were performed on shave biopsies of lesions taken before and after treatment. Results Imiquimod modulated the expression of a large number of genes important in both the innate and adaptive immune response, including increased expression of interferon-inducible genes with known antiviral, anti-proliferative and immune modulatory activity, as well as various Toll-like receptors. In addition, imiquimod increased the expression of genes associated with activation of macrophages, dendritic cells, cytotoxic T cells, and natural killer cells, as well as activation of apoptotic pathways. Conclusion Data suggest that topical application of imiquimod stimulates cells in the skin to secrete cytokines and chemokines that lead to inflammatory cell influx into the lesions and subsequent apoptotic and immune cell-mediated destruction of lesions.

  1. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  2. A Role for Nuclear F-Actin Induction in Human Cytomegalovirus Nuclear Egress

    Wilkie, Adrian R.; Lawler, Jessica L.

    2016-01-01

    ABSTRACT Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes. PMID:27555312

  3. Reactive oxygen species (ROS)-induced actin glutathionylation controls actin dynamics in neutrophils

    Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K.; Mondal, Subhanjan; Bajrami, Besnik; Hattori, Hidenori; Jia, Yonghui; Dickinson, Bryan C; Zhong, Jia; Ye, Keqiang; Chang, Christopher J.; Ho, Ye-Shih; Zhou, Jun; Luo, Hongbo R.

    2012-01-01

    The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis, and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, however the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin poly...

  4. Nuclear actin levels as an important transcriptional switch

    Huet, Guillaume; Skarp, Kari-Pekka; Vartiainen, Maria K.

    2012-01-01

    Nuclear actin levels have recently been linked to different cellular fates, suggesting that actin could act as a switch between altered transcriptional states. Here we discuss our latest results on the mechanisms by which nuclear actin levels are regulated and their implications to the functional significance of nuclear actin.

  5. Nuclear actin levels as an important transcriptional switch

    Huet, Guillaume; Skarp, Kari-Pekka; Vartiainen, Maria K.

    2012-01-01

    Nuclear actin levels have recently been linked to different cellular fates, suggesting that actin could act as a switch between altered transcriptional states. Here we discuss our latest results on the mechanisms by which nuclear actin levels are regulated and their implications to the functional significance of nuclear actin. PMID:22771994

  6. Chronic actinic damage of facial skin.

    Bilaç, Cemal; Şahin, Mustafa Turhan; Öztürkcan, Serap

    2014-01-01

    Chronic actinic damage of the skin manifests itself as extrinsic skin aging (photoaging) and photocarcinogenesis. During the last decade, substantial progress has been made in understanding cellular and molecular mechanisms of photoaging. DNA photodamage and ultraviolet-generated reactive oxygen species are the initial events that lead to most of the typical histologic and clinical manifestations of chronic photodamage of the skin. Chronic actinic damage affects all layers of the skin. Keratinocytes, melanocytes, fibroblasts, and endothelial cells are altered by ultraviolet radiation and can result in numerous changes in human skin, particularly the skin of fair-skinned individuals. These changes include actinic keratosis, thickening and wrinkling, elastosis, telengiectasia, solar comedones, diffuse or mottled hyperpigmentation, and skin cancers. There are many options in the treatment of changes caused by chronic actinic damage. The most effective measure of prevention of the photoaging and photocarcinogenesis is sun protection. PMID:25441468

  7. Actinic review of EUV masks

    Feldmann, Heiko; Ruoff, Johannes; Harnisch, Wolfgang; Kaiser, Winfried

    2010-04-01

    Management of mask defects is a major challenge for the introduction of EUV for HVM production. Once a defect has been detected, its printing impact needs to be predicted. Potentially the defect requires some repair, the success of which needs to be proven. This defect review has to be done with an actinic inspection system that matches the imaging conditions of an EUV scanner. During recent years, several concepts for such an aerial image metrology system (AIMS™) have been proposed. However, until now no commercial solution exists for EUV. Today, advances in EUV optics technology allow envisioning a solution that has been discarded before as unrealistic. We present this concept and its technical cornerstones.While the power requirement for the EUV source is less demanding than for HVM lithography tools, radiance, floor space, and stability are the main criteria for source selection. The requirement to emulate several generations of EUV scanners demands a large flexibility for the ilumination and imaging systems. New critical specifications to the EUV mirrors in the projection microscope can be satisfied using our expertise from lithographic mirrors. In summary, an EUV AIMS™ meeting production requirements seems to be feasible.

  8. Mechanism of Actin Filament Bundling by Fascin

    Jansen, Silvia; Collins, Agnieszka; Yang, Changsong; Rebowski, Grzegorz; Svitkina, Tatyana; Dominguez, Roberto (UPENN); (UPENN-MED)

    2013-03-07

    Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four {beta}-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in {beta}-trefoil domains 1 and 3. The site in {beta}-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in {beta}-trefoil-3 is related by pseudo-2-fold symmetry to that in {beta}-trefoil-1. The two sites are {approx}5 nm apart, resulting in a distance between actin filaments in the bundle of {approx}8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.

  9. Stimulation of Actin Polymerization by Filament Severing

    Carlsson, A E

    2005-01-01

    The extent and dynamics of actin polymerization in solution are calculated as functions of the filament severing rate, using a simple model of in vitro polymerization. The model is solved by both analytic theory and stochastic-growth simulation. The results show that severing essentially always enhances actin polymerization by freeing up barbed ends, if barbed-end cappers are present. Severing has much weaker effects if only pointed-end cappers are present. In the early stages of polymerizati...

  10. Chorein Sensitivity of Actin Polymerization, Cell Shape and Mechanical Stiffness of Vascular Endothelial Cells

    Ioana Alesutan

    2013-09-01

    Full Text Available Background/Aims: Endothelial cell stiffness plays a key role in endothelium-dependent control of vascular tone and arterial blood pressure. Actin polymerization and distribution of microfilaments is essential for mechanical cell stiffness. Chorein, a protein encoded by the VPS13A gene, defective in chorea-acanthocytosis (ChAc, is involved in neuronal cell survival as well as cortical actin polymerization of erythrocytes and blood platelets. Chorein is expressed in a wide variety of further cells, yet nothing is known about the impact of chorein on cells other than neurons, erythrocytes and platelets. The present study explored whether chorein is expressed in human umbilical vein endothelial cells (HUVECs and addressed the putative role of chorein in the regulation of cytoskeletal architecture, stiffness and survival of those cells. Methods: In HUVECs with or without silencing of the VPS13A gene, VPS13A mRNA expression was determined utilizing quantitative RT-PCR, cytoskeletal organization visualized by confocal microscopy, G/F actin ratio and phosphorylation status of focal adhesion kinase quantified by western blotting, cell death determined by flow cytometry, mechanical properties studied by atomic force microscopy (AFM and cell morphology analysed by scanning ion conductance microscopy (SICM. Results: VPS13A mRNA expression was detectable in HUVECs. Silencing of the VPS13A gene attenuated the filamentous actin network, decreased the ratio of soluble G-actin over filamentous F-actin, reduced cell stiffness and changed cell morphology as compared to HUVECs silenced with negative control siRNA. These effects were paralleled by a significant decrease in FAK phosphorylation following VPS13A silencing. Moreover, silencing of the VPS13A gene increased caspase 3 activity and induced necrosis in HUVECs. Conclusions: Chorein is a novel regulator of cytoskeletal architecture, cell shape, mechanical stiffness and survival of vascular endothelial cells.

  11. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics.

    Katie Porter

    Full Text Available The primary role of Actin-Depolymerizing Factors (ADFs is to sever filamentous actin, generating pointed ends, which in turn are incorporated into newly formed filaments, thus supporting stochastic actin dynamics. Arabidopsis ADF4 was recently shown to be required for the activation of resistance in Arabidopsis following infection with the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst expressing the effector protein AvrPphB. Herein, we demonstrate that the expression of RPS5, the cognate resistance protein of AvrPphB, was dramatically reduced in the adf4 mutant, suggesting a link between actin cytoskeletal dynamics and the transcriptional regulation of R-protein activation. By examining the PTI (PAMP Triggered Immunity response in the adf4 mutant when challenged with Pst expressing AvrPphB, we observed a significant reduction in the expression of the PTI-specific target gene FRK1 (Flg22-Induced Receptor Kinase 1. These data are in agreement with recent observations demonstrating a requirement for RPS5 in PTI-signaling in the presence of AvrPphB. Furthermore, MAPK (Mitogen-Activated Protein Kinase-signaling was significantly reduced in the adf4 mutant, while no such reduction was observed in the rps5-1 point mutation under similar conditions. Isoelectric focusing confirmed phosphorylation of ADF4 at serine-6, and additional in planta analyses of ADF4's role in immune signaling demonstrates that nuclear localization is phosphorylation independent, while localization to the actin cytoskeleton is linked to ADF4 phosphorylation. Taken together, these data suggest a novel role for ADF4 in controlling gene-for-gene resistance activation, as well as MAPK-signaling, via the coordinated regulation of actin cytoskeletal dynamics and R-gene transcription.

  12. Sarcomeric pattern formation by actin cluster coalescence.

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  13. Contractile actin cables induced by Bacillus anthracis lethal toxin depend on the histone acetylation machinery.

    Rolando, Monica; Stefani, Caroline; Doye, Anne; Acosta, Maria I; Visvikis, Orane; Yevick, Hannah G; Buchrieser, Carmen; Mettouchi, Amel; Bassereau, Patricia; Lemichez, Emmanuel

    2015-10-01

    It remains a challenge to decode the molecular basis of the long-term actin cytoskeleton rearrangements that are governed by the reprogramming of gene expression. Bacillus anthracis lethal toxin (LT) inhibits mitogen-activated protein kinase (MAPK) signaling, thereby modulating gene expression, with major consequences for actin cytoskeleton organization and the loss of endothelial barrier function. Using a laser ablation approach, we characterized the contractile and tensile mechanical properties of LT-induced stress fibers. These actin cables resist pulling forces that are transmitted at cell-matrix interfaces and at cell-cell discontinuous adherens junctions. We report that treating the cells with trichostatin A (TSA), a broad range inhibitor of histone deacetylases (HDACs), or with MS-275, which targets HDAC1, 2 and 3, induces stress fibers. LT decreased the cellular levels of HDAC1, 2 and 3 and reduced the global HDAC activity in the nucleus. Both the LT and TSA treatments induced Rnd3 expression, which is required for the LT-mediated induction of actin stress fibers. Furthermore, we reveal that treating the LT-intoxicated cells with garcinol, an inhibitor of histone acetyl-transferases (HATs), disrupts the stress fibers and limits the monolayer barrier dysfunctions. These data demonstrate the importance of modulating the flux of protein acetylation in order to control actin cytoskeleton organization and the endothelial cell monolayer barrier. PMID:26403219

  14. Changes in actin dynamics are involved in salicylic acid signaling pathway

    Matoušková, J.; Janda, M.; Fišer, R.; Šašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, J.; Martinec, Jan; Valentová, O.

    2014-01-01

    Roč. 223, JUN 2014 (2014), s. 36-44. ISSN 0168-9452 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Actin dynamics * Salicylic acid * PR genes Subject RIV: CE - Biochemistry Impact factor: 3.607, year: 2014

  15. Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein

    Umeki, Nobuhisa; Hirose, Keiko; Uyeda, Taro Q. P.

    2016-01-01

    To investigate cooperative conformational changes of actin filaments induced by cofilin binding, we engineered a fusion protein made of Dictyostelium cofilin and actin. The filaments of the fusion protein were functionally similar to actin filaments bound with cofilin in that they did not bind rhodamine-phalloidin, had quenched fluorescence of pyrene attached to Cys374 and showed enhanced susceptibility of the DNase loop to cleavage by subtilisin. Quantitative analyses of copolymers made of different ratios of the fusion protein and control actin further demonstrated that the fusion protein affects the structure of multiple neighboring actin subunits in copolymers. Based on these and other recent related studies, we propose a mechanism by which conformational changes induced by cofilin binding is propagated unidirectionally to the pointed ends of the filaments, and cofilin clusters grow unidirectionally to the pointed ends following this path. Interestingly, the fusion protein was unable to copolymerize with control actin at pH 6.5 and low ionic strength, suggesting that the structural difference between the actin moiety in the fusion protein and control actin is pH-sensitive. PMID:26842224

  16. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    Xiaorui Chen

    2013-06-01

    Full Text Available Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl, a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization.

  17. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD toxin.

    Elena Kudryashova

    Full Text Available Actin Crosslinking Domain (ACD is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5 = 30 µM reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+-GTP to support crosslinking, but the kinetic parameters (K(M = 8 µM and 50 µM for ATP and GTP, respectively suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  18. Actin-dependent mechanisms in AMPA receptor trafficking

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  19. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  20. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development

    Becker, Eric; Herrera, Nick C; Gunderson, Felizza Q.; Derman, Alan I.; Dance, Amber L; Sims, Jennifer; Larsen, Rachel A.; Pogliano, Joe

    2006-01-01

    We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t1/2

  1. Prokaryotic expression and characterization of a pea actin isoform (PEAcl) fused to GFP

    ZHANG Shaobin; REN Dongtao; XU Xiaojing; LIU Guoqin

    2004-01-01

    Actins widely exist in eukaryotic cells and play important roles in many living activities. As there are many kinds of actin isoforms in plant cells, it is difficult to purify each actin isoform in sufficient quantities for analyzing its physicochemical properties. In the present study, a pea(Pisum Sativum L.) actin isoform (PEAc1) fused to His-tag at its amino terminus and GFP (green fluorescent protein) at its Carboxyl terminus were expressed in E. Coli in inclusion bodies. The fusion protein (PEAc1-GFP) was highly purified with the yield of above 2 mg/L culture by dissolving inclusions in 8 mol/L urea, renaturing by dialysis in a gradient of urea, and affinity binding to Ni-resin. The purified mono meric PEAc1-GFP could efficiently bind on Dnase Ⅰ and inhibit the latter's enzyme activity. PEAc1-GFP could polymerize into green fluorescent filamentous structures (F-PEAc1-GFP), which could be labeled by TRITC-phalloidin, a specific agent for observing microfilaments. The PEAc1-GFP polymerization curve was identical with that of chicken skeletal muscle actin. The critical concentration for PEAc1-GFP to polymerize into filaments is 0.24 μmol/L. The F-PEAc1-GFP could stimulate myosin Mg-ATPase activity in a protein concentration dependant manner (about 4 folds at1 mg/mL F-PEAc1-GFP). The results above show that the PEAcl fused to GFP retained the assembly characteristic of actin, indicating that gene fusion, prokaryotic expression,denaturation and renaturation, and affinity chromatography is a useful strategy for obtaining plant actin isoform proteins in a large amount.

  2. Activation of the cAMP Pathway Induces RACK1-Dependent Binding of β-Actin to BDNF Promoter

    Neasta, Jeremie; Fiorenza, Anna; He, Dao-Yao; Phamluong, Khanhky; Kiely, Patrick A.; Ron, Dorit

    2016-01-01

    RACK1 is a scaffolding protein that contributes to the specificity and propagation of several signaling cascades including the cAMP pathway. As such, RACK1 participates in numerous cellular functions ranging from cell migration and morphology to gene transcription. To obtain further insights on the mechanisms whereby RACK1 regulates cAMP-dependent processes, we set out to identify new binding partners of RACK1 during activation of the cAMP signaling using a proteomics strategy. We identified β-actin as a direct RACK1 binding partner and found that the association between β-actin and RACK1 is increased in response to the activation of the cAMP pathway. Furthermore, we show that cAMP-dependent increase in BDNF expression requires filamentous actin. We further report that β-actin associates with the BDNF promoter IV upon the activation of the cAMP pathway and present data to suggest that the association of β-actin with BDNF promoter IV is RACK1-dependent. Taken together, our data suggest that β-actin is a new RACK1 binding partner and that the RACK1 and β-actin association participate in the cAMP-dependent regulation of BDNF transcription. PMID:27505161

  3. A Novel Monoclonal Antibody Against a Synthetic Peptide from β-Actin can React with its Corresponding Protein.

    Amini, Nazila; Bayat, Ali-Ahmad; Zarei, Omid; Hadavi, Reza; Mahmoudian, Jafar; Mahmoudi, Ahmad R; Darzi, Maryam; Rabbani, Hodjattallah; Jeddi-Tehrani, Mahmood

    2015-01-01

    Actin is one of the most widely studied structural and multifunctional housekeeping proteins in eukaryotic cells with important roles in many cell functions. Antibodies against β-actin and other housekeeping gene-encoded proteins are used as internal loading controls in Western blot analyses. The aim of this study was to produce a monoclonal antibody (mAb) against a synthetic peptide derived from N-terminal region of β-actin and to study its reactivity with different organisms. A synthetic peptide, derived from β-actin, was designed and used to produce a mAb by hybridoma technology. The produced antibody (clone 4E5- A10) was purified by an affinity chromatography column followed by characterization of purified mAb using SDS-PAGE, ELISA and Western blot. Our results showed that 4E5-A10 was an IgM and had desired purity and excellent reactivity with the immunizing peptide with an affinity constant of 2.7x10(8) M(-1)>. It could detect a band of about 45 kDa, corresponding to β-actin, in Western blot. Furthermore, it could react in a more sensitive manner and with a wider range of organisms than a known commercial anti β-actin antibody. Our data suggest that 4E5-A10 can act as a sensitive probe for detection of β-actin as an internal loading control, for a wide range of organisms, in Western blot analyses. PMID:25552314

  4. Comparative genome analysis of cortactin and HS1: the significance of the F-actin binding repeat domain

    Seggelen Vera

    2005-02-01

    Full Text Available Abstract Background In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp2/3 mediated actin polymerization. It shares a high amino acid sequence and structural similarity to hematopoietic lineage cell-specific protein 1 (HS1 although their functions differ considerable. In this manuscript we describe the genomic organization of these two genes in a variety of species by a combination of cloning and database searches. Based on our analysis, we predict the genesis of the actin-binding repeat domain during evolution. Results Cortactin homologues exist in sponges, worms, shrimps, insects, urochordates, fishes, amphibians, birds and mammalians, whereas HS1 exists in vertebrates only, suggesting that both genes have been derived from an ancestor cortactin gene by duplication. In agreement with this, comparative genome analysis revealed very similar exon-intron structures and sequence homologies, especially over the regions that encode the characteristic highly conserved F-actin-binding repeat domain. Cortactin splice variants affecting this F-actin-binding domain were identified not only in mammalians, but also in amphibians, fishes and birds. In mammalians, cortactin is ubiquitously expressed except in hematopoietic cells, whereas HS1 is mainly expressed in hematopoietic cells. In accordance with their distinct tissue specificity, the putative promoter region of cortactin is different from HS1. Conclusions Comparative analysis of the genomic organization and amino acid sequences of cortactin and HS1 provides inside into their origin and evolution. Our analysis shows that both genes originated from a gene duplication event and subsequently HS1 lost two repeats, whereas cortactin gained one repeat. Our analysis genetically underscores the significance of the F-actin binding domain in

  5. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils

    1984-01-01

    To determine the relationship between the state of actin polymerization in neutrophils and the formyl-methionyl-leucyl-phenylalanine (fMLP)- induced changes in the locomotive behavior of neutrophils, the mean rate of locomotion (mROL), the percent G-actin, and the relative F- actin content of neutrophils were determined. The mROL was quantified by analysis of the locomotion of individual cells; the percentage of total actin as G-actin was measured by DNase I inhibition; and the F- actin was d...

  6. The interaction between actin and FA fragment of diphtheria toxin

    Ünlü, A.; Bektaş, M.; Şener, S.; Nurten, R.

    2012-01-01

    Actin protein has many other cellular functions such as movement, chemotaxis, secretion and cytodiaresis. Besides, it have structural function. Actin is a motor protein that it has an important role in the movement process of toxin in the cell. It is known that F-actin gives carriage support during the endosomal process. Actin is found in globular (G) and filamentous (F) structure in the cell. The helix of actin occurs as a result of polymerisation of monomeric G-actin molecules through seque...

  7. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function.

    Chan, Chun; Fan, Jun; Messer, Andrew E; Marston, Steve B; Iwamoto, Hiroyuki; Ochala, Julien

    2016-08-01

    In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomers are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. These phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients. PMID:27112274

  8. Spontaneous actin dynamics in contractile rings

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  9. The actinin family of actin cross-linking proteins – a genetic perspective

    Murphy, Anita C.H.; Young, Paul W.

    2015-01-01

    Actinins are one of the major actin cross-linking proteins found in virtually all cell types and are the ancestral proteins of a larger family that includes spectrin, dystrophin and utrophin. Invertebrates have a single actinin-encoding ACTN gene, while mammals have four. Mutations in all four human genes have now been linked to heritable diseases or traits. ACTN1 mutations cause macrothrombocytopenia, a platelet disorder characterized by excessive bleeding. ACTN2 mutations have been linked t...

  10. The actin binding protein adseverin regulates osteoclastogenesis.

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W P; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  11. The actin binding protein adseverin regulates osteoclastogenesis.

    Siavash Hassanpour

    Full Text Available Adseverin (Ads, a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG. Ads is induced during OCG downstream of RANK-ligand (RANKL stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.

  12. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  13. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells

    Rieder Gabriele

    2011-11-01

    Full Text Available Abstract Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS and the effector protein cytotoxin-associated gene A (CagA of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.

  14. Actin dynamics and the elasticity of cytoskeletal networks

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  15. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    Picart, C.; Dalhaimer, P.; Discher, D. E.

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the ...

  16. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    Carlsson, Anders E

    2010-01-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  17. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    Carlsson, Anders E.

    2010-06-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: (a) traveling waves, (b) moving patches, and (c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism not involving myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  18. Measurement and Analysis of in vitro Actin Polymerization

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2013-01-01

    The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when ...

  19. Force Generation by Endocytic Actin Patches in Budding Yeast

    Carlsson, Anders E.; Bayly, Philip V.

    2014-01-01

    Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The def...

  20. Daylight photodynamic therapy for actinic keratosis

    Wiegell, Stine; Wulf, H C; Szeimies, R-M;

    2011-01-01

    Photodynamic therapy (PDT) is an attractive therapy for non-melanoma skin cancers including actinic keratoses (AKs) because it allows treatment of large areas; it has a high response rate and results in an excellent cosmesis. However, conventional PDT for AKs is associated with inconveniently lon...

  1. Competition of two distinct actin networks for actin defines a bistable switch for cell polarization

    Lomakin, Alexis J.; Lee, Kun-Chun; Han, Sangyoon J.; Bui, D A.; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-01-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype upon relaxation of the actomyosin cytoskeleton. We find that myosin-II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. At low contractility regimes epithelial cells polarize in a front-back manner due to emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin-II from the front to the back of the cell, where the motor locally “locks” actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high contractility-driven cell motion is inefficient. PMID:26414403

  2. Dynamics and Regulation of Actin Cytoskeleton in Plant Cells

    Ren Haiyun

    2007-01-01

    @@ The actin cytoskeleton constituted of globular actin (G-actin) is a ubiquitous component of eukaryotic cells and plays crucial roles in diverse physiological processes in plant cells, such as cytoplasmic streaming, organelle and nucleus positioning, cell morphogenesis, cell division, tip growth, etc.

  3. Cloning of Taenia pisiformis Actin Gene and Assessment of Its Use as An Internal Control%豆状带绦虫肌动蛋白基因克隆及其作为分子内参的应用

    张少华; 骆学农; 李雪强; 才学鹏

    2016-01-01

    目的 克隆豆状带绦虫(Taenia pisiformis)肌动蛋白基因(Tp-actin)全长cDNA,分析其基因结构、系统进化及作为内参基因的适用性.方法 采用RT-PCR法扩增Tp-actin基因片段,RACE-PCR法获得3'和5'端cDNA序列,分别测序后拼接Tp-actin全长cDNA.利用生物信息学软件进行基因结构和系统进化分析.应用Primer Express软件设计Tp-actin和豆状带绦虫组织蛋白酶L样半胱氨酸蛋白酶基因(TpCP)的特异性引物,实时荧光定量PCR (qRT-PCR)法检测引物特异性和Tp-actin基因扩增效率,并以Tp-actin作为内参基因,分析TpCP在豆状带绦虫六钩蚴、囊尾蚴、成熟节片和孕节片等不同发育阶段组织中的表达特征.结果 测序结果显不,Tp-actin基因片段为1 048 bp,3 '和5'端基因片段分别为428和945 bp,与预期结果一致.拼接获得的Tp-actin全长cDNA为1 279 bp,其中3'UTR长118 bp,5'UTR长30 bp,开放阅读框为1 131 bp,序列已提交GenBank(登录号为JX624787).生物信息学分析结果显示,该序列编码376个氨基酸,推测蛋白相对分子质量(Mr)为41 749,等电点为5.29,含6种特定功能位点和3个actin蛋白家族特征位点.系统进化分析显示,Tp-actin序列与猪带绦虫(Taenia solium)和枝形裂头绦虫(Diphyllobothrium dendriticum)的同源性分别为100%和99.7%.qRT-PCR结果显示,Tp-actin和TpCP基因经特异性引物扩增,分别获得82和108 bp片段,与预期结果一致;Tp-actin和TpCP基因熔解曲线均呈单一信号峰,引物特异性强;Tp-actin基因标准曲线线性相关系数(R2)为0.999,符合qRT-PCR对扩增效率的要求;以Tp-actin基因为内参基因,TpCP基因在孕卵节片中相对转录水平比值为1.65,显著高于六钩蚴(1.00)、成熟节片(0.87)和囊尾蚴(0.62) (P<0.05).结论 Tp-actin基因高度保守,可作为豆状带绦虫基因表达调控及量化分析的内标参照.

  4. From filaments to function:The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity

    Katie Porter; Brad Day

    2016-01-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, develop-ment and movement, gene expression and signal transduc-tion, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activa-tion of specific signaling responses following pathogen perception. B4ased on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens.

  5. The Structural Basis of Actin Organization by Vinculin and Metavinculin.

    Kim, Laura Y; Thompson, Peter M; Lee, Hyunna T; Pershad, Mihir; Campbell, Sharon L; Alushin, Gregory M

    2016-01-16

    Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin receptors through their intracellular binding partners to filamentous actin, facilitating mechanotransduction. Here we present an 8.5-Å-resolution cryo-electron microscopy reconstruction and pseudo-atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-terminal "strap" and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. We find that an analogous conformational change also occurs in the H1' helix of the tail domain of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform that suppresses actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling activity of vinculin in a tissue-specific manner, providing a mechanistic framework for understanding metavinculin mutations associated with hereditary cardiomyopathies. PMID:26493222

  6. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  7. Actin and ubiquitin protein sequences support a cercozoan/foraminiferan ancestry for the plasmodiophorid plant pathogens.

    Archibald, John M; Keeling, Patrick J

    2004-01-01

    The plasmodiophorids are a group of eukaryotic intracellular parasites that cause disease in a variety of economically significant crops. Plasmodiophorids have traditionally been considered fungi but have more recently been suggested to be members of the Cercozoa, a morphologically diverse group of amoeboid, flagellate, and amoeboflagellate protists. The recognition that Cercozoa constitute a monophyletic lineage has come from phylogenetic analyses of small subunit ribosomal RNA genes. Protein sequence data have suggested that the closest relatives of Cercozoa are the Foraminifera. To further test a cercozoan origin for the plasmodiophorids, we isolated actin genes from Plasmodiophora brassicae, Sorosphaera veronicae, and Spongospora subterranea, and polyubiquitin gene fragments from P. brassicae and S. subterranea. We also isolated actin genes from the chlorarachniophyte Lotharella globosa. In protein phylogenies of actin, the plasmodiophorid sequences consistently branch with Cercozoa and Foraminifera, and weakly branch as the sister group to the foraminiferans. The plasmodiophorid polyubiquitin sequences contain a single amino acid residue insertion at the functionally important processing point between ubiquitin monomers, the same place in which an otherwise unique insertion exists in the cercozoan and foraminiferan proteins. Taken together, these results indicate that plasmodiophorids are indeed related to Cercozoa and Foraminifera, although the relationships amongst these groups remain unresolved. PMID:15068273

  8. A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics

    Teresa T. Bonello; Miro Janco; Jeff Hook; Alex Byun; Mark Appaduray; Irina Dedova; Sarah Hitchcock-DeGregori; Hardeman, Edna C.; Justine R. Stehn; Till Böcking; Gunning, Peter W.

    2016-01-01

    The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperativ...

  9. Actin flow and talin dynamics govern rigidity sensing in actin-integrin linkage through talin extension.

    Hirata, Hiroaki; Chiam, Keng-Hwee; Lim, Chwee Teck; Sokabe, Masahiro

    2014-10-01

    At cell-substrate adhesion sites, the linkage between actin filaments and integrin is regulated by mechanical stiffness of the substrate. Of potential molecular regulators, the linker proteins talin and vinculin are of particular interest because mechanical extension of talin induces vinculin binding with talin, which reinforces the actin-integrin linkage. For understanding the molecular and biophysical mechanism of rigidity sensing at cell-substrate adhesion sites, we constructed a simple physical model to examine a role of talin extension in the stiffness-dependent regulation of actin-integrin linkage. We show that talin molecules linking between retrograding actin filaments and substrate-bound integrin are extended in a manner dependent on substrate stiffness. The model predicts that, in adhesion complexes containing ≈30 talin links, talin is extended enough for vinculin binding when the substrate is stiffer than 1 kPa. The lifetime of talin links needs to be 2-5 s to achieve an appropriate response of talin extension against substrate stiffness. Furthermore, changes in actin velocity drastically shift the range of substrate stiffness that induces talin-vinculin binding. Our results suggest that talin extension is a key step in sensing and responding to substrate stiffness at cell adhesion sites. PMID:25142525

  10. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  11. Actin-dependent activation of serum response factor in T cells by the viral oncoprotein tip

    Katsch Kristin

    2012-03-01

    Full Text Available Abstract Serum response factor (SRF acts as a multifunctional transcription factor regulated by mutually exclusive interactions with ternary complex factors (TCFs or myocardin-related transcription factors (MRTFs. Binding of Rho- and actin-regulated MRTF:SRF complexes to target gene promoters requires an SRF-binding site only, whereas MAPK-regulated TCF:SRF complexes in addition rely on flanking sequences present in the serum response element (SRE. Here, we report on the activation of an SRE luciferase reporter by Tip, the viral oncoprotein essentially contributing to human T-cell transformation by Herpesvirus saimiri. SRE activation in Tip-expressing Jurkat T cells could not be attributed to triggering of the MAPK pathway. Therefore, we further analyzed the contribution of MRTF complexes. Indeed, Tip also activated a reporter construct responsive to MRTF:SRF. Activation of this reporter was abrogated by overexpression of a dominant negative mutant of the MRTF-family member MAL. Moreover, enrichment of monomeric actin suppressed the Tip-induced reporter activity. Further upstream, the Rho-family GTPase Rac, was found to be required for MRTF:SRF reporter activation by Tip. Initiation of this pathway was strictly dependent on Tip's ability to interact with Lck and on the activity of this Src-family kinase. Independent of Tip, T-cell stimulation orchestrates Src-family kinase, MAPK and actin pathways to induce SRF. These findings establish actin-regulated transcription in human T cells and suggest its role in viral oncogenesis.

