WorldWideScience

Sample records for acrylic polymers

  1. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  2. Electrochemical characterization of aminated acrylic conducting polymer

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study

  3. Electrochemical characterization of aminated acrylic conducting polymer

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-01

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  4. Electrochemical characterization of aminated acrylic conducting polymer

    Rashid, Norma Mohammad [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Heng, Lee Yook [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ling, Tan Ling [Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  5. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    Wu, Zhenning; Jiang, Juan; Benter, Maike;

    2008-01-01

    properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......Poly(2-methoxyethyl acrylate) (PMEA) is cited as the most blood compatible polyme~l]. Modification of polymer surfaces with PMEA has recently brought to improved materials for such applications[1,2]. Recently PMEA and its block copolymers with PMMA with controlled characteristics have been...... synthesized by Atom Transfer Radical Polymerization (ATRP)[3]. This enabled a surface segregation of the more hydrophilic block to the polymer/air interface and enrichment of the surface with PMEA. Here we present another way to modify a surface with this material - plasma polymerization in a low energy...

  6. Acryl polymer-silica hybrid for electron beam resist

    Electron beam (EB) resist of acryl polymer-silica hybrid was investigated for fabrication of optical elements. The EB-lithography on the hybrid thin film afforded positive pattern whose depth corresponded to EB exposure dose, indicating that the hybrid was an analog resist. The positive pattern from the hybrids could be transferred to the underlying quartz glass plate by reactive ion etching (RIE) and be coated with metal thin film by its vacuum-deposition owing to the sufficient RIE resistance and heat resistance of the hybrids. The acryl polymer component would be EB sensitive and resist RIE, and the silica matrix would play a role to raise heat resistance and compatibility with the underlying quartz. (author)

  7. Acrylic interpenetrating polymer network dielectric elastomers for energy harvesting

    Brochu, Paul; Niu, Xiaofan; Pei, Qibing

    2011-04-01

    Dielectric elastomer energy harvesters are an emerging technology that promise high power density, low cost, scalability, and the capability of fitting niche markets that have yet to be exploited. To date, materials issues that limit their overall performance have hampered the full potential of these devices. In order to supplant existing technologies, even in niche markets, dielectric elastomer generators must increase their reliability and energy density. Previous work has indicated that stiffer elastomers should be capable of higher energy densities; the increased stiffness of the elastomer films should results in lower Maxwell pressure induced strains, and thus allow the elastomer to relax further, resulting in a larger swing in capacitance and larger energy gains. In this paper we examine the use of VHB-based acrylic interpenetrating polymer network dielectric elastomers with a trimethylolpropane trimethacrylate additive network for energy harvesting purposes. We test films with varying additive content and compare their performance with highly prestrained VHB acrylic elastomers. We show that by increasing additive content, Maxwell induced strains can be suppressed and larger energy gains can be achieved at higher bias fields. Moreover, the introduction of the additive network stabilizes the highly prestrained acrylic elastomers mechanically, thereby increasing their mechanical robustness. However, the interpenetrating polymer network films suffer from an increase in viscoelastic behavior that hinders their overall performance.

  8. Plant oil-based shape memory polymer using acrylic monolith

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  9. Use of Acrylic Acid Sodium Acrylate Polymer to Maintain Cocoa Seed Viability

    Pudji Rahardjo

    2010-08-01

    Full Text Available The main problem of cocoa seed storage is moisture content of the seeds because cocoa seeds will germinate if cocoa seeds moisture content is high. The objective of this research is to maintain the cocoa seeds viability in storage using acrylic acid sodium acrylate polymer (AASAP. The function of AASAP is to absorb humidity in storage due to their ability to retain water and to prevent water loss. The experiment was conducted in a laboratory of Indonesian Coffee and Cocoa Research Institute and in Kaliwining Experimental Garden. This experiment was arranged by factorial randomized complete design, in wich AASAP dosages 0%; 0.1% (0.1 g/100 seeds; 0.2% (0.2 g/100 seeds, 0.3% (0.3 g/100 seeds, 0,4% (0,4g/100 seeds, combined with seeds storage period 1, 2, 3 and 4 weeks. The experiment used 3 replications and each repli cation used 100 seeds. Parameter of observation consisted of percentage of seeds germinated in storage, percentage of seeds infected by fungi in storage, seeds moisture content, percentage of seeds germination after storage, and early growth of cocoa seedlings. The results of the experiment showed that AASAP application with some dosages cocoa seeds storage cause to germinate in storage during 2 weeks. AASAP application with some dosages in cocoa seeds storage for 2 weeks would not result in infection by fungi and did not significantly affect seed germination after storage for 1, 2 and 4 weeks, and percentage of germination of cocoa seed after storage for 3 weeks decreased with increase dosage of AASAP. Higher dosage of AASAP would reduce early growth of cocoa seedling. Key words : Theobroma cacao, seed, acrylic acid sodium acrylate, seed storage, viabilty.

  10. Effect of acrylic polymers on physical parameters of spheronized pellets using an aqueous coating system

    Akhter Afsana; Kibria Golam

    2009-01-01

    The aim of this study was to develop ambroxol hydrochloride sustained release pellets by an extrusion-spheronization technique and subsequent coating with acrylic polymers. Acrylic polymers like Eudragit RL 30 D, Eudragit RS 30 D and Eudragit NE 30 D were used as release retarding coating polymers. The release retarding capability of these polymers was also investigated. In each case, 10% polymer on dry basis was loaded. The flow property, surface roughness as well as the drug release ...

  11. Characteristics and mechanisms of acrylate polymer damage to maize seedlings.

    Chen, Xian; Mao, Xiaoyun; Lu, Qin; Liao, Zongwen; He, Zhenli

    2016-07-01

    Superabsorbent acrylate polymers (SAPs) have been widely used to maintain soil moisture in agricultural management, but they may cause damage to plants, and the mechanisms are not well understood. In this study, seed germination, soil pot culture, hydroponic experiments, and SAPs degradation were conducted to investigate damage characteristics and mechanisms associated with SAPs application. The Results showed that SAPs inhibited maize growth and altered root morphology (irregular and loose arrangement of cells and breakage of cortex parenchyma), and the inhibitory effects were enhanced at higher SAPs rates. After 1h SAP hydrogels treatment, root malondialdehyde (MDA) content was significantly increased, while superoxide dismutase (SOD) and catalase (CAT) content were significantly decreased. Hydroponics experiment indicated that root and shoot growth was inhibited at 2.5mgL(-1) acrylic acid (AA), and the inhibition was enhanced with increasing AA rates. This effect was exacerbated by the presence of Na(+) at a high concentration in the hydrogels. Release and degradation of AA were enhanced at higher soil moisture levels. A complete degradation of AA occurred between 15 and 20 days after incubation (DAI), but it took longer for Na(+) concentration to decrease to a safe level. These results indicate that high concentration of both AA and Na(+) present in the SAPs inhibits plant growth. The finding of this study may provide a guideline for appropriate application of SAPs in agriculture. PMID:27057990

  12. SYNTHESIS AND PROPERTIES OF POLYURETHANE ACRYLATE/EPOXY RESIN INTERPENETRATING POLYMER NETWORKS

    SHI Youheng; NIE Xuzong

    1988-01-01

    In this paper, a series of interpenetrating polymer networks (IPNs) based on polyurethane acrylate and epoxy resin was prepared by simultaneous photoinitiating by both free-radical and cationic polymerization.The effects of the polyurethane acrylate prepolymer's molecular weight, various components ratio and polymerization methods on IPN's dynamic mechanical and mechanical properties were investigated.

  13. SYNTHESIS OF BIOCOMPATIBLE ACRYLIC POLYMERS HAVING ASPIRIN-MOIETIES

    LI Fumian; GU Zhongwei; FENG Xinde(S. T. Voong)

    1983-01-01

    Several new monomers, β-(acetylsalicylyloxy)ethyl methacrylate, β-(acetylsalicylyloxy)propyl methacrylate, β-(acetylsalicylyloxy)ethyl acrylate, β-hydroxy-γ-(acetylsalicylyloxy)propyl methacrylate, β-hydroxy-γ-(acetylsalicylyloxy)propyl acrylate have been synthesized from aspirin with corresponding hydroxyalkyl or glycidyl acrylates, and then polymerized by free radical initiator.

  14. New oil modified acrylic polymer for pH sensitive drug release: Experimental results and statistical analysis

    Panja, N.; Chattopadhyay, A.K.

    2014-01-01

    We report results of an experimental study, complemented by detailed statistical analysis of the experimental data, on the development of a more effective control method of drug delivery using a pH sensitive acrylic polymer. New copolymers based on acrylic acid and fatty acid are constructed from dodecyl castor oil and a tercopolymer based on methyl methacrylate, acrylic acid and acryl amide were prepared using this new approach. Water swelling characteristics of fatty acid, acrylic acid copo...

  15. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  16. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP or...

  17. Properties of Low Surface Energy Fluorocarbon Polymers with Fluoro-acrylic Resins

    LIU Xiusheng; WANG Can; LIU Lanxuan; LI Jian; GAO Wanzhen

    2008-01-01

    The low surface energy fluorocarbon polymer from the synthesized fluoro-acrylic resins was developed. Then the molecule orientation principle of nonpolar and polar functional groups in the polymers was analyzed. And the contact angles of pure water drops on the surfaces of various fluoro-monomer homopolymers and interpolymers were measured. So the relation of polymers' fluoro-content with the surface energy was determined. The distribution of fluoric functional groups in the polymers was investigated. And the test results show that though the total fluorine content of the fluorocarbon polymers is relative few, their surface energy is really low due to the enrichment of fluoro-chains on the polymers surface.

  18. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    Kim, Dul-Sun [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Woo, Jang Chang [Department of Textile Engineering, Inha University, 100 Inharo, Nam-gu Incheon 402-751 (Korea, Republic of); Youk, Ji Ho, E-mail: youk@inha.ac.kr [Department of Textile Engineering, Inha University, 100 Inharo, Nam-gu Incheon 402-751 (Korea, Republic of); Manuel, James [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs based on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.

  19. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. PMID:23008096

  20. Novel Routes for the Design of Poly((meth)acrylic acid) Containing Polymer Structures by Controlled Radical Polymerization

    Van Camp, W

    2007-01-01

    Easy preparation of specialty polymers containing poly((meth)acrylic acid) Poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) are well-known polymers in a high number of applications because of their pH-responsive nature, their hydrophylic characteristics and for their interaction with metal ions. PAA, high tech material An increasing part of high tech polymer materials introduce P(M)AA as segments in well-defined polymer structures. These can be block copolymers, polymer brushes, sta...

  1. Scientific Opinion on the safety evaluation of the active substance, acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked for use in active food contact materials

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2013-04-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked (CAS No. 117675-55-5, FCM Substance No 1022, to be used as liquid absorber in the form of fibres in absorbent pads for the packaging of fresh or frozen meat, poultry, and fish as well as fresh fruits and vegetables. The Panel considered that migration is not expected when the absorption capacity of the pads is not exceeded. Therefore no exposure from the consumption of the packed food is expected. The Panel also considered that none of these starting substances and the cross-linked polymer gives rise to concern for genotoxicity. Therefore the CEF Panel concluded that the use of the substance acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked does not raise a safety concern when used as fibres in absorber pads for the packaging of fresh or frozen meat, poultry, fish, fruits and vegetables under conditions under which the absorption capacity of the pads is not exceeded and mechanical release of the fibres from the pads is excluded.

  2. Applications of Acrylate-based Polymer and Silicone Resin on LPFG-based Devices

    2002-01-01

    Both acrylate-based polymer and silicone resin are proposed as recoating materials surrounding LPFGs for purposes of different applications. For the LPFG recoated with a thin layer of acrylate-based polymer, the range of wavelength shift as much as 60nm is expected when temperature changes from 0~100℃. As for that with surrounding material of silicone resin, the temperature stability is greatly improved depicted as the maximum wavelength shift of about 0.6nm with the same temperature variation. The former is potentially a broadband tunable band rejection filter or temperature sensor with enhanced sensitivity. And the latter could be applied as temperature insensitive filter, demultiplexer or strain sensor.

  3. Polymer effect on lithium ion dynamics in gel polymer electrolytes: Cationic versus acrylate polymer

    In this work we study different ternary polymer gel electrolytes in order to analyze the influence of the type of polymer and its concentration on the lithium ion transport. Four ternary systems are prepared, containing either poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)-imide (PDADMATFSI) or poly(methyl methacrylate) (PMMA) as polymeric component, lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) as conducting salt, and either ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) or propylene carbonate (PC) as solvent. We study the lithium ion dynamics in dependence on polymer concentration for all systems. The samples are studied by 7Li and 19F Pulsed Field Gradient (PFG) nuclear magnetic resonance (NMR) diffusion experiments of the lithium ion as well as the TFSI− anion. The diffusion coefficients of the ions decrease strongly with increasing concentration of PMMA, but they decrease less significantly for increasing concentration of PDADMATFSI. Various comparisons of diffusion coefficient ratios highlight the role of the solvent and the polymer, respectively. Spin-lattice relaxation rates give an insight about the change in short range (local) dynamics of the lithium ion. In summary, the result show that PDADMATFSI acts as an efficient ionic cluster breaker between lithium and TFSI− and is thus a far better suitable polymer in electrolytes than PMMA

  4. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method

    Eerikäinen, Hannele; Peltonen, Leena; Raula, Janne; Hirvonen, Jouni; Kauppinen, Esko I

    2004-01-01

    The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type...

  5. Influence of an Acrylic Polymer Blend on the Physical Stability of Film-Coated Theophylline Pellets

    Kucera, Shawn; Shah, Navnit H.; Malick, A. Waseem; Infeld, Martin H.; McGinity, James W.

    2009-01-01

    The purpose of this study was to investigate the physical stability of a coating system consisting of a blend of two sustained release acrylic polymers and its influence on the drug release rate of theophylline from coated pellets. The properties of both free films and theophylline pellets coated with the polymer blend were investigated, and the miscibility was determined via differential scanning calorimetry. Eudragit® RS 30 D was plasticized by the addition of Eudragit® NE 30 D, and the pre...