  12. Gelsolin mediates calcium-dependent disassembly of Listeria actin tails

    Larson, Laura; Arnaudeau, Serge; Gibson, Bruce; Li, Wei; Krause, Ryoko; Hao, Binghua; Bamburg, James R.; Lew, Daniel P.; Demaurex, Nicolas; Southwick, Frederick

    2005-01-01

    The role of intracellular Ca2+ in the regulation of actin filament assembly and disassembly has not been clearly defined. We show that reduction of intracellular free Ca2+ concentration ([Ca2+]i) to <40 nM in Listeria monocytogenes-infected, EGFP–actin-transfected Madin–Darby canine kidney cells results in a 3-fold lengthening of actin filament tails. This increase in tail length is the consequence of marked slowing of the actin filament disassembly rate, without a significant change in assembly rate. The Ca2+-sensitive actin-severing protein gelsolin concentrates in the Listeria rocket tails at normal resting [Ca2+]i and disassociates from the tails when [Ca2+]i is lowered. Reduction in [Ca2+]i also blocks the severing activity of gelsolin, but not actin-depolymerizing factor (ADF)/cofilin microinjected into Listeria-infected cells. In Xenopus extracts, Listeria tail lengths are also calcium-sensitive, markedly shortening on addition of calcium. Immunodepletion of gelsolin, but not Xenopus ADF/cofilin, eliminates calcium-sensitive actin-filament shortening. Listeria tail length is also calcium-insensitive in gelsolin-null mouse embryo fibroblasts. We conclude that gelsolin is the primary Ca2+-sensitive actin filament recycling protein in the cell and is capable of enhancing Listeria actin tail disassembly at normal resting [Ca2+]i (145 nM). These experiments illustrate the unique and complementary functions of gelsolin and ADF/cofilin in the recycling of actin filaments. PMID:15671163

  13. Sequence and comparative genomic analysis of actin-related proteins.

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-12-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4. PMID:16195354

  14. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length. PMID:25155506

  15. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  16. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation

  17. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility

    Gallo, Gianluca; Yee, Hal F.; Letourneau, Paul C.

    2002-01-01

    Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon ...

  18. Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets.

    Safer, D; Golla, R; Nachmias, V T

    1990-01-01

    Resting human platelets contain approximately 0.3 mM unpolymerized actin. When freshly drawn and washed platelets are treated with saponin, 85-90% of the unpolymerized actin diffuses out. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions shows that the bulk of this unpolymerized actin migrates with a higher mobility than does pure G-actin, profilactin, or actin-gelsolin complex. When muscle G-actin is added to fresh or boiled saponin extract, the added muscle actin...

  19. Structure of the F-actin-tropomyosin complex.

    von der Ecken, Julian; Müller, Mirco; Lehman, William; Manstein, Dietmar J; Penczek, Pawel A; Raunser, Stefan

    2015-03-01

    Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss, familial thoracic aortic aneurysms and dissections, and multiple variations of myopathies. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin. Although crystal structures for monomeric actin (G-actin) are available, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 Å in complex with tropomyosin at a resolution of 6.5 Å, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify map density corresponding to ADP and Mg(2+) and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin-tropomyosin with its position in our previously determined F-actin-tropomyosin-myosin structure reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted

  20. Steric effects induce geometric remodeling of actin bundles in filopodia

    Dobramysl, Ulrich; Erban, Radek

    2016-01-01

    Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and the...

  1. Calponin isoforms CNN1, CNN2 and CNN3: Regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells.

    Liu, Rong; Jin, J-P

    2016-07-01

    Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and many types of non-muscle cells. Three homologous genes, CNN1, CNN2 and CNN3, encoding calponin isoforms 1, 2, and 3, respectively, are present in vertebrate species. All three calponin isoforms are actin-binding proteins with functions in inhibiting actin-activated myosin ATPase and stabilizing the actin cytoskeleton, while each isoform executes different physiological roles based on their cell type-specific expressions. Calponin 1 is specifically expressed in smooth muscle cells and plays a role in fine-tuning smooth muscle contractility. Calponin 2 is expressed in both smooth muscle and non-muscle cells and regulates multiple actin cytoskeleton-based functions. Calponin 3 participates in actin cytoskeleton-based activities in embryonic development and myogenesis. Phosphorylation has been extensively studied for the regulation of calponin functions. Cytoskeleton tension regulates the transcription of CNN2 gene and the degradation of calponin 2 protein. This review summarizes our knowledge learned from studies over the past three decades, focusing on the evolutionary lineage of calponin isoform genes, their tissue- and cell type-specific expressions, structure-function relationships, and mechanoregulation. PMID:26970176

  2. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Bekyarova, T. I.; Reedy, M C; Baumann, B. A. J.; Tregear, R T; Ward, A; Krzic, U.; Prince, K.M.; Perz-Edwards, R. J.; Reconditi, M.; Gore, D.; Irving, T C; Reedy, M K

    2008-01-01

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the “steric blocking” mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca2+ with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence...

  3. Bacterial Subversion of Host Actin Dynamics at the Plasma Membrane

    Carabeo, Rey

    2011-01-01

    Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap amongst a diverse group of bacteria. The molecular organisation within these structures act in concert to internalise the invading pathogen. This dynamic process could be subdivided into ...

  4. Myosin phosphorylation triggers actin polymerization in vascular smooth muscle

    Chen, Xuesong; Pavlish, Kristin; Benoit, Joseph N.

    2008-01-01

    A variety of contractile stimuli increases actin polymerization, which is essential for smooth muscle contraction. However, the mechanism(s) of actin polymerization associated with smooth muscle contraction is not fully understood. We tested the hypothesis that phosphorylated myosin triggers actin polymerization. The present study was conducted in isolated intact or β-escin-permeabilized rat small mesenteric arteries. Reductions in the 20-kDa myosin regulatory light chain (MLC20) phosphorylat...

  5. Calcium-Actin Waves and Oscillations of Cellular Membranes

    Veksler, Alex; Gov, Nir S.

    2009-01-01

    We propose a mechanism for the formation of membrane oscillations and traveling waves, which arise due to the coupling between the actin cytoskeleton and the calcium flux through the membrane. In our model, the fluid cell membrane has a mobile but constant population of proteins with a convex spontaneous curvature, which act as nucleators of actin polymerization and adhesion. Such a continuum model couples the forces of cell-substrate adhesion, actin polymerization, membrane curvature, and th...

  6. A Robust Actin Filaments Image Analysis Framework.

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-08-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in

  7. A Robust Actin Filaments Image Analysis Framework

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  8. The maternal-to-zygotic transition targets actin to promote robustness during morphogenesis.

    Zheng, Liuliu; Sepúlveda, Leonardo A; Lua, Rhonald C; Lichtarge, Olivier; Golding, Ido; Sokac, Anna Marie

    2013-11-01

    Robustness is a property built into biological systems to ensure stereotypical outcomes despite fluctuating inputs from gene dosage, biochemical noise, and the environment. During development, robustness safeguards embryos against structural and functional defects. Yet, our understanding of how robustness is achieved in embryos is limited. While much attention has been paid to the role of gene and signaling networks in promoting robust cell fate determination, little has been done to rigorously assay how mechanical processes like morphogenesis are designed to buffer against variable conditions. Here we show that the cell shape changes that drive morphogenesis can be made robust by mechanisms targeting the actin cytoskeleton. We identified two novel members of the Vinculin/α-Catenin Superfamily that work together to promote robustness during Drosophila cellularization, the dramatic tissue-building event that generates the primary epithelium of the embryo. We find that zygotically-expressed Serendipity-α (Sry-α) and maternally-loaded Spitting Image (Spt) share a redundant, actin-regulating activity during cellularization. Spt alone is sufficient for cellularization at an optimal temperature, but both Spt plus Sry-α are required at high temperature and when actin assembly is compromised by genetic perturbation. Our results offer a clear example of how the maternal and zygotic genomes interact to promote the robustness of early developmental events. Specifically, the Spt and Sry-α collaboration is informative when it comes to genes that show both a maternal and zygotic requirement during a given morphogenetic process. For the cellularization of Drosophilids, Sry-α and its expression profile may represent a genetic adaptive trait with the sole purpose of making this extreme event more reliable. Since all morphogenesis depends on cytoskeletal remodeling, both in embryos and adults, we suggest that robustness-promoting mechanisms aimed at actin could be effective at

  9. Immunocytochemical identification of actin in mitochondria of Physarum polycephalum

    2003-01-01

    Mitochondria isolated from the plasmodia of Physarum polycephalum Schw. are reacted with rabbit anti-actin antibody, and detected with FITC-conjugated sheep anti-rabbit IgG antibody. The results of indirect immunofluorescence show that actin exists in the mitochondria. Western blot analysis confirms the existence of actin in the protein preparation of the mitochondria. The indirect immunoelectron microscopic observation using the same antibodies verifies further that actin is the constituents of mitochondria, and it is dispersively distributed in the mitochondria of P. polycephalum.

  10. Actin polymerisation at the cytoplasmic face of eukaryotic nuclei

    David-Watine Brigitte

    2006-05-01

    Full Text Available Abstract Background There exists abundant molecular and ultra-structural evidence to suggest that cytoplasmic actin can physically interact with the nuclear envelope (NE membrane system. However, this interaction has yet to be characterised in living interphase cells. Results Using a fluorescent conjugate of the actin binding drug cytochalasin D (CD-BODIPY we provide evidence that polymerising actin accumulates in vicinity to the NE. In addition, both transiently expressed fluorescent actin and cytoplasmic micro-injection of fluorescent actin resulted in accumulation of actin at the NE-membrane. Consistent with the idea that the cytoplasmic phase of NE-membranes can support this novel pool of perinuclear actin polymerisation we show that isolated, intact, differentiated primary hepatocyte nuclei support actin polymerisation in vitro. Further this phenomenon was inhibited by treatments hindering steric access to outer-nuclear-membrane proteins (e.g. wheat germ agglutinin, anti-nesprin and anti-nucleoporin antibodies. Conclusion We conclude that actin polymerisation occurs around interphase nuclei of living cells at the cytoplasmic phase of NE-membranes.

  11. Shape Changes of Self-Assembled Actin Bilayer Composite Membranes

    Hackl, W; Sackmann, E

    1997-01-01

    We report the self-assembly of thin actin shells beneath the membranes of giant vesicles. Ion-carrier mediated influx of Mg2+ induces actin polymerization in the initially spherical vesicles. Buckling of the vesicles and the formation of blisters after thermally induced bilayer expansion is demonstrated. Bilayer flickering is dominated by tension generated by its coupling to the actin cortex. Quantitative flicker analysis suggests the bilayer and the actin cortex are separated by 0.4 \\mum to 0.5 \\mum due to undulation forces.

  12. An unconventional form of actin in protozoan hemoflagellate, Leishmania.

    Kapoor, Prabodh; Sahasrabuddhe, Amogh A; Kumar, Ashutosh; Mitra, Kalyan; Siddiqi, Mohammad Imran; Gupta, Chhitar M

    2008-08-15

    Leishmania actin was cloned, overexpressed in baculovirus-insect cell system, and purified to homogeneity. The purified protein polymerized optimally in the presence of Mg2+ and ATP, but differed from conventional actins in its following properties: (i) it did not polymerize in the presence of Mg2+ alone, (ii) it polymerized in a restricted range of pH 7.0-8.5, (iii) its critical concentration for polymerization was found to be 3-4-fold lower than of muscle actin, (iv) it predominantly formed bundles rather than single filaments at pH 8.0, (v) it displayed considerably higher ATPase activity during polymerization, (vi) it did not inhibit DNase-I activity, and (vii) it did not bind the F-actin-binding toxin phalloidin or the actin polymerization disrupting agent Latrunculin B. Computational and molecular modeling studies revealed that the observed unconventional behavior of Leishmania actin is related to the diverged amino acid stretches in its sequence, which may lead to changes in the overall charge distribution on its solvent-exposed surface, ATP binding cleft, Mg2+ binding sites, and the hydrophobic loop that is involved in monomer-monomer interactions. Phylogenetically, it is related to ciliate actins, but to the best of our knowledge, no other actin with such unconventional properties has been reported to date. It is therefore suggested that actin in Leishmania may serve as a novel target for design of new antileishmanial drugs. PMID:18539603

  13. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes.

    Maia M Chan

    Full Text Available Hematopoietic protein-1 (Hem-1 is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein complex, which regulates filamentous actin (F-actin polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A, which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.

  14. Dynamic buckling of actin within filopodia

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on...... external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in...

  15. A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin.

    Lin, E C; Cantiello, H. F.

    1993-01-01

    Actin, one of the most abundant intracellular proteins, forms long linear polyelectrolytic polymers in solution. A novel technique to handle single actin filaments in solution was developed that allows the study of ionic currents elicited along the surface of electrically stimulated actin filaments. Electrical currents were observed about the polymer's surface under both high (100 mM KCl) and low (1 mM KCl) ionic strength conditions. The data are consistent with a dynamic behavior of the coun...

  16. Interactions between the Yeast SM22 Homologue Scp1 and Actin Demonstrate the Importance of Actin Bundling in Endocytosis* S⃞

    Gheorghe, Dana M.; Aghamohammadzadeh, Soheil; Rooij, Iwona I. Smaczynska-de; Allwood, Ellen G.; Winder, Steve J.; Ayscough, Kathryn R.

    2008-01-01

    The yeast SM22 homologue Scp1 has previously been shown to act as an actin-bundling protein in vitro. In cells, Scp1 localizes to the cortical actin patches that form as part of the invagination process during endocytosis, and its function overlaps with that of the well characterized yeast fimbrin homologue Sac6p. In this work we have used live cell imaging to demonstrate the importance of key residues in the Scp1 actin interface. We have defined two actin binding domains within Scp1 that all...

  17. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics.

    Ho, Chin Yee; Jaalouk, Diana E; Vartiainen, Maria K; Lammerding, Jan

    2013-05-23

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization. PMID:23644458

  18. Lamin A/C and emerin regulate MKL1/SRF activity by modulating actin dynamics

    Ho, Chin Yee; Jaalouk, Diana E.; Vartiainen, Maria K.; Lammerding, Jan

    2013-01-01

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss Muscular Dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome (HGPS).1 The majority of LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and disturbed interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes.1 We report here that lamin A/C-deficient (Lmna−/−) and Lmna N195K mutant cells have impaired nuclear translocation and downstream signaling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function.2 Disturbed nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna−/− and N195K mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease etiology for the cardiac phenotype in many laminopathies, whereby lamins A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization. PMID:23644458

  19. Plasmin enzymatic activity in the presence of actin

    Yusova E. I.

    2015-10-01

    Full Text Available Aim. To study the changes in the plasmin activity towards substrates with high and low molecular mass in the presence of actin. Methods. The proteins used for this investigation were obtained by affinity chromatography and gel-filtration. The plasmin enzymatic activity was determined by a turbidimetric assay and a chromogenic substrate-based assay. The enzyme linked immunosorbent assay and biotin-avidin-phosphatase system were used to study the interaction of plasminogen and its fragments with actin. Results. It was shown that G-actin causes 1.5-fold decrease in the rate of polymeric fibrin hydrolysis by plasmin and Glu-plasminogen activated by the tissue plasminogen activator. However, actin did not impede plasmin autolysis and had no influence on its amidase activity. We have studied an interaction of biotinylated Glu-plasminogen and its fragments (kringle 1-3, kringle 4 and mini-plasminogen with immobilized G-actin. Glu-plasminogen and kringle 4 had a high affinity towards actin (C50 is 113 and 117 nM correspondingly. Mini-plasminogen and kringe 4 did not bind to actin. A similar affinity of Glu-plasminogen and kringle 1-3 towards actin proves the involvement of the kringle 1-3 lysine-binding sites of the native plasminogen form in the actin interaction. Conclusions. Actin can modulate plasmin specificity towards high molecular mass substrates through its interaction with lysine-binding sites of the enzyme kringle domains. Actin inhibition of the fibrinolytic activity of plasmin is due to its competition with fibrin for thelysine binding sites of plasminogen/plasmin.

  20. Computational analysis of viscoelastic properties of crosslinked actin networks.

    Taeyoon Kim

    2009-07-01

    Full Text Available Mechanical force plays an important role in the physiology of eukaryotic cells whose dominant structural constituent is the actin cytoskeleton composed mainly of actin and actin crosslinking proteins (ACPs. Thus, knowledge of rheological properties of actin networks is crucial for understanding the mechanics and processes of cells. We used Brownian dynamics simulations to study the viscoelasticity of crosslinked actin networks. Two methods were employed, bulk rheology and segment-tracking rheology, where the former measures the stress in response to an applied shear strain, and the latter analyzes thermal fluctuations of individual actin segments of the network. It was demonstrated that the storage shear modulus (G' increases more by the addition of ACPs that form orthogonal crosslinks than by those that form parallel bundles. In networks with orthogonal crosslinks, as crosslink density increases, the power law exponent of G' as a function of the oscillation frequency decreases from 0.75, which reflects the transverse thermal motion of actin filaments, to near zero at low frequency. Under increasing prestrain, the network becomes more elastic, and three regimes of behavior are observed, each dominated by different mechanisms: bending of actin filaments, bending of ACPs, and at the highest prestrain tested (55%, stretching of actin filaments and ACPs. In the last case, only a small portion of actin filaments connected via highly stressed ACPs support the strain. We thus introduce the concept of a 'supportive framework,' as a subset of the full network, which is responsible for high elasticity. Notably, entropic effects due to thermal fluctuations appear to be important only at relatively low prestrains and when the average crosslinking distance is comparable to or greater than the persistence length of the filament. Taken together, our results suggest that viscoelasticity of the actin network is attributable to different mechanisms depending on

  1. Beta-actin deficiency with oxidative posttranslational modifications in Rett syndrome erythrocytes: insights into an altered cytoskeletal organization.

    Alessio Cortelazzo

    Full Text Available Beta-actin, a critical player in cellular functions ranging from cell motility and the maintenance of cell shape to transcription regulation, was evaluated in the erythrocyte membranes from patients with typical Rett syndrome (RTT and methyl CpG binding protein 2 (MECP2 gene mutations. RTT, affecting almost exclusively females with an average frequency of 1∶10,000 female live births, is considered the second commonest cause of severe cognitive impairment in the female gender. Evaluation of beta-actin was carried out in a comparative cohort study on red blood cells (RBCs, drawn from healthy control subjects and RTT patients using mass spectrometry-based quantitative analysis. We observed a decreased expression of the beta-actin isoforms (relative fold changes for spots 1, 2 and 3: -1.82±0.15, -2.15±0.06, and -2.59±0.48, respectively in pathological RBCs. The results were validated by western blotting and immunofluorescence microscopy. In addition, beta-actin from RTT patients also showed a dramatic increase in oxidative posttranslational modifications (PTMs as the result of its binding with the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE. Our findings demonstrate, for the first time, a beta-actin down-regulation and oxidative PTMs for RBCs of RTT patients, thus indicating an altered cytoskeletal organization.

  2. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis.

    Kumar, Anita; Dumasia, Kushaan; Deshpande, Sharvari; Gaonkar, Reshma; Balasinor, N H

    2016-08-01

    Actin remodeling is a vital process for signaling, movement and survival in all cells. In the testes, extensive actin reorganization occurs at spermatid-Sertoli cell junctions during sperm release (spermiation) and at inter Sertoli cell junctions during restructuring of the blood testis barrier (BTB). During spermiation, tubulobulbar complexes (TBCs), rich in branched actin networks, ensure recycling of spermatid-Sertoli cell junctional molecules. Similar recycling occurs during BTB restructuring around the same time as spermiation occurs. Actin related protein 2/3 complex is an essential actin nucleation and branching protein. One of its subunits, Arpc1b, was earlier found to be down-regulated in an estrogen-induced rat model of spermiation failure. Also, Arpc1b was found to be estrogen responsive through estrogen receptor beta in seminiferous tubule culture. Here, knockdown of Arpc1b by siRNA in adult rat testis led to defects in spermiation caused by failure in TBC formation. Knockdown also compromised BTB integrity and caused polarity defects of mature spermatids. Apart from these effects pertaining to Sertoli cells, Arpc1b reduction perturbed ability of germ cells to enter G2/M phase thus hindering cell division. In summary, Arpc1b, an estrogen responsive gene, is a regulator of spermiation, mature spermatid polarity, BTB integrity and cell division during adult spermatogenesis. PMID:27113856

  3. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island.

    Jean-Baptiste Rioux

    Full Text Available Magnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour. A large genomic island, conserved among magnetotactic bacteria, contains the genes potentially involved in magnetosome formation. One of the genes, mamK has been described as encoding a prokaryotic actin-like protein which when it polymerizes forms in the cytoplasm filamentous structures that provide the scaffold for magnetosome alignment. Here, we have identified a series of genes highly similar to the mam genes in the genome of Magnetospirillum magneticum AMB-1. The newly annotated genes are clustered in a genomic islet distinct and distant from the known magnetosome genomic island and most probably acquired by lateral gene transfer rather than duplication. We focused on a mamK-like gene whose product shares 54.5% identity with the actin-like MamK. Filament bundles of polymerized MamK-like protein were observed in vitro with electron microscopy and in vivo in E. coli cells expressing MamK-like-Venus fusions by fluorescence microscopy. In addition, we demonstrate that mamK-like is transcribed in AMB-1 wild-type and DeltamamK mutant cells and that the actin-like filamentous structures observed in the DeltamamK strain are probably MamK-like polymers. Thus MamK-like is a new member of the prokaryotic actin-like family. This is the first evidence of a functional mam gene encoded outside the magnetosome genomic island.

  4. Deafness and espin-actin self-organization in stereocilia

    Wong, Gerard C. L.

    2009-03-01

    Espins are F-actin-bundling proteins associated with large parallel actin bundles found in hair cell stereocilia in the ear, as well as brush border microvilli and Sertoli cell junctions. We examine actin bundle structures formed by different wild-type espin isoforms, fragments, and naturally-occurring human espin mutants linked to deafness and/or vestibular dysfunction. The espin-actin bundle structure consisted of a hexagonal arrangement of parallel actin filaments in a non-native twist state. We delineate the structural consequences caused by mutations in espin's actin-bundling module. For espin mutation with a severely damaged actin-bundling module, which are implicated in deafness in mice and humans, oriented nematic-like actin filament structures, which strongly impinges on bundle mechanical stiffness. Finally, we examine what makes espin different, via a comparative study of bundles formed by espin and those formed by fascin, a prototypical bundling protein found in functionally different regions of the cell, such as filopodia.

  5. Membrane waves driven by forces from actin filaments

    Membrane waves propagating along the cell circumference in a top down view have been observed with several eukaryotic cells (Döbereiner et al 2006 Phys. Rev. Lett. 97 10; Machacek and Danuser 2006 Biophys. J. 90 1439–52). We present a mathematical model reproducing these traveling membrane undulations during lamellipodial motility of cells on flat substrates. The model describes the interplay of pushing forces exerted by actin polymerization on the membrane, pulling forces of attached actin filaments on the cell edge, contractile forces powered by molecular motors across the actin gel and resisting membrane tension. The actin filament network in the bulk of lamellipodia obeys gel flow equations. We investigated in particular the dependence of wave properties on gel parameters and found that inhibition of myosin motors abolishes waves in some cells but not in others in agreement with experimental observations. The model provides a unifying mechanism explaining the dynamics of actin-based motility in a variety of systems. (paper)

  6. Expression of the Fusion Gene of Chlamydomonas reinhardtii Actin and Green Fluorescent Protein in Yeast%衣藻肌动蛋白-绿色荧光蛋白融合基因在酵母细胞中的表达

    王海庆; 杨毅; 刘国琴

    2003-01-01

    将构建的含有衣藻(Chlamydomonas reinhardtii)肌动蛋白(actin)和绿色荧光蛋白(green fluorescent protein,GFP)融合基因的酵母表达载体引入裂殖酵母(Schizosaccharomyces pormbe),衣藻肌动蛋白和荧光蛋白的融合基因得到了表达.表达actin-GFP融合蛋白的酵母细胞在蓝光激发下可以观察到绿色荧光.在EMM培养基上actin-gfp强烈表达,但在硫胺素(thiamine)存在时只进行微弱表达.在融合基因强烈表达时,actin-gfp表达产物在酵母细胞中以聚集形式存在,细胞破碎后发现表达产物主要分布于沉淀中.

  7. Mechanical properties of branched actin filaments

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2015-01-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...

  8. Capping of the barbed ends of actin filaments by a high-affinity profilin-actin complex.

    DiNubile, M J; Huang, S

    1997-01-01

    Profilin, a ubiquitous 12 to 15-kDa protein, serves many functions, including sequestering monomeric actin, accelerating nucleotide exchange on actin monomers, decreasing the critical concentration of the barbed end of actin filaments, and promoting actin polymerization when barbed ends are free. Most previous studies have focused on profilin itself rather than its complex with actin. A high-affinity profilin-actin complex (here called profilactin) can be isolated from a poly-(L)-proline (PLP) column by sequential elution with 3 M and 7 M urea. Profilactin inhibited the elongation rate of pyrenyl-G-actin from filament seeds in a concentration- and time-dependent manner. Much greater inhibition of elongation was observed with spectrin-F-actin than gelsolin-F-actin seeds, suggesting that the major effect of profilactin was due to capping the barbed ends of actin filaments. Its dissociation constant for binding to filament ends was 0.3 microM; the on- and off-rate constants were estimated to be 1.7 x 10(3) M-1 s-1 and 4.5 x 10(-4) s-1, respectively. Purified profilin (obtained by repetitive applications to a PLP column and assessed by silver-stained polyacylamide gels) did not slow the elongation rate of pyrenyl-G-actin from filament seeds. Capping protein could not be detected by Western blotting in the profilactin preparation, but low concentrations of gelsolin did contaminate our preparation. However, prolonged incubation with either calcium or EGTA did not affect capping activity, implying that contaminating gelsolin-actin complexes were not primarily responsible for the observed capping activity. Reapplication of the profilactin preparation to PLP-coupled Sepharose removed both profilin and actin and concurrently eliminated its capping activity. Profilactin that was reapplied to uncoupled Sepharose retained its capping activity. Phosphatidylinositol-4,5-bisphosphate (PIP2) was the most potent phosphoinositol in reducing the capping activity of profilactin

  9. Human Muscle LIM Protein Dimerizes along the Actin Cytoskeleton and Cross-Links Actin Filaments

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André; Thomas, Clément

    2014-01-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin f...

  10. Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

    Charles S. Chung

    2011-01-01

    Full Text Available Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0 than mice (N2BA:N2B ratio ~0.2. To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL ``overshoot’’ at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

  11. Regulation of retinoschisin secretion in Weri-Rb1 cells by the F-actin and microtubule cytoskeleton.

    Eiko Kitamura

    Full Text Available Retinoschisin is encoded by the gene responsible for X-linked retinoschisis (XLRS, an early onset macular degeneration that results in a splitting of the inner layers of the retina and severe loss in vision. Retinoschisin is predominantly expressed and secreted from photoreceptor cells as a homo-oligomer protein; it then associates with the surface of retinal cells and maintains the retina cellular architecture. Many missense mutations in the XLRS1 gene are known to cause intracellular retention of retinoschisin, indicating that the secretion process of the protein is a critical step for its normal function in the retina. However, the molecular mechanisms underlying retinoschisin's secretion remain to be fully elucidated. In this study, we investigated the role of the F-actin cytoskeleton in the secretion of retinoschisin by treating Weri-Rb1 cells, which are known to secrete retinoschisin, with cytochalasin D, jasplakinolide, Y-27632, and dibutyryl cGMP. Our results show that cytochalasin D and jasplakinolide inhibit retinoschisin secretion, whereas Y-27632 and dibutyryl cGMP enhance secretion causing F-actin alterations. We also demonstrate that high concentrations of taxol, which hyperpolymerizes microtubules, inhibit retinoschisin secretion. Our data suggest that retinoschisin secretion is regulated by the F-actin cytoskeleton, that cGMP or inhibition of ROCK alters F-actin structure enhancing the secretion, and that the microtubule cytoskeleton is also involved in this process.

  12. Concentration profiles of actin-binding molecules in lamellipodia

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  13. Role of actin in auxin transport and transduction of gravity

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  14. A human β-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding.

    Avery, Adam W; Crain, Jonathan; Thomas, David D; Hays, Thomas S

    2016-01-01

    Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein β-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of β-III-spectrin. We report that the L253P substitution in the isolated β-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 μM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P β-III-spectrin is a likely driver of neurodegeneration. PMID:26883385

  15. Staining Fission Yeast Filamentous Actin with Fluorescent Phalloidin Conjugates.

    Hagan, Iain M

    2016-01-01

    The Schizosaccharomyces pombe filamentous (F)-actin cytoskeleton drives cell growth, morphogenesis, endocytosis, and cytokinesis. The protocol described here reveals the distribution of F-actin in fixed cells through the use of fluorescently conjugated phalloidin. Simultaneous staining of cell wall landmarks (with calcofluor) and chromatin (with 4',6-diamidino-2-phenylindole, or DAPI) makes this rapid staining procedure highly effective for staging cell cycle progression, monitoring morphogenetic abnormalities, and assessing the impact of environmental and genetic changes on the integrity of the F-actin cytoskeleton. PMID:27250943

  16. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton.

    Zheng, Kai; Kitazato, Kaio; Wang, Yifei; He, Zhendan

    2016-09-01

    Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies. PMID:25853495

  17. RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii.

    Premanand Balraj

    Full Text Available BACKGROUND: Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG. The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. METHODOLOGY/PRINCIPAL FINDINGS: Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. CONCLUSION/SIGNIFICANCE: These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus.

  18. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton

    Jürgen Bolz

    2014-07-01

    Full Text Available Disrupted-in-Schizophrenia 1 (DISC1 is a risk gene for a spectrum of major mental disorders. It has been shown to regulate radial migration as well as dendritic arborization during neurodevelopment and corticogenesis. In a previous study we demonstrated through in vitro experiments that DISC1 also controls the tangential migration of cortical interneurons originating from the medial ganglionic eminence (MGE. Here we first show that DISC1 is necessary for the proper tangential migration of cortical interneurons in the intact brain. Expression of EGFP under the Lhx6 promotor allowed us to analyze exclusively interneurons transfected in the MGE after in utero electroporation. After 3 days in utero, DISC1 deficient interneurons displayed prolonged leading processes and, compared to control, fewer neurons reached the cortex. Time-lapse video microscopy of cortical feeder-layers revealed a decreased migration velocity due to a reduction of soma translocations. Immunostainings indicated that DISC1 is co-localized with F-actin in the growth cone-like structure of the leading process. DISC1 knockdown reduced F-actin levels whereas the overall actin level was not altered. Moreover, DISC1 knockdown also decreased levels of phosphorylated Girdin, which cross-links F-actin, as well as the Girdin-activator pAkt. In contrast, using time-lapse video microscopy of fluorescence-tagged tubulin and EB3 in fibroblasts, we found no effects on microtubule polymerization when DISC1 was reduced. However, DISC1 affected the acteylation of microtubules in the leading processes of MGE-derived cortical interneurons. Together, our results provide a mechanism how DISC1 might contribute to interneuron migration thereby explaining the reduced number of specific classes of cortical interneurons in some DISC1 mouse models.

  19. Live cell imaging of the assembly, disassembly, and actin cable–dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae

    Huckaba, Thomas M.; Gay, Anna Card; Pantalena, Luiz Fernando; Yang, Hyeong-Cheol; Liza A Pon

    2004-01-01

    Using FM4-64 to label endosomes and Abp1p-GFP or Sac6p-GFP to label actin patches, we find that (1) endosomes colocalize with actin patches as they assemble at the bud cortex; (2) endosomes colocalize with actin patches as they undergo linear, retrograde movement from buds toward mother cells; and (3) actin patches interact with and disassemble at FM4-64–labeled internal compartments. We also show that retrograde flow of actin cables mediates retrograde actin patch movement. An Arp2/3 complex...