  6. Study of positron annihilation in three-dimensional oligoester acrylates polymers

    Distributions of positron annihilation according to life times in tree-dimensional polymers of oligoester acrylates (OEA) with different degree of crosslinking varying from 0.45 x 1021 to (8-9) x 1021 cm-3 have been measured. The data obtained have been used to study the size, concentration and distribution of free microvolumes in the polymers. Crosslinking gives rise to simultaneous suppression of two long-lived components in the measured distributions of annihilation. The effect is very clearly pronounced at high degrees of crosslinking in polymers on the basis of diacetylene-containing OEA. At a preset degree of crosslinking the influence of polymer composition and intermolecular interaction on the number of microvolumes was observed. 20 refs., 1 tab

  7. Preparation and characterization of high salts polymer electrolyte based on poly(lithium acrylate)

    TANG Ai-dong; HUANG Ke-long; PAN Chun-yue; LU Cui-hong

    2005-01-01

    Novel polymer electrolytes were prepared by highly mixing poly(lithium acrylate)(PPALi) with eutectic lithium salts of lithium acetate and lithium nitrate.Poly(lithium acrylate) was preparaed by inverse emulsion polymerization from crylic acid and LiOH.Phase transition temperatures were measured for all the eutectic lithium of binary system samples as a function of the concentration of Li(CH3 COO),and the mixtures exhibit the lowest phase transition temperatures of (448±2) K at about 50% (mass fraction) Li(CH3 COO).Thermogravimetry(TG)and X-ray diffraction(XRD) analysis indicate the formation of a novel polymer-salt complex.The highest conductivity(approximately 4.97 ×10-5S·cm-1) is found at room temperature with the electrolyte composition of eutectic mixture of about 80% (mass fraction),poly(lithium acrylate) 20% under quickly cooling condition,which is 150%higher than that under natural cooling condition.

  8. Use of acrylic acid in the synthesis of molecularly imprinted polymers for the analysis of cyproheptadine

    The synthesis and comparative characterization of molecularly imprinted polymers (MIPs) with cyproheptadine (CYP), using two different monomers, acrylic acid (AA) and methacrylic acid (MAA), are described. Polyacids (PA) [poly(methacrylic acid) (PMAA) and poly(acrylic acid) (PAA)] were obtained by the radical polymerization of MAA and AA, respectively, in dichloromethane as the porogen solvent-imprinted medium. The non-covalent imprinting process was performed via thermal decomposition of an azo-initiator at 60 deg. C, using ethylene glycol dimethacrylate as the cross-linker and 2,2'-azobis(2-methylpropionitrile) as the initiator. The selectivities of MIPs and NIPs particles were evaluated in binding experiments of the four synthesized polymeric materials (MIPaa, MIPmaa, NIPmaa and NIPaa) with CYP. The effects of monomers on: a) the surface morphology, b) the binding capacity and c) the swelling properties of imprinted and non-imprinted polymers were studied and are presented here. Polymer material morphology was assessed with scanning electron microscopy (SEM). This revealed differences in monomer function, depending on which one was employed, as well as differences in function when polymerization occurred in the presence of template or without it. Non-specific retention of the template to NIPs was higher for NIPs-PAA polymers than for NIPs-PMAA materials. In terms of specific binding (ΔQ = QMIP - QNIP), MIPmaa showed the greatest value (53.47%) in comparison with MIPaa (50.07%)

  9. Effect of acrylic polymers on physical parameters of spheronized pellets using an aqueous coating system

    Akhter Afsana

    2009-01-01

    Full Text Available The aim of this study was to develop ambroxol hydrochloride sustained release pellets by an extrusion-spheronization technique and subsequent coating with acrylic polymers. Acrylic polymers like Eudragit RL 30 D, Eudragit RS 30 D and Eudragit NE 30 D were used as release retarding coating polymers. The release retarding capability of these polymers was also investigated. In each case, 10% polymer on dry basis was loaded. The flow property, surface roughness as well as the drug release behavior of the pellets was found to be the subject of types of polymers. About 35% drug was released at the first hour in 0.1N HCl media (pH 1.2 from Eudragit RL 30 D-coated pellets but from Eudragit RS 30 D and Eudragit NE 30 D-coated pellets, only 13.75 and 2.43% drug was released, respectively. In buffer media (pH 6.8, about 54% drug was released at the first hour from Eudragit RL 30 D-coated pellets but only 64% drug was released at 10 h. From Eudragit RL 30 D- and Eudragit NE 30 D-coated pellets only 7.28 and 1.14% drug was released at 1 h, respectively, but about 5.14 and 5.86 h was required for 50% drug release from these two polymers and about 80% drug was released at 10 h. The functional groups present in the polymeric films played a significant role on in vitro release kinetics of the drug from the coated pellets. Different kinetic models like zero order, first order and Higuchi were used for fitting the drug release pattern. The Higuchi model was the best fitted for ambroxol release from the coated pellets. The drug release mechanism was derived with Korsmeyer equation.

  10. Improvement in the behavior of bromelain coupled to pNIPAm polymers containing acrylamide or acrylic acid

    Rubab Mahmood

    2014-01-01

    Bromelain was coupled to N-isopropyl acrylamide (NIPAm)polymers, synthesized using NIPAm and various concentrations of acrylamide (Ac) or acrylic acid (AAc). Incorporation of Ac/AAcinto the polymer increased the LCST (lower critical solutiontemperature) in a concentration dependent manner but AAc wasmore effective in this regard; the LCST rose to 40°C when 6 percent AAc was used. Incorporation of Ac/AAc increased the coupling of enzyme to the polymer and the η (effectiveness factor) o...

  11. Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell

    Two kinds of (microencapsulated phase change materials) MicroPCMs with acrylic-based copolymer as shell and n-dodecanol as core were successfully fabricated via suspension-like polymerization and photo-induced microencapsulation, respectively. Morphology and core–shell structure were observed by (field emission scanning electron microscope) FE-SEM. Thermal properties of the microencapsulated n-dodecanol were investigated by (differential scanning calorimeter) DSC and (thermogravimetric analysis) TGA. The results indicate that the mass ratio of core to shell has great influence on the morphology, inner structure, microencapsulated efficiency and durability of the microcapsules. Besides, the effects of various solvents and UV irridiation time on the microcapsule surface were discussed as well. In the experiment carried out, metal-ion complexation was conducted by the reaction between Mn ion and carboxyl groups on copolymer shell to enhance the performance of the microcapsules with n-dodecanol encapsulated. As the results indicate, the physicochemical properties and thermal conductivity of the shell were improved after Mn ion complexation reaction. Supercooling phenomenon of n-dodecanol was depressed to some extent. In the end, the thermo-regulated fiber containing acrylic-based copolymer microcapsules was fabricated, and thermo-regulated performance test of the fiber was also conducted. - Graphical abstract: (a)∼(d) schematic diagram of microencapsulation and (e) microcapsule with core–shell structure. - Highlights: • Microencapsulated n-dodecanol with acrylic polymer shell. • Microencapsulated n-dodecanol was fabricated by photo-induced microencapsulation. • Acrylic-based copolymer microcapsules with manganese-ion complexation

  12. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies. PMID:19452959

  13. Use of acrylic acid in the synthesis of molecularly imprinted polymers for the analysis of cyproheptadine

    Feas, Xesus [Analytical Chemistry, Nutrition and Bromatology, Campus Lugo, University of Santiago de Compostela. E-27002, Lugo, Galiza (Spain); Fente, Cristina A. [Analytical Chemistry, Nutrition and Bromatology, Campus Lugo, University of Santiago de Compostela. E-27002, Lugo, Galiza (Spain)], E-mail: cfente@lugo.usc.es; Hosseini, S. Vali [Analytical Chemistry, Nutrition and Bromatology, Campus Lugo, University of Santiago de Compostela. E-27002, Lugo, Galiza (Spain); Seijas, Julio A. [Organic Chemistry, Campus Lugo, University of Santiago de Compostela. Aptdo 280, E-27080, Lugo (Spain); Vazquez, Beatriz I.; Franco, Carlos M.; Cepeda, Alberto [Analytical Chemistry, Nutrition and Bromatology, Campus Lugo, University of Santiago de Compostela. E-27002, Lugo, Galiza (Spain)

    2009-03-01

    The synthesis and comparative characterization of molecularly imprinted polymers (MIP{sub s}) with cyproheptadine (CYP), using two different monomers, acrylic acid (AA) and methacrylic acid (MAA), are described. Polyacids (PA) [poly(methacrylic acid) (PMAA) and poly(acrylic acid) (PAA)] were obtained by the radical polymerization of MAA and AA, respectively, in dichloromethane as the porogen solvent-imprinted medium. The non-covalent imprinting process was performed via thermal decomposition of an azo-initiator at 60 deg. C, using ethylene glycol dimethacrylate as the cross-linker and 2,2'-azobis(2-methylpropionitrile) as the initiator. The selectivities of MIP{sub s} and NIP{sub s} particles were evaluated in binding experiments of the four synthesized polymeric materials (MIP{sub aa}, MIP{sub maa}, NIP{sub maa} and NIP{sub aa}) with CYP. The effects of monomers on: a) the surface morphology, b) the binding capacity and c) the swelling properties of imprinted and non-imprinted polymers were studied and are presented here. Polymer material morphology was assessed with scanning electron microscopy (SEM). This revealed differences in monomer function, depending on which one was employed, as well as differences in function when polymerization occurred in the presence of template or without it. Non-specific retention of the template to NIP{sub s} was higher for NIP{sub s}-PAA polymers than for NIP{sub s}-PMAA materials. In terms of specific binding ({delta}Q = Q{sub MIP} - Q{sub NIP}), MIP{sub maa} showed the greatest value (53.47%) in comparison with MIP{sub aa} (50.07%)

  14. Effect of an acrylic resin combined with an antimicrobial polymer on biofilm formation

    Juliê Marra

    2012-12-01

    Full Text Available OBJECTIVES: The purpose of this study was to evaluate the antimicrobial activity of an acrylic resin combined with an antimicrobial polymer poly (2-tert-butylaminoethyl methacrylate (PTBAEMA to inhibit Staphylococcus aureus, Streptococcus mutans and Candida albicans biofilm formation. MATERIAL AND METHODS: Discs of a heat-polymerized acrylic resin were produced and divided according to PTBAEMA concentration: 0 (control, 10 and 25%. The specimens were inoculated (10(7 CFU/mL and incubated at 37ºC for 48 h. After incubation, the wells were washed and each specimen was sonicated for 20 min. Replicate aliquots of resultant suspensions were plated at dilutions at 37ºC for 48 h. The number of colony-forming units (CFU was counted and expressed as log (CFU+1/mL and analyzed statistically with α=.05. RESULTS: The results showed that 25% PTBAEMA completely inhibited S. aureus and S. mutans biofilm formation. A significant reduction of log (CFU+1/mL in count of S. aureus (control: 7.9±0.8A; 10%: 3.8±3.3B and S. mutans (control: 7.5±0.7A; 10%: 5.1±2.7B was observed for the group containing 10% PTBAEMA (Mann-Whitney, p0.05, P=0.079. CONCLUSIONS: Acrylic resin combined with 10 and 25% of PTBAEMA showed significant antimicrobial activity against S. aureus and S. mutans biofilm, but it was inactive against the C. albicans biofilm.

  15. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate. PMID:20361751

  16. The stability of free radicals in densely crosslinked acrylate polymer networks

    Four types of crosslinked polymeric systems based on pentaerythritetatraacrylate (PETA) and propylene glycol - 424 -diacetonate (PGDSAA) were studied from the standpoints of free radical decay and the network density. The networks samples were prepared by two step synthesis. At first the Michael dark reaction results for multifunctional acrylates and acetoacetates in polymer network. The crosslinking continued in the second step of network formation by a photo-polymerization of the residual vinyl monomer, and pendant double bonds build up in the primary network in the first step of the synthesis. The free radical accumulation to the steady state during the irradiation, and their decay in the dark periods were studied directly in ESR spectrometer at 25 grad C. The kinetic of the radicals decay after switch of the light was used to calculate the rate constants for bimolecular termination reaction kt. These values show on the existence of long lived free radicals in the investigated polymeric networks. The stability of radicals is approximately of two decimal orders higher in networks irradiated in nitrogen compared to irradiation in air. A loss of the hyperfine structure of the spectra during repeated irradiation cycles is explained by increasing spin-spin dipolar interactions when radicals are trapped in more rigid regions of the polymer matrix. (authors)

  17. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate (PMEA Analogous Polymers for Attachment-Based Cell Enrichment.

    Takashi Hoshiba

    Full Text Available Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate (PMEA substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate (PBA and poly(tetrahydrofurfuryl acrylate (PTHFA, on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe2A and poly(2-(2-methoxyethoxy ethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe3A, which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment.

  18. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate) (PMEA) Analogous Polymers for Attachment-Based Cell Enrichment.

    Hoshiba, Takashi; Nemoto, Eri; Sato, Kazuhiro; Orui, Toshihiko; Otaki, Takayuki; Yoshihiro, Ayano; Tanaka, Masaru

    2015-01-01

    Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate) (PMEA) substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate) (PBA) and poly(tetrahydrofurfuryl acrylate) (PTHFA), on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy) ethyl acrylate-co-butyl acrylate) (30:70 mol%, PMe2A) and poly(2-(2-methoxyethoxy) ethoxy ethyl acrylate-co-butyl acrylate) (30:70 mol%, PMe3A), which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment. PMID:26288362

  19. Silicone/Acrylate Copolymers

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  20. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  1. Dye-sensitized solar cell with poly(acrylic acid-co-acrylonitrile)-based gel polymer electrolyte

    Highlights: ► A nontoxic, easily synthesized poly(acrylic acid-co-acrylonitrile) showed suitable transmittance for dye-sensitized solar cell. ► A cell with relatively large active area fabricated with this polymer material showed acceptable efficiency. ► The gel polymer matrix affected the charge recombination, I3− diffusion, double layer capacitance, and electron lifetime in the cell. - Abstract: A non-conducting, nontoxic poly(acrylic acid-co-acrylonitrile) (PAA) was prepared and used as a supporting matrix for the electrolyte of dye-sensitized solar cells (DSSCs). DSSCs of active area 0.80 cm × 1.10 cm fabricated with PAA, 0.5 M LiI, 0.05 M I2, 0.5 M 3-tert-butylpyridine, and 0.1 M 1-methyl-3-propylimidazolium iodide in 3-methoxypropionitrile solvent showed an average solar energy conversion efficiency of 1.61% under simulated sunlight illumination of 100 mW cm−2, AM 1.5. The effects of the gel polymer matrix on the electrochemical properties of DSSCs were studied using the electrochemical impedance spectroscopy. Relative to the non-gel reference cells, the results showed a decrease in charge recombination, ionic diffusion, and double layer capacitance and an increase in electron lifetime. These results could play an important role in determining the future direction for the development of high-performance gel polymer electrolytes.