  20. Differential requirements for actin during yeast and mammalian endocytosis.

    Aghamohammadzadeh, Soheil; Ayscough, Kathryn R

    2009-08-01

    Key features of clathrin-mediated endocytosis have been conserved across evolution. However, endocytosis in Saccharomyces cerevisiae is completely dependent on a functional actin cytoskeleton, whereas actin appears to be less critical in mammalian cell endocytosis. We reveal that the fundamental requirement for actin in the early stages of yeast endocytosis is to provide a strong framework to support the force generation needed to direct the invaginating plasma membrane into the cell against turgor pressure. By providing osmotic support, pressure differences across the plasma membrane were removed and this reduced the requirement for actin-bundling proteins in normal endocytosis. Conversely, increased turgor pressure in specific yeast mutants correlated with a decreased rate of endocytic patch invagination. PMID:19597484

  1. Nanosecond electric pulses trigger actin responses in plant cells

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  2. Nanosecond electric pulses trigger actin responses in plant cells

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca [Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Hohenberger, Petra [Botanical Institute I, University of Karlsruhe, Karlsruhe Institute of Technology, Kaiserstr. 2, 76128 Karlsruhe (Germany); Wegner, Lars H. [Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Botanical Institute I, University of Karlsruhe, Karlsruhe Institute of Technology, Kaiserstr. 2, 76128 Karlsruhe (Germany); Frey, Wolfgang [Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Nick, Peter, E-mail: peter.nick@bio.uni-karlsruhe.de [Botanical Institute I, University of Karlsruhe, Karlsruhe Institute of Technology, Kaiserstr. 2, 76128 Karlsruhe (Germany)

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  3. Antenna mechanism of length control of actin cables

    Mohapatra, Lishibanya; Kondev, Jane

    2014-01-01

    Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This antenna mechanism involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentra...

  4. Morphological change and crystal structure of skeletal muscle actin

    Actin from skeletal muscle was crystallized in fluorescent dye/acetone solutions. Three different polymorphic forms of the crystals were observed by polarization microscope and video systems. Ultrastructural observation and electron diffraction analysis of the crystals have been made using a 1 MeV electron microscope. The specimens were unstained or negatively stained with uranyl acetate. The diffraction spots of the crystals faded within twenty seconds. Minimum dose system and low temperature techniques were effective in taking highly resolved images and diffraction patterns of the crystals. Actin crystals diffracted well to 2 A resolution. The rod form of actin crystals is orthorhombic and the cell dimensions are 61 Ax41 Ax33 A. The unit cell contains one actin monomer. (orig.)

  5. A model actin comet tail disassembling by severing

    We use a numerical simulation to model an actin comet tail as it grows from the surface of a small object (a bead) and disassembles by severing. We explore the dependence of macroscopic properties such as the local tail radius and tail length on several controllable properties, namely the bead diameter, the bead velocity, the severing rate per unit length, and the actin gel mesh size. The model predicts an F-actin density with an initial exponential decay followed by an abrupt decay at the edge of the tail, and predicts that the comet tail diameter is constant along the length of the tail. The simulation results are used to fit a formula relating the comet tail length to the control parameters, and it is proposed that this formula offers a means to extract quantitative information on the actin gel mesh size and severing kinetics from simple macroscopic measurements

  6. The role of actin networks in cellular mechanosensing

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  7. Polymerization of fluorescent analogue of plant actin in vitro and in vivo

    2000-01-01

    Maize pollen actin has been labeled with Oregon Green 488 iodoacetamide. A yield of 3 mg fluorescent actin analogue has been obtained from 10 mg of maize pollen actin, which is 99% in purity and the dye/protein ratio is 72%. In the presence of Mg2+ and K+, the fluorescent actin analogue polymerized into filaments in vitro. Green fluorescent filaments were observed when the fluorescent actin was introduced into living plant cells by microinjection, indicating that the fluorescent actin analogue functions similarly to the native actin.

  8. Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul

    2016-06-01

    Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications. PMID:27417089

  9. Actin is required for IFT regulation in Chlamydomonas reinhardtii

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; YAMAMOTO, Ryosuke; Mackinder, Luke; Jonikas, Martin C.; Sale, Winfield S.; Shoichet, Brian; Pringle, John R.; Marshall, Wallace F.

    2014-01-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Since actin network disruption leads to changes in ciliary length and number, actin has been propo...

  10. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  11. Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton

    Sackmann, E.; Bausch, A. R.; Vonna, L.

    1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex

  12. The Role of Actin Cytoskeleton in Memory Formation in Amygdala.

    Lamprecht, Raphael

    2016-01-01

    The central, lateral and basolateral amygdala (BLA) nuclei are essential for the formation of long-term memories including emotional and drug-related memories. Studying cellular and molecular mechanisms of memory in amygdala may lead to better understanding of how memory is formed and of fear and addiction-related disorders. A challenge is to identify molecules activated by learning that subserve cellular changes needed for memory formation and maintenance in amygdala. Recent studies show that activation of synaptic receptors during fear and drug-related learning leads to alteration in actin cytoskeleton dynamics and structure in amygdala. Such changes in actin cytoskeleton in amygdala are essential for fear and drug-related memories formation. Moreover, the actin cytoskeleton subserves, after learning, changes in neuronal morphogenesis and glutamate receptors trafficking in amygdala. These cellular events are involved in fear and drug-related memories formation. Actin polymerization is also needed for the maintenance of drug-associated memories in amygdala. Thus, the actin cytoskeleton is a key mediator between receptor activation during learning and cellular changes subserving long-term memory (LTM) in amygdala. The actin cytoskeleton may serve as a target for pharmacological treatment of fear memory associated with fear and anxiety disorders and drug addiction to prevent the debilitating consequences of these diseases. PMID:27065800

  13. Constructing and Analyzing Fusion Promoter of Partial Sericin 1 and Bombyx A3 Cytoplasmic Actin

    2008-01-01

    Previous report showed that the 209 bp DNA sequence upstream of the sericin 1 transcriptional start site (-586 to -378 bp) is involved in promoting transcription and responsible for the tissue specificity of sericin 1 promoter in silkworm Bombyx mori. In the present study, this 209 bp sequence exhibited enhancive effect by assembling in two different locations of ubiquitous Bombyx A3 cytoplasmic actin promoter. Sf-9 cells were transfected with recombinant plasmids using Cellfectin reagent. Firefly luciferase gene located downstream of fusion promoter was considered as a reporter, whereas the activity of the co-transfected Renilla luciferase gene (pGL2-SV40) provides an internal control. This 209 bp region up-regulates the strength of A3 promoter significantly (P < 0.01) when it enters into A3 promoter with respect to the position in sericin 1 gene promoter. This 209-bp fragment was almost functionless when being located upstream of A3 promoter.

  14. To be or not to be assembled: progressing into nuclear actin filaments.

    Grosse, Robert; Vartiainen, Maria K

    2013-11-01

    The paradigm states that cytoplasmic actin operates as filaments and nuclear actin is mainly monomeric, acting as a scaffold in transcription complexes. However, why should a powerful function of actin, namely polymerization, not be used in the nucleus? Recent progress in the field forces us to rethink this issue, as many actin filament assembly proteins have been linked to nuclear functions and new experimental approaches have provided the first direct visualizations of polymerized nuclear actin. PMID:24088744

  15. In Vivo Imaging of the Actin Polymerization State with Two-Photon Fluorescence Anisotropy

    Vishwasrao, Harshad D.; Trifilieff, Pierre; Kandel, Eric R.

    2012-01-01

    Using two-photon fluorescence anisotropy imaging of actin-GFP, we have developed a method for imaging the actin polymerization state that is applicable to a broad range of experimental systems extending from fixed cells to live animals. The incorporation of expressed actin-GFP monomers into endogenous actin polymers enables energy migration FRET (emFRET, or homoFRET) between neighboring actin-GFPs. This energy migration reduces the normally high polarization of the GFP fluorescence. We derive...

  16. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring

    1990-01-01

    Actin-binding protein (ABP-280, nonmuscle filamin) is a ubiquitous dimeric actin cross-linking phosphoprotein of peripheral cytoplasm, where it promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The complete nucleotide sequence of human endothelial cell ABP cDNA predicts a polypeptide subunit chain of 2,647 amino acids, corresponding to 280 kD, also the mass derived from physical measurements of the native protein. The actin-binding domain is...

  17. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric).

    Schrey, Silvia D; Salo, Vanamo; Raudaskoski, Marjatta; Hampp, Rüdiger; Nehls, Uwe; Tarkka, Mika T

    2007-08-01

    The actin cytoskeleton (AC) of fungal hyphae is a major determinant of hyphal shape and morphogenesis, implicated in controlling tip structure and secretory vesicle delivery. Hyphal growth of the ectomycorrhizal fungus Amanita muscaria and symbiosis formation with spruce are promoted by the mycorrhiza helper bacterium Streptomyces sp. AcH 505 (AcH 505). To investigate structural requirements of growth promotion, the effect of AcH 505 on A. muscaria hyphal morphology, AC and actin gene expression were studied. Hyphal diameter and mycelial density decreased during dual culture (DC), and indirect immunofluorescence microscopy revealed that the dense and polarised actin cap in hyphal tips of axenic A. muscaria changes to a loosened and dispersed structure in DC. Supplementation of growth medium with cell-free bacterial supernatant confirmed that reduction in hyphal diameter and AC changes occurred at the same stage of growth. Transcript levels of both actin genes isolated from A. muscaria remained unaltered, indicating that AC changes are regulated by reorganisation of the existing actin pool. In conclusion, the AC reorganisation appears to result in altered hyphal morphology and faster apical extension. The thus improved spreading of hyphae and increased probability to encounter plant roots highlights a mechanism behind the mycorrhiza helper effect. PMID:17632722

  18. The Actin-Cytoskeleton Pathway and Its Potential Role in Inflammatory Bowel Disease-Associated Human Colorectal Cancer

    Kanaan, Ziad; Qadan, Motaz; Eichenberger, Maurice Robert; Galandiuk, Susan

    2010-01-01

    Introduction: To improve our understanding of the various clinical phenotypes in inflammatory bowel disease (IBD)-associated colorectal cancer (CRC) and provide potential targets for early diagnosis and future therapy, we sought to identify new candidate genes and molecular pathways involved in the pathogenesis and progression of this disorder. Recent evidence has implicated the actin-cytoskeleton pathway in the development of metastatic sporadic CRC through cytoskeletal proteins such as fasc...

  19. Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block

    Kalendová, Alžběta; Kalasová, Ilona; Yamazaki, S.; Uličná, Lívia; Harata, M.; Hozák, Pavel

    2014-01-01

    Roč. 142, č. 2 (2014), s. 139-152. ISSN 0948-6143 R&D Projects: GA ČR GAP305/11/2232; GA MŠk LD12063; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : nuclear actin * transcription * mitosis * actin-related protein 3 * cofilin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.927, year: 2013

  20. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  1. Gene

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  2. Reference genes for normalization: A study of rat brain tissue

    Bonefeld, Birgit; Elfving, Betina; Wegener, Gregers

    2008-01-01

    Quantitative real-time polymerase chain reaction (qPCR) has become a widely used tool in the search for disease genes. When examining gene expression with qPCR in psychiatric diseases, endogenous reference gene(s) must be used for normalization. Traditionally, genes such as beta-actin (ActB), Gapd...

  3. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  4. Interactions between the yeast SM22 homologue Scp1 and actin demonstrate the importance of actin bundling in endocytosis.

    Gheorghe, Dana M; Aghamohammadzadeh, Soheil; Smaczynska-de Rooij, Iwona I; Allwood, Ellen G; Winder, Steve J; Ayscough, Kathryn R

    2008-05-30

    The yeast SM22 homologue Scp1 has previously been shown to act as an actin-bundling protein in vitro. In cells, Scp1 localizes to the cortical actin patches that form as part of the invagination process during endocytosis, and its function overlaps with that of the well characterized yeast fimbrin homologue Sac6p. In this work we have used live cell imaging to demonstrate the importance of key residues in the Scp1 actin interface. We have defined two actin binding domains within Scp1 that allow the protein to both bind and bundle actin without the need for dimerization. Green fluorescent protein-tagged mutants of Scp1 also indicate that actin localization does not require the putative phosphorylation site Ser-185 to be functional. Deletion of SCP1 has few discernable effects on cell growth and morphology. However, we reveal that scp1 deletion is compensated for by up-regulation of Sac6. Furthermore, Scp1 levels are increased in the absence of sac6. The presence of compensatory pathways to up-regulate Sac6 or Scp1 levels in the absence of the other suggest that maintenance of sufficient bundling activity is critical within the cell. Analysis of cortical patch assembly and movement during endocytosis reveals a previously undetected role for Scp1 in movement of patches away from the plasma membrane. Additionally, we observe a dramatic increase in patch lifetime in a strain lacking both sac6 and scp1, demonstrating the central role played by actin-bundling proteins in the endocytic process. PMID:18400761

  5. State transitions of actin cortices in vitro and in vivo

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  6. Cortactin promotes exosome secretion by controlling branched actin dynamics.

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Kirkbride, Kellye C; Grega-Larson, Nathan E; Seiki, Motoharu; Tyska, Matthew J; Weaver, Alissa M

    2016-07-18

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952

  7. Addition of electrophilic lipids to actin alters filament structure

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) and PGA1 in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA1 and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ2 or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ2 at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles

  8. Novel actin-like filament structure from Clostridium tetani.

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines. PMID:22514279

  9. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  10. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L. (Queensland); (Aust. Synch.)

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  11. Antenna Mechanism of Length Control of Actin Cables.

    Lishibanya Mohapatra

    2015-06-01

    Full Text Available Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.

  12. Oral acetylsalicylic acid and prevalence of actinic keratosis

    Juliano Schmitt

    2014-01-01

    Full Text Available Objective: To investigate the influence of a regular oral use of acetylsalicylic acid in the prevalence of actinic keratosis. Methods: A case-control study with dermatologic outpatients above 50 years of age assessed between 2009 and 2011. Cases were defined as those who had been under regular use of oral acetylsalicylic acid for more than six consecutive months. The assessment focused on: age, sex, skin-type, tobacco smoking, use of medication, occurrence of individual or family skin cancer, and sunscreen and sun exposure habits. Actinic keratoses were counted in the medial region of the face and upper limbs. Counts were adjusted by co-variables based on a generalized linear model. Results: A total of 74 cases and 216 controls were assessed. The median time of acetylsalicylic acid use was 36 months. Cases differed from controls as to the highest age, highest prevalence of use of angiotensin-converting enzyme inhibitors and fewer keratosis on the face and on the upper limbs (p<0.05. The multivariate model showed that the use of acetylsalicylic acid was associated to lower counts of face actinic keratosis and upper-limb erythematous actinic keratosis (p<0.05, regardless of other risk factors. Conclusion: The regular use of oral acetylsalicylic acid for more than six months was associated to a lower prevalence of actinic keratosis, especially facial and erythematous ones.

  13. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: Actin or reactin’?

    Rothenfluh, Adrian; Cowan, Christopher W.

    2013-01-01

    Neurons rely on their cytoskeleton to give them shape and stability, and on cytoskeletal dynamics for growth and synaptic plasticity. Because drug addiction is increasingly seen as the inappropriate learning of strongly reinforcing stimuli, the role of the cytoskeleton in shaping drug memories has been of increasing interest in recent years. Does the cytoskeleton have an active role in shaping these memories, and to what extent do alterations in the cytoskeleton reflect the acute actions of drug exposure, or homeostatic reactions to the chronic exposure to drugs of abuse? Here we will review recent advances in understanding the role of the cytoskeleton in the development of drug addiction, with a focus on actin filaments, as they have been studied in greater detail. PMID:23428655

  14. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin

    Emma J McGhie; Hayward, Richard D.; Koronakis, Vassilis

    2001-01-01

    Pathogen-induced remodelling of the host cell actin cytoskeleton drives internalization of invasive Salmon ella by non-phagocytic intestinal epithelial cells. Two Salmonella actin-binding proteins are involved in internalization: SipC is essential for the process, while SipA enhances its efficiency. Using purified SipC and SipA proteins in in vitro assays of actin dynamics and F-actin bundling, we demonstrate that SipA stimulates substantially SipC-mediated nucleation of actin polymerization....

  15. Coronin Promotes the Rapid Assembly and Cross-linking of Actin Filaments and May Link the Actin and Microtubule Cytoskeletons in Yeast

    Goode, Bruce L.; Wong, Jonathan J.; Butty, Anne-Christine; Peter, Matthias; McCormack, Ashley L.; Yates, John R.; Drubin, David G.; Barnes, Georjana

    1999-01-01

    Coronin is a highly conserved actin-associated protein that until now has had unknown biochemical activities. Using microtubule affinity chromatography, we coisolated actin and a homologue of coronin, Crn1p, from Saccharomyces cerevisiae cell extracts. Crn1p is an abundant component of the cortical actin cytoskeleton and binds to F-actin with high affinity (K d 6 × 10−9 M). Crn1p promotes the rapid barbed-end assembly of actin filaments and cross-links filaments into bundles and more complex ...

  16. Targeting of gene expression to skeletal and cardiac muscle of trangenic animals.

    Sands, A T; DeMayo, F; Lei, X; Schwartz, R J

    1991-01-01

    The tissue restricted and developmental potentiation of transcription by chicken alpha-skeletal actin promoter regions fused to the reporter gene chloramphenicol acetyl transferase (CAT) were characterized in transgenic mice. Six of eight expressing transgenic mouse lines containing the chicken alpha-skeletal actin promoter fused to CAT resulted in preferential transgene transcription in skeletal muscle tissue, similar to the endogenous mouse alpha-skeletal actin gene. Two of the eight lines departed from the preferred pattern of skeletal muscle expression with primary expression of the transgene in the heart, a tissue containing primarily cardiac actin isoforms. Developmentally, a transition from embryonic heart to fetal and neonatal skeletal muscle expression was produced by the transgene promoter, a pattern of regulation similar to that of the endogenous alpha-skeletal actin gene. Instances of departure of transgene expression from the endogenous gene implied the existance of higher order muscle gene regulatory mechanisms. PMID:1367249

  17. Characterization of the myosin light chain kinase from smooth muscle as an actin-binding protein that assembles actin filaments in vitro.

    Hayakawa, K; Okagaki, T; Ye, L H; Samizo, K; Higashi-Fujime, S; Takagi, T; Kohama, K

    1999-05-01

    In addition to its kinase activity, myosin light chain kinase has an actin-binding activity, which results in bundling of actin filaments [Hayakawa et al., Biochem. Biophys. Res. Commun. 199, 786-791, 1994]. There are two actin-binding sites on the kinase: calcium- and calmodulin-sensitive and insensitive sites [Ye et al., J. Biol. Chem. 272, 32182-32189, 1997]. The calcium/calmodulin-sensitive, actin-binding site is located at Asp2-Pro41 and the insensitive site is at Ser138-Met213. The cyanogen bromide fragment, consisting of Asp2-Met213, is furnished with both sites and is the actin-binding core of myosin light chain kinase. Cross-linking between the two sites assembles actin filaments into bundles. Breaking of actin-binding at the calcium/calmodulin-sensitive site by calcium/calmodulin disassembles the bundles. PMID:10231551

  18. Calcium-actin waves and oscillations of cellular membranes.

    Veksler, Alex; Gov, Nir S

    2009-09-16

    We propose a mechanism for the formation of membrane oscillations and traveling waves, which arise due to the coupling between the actin cytoskeleton and the calcium flux through the membrane. In our model, the fluid cell membrane has a mobile but constant population of proteins with a convex spontaneous curvature, which act as nucleators of actin polymerization and adhesion. Such a continuum model couples the forces of cell-substrate adhesion, actin polymerization, membrane curvature, and the flux of calcium through the membrane. Linear stability analysis shows that sufficiently strong coupling among the calcium, membrane, and protein dynamics may induce robust traveling waves on the membrane. This result was checked for a reduced feedback scheme and is compared to the results without the effects of calcium, where permanent phase separation without waves or oscillations is obtained. The model results are compared to the published observations of calcium waves in cell membranes, and a number of testable predictions are proposed. PMID:19751660

  19. Actin nucleation at the centrosome controls lymphocyte polarity.

    Obino, Dorian; Farina, Francesca; Malbec, Odile; Sáez, Pablo J; Maurin, Mathieu; Gaillard, Jérémie; Dingli, Florent; Loew, Damarys; Gautreau, Alexis; Yuseff, Maria-Isabel; Blanchoin, Laurent; Théry, Manuel; Lennon-Duménil, Ana-Maria

    2016-01-01

    Cell polarity is required for the functional specialization of many cell types including lymphocytes. A hallmark of cell polarity is the reorientation of the centrosome that allows repositioning of organelles and vesicles in an asymmetric fashion. The mechanisms underlying centrosome polarization are not fully understood. Here we found that in resting lymphocytes, centrosome-associated Arp2/3 locally nucleates F-actin, which is needed for centrosome tethering to the nucleus via the LINC complex. Upon lymphocyte activation, Arp2/3 is partially depleted from the centrosome as a result of its recruitment to the immune synapse. This leads to a reduction in F-actin nucleation at the centrosome and thereby allows its detachment from the nucleus and polarization to the synapse. Therefore, F-actin nucleation at the centrosome-regulated by the availability of the Arp2/3 complex-determines its capacity to polarize in response to external stimuli. PMID:26987298

  20. Spiral actin-polymerization waves can generate amoeboidal cell crawling

    Amoeboidal cell crawling on solid substrates is characterized by protrusions that seemingly appear randomly along the cell periphery and drive the cell forward. For many cell types, it is known that the protrusions result from polymerization of the actin cytoskeleton. However, little is known about how the formation of protrusions is triggered and whether the appearance of subsequent protrusions is coordinated. Recently, the spontaneous formation of actin-polymerization waves was observed. These waves have been proposed to orchestrate the cytoskeletal dynamics during cell crawling. Here, we study the impact of cytoskeletal polymerization waves on cell migration using a phase-field approach. In addition to directionally moving cells, we find states reminiscent of amoeboidal cell crawling. In this framework, new protrusions are seen to emerge from a nucleation process, generating spiral actin waves in the cell interior. Nucleation of new spirals does not require noise, but occurs in a state that is apparently displaying spatio-temporal chaos. (paper)

  1. Formation of actin networks in microfluidic concentration gradients

    Strelnikova, Natalja; Herren, Florian; Schoenenberger, Cora-Ann; Pfohl, Thomas

    2016-05-01

    The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  2. Identification of Actin-Binding Proteins from Maize Pollen

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  3. Modelling phagosomal lipid networks that regulate actin assembly

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  4. Health related quality of life in patients with actinic keratosis

    Tennvall, Gunnel Ragnarson; Norlin, J M; Malmberg, I;

    2015-01-01

    BACKGROUND: Actinic keratosis (AK) is a common skin condition that may progress to non-melanoma skin cancer (NMSC). The disease may influence Health Related Quality of Life (HRQoL), but studies of HRQoL in patients with AK are limited. The purpose of the study was to analyze HRQoL in patients with......-center setting. Dermatologists assessed AK severity and patients completed: Actinic Keratosis Quality of Life Questionnaire (AKQoL), Dermatology Life Quality Index (DLQI), and EQ-5D-5 L including EQ-VAS. Differences between categorical subgroups were tested with Wilcoxon rank-sum test. The relationship between...

  5. Oral nicotinamide and actinic keratosis: a supplement success story.

    Kim, Burcu; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Nicotinamide has shown potential as a safe and effective intervention for the prevention of malignant and premalignant skin lesions. Recent studies have shown that nicotinamide, in both oral and topical forms, is able to prevent ultraviolet-induced immunosuppression in humans [1,2,3] and mice [4,5]. Immunosuppression is a known factor for the progression of premalignant lesions, such as actinic keratosis [6]. Murine studies have shown that nicotinamide is also able to protect against photocarcinogenesis [4,5]. Preliminary human studies suggest that nicotinamide may help prevent skin cancers and enhance the regression of actinic keratoses. PMID:25561219

  6. Actin and Arp2/3 localize at the centrosome of interphase cells

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan, E-mail: jan.gettemans@vib-ugent.be

    2011-01-07

    Research highlights: {yields} Actin was detected at the centrosome with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. {yields} Centrosomal actin was found in interphase but not mitotic MDA-MB-231 cells. {yields} Neither the anti-actin antibody C4 that binds to globular, monomer actin, nor the anti-actin antibody 2G2 that recognizes the nuclear conformation of actin detect actin at the centrosome. {yields} The Arp2/3 complex transiently localizes at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. -- Abstract: Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.

  7. Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK.

    Sanjiv Sonkaria

    Full Text Available Magnetotactic bacteria (MTB synthesize magnetosomes, which are intracellular vesicles comprising a magnetic particle. A series of magnetosomes arrange themselves in chains to form a magnetic dipole that enables the cell to orient itself along the Earth's magnetic field. MamK, an actin-like homolog of MreB has been identified as a central component in this organisation. Gene deletion, fluorescence microscopy and in vitro studies have yielded mechanistic differences in the filament assembly of MamK with other bacterial cytoskeletal proteins within the cell. With little or no information on the structural and behavioural characteristics of MamK outside the cell, the mamK gene from Magnetospirillium gryphiswaldense was cloned and expressed to better understand the differences in the cytoskeletal properties with its bacterial homologues MreB and acitin. Despite the low sequence identity shared between MamK and MreB (22% and actin (18%, the behaviour of MamK monitored by light scattering broadly mirrored that of its bacterial cousin MreB primarily in terms of its pH, salt, divalent metal-ion and temperature dependency. The broad size variability of MamK filaments revealed by light scattering studies was supported by transmission electron microscopy (TEM imaging. Filament morphology however, indicated that MamK conformed to linearly orientated filaments that appeared to be distinctly dissimilar compared to MreB suggesting functional differences between these homologues. The presence of a nucleotide binding domain common to actin-like proteins was demonstrated by its ability to function both as an ATPase and GTPase. Circular dichroism and structural homology modelling showed that MamK adopts a protein fold that is consistent with the 'classical' actin family architecture but with notable structural differences within the smaller domains, the active site region and the overall surface electrostatic potential.

  8. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter.

    Leite, Sérgio Carvalho; Sampaio, Paula; Sousa, Vera Filipe; Nogueira-Rodrigues, Joana; Pinto-Costa, Rita; Peters, Luanne Laurel; Brites, Pedro; Sousa, Mónica Mendes

    2016-04-19

    The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings. PMID:27068466

  9. Pattern formation in polymerising actin flocks: spirals, spots and waves without nonlinear chemistry

    Goff, Thomas Le; Marenduzzo, Davide

    2016-01-01

    We propose a model solely based on actin treadmilling and polymerisation which describes many characteristic states of actin wave formation: spots, spirals and travelling waves. In our model, as in experiments on cell recovering motility following actin depolymerisation, we choose an isotropic low density initial condition; polymerisation of actin filaments then raises the density towards the Onsager threshold where they align. We show that this alignment, in turn, destabilizes the isotropic phase and generically induces transient actin spots or spirals as part of the dynamical pathway towards a polarized phase which can either be uniform or consist of a series of actin-wave trains (flocks). Our results uncover a universal route to actin wave formation in the absence of any system specific nonlinear biochemistry, and it may help understand the mechanism underlying the observation of actin spots and waves in vivo. They also suggest a minimal setup to design similar patterns in vitro.

  10. Orientational Order of the Lamellipodial Actin Network as Demonstrated in Living Motile CellsV⃞

    Alexander B. Verkhovsky; Chaga, Oleg Y.; Schaub, Sébastien; Svitkina, Tatyana M.; Meister, Jean-Jacques; Borisy, Gary G.

    2003-01-01

    Lamellipodia of crawling cells represent both the motor for cell advance and the primary building site for the actin cytoskeleton. The organization of actin in the lamellipodium reflects actin dynamics and is of critical importance for the mechanism of cell motility. In previous structural studies, the lamellipodial actin network was analyzed primarily by electron microscopy (EM). An understanding of lamellipodial organization would benefit significantly if the EM data were complemented and p...

  11. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Justine R. Stehn; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.; Fath, Thomas; Schevzov, Galina; Gunning, Peter W.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to...

  12. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  13. Actin based processes that could determine the cytoplasmic architecture of plant cells

    Honing; Emons, A.M.C.; Ketelaar, M.J.

    2007-01-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on...

  14. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  15. The actin Cytoskeleton in Root Hairs: a cell elongation device

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  16. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  17. Fragmentation of Human Erythrocyte Actin following Exposure to Hypoxia

    Risso, A.; Santamaria, B.; Pistarino, E.; Cosulich, M. E.; Pompach, Petr; Bezouška, Karel; Antonutto, G.

    2009-01-01

    Roč. 123, č. 1 (2009), s. 6-13. ISSN 0001-5792 Institutional research plan: CEZ:AV0Z50200510 Keywords : beta-Actin * erythrocytes * hypoxia Subject RIV: EC - Immunology Impact factor: 1.069, year: 2009

  18. Fragmentation of Human Erythrocyte Actin following Exposure to Hypoxia

    Risso, A.; Santamaria, B.; Pistarino, E.; Cosulich, M. E.; Pompach, Petr; Bezouška, Karel; Antonutto, G.

    2010-01-01

    Roč. 123, č. 1 (2010), s. 6-13. ISSN 0001-5792 Institutional research plan: CEZ:AV0Z50200510 Keywords : beta-Actin * Erythrocytes * Hypoxia Subject RIV: EE - Microbiology, Virology Impact factor: 1.316, year: 2010

  19. Interconnection between actin cytoskeleton and plant defense signaling

    Janda, Martin; Matoušková, J.; Burketová, Lenka; Valentová, O.

    2014-01-01

    Roč. 9, č. 11 (2014). ISSN 1559-2316 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Actin * Cytoskeleton * Pathogen Subject RIV: ED - Physiology http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25482795

  20. XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia

    Déborah I. Scheffer

    2015-03-01

    Full Text Available Hair cells of the inner ear are mechanoreceptors for hearing and balance, and proteins highly enriched in hair cells may have specific roles in the development and maintenance of the mechanotransduction apparatus. We identified XIRP2/mXinβ as an enriched protein likely to be essential for hair cells. We found that different isoforms of this protein are expressed and differentially located: short splice forms (also called XEPLIN are targeted more to stereocilia, whereas two long isoforms containing a XIN-repeat domain are in both stereocilia and cuticular plates. Mice lacking the Xirp2 gene developed normal stereocilia bundles, but these degenerated with time: stereocilia were lost and long membranous protrusions emanated from the nearby apical surfaces. At an ultrastructural level, the paracrystalline actin filaments became disorganized. XIRP2 is apparently involved in the maintenance of actin structures in stereocilia and cuticular plates of hair cells, and perhaps in other organs where it is expressed.

  1. Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers

    Ketelaar, T.; Honing, van der H.S.; Emons, A.M.C.

    2010-01-01

    In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be conside

  2. Cysteine-rich protein 1 (CRP1 regulates actin filament bundling

    Fraley Tamara S

    2005-12-01

    Full Text Available Abstract Background Cysteine-rich protein 1 (CRP1 is a LIM domain containing protein localized to the nucleus and the actin cytoskeleton. CRP1 has been demonstrated to bind the actin-bundling protein α-actinin and proposed to modulate the actin cytoskeleton; however, specific regulatory mechanisms have not been identified. Results CRP1 expression increased actin bundling in rat embryonic fibroblasts. Although CRP1 did not affect the bundling activity of α-actinin, CRP1 was found to stabilize the interaction of α-actinin with actin bundles and to directly bundle actin microfilaments. Using confocal and photobleaching fluorescence resonance energy transfer (FRET microscopy, we demonstrate that there are two populations of CRP1 localized along actin stress fibers, one associated through interaction with α-actinin and one that appears to bind the actin filaments directly. Consistent with a role in regulating actin filament cross-linking, CRP1 also localized to the membrane ruffles of spreading and PDGF treated fibroblasts. Conclusion CRP1 regulates actin filament bundling by directly cross-linking actin filaments and stabilizing the interaction of α-actinin with actin filament bundles.

  3. Purification of actin from Candida albicans and comparison with the Candida 48,000-Mr protein.

    Fiss, E.; Buckley, H R

    1987-01-01

    Actin was purified from Candida albicans cells by affinity chromatography by DNase-Sepharose and was recognized by immunoblotting with monoclonal antibody directed against chick muscle actin. The C. albicans 48-kilodalton protein recognized by sera from patients with invasive candidiasis was shown by DEAE chromatography and immunoblotting not to be identical with the purified C. albicans actin.

  4. Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering

    Various biological functions related to cell motility are driven by the interaction between the partner proteins, actin and myosin. To obtain insights into how this interaction occurs, the internal dynamics of F-actin and myosin subfragment-1 (S1) were characterized by the quasielastic neutron scattering measurements on the solution samples of F-actin and S1. Contributions of the internal motions of the proteins to the scattering spectra were separated from those of the global macromolecular diffusion. Analysis of the spectra arising from the internal dynamics showed that the correlation times of the atomic motions were about two times shorter for F-actin than for S1, suggesting that F-actin fluctuates more rapidly than S1. It was also shown that the fraction of the immobile atoms is larger for S1 than for F-actin. These results suggest that F-actin actively facilitates the binding of myosin by utilizing the more frequent conformational fluctuations than those of S1. - Highlights: • We studied the internal dynamics of F-actin and myosin S1 by neutron scattering. • The correlation times of the atomic motions were smaller for F-actin than for S1. • The fraction of the immobile atoms was also smaller for F-actin than for S1. • Our results suggest that mobility of atoms in F-actin is higher than that in S1. • We propose that high flexibility of F-actin facilitates the binding of myosin

  5. Dynamic organization of actin cytoskeleton during the polarity formation and germination of pollen protoplasts

    XU Xia; Zl Huijun; SUN Yina; REN Haiyun

    2004-01-01

    The formation of the polarity of pollen protoplast and the dynamics of actin cytoskeleton were observed by non-fixation, Alexa-Phalloidin probing and confocal laser scanning microscopy. Our results showed that the protoplast obtained from stored pollen contained numerous crystalline fusiform bodies to constitute a storage form of actin. When dormant pollen was hydrated, the actin cytoskeleton forms a fine network spreading uniformly in the protoplast. In the process of polarity formation and germination of pollen protoplast, actin filaments marshaled slowly to the brim, and then formed multilayer continuous actin filament bundles surrounding the cortical of the protoplast. When the protoplast was exposed to actin filament-disrupting drugs, such as Latrunculin A and Cytochalasin D, continuously arranged actin bundles were disturbed and in this condition, the protoplast could not germinate. But when exposed to actin filament stabiling drug-phalliodin, the dynamics of actin filaments in the protoplasts behaved normally and the protoplasts could germinate normally. These results were also confirmed by the pharmacology experiments on pollen grains. And when Latrunculin A or Cytochalasin D was washed off, the ratio of pollen germination was resumed partly. All the results above show that the dynamic organization of the actin cytoskeleton are critical in the cell polarity formation and germination of pollen protoplast, and that the reorganization of actin cytoskeleton is mainly due to the rearrangement of actin filament arrays.

  6. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  7. Statistics of actin-propelled trajectories in noisy environments.

    Wen, Fu-Lai; Chen, Hsuan-Yi; Leung, Kwan-Tai

    2016-06-01

    Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based. PMID:27415296

  8. Statistics of actin-propelled trajectories in noisy environments

    Wen, Fu-Lai; Chen, Hsuan-Yi; Leung, Kwan-tai

    2016-06-01

    Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.

  9. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin

  10. Regulation of actin cytoskeleton architecture by Eps8 and Abi1

    Miller Jeffrey R

    2005-10-01

    Full Text Available Abstract Background The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive. Results Here, we show that Eps8 promotes the assembly of actin rich filopodia-like structures and actin cables in cultured mammalian cells and Xenopus embryos, respectively. The morphology of actin structures induced by Eps8 was modulated by interactions with Abi1, which stimulated formation of actin cables in cultured cells and star-like structures in Xenopus. The actin stars observed in Xenopus animal cap cells assembled at the apical surface of epithelial cells in a Rac-independent manner and their formation was accompanied by recruitment of N-WASP, suggesting that the Eps8/Abi1 complex is capable of regulating the localization and/or activity of actin nucleators. We also found that Eps8 recruits Dishevelled to the plasma membrane and actin filaments suggesting that Eps8 might participate in non-canonical Wnt/Polarity signaling. Consistent with this idea, mis-expression of Eps8 in dorsal regions of Xenopus embryos resulted in gastrulation defects. Conclusion Together, these results suggest that Eps8 plays multiple roles in modulating actin filament organization, possibly through its interaction with distinct sets of actin regulatory complexes. Furthermore, the finding that Eps8 interacts with Dsh and induced gastrulation defects provides evidence that Eps8 might participate in non-canonical Wnt signaling to control cell movements during vertebrate development.

  11. Actin-binding proteins from Burkholderia mallei and Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant

    Stevens, J. M.; Ulrich, R L; Taylor, L A; Wood, M W; DeShazer, D; M.P. Stevens; Galyov, E. E.

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  12. Actin-Binding Proteins from Burkholderia mallei and Burkholderia thailandensis Can Functionally Compensate for the Actin-Based Motility Defect of a Burkholderia pseudomallei bimA Mutant

    Stevens, Joanne M; Ulrich, Ricky L.; Taylor, Lowrie A.; Wood, Michael W.; DeShazer, David; Stevens, Mark P.; Galyov, Edouard E.

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  13. Structure of a Filament-Like Actin Trimer Bound to the Bacterial Effector VopL

    Zahm, Jacob A.; Padrick, Shae B.; Chen, Zhucheng; Pak, Chi W.; Yunus, Ali A.; Henry, Lisa; Tomchick, Diana R.; Chen, Zhe; Rosen, Michael K.

    2013-01-01

    Bacterial pathogens use secreted effector proteins to subvert host-cell defenses. VopL is an effector protein from Vibrio parahaemolyticus that nucleates actin filaments. VopL consists of a VopL C-terminal Domain (VCD) and a tandem array of three WASP homology 2 (WH2) motifs. Here we report the crystal structure of the VCD dimer bound to actin. The VCD binds three actin monomers in a spatial arrangement close to that in the canonical actin filament. In this configuration each actin can readil...

  14. The mtDNA NARP mutation activates the actin-Nrf2 signaling of antioxidant defenses

    An efficient handling of superoxides by antioxidant defenses is a crucial issue for cells with respiratory chain deficient mitochondria. We used human cultured skin fibroblasts to delineate the mechanism controlling the expression of antioxidant defenses in the case of a severe ATPase deficiency resulting from an 8993T>G mutation in the mitochondrial ATPase6 gene. We observed the nuclear translocation of the transcription factor Nrf2 associated with thinning of the actin stress fibers. The mobilization of the Nrf2 signaling pathway could be mimicked by a chemical blockade of the ATPase with a specific inhibitor, oligomycin. Interestingly enough, Nrf2 nuclear translocation was not observed in the case of a severe cytochrome oxidase deficiency, indicating that studying the status of this signaling pathway could throw some light on the importance of the oxidative insult associated with different respiratory chain defects

  15. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  16. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G. U.; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  17. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Travis J Jewett

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  18. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  19. The actinin family of actin cross-linking proteins - a genetic perspective.

    Murphy, Anita C H; Young, Paul W

    2015-01-01

    Actinins are one of the major actin cross-linking proteins found in virtually all cell types and are the ancestral proteins of a larger family that includes spectrin, dystrophin and utrophin. Invertebrates have a single actinin-encoding ACTN gene, while mammals have four. Mutations in all four human genes have now been linked to heritable diseases or traits. ACTN1 mutations cause macrothrombocytopenia, a platelet disorder characterized by excessive bleeding. ACTN2 mutations have been linked to a range of cardiomyopathies, and ACTN4 mutations cause a kidney condition called focal segmental glomerulosclerosis. Intriguingly, approximately 16 % of people worldwide are homozygous for a nonsense mutation in ACTN3 that abolishes actinin-3 protein expression. This ACTN3 null allele has undergone recent positive selection in specific human populations, which may be linked to improved endurance and adaptation to colder climates. In this review we discuss the human genetics of the ACTN gene family, as well as ACTN gene knockout studies in several model organisms. Observations from both of these areas provide insights into the evolution and cellular functions of actinins. PMID:26312134

  20. Photodamage: all signs lead to actinic keratosis and early squamous cell carcinoma.

    Wei, Jerry; Kok, Lai Fong; Byrne, Scott N; Halliday, Gary M

    2015-01-01

    Ultraviolet (UV) radiation is likely to drive the initiation and progression of skin cancer from actinic keratosis to squamous cell carcinoma. Signs of photodamage occur at multiple steps. UV radiation damages many cellular constituents, including lipids, proteins and DNA, all of which are likely to contribute to UV-induced skin cancer. Two biological events culminating from photodamage are mutations in the genes critical to the control of cell division, differentiation and invasion and immunosuppression. DNA photodamage, if unrepaired prior to cell division, can result in the incorporation of an incorrect nucleotide into newly synthesised DNA. Mutations in critical genes contribute to carcinogenesis. Photodamage to proteins such as those involved in DNA repair or proteins or lipids involved in cellular signalling can interfere with this repair process and contribute to mutagenesis. Mutations in key genes, including TP53, BRM, PTCH1, and HRAS, contribute to skin carcinogenesis. UV also damages immunity. Photodamage to DNA and signalling lipids as well as other molecular changes are detrimental to the key cells that regulate immunity. Photodamaged dendritic cells and altered responses by mast cells lead to the activation of T and B regulatory cells that suppress immunity to the protein products of UV-mutated genes. This stops the immune response from its protective function of destroying mutated cells, enabling the transformed cells to progress to skin cancer. UV appears to play a pivotal role at each of these steps, and therefore, signs of photodamage point to the development of skin cancer. PMID:25561201

  1. F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe

    Petersen, J; Nielsen, O; Egel, R;

    1998-01-01

    accumulated towards the projection tip at one end of the cell. Following cell fusion, F-actin dots were randomly scattered during the horsetail movement that precedes meiosis I and remained scattered until prometaphase or metaphase of meiosis II, when they concentrated around the nucleus. F-actin was seen on...... the lagging face of the nuclei which faced the partner nucleus during anaphase B of meiosis II. Early on in this anaphase F-actin was also seen on the opposite side of the nucleus, near the spindle pole body. F-actin accumulated within the spores in the mature ascus. Treatment with the actin...... depolymerising drug Latrunculin A showed that F-actin is required for cell fusion and spore formation. Latrunculin A treatment extended all stages from karyogamy to meiosis I. The S. pombe homologue of the actin binding protein profilin, Cdc3, was shown to be required for conjugation. Cdc3 co-localized with the...

  2. Cdc42 and PI(4,5)P2-induced actin assembly in Xenopus egg extracts.

    Lebensohn, Andres M; Ma, Le; Ho, Hsin-Yi Henry; Kirschner, Marc W

    2006-01-01

    Xenopus egg cytoplasmic extracts have been used to study a variety of complex cellular processes. Given their amenability to biochemical manipulation and physiological balance of regulatory proteins, these extracts are an ideal system to dissect signal transduction pathways leading to actin assembly. We have developed methods to study Cdc42 and PI(4,5)P2-induced actin assembly in Xenopus egg extracts. In this chapter, we describe detailed procedures to prepare Xenopus egg extracts, Cdc42, and PI(4,5)P2 for use in actin assembly experiments. We also describe a fluorometric pyrene actin assay for quantitative kinetic analysis of actin polymerization and a microscopic rhodamine actin assay for quick measurement of actin rearrangements in extracts. Finally we provide a protocol for immunodepletion of proteins and discuss the use of immunodepletion and rescue experiments for functional analysis of components in the extracts. PMID:16472657

  3. Isolation and identification of actin-binding proteins in Plasmodium falciparum by affinity chromatography

    Claudia Forero

    2000-06-01

    Full Text Available The invasion of the erythrocyte by Plasmodium falciparum depends on the ability of the merozoite to move through the membrane invagination. This ability is probably mediated by actin dependent motors. Using affinity columns with G-actin and F-actin we isolated actin binding proteins from the parasite. By immunoblotting and immunoprecipitation with specific antibodies we identified the presence of tropomyosin, myosin, a-actinin, and two different actins in the eluate corresponding to F-actin binding proteins. In addition to these, a 240-260 kDa doublet, different in size from the erythrocyte spectrin, reacted with an antibody against human spectrin. All the above mentioned proteins were metabolically radiolabeled when the parasite was cultured with 35S-methionine. The presence of these proteins in P. falciparum is indicative of a complex cytoskeleton and supports the proposed role for an actin-myosin motor during invasion.

  4. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  5. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  6. Actin-based propulsion of spatially extended objects

    We propose a mathematical model of the actin-based propulsion of spatially extended obstacles. It starts from the properties of individual actin filaments and includes transient attachment to the obstacle, polymerization as well as cross-linking. Two particular geometries are discussed, which apply to the motion of protein-coated beads in a cell-like medium and the leading edge of a cell protrusion, respectively. The model gives rise to both steady and saltatory movement of beads and can explain the experimentally observed transitions of the dynamic regime with changing bead radius and protein surface density. Several spatiotemporal patterns are obtained with a soft obstacle under tension, including the experimentally observed spontaneous emergence of lateral traveling waves in crawling cells. Thus, we suggest a unifying mechanism for systems that are currently described by differential concepts.

  7. Prokaryotic DNA segregation by an actin-like filament

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan;

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments with...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus....

  8. IFT88 influences chondrocyte actin organization and biomechanics

    Z. Wang; Wann, A.K.T.; Thompson, C L; Hassen, A.; Wang, W; Knight, M.M.

    2016-01-01

    Summary Objectives Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. Methods The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88orpk). Confocal microscopy was used to quantif...

  9. Internal Motility in Stiffening Actin-Myosin Networks

    Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and sug...

  10. Topical therapies for skin cancer and actinic keratosis.

    Haque, T.; Rahman, K. M.; Thurston, D E; Hadgraft, J; Lane, M. E.

    2015-01-01

    The global incidence of skin cancer and actinic keratosis (AK) has increased dramatically in recent years. Although many tumours are treated with surgery or radiotherapy topical therapy has a place in the management of certain superficial skin neoplasms and AK. This review considers skin physiology, non-melanoma skin cancer (NMSC), the relationship between AK and skin cancer and drugs administered topically for these conditions. The dermal preparations for management of NMSC and AK are discus...

  11. Multiple roles for the actin cytoskeleton during regulated exocytosis

    Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto

    2012-01-01

    Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytosk...

  12. Oral acetylsalicylic acid and prevalence of actinic keratosis

    Juliano Schmitt; Hélio Miot

    2014-01-01

    Objective: To investigate the influence of a regular oral use of acetylsalicylic acid in the prevalence of actinic keratosis. Methods: A case-control study with dermatologic outpatients above 50 years of age assessed between 2009 and 2011. Cases were defined as those who had been under regular use of oral acetylsalicylic acid for more than six consecutive months. The assessment focused on: age, sex, skin-type, tobacco smoking, use of medication, occurrence of individual or family skin cance...

  13. P0525 : N-Acetylated alpha smooth muscle actin levels are increased in hepatic fibrosis but decreased in hepatocellular carcinoma

    Nielsen, M.J.; Nielsen, S.H.; Hansen, N.U.B.; Kristensen, Jacob Hull; Karsdal, M.A.; Leeming, D. J.

    2015-01-01

    Alpha Smooth Muscle Actin (a-SMA) is upregulated together with extracellular matrix (ECM) during activation of Hepatic Stellate Cells (HSCs) in fibrosis. Histone deacetylase (HDAC) remove acetylations and regulate the expression of genes, which is associated with cancers. There is a close...... relationship between cirrhosis and hepatocellular carcinoma (HCC), and markers enabling identification of patients in risk of developing HCC with cirrhosis is a major unmet clinical need. We developed an ELISA for the assessment of acetylated a-SMA (Aca- SMA) in serum. The objective was to investigate the...

  14. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  15. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  16. Invadosomes - shaping actin networks to follow mechanical cues.

    Kedziora, Katarzyna M; Isogai, Tadamoto; Jalink, Kees; Innocenti, Metello

    2016-01-01

    Invadosomes are actin-based protrusions formed by cells in response to obstacles in their microenvironment, especially basement membranes and dense interstitial matrices. A versatile set of proteins controls assembly and dynamics of the actin networks at invadosomes and adhesive molecules link them with the extracellular matrix. Furthermore, polarized delivery of proteases makes invadosomes degradative. Therefore, invadosomes have been classically viewed as specialized protrusions involved in cell migration and remodeling of the microenvironment. Recent discoveries have considerably broadened this picture by showing that invadosomes respond to traction forces and can self-organize into dynamic arrays capable of following the topography of the substrate. Although these findings suggest that invadosomes may function as mechanosensors, this possibility has not been critically evaluated. In this review, we first summarize the organization and dynamics of actin in invadosomes and their superstructures with emphasis on force-production mechanisms. Next, we outline our current understanding of how mechanical cues impinge on invadosomes and modify their behavior. From this perspective, we provide an outlook of the outstanding open questions and the main challenges in the field. PMID:27100494

  17. Alix regulates cortical actin and the spatial distribution of endosomes.

    Cabezas, Alicia; Bache, Kristi G; Brech, Andreas; Stenmark, Harald

    2005-06-15

    Alix/AIP1 is a proline-rich protein that has been implicated in apoptosis, endocytic membrane trafficking and viral budding. To further elucidate the functions of Alix, we used RNA interference to specifically suppress its expression. Depletion of Alix caused a striking redistribution of early endosomes from a peripheral to a perinuclear location. The redistribution of endosomes did not affect transferrin recycling or degradation of endocytosed epidermal growth factor receptors, although the uptake of transferrin was mildly reduced when Alix was downregulated. Quantitative immunoelectron microscopy showed that multivesicular endosomes of Alix-depleted cells contained normal amounts of CD63, whereas their levels of lysobisphosphatidic acid were reduced. Alix depletion also caused an accumulation of unusual actin structures that contained clathrin and cortactin, a protein that couples membrane dynamics to the cortical actin cytoskeleton. Our results suggest that Alix functions in the actin-dependent intracellular positioning of endosomes, but that it is not essential for endocytic recycling or for trafficking of membrane proteins between early and late endosomes in non-polarised cells. PMID:15914539

  18. Dynamic Actin Controls Polarity Induction de novo in Protoplasts

    Beatrix Zaban; Jan Maisch; Peter Nick

    2013-01-01

    Cell polarity and axes are central for plant morphogenesis.To study how polarity and axes are induced de novo,we investigated protoplasts of tobacco Nicotiana tabacum cv.BY-2 expressing fluorescentlytagged cytoskeletal markers.We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages.The synthesis of a new cell wall marks the transition to the first stage of regeneration,and proceeds after a long preparatory phase within a few minutes.During this preparatory phase,the nucleus migrates actively,and cytoplasmic strands remodel vigorously.We probed this system for the effect of anti-cytoskeletal compounds,inducible bundling of actin,RGD-peptides,and temperature.Suppression of actin dynamics at an early stage leads to aberrant tripolar cells,whereas suppression of microtubule dynamics produces aberrant sausagelike cells with asymmetric cell walls.We integrated these data into a model,where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis.Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments,and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  19. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin.

    Lennart Hilbert; Genevieve Bates; Roman, Horia N.; Jenna L Blumenthal; Zitouni, Nedjma B.; Apolinary Sobieszek; Mackey, Michael C.; Anne-Marie Lauzon

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text...

  20. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  1. Characterization of engineered actin binding proteins that control filament assembly and structure.

    Crista M Brawley

    Full Text Available BACKGROUND: Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate. METHODOLOGY/PRINCIPAL FINDINGS: We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs, are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively. CONCLUSIONS/SIGNIFICANCE: From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly.

  2. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Su Deng

    2015-08-01

    Full Text Available The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia, which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  3. A peek into tropomyosin binding and unfolding on the actin filament.

    Abhishek Singh

    Full Text Available BACKGROUND: Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. PRINCIPAL FINDINGS: Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering, and chain dissociation (analyzed using circular dichroism. CONCLUSIONS: This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest

  4. Regulation of T cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm

    Beemiller, Peter; Krummel, Matthew F.

    2013-01-01

    Summary The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering, signalosome assembl, y and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has considered actin largely for its ‘scaffolding’ function. We examine the roles of the actin cytoskeleton in TCR signaling and immune synapse formation with an emphasis on how poroelasticity, an ensemble feature of actin dynamics with the cytosol, relates to how T cells respond to stimulation. PMID:24117819

  5. Regulation of T-cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm.

    Beemiller, Peter; Krummel, Matthew F

    2013-11-01

    The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering signalosome assembly and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has considered actin largely for its 'scaffolding' function. We examine the roles of the actin cytoskeleton in TCR signaling and immune synapse formation with an emphasis on how poroelasticity, an ensemble feature of actin dynamics with the cytosol, relates to how T cells respond to stimulation. PMID:24117819

  6. Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds.

    Kwon, Mijung; Bagonis, Maria; Danuser, Gaudenz; Pellman, David

    2015-08-10

    Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin "clouds" are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10's role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles. PMID:26235048

  7. The effect of mouse twinfilin-1 on the structure and dynamics of monomeric actin.

    Takács-Kollár, Veronika; Nyitrai, Miklós; Hild, Gábor

    2016-07-01

    The effect of twinfilin-1 on the structure and dynamics of monomeric actin was investigated with fluorescence spectroscopy and differential scanning calorimetry experiments. Fluorescence anisotropy measurements proved that G-actin and twinfilin-1 could form a complex. Due to the formation of the complexes the dissociation of the nucleotide slowed down from the nucleotide-binding pocket of actin. Fluorescence quenching experiments showed that the accessibility of the actin bound ε-ATP decreased in the presence of twinfilin-1. Temperature dependent fluorescence resonance energy transfer and differential scanning calorimetry experiments revealed that the protein matrix of actin becomes more rigid and more heat resistant in the presence of twinfilin-1. The results suggest that the nucleotide binding cleft shifted into a more closed and stable conformational state of actin in the presence of twinfilin-1. PMID:27079635

  8. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules

    Roman ePleskot

    2014-01-01

    Full Text Available The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several actin-binding proteins, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.

  9. The Actin Cytoskeleton as a Therapeutic Target for the Prevention of Relapse to Methamphetamine Use.

    Young, Erica J; Briggs, Sherri B; Miller, Courtney A

    2015-01-01

    A high rate of relapse is a defining characteristic of substance use disorder for which few treatments are available. Exposure to environmental cues associated with previous drug use can elicit relapse by causing the involuntary retrieval of deeply engrained associative memories that trigger a strong motivation to seek out drugs. Our lab is focused on identifying and disrupting mechanisms that support these powerful consolidated memories, with the goal of developing therapeutics. A particularly promising mechanism is regulation of synaptic dynamics by actin polymerization within dendritic spines. Emerging evidence indicates that memory is supported by structural and functional plasticity dendritic spines, for which actin polymerization is critical, and that prior drug use increases both spine and actin dynamics. Indeed we have found that inhibiting amygdala (AMY) actin polymerization immediately or twenty-four hours prior to testing disrupted methamphetamine (METH)-associated memories, but not food reward or fear memories. Furthermore, METH training increased AMY spine density which was reversed by actin depolymerization treatment. Actin dynamics were also shifted to a more dynamic state by METH training. While promising, actin polymerization inhibitors are not a viable therapeutic, as a multitude of peripheral process (e.g. cardiac function) rely on dynamic actin. For this reason, we have shifted our focus upstream of actin polymerization to nonmuscle myosin II. We and others have demonstrated that myosin IIb imparts a mechanical force that triggers spine actin polymerization in response to synaptic stimulation. Similar to an actin depolymerizing compound, pre-test inhibition of myosin II ATPase activity in the AMY produced a rapid and lasting disruption of drug-seeking behavior. While many questions remain, these findings indicate that myosin II represents a potential therapeutic avenue to target the actin cytoskeleton and disrupt the powerful, extinction

  10. Regulation of T cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm

    Beemiller, Peter; Krummel, Matthew F.

    2013-01-01

    The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering, signalosome assembl, y and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has ...

  11. Actin Polymerization Controls the Organization of WASH Domains at the Surface of Endosomes

    Emmanuel Derivery; Emmanuèle Helfer; Véronique Henriot; Alexis Gautreau

    2012-01-01

    Sorting of cargoes in endosomes occurs through their selective enrichment into sorting platforms, where transport intermediates are generated. The WASH complex, which directly binds to lipids, activates the Arp2/3 complex and hence actin polymerization onto such sorting platforms. Here, we analyzed the role of actin polymerization in the physiology of endosomal domains containing WASH using quantitative image analysis. Actin depolymerization is known to enlarge endosomes. Using a novel coloca...

  12. Hypogelsolinemia, a disorder of the extracellular actin scavenger system, in patients with multiple sclerosis

    Janmey Paul A; Szmitkowski Maciej; Drozdowski Wiesław; Mroczko Barbara; Wen Qi; Ciccarelli Nicholas J; Kułakowska Alina; Bucki Robert

    2010-01-01

    Abstract Background Extracellular gelsolin (GSN) and GC-globulin/Vitamin D-binding protein (DBP) appear to play an important role in clearing the actin from extracellular fluids and in modulating cellular responses to anionic bioactive lipids. In this study we hypothesized that cellular actin release and/or increase in bioactive lipids associated with multiple sclerosis (MS) development will translate into alteration of the actin scavenger system protein concentrations in blood and cerebrospi...

  13. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  14. FMNL2 drives actin-based protrusion and migration downstream of Cdc42

    Block, Jennifer; Breitsprecher, Dennis; Kühn, Sonja;

    2012-01-01

    -guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament...... establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia....

  15. Mechanisms of Rickettsia parkeri invasion of host cells and early actin-based motility

    Reed, Shawna

    2012-01-01

    Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Spotted fever group (SFG) Rickettsia hijack the host actin cytoskeleton to invade, move within, and spread between eukaryotic host cells during their obligate intracellular life cycle. Rickettsia express two bacterial proteins that can activate actin polymerization: RickA activates the host actin-nucleating Arp2/3 complex while Sca2 directly...

  16. Opposing Roles for Actin in Cdc42p PolarizationD⃞

    Irazoqui, Javier E.; Howell, Audrey S.; Theesfeld, Chandra L.; Lew, Daniel J.

    2005-01-01

    In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399–416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization si...

  17. Forces generated during actin-based propulsion: A direct measurement by micromanipulation

    Marcy, Yann; Prost, Jacques; Carlier, Marie-France; Sykes, Cécile

    2004-01-01

    Dynamic actin networks generate forces for numerous types of movements such as lamellipodia protrusion or the motion of endocytic vesicles. The actin-based propulsive movement of Listeria monocytogenes or of functionalized microspheres have been extensively used as model systems to identify the biochemical components that are necessary for actin-based motility. However, quantitative force measurements are required to elucidate the mechanism of force generation, which is still under debate. To...

  18. Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking.

    Carvalho, Kevin; Lemière, Joël; Faqir, Fahima; Manzi, John; Blanchoin, Laurent; Plastino, Julie; Betz, Timo; Sykes, Cécile

    2013-01-01

    Cells use complex biochemical pathways to drive shape changes for polarization and movement. One of these pathways is the self-assembly of actin filaments and myosin motors that together produce the forces and tensions that drive cell shape changes. Whereas the role of actin and myosin motors in cell polarization is clear, the exact mechanism of how the cortex, a thin shell of actin that is underneath the plasma membrane, can drive cell shape changes is still an open question. Here, we address this issue using biomimetic systems: the actin cortex is reconstituted on liposome membranes, in an 'outside geometry'. The actin shell is either grown from an activator of actin polymerization immobilized at the membrane by a biotin-streptavidin link, or built by simple adsorption of biotinylated actin filaments to the membrane, in the presence or absence of myosin motors. We show that tension in the actin network can be induced either by active actin polymerization on the membrane via the Arp2/3 complex or by myosin II filament pulling activity. Symmetry breaking and spontaneous polarization occur above a critical tension that opens up a crack in the actin shell. We show that this critical tension is reached by growing branched networks, nucleated by the Arp2/3 complex, in a concentration window of capping protein that limits actin filament growth and by a sufficient number of motors that pull on actin filaments. Our study provides the groundwork to understanding the physical mechanisms at work during polarization prior to cell shape modifications. PMID:24062578

  19. Temperature change does not affect force between single actin filaments and HMM from rabbit muscles.

    Kawai, M.; Kawaguchi, K; M. Saito; Ishiwata, S

    2000-01-01

    The temperature dependence of sliding force, velocity, and unbinding force was studied on actin filaments when they were placed on heavy meromyosin (HMM) attached to a glass surface. A fluorescently labeled actin filament was attached to the gelsolin-coated surface of a 1-microm polystyrene bead. The bead was trapped by optical tweezers, and HMM-actin interaction was performed at 20-35 degrees C to examine whether force is altered by the temperature change. Our experiments demonstrate that sl...

  20. Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo

    Tran, Duy T.; Masedunskas, Andrius; Weigert, Roberto; Ten Hagen, Kelly G.

    2015-01-01

    The actin cytoskeleton plays crucial roles in many cellular processes, including regulated secretion. However, the mechanisms controlling F-actin dynamics in this process are largely unknown. Through 3D time-lapse imaging in a secreting organ, we show that F-actin is actively disassembled along the apical plasma membrane at the site of secretory vesicle fusion and re-assembled directionally on vesicle membranes. Moreover, we show that fusion pore formation and PIP2 redistribution precedes act...

  1. Production and characterization of polyclonal antibody against a synthetic peptide from β-actin protein

    Nazila Amini; Mohadeseh Naghi Vishteh; Omid Zarei; Reza Hadavi; Negah Ahmadvand; Hodjattallah Rabbani; Mahmood Jeddi-Tehrani

    2014-01-01

    Objective(s):Antibodies against actin, as one of the most widely studied structural and multifunctional housekeeping proteins in eukaryotic cells, are used as internal loading controls in western blot analyses. The aim of this study was to produce polyclonal antibody against a synthetic peptide derived from N-terminal region of β-actin protein to be used as a protein loading control in western blot and other assay systems. Materials and Methods: A synthetic peptide derived from β-actin protei...