  2. Improvement in the behavior of bromelain coupled to pNIPAm polymers containing acrylamide or acrylic acid

    Rubab Mahmood

    2014-08-01

    Full Text Available Bromelain was coupled to N-isopropyl acrylamide (NIPAmpolymers, synthesized using NIPAm and various concentrations of acrylamide (Ac or acrylic acid (AAc. Incorporation of Ac/AAcinto the polymer increased the LCST (lower critical solutiontemperature in a concentration dependent manner but AAc wasmore effective in this regard; the LCST rose to 40°C when 6 percent AAc was used. Incorporation of Ac/AAc increased the coupling of enzyme to the polymer and the η (effectiveness factor of the coupled enzyme, moderately. Various studies indicate that such incorporation of hydrophilic monomers into the polymer does not impair its capacity to couple enzyme or expression of the activity of bound enzyme but seems to actually improve the stability of the enzyme against heat induced inactivation and alkaline pH.

  3. Preparation and drug-loading properties of Fe{sub 3}O{sub 4}/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    Lu, Wensheng [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China); Shen, Yuhua, E-mail: s_yuhua@163.com [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Xie, Anjian [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhang, Weiqiang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China)

    2013-11-15

    Fe{sub 3}O{sub 4}/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe{sub 3}O{sub 4} nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe{sub 3}O{sub 4} nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  4. Novel Polymers Based on Atom Transfer Radical Polymerization of 2-Methoxyethyl Acrylate

    Bednarek, Melania; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    Atom transfer radical polymerization (ATRP) has been employed in the polymerization of 2-methoxyethyl acrylate (MEA) initiated by ethyl 2-bromoisobutyrate in bulk or in toluene solution at 90– 95 C with the catalytic systems Cu(I)Br/PMDETA or HMTETA. Kinetics investigations revealed that ATRP of...

  5. Chelating compounds as potential flash rust inhibitors and melamine & aziridine cure of acrylic colloidal unimolecular polymers (CUPs)

    Mistry, Jigar Kishorkumar

    Waterborne coatings on ferrous substrates usually show flash rusting which decreases the adhesion of the coating and the corrosion products can form a stain. Chelating compounds were investigated as potential flash rust inhibitors. Compounds being evaluated include amine alcohols, diamines and sulfur containing amines. A new corrosion inhibitor 2,5-bis(thioaceticacid)-1,3,4-thiadiazole (H2ADTZ) was synthesized and its performance characteristics were evaluated. It was noted that the observed structure of 1,3,4-thiadiazolidine-2,5-dithione (also known as 2,5-dimercapto-1,3,4-thiadiazole (DMTD or DMcT)) has been previously reported in three different tautomeric forms including -dithiol and -dithione. The relative stability of each form as well as the synthesis and characterization of the structures of mono- and dialkylated forms of 5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) were examined. The methods of X-ray crystallography, NMR spectroscopy and ab-initio electronic structure calculations were combined to understand the reactivity and structure of each compound. Polymers were synthesized with a 1:7 or 1:8 ratio of acrylic acid to acrylate monomers to produce an acid rich resin. The polymers were reduced and solvent stripped to produce Colloidal Unimolecular Polymers (CUPs). These particles are typically 3-9 nanometers in diameter depending upon the molecular weight. They were then formulated into a clear coating with either a melamine (bake) or an aziridine (ambient cure) and then cured. The melamine system was solvent free, a near zero VOC and the aziridine system was very low to near zero VOC. The coatings were evaluated for their MEK resistance, adhesion, hardness, gloss, flexibility, wet adhesion, abrasion and impact resistance properties.

  6. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC).

    Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed. PMID:26977183

  7. Preparation and characterization of poly(lithium acrylate-arcylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes

    PAN Chun-yue; YUAN Yun-lan; CHEN Zhen-hua; XU Xian-hua; ZHANG Jian

    2005-01-01

    Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4):n(LiNO3):n(LiBr)=1.6:3.8:1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes were prepared with poly(lithium acrylate-acrylonitrile) and LiClO4-LiNO3-LiBr eutectic salts. The effect of LiClO4-LiNO3-LiBr eutectic salts content on the conductivity of solid polymer electrolytes was studied by alternating current impedance method, and the structures of eutectic salts and solid polymer electrolytes were characterized by differential thermal analysis, infrared spectroscopy and X-ray diffractometry. The results show that the room temperature conductivity of LiClO4-LiNO3-LiBr eutectic salts reaches 3.11×10-4 S·cm-1. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes possess the highest room temperature conductivity at 70% LiClO4-LiNO3-LiBr eutectic salts content, and exhibit lower glass transition temperature of 75 ℃ compared with that of poly(lithium acrylate-acrylonitrile) of 105 ℃. A complex may be formed in the solid polymer electrolytes from the differential thermal analysis and infrared spectroscopy analysis. X-ray diffraction results show that the poly(lithium acrylate-acrylonitrile) can suppress the crystallization of eutectic salts in this system.

  8. Preparation of polymer/LDH nanocomposite by UV-initiated photopolymerization of acrylate through photoinitiator-modified LDH precursor

    Hu, Lihua; Yuan, Yan [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Wenfang, E-mail: wfshi@ustc.edu [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-02-15

    Graphical abstract: This is the HR-TEM micrograph of UV cured nanocomposite at 5 wt% LDH-2959 loading for a-5 sample. The dark lines are the intersections of LDH platelets. It can be seen that samples a-5 dispersed in the polymer matrix and lost the ordered stacking-structure and show the completely exfoliation after UV curing. This can be explained by the fact that the sample a-5 only containing LDH-2959 exhibited a relative lower photopolymerization rate, which was propitious to further expand the LDH intergallery to form the exfoliated structure. Research highlights: {yields} The UV cured polymer/LDH nanocomposites were prepared through the photopolymerization initiated by the photoinitiator-modified LDH precursor, LDH-2959. {yields} The exfoliated UV cured nanocomposites were achieved in the presence of LDH-2959 only. However, the UV cured nanocomposites prepared using both LDH-2959 and Irgacure 2959 showed the intercalated structure. {yields} Compared with the pure polymer, the exfoliated polymer/LDH nanocomposite showed remarkable enhanced thermal stability and mechanical properties because of their well dispersion in the polymer matrix. -- Abstract: The exfoliated polymer/layered double hydroxide (LDH) nanocomposite by UV-initiated photopolymerization of acrylate systems through an Irgacure 2959-modified LDH precursor (LDH-2959) as a photoinitiator complex was prepared. The LDH-2959 was obtained by the esterification of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, following by the addition reaction with 3-(2,3-epoxypropoxy)propyltrimethoxysilane (KH-560), finally intercalation into the sodium dodecyl sulfate-modified LDH. For comparison, the intercalated polymer/LDH nanocomposite was obtained with additive Irgacure 2959 addition. From the X-ray diffraction (XRD) measurements and HR-TEM observations, the LDH lost the ordered stacking-structure and well dispersed in the polymer matrix at 5 wt% LDH-2959

  9. Preparation of polymer/LDH nanocomposite by UV-initiated photopolymerization of acrylate through photoinitiator-modified LDH precursor

    Graphical abstract: This is the HR-TEM micrograph of UV cured nanocomposite at 5 wt% LDH-2959 loading for a-5 sample. The dark lines are the intersections of LDH platelets. It can be seen that samples a-5 dispersed in the polymer matrix and lost the ordered stacking-structure and show the completely exfoliation after UV curing. This can be explained by the fact that the sample a-5 only containing LDH-2959 exhibited a relative lower photopolymerization rate, which was propitious to further expand the LDH intergallery to form the exfoliated structure. Research highlights: → The UV cured polymer/LDH nanocomposites were prepared through the photopolymerization initiated by the photoinitiator-modified LDH precursor, LDH-2959. → The exfoliated UV cured nanocomposites were achieved in the presence of LDH-2959 only. However, the UV cured nanocomposites prepared using both LDH-2959 and Irgacure 2959 showed the intercalated structure. → Compared with the pure polymer, the exfoliated polymer/LDH nanocomposite showed remarkable enhanced thermal stability and mechanical properties because of their well dispersion in the polymer matrix. -- Abstract: The exfoliated polymer/layered double hydroxide (LDH) nanocomposite by UV-initiated photopolymerization of acrylate systems through an Irgacure 2959-modified LDH precursor (LDH-2959) as a photoinitiator complex was prepared. The LDH-2959 was obtained by the esterification of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, following by the addition reaction with 3-(2,3-epoxypropoxy)propyltrimethoxysilane (KH-560), finally intercalation into the sodium dodecyl sulfate-modified LDH. For comparison, the intercalated polymer/LDH nanocomposite was obtained with additive Irgacure 2959 addition. From the X-ray diffraction (XRD) measurements and HR-TEM observations, the LDH lost the ordered stacking-structure and well dispersed in the polymer matrix at 5 wt% LDH-2959 loading. The glass

  10. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wu, Sheng-Yen [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30043, Taiwan (China); Wei, Ming-Hsiung, E-mail: ccma@che.nthu.edu.tw [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Tao Yuan 32546, Taiwan (China)

    2010-05-07

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO{sup -}NA{sup +}) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  11. Poly(lauryl acrylate) and poly(stearyl acrylate) grafted multiwalled carbon nanotubes for polypropylene composites

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Hvilsted, Søren

    2014-01-01

    , polymerizations of lauryl or stearyl acrylate were performed, resulting in two novel polymer modifications on the MWCNT (poly(lauryl acrylate) or poly(stearyl acrylate)). The method was found to give time dependent loading of polymers as a function of time (up to 38 wt% for both acrylates), and showed a plateau...... were found to be substantially improved, where poly(lauryl acrylate) was found to be the superior surface modification, resulting in a conductive composite....

  12. Polymer radiation curing: polyolefins and acrylics. January 1970-December 1987 (citations from the NTIS data base). Report for January 1970-December 1987

    This bibliography contains citations concerning electromagnetic radiation curing of polyolefin and acrylic polymeric resins. Processes for crosslinking by gamma, ultraviolet, and infrared radiation are emphasized; however, microwave, laser, vacuum irradiation, and ionization radiation are examined as well. The influence of radiation induced polymer crosslinking on such properties as thermal conductivity, stress/strain, electrical conductivity, tensile and impact strength is also included. (This updated bibliography contains 231 citations, 15 of which are new entries to the previous edition.)

  13. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate) (PMEA) Analogous Polymers for Attachment-Based Cell Enrichment

    Hoshiba, Takashi; Nemoto, Eri; Sato, Kazuhiro; Orui, Toshihiko; Otaki, Takayuki; Yoshihiro, Ayano; Tanaka, Masaru

    2015-01-01

    Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate) (PMEA) substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investiga...

  14. Study on Crosslinkable Urethane/Styrene-acrylic Polymer Composite Emulsion%交联型聚氨酯/苯丙树脂复合乳液的研究

    2001-01-01

    The Crosslinkable polyurethane/styrene-acrylic polymer composite emulsion was obtained by mixing the styrene-acrylic polymer emulsion incorporating DAAM with the polyurethane dispersion con taining hydrazine group. The influence of the amount of DAAM on styrene-acrylic polymer emulsion was studied. The crosslinking reaction between keto group and hydrazine group was proved by FTIR and TEM (transimission electron microscope) technology. Studies on the film properties show that water-resistance, solvent-resistance, tensile strength and elongation at break of the emulsion film were all improved due to the crosslinking reaction.%将双丙酮丙烯酰胺(DAAM)参与共聚的苯丙乳液与含有肼基的聚氨酯水分散体混合后,得到了交联型聚氨酯/苯丙树脂复合乳液。研究了DAAM的用量对苯丙乳液的影响。用傅里叶红外光谱和透射电镜证实了酮羰基与肼基之间发生了交联反应。对乳液膜性能的研究结果表明,交联反应提高了乳液膜的耐水性、耐溶剂性、断裂强度、断裂伸长率。

  15. Acrylic resins. Part II. Methacrylate polymers (citations from NTIS data base). Report for 1964--Mar 1976

    Polymethyl methacrylate, polymethacrylic acid, and all other methacrylate and methacrylic polymers, copolymers, and resins are covered in Part 2 of this bibliography. The citations include references concerning physical, chemical, and mechanical properties, synthesis, polymerization and processing. (This updated bibliography contains 172 abstracts, 25 of which are new entries to the previous edition.)

  16. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    2010-07-01

    ... premanufacturing notification under 40 CFR 723.250. Polymers exempted can be used as dispensers, resins, fibers... given in 40 CFR 723.250(b), are not automatically excluded by 40 723.250(d), and meet the tolerance exemption criteria in 40 CFR 723.250(e)(1), 40 CFR 723.250 (e)(2) or 40 CFR 723.250(e)(3)....

  17. Sub-nanoscale nanoimprint fabrication of atomically stepped glassy substrates of silicate glass and acryl polymer

    Yoshimoto, Mamoru

    2015-11-01

    In the nanoimprint process, the resolution limit of patterning has attracted much attention from both scientific and industrial aspects. In this article, we briefly review the main achievements of our research group on sub-nanoscale nanoimprint fabrication of atomically patterned glassy substrates of oxide glass and polymer. By applying the sapphire (α-Al2O3 single crystal) wafers with self-organized nanopatterns of atomic steps as thermal nanoimprinting molds, we successfully transferred their nanoscale patterns onto the surfaces of glassy substrates such as soda-lime silicate glasses and poly(methyl methacrylate) polymers. The surfaces of nanoimprinted glassy materials exhibited regularly arrayed atomic stairs with 0.2-0.3 nm step height, which were in good agreement with the sub-nanopatterns of sapphire molds. These atomically stepped morphologies on the glassy substrates were found to be stable for about 1 year.