  2. Fullerenol Nanoparticles with Structural Activity Induce Variable Intracellular Actin Filament Morphologies.

    Jin, Junjiang; Dong, Ying; Wang, Ying; Xia, Lin; Gu, Weihong; Bai, Xue; Chang, Yanan; Zhang, Mingyi; Chen, Kui; Li, Juan; Zhao, Lina; Xing, Gengmei

    2016-06-01

    Fullerenol nanoparticles are promising for various biological applications; many studies have shown that they induce variable and diverse biological effects including side effects. Separation and purification of two fractions of fullerenols has demonstrated that they have varied chemical structures on the surfaces of their carbon cages. Actin is an important structural protein that is able to transform functional structures under varied physiological conditions. We assessed the abilities of the two fractions of fullerenols to attach to actin and induce variable morphological features in actin filament structures. Specifically the fullerenol fraction with a surface electric charge of -1.913 ± 0.008q (x10(-6) C) has percentages of C-OH and C=O on the carbon cage of 16.14 ± 0.60 and 17.55 ± 0.69. These features allow it to form intermolecular hydrogen bonds with actin at a stoichiometric ratio of four fullerenols per actin subunit. Molecular simulations revealed these specific binding sites and binding modes in atomic details in the interaction between the active fullerenol and actin filament. Conversely, these interactions were not possible for the other fraction of fullerenol with that percentages of C-OH and C=O on the carbon cage were 15.59 ± 0.01 and 1.94 ± 0.11. Neither sample induced appreciable cytotoxicity or acute cell death. After entering cells, active fullerenol binding to actin induces variable morphological features and may transform ATP-actin to ADP-actin. These changes facilitate the binding of ADF/cofilin, allowing cofilin to sever actin filaments to form cofilin/actin/fullerenol rods. Our findings suggest that fullerenol with structural activity binding disturbs actin filament structure, which may inhibit locomotion of cell or induce chronic side effects in to cells. PMID:27319217

  3. Detection and quantitative analysis of actin mRNA by in situ hybridization with an oligodeoxynucleotide probe

    In situ hybridization is a useful method for localizing specific nucleic acid sequences intracellularly and for studying regulation of gene expression. Recently synthetic oligonucleotides have been successfully used as probes in this technique. Since they can be made easily to specific nucleic acid regions, they may be the best approach for analysis of a gene family of highly conserved sequences. They have analyzed these probes for the development of an in situ hybridization method. Oligonucleotides were made to different regions of chick beta-actin mRNA and used for detection of these sequences in a culture of chicken fibroblasts and myoblasts. They found that synthetic DNAs have different efficiencies of hybridization, indicating that not all target sequences are equivalent. They have investigated in detail a particular probe to the actin mRNA coding region and have optimized hybridization parameters. When hybridization was quantitated it was found that an oligonucleotide end labelled with 35S or 32P was capable of detecting several thousand messages per cell with a signal-to-noise ratio of 10:1. In situ hybridization confirmed the specificity of the hybridization as well as the background level. Increase in the number of oligonucleotides used should increase the signal-to-noise ratio-proportionately. Under particular circumstances the specificity of oligonucleotides make them an important reagent for in situ hybridization

  4. Drosophila sosie functions with βH-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability

    Olivier Urwyler

    2012-08-01

    Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side, are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of βH-Spectrin, it appears that cortical βH-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse.

  5. Transportation of nanoscale cargoes by myosin propelled actin filaments.

    Malin Persson

    Full Text Available Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments ("side-attached" or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10-50 streptavidin molecules, 1-10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy.

  6. Actin-myosin network is required for proper assembly of influenza virus particles

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  7. Actin, RhoA, and Rab11 Participation during Encystment in Entamoeba invadens

    M. Herrera-Martínez

    2013-01-01

    Full Text Available In the genus Entamoeba, actin reorganization is necessary for cyst differentiation; however, its role is still unknown. The aim of this work was to investigate the role of actin and encystation-related proteins during Entamoeba invadens encystation. Studied proteins were actin, RhoA, a small GTPase involved through its effectors in the rearrangement of the actin cytoskeleton; Rab11, a protein involved in the transport of encystation vesicles; and enolase, as an encystment vesicles marker. Results showed a high level of polymerized actin accompanied by increased levels of RhoA-GTP during cell rounding and loss of vacuoles. Cytochalasin D, an actin polymerization inhibitor, and Y27632, an inhibitor of RhoA activity, reduced encystment in 80%. These inhibitors also blocked cell rounding, disposal of vacuoles, and the proper formation of the cysts wall. At later times, F-actin and Rab11 colocalized with enolase, suggesting that Rab11 could participate in the transport of the cyst wall components through the F-actin cytoskeleton. These results suggest that actin cytoskeleton rearrangement is playing a decisive role in determining cell morphology changes and helping with the transport of cell wall components to the cell surface during encystment of E. invadens.

  8. Effect of cytochalasins on F-actin and morphology of Ehrlich ascites tumor cells

    Mills, J W; Falsig Pedersen, S; Walmod, P S;

    2000-01-01

    that, in intact cells, different cytochalasins can have varying effects on cell morphology and F-actin content and organization. To examine this problem in more detail, we analyzed the effects of cytochalasins on the cell morphology of and F-actin content and organization in Ehrlich ascites tumor (EAT...... appearance of numerous blebs. At 10 microM, blebbing was present in all conditions and the organization of cortical F-actin was disrupted. F-actin content, however, was not further reduced by this higher concentration and in CD it was identical to control levels. Exposure of EAT cells to similar...

  9. F-actin-like filaments formed by plasmid segregation protein ParM

    van den Ent, Fusinita; Møller-Jensen, Jakob; Amos, Linda A.;

    2002-01-01

    of Escherichia coli formed by ParM, a plasmid-encoded protein required for accurate segregation of low-copy-number plasmid R1. We show here that ParM polymerizes into double helical protofilaments with a longitudinal repeat similar to filamentous actin (F-actin) and MreB filaments that maintain the cell shape...... compared with F-actin, despite the similar arrangement of the subunits within the filaments. Thus, there is now evidence for cytoskeletal structures, formed by actin-like filaments that are involved in plasmid partitioning in E.coli. Udgivelsesdato: Dec 16...

  10. Actin-myosin network is required for proper assembly of influenza virus particles

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network

  11. Cooperative and non-cooperative conformational changes of F-actin induced by cofilin

    Highlights: •Mobility of MTSL attached to C374 in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to C374 with cofilin-binding was cooperative. •Mobility of MTSL attached to V43C in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to V43C with cofilin-binding was linear. -- Abstract: Cofilin is an actin-binding protein that promotes F-actin depolymerization. It is well-known that cofilin-coated F-actin is more twisted than naked F-actin, and that the protomer is more tilted. However, the means by which the local changes induced by the binding of individual cofilin proteins proceed to the global conformational changes of the whole F-actin molecule remain unknown. Here we investigated the cofilin-induced changes in several parts of F-actin, through site-directed spin-label electron paramagnetic resonance spectroscopy analyses of recombinant actins containing single reactive cysteines. We found that the global, cooperative conformational changes induced by cofilin-binding, which were detected by the spin-label attached to the Cys374 residue, occurred without the detachment of the D-loop in subdomain 2 from the neighboring protomer. The two processes of local and global changes do not necessarily proceed in sequence

  12. A Potential Yeast Actin Allosteric Conduit Dependent on Hydrophobic Core Residues Val-76 and Trp-79*

    Wen, Kuo-Kuang; McKane, Melissa; Stokasimov, Ema; Fields, Jonathon; Rubenstein, Peter A.

    2010-01-01

    Intramolecular allosteric interactions responsible for actin conformational regulation are largely unknown. Previous work demonstrated that replacing yeast actin Val-76 with muscle actin Ile caused decreased nucleotide exchange. Residue 76 abuts Trp-79 in a six-residue linear array beginning with Lys-118 on the surface and ending with His-73 in the nucleotide cleft. To test if altering the degree of packing of these two residues would affect actin dynamics, we constructed V76I, W79F, and W79Y...

  13. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics.

    Zhu, Jinsheng; Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Di Donato, Martin; Ge, Pei; Oehri, Jacqueline; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H; Pollmann, Stephan; Azzarello, Elisa; Mancuso, Stefano; Ferro, Noel; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland; Friml, Jiří; Thomas, Clément; Geisler, Markus

    2016-04-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  14. Intra-axonal myosin and actin in nerve regeneration.

    McQuarrie, Irvine G; Lund, Linda M

    2009-10-01

    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin. PMID:19927086

  15. Plasma Gelsolin and Circulating Actin Correlate with Hemodialysis Mortality

    Lee, Po-Shun; Sampath, Kartik; Karumanchi, S. Ananth; Tamez, Hector; Bhan, Ishir; Isakova, Tamara; Gutierrez, Orlando M.; Wolf, Myles; Chang, Yuchiao; Stossel, Thomas P.; Thadhani, Ravi

    2009-01-01

    Plasma gelsolin (pGSN) binds actin and bioactive mediators to localize inflammation. Low pGSN correlates with adverse outcomes in acute injury, whereas administration of recombinant pGSN reduces mortality in experimental sepsis. We found that mean pGSN levels of 150 patients randomly selected from 10,044 starting chronic hemodialysis were 140 ± 42 mg/L, 30 to 50% lower than levels reported for healthy individuals. In a larger sample, we performed a case-control analysis to evaluate the relati...

  16. Colocalization of synapsin and actin during synaptic vesicle recycling

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay;

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  17. Internal Motility in Stiffening Actin-Myosin Networks

    Uhde, J; Sackmann, E; Parmeggiani, A; Frey, E; Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.

  18. Chronic actinic dermatitis - A study of clinical features

    Somani Vijay

    2005-01-01

    Full Text Available Background: Chronic actinic dermatitis (CAD, one of the immune mediated photo-dermatoses, comprises a spectrum of conditions including persistent light reactivity, photosensitive eczema and actinic reticuloid. Diagnostic criteria were laid down about 20 years back, but clinical features are the mainstay in diagnosis. In addition to extreme sensitivity to UVB, UVA and/or visible light, about three quarters of patients exhibit contact sensitivity to several allergens, which may contribute to the etiopathogenesis of CAD. This study was undertaken to examine the clinical features of CAD in India and to evaluate the relevance of patch testing and photo-aggravation testing in the diagnosis of CAD. Methods: The clinical data of nine patients with CAD were analyzed. Histopathology, patch testing and photo-aggravation testing were also performed. Results: All the patients were males. The average age of onset was 57 years. The first episode was usually noticed in the beginning of summer. Later the disease gradually tended to be perennial, without any seasonal variations. The areas affected were mainly the photo-exposed areas in all patients, and the back in three patients. Erythroderma was the presenting feature in two patients. The palms and soles were involved in five patients. Patch testing was positive in seven of nine patients. Conclusions: The diagnosis of CAD mainly depended upon the history and clinical features. The incidence of erythroderma and palmoplantar eczema was high in our series. Occupation seems to play a role in the etiopathogenesis of CAD.

  19. A Multimodular Tensegrity Model of an Actin Stress Fiber

    Luo, Yaozhi; Xu, Xian; Lele, Tanmay; Kumar, Sanjay; Ingber, Donald E.

    2008-01-01

    Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model also can explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors, and represent a new handle on multi-scale modeling of living materials. PMID:18632107

  20. Performance of actinic EUVL mask imaging using a zoneplate microscope

    Goldberg, K; Naulleau, P; Barty, A; Rekawa, S; Kemp, C; Gunion, R; Salmassi, F; Gullikson, E; Anderson, E; Han, H

    2007-09-25

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a dual-mode, scanning and imaging extreme-ultraviolet (EUV) microscope designed for pre-commercial EUV mask research. Dramatic improvements in image quality have been made by the replacement of several critical optical elements, and the introduction of scanning illumination to improve uniformity and contrast. We report high quality actinic EUV mask imaging with resolutions as low as 100-nm half-pitch, (20-nm, 5x wafer equivalent size), and an assessment of the imaging performance based on several metrics. Modulation transfer function (MTF) measurements show high contrast imaging for features sizes close to the diffraction-limit. An investigation of the illumination coherence shows that AIT imaging is much more coherent than previously anticipated, with {sigma} below 0.2. Flare measurements with several line-widths show a flare contribution on the order of 2-3% relative intensity in dark regions above the 1.3% absorber reflectivity on the test mask used for these experiments. Astigmatism coupled with focal plane tilt are the dominant aberrations we have observed. The AIT routinely records 250-350 high-quality images in numerous through-focus series per 8-hour shift. Typical exposure times range from 0.5 seconds during alignment, to approximately 20 seconds for high-resolution images.

  1. Performance of actinic EUVL mask imaging using a zoneplatemicroscope

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Barty, Anton; Rekawa,Senajith B.; Kemp, Charles D.; Gunion, Robert F.; Salmassi, Farhad; Gullikson, Eric M.; Anderson, Erik H.; Han, Hak-Seung

    2007-08-20

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a dual-mode, scanning and imaging extreme-ultraviolet (EUV) microscope designed for pre-commercial EUV mask research. Dramatic improvements in image quality have been made by the replacement of several critical optical elements, and the introduction of scanning illumination to improve uniformity and contrast. We report high quality actinic EUV mask imaging with resolutions as low as 100-nm half-pitch, (20-nm, 5x wafer equivalent size), and an assessment of the imaging performance based on several metrics. Modulation transfer function (MTF) measurements show high contrast imaging for features sizes close to the diffraction-limit. An investigation of the illumination coherence shows that AIT imaging is much more coherent than previously anticipated, with {sigma} below 0.2. Flare measurements with several line-widths show a flare contribution on the order of 2-3% relative intensity in dark regions above the 1.3% absorber reflectivity on the test mask used for these experiments. Astigmatism coupled with focal plane tilt are the dominant aberrations we have observed. The AIT routinely records 250-350 high-quality images in numerous through-focus series per 8-hour shift. Typical exposure times range from 0.5 seconds during alignment, to approximately 20 seconds for high-resolution images.

  2. Coupled actin-lamin biopolymer networks and protecting DNA

    Zhang, Tao; Rocklin, D. Zeb; Mao, Xiaoming; Schwarz, J. M.

    The mechanical properties of cells are largely determined by networks of semiflexible biopolymers forming the cytoskeleton. Similarly, the mechanical properties of cell nuclei are also largely determined by networks of semiflexible biopolymers forming the nuclear cytoskeleton. In particular, a network of filamentous lamin sits just inside the inner nuclear membrane to presumably protect the heart of the cell nucleus--the DNA. It has been demonstrated over the past decade that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins bridging the outer and inner nuclear membranes, known as the LINC complex. We, therefore, probe the consequences of such a coupling in a model biopolymer network system via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the actin cytoskeletal network. We find, for example, that the force transmission across the coupled system can depend sensitively on the concentration of LINC complexes. Such study could have implications for mechanical mechanisms of the regulation of transcription since DNA couples to lamin via lamin-binding domains so that deformations in the lamin network may result in deformations in the DNA.

  3. Chronologic and actinically induced aging in human facial skin

    Clinical and histologic stigmata of aging are much more prominent in habitually sun-exposed skin than in sun-protected skin, but other possible manifestations of actinically induced aging are almost unexplored. We have examined the interrelation of chronologic and actinic aging using paired preauricular (sun-exposed) and postauricular (sun-protected) skin specimens. Keratinocyte cultures derived from sun-exposed skin consistently had a shorter in vitro lifespan but increased plating efficiency compared with cultures derived from adjacent sun-protected skin of the same individual, confirming a previous study of different paired body sites. Electron microscopic histologic sections revealed focal abnormalities of keratinocyte proliferation and alignment in vitro especially in those cultures derived from sun-exposed skin and decreased intercellular contact in stratified colonies at late passage, regardless of donor site. One-micron histologic sections of the original biopsy specimens revealed no striking site-related keratinocyte alterations, but sun-exposed specimens had fewer epidermal Langerhans cells (p less than 0.001), averaging approximately 50 percent the number in sun-protected skin, a possible exaggeration of the previously reported age-associated decrease in this cell population. These data suggest that sun exposure indeed accelerates aging by several criteria and that, regardless of mechanism, environmental factors may adversely affect the appearance and function of aging skin in ways amenable to experimental quantitation

  4. Expression of GFP-mTalin reveals an actin-related role for the Arabidopsis Class II formin AtFH12

    Cvrčková, F.; Grunt, M.; Žárský, V.

    2012-01-01

    Formins (FH2 proteins) are implicated in F-actin nucleation and other aspects of cytoskeletal organization. Plants possess two formin clades, relatively well-described Class I formins and so far poorly characterized Class II formins. Comparison of Class II formin genes of two Arabidopsis species, A. thaliana and A. lyrata, indicates dynamic evolution within the Class II formin clade. Disruption of an outlier A. thaliana Class II formin gene, AtFH12 (At1g42980), whose expression is induced by ...

  5. Stability of actin-lysozyme complexes formed in cystic fibrosis disease.

    Mohammadinejad, Sarah; Ghamkhari, Behnoush; Abdolmaleki, Sarah

    2016-08-21

    Finding the conditions for destabilizing actin-lysozyme complexes is of biomedical importance in preventing infections in cystic fibrosis. In this manuscript, the effects of different charge-mutants of lysozyme and salt concentration on the stability of actin-lysozyme complexes are studied using Langevin dynamics simulation. A coarse-grained model of F-actin is used in which both its twist and bending rigidities are considered. We observe that the attraction between F-actins is stronger in the presence of wild-type lysozymes relative to the mutated lysozymes of lower charges. By calculating the potential of mean force between F-actins, we conclude that the stability of actin-lysozyme complexes is decreased by reducing the charge of lysozyme mutants. The distributions of different lysozyme charge-mutants show that wild-type (+9e) lysozymes are mostly accumulated in the center of triangles formed by three adjacent F-actins, while lysozyme mutants of charges +7e and +5e occupy the bridging regions between F-actins. Low-charge mutants of lysozyme (+3e) distribute uniformly around F-actins. A rough estimate of the electrostatic energy for these different distributions proves that the distribution in which lysozymes reside in the center of triangles leads to more stable complexes. Also our results in the presence of a salt suggest that at physiological salt concentration of airway, F-actin complexes are not formed by charge-reduced mutants of lysozyme. The findings are interesting because if we can design charge-reduced lysozyme mutants with considerable antibacterial activity, they are not sequestered inside F-actin aggregates and can play their role as antibacterial agents against airway infection. PMID:27436705

  6. Alpha-herpesvirus infection induces the formation of nuclear actin filaments.

    Feierbach, Becket; Piccinotti, Silvia; Bisher, Margaret; Denk, Winfried; Enquist, Lynn W

    2006-08-01

    Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process. PMID:16933992

  7. The myofibroblast markers α-SM actin and β-actin are differentially expressed in 2 and 3-D culture models of fibrotic and normal skin.

    Vozenin, M C; Lefaix, J L; Ridi, R; Biard, D S; Daburon, F; Martin, M

    1998-01-01

    To characterize the differences between fibrotic myofibroblasts and normal fibroblasts, we studied two differentiation markers: α-smooth muscle (SM) actin, a specific marker of myofibroblast differentiation, and β-actin, which is overexpressed in the fibrotic tissue. Experiments were performed on fibroblasts isolated from normal pig skin and on subcutaneous myofibroblasts isolated from pig radiation-induced fibrosis. Three culture models were used: cells in monolayers, equivalent dermis, consisting of fibroblasts embedded into a matrix composed of type I collagen, and in vitro reconstituted skin, in which the matrix and containing life fibroblasts were overlaid with keratinocytes. Samples were studied using immunofluorescence and western-blotting. In monolayers cultures, both fibrosis and normal cells expressed α-SM actin. Furthermore, similar amounts of β-actin protein were found. In these conditions, the resulting alterations in the phenotypes of cells made comparison of cultured fibrotic and normal cells irrelevant. Under the two 3-D culture models, normal fibroblasts no longer expressed α-SM actin. They expressed β-actin at the basal level. Moreover, the fibrotic myofibroblasts in both 3-D models retained their differentiation features, expressing α-SM actin and overexpressing β-actin. We found that this normalization was mainly related to the genomic programmation acquired by the cells in the tissue. Cellular motility and microenvironment were also involved, whereas cellular proliferation was not a major factor. Consequently, both three-dimensional models allowed the study of radiation-induced fibrosis in vitro, provided good extrapolations to in vivo conditions and avoided certain of culture artefacts. PMID:22359004

  8. Actin based processes that could determine the cytoplasmic architecture of plant cells

    Honing, van der H.S.; Emons, A.M.C.; Ketelaar, M.J.

    2007-01-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells t

  9. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  10. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  11. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  12. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Kathleen A Estes

    2011-09-01

    Full Text Available The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  13. Brain tubulin and actin cDNA sequences: isolation of recombinant plasmids.

    Ginzburg, I.(Sobolev Institute of Mathematics and Novosibirsk State University, 630090, Novosibirsk, Russia); de Baetselier, A; Walker, M D; Behar, L; Lehrach, H; Frischauf, A M; Littauer, U Z

    1980-01-01

    Rat brain mRNA enriched for tubulin and actin sequences was used to prepare double stranded cDNA. A library of recombinant clones was constructed by inserting the dsDNA into the Pst1 site of pBR322 plasmid and transformation of E. coli chi 1776 host. Clones bearing sequences coding for tubulin and actin were identified and characterized.

  14. Distribution of G-actin is Related to Root Hair Growth of Wheat

    He, Xue; Liu, Yi-Min; Wang, Wei; LI Yan

    2006-01-01

    • Background and Aims Actin distribution in root hair tips is a controversial topic. Although the relationship between Ca2+ gradient and actin dynamics in plant tip-growth has been a focus of study, there is still little direct evidence on the exact relationship in root hair tip-growth.

  15. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse

    Hartzell, Catherine A; Jankowska, Katarzyna I; Burkhardt, Janis K; Lewis, Richard S

    2016-01-01

    T cell receptor (TCR) engagement opens Ca2+ release-activated Ca2+ (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca2+ influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca2+-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca2+ as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca2+ influx may modulate TCR signaling. DOI: http://dx.doi.org/10.7554/eLife.14850.001 PMID:27440222

  16. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse.

    Hartzell, Catherine A; Jankowska, Katarzyna I; Burkhardt, Janis K; Lewis, Richard S

    2016-01-01

    T cell receptor (TCR) engagement opens Ca(2+) release-activated Ca(2+) (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca(2+) influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca(2+)-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca(2+) as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca(2+) influx may modulate TCR signaling. PMID:27440222

  17. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Estes, Kathleen A; Szumowski, Suzannah C; Troemel, Emily R

    2011-09-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo. PMID:21949650

  18. Opposing Roles for Actin in Cdc42p PolarizationD⃞

    Irazoqui, Javier E.; Howell, Audrey S.; Theesfeld, Chandra L.; Lew, Daniel J.

    2005-01-01

    In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399–416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site. PMID:15616194

  19. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    monoclonal antibody (mAb) 1A4, which recognizes specifically the NH2-terminal Ac-EEED sequence of alpha-sm actin, significantly increased the frequency of migrating cells over that obtained with an unrelated antibody or a mAb against beta-actin. Time- lapse video microscopy revealed migratory rates of 4...

  20. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  1. Kindlin-2 directly binds actin and regulates integrin outside-in signaling.

    Bledzka, Kamila; Bialkowska, Katarzyna; Sossey-Alaoui, Khalid; Vaynberg, Julia; Pluskota, Elzbieta; Qin, Jun; Plow, Edward F

    2016-04-11

    Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2(+/-)mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK(47)/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK(47)/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK(47)/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses. PMID:27044892

  2. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  3. Aspects of plant cell growth and the actin cytoskeleton: lessons from root hairs

    Ruijter, de N.C.A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes. Before cel

  4. EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica.

    Nitesh Kumar

    2014-09-01

    Full Text Available Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.

  5. Double localization of F-actin in chemoattractant-stimulated polymorphonuclear leucocytes.

    Lepidi, H; Benoliel, A M; Mege, J L; Bongrand, P; Capo, C

    1992-09-01

    Uniform concentrations of chemoattractants such as formylpeptides induced a morphological polarization of human polymorphonuclear leucocytes (PMNs) and a concentration of F-actin at the cell front. They also induced a transient increase in filamentous actin (F-actin) which preceded the cell shape change. We combined fluorescence microscopy and image analysis to study the localization of F-actin, as revealed by a specific probe (bodipyTM phallacidin) in suspended PMNs stimulated by chemoattractants. F-actin exhibited remarkable concentration in focal points after a 30 s exposure to 10(-8) M formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe), although no shape change of PMNs was detectable. A 10-min incubation with formylpeptide (10(-6) to 10(-9) M) induced the morphological polarization of PMNs and the appearance of a principal focus of F-actin in the cell head region and a secondary focus in the cell posterior end. The distribution of F-actin-associated fluorescence in 2D images of polarized PMNs might be due to an actual concentration of F-actin in privileged areas, to a local concentration of plasma membrane drawing filamentous actin or to variations in the cell volume. Then, we studied the distribution of a cytoplasmic marker, fluorescein diacetate and a membrane probe, TMA-DPH, in unstimulated rounded PMNs and in spherical and morphologically polarized PMNs stimulated by formylpeptide. The distribution of neither of these probes was correlated with F-actin distribution, especially in rounded PMNs stimulated 30 s with 10(-8) M fMet-Leu-Phe, suggesting that F-actin was concentrated in two foci located in the cell head region and in the cell posterior end. In addition, zymosan-activated serum induced the morphological polarization of PMNs and the appearance of two foci of filamentous actin, demonstrating that binding of formylpeptide to its specific receptor was not required for F-actin reorganization. We conclude that the accumulation of F-actin probably

  6. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    Yi Jinsoo; Schmidt, Jacob; Chien Aichi; Montemagno, Carlo D [Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, 7523 Boelter Hall, Los Angeles, CA 90095-1600 (United States)], E-mail: montemcd@ucmail.uc.edu

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  7. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  8. Actomyosin contraction, aggregation and traveling waves in a treadmilling actin array

    Oelz, Dietmar; Mogilner, Alex

    2016-04-01

    We use perturbation theory to derive a continuum model for the dynamic actomyosin bundle/ring in the regime of very strong crosslinking. Actin treadmilling is essential for contraction. Linear stability analysis and numerical solutions of the model equations reveal that when the actin treadmilling is very slow, actin and myosin aggregate into equidistantly spaced peaks. When treadmilling is significant, actin filament of one polarity are distributed evenly, while filaments of the opposite polarity develop a shock wave moving with the treadmilling velocity. Myosin aggregates into a sharp peak surfing the crest of the actin wave. Any actomyosin aggregation diminishes contractile stress. The easiest way to maintain higher contraction is to upregulate the actomyosin turnover which destabilizes nontrivial patterns and stabilizes the homogeneous actomyosin distributions. We discuss the model's implications for the experiment.

  9. Covalent immobilization of myosin for in-vitro motility of actin

    Ellis Bagga; Sunita Kumari; Rajesh Kumar; Rakesh Kumar; R P Bajpai; Lalit M Bharadwaj

    2005-11-01

    The present study reports the covalent immobilization of myosin on glass surface and in-vitro motility of actin-myosin biomolecular motor. Myosin was immobilized on poly-L-lysine coated glass using heterobifunctional cross linker EDC and characterized by AFM. The in-vitro motility of actin was carried out on the immobilized myosin. It was observed that velocity of actin over myosin increases with increasing actin concentration (0.4-1.0 mg/ml) and was found in the range of 0.40-3.25 m/s. The motility of actin-myosin motor on artificial surfaces is of immense importance for developing nanodevices for healthcare and engineering applications.

  10. PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance

    Rocha-Perugini, Vera; Gordon-Alonso, Mónica; Sánchez-Madrid, Francisco

    2014-01-01

    The actin cytoskeleton plays a key role during the replication cycle of human immunodeficiency virus-1 (HIV-1). HIV-1 infection is affected by cellular proteins that influence the clustering of viral receptors or the subcortical actin cytoskeleton. Several of these actin-adaptor proteins are controlled by the second messenger phosphatidylinositol 4,5-biphosphate (PIP2), an important regulator of actin organization. PIP2 production is induced by HIV-1 attachment and facilitates viral infection. However, the importance of PIP2 in regulating cytoskeletal proteins and thus HIV-1 infection has been overlooked. This review examines recent reports describing the roles played by actin-adaptor proteins during HIV-1 infection of CD4+ T cells, highlighting the influence of the signaling lipid PIP2 in this process. PMID:24768560

  11. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering

    Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D2O and H2O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydrated either with D2O or H2O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (DT) of the hydration water in the first layer were found to be 1.2 × 10−5 cm2/s and 1.7 × 10−5 cm2/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10−5 cm2/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The DT values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the recent observation on intracellular water that shows bulk-like behavior

  12. Size distribution of linear and helical polymers in actin solution analyzed by photon counting histogram.

    Terada, Naofumi; Shimozawa, Togo; Ishiwata, Shin'ichi; Funatsu, Takashi

    2007-03-15

    Actin is a ubiquitous protein that is a major component of the cytoskeleton, playing an important role in muscle contraction and cell motility. At steady state, actin monomers and filaments (F-actin) coexist, and actin subunits continuously attach and detach at the filament ends. However, the size distribution of actin oligomers in F-actin solution has never been clarified. In this study, we investigated the size distribution of actin oligomers using photon-counting histograms. For this purpose, actin was labeled with a fluorescent dye, and the emitted photons were detected by confocal optics (the detection volume was of femtoliter (fL) order). Photon-counting histograms were analyzed to obtain the number distribution of actin oligomers in the detection area from their brightness, assuming that the brightness of an oligomer was proportional to the number of protomers. We found that the major populations at physiological ionic strength were 1-5mers. For data analysis, we successfully applied the theory of linear and helical aggregations of macromolecules. The model postulates three states of actin, i.e., monomers, linear polymers, and helical polymers. Here we obtained three parameters: the equilibrium constants for polymerization of linear polymers, K(l)=(5.2 +/- 1.1) x 10(6) M(-1), and helical polymers, K(h)=(1.6 +/- 0.5) x 10(7) M(-1); and the ratio of helical to linear trimers, gamma = (3.6 +/- 2.3) x 10(-2). The excess free energy of transforming a linear trimer to a helical trimer, which is assumed to be a nucleus for helical polymers, was calculated to be 2.0 kcal/mol. These analyses demonstrate that the oligomeric phase at steady state is predominantly composed of linear 1-5mers, and the transition from linear to helical polymers occurs on the level of 5-7mers. PMID:17172301

  13. The role of the cofilin-actin rod stress response in neurodegenerative diseases uncovers potential new drug targets

    Munsie, Lise N.; Truant, Ray

    2012-01-01

    The cofilin-actin rod stress response is an actin cytoskeletal dynamic arrest that occurs in cells under a variety of stress conditions. Upon stress, the rapidly activated cofilin saturates actin filaments causing them to bundle into rod structures in either the nucleus or cytoplasm, halting actin polymerization and thus freeing ATP. Importantly, these rods dissociate quickly following relief of the transient stress. The rods form inappropriately in neurons involved in the progression of Alzh...

  14. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  15. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro.

    Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H

    1989-01-01

    To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass micro...

  16. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin

  17. Vital role for the Plasmodium actin capping protein (CP) beta-subunit in motility of malaria sporozoites

    Ganter, Markus; Schüler, Herwig; Matuschewski, Kai

    2009-01-01

    Successful malaria transmission from the mosquito vector to the mammalian host depends crucially on active sporozoite motility. Sporozoite locomotion and host cell invasion are driven by the parasite's own actin/myosin motor. A unique feature of this motor machinery is the presence of very short subpellicular actin filaments. Therefore, F-actin stabilizing proteins likely play a central role in parasite locomotion. Here, we investigated the role of the Plasmodium berghei actin capping protein...

  18. Actin-mediated bacterial propulsion: comet profile, velocity pulsations

    The propulsion of bacteria under the action of an actin gel network is examined in terms of gel concentration dynamics. The model includes the elasticity of the network, the gel–bacterium interaction, the bulk and interface polymerization. A formula for the cruise velocity is obtained where the contributions to bacterial motility arising from elasticity and polymerization are made explicit. Higher velocities correspond to lower concentration peaks and longer tails, in agreement with experimental results. The condition for the onset of motion is explicitly given. The behavior of the system is explored by varying the growth rates and the gel elasticity. At steady state two regimes are found, respectively, of constant and pulsating velocity; in the latter case, the velocity undergoes sudden accelerations and subsequent recoveries. The transition to the pulsating regime is obtained by increasing the elastic response of the gel

  19. Actin filaments growing against a barrier with fluctuating shape

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2016-06-01

    We study force generation by a set of parallel actin filaments growing against a nonrigid obstacle, in the presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The nonrigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one-dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affect the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculations within mean-field theory show reasonable agreement with our simulation results.