  18. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel

    Kim, Sungwon; Kim, Ji Young; Huh, Kang Moo; Acharya, Ghanshyam; Park, Kinam

    2008-01-01

    Hydrotropic polymers (HPs) and their micelles have been recently developed as vehicles for delivery of poorly water-soluble drugs, such as paclitaxel (PTX), by oral administration. The release of PTX from HP micelles, however, was slow and it took more than a day for complete release of the loaded PTX. Since the gastrointestinal (GI) transit time is known to be only several hours, pH-sensitive HP micelles were prepared for fast release of the loaded PTX responding to pH changes along the GI t...

  19. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    One-dimensional alternative chains of two lanthanum complexes: [La(L1)3(CH3OH)(H2O)2].5H2O (L1=anion of α-cyano-4-hydroxycinnamic acid ) 1 and [La(L2)3(H2O)2].3H2O (L2=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C31H36LaN3O17, triclinic, P-1, a=9.8279(4)A, b=11.8278(5)A, c=17.8730(7)A, α=72.7960(10)o, β=83.3820(10)o, γ=67.1650(10)-bar , Z=2, R1=0.0377, wR2=0.0746; for 2: C33H37LaO14, triclinic, P-1, a=8.7174(5)A, b=9.9377(5)A, c=21.153(2)A, α=81.145(2)o, β=87.591(2)o, γ=67.345(5)o, Z=2, R1=0.0869, wR2=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two η3-O bridges and four bridges (two η2-O and two η3-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands

  20. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    Liangming Wei; Changxin Chen; Zhongyu Hou; Hao Wei

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dim...

  1. All-acrylic film-forming colloidal polymer/silica nanocomposite particles prepared by aqueous emulsion polymerization.

    Fielding, Lee A; Tonnar, Jeff; Armes, Steven P

    2011-09-01

    The efficient synthesis of all-acrylic, film-forming, core-shell colloidal nanocomposite particles via in situ aqueous emulsion copolymerization of methyl methacrylate with n-butyl acrylate in the presence of a glycerol-functionalized ultrafine silica sol using a cationic azo initiator at 60 °C is reported. It is shown that relatively monodisperse nanocomposite particles can be produced with typical mean weight-average diameters of 140-330 nm and silica contents of up to 39 wt %. The importance of surface functionalization of the silica sol is highlighted, and it is demonstrated that systematic variation of parameters such as the initial silica sol concentration and initiator concentration affect both the mean particle diameter and the silica aggregation efficiency. The nanocomposite morphology comprises a copolymer core and a particulate silica shell, as determined by aqueous electrophoresis, X-ray photoelectron spectroscopy, and electron microscopy. Moreover, it is shown that films cast from n-butyl acrylate-rich copolymer/silica nanocomposite dispersions are significantly more transparent than those prepared from the poly(styrene-co-n-butyl acrylate)/silica nanocomposite particles reported previously. In the case of the aqueous emulsion homopolymerization of methyl methacrylate in the presence of ultrafine silica, a particle formation mechanism is proposed to account for the various experimental observations made when periodically sampling such nanocomposite syntheses at intermediate comonomer conversions. PMID:21776995

  2. SYNTHESIS OF SOAP-FREE ACRYLIC HYDROSOLS

    Li Jia; Zong-hui Liu; De-qing Wei

    2002-01-01

    Poly(methyl methacrylate/ethyl acrylate/acrylic acid) hydrosols were prepared by employing soap-freepolymerization, and (acrylic acid/butyl acrylate) oligomer was used as the polymeric surfactant. The effect of reactioncondition on the morphology and particle size of the hydrosols was investigated. The minimum amount of acrylic acid in thehydrosols is 2%. The maximum weight average molecular weight (Mw) of polymer that assures soap-free emulsionconversion into hydrosol is about 1.2 × 105-1.3 × 105. The particle transforming process was investigated, and an obviouschange of particle diameter and morphology was observed.

  3. Surface Coating of Epoxy Acrylate Polymer on Teak Block Parquet (Tectona Grandis L.f.) by Ultra Violet Irradiation

    An experiment on surface coating of teak block parquet (Tectona Grandis L.f.) has been conducted using epoxy acrylate resin with the trade name of Laromer EA-81. Resin was used as the coating materials after being added with tripropylene glycol diacrylate (TPGDA) and photoinisiator Darocur 1173. Irradiation was conducted using UV light at the conveyor speed of 2, 3, 4, and 5 m/min. Observed parameter were glossyness, adhesion, hardness, abrasion resistance and chemical, solvent and stain resistance. The result of the epoxy acrylate films obtained has excellent adhesion, hardness, glossyness and has good chemicals, solvent, and stain resistance except to 10 % sodium hydroxide. The coating materials of formulations II (30 % w/w TPGDN) produced better coating compared with formulation I (20 % w/w TPGDN), either for performance and film properties point of view. (author)

  4. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    Highlights: ► n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). ► Microcapsules using divinylbenzene as crosslinking agent have better quality. ► Microcapsule with butyl methacrylate–divinylbenzene has highest latent heat. ► Microcapsule with butyl methacrylate–divinylbenzene has greatest thermal stability. ► Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA–DVB polymer was up to 248 °C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  5. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    Qiu, Xiaolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin; Chu, Xiaodong; Li, Xuezhu [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@tsinghua.edu.cn [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). Black-Right-Pointing-Pointer Microcapsules using divinylbenzene as crosslinking agent have better quality. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has highest latent heat. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has greatest thermal stability. Black-Right-Pointing-Pointer Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA-DVB polymer was up to 248 Degree-Sign C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  6. Relationship between the Composition of Polymer of n-Alkyl Substituted Acrylate and Vinyl Amine and Their Performance on Pour Point Depression

    Jiang Qingzhe; Luo Fangmin; Song Zhaozheng; Ke Ming

    2005-01-01

    Polymer of n-alkyl substituted acrylate (PA) with the alkyl side chains C16- 30 were synthesized.Their crystallinity, solubility and effect on pour point depression were studied. Results showed that only carbon atoms located far away from polar groups of PA pour point depressants participated in crystallization.When the number of carbon atoms that participated in crystallization is about three fourths of the average carbon number of wax in crude, the effect of PA is the best. The molecular weight distribution of PA pour point depressant has little influence on the effect of pour point depression, and the average molecular weight of PA in the range of (1.5- 2.2)× 104 shows the best effect. The introduction of polar groups into the molecule of PA can improve its performance. However, a too high content of polar groups in PA would cause deterioration, and even lead to loss of PA's performance for pour point depression.

  7. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries.

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  8. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed. PMID:26909074

  9. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers.

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed. PMID:26909074

  10. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  11. Occupational fingertip eczema from acrylates in a manicurist

    Denitza Zheleva; Razvigor Darlenski

    2015-01-01

    Occupational hand eczema due to acrylates present in the workplace is a disease frequently reported among dentists, printers, and fiberglass workers. Acrylate monomers are used in the production of a great variety of polymers, including nail cosmetics. Our case report demonstrates a rare clinical presentations of allergic contact dermatitis from acrylic nails. Our patient was working as a manicurist and the diagnostic analyses revealed sensitation to some of the (meth) acrylate compounds of h...

  12. Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts

    Highlights: • Properties of freshly cast and aged poly(AN-co-BuA) – LiTFSI electrolytes are studied. • For fresh electrolytes, conductivity increases and Tg decreases with increasing salt content. • Ageing of polymer-in-salt electrolytes results in a drop of conductivity and a rise of Tg. • Ageing effects can be explained by changes of properties of amorphous salt domains. • Precipitation of salt is observed in electrolytes containing over 84 wt.% of LiTFSI. • Electrolytes with mixture of LiI and LiTFSI are more stable than those with LiTFSI only. -- Abstract: Polymer electrolytes composed of an acrylonitrile and butyl acrylate copolymer poly(AN-co-BuA) with addition of LiN(CF3SO2)2 (LiTFSI) or LiI and LiTFSI salt mixture are studied by impedance spectroscopy, DSC, Raman spectroscopy, X-ray diffraction, SEM and TEM. Impedance study shows that the ionic conductivity of the electrolytes containing LiTFSI is strongly dependent on the salt content and transition from “salt-in-polymer” to “polymer-in-salt” regime is observed at high salt content. Gradual changes of physical properties of the studied polymer electrolytes are observed in the course of their prolonged storage under argon atmosphere. These include the increase of glass transition temperature and decrease of ionic conductivity. In order to study the effects of this ageing process, measurements on samples of electrolyte films were repeated after several months. Precipitation of salt, which occurred at the nanometer length scale is observed with the aid of electron microscopy in electrolytes containing more than 84 wt.% of salt. Crystalline salt is not observed in electrolytes with lower amount of salt – however, the results indicate the structural changes of salt aggregates, which strongly influence transport of ions through the electrolyte. For preparation of electrolytes with mixed LiTFSI and LiI salts, a mixture of salts (16 wt.% LiI, 84 wt.% LiTFSI) is used, which exhibits the

  13. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

  14. Radiation sensitive acrylate composition

    This application relates to radiation-sensitive compositions and more particularly to such compositions comprising acrylated esters. As used in this specification, the term acrylated esters refers to either acrylic or methacrylic acid resins. 3 tabs

  15. Pyrolysis of carbonaceous particles and properties of Carbonaceous-g-Poly (acrylic acid-co-acrylamide superabsorbent polymer for agricultural applications

    Ghazali S.

    2016-01-01

    Full Text Available Utilisation of fertilizer and water are very important in determining the production of agriculture nowadays. The excessive use of fertilizer in plantation somehow could leads to environmental pollution. The present study reported a synthesis of controlled release water retention (CRWR fertilizer coating with superabsorbent polymer (SAPs. Superabsorbent polymer (SAPs are polymers that have ability to absorb and retain large amounts of water relative to their own mass. The presence of coating layer of SAPs on fertilizer granules was believed could reduce excessive used of fertilizer by controlling their dissolution rates and also reduce the environmental pollution. In this study, the effect on the addition of carbonaceous filler in SAPs on the water absorbency was also be compared with control SAPs (without carbonaceous particles. In this study, the carbonaceous filler were obtained from pyrolysis process of empty fruit bunch (EFB biomass. The synthesized of SAPs and carbonaceous-SAPs were carried out via solution polymerization technique by using monomer of poly(acrylic acid (AA, acrylamide (AM, cross linker, methylene bisacrylamide (MBA and initiator, ammonium peroxodisulfate (APS that partially neutralized with sodium hydroxide (NaOH. The CRWR fertilizer was later be prepared by coated the fertilizer granule with SAPs and carbonaceous-SAPs. The water absorbency, morphology and the bonding formation of both CRWR fertilizer were investigated by using tea-beg method, Scanning Electron Microscopy (SEM and Fourier Transform Infrared Spectrophotometer (FTIR, respectively. Moreover, the water retention studies was conducted in order to investigate the efficiency of CRWR coated with SAP and carbonaceous-SAP in retaining the water content in different soil (organic and top soil. Based on the results, the CRWR fertilizer that was coated with carbonaceous-SAP had higher water absorbency value than the CRWR fertilizer without carbonaceous-SAP. Meanwhile

  16. 聚丙烯酸-腐植酸钠复合高吸水树脂的合成研究∗%Study on the Synthesis of Poly Acrylic Acid-sodium Humate Composite Super Absorbent Polymer

    李东芳; 杜明华

    2015-01-01

    该研究采用不除去丙烯酸中阻聚剂及不通氮气的工艺,以丙烯酸、腐植酸钠为原料,通过水溶液聚合法制备了聚丙烯酸-腐植酸钠复合高吸水树脂。研究结果表明:该复合高吸水树脂在丙烯酸的中和度为60%,腐植酸钠用量为1.0g,引发剂过硫酸钾用量为55mg,交联剂N,N′-亚甲基双丙烯酰胺用量为20mg时,吸蒸馏水量最大,为1200 g/g。%The poly acrylic acid-sodium humate composite super absorbent polymer was synthesized by aqueous solution polymerization through the technology of no nitrogen and not removing polymerization inhibitor in acrylic acid. In the synthesis process, acrylic acid and sodium humate were as monomer. The study results showed that when the neutralization degree of acrylic acid was 60%,the dosage of sodium humate was 1. 0g,the dosage of initia-tor( potassium persulfate) was 55mg, and the dosage of crosslinking agent ( N, N′-methylenebisacrylamide) was 20mg,the highest distilled water-absorbing capacity of the composite super absorbent polymer was 1200g/g.

  17. Unusually Stable Hysteresis in the pH-Response of Poly(Acrylic Acid) Brushes Confined within Nanoporous Block Polymer Thin Films.

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2016-06-01

    Stimuli-responsive soft materials are a highly studied field due to their wide-ranging applications; however, only a small group of these materials display hysteretic responses to stimuli. Moreover, previous reports of this behavior have typically shown it to be short-lived. In this work, poly(acrylic acid) (PAA) chains at extremely high grafting densities and confined in nanoscale pores displayed a unique long-lived hysteretic behavior caused by their ability to form a metastable hydrogen bond network. Hydraulic permeability measurements demonstrated that the conformation of the PAA chains exhibited a hysteretic dependence on pH, where different effective pore diameters arose in a pH range of 3 to 8, as determined by the pH of the previous environment. Further studies using Fourier transform infrared (FTIR) spectroscopy demonstrated that the fraction of ionized PAA moieties depended on the thin film history; this was corroborated by metal adsorption capacity, which demonstrated the same pH dependence. This hysteresis was shown to be persistent, enduring for days, in a manner unlike most other systems. The hypothesis that hydrogen bonding among PAA units contributed to the hysteretic behavior was supported by experiments with a urea solution, which disrupted the metastable hydrogen bonded state of PAA toward its ionized state. The ability of PAA to hydrogen bond within these confined pores results in a stable and tunable hysteresis not previously observed in homopolymer materials. An enhanced understanding of the polymer chemistry and physics governing this hysteresis gives insight into the design and manipulation of next-generation sensors and gating materials in nanoscale applications. PMID:27172428

  18. Synthesis of acrylic prepolymer

    An acrylic prepolymer was synthesized from glycidyl methacrylate (GMA), butyl methacrylate (BMA), methyl methacrylate (MMA) and acrylic acid (AA). Butyl acetate (BAc), benzoyl peroxide (BzO), 4-methoxyphenol (MPh) and triethylamine (TEA) were used as solvent, initiator, inhibitor and catalyst respectively. Observations of the synthesis leading to the formation of acrylic prepolymer are described. (author)

  19. Palm oil based polyols for acrylated polyurethane production

    Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)

  20. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent. PMID:24106807

  1. Characterization and Absorbing Properties of Oil Palm Empty Fruit Bunch Filled Poly (Acrylic Acid-co-Acrylamide) Super absorbent Polymer Composites

    Oil palm empty fruit bunch graft poly (acrylic acid-co-acrylamide) super absorbent composite (OPEFB-g-(PAA-co-PAM) SAPC) was synthesized by graft copolymerization of the acrylic acid (AA) and acrylamide (AM) comonomer onto OPEFB fibre using ammonium persulfate (APS) and N,N-methylene bisacarylamide (MBA) as an initiator and crosslinked, respectively. The absorbency in various chloride salt solutions indicated that the absorbency decreased with increasing ionic strength of the salt solutions. Moreover, the absorbency under load (AUL) of SAPC was investigated at various applied loading and results show that, AUL decreased with increasing applied loading. Infrared Spectroscopy (IR) and Thermogravimetric Analysis (TGA) were carried out to confirm the chemical structure and thermal properties of the synthesized super absorbent, respectively. (author)

  2. Thermal Polymerization of N-Butyl Acrylate

    Ingham, J. D.

    1982-01-01

    Simple new polymerization method enables production of n-butyl acrylate polymer of desired high molecular weight, without disadvantages that usually attend more conventional methods. Process, which is hybrid of thermal, solution, and emulsion polymerization methods, involves controlled thermal polymerization of monomer at moderate temperatures without use of catalysts or additives.

  3. The Evaluation of Water Sorption/Solubility on Various Acrylic Resins

    Tuna, Suleyman Hakan; Keyf, Filiz; Gumus, Hasan Onder; Uzun, Cengiz

    2008-01-01

    Objectives The absorption of water by acrylic resins is a phenomenon of considerable importance since it is accompanied by dimensional changes, a further undesirable effect of absorbed water in acrylic resins to reduce the tensile strength of the material. Solubility is also an important property because it represents the mass of soluble materials from the polymers. Methods Ten acrylic resin-based materials were evaluated: two heat cure acrylic resins (De Trey QC-20, Meliodent Heat Cure) and ...

  4. UV-Curing of Nanoparticle Reinforced Acrylates

    Polymer reinforcement by silica and alumina nanoparticles evidently yields improved surface hardness. Single mixing of nanoparticles into an acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification providing an interface between the two dissimilar materials. For example, vinyltrimethoxysilane (VTMO) can react via hydrolysis/condensation reactions with hydroxyl groups present on the inorganic surface and should bond via the polymerisation-active vinyl group to an acrylate resin through crosslinking reactions. Grafting reactions of surface OH groups and different trialkoxysilanes were studied by thermogravimetry, infrared, and multinuclear NMR spectroscopy. The copolymeri-zation of modified nanoparticles with the acrylate matrix has been investigated by 13C NMR spectroscopy. UV curing under nitrogen inertization revealed a lower reactivity of vinyl groups of VTMO-modified silica compared to grafted methacryloxypropyl-trimethoxysilane (MEMO) which showed complete conversion of olefinic carbons (signals at 120 - 140 ppm). Under conditions of oxygen inhibition, the effect of the kind and the concentration of photoinitiator on the photopoly-merization reaction was studied. Compared to neat polyacrylate coatings the nanocomposite materials exhibit markedly improved properties, e.g., heat, scratch, and abrasion resistance. However, a much better abrasion resistance was obtained for coatings containing both silica nano-particles and corundum microparticles. In particular cases, radiation curing with 172 nm photons generated by Xe excimer was performed to obtain structured polymer surfaces, i.e., matting of the reinforced acrylate coatings

  5. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    Ying Nie; Min-Feng Tang; Xiao-Dong Fan; Xiang Liu

    2008-01-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium p...

  6. The Effect of Water Acrylate Dispersion on the Properties of Polymer-Carbon Nanotube Composites / Wpływ Wodnej Dyspersji Akrylanowej Na Właściwości Kompozytów Polimer-Nanorurki Węglowe

    Zygoń P.

    2015-12-01

    Full Text Available The paper presents properties of polymer composites reinforced with carbon nanotubes (CNT containing various mixtures of dispersion. Acrylates of different particle size and viscosity were used to produce composites. The mechanical strength of composites was determined by three-point bending tests. The roughness parameter of composites was determined with a profilometer and compared with the roughness parameter determined via atomic force microscopy (AFM. Also X-ray studies (phase composition analysis, crystallite sizes determination were carried out on these composites. Measurements of the surface topography using the Tapping Mode method were performed, acquiring the data on the height and on the phase imaging. The change of intensity, crystallite size and half-value width of main reflections originating from carbon within the composites have been determined using the X-ray analysis. The density of each obtained composite was determined as well as the resistivity at room temperature. The density of composites is quite satisfactory and ranges from 0.27 to 0.35 g/cm3. Different composites vary not only in strength but also in density. Different properties were achieved by the use of various dispersions. Carbon nanotubes constituting the reinforcement for a polymer composite improve the mechanical properties and conductivity composite.

  7. Preparation and properties of pure acrylic polymer latex using novel emulsifying system%新型乳化体系下纯丙聚合物乳液的制备及性能研究

    王太林; 何金国

    2015-01-01

    The acrylic polymer latex was successfully prepared via semi-continuous seeded emulsion polymerization, using methyl methacrylat (MMA) and butyl acrylate (BA)as the monomers monobutyl itaconate (MBI) as the functional monomer, mixture of tetradecyl dimethyl hydroxy propyl betaine and octylphenol polyoxyethylene ether(OP-10) as the emulsifier and 2,2'-azobis (2-methyl propion-amidine) dihydrochloride (V-50) as the initiator. The effects of the amounts of the emulsifiers, V-50 and MBI on the properties of the latex and its film were investigated. The results showed that the optimum conditions for preparing the latex were as follows: the amounts of emulsifier, V-50 and MBI were 7%, 0.5% and 4%,respectively.%采用半连续乳液聚合法,以甲基丙烯酸甲酯(MMA),丙烯酸正丁酯(BA)为主单体,衣康酸单丁酯(MBI)为功能性单体,偶氮二异丁脒盐酸盐(V-50)为引发剂,两性表面活性剂十四烷基二甲基羟丙基甜菜碱与烷基酚聚氧乙烯醚(O P-10)复配作为乳化剂,合成了丙烯酸酯乳液。分别探讨了乳化剂,V-50和MBI的用量对乳液及乳胶膜性能的影响。结果表明当乳化剂的用量占单体质量的7%,V-50为0.5%,MBI为4%时,乳液的综合性能最佳。

  8. 新型高分子硅铁混凝剂深度处理腈纶废水研究%STUDY ON DEPTH TREATMENT OF ACRYLIC FIBER WASTEWATER BY NEW TYPE POLYMER SILICON IRON FLOCCULANT

    王烨; 蒋进元; 周岳溪; 李清雪; 段妮妮; 刘诗一

    2012-01-01

    采用自制新型氧化混凝药剂——无机氧化性高分子硅铁混凝剂( PSF)对腈纶废水生化出水进行处理,并与聚合硫酸铁、聚合氯化铝的混凝效果进行对比试验;以出水COD去除率为评价指标,通过单因素试验优化确定出适宜条件.结果表明,在初始pH为9、CaO投加量为1.0g/L、PSF和聚丙烯酰胺投加量分别为900、6mg/L的条件下,出水COD去除率可达到30%以上.采用PSF新型混凝剂可以有效去除腈纶废水生化出水中的溶解性大的难降解有机污染物,效果明显优于其它2种混凝剂,可以作为腈纶废水深度处理的一种新型预处理药剂.%Self-made new type oxidation coagulating agent- inorganic oxidizing polymer silicon iron flocculant (PSF) was used to treat the biological effluent of acrylic fiber wastewater. Through comparison testing of coagulation effect of PFS and PAC.When using the effluent COD removal rate as the evaluation index, the single factor test optimized and determined the best test condition. The results showed that: in the initial pH was 9, CaO dosage was 1.0 g/L, oxidation and coagulant dosage was 900 mg/L, PAM dosage was 6 mg/L condition, the effluent COD removal rate can reach 30% or more. PSF new type coagulating agent can effectively remove the acrylic fiber wastewater effluent solubility of refractory organic pollutants, The effect is obviously superior to the other two coagulant, it can be used a new pretreatment agent to treat deeply acrylic fiber wastewater.

  9. STUDY ON POLYMER-RARE EARTH METAL ION COMPLEXES I. FLUORESCENT PROPERTIES OF POLY(ACRYLIC ACID-CO-4-VINYLPYRIDINE)-RARE EARTH METAL COMPLEXES

    LU Hong; FANG Shibi; JIANG Yingyan

    1987-01-01

    A kind of copolymer of acrylic acid and vinylpyridine was synthesized and the fluorescent properties of the complexes of the copolymer with Eu3+ or Tb3+ were studied. It was found that the fluorescence intensity of the complexes of the copolymer with Eu3+ was 20 times as high as that of the complexes of polyacrylic acid with Eu3+ and twice as high as that of the complexes of polyvinylpyridine with Eu3+. The effects of the composition of the copolymer and the content of Eu3+ or Tb3+ in the complexes were studied.The fluorescence lifetime of the complexes was measured and it was found that two or more kinds of energy transfer mechanism existed.

  10. 21 CFR 173.5 - Acrylate-acrylamide resins.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate-acrylamide resins. 173.5 Section 173.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants...

  11. 含氟丙烯酸酯共聚乳液合成及性能研究%Synthesis and Properties of Fluorinated Acrylate Co-polymers

    李真; 李文秀

    2012-01-01

    以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)和全氟烷基丙烯酸酯等为主要原料,丙二醇为分子量调节剂,采用非离子阴离子复合乳化剂、氧化还原引发体系、超声微乳化技术,不同的加料方式制备出系列含氟丙烯酸酯乳液,并利用衰减全反射红外光谱(ATR-FTIR)对含氟丙烯酸酯共聚乳液胶膜进行了表征。采用接触角测定方法研究了含氟共聚乳液对织物整理后的表面性能变化,结果显示:乳液整理后的纯棉无纺布的拒水拒醇性大大提高,对水的接触角达到127o左右,对醇的最大接触角达到112o。乳液整理后的PP无纺布拒醇性明显改善,接触角达到101o左右。但拒水性能未见明显提高。%The series fluorinated acrylate copolymers were prepared by selected BA, MMA, AA and fluorinated monomer as the main raw materials, propylene glycol as the molecular regulator, an anion compound emulsifier, redox initiator system, with different way of feeding and pre-emulsificatiou of using ultrasonic wave technology. And the film of fluorine containing acrylate copolymer emulsion were characterized by using attenuated total reflection infrared spectrometry (ATR-FTIR). The change of surface properties of after textile finishing were measured by using the contact angle methods with containing fluorine copolymerization emulsion. The results showed that after emulsion finishing the property of water-repellency or alcohol-repellency of pure cotton non-woven fabric was greatly improved, and the contact angles of the treated cotton non-woven fabrics for water and for ethanol reached 127~ and 112~, respectively. The ethanol-repellent property of the treated PP non-woven fabrics was improved from spread to 101~ of the contact angles reached for ethanol. But water-repellent performance did not see obviously improved.

  12. Acrylic Bone Cements Modified with Starch

    Krilova, V; Vītiņš, V

    2010-01-01

    The successful result of restorative and replacement surgical operation depends significantly on properties of used bone cement. Acrylic bone cements are usually based on methylmethacrylate polymer, while monomer polymerization begins after mixing of components in mixing device and terminates in living tissue. Polymerization of methylmethacrylate is exothermic process, and temperature increase might cause tissue necrosis with concomitant implant aseptic loosening. Developed non-ionogenic and ...

  13. Late Transition Metal and Aluminum Complexes for the Polymerization of Ethene and Acrylates

    YliheikkilÀ, Katariina

    2006-01-01

    Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In ...

  14. Method of free radical polymerization of copolymerization of (meth)acrylic and vinyl monomers under control and (co)polymer produced thereby

    Lecomte, Philippe; Dubois, Philippe; Jérôme, Robert; Teyssié, Philippe; Senninger, Thierry

    1997-01-01

    PROBLEM TO BE SOLVED: To obtain a (co)polymer excellent in resistance to thermal decomposition by polymerizing or copolymerizing a monomer or monomers in the presence of an initiation system contg. a free-radical generator other than a bromoolefin and a catalyst comprising a Pd complex having an oxidation number of 0 and represented by a specific formula. SOLUTION: A Pd salt (e.g. Pd acetate), a ligand (e.g. triphenylphosphine), and a solvent (e.g. toluene) are charged into a reactor to form ...

  15. Acrylic vessel cleaning tests

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory

  16. Acrylic purification and coatings

    ,

    2012-01-01

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  17. Hydrophilic surface modification of acrylate-based biomaterials.

    Arnal-Pastor, M; Comín-Cebrián, S; Martínez-Ramos, C; Monleón Pradas, M; Vallés-Lluch, A

    2016-04-01

    Acrylic polymers have proved to be excellent with regard to cell adhesion, colonization and survival, in vitro and in vivo. Highly ordered and regular pore structures thereof can be produced with the help of polyamide templates, which are removed with nitric acid. This treatment converts a fraction of the ethyl acrylate side groups into acrylic acid, turning poly(ethyl acrylate) scaffolds into a more hydrophilic and pH-sensitive substrate, while its good biological performance remains intact. To quantify the extent of such a modification, and be able to characterize the degree of hydrophilicity of poly(ethyl acrylate), poly(ethyl acrylate) was treated with acid for different times (four, nine and 17 days), and compared with poly(acrylic acid) and a 90/10%wt. EA/AAc copolymer (P(EA-co-AAc)). The biological performance was also assessed for samples immersed in acid up to four days and the copolymer, and it was found that the incorporation of acidic units on the material surface was not prejudicial for cells. This surface modification of 3D porous hydrophobic scaffolds makes easier the wetting with culture medium and aqueous solutions in general, and thus represents an advantage in the manageability of the scaffolds. PMID:26767395

  18. BARRIER PROPERTY AND STRUCTURE OF ACRYLONITRILE/ACRYLIC COPOLYMERS

    YANG Zhenghua; LI Yuesheng

    1997-01-01

    A series of acrylonitrile (AN) copolymers with methyl acrylate (MA) or ethyl acrylate (EA) as comonomer (5-23 wt%) was prepared by free-radical copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 ℃, and those to water vapor also measured at 100% relative humidity and at 30 ℃. All the AN/acrylic copolymers are semicrystalline. As the acrylate content increase, the permeability coefficients of the copolymers to oxygen and carbon dioxide are increased progressively, but those to water vapor are decreased progressively. The gas permeability coefficients of the polymers were correlated with free-volume fractions or the ratio of free volume to cohesive energy.