  20. Actin filaments growing against a barrier with fluctuating shape

    Sadhu, Raj Kumar

    2016-01-01

    We study force generation by a set of parallel actin filaments growing against a non-rigid obstacle, in presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The non-rigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affects the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time-scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculation within mean-field theory shows reasonable agreement with our simulation results.

  1. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human.

    Bontems, Franck; Fish, Richard J; Borlat, Irene; Lembo, Frédérique; Chocu, Sophie; Chalmel, Frédéric; Borg, Jean-Paul; Pineau, Charles; Neerman-Arbez, Marguerite; Bairoch, Amos; Lane, Lydie

    2014-01-01

    Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis. PMID:24475127

  2. Calcium and actin in the saga of awakening oocytes

    Santella, Luigia, E-mail: santella@szn.it; Limatola, Nunzia; Chun, Jong T.

    2015-04-24

    The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm–egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent “excitable media” that quickly respond to the stimulus with the Ca{sup 2+} swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca{sup 2+} signals and in the control of monospermic fertilization. - Highlights: • Besides microtubules, microfilaments may anchor the nucleus to oocyte surface. • The cortical Ca{sup 2+} flash and wave at fertilization mirror electrical membrane change. • Artificial egg activation lacks microvilli extension in the perivitelline space. • Calcium is necessary but not sufficient for cortical granules exocytosis. • Actin cytoskeleton modulates Ca{sup 2+} release at oocyte maturation

  3. Calcium and actin in the saga of awakening oocytes

    The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm–egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent “excitable media” that quickly respond to the stimulus with the Ca2+ swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca2+ signals and in the control of monospermic fertilization. - Highlights: • Besides microtubules, microfilaments may anchor the nucleus to oocyte surface. • The cortical Ca2+ flash and wave at fertilization mirror electrical membrane change. • Artificial egg activation lacks microvilli extension in the perivitelline space. • Calcium is necessary but not sufficient for cortical granules exocytosis. • Actin cytoskeleton modulates Ca2+ release at oocyte maturation and fertilization

  4. Mechanical Properties of Re-constituted Actin Networks at an Oil/Water Interface Determined by Microrheology

    Ershov, D.S.; Cohen Stuart, M.A.; Gucht, van der J.

    2012-01-01

    There have been various attempts to investigate the mechanical properties of the actin cortex in cells, but the factors that control them remain poorly understood. To make progress, we develop a reconstituted model of the actin cortex that mimics its structure. We attach actin filaments to lipids li

  5. 25 Years of Tension over Actin Binding to the Cadherin Cell Adhesion Complex: The Devil is in the Details.

    Nelson, W James; Weis, William I

    2016-07-01

    Over the past 25 years, there has been a conceptual (re)evolution in understanding how the cadherin cell adhesion complex, which contains F-actin-binding proteins, binds to the actin cytoskeleton. There is now good synergy between structural, biochemical, and cell biological results that the cadherin-catenin complex binds to F-actin under force. PMID:27166091

  6. Comparative genome analysis of cortactin and HSI : the significance of the F-actin binding repeat domain

    van Rossum, AGSH; Schuuring-Scholtes, E; Seggelen, VV; Kluin, PM; Schuuring, E

    2005-01-01

    Background: In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp)2/3 mediated actin polymerization. It shares a high amino acid seque

  7. Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients

    The risk of developing cutaneous squamous cell carcinoma (SCC) is markedly increased in organ transplant recipients (OTRs) compared to the normal population. Next to sun exposure, the immunosuppressive regimen is an important risk factor for the development of SCC in OTRs. Various gene mutations (e.g. TP53) and genetic alterations (e.g. loss of CDKN2A, amplification of RAS) have been found in SCCs. The aim of this genome-wide study was to identify pathways and genomic alterations that are consistently involved in the formation of SCCs and their precursor lesions, actinic keratoses (AKs). To perform the analysis in an isogenic background, RNA and DNA were isolated from SCC, AK and normal (unexposed) epidermis (NS) from each of 13 OTRs. Samples were subjected to genome-wide expression analysis and genome SNP analysis using Illumina’s HumanWG-6 BeadChips and Infinium II HumanHap550 Genotyping BeadChips, respectively. mRNA expression results were verified by quantitative PCR. Hierarchical cluster analysis of mRNA expression profiles showed SCC, AK and NS samples to separate into three distinct groups. Several thousand genes were differentially expressed between epidermis, AK and SCC; most upregulated in SCCs were hyperproliferation related genes and stress markers, such as keratin 6 (KRT6), KRT16 and KRT17. Matching to oncogenic pathways revealed activation of downstream targets of RAS and cMYC in SCCs and of NFκB and TNF already in AKs. In contrast to what has been reported previously, genome-wide SNP analysis showed very few copy number variations in AKs and SCCs, and these variations had no apparent relationship with observed changes in mRNA expression profiles. Vast differences in gene expression profiles exist between SCC, AK and NS from immunosuppressed OTRs. Moreover, several pathways activated in SCCs were already activated in AKs, confirming the assumption that AKs are the precursor lesions of SCCs. Since the drastic changes in gene expression appeared

  8. Interactions between the Yeast SM22 Homologue Scp1 and Actin Demonstrate the Importance of Actin Bundling in Endocytosis*S⃞

    Gheorghe, Dana M.; Aghamohammadzadeh, Soheil; Rooij, Iwona I. Smaczynska-de; Allwood, Ellen G.; Winder, Steve J.; Ayscough, Kathryn R.

    2008-01-01

    The yeast SM22 homologue Scp1 has previously been shown to act as an actin-bundling protein in vitro. In cells, Scp1 localizes to the cortical actin patches that form as part of the invagination process during endocytosis, and its function overlaps with that of the well characterized yeast fimbrin homologue Sac6p. In this work we have used live cell imaging to demonstrate the importance of key residues in the Scp1 actin interface. We have defined two actin binding domains within Scp1 that allow the protein to both bind and bundle actin without the need for dimerization. Green fluorescent protein-tagged mutants of Scp1 also indicate that actin localization does not require the putative phosphorylation site Ser-185 to be functional. Deletion of SCP1 has few discernable effects on cell growth and morphology. However, we reveal that scp1 deletion is compensated for by up-regulation of Sac6. Furthermore, Scp1 levels are increased in the absence of sac6. The presence of compensatory pathways to up-regulate Sac6 or Scp1 levels in the absence of the other suggest that maintenance of sufficient bundling activity is critical within the cell. Analysis of cortical patch assembly and movement during endocytosis reveals a previously undetected role for Scp1 in movement of patches away from the plasma membrane. Additionally, we observe a dramatic increase in patch lifetime in a strain lacking both sac6 and scp1, demonstrating the central role played by actin-bundling proteins in the endocytic process. PMID:18400761

  9. LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells

    Salker, Madhuri S.; Schierbaum, Nicolas; Alowayed, Nour; Singh, Yogesh; Mack, Andreas F.; Stournaras, Christos; Schäffer, Tilman E.; Lang, Florian

    2016-01-01

    LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage. PMID:27404958

  10. Hierarchical Cross-linked F-actin Networks: Understanding Structure and Assembly

    Hirst, Linda; Nguyen, Lam

    2009-11-01

    The protein, F-actin provides us with an interesting system in which to investigate the assembly properties of semi-flexible filaments in the presence of cross-linkers. Recently it was observed that F-actin, in the presence of the cross-linker alpha-actinin at high molar ratios will generate a novel hierarchical network of filament bundles. We investigate this system using coarse-grained molecular dynamics (MD) simulation, confocal microscopy and x-ray scattering. We have studied the F-actin/alpha-actinin system in detail with different actin conc. (C) and alpha-actinin/actin molar ratios (gamma). Confocal microscopy and analysis shows that the assembled systems fall into one of 3 phases depending on C and gamma: (1) loosely connected network of F-actin and bundles, (2) loosely connected network of dense domains and (3) uniform network of bundles. This can be explained and replicated using MD simulation. We have also examined different types of cross-linkers to represent the proteins, fascin and filamin. Results show that phase formation is related to the flexibility in binding between F-actin and cross-linkers. This degree of freedom, possible with longer cross-linkers allows the formation of branch points and thus bundle networks.

  11. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  12. Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    Hase, M

    2005-01-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the...

  13. Localization of Myosin and Actin in the Pelage and Whisker Hair Follicles of Rat

    The combined effects of myosin II and actin enable muscle and nonmuscle cells to generate forces required for muscle contraction, cell division, cell migration, cellular morphological changes, the maintenance of cellular tension and polarity, and so on. However, except for the case of muscle contraction, the details are poorly understood. We focus on nonmuscle myosin and actin in the formation and maintenance of hair and skin, which include highly active processes in mammalian life with respect to the cellular proliferation, differentiation, and movement. The localization of nonmuscle myosin II and actin in neonatal rat dorsal skin, mystacial pad, hair follicles, and vibrissal follicles was studied by immunohistochemical technique to provide the basis for the elucidation of the roles of these proteins. Specificities of the antibodies were verified by using samples from the relevant tissues and subjecting them to immunoblotting test prior to morphological analyses. The myosin and actin were abundant and colocalized in the spinous and granular layers but scarce in the basal layer of the dorsal and mystacial epidermis. In hair and vibrissal follicles, nonmuscle myosin and actin were colocalized in the outer root sheath and some hair matrix cells adjoining dermal papillae. In contrast, most areas of the inner root sheath and hair matrix appeared to comprise very small amounts of myosin and actin. Hair shaft may comprise significant myosin during the course of its keratinization. These results suggest that the actin-myosin system plays a part in cell movement, differentiation, protection and other key functions of skin and hair cells

  14. Actin Is a Target of T-Cell Reactivity in Patients with Advanced Carotid Atherosclerotic Plaques

    Elisabetta Profumo

    2013-01-01

    Full Text Available Atherosclerosis is a chronic inflammatory disease of the arterial wall associated with autoimmune reactions. In a previous study, we observed the presence of actin-specific antibodies in sera from patients with carotid atherosclerosis. To extend our previous results we evaluated the possible role of actin as antigenic target of cell-mediated immune reactions in carotid atherosclerosis. Peripheral blood mononuclear cells (PBMC from 17 patients and 16 healthy subjects were tested by cell proliferation assay and by ELISA for cytokine production. Actin induced a proliferative response in 47% of patients’ PBMC samples, with SI ranging from 2.6 to 21.1, and in none of the healthy subjects’ samples (patients versus healthy subjects, P=0.02. The presence of diabetes in patients was significantly associated with proliferative response to actin (P=0.04. IFN-γ and TNF-α concentrations were higher in PBMC from patients than in those from healthy subjects and in PBMC proliferating to actin than in nonproliferating ones. Our data demonstrate for the first time a role of actin as a target autoantigen of cellular immune reactions in patients with carotid atherosclerosis. The preferential proinflammatory Th1 activation suggests that actin could contribute to endothelial dysfunction, tissue damage, and systemic inflammation in carotid atherosclerosis.

  15. Is there a relationship between phosphatidylinositol trisphosphate and F-actin polymerization in human neutrophils

    Stimulation of human neutrophils with the chemoattractant N-formyl peptide caused rapid polymerization of F-actin as detected by right angle light scatter and 7-nitrobenz-2-oxa-1,3-diazol (NBD)-phallacidin staining of F-actin. After labeling neutrophils with 32P, exposure to N-formyl peptide induced a fast decrease of phosphatidylinositol 4-bisphosphate (PIP)2, a slow increase of phosphatidic acid, and a rapid rise of phosphatidylinositol 4-trisphosphate (PIP3). Formation of PIP3 as well as actin polymerization was near maximal at 10 s after stimulation. Half-maximal response and PIP3 formation at early time points resulted from stimulation of neutrophils with 0.01 nM N-formyl peptide or occupation of about 200 receptors. Sustained elevation of PIP3, prolonged right angle light scatter response, and F-actin formation required higher concentrations of N-formyl peptide, occupation of thousands of receptors, and high binding rates. When ligand binding was interrupted with an antagonist, F-actin rapidly depolymerized, transient light scatter response recovered immediately, and elevated [32P]PIP3 levels decayed toward initial values. However, recovery of [32P]PIP2 was not influenced by the antagonist. Based on the parallel time courses and dose response of [32P] PIP3, the right angle light scatter response, and F-actin polymerization, PIP3 is more likely than PIP2 to be involved in modulation of actin polymerization and depolymerization in vivo

  16. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites

    Bane, Kartik S.; Singer, Mirko; Reinig, Miriam; Klug, Dennis; Heiss, Kirsten; Baum, Jake; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. PMID:27409081

  17. Yeast RAD2, a homolog of human XPG, plays a key role in the regulation of the cell cycle and actin dynamics

    Mi-Sun Kang

    2013-12-01

    Mutations in the human XPG gene cause Cockayne syndrome (CS and xeroderma pigmentosum (XP. Transcription defects have been suggested as the fundamental cause of CS; however, defining CS as a transcription syndrome is inconclusive. In particular, the function of XPG in transcription has not been clearly demonstrated. Here, we provide evidence for the involvement of RAD2, the Saccharomyces cerevisiae counterpart of XPG, in cell cycle regulation and efficient actin assembly following ultraviolet irradiation. RAD2 C-terminal deletion, which resembles the XPG mutation found in XPG/CS cells, caused cell growth arrest, the cell cycle stalling, a defective α-factor response, shortened lifespan, cell polarity defect, and misregulated actin-dynamics after DNA damage. Overexpression of the C-terminal 65 amino acids of Rad2p was sufficient to induce hyper-cell polarization. In addition, RAD2 genetically interacts with TPM1 during cell polarization. These results provide insights into the role of RAD2 in post-UV irradiation cell cycle regulation and actin assembly, which may be an underlying cause of XPG/CS.

  18. Retinoids and glucocorticoids have opposite effects on actin cytoskeleton rearrangement in hippocampal HT22 cells.

    Hélène, Roumes; Julie, Brossaud; Aloïs, Lemelletier; Marie-Pierre, Moisan; Véronique, Pallet; Anabelle, Redonnet; Jean-Benoît, Corcuff

    2016-02-01

    A chronic excess of glucocorticoids elicits deleterious effects in the hippocampus. Conversely, retinoic acid plays a major role in aging brain plasticity. As synaptic plasticity depends on mechanisms related to cell morphology, we investigated the involvement of retinoic acid and glucocorticoids in the remodelling of the HT22 neurons actin cytoskeleton. Cells exhibited a significantly more elongated shape with retinoic acid and a rounder shape with dexamethasone; retinoic acid reversed the effects of dexamethasone. Actin expression and abundance were unchanged by retinoic acid or dexamethasone but F-actin organization was dramatically modified. Indeed, retinoic acid and dexamethasone increased (70 ± 7% and 176 ± 5%) cortical actin while retinoic acid suppressed the effect of dexamethasone (90 ± 6%). Retinoic acid decreased (-22 ± 9%) and dexamethasone increased (134 ± 16%) actin stress fibres. Retinoic acid also suppressed the effect of dexamethasone (-21 ± 7%). Spectrin is a key protein in the actin network remodelling. Its abundance was decreased by retinoic acid and increased by dexamethasone (-21 ± 11% and 52 ± 10%). However, retinoic acid did not modify the effect of dexamethasone (48 ± 7%). Calpain activity on spectrin was increased by retinoic acid and decreased by dexamethasone (26 ± 14% and -57 ± 5%); retinoic acid mildly but significantly modified the effect of dexamethasone (-44 ± 7%). The calpain inhibitor calpeptin suppressed the effects of retinoic acid and dexamethasone on cell shape and actin stress fibres remodelling but did not modify the effects on cortical actin. Retinoic acid and dexamethasone have a dramatic but mainly opposite effect on actin cytoskeleton remodelling. These effects originate, at least partly, from calpain activity. PMID:26748244

  19. Prediction and dissection of widely-varying association rate constants of actin-binding proteins.

    Xiaodong Pang

    Full Text Available Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k(a = k(a0 e(-ΔG(el*/k(BT, where k(a0 is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k(a variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.

  20. The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway

    Michard, Céline; Sperandio, Daniel; Baïlo, Nathalie; Pizarro-Cerdá, Javier; LeClaire, Lawrence; Chadeau-Argaud, Elise; Pombo-Grégoire, Isabel; Hervet, Eva; Vianney, Anne; Gilbert, Christophe; Faure, Mathias; Cossart, Pascale

    2015-01-01

    ABSTRACT Legionella pneumophila, the etiological agent of legionellosis, replicates within phagocytic cells. Crucial to biogenesis of the replicative vacuole is the Dot/Icm type 4 secretion system, which translocates a large number of effectors into the host cell cytosol. Among them is LegK2, a protein kinase that plays a key role in Legionella infection. Here, we identified the actin nucleator ARP2/3 complex as a target of LegK2. LegK2 phosphorylates the ARPC1B and ARP3 subunits of the ARP2/3 complex. LegK2-dependent ARP2/3 phosphorylation triggers global actin cytoskeleton remodeling in cells, and it impairs actin tail formation by Listeria monocytogenes, a well-known ARP2/3-dependent process. During infection, LegK2 is addressed to the Legionella-containing vacuole surface and inhibits actin polymerization on the phagosome, as revealed by legK2 gene inactivation. Consequently, LegK2 prevents late endosome/lysosome association with the phagosome and finally contributes to remodeling of the bacterium-containing phagosome into a replicative niche. The inhibition of actin polymerization by LegK2 and its effect on endosome trafficking are ARP2/3 dependent since it can be phenocopied by a specific chemical inhibitor of the ARP2/3 complex. Thus, LegK2-ARP2/3 interplay highlights an original mechanism of bacterial virulence with an unexpected role in local actin remodeling that allows bacteria to control vesicle trafficking in order to escape host defenses. PMID:25944859

  1. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR

    Van Bockstaele Erik; Maroufi Asad; De Loose Marc

    2010-01-01

    Abstract Background Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) is a sensitive technique for quantifying gene expression levels. One or more appropriate reference genes must be selected to accurately compare mRNA transcripts across different samples and tissues. Thus far, only actin-2 has been used as a reference gene for qRT-PCR in chicory, and a full comparison of several candidate reference genes in chicory has not yet been reported. Results Seven candi...

  2. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin.

    Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N; Matuschewski, Kai

    2016-07-15

    Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1-3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin-binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. PMID:27226484

  3. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling

    Pakhomov, Andrei G.; Xiao, Shu; Pakhomova, Olga N.; Semenov, Iurii; Kuipers, Marjorie A.; Ibey, Bennett L.

    2014-01-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PR...

  4. Differential Effects of Caldesmon on the Intermediate Conformational States of Polymerizing Actin*

    Huang, Renjian; Grabarek, Zenon; Wang, Chih-Lueh Albert

    2009-01-01

    The actin-binding protein caldesmon (CaD) reversibly inhibits smooth muscle contraction. In non-muscle cells, a shorter CaD isoform co-exists with microfilaments in the stress fibers at the quiescent state, but the phosphorylated CaD is found at the leading edge of migrating cells where dynamic actin filament remodeling occurs. We have studied the effect of a C-terminal fragment of CaD (H32K) on the kinetics of the in vitro actin polymerization by monitoring the fluorescence of pyrene-labeled...

  5. Pn-AMP1, a Plant Defense Protein, Induces Actin Depolarization in Yeasts

    Koo, Ja Choon; Lee, Boyoung; Young, Michael E.; Koo, Sung Chul; Cooper, John A.; Baek, Dongwon; Lim, Chae Oh; Lee, Sang Yeol; Yun, Dae-Jin; Cho, Moo Je

    2004-01-01

    Pn-AMP1, Pharbitis nil antimicrobial peptide 1, is a small cysteine-rich peptide implicated in host-plant defense. We show here that Pn-AMP1 causes depolarization of the actin cytoskeleton in Saccharomyces cerevisiae and Candida albicans. Pn-AMP1 induces rapid depolarization of actin cables and patches within 15 min. Increased osmolarity or temperature induces transient actin depolarization and results in increased sensitivity to Pn-AMP1, while cells conditioned to these stresses show less se...

  6. Actin nascent chains are substrates for cyclic AMP-dependent phosphorylation in vivo.

    Steinberg, R A

    1980-01-01

    Two-dimensional gel electrophoresis of extracts of S49 mouse lymphoma cells labeled with [35S]methionine in the presence of inducers or analogs of cyclic AMP reveals a protein that both affinity purification and peptide mapping show to be a form of nonmuscle actin. This actin species also exhibits cyclic AMP-dependent labeling with [32P]phosphate, and, after acid hydrolysis, 32P label is found associated with phosphoserine. Phosphorylated actin does not appear when cells prelabeled with [35S]...

  7. Stabilization of F-actin prevents cAMP-elicited Cl- secretion in T84 cells.

    Shapiro, M.; Matthews, J.; Hecht, G; Delp, C; Madara, J. L.

    1991-01-01

    T84 cells, a human intestinal epithelial cell line, serve as a model of electrogenic Cl- secretion. We find that cAMP-elicited Cl- secretion in T84 cells is accompanied by a marked redistribution of F-actin in the basolateral portion of the cell. To prevent this F-actin redistribution and thereby assess its importance to Cl- secretion, we have defined simple conditions under which this model epithelium can be loaded with nitrobenzoxadiazole (NBD)-phallicidin. This reagent binds F-actin with h...

  8. Hierarchical self-assembly of actin in micro-confinements using microfluidics

    Deshpande, Siddharth; Pfohl, Thomas

    2012-01-01

    We present a straightforward microfluidics system to achieve step-by-step reaction sequences in a diffusion-controlled manner in quasi two-dimensional micro-confinements. We demonstrate the hierarchical self-organization of actin (actin monomers—entangled networks of filaments—networks of bundles) in a reversible fashion by tuning the Mg2+ ion concentration in the system. We show that actin can form networks of bundles in the presence of Mg2+ without any cross-linking proteins. The properties...

  9. Stability of the tumor suppressor merlin depends on its ability to bind paxillin LD3 and associate with β1 integrin and actin at the plasma membrane

    Maria Elisa Manetti

    2012-08-01

    The NF2 gene encodes a tumor suppressor protein known as merlin or schwannomin whose loss of function causes Neurofibromatosis Type 2 (NF2. NF2 is characterized by the development of benign tumors, predominantly schwannomas, in the peripheral nervous system. Merlin links plasma membrane receptors with the actin cytoskeleton and its targeting to the plasma membrane depends on direct binding to the paxillin scaffold protein. Exon 2 of NF2, an exon mutated in NF2 patients and deleted in a mouse model of NF2, encodes the merlin paxillin binding domain (PBD1. Here, we sought to determine the role of PBD1 in regulation of merlin stability and association with plasma membrane receptors and the actin cytoskeleton in Schwann cells. Using a fluorescence-based pulse-chase technique, we measured the half-life of Halo-tagged merlin variants carrying PBD1, exon 2, and exons 2 and 3 deletions in transiently transfected Schwann cells. We found that PBD1 alone was necessary and sufficient to increase merlin's half-life from approximately three to eleven hours. Merlin lacking PBD1 did not form a complex with surface β1 integrins or associate with the actin cytoskeleton. In addition, direct binding studies using purified merlin and paxillin domains revealed that merlin directly binds paxillin LD3 (leucine-aspartate 3 domain as well as the LD4 and LD5 domains. Together these results demonstrate that a direct interaction between merlin PBD1 and the paxillin LD3–5 domains targets merlin to the plasma membrane where it is stabilized by its association with surface β1 integrins and cortical actin.

  10. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    Huan Lu

    Full Text Available Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin. Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.

  11. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation. PMID:26745549

  12. Dynamin 2 is required for actin assembly in phagocytosis in Sertoli cells

    Dynamin 2 has been reported to be implicated in phagocytosis. However, the mode of action of dynamin is poorly understood. In this study, we examined whether dynamin 2 participates in actin assembly during phagocytosis in Sertoli cells. In the presence of dynasore, a dynamin inhibitor, phagocytosis was reduced by 60-70% in Sertoli cells and macrophages. Scanning electron microscopy revealed that Sertoli cells treated with dynasore were unable to form phagocytic cups. In addition, dysfunction of dynamin 2 reduced both actin polymerization and recruitment of actin and dynamin 2 to phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]-containing liposomes. The formation of dynamin 2-positive ruffles of Sertoli cells was decreased by 60-70% by sequestering PI(4,5)P2 either by expression of PH domain of PLCδ or treatment with neomycin. These results strongly suggest that dynamin 2 is involved in actin dynamics and the formation of dynamin 2-positive ruffles during phagocytosis.

  13. Cytosolic pressure provides a propulsive force comparable to actin polymerization during lamellipod protrusion

    Manoussaki, Daphne; Shin, William D.; Waterman, Clare M.; Chadwick, Richard S.

    2015-07-01

    Does cytosolic pressure facilitate f-actin polymerization to push the leading edge of a cell forward during self-propelled motion? AFM force-distance (f-d) curves obtained from lamellipodia of live cells often exhibit a signal from which the tension, bending modulus, elastic modulus and thickness in the membrane-cortex complex can be estimated close to the contact point. These measurements permit an estimate of the cytosolic pressure via the canonical Laplace force balance. The deeper portion of the f-d curve allows estimation of the bulk modulus of the cytoskeleton after removal of the bottom effect artifact. These estimates of tension, pressure, cortex thickness and elastic moduli imply that cytosolic pressure both pushes the membrane forward and compresses the actin cortex rearward to facilitate f-actin polymerization. We also estimate that cytosolic pressure fluctuations, most likely induced by myosin, provide a propulsive force comparable to that provided by f-actin polymerization in a lamellipod.

  14. Coronin 3 involvement in F-actin-dependent processes at the cell cortex

    The actin interaction of coronin 3 has been mainly documented by in vitro experiments. Here, we discuss coronin 3 properties in the light of new structural information and focus on assays that reflect in vivo roles of coronin 3 and its impact on F-actin-associated functions. Using GFP-tagged coronin 3 fusion proteins and RNAi silencing we show that coronin 3 has roles in wound healing, protrusion formation, cell proliferation, cytokinesis, endocytosis, axonal growth, and secretion. During formation of cell protrusions actin accumulation precedes the focal enrichment of coronin 3 suggesting a role for coronin 3 in events that follow the initial F-actin assembly. Moreover, we show that coronin 3 similar to other coronins interacts with the Arp2/3-complex and cofilin indicating that this family in general is involved in regulating Arp2/3-mediated events

  15. Evolution of the Cp-Actin-based Motility System of Chloroplasts in Green Plants.

    Suetsugu, Noriyuki; Wada, Masamitsu

    2016-01-01

    During the course of green plant evolution, numerous light responses have arisen that optimize their growth under fluctuating light conditions. The blue light receptor phototropin mediates several photomovement responses at the tissue, cellular and organelle levels. Chloroplast photorelocation movement is one such photomovement response, and is found not only in most green plants, but also in some red algae and photosynthetic stramenopiles. In general, chloroplasts move toward weak light to maximally capture photosynthetically active radiation (the chloroplast accumulation response), and they move away from strong light to avoid photodamage (the avoidance response). In land plants, chloroplast movement is dependent on specialized actin filaments, chloroplast-actin filaments (cp-actin filaments). Through molecular genetic analysis using Arabidopsis thaliana, many molecular factors that regulate chloroplast photorelocation were identified. In this Perspective, we discuss the evolutionary history of the molecular mechanism for chloroplast photorelocation movement in green plants in view of cp-actin filaments. PMID:27200035

  16. Intensification of the 5.9-nm actin layer line in contracting muscle.

    Matsubara, I; Yagi, N; Miura, H; Ozeki, M; Izumi, T

    According to the cross-bridge model of muscle contraction, an interaction of myosin heads with interdigitating actin filaments produces tension. Although X-ray equatorial diffraction patterns of active (contracting) muscle show that the heads are in the vicinity of the actin filaments, structural proof of actual attachment of heads to actin during contraction has been elusive. We show here that during contraction of frog skeletal muscle, the 5.9-nm layer line arising from the genetic helix of actin is intensified by as much as 56% of the change which occurs when muscle enters rigor, using a two-dimensional X-ray detector. This provides strong structural evidence that myosin heads do in fact attach during contraction. PMID:6334236

  17. Membrane Supply and Demand Regulates F-Actin in a Cell Surface Reservoir.

    Figard, Lauren; Wang, Mengyu; Zheng, Liuliu; Golding, Ido; Sokac, Anna Marie

    2016-05-01

    Cells store membrane in surface reservoirs of pits and protrusions. These membrane reservoirs facilitate cell shape change and buffer mechanical stress, but we do not know how reservoir dynamics are regulated. During cellularization, the first cytokinesis in Drosophila embryos, a reservoir of microvilli unfolds to fuel cleavage furrow ingression. We find that regulated exocytosis adds membrane to the reservoir before and during unfolding. Dynamic F-actin deforms exocytosed membrane into microvilli. Single microvilli extend and retract in ∼20 s, while the overall reservoir is depleted in sync with furrow ingression over 60-70 min. Using pharmacological and genetic perturbations, we show that exocytosis promotes microvillar F-actin assembly, while furrow ingression controls microvillar F-actin disassembly. Thus, reservoir F-actin and, consequently, reservoir dynamics are regulated by membrane supply from exocytosis and membrane demand from furrow ingression. PMID:27165556

  18. Actin filaments as the fast pathways for calcium ions involved in auditory processes

    Miljko V Sataric; Dalibor L Sekulic; Bogdan M Sataric

    2015-09-01

    We investigated the polyelectrolyte properties of actin filaments which are in interaction with myosin motors, basic participants in mechano-electrical transduction in the stereocilia of the inner ear. Here, we elaborated a model in which actin filaments play the role of guides or pathways for localized flow of calcium ions. It is well recognized that calcium ions are implicated in tuning of actin-myosin cross-bridge interaction, which controls the mechanical property of hair bundle. Actin filaments enable much more efficient delivery of calcium ions and faster mechanism for their distribution within the stereocilia. With this model we were able to semiquantitatively explain experimental evidences regarding the way of how calcium ions tune the mechanosensitivity of hair cells.

  19. Dendritic cell podosome dynamics does not depend on the F-actin regulator SWAP-70.

    Anne Götz

    Full Text Available In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.

  20. Sequential Treatment of Multiple Actinic Keratoses with Solaraze and Actikerall

    Thomas Dirschka

    2014-07-01

    Full Text Available Interest is increasing in the use of sequential or combined therapeutic modalities for spot or area treatment of actinic keratoses (AKs to achieve complete sustained remission. For multiple lesions in a contained area, topical treatment offers less discomfort, better cosmesis and greater patient convenience than destructive/ablative techniques. Twelve patients with multiple grade I and II AK lesions of the scalp (cases 1-10 or the dorsum of the hand (cases 11 and 12, most with a history of recurrence, were treated with Solaraze gel (3% diclofenac sodium in 2.5% hyaluronic acid twice daily for 12 weeks, followed by a 2-week treatment-free interval, then Actikerall cutaneous solution (5-fluorouracil 5 mg/g and salicylic acid 100 mg/g once daily for up to 6 weeks as required. Sequential treatment provided complete (clinical and histological clearance in 8/10 male patients. Two patients with numerous lesions had partial clearance (significant improvement and the remaining few lesions were treated with erbium laser. Both female patients achieved complete clinical clearance with sequential treatment. Solaraze/Actikerall were well tolerated. A case of contact dermatitis with Solaraze resolved after discontinuation and the patient progressed to treatment with Actikerall. Local application site reactions resolved upon treatment completion. Topical lesion-directed sequential treatment with Solaraze/Actikerall is a rational approach to treat patients with multiple AKs. Sequential treatment produces excellent clearance rates which are accompanied by relevant improvement in patients' quality of life.