  19. Optimisation of the composition of a screen-printed acrylate polymer enzyme layer with respect to an improved selectivity and stability of enzyme electrodes.

    Mersal, G A M; Khodari, M; Bilitewski, U

    2004-09-15

    Glucose oxidase (GOD) was immobilized on screen-printed platinum electrodes by entrapment in a screen printable paste polymerized by irradiation with UV-light. The influences of different additives, in particular polymers and graphite, on the sensitivity and stability of the sensor and the permeability of the enzyme layer for a possible electrochemical interferent were investigated. The chosen additives were Gafquat 755N, poly-L-lysine, bovine serum albumin (BSA), sodium dodecylsulfate (SDS), polyethylene glycol (PEG), Nafion and graphite. All additives led to increases of glucose signals, i.e. improved the sensitivity of glucose detection with Gafquat 755N, poly-L-lysine, SDS and graphite showing the strongest influences with increases by a factor 4, 6.5, 5 and 10, respectively. Ascorbic acid was used as a model interferent showing the influence of the enzyme layer composition on the selectivity of the sensor. The addition of Gafquat 755N or poly-L-lysine led to higher signals not only for glucose, but also for ascorbic acid. SDS addition already reduced the influence of ascorbic acid, which was almost completely eliminated when Nafion (5%) and PEG (10%) were added. A comparable beneficial effect on the selectivity of the sensors was also observed for the addition of 0.5% graphite. Thus, the enzyme electrodes with PEG, Nafion or graphite as additives in the enzyme layer were applied to glucose determinations in food samples and samples obtained from E. coli cultivations. PMID:15308235

  20. Synergistic effect of additives including multifunctional acrylates in wood plastic composites

    Wood Plastic Composite (WPC) was prepared with simul (soft wood, density = 0.4g/cc) and butylmethacrylate (BMA) monomer using 10% methanol as the swelling agent. Effect of additives including multifunctional acrylates such as tripropylene glycol diacrylate (TPGDA), trimethylol propane triacrylate (TMPTA), oligomer acrylates like the urethane (UA), epoxy (EA) and polyester (PEA) acrylates and N-vinyl pyrrolidone (NVP) was investigated using 1 to 3 Mrad dose at 0.8 Mrad/h. Synergistic increases in polymer loading yields was achieved in presence of the additives, particularly with the trifunctional acrylate (TMPTA). In addition, acid as well as urea were also used as co-additives and synergistic enhancement in yields of polymer loading were obtained. The synergistic polymer loading by acid addition causes substantial decrease in tensile strength of the composite; but other additives and co-additives increase both the polymer loading and the tensile strength in these systems. (author)

  1. Hyperbranched urethane-acrylates

    Tasić Srba

    2004-01-01

    Full Text Available The synthesis, characterization and UV-curing of hyperbranched urethaneacrylates (HB-UA were investigated in this study. They were evaluated as oli-gomers in model UV curable coatings. HB-UAs were synthesized by reaction of an aliphatic hyperbranched polyester of the second generation (HBRG2 and an isocyanate adduct, obtained by the reaction of isophoronediisocyana-te and different hydroxy alkyl acrylates. Their thermal properties and viscosities depend on the degree of modification of HBRG2 and the type of hydroxy alkyl acrylate used. The introduction of a flexible alkoxylated spacer between the HBP core and acrylate end groups reduces steric hindrance by moving the cross linkable acrylate groups away from the HBP core and increase its reactivity. Due to the presence of abstractable H-atoms in the α-position to the ether links, HB-UAs based on poly(ethylene oxide monoacrylate are very reactive and do not show oxygen inhibition. The obtained coatings combine a high cross linking density with flexible segments between the cross links, which results in a good compromise between hardness and flexibility and have the potential to be used in different UV-curing applications.

  2. In-situ photopolymerization of oriented liquid-crystalline acrylates

    Broer, Dirk Jan

    1990-01-01

    The scope of this thesis concerns a new method to produce oriented polymers by the in-situ photopolymerization of oriented liquid-crystalline acrylates. The desired macroscopic molecular order is already accomplished in the monomeric state prior to the polymerization. ... Zie: Summary

  3. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions. PMID:27078740

  4. Radiation-induced polymerization of acrylated systems

    Complete text of publication follows. It has been generally accepted that ionizing radiation induces free radical polymerization in acrylate compounds. It is also reported that, following primary ionization events, acrylates and methacrylates scavenge thermalized electrons to give rise to radical anions and radical cations, which undergo reactions producing the corresponding free radicals. Acrylates have received the most attention in radiation curable pressure sensitive adhesives (PSAs). 2-EHA is well known for its unique pressure-sensitive adhesive properties. An understanding of its primary mechanism of polymerization is of industrial as well as fundamental interest. High entanglement and high molecular weight between crosslinks are crucial for the high shear and peel strength, required of PSAs. Such polymers may be formed using thermal and UV-initiation in solvent or emulsion. Electron beam can also provide these properties when the monomer is polymerized at moderate dose rates and at low temperature. Pulsed electron beam provides a special advantage under conditions where the dose per pulse is below the threshold for overlap (ca. 40 Gy/pulse) and the pulse rate is high enough (>1 kHz) to maintain a quasi-heterogeneous mode at high doses rates. Maintaining low temperature in the early stages of polymerization is important in achieving good properties

  5. Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery

    Highlights: • P(MMA-co-BA)/nano-SiO2/PE based GPE was developed for high voltage lithium ion battery. • P(MMA-co-BA)/nano-SiO2/PE has uniform and interconnected pore structure. • The GPE exhibits improved ionic conductivity and compatibility with electrodes. • 5 V battery using the GPE presents excellent cyclic stability. - Abstract: Nano-SiO2 as dopant was used for preparing polyethylene-supported poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)/PE) based membrane and corresponding gel polymer electrolyte (GPE), which is applied to improve the cyclic stability of high voltage lithium ion battery. P(MMA-co-BA)/nano-SiO2/PE based membranes and corresponding GPEs were characterized with scanning electron spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, mechanical test, thermogravimetric analysis, linear sweep voltammetry, and charge/discharge test. It is found that the GPE with 5 wt.% nano-SiO2 shows the best performance. Compared to the undoped membrane, the 5 wt.% nano-SiO2 doped membrane has a better pore structure and higher electrolyte uptake, leading to the enhancement in ionic conductivity of the resulting GPE from 1.23 × 10−3 to 2.26 × 10−3 S.cm−1 at room temperature. Furthermore, the thermal stability of the doped membrane is increased from 300 to 320 °C while its decomposition potential of GPE is from 5.0 to 5.6 V (vs. Li/Li+). The cyclic stability of Li/GPE/Li(Li0.13Ni0.30Mn0.57)O2 cell at the high voltage range of 3.5 V ∼ 5.0 V is consequently improved, the capacity retention of the cell using the doped membrane is 92.8% after 50 cycles while only 88.9% for the cell using undoped membrane and 66.9% for the cell using liquid electrolyte

  6. Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly(acrylic acid)

    Guoquan Zhu; Fagang Wang; Qiaochun Gao; Yuying Liu

    2013-01-01

    In this study, a series of poly(γ-benzyl L-glutamate)/poly(acrylic acid) (PBLG/PAA) polymer blend films were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO). The structure and morphology of the polymer blend film were investigated by Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Thermal, mechanical, and chemical properties of PBLG/PAA polymer blend films were studied by Differential Scanning Calorimetry (DSC), Thermogra...

  7. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium

    Bejarano-Jimenez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Oritz-Ledon, C.A.; Chazaro-Ruiz, L.F.

    2014-01-01

    Super absorbent polymers of acrylic acid-graphene oxide (PAA-GO) were synthesized with different percentage of chemical neutralization (0, 10, and 20%) of the acrylic acid monomer before its polymerization. The influence of their swelling and adsorption/desorption capacity of cadmium ions in aqueous

  8. [Acrylic resin removable partial dentures

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  9. The study of synthesis and photocuring behaviors of organic silicon modified methylacrylate and acrylate

    Wang, Si-yuan; Zou, Ying-quan

    2012-03-01

    Ten different silicon-containing methyl acrylate and acrylate monomers were synthesized by the substitution reaction of chlorosilanes or chlorosiloxanes with 2-Hydroxyethyl methacrylate or 2-Hydroxyethyl acrylate. Using triethylamine as the catalytic agent, tetrahydrofuran as the solvent, pure products can be obtained with one-step reaction after reduced pressure distillation or column chromatography via controlling raw ratio and reaction time. In this study, one to four silicon contained methyl acrylate and acrylate monomers were synthesized with simple methd and high yield. Monomers' properties were characterized through IR, 1H-NMR, 13C-NMR and their viscosity and thermostability were also characterized. The polymers' have good performance on UV-curing and low surface energy.

  10. 两性聚羧酸类高聚物阳离子丙烯酸酯单体 DAC 的制备及其性能%Preparation and performance of cationic acrylate monomer (DAC) for amphoteric carboxylic acid polymer

    陈宝璠

    2015-01-01

    以丙烯酸甲酯(MA)与2氯乙醇(CE)为反应原料,通过酯交换反应制备了丙烯酸氯乙醇酯(CA)中间体,再将 CA 与三甲胺(TMA)水溶液反应,合成了一种用于制备两性聚羧酸类高聚物的阳离子丙烯酸酯单体(丙烯酰氧乙基三甲基氯化铵,DAC).采用 FTIR 和1 HNMR 对 DAC 结构进行了表征,并考察了 n(TMA)/n (CA)、催化剂用量、阻聚剂用量、反应温度和反应时间对 CA 转化率和 DAC 质量分数的影响.结果显示:最佳制备工艺条件为 n(TMA)/n(CA)=1.2,催化剂用量为 CA 中间体质量的4.5%,阻聚剂用量为 CA 中间体质量的0.6%,反应温度为50℃,反应时间为3 h.以 DAC 为阳离子单体,与丙烯酸(AA)、聚乙二醇单甲醚丙烯酸酯(MPEGAA)通过反相乳液共聚合制得两性聚羧酸类高聚物,该高聚物具有优异的保坍性和较高的早期抗压强度.%A cationic acrylate monomer,[2-(acryloyloxy)ethyl]trimethyl ammonium chloride,DAC),used for synthetizing amphoteric carboxylic acid polymer was prepared by reaction of 2-chloroethyl acrylate (CA)inter-mediate and trimethylamine (TMA)aqueous solution.The 2-chloroethyl acrylate (CA)intermediate was pre-pared by transesterification of methyl acrylate and 2-chloroethanol.The DAC structure was identified by means of FTIR and 1 HNMR.The influences of n (TMA)/n (CA),dosages of catalyst and polymerization inhibitor,reaction temperature and reaction time were investigated with the conversion rate of CA and mass fraction of DAC.The results show that the optimal technological conditions for the preparation includes:n(TMA)/n(CA)is 1.2,the dosage of catalyst is 4.5% and the dosage of polymerization inhibitor is 0.6%according to the mass of CA,the reaction temperature is 50 ℃ and the reaction time is 3 h.And the amphoter-ic carboxylic acid polymer was prepared by means of inverse emulsion copolymerization of DAC,acrylic

  11. Acrylic Acid and Esters Will Be Oversupply

    Zheng Chengwang

    2007-01-01

    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  12. Polymer radiation chemistry

    This article reviews some of the work carried out in the Polymer and Radiation Group at the University of Queensland over the past ten years. The objective of the work has been to investigate the relationships between polymer structure and sensitivity towards high energy radiation, including 60Co gamma radiation, electron beams and UV radiation. A range of synthetic polymers containing carboxyl groups, acrylate groups, sulfone groups, amide linkages and aromatic residues have been investigated. (author). 18 refs, 2 figs, 4 tabs

  13. BSA Hybrid Synthesized Polymer

    Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO

    2006-01-01

    Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.

  14. EFFECTS OF PHENOL RESIN ADDITIVE ON DYNAMIC MECHANICAL PROPERTIES OF ACRYLATE RUBBER AND ITS BLENDS

    Chi-fei Wu

    2003-01-01

    The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylate rubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubber and its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.

  15. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  16. Synthesis and characterization of acrylated epoxidized soybean oil for UV cured coatings

    Habib, Firdous; Bajpai, Madhu

    2011-01-01

    This paper investigates the curing of biodegradable polymer films which were synthesized from soybean oil through the ultraviolet radiation and their stability against thermal degradation. In this study the epoxidation of soybean oil has been carried out via peracetic method. Further, an epoxy acrylate resin was synthesized from the epoxidized soybean oil (ESO) by using acrylic acid monomer. Triethylamine (TEA) and hydroquinone were used as a catalyst and inhibitor respectively. The acrylatio...

  17. Synthesis of Radiation Curable Palm Oil–Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations

    Ashraf M. Salih

    2015-08-01

    Full Text Available Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA from an epoxidized palm oil product (EPOP as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  18. Preparation and properties of acrylic resin coating modified by functional graphene oxide

    Dong, Rui; Liu, Lili

    2016-04-01

    To improve the dispersion and the strength of filler-matrix interface in acrylic resin, the functional graphene oxide (FGO) was obtained by surface modification of graphene oxide (GO) by γ-methacryloxypropyl trimethoxysilane (KH-570) and then the acrylic nanocomposites containing different loadings of GO and FGO were prepared. The structure, morphology and dispersion/exfoliation of the FGO were characterized by XRD, FT-IR, Raman, XPS, SEM and TEM. The results demonstrated that the KH-570 was successfully grafted onto the surface of GO sheets. Furthermore, the corresponding thermal, mechanical and chemical resistance properties of the acrylic nanocomposites filled with the FGO were studied and compared with those of neat acrylic and GO/acrylic nanocomposites. The results revealed that the loading of FGO effectively enhanced various properties of acrylic resin. These findings confirmed that the dispersion and interfacial interaction were greatly improved by incorporation of FGO, which might be the result of covalent bonds between the FGO and the acrylic matrix. This work demonstrates an in situ polymerization method to construct a flexible interphase structure, strong interfacial interaction and good dispersion of FGO in acrylic nanocomposites, which can reinforce the polymer properties and be applied in research and industrial areas.

  19. Conformational Transition of Poly (Acrylic Acid) Detected by Microcantilever Sensing

    LI Kai; LIU Hong; ZHANG Qing-Chuan; XUE Chang-Guo; WU Xiao-Ping

    2007-01-01

    Poly (acrylic acid) (PAA) chains are grafted on one side of a microcantilever by the self-assembled method and the deflections of the microcantilever are detected as a function of medium pH from 3 to 11. It is found that when the pH varies, the microcantilever deflects because of the changing surface stress. By analysing the electrostatic repulsive effect, the surface stress change is related to the conformation transition of PAA from a collapse state to a swelling state. This method offers the interaction information among the polymer chains during the conformational transition and affords an alternative way to study conformational change of polymers.

  20. The Modification of the Acrylate Emulsion for Water-Based Coatings

    Chen Wei-Feng; Fa-Ai Zhang

    2005-01-01

    @@ 1Introduction The developments of the environment friendly materials and technology are largely promoted recently.There also come some new kinds of coatings including water-based coating, powder coating, high-solid coating and UV-cured coating[1]. The emulsion polymerization is the main method for preparing the polymer for coatings. One of the most widely used polymers is acrylate resin which is not well in some properties, such as weather resistance, endurance and water resistance[2]. We hope to improve the various properties of the acrylic emulsion by adding silicone made from tetraethyl orthosilicate(TEOS), making it better applied in coating field.

  1. Bonding auto-polymerising acrylic resin to acrylic denture teeth.

    Nagle, Susan

    2009-09-01

    This study investigated the effect of surface treatments on the shear bond strength of an auto-polymerising acrylic resin cured to acrylic denture teeth. The surface treatments included a combination of grit-blasting and\\/or wetting the surface with monomer. Samples were prepared and then stored in water prior to shear testing. The results indicated that the application of monomer to the surface prior to bonding did not influence the bond strength. Grit blasting was found to significantly increase the bond strength.

  2. FT-IR and FT-Raman studies of cross-linking processes with Ca²⁺ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - In moulding sands, Part II.

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina; Tyliszczak, Bozena

    2015-12-01

    The hardening process of moulding sands on quartz matrices bound by polymer binders containing carboxyl and hydroxyl groups can be carried out by using physical (microwave radiation, thermal holding) and chemical (Ca(2+) cations, glutaraldehyde) cross-linking agents. The highest hardening level obtain moulding sand samples containing binders in a form of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) within the microwave radiation field, for which the bending strength is of 1.6 MPa value even after 24h from ending the agent activity. The authors focused, in this study, on finding the reason of this effect. It was shown, by means of the FT-IR and FT-Raman spectroscopic methods, that the chemical adsorption process activated by microwaves plays an essential role. The applied microwaves activate the polar groups present in the polymer composition structure as well as the quartz crystals surfaces (silane groups). Then the chemical adsorption occurs in the binder-matrix system within the microwave radiation field and intermolecular lattices are formed with a participation of hydrogen bridges (SiOH⋯OC, SiOH⋯OH) and COSi type bonds. PMID:26125981

  3. Radioinduced grafting of acrylic acid on expanded polystyrene matrices

    The unfixed surface radioactive contamination for low energy β radionuclides (3H and 14C) is determined by wiping the checked surfaces with sponge of absorbent materials. The activity built up by this sponge is measured by a liquid scintillator spectrometer. In this work, a method of obtaining sponges of expanded polystyrene with hydrophobic surface by radioinduced grafting of the acrylic acid is presented. These sponges have diameters of 28 mm, thicknesses of 1.5 - 2 mm and density of 22 mg/cm3. The samples were immersed in a grafting solution with the following composition: acrylic acid 30%, Cu SO4 1%; water 69% which were deeply impregnated in repeated operations under vacuum and pressure conditions, respectively. Finally, the samples were exposed to γ radiation emitted by a 60Co source (IETI 10 000 - IFIN-HH). The dose rates were 0.3, 0.5 and 1 Mrad/h. The range of the absorbed doses was 1 - 25 Mrad. The yields of radiochemical grafting have been determined by gravimetric, spectrophotometric and radiometric methods. The grafting agent used was 3H labelled acrylic acid. The solvation capacity and the quenching characteristics of the grafted sponges in liquid scintillators, as well as the sampling yields have been analyzed as function of irradiation procedure and the percentage of grafted acrylic fragments. The superficial grafting of the acrylic acid has been carried out by the mentioned technique, leading to the increase of the wiping efficiency of the unfixed surface contaminating activity, without changes of polymer solubility in liquid scintillators and without the perturbation of the radioactivity detection process. (authors)

  4. Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis

    Bojanić Vaso

    2010-01-01

    Full Text Available Optimization of cellulose acrylate synthesis by reaction with sodium cellulosate and acryloyl chloride was carried out. Optimal conditions for conducting the synthesis reaction of cellulose acrylate were as follows: the molar ratio of cellulose/potassium-t-butoxide/acryloyl chloride was 1:3:10 and the optimal reaction time was 10 h. On the basis of elemental analysis with optimal conditions for conducting the reaction of cellulose acrylate, the percentage of substitution of glucose units in cellulose Y = 80.7%, and the degree of substitution of cellulose acrylate DS = 2.4 was determined. The grafting reaction of acrylate vinyl monomers onto cellulose in acetonitrile with initiator azoisobutyronitrile (AIBN in a nitrogen atmosphere was performed, by mixing for 5 h at acetonitrile boiling temperature. Radical copolymerization of synthesized cellulose acrylate and 4-vinylpyridine, 1-vinylimidazole, 1-vinyl-2-pyrrolidinone and 9-vinylcarbazole, cellulose-poly-4-vinylpyridine (Cell-PVP, cellulose-poly-1- vinylimidazole (Cell-PVIm and cellulose-poly-1-vinyl-2-pyrrolidinone (Cell-P1V2P and cellulose-poly-9-vinylcarbazole (Cell-P9VK were synthesized. Acrylate cellulose and cellulose grafted copolymers were confirmed by IR spectroscopy, based on elementary analysis and the characteristics of grafted copolymers of cellulose were determined. The mass share of grafted copolymers, X, the relationship of derivative parts/cellulose vinyl group, Z, and the degree of grafting copolymers of cellulose (mass% were determined. In reaction of methyl iodide and cellulose-poly-4-vinylpyridine (Cell-PVP the cellulose-1-methyl-poly-4-vinylpyridine iodide (Cell-1-Me-PVPJ was synthesized. Cellulose acrylate and grafted copolymers were obtained with better thermal, electrochemical and ion-emulation properties for bonding of noble metals Au, Pt, Pd from water solutions. The synthesis optimization of cellulose acrylate was applied as a model for the synthesis of grafted

  5. Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly(acrylic acid

    Guoquan Zhu

    2013-01-01

    Full Text Available In this study, a series of poly(γ-benzyl L-glutamate/poly(acrylic acid (PBLG/PAA polymer blend films were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO. The structure and morphology of the polymer blend film were investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. Thermal, mechanical, and chemical properties of PBLG/PAA polymer blend films were studied by Differential Scanning Calorimetry (DSC, Thermogravimetric (TG Analysis, Tensile Tests, and measurements of Surface Contact Angles. The results revealed that the introduction of PAA could exert great effects on the structure and properties of the polypeptide films.

  6. 21 CFR 177.1990 - Vinylidene chloride/methyl acrylate copolymers.

    2010-04-01

    .... (2) The weight average molecular weight of the copolymer is not less than 50,000 when determined by... described in ANSI/ASTM D3536-76, “Standard Test Method for Molecular Weight Averages and Molecular Weight... copolymers contain not more than 15 weight-percent of polymer units derived from methyl acrylate....

  7. Copolymers Formation by Photopolymerization of (Meth)acrylates Containing Dissolved Polyheteroarylenes

    Dmitriy A. Sapozhnikov; Tat'yana V. Volkova; Sakharova, Antonina A.; Gasanov, Rashid G.; Vanda Yu. Voytekunas; Abadie, Marc J. M.; Jean-Yves Sanchez; Vygodskii, Yakov S.

    2009-01-01

    Radical photopolymerization of (meth)acrylates in the presence of dissolved polyheteroarylenes has been investigated. The kinetics of radical polymerization of unsaturated monomers in the presence of polyheteroarylenes and model compounds has been studied by Differential Scanning Photocalorimetry and Infrared Spectroscopy. From the results of investigations into the kinetics and the polymer structures (Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance, Size-exclusion Chromat...

  8. Preparation and reactivity of metal-containing monomers. Communication 3. Radiation graft polymerization of Co(II), Ni(II), and Cu(II) acrylates on polyethylene

    Graft polymerization of Co(II), Ni(II), and Cu(II) acrylates was carried out on polyethylene powder subjected to prior irradiation in the air and graft copolymers were obtained with up to 1.4 mass % metal content. The graft polymerization of metal acrylates on polyethylene proceeds 10 times more slowly than in the case of acrylic acid with virtually the complete absence of thermal homopolymerization. The graft rate is independent of the concentration of the metal-containing monomer in the range from 1 to 10 mass %. The graft polymerization of acrylates is initiated by radicals formed as a result of the decomposition of the hydroperoxide groups with subsequent predominantly bimolecular termination of the growing polymer chains in the case of Co(II) and Ni(II) acrylates and monomolecular termination in the case of Cu(II) acrylate. The effective activation energies for the graft polymerization reactions were determined

  9. Radiation-initiated graft polymerization of methyl acrylate onto chrome-tanned sheepskin

    Radiation grafting method was applied to obtain leather-polymer composite. Grafting of methyl acrylate onto chrome-tanned, bluestock sheepskin was investigated under the initiatory effect of 60Co radiation of 0.20 11.50 Mrad. The percent of grafting was determined and water adsorption and shrinkage temperature measurements were carried out. It was shown that 2-4 Mrad is convenient to produce leather-polymer composite. (author)

  10. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate)

    Erika Kitakami; Makiko Aoki; Chikako Sato; Hiroshi Ishihata; Masaru Tanaka

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except fo...

  11. Synthesis and Application of a New Acrylic Ester Resin for Recycling SIPA from its Water Solution

    2005-01-01

    A new acrylic ester polymer YWB-7 resin was prepared and characterized. The properties of YWB-7 resin were compared with those of the commercial Amberlite XAD-7, Diaion HP2MG and hypercrosslinked macroporous polymer NDA-150 resins. Both surface area and micropore area of YWB-7 resin were bigger than those of XAD-7 resin and HP2MG resin. The YWB-7 resin was successfully employed to recycle 5-sodiosulfoisophthalic acids (SIPA) from its solutions with and without methanol.

  12. Desorption of biocides from renders modified with acrylate and silicone.

    Styszko, Katarzyna; Bollmann, Ulla E; Wangler, Timothy P; Bester, Kai

    2014-01-01

    Biocides are used in the building industry to prevent algal, bacterial and fungal growth on polymericrenders and thus to protect buildings. However, these biocides are leached into the environment. To better understand this leaching, the sorption/desorption of biocides in polymeric renders was assessed. In this study the desorption constants of cybutryn, carbendazim, iodocarb, isoproturon, diuron, dichloro-N-octylisothiazolinone and tebuconazole towards acrylate and silicone based renders were assessed at different pH values. At pH 9.5 (porewater) the constants for an acrylate based render varied between 8 (isoproturon) and 9634 (iodocarb) and 3750 (dichloro-N-octylisothiazolinone), respectively. The values changed drastically with pH value. The results for the silicone based renders were in a similar range and usually the compounds with high sorption constants for one polymer also had high values for the other polymer. Comparison of the octanol water partitioning constants (Kow) with the render/water partitioning constants (Kd) revealed similarities, but no strong correlation. Adding higher amounts of polymer to the render material changed the equilibria for dichloro-N-octylisothiazolinone, tebuconazole, cybutryn, carbendazim but not for isoproturon and diuron. PMID:24059976

  13. Polymer End Group Modifications and Polymer Conjugations via " Click" Chemistry Employing Microreactor Technology

    Vandenbergh, Joke; Tura, Tiago; Baeten, Evelien; Junkers, Thomas

    2014-01-01

    This study presents the development of microreactor protocols for the successful continuous flow end group modification of atom transfer radical polymerization precursor polymers into azide end-capped materials and the subsequent copper-catalyzed azide alkyne click reactions with alkyne polymers, in flow. By using a microreactor, the reaction speed of the azidation of poly(butyl acrylate), poly(methyl acrylate), and polystyrene can be accelerated from hours to seconds and full end group conve...

  14. Radiation curing silicone acrylate systems

    Radiation curing silicone systems by either ultra violet light (UV) or electron beam (EB) is introduced. The cure is based on the polymerization of the acrylic C = C double bond via a radical chain reaction. In the EB curing process a sufficient number of radicals for spontaneous polymerization is produced due to the high radiation energy whereas with UV light the energy is not as intensive thus a photo-initiator is required for a UV process. The required high local radical concentration provided by its decay. The radical generation immediate chain-growing leads to rapid and efficient crosslinking even at room temperature. It is for this reason that silicone acrylates cure immediately. All coater capable of handling 100% thermally curing silicones are suitable for the use with Goldschmidt's RC systems

  15. The electrospinning of the copolymer of styrene and butyl acrylate for its application as oil absorbent.

    Xu, Naiku; Cao, Jipeng; Lu, Yuyao

    2016-01-01

    Electrospun polystyrene materials have been employed as oil absorbents, but they have visible drawbacks such as poor strength at low temperature and unreliable integrity because of brittleness and insufficient cohesive force among fibers. Butyl acrylate can polymerize into flexible chains, and its polymer can be used as elastomer and adhesive material. Thereby it is possible to obtain the material that has better performance in comparison with electrospun polystyrene material through the electrospinning of the copolymer of styrene and butyl acrylate. In this work, a polymer was synthesized through suspension polymerization by using styrene and butyl acrylate as comonomers. The synthesis of the copolymer of styrene and butyl acrylate was verified through dissolution and hydrolysis experimental data; as well through nuclear magnetic resonance spectrometry. The viscous flow activation energy of the solution consisting of copolymer and N, N-dimethylformamide was determined via viscosity method and then adopted to establish the entanglement characteristics of butyl acrylate's chain segments. Finally, in order to electrospin the copolymer solution into fibrous membrane, the effects of monomer feed ratio and spinning parameters were investigated. The prepared fibrous membrane was found to have a potential use as oil absorbent. PMID:27610302

  16. Poly(acrylic acid) interpolymer complexation: use of a fluorescence time resolved anisotropy as a poly(acrylamide) probe

    Swift, T.; Swanson, L; Rimmer, S.