  1. Motor-free actin bundle contractility driven by molecular crowding

    Schnauß, Jörg; Schuldt, Carsten; Schmidt, B U Sebastian; Glaser, Martin; Strehle, Dan; Heussinger, Claus; Käs, Josef A

    2015-01-01

    Modeling approaches of suspended, rod-like particles and recent experimental data have shown that depletion forces display different signatures depending on the orientation of these particles. It has been shown that axial attraction of two rods yields contractile forces of 0.1pN that are independent of the relative axial shift of the two rods. Here, we measured depletion-caused interactions of actin bundles extending the phase space of single pairs of rods to a multi-particle system. In contrast to a filament pair, we found forces up to 3pN . Upon bundle relaxation forces decayed exponentially with a mean decay time of 3.4s . These different dynamics are explained within the frame of a mathematical model by taking pairwise interactions to a multi-filament scale. The macromolecular content employed for our experiments is well below the crowding of cells. Thus, we propose that arising forces can contribute to biological force generation without the need to convert chemical energy into mechanical work.

  2. Pharmacotherapeutic management of actinic keratosis: focus on newer topical agents.

    Samrao, Aman; Cockerell, Clay J

    2013-08-01

    Actinic (solar) keratoses (AK) have the potential for malignant transformation and are the second most common diagnosis in dermatologic practices. No well-established clinical criteria are available to determine which AK are more likely to undergo malignant transformation; therefore, many dermatologists utilize field-directed approaches to treat all visible and subclinical AK on an affected skin surface. Current topical therapeutic agents require lengthy treatment regimens and are less well tolerated than many newer and investigational agents. We review and compare the efficacy and tolerability of well-established topical agents for the management of AK in the United States including 5-fluorouracil, imiquimod 5% cream as well as the newer 2.5 and 3.75% formulations, diclofenac 3% gel, photodynamic therapy, and the recently approved ingenol mebutate gel and discuss the therapeutic potential of investigational agents. Cryotherapy and 5-fluorouracil are efficacious at treating AK but less tolerable than imiquimod cream, particularly at its lower concentrations. The newer agents, diclofenac gel and ingenol mebutate, appear to be more tolerable than cryotherapy and 5- fluorouracil; however, comparative studies regarding efficacy are not available. PMID:23640424

  3. Actinic EUV mask inspection beyond 0.25 NA

    Goldberg, Kenneth A.; Mochi, Iacopo; Anderson, Erik H.; Rekawa, Seno. B.; Kemp, Charles D.; Huh, S.; Han, H.-S.; Naulleau, P.; Huh, S.

    2008-03-24

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is an EUV-wavelength mask inspection microscope designed for direct aerial image measurements, and pre-commercial EUV mask research. Operating on a synchrotron bending magnet beamline, the AIT uses an off-axis Fresnel zoneplate lens to project a high-magnification EUV image directly onto a CCD camera. We present the results of recent system upgrades that have improved the imaging resolution, illumination uniformity, and partial coherence. Benchmarking tests show image contrast above 75% for 100-nm mask features, and significant improvements and across the full range of measured sizes. The zoneplate lens has been replaced by an array of user-selectable zoneplates with higher magnification and NA values up to 0.0875, emulating the spatial resolution of a 0.35-NA 4x EUV stepper. Illumination uniformity is above 90% for mask areas 2-{micro}m-wide and smaller. An angle-scanning mirror reduces the high coherence of the synchrotron beamline light source giving measured {sigma} values of approximately 0.125 at 0.0875 NA.

  4. Ingenol mebutate: A novel topical drug for actinic keratosis

    Suruchi Aditya

    2013-01-01

    Full Text Available The global incidence of non-melanoma skin cancer is rising. Significant morbidity leading to unacceptable cosmetic outcomes and/or functional impairment is a major concern. Search for non-surgical, non-invasive and tissue-sparing treatment modalities has led to development of new therapeutic agents. Actinic keratoses (AK are one part of a continuous spectrum of benign sun damage to squamous cell carcinoma (SCC. Although it is not possible to predict which AK might progress to SCC, the presence of AK is a biomarker of risk for patients and must be treated to avoid possible morbidity and mortality. Ingenol mebutate is a novel topical drug from the latex sap of a plant-Euphorbia peplus that acts by chemoablative and immunostimulatory properties. Clinical studies have proven it to be safe and efficacious, leading to FDA approval of this chemotherapeutic agent for field therapy of AK in 2012. Current topical agents for field therapy of AK must be applied for weeks, whereas ingenol needs to be applied for three days. Ingenol offers a new therapeutic option that is convenient, safe, effective, acceptable and well-tolerated.

  5. Actinic EUV mask inspection beyond 0.25 NA

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is an EUV-wavelength mask inspection microscope designed for direct aerial image measurements, and pre-commercial EUV mask research. Operating on a synchrotron bending magnet beamline, the AIT uses an off-axis Fresnel zoneplate lens to project a high-magnification EUV image directly onto a CCD camera. We present the results of recent system upgrades that have improved the imaging resolution, illumination uniformity, and partial coherence. Benchmarking tests show image contrast above 75% for 100-nm mask features, and significant improvements and across the full range of measured sizes. The zoneplate lens has been replaced by an array of user-selectable zoneplates with higher magnification and NA values up to 0.0875, emulating the spatial resolution of a 0.35-NA 4x EUV stepper. Illumination uniformity is above 90% for mask areas 2-(micro)m-wide and smaller. An angle-scanning mirror reduces the high coherence of the synchrotron beamline light source giving measured σ values of approximately 0.125 at 0.0875 NA

  6. O’BRIEN’S ACTINIC GRANULOMA (IN SPANISH

    Redondo-Bermúdez César

    2014-06-01

    Full Text Available Giant-Cell Granuloma, was described initially in 1975. It is an infrequent dermatosis that is characterized by annular plaques with erythematous margins that are distributed in sun-exposed areas of the body. Case report: 52-year-old female patient with symptomatology of 24 months of evolution, characterized by scattered and symmetric dermatosis, with commitment of superior members, superior chest and thigh, in form of annular plaques. It was not documented sun exposition higher to the habitual. Betamethasone dipropionate 0.05% was use topically accompanied of sunscreen with adequate improvement of the disease. Conclusion: the OAG is a rare skin lesion, of unknown pathogenesis, that is developed in sun-exposed areas. It has as the most widely accepted theory for its appearance, the development of immune response by cells to antigenic determinants, present in the elastic fibers with actinic alteration. The findings of the patient were concordant with the previously reported. Rev.cienc.biomed. 2014;5(2:336-340. KEYWORDS Granuloma, Dermatoses, O’Brien’s granuloma,

  7. Chronic actinic dermopathy - A clinical study in Ladakh

    Sawhney M

    2002-01-01

    Full Text Available A total of 176 highlander Ladakhis staying at Leh (Ladakh at an altitude of 3445 meters were examined for skin changes on the exposed parts of the body. 111 (63.07% had pigmentation over forehead, cheeks, nose or chin, 53 (30.11% had telangiectasia over nose, cheeks or ear lobules, 21 (11.93% had thickening and furrowing over forehead or lateral aspect of the eyes and only 5 (2.82% had solar keratosis. Pigmentation and telangiectasia though seen in the first decade of life with prevalence rate seen as 48% and 24% respectively, the maximum prevalence has been seen in the second and third decade (79.22% and 25.97% and 62.96% and 48.15% respectively. Thickening and furrowing is seen most commonly in the fifth and sixth decade, which also leads to decreased prevalence of pigmentation and telangiectasia. Telangiectasia as a skin change to prolonged exposure to short wave length UV radiation has not been described by Eguren in 1972. Dilatation of the blood vessels in the dermis described by him correlates well with our finding of telangiectasia. Thus skin changes of pigmentation, telangiectasia, thickening and furrowing of the sun exposed skin and histopathological changes of Egurer s HA Dermopathy should be included in the syndrome of chronic actinic dermopathy.

  8. Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines

    Barredo Julio C

    2002-03-01

    Full Text Available Abstract Background We describe an alternative method to determine mRNA half-life (t1/2 based on the Real-Time RT-PCR procedure. This approach was evaluated by using the β-actin gene as a reference molecule for measuring of mRNA stability. Results Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was isolated and quantified using the RiboGreen® fluorescent dye with the VersaFluor Fluorometer System. One μg of total RNA was reverse transcribed and used as template for the amplification of a region of the β-actin gene (231 bp. To generate the standard curve, serial ten-fold dilutions of the pBactin-231 vector containing the cDNA amplified fragment were employed, β-actin mRNAs were quantified by Real-Time RT-PCR using the SYBR® Green I fluorogenic dye and data analyzed using the iCycle iQ system software. Using this method, the β-actin mRNA exhibited a half-life of 6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6 is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5 h. Conclusions We have developed a rapid, sensitive, and reliable method based on Real-Time RT-PCR for measuring mRNA half-life. Our results confirm that β-actin mRNA half-life can be affected by the cellular growth rate.

  9. Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis.

    Vyalov, S. L.; Gabbiani, G.; Kapanci, Y.

    1993-01-01

    The majority of fibroblasts in alveolar septa are characterized by the presence of cytoplasmic bundles of microfilaments that contain cytoplasmic actin isoforms; these cells have been named contractile interstitial cells or V-type myofibroblasts. In the rat, they express desmin as intermediate filament protein. In this study, we explored the possibility that modulation and replication of such septal fibroblasts result in the appearance of alpha-smooth muscle (alpha-SM) actin-positive myofibro...

  10. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Shenping Wu

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  11. Unraveling the enigma: Progress towards understanding the Coronin family of actin regulators

    Chan, Keefe T.; Sarah J. Creed; Bear, James E.

    2011-01-01

    Coronins are a conserved family of actin cytoskeleton regulators that promote cell motility and modulate other actin-dependent processes. Although these proteins have been known for twenty years, substantial progress has been made in the last five years towards understanding coronins. Here, we review this progress, place it into the context of what was already known and pose several questions that remain to be addressed. In particular, we cover the emerging consensus about the role of Type I ...

  12. A consensus approach to improving patient adherence and persistence with topical treatment for actinic keratosis

    Stockfleth, Eggert; Peris, Ketty; Guillen, Carlos; Cerio, Rino; Basset-Seguin, Nicole; Foley, Peter; Sanches, José; Culshaw, Alex; Erntoft, Sandra; Lebwohl, Mark

    2015-01-01

    Background Topical therapy is important in the treatment of actinic keratosis, but guidance for improving adherence/persistence during topical therapy is still lacking. Objectives To utilize expert consensus to generate a list of recommendations to improve real-world efficacy when prescribing topical therapy for actinic keratosis. Methods An expert panel of eight dermatologists was convened to generate recommendations based on facilitated discussion and consensus generation using a modified D...

  13. Actin Depolymerization Disrupts Tight Junctions via Caveolae-mediated EndocytosisV⃞

    Shen, Le; Turner, Jerrold R.

    2005-01-01

    The tight junction (TJ) determines epithelial barrier function. Actin depolymerization disrupts TJ structure and barrier function, but the mechanisms of this effect remain poorly understood. The goal of this study was to define these mechanisms. Madin-Darby canine kidney (MDCK) cells expressing enhanced green fluorescent protein-, enhanced yellow fluorescent protein-, or monomeric red fluorescent protein 1-fusion proteins of β-actin, occludin, claudin-1, ZO-1, clathrin light chain A1, and cav...

  14. Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser

    Togsverd-Bo, K; Haak, C S; Thaysen-Petersen, D;

    2012-01-01

    Photodynamic therapy (PDT) with methyl aminolaevulinate (MAL) is effective for thin actinic keratoses (AKs) in field-cancerized skin. Ablative fractional laser resurfacing (AFXL) creates vertical channels that facilitate MAL uptake and may improve PDT efficacy.......Photodynamic therapy (PDT) with methyl aminolaevulinate (MAL) is effective for thin actinic keratoses (AKs) in field-cancerized skin. Ablative fractional laser resurfacing (AFXL) creates vertical channels that facilitate MAL uptake and may improve PDT efficacy....

  15. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns.

    Jessica L Henty-Ridilla

    Full Text Available Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence that the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs during pattern-triggered immunity (PTI and perturbations by effector proteins during effector-triggered susceptibility (ETS. We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.

  16. Aspects of plant cell growth and the actin cytoskeleton: lessons from root hairs

    Ruijter, de, A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes. Before cell growth takes place, a new cell is formed by cell division. The orientation of the division plane most often predicts the orientation of cell expansion, and a correct positioning of the division p...

  17. Realignment process of actin stress fibers in single living cells studied by focused femtosecond laser irradiation

    Yasukuni, Ryohei; Spitz, Jean-Alexis; Meallet-Renault, Rachel; Negishi, Takayuki; Tada, Takuji; Hosokawa, Yoichiroh; Asahi, Tsuyoshi; Shukunami, Chisa; Hiraki, Yuji; Masuhara, Hiroshi

    2007-01-01

    Three-dimensional dissection of a single actin stress fiber in a living cell was performed based on multi-photon absorption of a focused femtosecond laser pulse. The realignment process of an actin stress fiber was investigated after its direct cutting by a single-shot femtosecond laser pulse irradiation by high-speed transmission and fluorescence imaging methods. It was confirmed that mechanical force led by the femtosecond laser cutting propagates to entire cell through the cytockelton in a...

  18. The Arabidopsis Wave Complex: Mechanisms Of Localized Actin Polymerization And Growth

    Daniel Szymanski

    2012-10-23

    The objective of this project was to discover the protein complexes and control mechanisms that determine the location of actin filament roadways in plant cells. Our work provided the first molecular description of protein complexes that are converted from inactive complexes to active actin filament nucleators in the cell. These discoveries provided a conceptual framework to control to roadways in plant cells that determine the location and delivery of plant metabolites and storage molecules that are relevant to the bioenergy economy.

  19. Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex

    Tsurumura, Toshiharu; Tsumori, Yayoi; Qiu, Hao; Oda, Masataka; Sakurai, Jun; Nagahama, Masahiro; Tsuge, Hideaki

    2012-01-01

    Clostridium perfringens iota-toxin (Ia) mono-ADP ribosylates Arg177 of actin, leading to cytoskeletal disorganization and cell death. To fully understand the reaction mechanism of arginine-specific mono-ADP ribosyl transferase, the structure of the toxin-substrate protein complex must be characterized. Recently, we solved the crystal structure of Ia in complex with actin and the nonhydrolyzable NAD+ analog βTAD (thiazole-4-carboxamide adenine dinucleotide); however, the structures of the NAD+...

  20. Probing the role of the actin cytoskeleton during regulated exocytosis by intravital microscopy

    Milberg, Oleg; Tora, Muhibullah; Shitara, Akiko; Masedunskas, Andrius; Weigert, Roberto

    2014-01-01

    The actin cytoskeleton plays a fundamental role in controlling several steps during regulated exocytosis. Here we describe a combination of procedures that are aimed at studying the dynamics and the mechanism of the actin cytoskeleton in the salivary glands of live rodents, a model for exocrine secretion. Our approach relies on intravital microscopy, an imaging technique that enables imaging biological events in live animals at a subcellular resolution, and it is complemented by the use of ph...

  1. Actin Is a Target of T-Cell Reactivity in Patients with Advanced Carotid Atherosclerotic Plaques

    Elisabetta Profumo; Brigitta Buttari; Linda Petrone; Giada Lacroce; Maria Chiara Tesori; Raffaele Capoano; Bruno Salvati; Rachele Riganò

    2013-01-01

    Atherosclerosis is a chronic inflammatory disease of the arterial wall associated with autoimmune reactions. In a previous study, we observed the presence of actin-specific antibodies in sera from patients with carotid atherosclerosis. To extend our previous results we evaluated the possible role of actin as antigenic target of cell-mediated immune reactions in carotid atherosclerosis. Peripheral blood mononuclear cells (PBMC) from 17 patients and 16 healthy subjects were tested by cell proli...

  2. Native globular actin has a thermodynamically unstable quasi-stationary structure with elements of intrinsic disorder.

    Kuznetsova, Irina M; Povarova, Olga I; Uversky, Vladimir N; Turoverov, Konstantin K

    2016-02-01

    The native form of globular actin, G-actin, is formed in vivo as a result of complex post-translational folding processes that require ATP energy expenditure and are assisted by the 70 kDa heat shock protein, prefoldin and chaperonin containing TCP-1. G-actin is stabilized by the binding of one ATP molecule and one Ca(2+) ion (or Mg(2+) in vivo). Chemical denaturants, heating or Ca(2+) removal transform native actin (N) into 'inactivated actin' (I), a compact oligomer comprising 14-16 subunits. Viscogenic and crowding agents slow this process but do not stop it. The lack of calcium in the solution accelerates the spontaneous N → I transition. Thus, native G-actin has a kinetically stable (as a result of the high free energy barrier between the N and I states) but thermodynamically unstable structure, which, in the absence of Ca(2+) or other bivalent metal ions, spontaneously converts to the thermodynamically stable I state. It was noted that native actin has much in common with intrinsically disordered proteins: it has functionally important disordered regions; it is constantly in complex with one of its numerous partners; and it plays key roles in many cellular processes, in a manner similar to disordered hub proteins. By analyzing actin folding in vivo and unfolding in vitro, we advanced the hypothesis that proteins in a native state may have a thermodynamically unstable quasi-stationary structure. The kinetically stable native state of these proteins appears forcibly under the influence of intracellular folding machinery. The denaturation of such proteins is always irreversible because the inactivated state, for which the structure is determined by the amino acid sequence of a protein, comprises the thermodynamically stable state under physiological conditions. PMID:26460158

  3. Strong Binding of Myosin Heads Stretches and Twists the Actin Helix

    Tsaturyan, Andrey K.; Koubassova, Natalia; Ferenczi, Michael A.; Narayanan, Theyencheri; Roessle, Manfred; Bershitsky, Sergey Y.

    2004-01-01

    Calculation of the size of the power stroke of the myosin motor in contracting muscle requires knowledge of the compliance of the myofilaments. Current estimates of actin compliance vary significantly introducing uncertainty in the mechanical parameters of the motor. Using x-ray diffraction on small bundles of permeabilized fibers from rabbit muscle we show that strong binding of myosin heads changes directly the actin helix. The spacing of the 2.73-nm meridional x-ray reflection increased by...

  4. Actinic Cheilitis: A Case Report and a Review of the Literature

    Wood, Neil Hamilton; Khammissa, Razia; Meyerov, Robin; Lemmer, Johan; Feller, Liviu

    2011-01-01

    In actinic cheilitis, the current view is that the keratinocytes have undergone transformation forming a field of epithelium with the potential for neoplastic transformation. Clinical features include diffuse and poorly demarcated atrophic, erosive or keratotic plaques that may affect some parts of, or the entire vermilion border. Fair-complexioned people, those with albinism and people with eversion of the lip are all subject to actinic cheilitis. Prophylactic measures against all forms of s...

  5. Phylogenetic Analysis of Gene Structure and Alternative Splicing in α-Actinins

    Lek, Monkol; MacArthur, Daniel G.; Yang, Nan; North, Kathryn N.

    2009-01-01

    The α-actinins are an important family of actin-binding proteins with the ability to cross-link actin filaments when in dimer form. Members of the α-actinin family share a domain topology composed of highly conserved actin-binding and EF-hand domains separated by a rod domain composed of spectrin-like repeats. Functional diversity within this family has arisen through exon duplication and the formation of alternate splice isoforms as well as gene duplications during the evolution of vertebrat...

  6. The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts.

    Thirukonda, Gnanasagar J; Uehara, Shunsuke; Nakayama, Takahiro; Yamashita, Teruhito; Nakamura, Yukio; Mizoguchi, Toshihide; Takahashi, Naoyuki; Yagami, Kimitoshi; Udagawa, Nobuyuki; Kobayashi, Yasuhiro

    2016-07-01

    The cytoskeletal organization of osteoclasts is required for bone resorption. Binding of dynamin with guanosine triphosphate (GTP) was previously suggested to be required for the organization of the actin cytoskeleton. However, the role of the GTPase activity of dynamin in the organization of the actin cytoskeleton as well as in the bone-resorbing activity of osteoclasts remains unclear. This study investigated the effects of dynasore, an inhibitor of the GTPase activity of dynamin, on the bone-resorbing activity of and actin ring formation in mouse osteoclasts in vitro and in vivo. Dynasore inhibited the formation of resorption pits in osteoclast cultures by suppressing actin ring formation and rapidly disrupting actin rings in osteoclasts. A time-lapse image analysis showed that dynasore shrank actin rings in osteoclasts within 30 min. The intraperitoneal administration of dynasore inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced trabecular bone loss in mouse femurs. These in vitro and in vivo results suggest that the GTPase activity of dynamin is critical for the bone-resorbing activity of osteoclasts and that dynasore is a seed for the development of novel anti-resorbing agents. PMID:26063501

  7. Crystallization and preliminary structural characterization of the two actin-depolymerization factors of the malaria parasite

    The expression, purification and crystallization of Plasmodium actin-depolymerization factors 1 and 2 are described. X-ray diffraction data were collected to 2.0 and 2.1 Å resolution, respectively, and the structures of both proteins in solution were characterized. The malaria parasite Plasmodium depends on its actin-based motor system for motility and host-cell invasion. Actin-depolymerization factors are important regulatory proteins that affect the rate of actin turnover. Plasmodium has two actin-depolymerization factors which seem to have different functions and display low sequence homology to the higher eukaryotic family members. Plasmodium actin-depolymerization factors 1 and 2 have been crystallized. The crystals diffracted X-rays to maximum resolutions of 2.0 and 2.1 Å and belonged to space groups P3121 or P3221, with unit-cell parameters a = b = 68.8, c = 76.0 Å, and P21212, with unit-cell parameters a = 111.6, b = 57.9, c = 40.5 Å, respectively, indicating the presence of one or two molecules per asymmetric unit in both cases

  8. Actin disassembly 'clock' and membrane tension determine cell shape and turning: a mathematical model

    Motile cells regulate their shape and movements largely by remodeling the actin cytoskeleton. Principles of this regulation are becoming clear for simple-shaped steadily crawling cells, such as fish keratocytes. In particular, the shape of the leading edge and sides of the lamellipodium-cell motile appendage-is determined by graded actin distribution at the cell boundary, so that the denser actin network at the front grows, while sparser actin filaments at the sides are stalled by membrane tension. Shaping of the cell rear is less understood. Here we theoretically examine the hypothesis that the cell rear is shaped by the disassembly clock: the front-to-rear lamellipodial width is defined by the time needed for the actin-adhesion network to disassemble to the point at which the membrane tension can crush this network. We demonstrate that the theory predicts the observed cell shapes. Furthermore, turning of the cells can be explained by biases in the actin distribution. We discuss experimental implications of this hypothesis.

  9. Redundant mechanisms recruit actin into the contractile ring in silkworm spermatocytes.

    Wei Chen

    2008-09-01

    Full Text Available Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation. Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation. To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex. In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage.

  10. Computer Simulations of Mechano-Chemical Networks Choreographing Actin Dynamics in Cell Motility

    Zhuravlev, Pavel I.; Hu, Longhua; Papoian, Garegin A.

    In eukaryotic cells, cell motility is largely driven by self-assembly and growth of filamentous networks comprised of actin. Numerous proteins regulate actin network dynamics either biochemically, or through mechanical interactions. This regulation is rather complex, intricately coordinated both spatially and temporally. Although experiments in vivo and in vitro have provided a trove of structural and biochemical information about actin-based cell motility processes, experimental data is not always easy to interpret unambiguously, sometimes various interpretations being in contradiction with each other. Hence, mathematical modeling approaches are necessary for providing a physical foundation for interpreting and guiding experiments. In particular, computer simulations based on physicochemical interactions provide a systems-level description of protrusion dynamics. In this contribution, we review recent progress in modeling actin-based cell motility using detailed computer simulations. We elaborate on the way actin network dynamics is determined by the interplay between chemical reactions, mechanical feedbacks, and transport bottlenecks. We also discuss the role of inherent randomness of elementary chemical reactions in determining the dynamical behavior of the mechano-chemical network controlling actin polymerization and growth.

  11. Release of α-actin into serum after skeletal muscle damage

    Martinez-Amat, A; Boulaiz, H; Prados, J; Marchal, J; Padial, P; Caba, O; Rodriguez-Serrano, F; Aranega, A

    2005-01-01

    Objective: The skeletal muscle protein α-actin was investigated in the serum of subjects with severe skeletal muscle damage to assess its utility as a reliable and predictive marker of muscle damage. Methods: Serum samples were obtained from 33 healthy controls and 33 patients with severe skeletal muscle damage, defined by a total creatine kinase value of >500 IU/l (Rosalki method). Troponin I, troponin T, and myoglobin concentrations were determined by immunoassay and α-actin concentrations by Western blot and densitometry. Results: The mean serum concentration of α-actin in controls and patients with skeletal muscle damage was 600.9 and 1968.51 ng/ml, respectively, a statistically significant difference. Sera of patients with muscle damage showed higher levels of α-actin than of troponin or myoglobin. No significant difference in troponin I levels was observed between the groups. Conclusions: According to these results, α-actin was the most significant skeletal muscle damage marker analysed and may be an ideal candidate for the identification of all types of myofibre injury, including sports injuries. Our findings support the use of α-actin as a marker alongside other currently used biological proteins. PMID:16244192

  12. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression

    Scheuring, David; Löfke, Christian; Krüger, Falco; Kittelmann, Maike; Eisa, Ahmed; Hughes, Louise; Smith, Richard S.; Hawes, Chris; Schumacher, Karin; Kleine-Vehn, Jürgen

    2016-01-01

    The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin–myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth. PMID:26715743

  13. Short Stop provides an essential link between F-actin and microtubules during axon extension.

    Lee, Seungbok; Kolodziej, Peter A

    2002-03-01

    Coordination of F-actin and microtubule dynamics is important for cellular motility and morphogenesis, but little is known about underlying mechanisms. short stop (shot) encodes an evolutionarily conserved, neuronally expressed family of rod-like proteins required for sensory and motor axon extension in Drosophila melanogaster. We identify Shot isoforms that contain N-terminal F-actin and C-terminal microtubule-binding domains, and that crosslink F-actin and microtubules in cultured cells. The F-actin- and microtubule-binding domains of Shot are required in the same molecule for axon extension, though the length of the connecting rod domain can be dramatically reduced without affecting activity. Shot therefore functions as a cytoskeletal crosslinker in axon extension, rather than mediating independent interactions with F-actin and microtubules. A Ca(2+)-binding motif located adjacent to the microtubule-binding domain is also required for axon extension, suggesting that intracellular Ca(2+) release may regulate Shot activity. These results suggest that Shot coordinates regulated interactions between F-actin and microtubules that are crucial for neuronal morphogenesis. PMID:11874915

  14. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Thompson Erik W

    2009-07-01

    Full Text Available Abstract Background A feature of epithelial to mesenchymal transition (EMT relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1 and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4 and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4. Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse

  15. Actinic Prurigo Cheilitis: A Clinicopathologic Review of 75 Cases.

    Plaza, Jose A; Toussaint, Sonia; Prieto, Victor G; Mercadillo, Patricia; Diez de Medina, Juan C; Lourenco, Silvia; Batdorf, Bjorn; Sangueza, Martin

    2016-06-01

    Actinic prurigo (AP) is a chronic idiopathic photodermatosis that primarily affects American Indians in the United States and Mestizos in Latin American countries. Clinically, the onset of the disease is usually in the first decade of life but may appear initially in adult life, and it is characterized by symmetric involvement of sun-exposed areas of the skin, particularly areas of the face, resulting in polymorphic erythematous papules, macules, and plaques in different stages of evolution. Lower lip involvement includes swelling, scaling, fissures, hyperpigmentation, and ulcerations of the vermilion border. and in some cases could represent the only manifestation of the disease. The histopathologic features of AP have been studied; however, there is a controversy regarding whether AP cheilitis has distinct histopathologic features that could allow accurate separation from other specific and nonspecific forms of cheilitis. The diagnosis can be challenging, mainly when lip lesions are the only manifestation of the disease. In this study, the authors investigate the clinicopathologic features of 75 cases of AP cheilitis to provide further criteria for its diagnosis and classification. All 75 patients presented with lip lesions. Thirty-three cases were diagnosed as AP cheilitis with cutaneous lesions and 42 cases were diagnosed as AP cheilitis without cutaneous lesions (only lip lesions). Histologically, of the 33 cases with AP cheilitis with cutaneous lesions, 17 (52%) cases showed follicular cheilitis, and of the 42 cases that had only lip lesions, 18 (43%) cases showed follicular cheilitis. Histologically, AP cheilitis can present as follicular cheilitis; thus, supporting the diagnosis. Also, our findings confirm that lip lesions can present as the only manifestation of the disease, showing typical histological and clinical features. This form of cheilitis has not being well described in the dermatologic and dermatopathologic literature. PMID:26981737

  16. Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation.

    Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph; Cossart, Pascale; Pizarro-Cerdá, Javier

    2015-01-01

    Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide ...

  17. Genome-wide siRNA Screen identifies complementary signaling pathways involved in listeria infection and reveals different actin nucleation mechanisms during listeria cell invasion and actin comet tail formation

    Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph; Cossart, Pascale; Pizarro-Cerda, Javier

    2015-01-01

    Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide ...

  18. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media

    Sanders, Lori K.; Xian, Wujing; Guaqueta, Camilo; Strohman, Michael J.; Vrasich, Chuck R.; Luijten, Erik; Wong, Gerard C.L. (UIUC)

    2008-07-11

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  19. Control of Electrostatic Interactions Between F-Actin And Genetically Modified Lysozyme in Aqueous Media

    Sanders, L.K.; Xian, W.; Guaqueta, C.; Strohman, M.; Vrasich, C.R.; Luijten, E.; Wong, G.C.L.

    2009-06-04

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  20. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  1. Control of Electrostatic Interactions Between F-Actin And Genetically Modified Lysozyme in Aqueous Media

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  2. A potential yeast actin allosteric conduit dependent on hydrophobic core residues val-76 and trp-79.

    Wen, Kuo-Kuang; McKane, Melissa; Stokasimov, Ema; Fields, Jonathon; Rubenstein, Peter A

    2010-07-01

    Intramolecular allosteric interactions responsible for actin conformational regulation are largely unknown. Previous work demonstrated that replacing yeast actin Val-76 with muscle actin Ile caused decreased nucleotide exchange. Residue 76 abuts Trp-79 in a six-residue linear array beginning with Lys-118 on the surface and ending with His-73 in the nucleotide cleft. To test if altering the degree of packing of these two residues would affect actin dynamics, we constructed V76I, W79F, and W79Y single mutants as well as the Ile-76/Phe-79 and Ile-76/Tyr-79 double mutants. Tyr or Phe should decrease crowding and increase protein flexibility. Subsequent introduction of Ile should restore packing and dampen changes. All mutants showed decreased growth in liquid medium. W79Y alone was severely osmosensitive and exhibited vacuole abnormalities. Both properties were rescued by Ile-76. Phe-79 or Tyr decreased the thermostability of actin and increased its nucleotide exchange rate. These effects, generally greater for Tyr than for Phe, were reversed by introduction of Ile-76. HD exchange showed that the mutations caused propagated conformational changes to all four subdomains. Based on results from phosphate release and light-scattering assays, single mutations affected polymerization in the order of Ile, Phe, and Tyr from least to most. Introduction of Ile-76 partially rescued the polymerization defects caused by either Tyr-79 or Phe-79. Thus, alterations in crowding of the 76-79 residue pair can strongly affect actin conformation and behavior, and these results support the theory that the amino acid array in which they are located may play a central role in actin regulation. PMID:20442407

  3. The structural dynamics of α-tropomyosin on F-actin shape the overlap complex between adjacent tropomyosin molecules

    Lehman, William; Li, Xiaochuan; Orzechowski, Marek; Fischer, Stefan

    2013-01-01

    Coiled-coil tropomyosin, localized on actin filaments in virtually all eukaryotic cells, serves as a gatekeeper regulating access of the motor protein myosin and other actin-binding proteins onto the thin filament surface. Tropomyosin's modular pseudo-repeating pattern of approximately 39 amino acid residues is designed to allow binding of the coiled-coil to successive actin subunits along thin filaments. Even though different tropomyosin isoforms contain varying numbers of repeat modules, th...

  4. Coiled-Coil–Mediated Dimerization Is Not Required for Myosin VI to Stabilize Actin during Spermatid Individualization in Drosophila melanogaster

    Noguchi, Tatsuhiko; Frank, Deborah J.; Isaji, Mamiko; Miller, Kathryn G.

    2009-01-01

    Myosin VI is a pointed-end–directed actin motor that is thought to function as both a transporter of cargoes and an anchor, capable of binding cellular components to actin for long periods. Dimerization via a predicted coiled coil was hypothesized to regulate activity and motor properties. However, the importance of the coiled-coil sequence has not been tested in vivo. We used myosin VI's well-defined role in actin stabilization during Drosophila spermatid individualization to test the import...

  5. Differential effects of LifeAct-GFP and actin-GFP on cell mechanics assessed using micropipette aspiration

    Sliogeryte, Kristina; Stephen D Thorpe; Wang, Zhao; Thompson, Clare L.; Gavara, Nuria; Knight, Martin M.

    2016-01-01

    The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hM...

  6. Cdc28–Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth

    Zeng, Guisheng; Wang, Yan-Ming; Wang, Yue

    2012-01-01

    A dynamic balance between targeted transport and endocytosis is critical for polarized cell growth. However, how actin-mediated endocytosis is regulated in different growth modes remains unclear. Here we report differential regulation of cortical actin patch dynamics between the yeast and hyphal growth in Candida albicans. The mechanism involves phosphoregulation of the endocytic protein Sla1 by the cyclin-dependent kinase (CDK) Cdc28–Cln3 and the actin-regulating kinase Prk1. Mutational stud...

  7. Transfected muscle and non-muscle actins are differentially sorted by cultured smooth muscle and non-muscle cells

    Mounier, N.; Perriard, J. C.; Gabbiani, Giulio; Chaponnier, Christine

    1997-01-01

    We have analyzed by immunolabeling the fate of exogenous epitope-tagged actin isoforms introduced into cultured smooth muscle and non-muscle (i.e. endothelial and epithelial) cells by transfecting the corresponding cDNAs in transient expression assays. Exogenous muscle actins did not produce obvious shape changes in transfected cells. In smooth muscle cells, transfected striated and smooth muscle actins were preferentially recruited into stress fibers. In non-muscle cells, exogenous striated ...

  8. Apical Invasion of Intestinal Epithelial Cells by Salmonella typhimurium Requires Villin to Remodel the Brush Border Actin Cytoskeleton

    Lhocine, Nouara; Arena, Ellen T.; Bomme, Perrine; Ubelmann, Florent; Prévost, Marie-Christine; Robine, Sylvie; Sansonetti, Philippe J.

    2015-01-01

    Summary Salmonella invasion of intestinal epithelial cells requires extensive, though transient, actin modifications at the site of bacterial entry. The actin-modifying protein villin is present in the brush border where it participates in the constitution of microvilli and in epithelial restitution after damage through its actin-severing activity. We investigated a possible role for villin in Salmonella invasion. The absence of villin, which is normally located at the bacterial entry site, l...

  9. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells

    Mounier, Joëlle; Popoff, Michel R.; Enninga, Jost; Frame, Margaret C; Sansonetti, Philippe J.; Van Nhieu, Guy Tran

    2009-01-01

    Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial ...

  10. The IpaC Carboxyterminal Effector Domain Mediates Src-Dependent Actin Polymerization during Shigella Invasion of Epithelial Cells

    Mounier, Joëlle; Popoff, Michel R.; Enninga, Jost; Frame, Margaret C; Sansonetti, Philippe J.; Van Nhieu, Guy Tran

    2009-01-01

    Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial ...

  11. Quantitative insights into actin rearrangements and bacterial target site selection fromSalmonella Typhimurium infection of micropatterned cells

    Vonaesch, Pascale; Cardini, Steven; Sellin, Mikael E.; Goud, Bruno; Hardt, Wolf-Dietrich; Schauer, Kristine

    2013-01-01

    Reorganization of the host cell actin cytoskeleton is crucial during pathogen invasion. We established micropatterned cells as a standardized infection model for cell invasion to quantitatively study actin rearrangements triggered by Salmonella Typhimurium (S. Tm). Micropatterns of extracellular matrix proteins force cells to adopt a reproducible shape avoiding strong cell-to-cell variations, a major limitation in classical cell culture conditions. S. Tm induced F-actin-rich ruffles and invad...

  12. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  13. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin.

    Barak, L S; Yocum, R R; Nothnagel, E A; Webb, W W

    1980-01-01

    An active fluorescent derivative of the actin-binding mushroom toxin phallacidin has been synthesized. Convenient methods were developed to stain actin cytoskeletal structures in living and fixed cultured animal cells and actively streaming algal cells. Actin binding specificity was demonstrated by competitive binding experiments and comparative staining of well-known structures. Large populations of living animal cells in culture were readily stained by using a relatively mild lysolecithin p...

  14. Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin

    Humphries, Christine L.; Balcer, Heath I.; D'Agostino, Jessica L.; Winsor, Barbara; Drubin, David G.; Barnes, Georjana; Andrews, Brenda J.; Goode, Bruce L.

    2002-01-01

    Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 compl...

  15. AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells

    Naofumi Yui

    2012-02-01

    Remodeling of the actin cytoskeleton is required for vasopressin (VP-induced aquaporin 2 (AQP2 trafficking. Here, we asked whether VP and forskolin (FK-mediated F-actin depolymerization depends on AQP2 expression. Using various MDCK and LLC-PK1 cell lines with different AQP2 expression levels, we performed F-actin quantification and immunofluorescence staining after VP/FK treatment. In MDCK cells, in which AQP2 is delivered apically, VP/FK mediated F-actin depolymerization was significantly correlated with AQP2 expression levels. A decrease of apical membrane associated F-actin was observed upon VP/FK treatment in AQP2 transfected, but not in untransfected cells. There was no change in basolateral actin staining under these conditions. In LLC-PK1 cells, which deliver AQP2 basolaterally, a significant VP/FK mediated decrease in F-actin was also detected only in AQP2 transfected cells. This depolymerization response to VP/FK was significantly reduced by siRNA knockdown of AQP2. By immunofluorescence, an inverse relationship between plasma membrane AQP2 and membrane-associated F-actin was observed after VP/FK treatment again only in AQP2 transfected cells. This is the first report showing that VP/FK mediated F-actin depolymerization is dependent on AQP2 protein expression in renal epithelial cells, and that this is not dependent on the polarity of AQP2 membrane insertion.

  16. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  17. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring.

    Gorlin, J B; Yamin, R; Egan, S; Stewart, M; Stossel, T P; Kwiatkowski, D J; Hartwig, J H

    1990-09-01

    Actin-binding protein (ABP-280, nonmuscle filamin) is a ubiquitous dimeric actin cross-linking phosphoprotein of peripheral cytoplasm, where it promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The complete nucleotide sequence of human endothelial cell ABP cDNA predicts a polypeptide subunit chain of 2,647 amino acids, corresponding to 280 kD, also the mass derived from physical measurements of the native protein. The actin-binding domain is near the amino-terminus of the subunit where the amino acid sequence is similar to other actin filament binding proteins, including alpha-actinin, beta-spectrin, dystrophin, and Dictyostelium abp-120. The remaining 90% of the sequence comprises 24 repeats, each approximately 96 residues long, predicted to have stretches of beta-sheet secondary structure interspersed with turns. The first 15 repeats may have substantial intrachain hydrophobic interactions and overlap in a staggered fashion to yield a backbone with mechanical resilience. Sequence insertions immediately before repeats 16 and 24 predict two hinges in the molecule near points where rotary-shadowed molecules appear to swivel in electron micrographs. Both putative hinge regions are susceptible to cleavage by proteases and the second also contains the site that binds the platelet glycoprotein Ib/IX complex. Phosphorylation consensus sequences are also located in the hinges or near them. Degeneracy within every even-numbered repeat between 16 and 24 and the insertion before repeat 24 may convert interactions within chains to interactions between chains to account for dimer formation within a domain of 7 kD at the carboxy-terminus. The structure of ABP dimers resembles a leaf spring. Interchain interactions hold the leaves firmly together at one end, whereas intrachain hydrophobic bonds reinforce the arms of the spring where the leaves diverge, making it sufficiently stiff to promote high-angle branching of actin

  18. Multiple CaMKII Binding Modes to the Actin Cytoskeleton Revealed by Single-Molecule Imaging.

    Khan, Shahid; Conte, Ianina; Carter, Tom; Bayer, K Ulrich; Molloy, Justin E

    2016-07-26

    Localization of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to dendritic spine synapses is determined in part by the actin cytoskeleton. We determined binding of GFP-tagged CaMKII to tag-RFP-labeled actin cytoskeleton within live cells using total internal reflection fluorescence microscopy and single-molecule tracking. Stepwise photobleaching showed that CaMKII formed oligomeric complexes. Photoactivation experiments demonstrated that diffusion out of the evanescent field determined the track lifetimes. Latrunculin treatment triggered a coupled loss of actin stress fibers and the colocalized, long-lived CaMKII tracks. The CaMKIIα (α) isoform, which was previously thought to lack F-actin interactions, also showed binding, but this was threefold weaker than that observed for CaMKIIβ (β). The βE' splice variant bound more weakly than α, showing that binding by β depends critically on the interdomain linker. The mutations βT287D and αT286D, which mimic autophosphorylation states, also abolished F-actin binding. Autophosphorylation triggers autonomous CaMKII activity, but does not impair GluN2B binding, another important synaptic protein interaction of CaMKII. The CaMKII inhibitor tatCN21 or CaMKII mutations that inhibit GluN2B association by blocking binding of ATP (βK43R and αK42M) or Ca(2+)/calmodulin (βA303R) had no effect on the interaction with F-actin. These results provide the first rationale for the reduced synaptic spine localization of the αT286D mutant, indicating that transient F-actin binding contributes to the synaptic localization of the CaMKIIα isoform. The track lifetime distributions had a stretched exponential form consistent with a heterogeneously diffusing population. This heterogeneity suggests that CaMKII adopts different F-actin binding modes, which is most easily rationalized by multiple subunit contacts between the CaMKII dodecamer and the F-actin cytoskeleton that stabilize the initial weak (micromolar

  19. Non-adherence to topical treatments for actinic keratosis

    Shergill B

    2013-12-01

    Full Text Available Bav Shergill,1 Simon Zokaie,2 Alison J Carr3 1Department of Dermatology, Brighton and Sussex University Hospitals, Elm Grove, Brighton, UK; 2Leo Pharma, Princes Risborough, 3Hamell, London, UK Background: There is limited information on the patterns of use, adherence rates, and factors that impact adherence with topical treatments for actinic keratosis (AK. Objectives: To establish patterns of use and adherence with topical treatments for AK and to identify treatment-related factors that impact on adherence. Methods: A community-based, cross-sectional study was performed using a standardized questionnaire completed online or via telephone interview. Patients were stratified according to the presence of AK lesions on the scalp and/or other extremities; and presence of scarring resulting from treatment. Results: This study included 305 patients with AK who were currently using a patient-applied topical therapy for AK or had used one within the previous 12 months. In total, 88% (n = 268/305 of patients were either non-adherent, non-persistent or both non-adherent and non-persistent to topical therapy. Duration of treatment was associated with increasing rates of non-adherence (adjusted odds ratio [OR]; for treatment durations greater than 4 weeks, 2.2, P < 0.01: 52% of patients were non-adherent with 3–4 week treatment duration; 69% of patients with 4–8 week treatment duration; and 71% of patients with 6–12 week treatment duration. There were similar increases in non-persistence with increasing treatment duration (adjusted OR; for treatment durations greater than 4 weeks, 2.1, P < 0.05. Conclusion: This study found high rates of non-adherence and non-persistence in patients with AK. Duration of treatment was a significant factor contributing to non-adherence and non-persistence to topical treatments. Patient-applied topical therapies that require less frequent application and have shorter treatment duration may be associated with improved

  20. Regulation of gelsolin to plant actin filaments and its distribution in pollen

    TAO; Zhihua; (陶志华); REN; Haiyun; (任海云)

    2003-01-01

    The effect of plasma gelsolin on plant microfilaments and its localization in plant cells were investigated. The results by using ultracentrifugation and electron microscopy showed that plant microfilaments could be severed into shorter fragments by gelsolin in a Ca2+-dependent manner. By measuring the binding ability of plasma gelsolin to pollen actin using the method of immunoprecipitation, it was shown that pollen actin could bind gelsolin at a ratio of 2.0±0.21 in the presence of Ca2+. Addition of EGTA could disassociate the actin-gelsolin complexes, reducing the ratio to 1.2±0.23, and the addition of PIP2 could further reduce the ratio to 0.8±0.1. The results indicate that plant actin has similar binding properties with plasma gelsolin as that of animal actin. By Western blotting we identified the existence of gelsolin in lily pollen. The results of immunolo-calization of gelsolin in pollen and pollen tube showed that gelsolin was mainly localized at the germinal furrow in pollen grains and at the cytoplasm in pollen tube, especially in the tip region.

  1. Study of the influence of actin-binding proteins using linear analyses of cell deformability.

    Plaza, Gustavo R; Uyeda, Taro Q P; Mirzaei, Zahra; Simmons, Craig A

    2015-07-21

    The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing. PMID:26059185

  2. A consensus approach to improving patient adherence and persistence with topical treatment for actinic keratosis

    Stockfleth, Eggert; Peris, Ketty; Guillen, Carlos; Cerio, Rino; Basset-Seguin, Nicole; Foley, Peter; Sanches, José; Culshaw, Alex; Erntoft, Sandra; Lebwohl, Mark

    2015-01-01

    Background Topical therapy is important in the treatment of actinic keratosis, but guidance for improving adherence/persistence during topical therapy is still lacking. Objectives To utilize expert consensus to generate a list of recommendations to improve real-world efficacy when prescribing topical therapy for actinic keratosis. Methods An expert panel of eight dermatologists was convened to generate recommendations based on facilitated discussion and consensus generation using a modified Delphi session. The recommendations were ratified with the expert panel. Results Facilitated discussion generated 31 issues within five themes, which were prioritized using expert voting. Consensus was achieved on the importance of short and simple treatment regimens for maximizing patient compliance, physician awareness of the progression of actinic keratosis to squamous cell carcinoma, provision of appropriate patient information, and the use of effective communication strategies to educate physicians about actinic keratosis. Based on these key findings, eight recommendations were generated. Conclusions The recommendations will assist physicians when prescribing topical actinic keratosis therapy. Further research should focus on the types of patient outcomes that are influenced by the characteristics of topical field therapy. PMID:25865875

  3. Safety, efficacy, and patient acceptability of imiquimod for topical treatment of actinic keratoses

    Caperton CV

    2011-04-01

    Full Text Available Caroline Caperton, Brian BermanDepartment of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USAAbstract: Imiquimod, an immune-modulating imidazoquinoline compound, has been approved in topical formulation for the treatment of actinic keratoses, superficial basal cell carcinomas, and external genital warts. Its use in the treatment of field cancerization, in particular, has been rapidly evolving. With the recent approval of a new drug application for a new concentration, as well as generic formulations, this drug has emerged at the forefront of treatment for actinic keratoses, with improved dosage scheduling and more patients having access to generic options. In the nearly 15 years since its original approval by the Food and Drug Administration for the treatment of actinic keratoses in 1997, topical imiquimod has been reviewed and studied extensively, not only for its safety and efficacy, but also for its tolerability in patients. This paper provides an indepth review of the literature, and provides clinical evidence for its inclusion in the arsenal of treatment options for patients with actinic keratoses.Keywords: imiquimod, actinic keratoses, field cancerization, field therapy

  4. Femtosecond pump-probe studies of actinic-wavelength dependence in aqueous chlorine dioxide photochemistry

    The actinic or photolysis-wavelength dependence of aqueous chlorine dioxide (OClO) photochemistry is investigated using femtosecond pump-probe spectroscopy. Following photoexcitation at 310, 335, and 410 nm the photoinduced evolution in optical density is measured from the UV to the near IR. Analysis of the optical-density evolution illustrates that the quantum yield for atomic chlorine production (ΦCl) increases with actinic energy, with ΦCl=0.16±0.02 for 410 nm excitation and increasing to 0.25±0.01 and 0.54±0.10 for 335 and 310 nm excitations, respectively. Consistent with previous studies, the production of Cl occurs through two channels, with one channel corresponding to prompt (2A2 surface decrease with an increase in actinic energy suggesting that the excited-state decay dynamics are also actinic energy dependent. The studies presented here provide detailed information on the actinic-wavelength dependence of OClO photochemistry in aqueous solution.

  5. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  6. Live Cell Imaging of Actin Dynamics in the Filamentous Fungus Aspergillus nidulans.

    Schultzhaus, Zachary; Quintanilla, Laura; Hilton, Angelyn; Shaw, Brian D

    2016-04-01

    Hyphal cells of filamentous fungi grow at their tips in a method analogous to pollen tube and root hair elongation. This process, generally referred to as tip growth, requires precise regulation of the actin cytoskeleton, and characterizing the various actin structures in these cell types is currently an active area of research. Here, the actin marker Lifeact was used to document actin dynamics in the filamentous fungus Aspergillus nidulans. Contractile double rings were observed at septa, and annular clusters of puncta were seen subtending growing hyphal tips, corresponding to the well-characterized subapical endocytic collar. However, Lifeact also revealed two additional structures. One, an apical array, was dynamic on the face opposite the tip, while a subapical web was dynamic on the apical face and was located several microns behind the growth site. Each was observed turning into the other over time, implying that they could represent different localizations of the same structure, although hyphae with a subapical web grew faster than those exhibiting an apical array. The subapical web has not been documented in any filamentous fungus to date, and is separate from the networks of F-actin seen in other tip-growing organisms surrounding septa or stationary along the plasmalemma. PMID:26879694

  7. Structure-based analysis of high pressure adaptation of alpha-actin.

    Morita, Takami

    2003-07-25

    Deep-sea fishes occur to depths of several thousand meters, and at these abyssal depths encounter pressures that shallower living fishes cannot tolerate. Tolerance of abyssal pressures by deep-sea fish is likely to depend in part on adaptive modifications of proteins. However, the types of structural modifications to proteins that allow function at high pressure have not been discovered. To elucidate the mechanisms of protein adaptation to high pressure, we cloned the alpha-skeletal actin cDNAs from two abyssal Coryphaenoides species, C. armatus and C. yaquinae, and identified three amino acid substitutions, V54A or L67P, Q137K, and A155S, that distinguish these abyssal actins from orthologs of alpha-actin from non-abyssal Coryphaenoides. These substitutions, Q137K and A155S, prevent the dissociation reactions of ATP and Ca2+ from being influenced by high pressure. In particular, the lysine residue at position 137 results in a much smaller apparent volume change in the Ca2+ dissociation reaction. The V54A or L67P substitution reduces the volume change associated with actin polymerization and has a role in maintaining the DNase I activity of actin at high pressure. Together, these results indicate that a few amino acid substitutions in key functional positions can adaptively alter the pressure sensitivity of a protein. PMID:12740368

  8. Dynamin-Actin Cross Talk Contributes to Phagosome Formation and Closure.

    Marie-Anaïs, Florence; Mazzolini, Julie; Herit, Floriane; Niedergang, Florence

    2016-05-01

    Phagocytosis is a mechanism used by macrophages to internalize and eliminate microorganisms or cellular debris. It relies on profound rearrangements of the actin cytoskeleton that is the driving force allowing plasma membrane extension around the particle. The closure step of phagocytosis, however, remains poorly defined. We used a dedicated experimental setup with Total Internal Reflection Fluorescence Microscopy (TIRFM) to monitor phagosome formation and closure in three dimensions in living cells. We show that dynamin-2, which mediates the scission of endocytic vesicles, was recruited early and concomitantly with actin during phagosome formation. Dynamin-2 accumulated at the site of phagosome closure in living macrophages. Inhibition of its activity with dominant negative mutants or drugs demonstrated that dynamin-2 is implicated in actin dynamics and pseudopod extension. Depolymerization of actin led to impaired dynamin-2 recruitment or activity. Finally, we show that dynamin-2 plays a critical role in the effective scission of the phagosome from the plasma membrane. Thus, we establish that a cross talk between actin and dynamin takes place for phagosome formation and closure before dynamin functions for scission. PMID:26847957

  9. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes.

    Duan, Yi; Gotoh, Nanami; Yan, Qingshang; Du, Zhaopeng; Weinstein, Alan M; Wang, Tong; Weinbaum, Sheldon

    2008-08-12

    In this study, we demonstrate that fluid shear stress (FSS)-induced actin cytoskeletal reorganization and junctional formation in renal epithelial cells are nearly completely opposite the corresponding changes in vascular endothelial cells (ECs) [Thi MM et al. (2004) Proc Natl Acad Sci USA 101:16483-16488]. Mouse proximal tubule cells (PTCs) were subjected to 5 h of FSS (1 dyn/cm(2)) to investigate the dynamic responses of the cytoskeletal distribution of filamentous actin (F-actin), ZO-1, E-cadherin, vinculin, and paxillin to FSS. Immunofluorescence analysis revealed that FSS caused basal stress fiber disruption, more densely distributed peripheral actin bands (DPABs), and the formation of both tight junctions (TJs) and adherens junctions (AJs). A dramatic reinforcement of vinculin staining was found at the cell borders as well as the cell interior. These responses were abrogated by the actin-disrupting drug, cytochalasin D. To interpret these results, we propose a "junctional buttressing" model for PTCs in which FSS enables the DPABs, TJs, and AJs to become more tightly connected. In contrast, in the "bumper-car" model for ECs, all junctional connections were severely disrupted by FSS. This "junctional buttressing" model explains why a FSS of only 1/10 of that used in the EC study can cause a similarly dramatic, cytoskeletal response in these tall, cuboidal epithelial cells; and why junctional buttressing between adjacent cells may benefit renal epithelium in maximizing flow-activated, brush border-dependent, transcellular salt and water reabsorption. PMID:18685100

  10. Novel anti-HIV therapeutics targeting chemokine receptors and actin regulatory pathways.

    Spear, Mark; Guo, Jia; Wu, Yuntao

    2013-11-01

    The human immunodeficiency virus-1 (HIV-1) infects helper CD4(+) T cells, and causes CD4(+) T-cell depletion and immunodeficiency. In the past 30 years, significant progress has been made in antiretroviral therapy, and the disease has become manageable. Nevertheless, an effective vaccine is still nowhere in sight, and a cure or a functional cure awaits discovery. Among possible curative therapies, traditional antiretroviral therapy, mostly targeting viral proteins, has been proven ineffective. It is possible that targeting HIV-dependent host cofactors may offer alternatives, both for preventing HIV transmission and for forestalling disease progression. Recently, the actin cytoskeleton and its regulators in blood CD4(+) T cells have emerged as major host cofactors that could be targeted. The novel concept that the cortical actin is a barrier to viral entry and early post-entry migration has led to the nascent model of virus-host interaction at the cortical actin layer. Deciphering the cellular regulatory pathways has manifested exciting prospects for future therapeutics. In this review, we describe the study of HIV interactions with actin cytoskeleton. We also examine potential pharmacological targets that emerge from this interaction. In addition, we briefly discuss several actin pathway-based anti-HIV drugs that are currently in development or testing. PMID:24117829

  11. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits.

    Hocky, Glen M; Baker, Joseph L; Bradley, Michael J; Sinitskiy, Anton V; De La Cruz, Enrique M; Voth, Gregory A

    2016-05-26

    Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the "stiffness site" affects filament mechanical properties. Incorporating a magnesium ion in the "polymerization site" does not seem to require any large-scale change to an actin subunit's conformation. Binding of a magnesium ion in the "stiffness site" adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246

  12. A new mechanism for nuclear import by actin-based propulsion used by a baculovirus nucleocapsid.

    Au, Shelly; Wu, Wei; Zhou, Lixin; Theilmann, David A; Panté, Nelly

    2016-08-01

    The transport of macromolecules into the nucleus is mediated by soluble cellular receptors of the importin β superfamily and requires the Ran-GTPase cycle. Several studies have provided evidence that there are exceptions to this canonical nuclear import pathway. Here, we report a new unconventional nuclear import mechanism exploited by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). We found that AcMNPV nucleocapsids entered the nucleus of digitonin-permeabilized cells in the absence of exogenous cytosol or under conditions that blocked the Ran-GTPase cycle. AcMNPV contains a protein that activates the Arp2/3 complex and induces actin polymerization at one end of the rod-shaped nucleocapsid. We show that inhibitors of Arp2/3 blocked nuclear import of nucleocapsids in semi-permeabilized cells. Nuclear import of nucleocapsids was also reconstituted in purified nuclei supplemented with G-actin and Arp2/3 under actin polymerization conditions. Thus, we propose that actin polymerization drives not only migration of baculovirus through the cytoplasm but also pushes the nucleocapsid through the nuclear pore complex to enter the cell nucleus. Our findings point to a very distinct role of actin-based motility during the baculovirus infection cycle. PMID:27284005

  13. Actin marker lines in grapevine reveal a gatekeeper function of guard cells.

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2014-08-15

    Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells. PMID:24973589

  14. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    Kitamura, Hiroshi [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan); Matsumori, Haruka [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Kalendova, Alzbeta; Hozak, Pavel [Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague (Czech Republic); Goldberg, Ilya G. [Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224 (United States); Nakao, Mitsuyoshi [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Saitoh, Noriko [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Harata, Masahiko, E-mail: mharata@biochem.tohoku.ac.jp [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan)

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation.

  15. Titin Based Viscosity in Ventricular Physiology: An Integrative Investigation of PEVK-Actin Interactions

    Chung, Charles S; Methawasin, Methajit; Nelson, O Lynne; Radke, Michael H; Hidalgo, Carlos G; Gotthardt, Michael; Granzier, Henk L

    2011-01-01

    Viscosity is proposed to modulate diastolic function, but only limited understanding of the source(s) of viscosity exists. In-vitro experiments have shown that the proline-glutamic acid-valine-lysine (PEVK) rich element of titin interacts with actin, causing a viscous force in the sarcomere. It is unknown whether this mechanism contributes to viscosity in-vivo. We tested the hypothesis that PEVK-actin interaction causes cardiac viscosity and is important in-vivo via an integrative physiological study on a unique PEVK-knockout (KO) model. Both skinned cardiomyocytes and papillary muscle fibers were isolated from wildtype (WT) and PEVK KO mice and passive viscosity was examined using stretch-hold-release and sinusoidal analysis. Viscosity was reduced by ~60% in KO myocytes and ~50% in muscle fibers at room temperature. The PEVK-actin interaction was not modulated by temperature or diastolic calcium, but was increased by lattice compression. Stretch-hold and sinusoidal frequency protocols on intact isolated mouse hearts showed a smaller, 30–40% reduction in viscosity, possibly due to actomyosin interactions, and showed that microtubules did not contribute to viscosity. Transmitral Doppler echocardiography similarly revealed a 40% decrease in LV chamber viscosity in the PEVK KO in-vivo. This integrative study is the first to quantify the influence of a specific molecular (PEVK-actin) viscosity in-vivo and shows that PEVK-actin interactions are an important physiological source of viscosity. PMID:21708170

  16. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites.

    Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N

    2015-01-01

    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. PMID:26609810

  17. Dithiocarbamate propineb induces acetylcholine release through cytoskeletal actin depolymerization in PC12 cells.

    Viviani, Barbara; Bartesaghi, Stefano; Binaglia, Marco; Corsini, Emanuela; Boraso, Mariaserena; Grazi, Enrico; Galli, Corrado L; Marinovich, Marina

    2008-11-10

    Neurological complications as well as movement disorders are relevant symptoms in animals and humans chronically exposed to dithiocarbamates. Using rat pheochromocytoma cells differentiated by NGF (PC12), we investigated whether propineb affects acetylcholine (Ach) release and the molecular mechanisms involved. Propineb (0.001-100 nM) dose-dependently increased Ach release from PC12. Thus, 0.001-1 nM propineb-induced Ach release, reaching a maximal effect ( approximately 50%) at 0.1-1 nM. Higher concentrations of propineb (10-100 nM) caused a progressive disappearance of the effect. Chelation of extra- and intracellular Ca(2+) did not affect Ach release by propineb, which was prevented by the actin stabilizer jasplakinolide (500 nM). Accordingly, actin depolymerization was observed after exposure of differentiated PC12 to 0.1-1 nM propineb, a loss of effect was evident at higher concentrations (100 nM), and the effect was Ca(2+)-independent. Disulfiram, a related dithiocarbamate not coordinated with Zn(2+), also depolymerized actin, suggesting the involvement of the organic structure of dithiocarbamates rather than the leakage of Zn(2+). Nevertheless, propineb did not depolymerize actin in a cell-free system. These data suggest that dithiocarbamates, through the activation of intracellular cascade(s), impair cytoskeletal actin. This effect may contribute to affect synaptic vesicles processing resulting in an impaired cholinergic transmission. PMID:18822360

  18. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation

  19. Production and characterization of polyclonal antibody against a synthetic peptide from β-actin protein

    Nazila Amini

    2014-06-01

    Full Text Available Objective(s:Antibodies against actin, as one of the most widely studied structural and multifunctional housekeeping proteins in eukaryotic cells, are used as internal loading controls in western blot analyses. The aim of this study was to produce polyclonal antibody against a synthetic peptide derived from N-terminal region of β-actin protein to be used as a protein loading control in western blot and other assay systems. Materials and Methods: A synthetic peptide derived from β-actin protein was designed and conjugated to Keyhole limpet hemocyanin (KLH (and used to immunize a white New Zealand rabbit. The antibody was purified from serum by affinity chromatography column. The purity of the antibody was determined by SDS-PAGE and its ability to recognize the immunizing peptide was measured by ELISA. The reactivity of the antibody with β-actin protein in a panel of different cell lysates was then evaluated by western blot. In addition, the reactivity of the antibody with the corresponding protein was also evaluated by Immunocytochemistry and Immunohistochemistry in different samples. Results: The antibody could recognize the immunizing peptide in ELISA. It could also recognize            β-actin protein in western blot as well as in immunocytochemistry and immunohistochemistry. Conclusion: Our data suggest that this antibody may be used as an internal control in western blot analyses as well as in other immunological applications such as ELISA,immunocytochemistry and immunohistochemistry.

  20. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin.

    Timo Maier

    Full Text Available Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5-12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.