    2014-01-01

    A low concentration poly(acrylamide) sensor has been developed which uses the segmental mobility of another polymer probe with a covalently attached fluorescent marker. Interpolymer complexation with poly(acrylic acid) leads to reduced segmental mobility which can be used to determine the concentration of polymer in solution. This technique could be useful in detecting the runoff of polymer dispersants and flocculants in fresh water supplies following water purification processes

  17. Radiation curing applications of palm oil acrylates

    Various palm oil based urethan acrylate prepolymers (UP) were prepared from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following procedure derived from established methods. The products were compared with each other in term of their molecular weights (MW), viscosities, curing speed by UV irradiation, gel contents and film hardness. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers were tend to determine the molecular weights and hence viscosities of the final products of urethan acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the UV curing properties of the prepolymers. (author)

  18. Modelling and manufacture of regular microstructures with high aspect ratio in acrylic plastic

    The possibility of manufacture of microstructures with high aspect ratio in industrial acrylic plastic by the method of deep X-ray lithography is investigated. A characteristic dependence of the rate of dissolution of the polymer on the dose of the radiation absorbed is obtained. Processing regimes for the formation of deep structures were selected. A model for computation of the profile of development of structures in view of large exhibition depth was suggested. 25x25 μm through channels were obtained in sheet acrylic plastic 1000 μm thick

  19. Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.

    Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A

    2016-06-01

    Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level. PMID:26314244

  20. Synthesis of Fluorinated Polymers and Evaluation of Wettability

    Tamami Kimura

    2016-03-01

    Full Text Available Two kinds of fluorinated polymers were synthesized: an acrylate polymer having a fluorinated triethylene glycol as a pendant group (2a and a fluoroalkyl acrylate polymer (2b. The contact angle of these fluorinated polymers against water, non-fluorinated alcohols and fluorinated alcohols were evaluated. As compared with the fluoroalkyl polymer (2b, fluoroethylene glycol polymer (2a showed smaller contact angle against water and non-fluorinated alcohols. This supports the proposition that changing the alkyl chain into the ethylene glycol-type chain gave some interaction between etheric oxygen and water or non-fluorinated alcohols. In addition, fluoroalkyl acrylate polymer (2b showed remarkably low values of critical surface tension.

  1. Use of a continuous-flow microreactor for thiol-ene functionalization of RAFT-derived poly(butyl acrylate)

    Vandenbergh, Joke; Junkers, Thomas

    2012-01-01

    This study describes the synthesis of functionalized RAFT-derived poly(n-butyl acrylate) polymers via the use of a continuous-flow microreactor, in which aminolysis as well as thiol-ene reactions are executed in reaction times of just 20 minutes. Poly(n-butyl acrylate) (M-n = 3800 g mol(-1), PDI = 1.10) with a trithiocarbonate end group was prepared via a conventional RAFT process. The polymer was then functionalized via aminolysis/thiol-ene reactions in the micro-flow reactor with isobornyl ...

  2. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass.

    Swift, T; Swanson, L.; Geoghegan, M; Rimmer, S.

    2016-01-01

    Fluorescence spectroscopy on a series of aqueous solutions of poly(acrylic acid) containing a luminescent label showed that polymers with molar mass, Mn < 16.5 kDa did not exhibit a pH responsive conformational change, which is typical of higher molar mass poly(acrylic acid). Below this molar mass, polymers remained in an extended conformation, regardless of pH. Above this molar mass, a pH-dependent conformational change was observed. Diffusion-ordered nuclear magnetic resonance spectroscopy ...

  3. Synthesis and characterization of partially fluorinated poly(acryl) ionomers for polymer electrolyte membrane fuel cells and ESR-spectroscopic investigation of the radically induced degradation of model compounds; Synthese und Charakterisierung teilfluorierter Poly(acryl)-Ionomere als Polymerelektrolytmembranen fuer Brennstoffzellen und ESR-spektroskopische Untersuchung der radikalinduzierten Degradation von Modellverbindungen

    Schoenberger, Frank

    2008-07-09

    In the first part of this work different strategies for the design of sulfonated partially fluorinated poly(aryl)s are developed and synthetically realized. The applied concept is that partially fluorinated poly(aryl)s are distinguished from the nonfluorinated ones by an enhanced acidity. Moreover they possess higher bond dissociation energies of both the C-F bonds and any adjacent C-H bonds which should be associated with a gain in radical stability and thus in chemical and thermal stability. In order to investigate the influence of the chemical structure of (partially fluorinated) monomeric building blocks, homo-polymers with different structural units (with aromatic C-F bonds, C(CF3)2-bridged and/or CF3-substituted phenylene rings) are synthesized by polycondensation and structurally characterized (elemental analysis, NMR spectroscopy, gel permeation chromatography). Established organic reactions, such as the Balz-Schiemann reaction, Suzuki reaction and Ullmann's biaryl synthesis, are applied for the synthesis of the specific monomers. After sulfonation of the homo-polymers (ionically crosslinked) membranes are prepared and characterized in terms of suitability as polymer electrolyte membrane in fuel cells (ion-exchange capacity, proton conductivity, thermal and chemical stability, water uptake, dimensional change). Both the chemical nature of the monomers and their constitution in the ionomer are important for the properties of the resulting membranes. Therefore microphase-separated multiblock-co-ionomers based on hydrophilic (sulfonated) and hydrophobic (partially fluorinated) telechelic macromonomers are prepared and characterized. Both the influence of the block length and the chemical nature of the used monomers on the membrane properties are comparatively investigated. On the basis of the findings gained in this part of the work, the advantages and disadvantages of partially fluorinated ionomer membranes are analyzed and discussed. The second part of

  4. Structure and Proton Conductivity in Mixtures of Poly(acrylic acid) and Imidazole

    Yang, Han-Chang; Griffin, Philip J.; Winey, Karen I.; University of Pennsylvania Team

    2015-03-01

    Proton conductivity in polymer electrolyte membranes (PEMs) typically involves water, which requires that during operation the humidity of the PEM be carefully controlled. In contrast, anhydrous protic polymer membranes promote proton transport by incorporating heterocyclic molecules, such as imidazole and its derivatives, into acid-containing polymers. In this work, we explore the interplay between nanoscale-structure and proton conduction of poly(acrylic acid) (PAA) blended at varying compositions with 2-ethyl-4-methylimidazole (EMI). We present the glass transition temperature from differential scanning calorimetry, morphology characterization from X-ray scattering, and proton conductivity from electrical impedance spectroscopy.

  5. Investigation of UV curing reaction of dicyclopentadienyl acrylate by FT-IR

    Dicyclopentadienyl acrylate (DCPA) is characterized by low odor, low volatility, high flash point, low toxicity and low shrinkage on cure. Another advantage of DCPA is its insensitiveness to the inhibiting effect of oxygen. DCPA have wide industrial applications. It was used for the preparation of adhesives, UV-curable coatings and polymer concreted). The advantages of DCPA result from its particular structure. There are two unsaturated bonds, one acrylic double bond and one cyclic double bond, in each DCPA molecule. But, few reports on reaction behavior of the two type double bonds were issued up to date. In this paper, reaction behavior of the acrylic and the cyclic double bond of DCPA during and after LTV-curing were investigated by Fourier Transform-Infrared(FT-IR)

  6. New blends of ethylene-butyl acrylate copolymers with thermoplastic starch. Characterization and bacterial biodegradation.

    Morro, A; Catalina, F; Corrales, T; Pablos, J L; Marin, I; Abrusci, C

    2016-09-20

    Ethylene-butyl acrylate copolymer (EBA) with 13% of butyl acrylate content was used to produce blends with 10, 30 and 60% of thermoplastic starch (TPS) plasticized with glycerol. Ethylene-acrylic acid copolymer (EAA) was used as compatibilizer at 20% content with respect to EBA. The blends were characterized by X-ray diffraction, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), water-Contact Angle measurements (CA), Differential Scanning Calorimetry (DSC) and Stress-strain mechanical tests. Initiated autoxidation of the polymer blends was studied by chemiluminescence (CL) confirming that the presence of the polyolefin-TPS interphase did not substantially affect the oxidative thermostability of the materials. Three bacterial species have been isolated from the blend films buried in soil and identified as Bacillus subtilis, Bacillus borstelensis and Bacillus licheniformis. Biodegradation of the blends (28days at 45°C) was evaluated by carbon dioxide measurement using the indirect impedance technique. PMID:27261731

  7. Acrylates and methacrylates of formal-glycerine

    Present article is devoted acrylates and methacrylates of formal-glycerine. The formal-glycerine was obtained in the form of mixture of isomers 1.2 and 1.3 from glycerine and paraform with hydrochloric acid. The structure of obtained acrylates and methacrylates is studied by means of molecular refraction, element analysis and infrared spectroscopy.

  8. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide

    Graft co polymerizations of acrylamide and/or acrylic acid onto cassava starch by a simultaneous irradiation technique using gamma-rays as the initiator were studied with regard to various parameters of importance: the monomer-to-cassava starch ratio, total dose (kGy), dose rate (kGy h-1), acrylamide-to-acrylic acid ratio, and the addition of nitric acid and maleic acid as the additives. Grafting parameters were determined in relation to the water absorption of the saponified graft copolymer. The water absorption of the saponified graft copolymer in salt and buffer solutions of different ionic strengths was also measured, from which the super absorbent properties are found to be P H sensitive. The starch graft copolymers of acrylamide and acrylic acid give higher water absorption than the starch graft copolymers of either acrylamide or acrylic acid alone. The porosity of the saponified starch graft copolymers prepared by the acrylamide/acrylic acid ratios of 70:30 and 50:50 was much higher than the porosity of copolymers in terms of fine networks. Ionic strength and multi-oxidation states of the saline and buffer solutions markedly decreased the water absorption of the saponified cassava starch grafted super absorbent polymers.

  9. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    Sameoto, D.; Menon, C.

    2010-11-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance.

  10. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance

  11. Morphological alteration of microwave disinfected acrylic resins used for dental prostheses

    Popescu, M. C.; Bita, B. I.; Avram, A. M.; Tucureanu, V.; Schiopu, P.

    2015-02-01

    In this paper we aim to perform a cross section morphological characterization of an acrylic polymer used for dental prostheses subjected to microwave disinfection. The method was largely investigated and the microbiological effectiveness is well established, but there are some issues regarding the in-depth alteration of the material. In our research, the surface roughness is insignificant and the samples were not polished or refined by any means. Two groups of 7 acrylic discs (20 mm diameter, 2 mm thickness) were prepared from a heat-cured powder. Half of the samples embedded a stainless steel reinforcement, in order to observe the changes at the interfaces between the polymer and metallic wire. After the gradual wet microwave treatment, the specimens - including the controls - were frozen in liquid nitrogen and broken into pieces. Fragments were selected for gold metallization to ensure a good contrast for SEM imaging. We examined the samples in cross section employing a high resolution SEM. We have observed the alterations occurred at the surface of the acrylic sample and at the interface with the metallic wire along with the increase of the power and exposure time. The bond configuration of acrylate samples was analysed by FTIR spectrometry.

  12. 聚苯乙烯/聚丙烯酸丁酯自交联胶乳互穿聚合物网络的力学性能和动态力学性能%Mechanical and dynamic mechanical properties of self-crosslinkable latex interpenetrating polymer network based on polystyrene and poly(butyl acrylate)

    晏欣; 孙卫红; 饶秋华

    2006-01-01

    Self-crosslinkable latex interpenetrating polymer network (LIPN) based on polystyrene and poly(butyl acrylate) was prepared by seed emulsion polymerization. The results of tension tests showed that the LIPN crosslinked with diacetone acrylamide and adipyl dihydrazide had higher tensile strength than that of the corresponding latex interpenetrating polymer network and their tensile strength increased and permanent sets decreased with increasing the content of diacetone acrylamide, but the LIPN crosslinked by hydrogen and ionic bonds had much higher elongation at break and permanent set. These suggested that the interfacial covalent-bond crosslinked with diacetone acrylamide and adipyl dihydrazide could obviously improve mechanical and creep-resistant properties. The results of dynamic mechanical spectra showed that the self-crosslinkable LIPN crosslinked with diacetone acrylamide and adipyl dihydrazide had much more component compatibility and damping properties than the corresponding LIPN and the LIPN crosslinked by hydrogen and ionic bonds.%采用种子乳液聚合制备了聚苯乙烯/聚丙烯酸丁酯自交联胶乳互穿聚合物网络.拉伸实验结果表明,用双丙酮丙烯酰胺和己二酸二酰肼自交联的胶乳互穿聚合物网络(LIPN)比相应的胶乳互穿聚合物网络具有较高的拉伸强度,并且随双丙酮丙烯酰胺用量的增加,拉伸强度增加以及永久变形降低,但离子键和氢键交联的LIPN具有很高的扯断伸长率和很大的永久变形,这些说明用双丙酮丙烯酰胺和己二酸二酰肼界面共价键交联能很好地改善力学性能和抗蠕变性能.动态力学谱结果表明,用双丙酮丙烯酰胺和己二酸二酰肼交联的LIPN比相应的LIPN以及离子键和氢键交联的LIPN具有较好的组分相容性和阻尼性能.

  13. Radiopurity measurement of acrylic for DEAP-3600

    The spherical acrylic vessel that contains the liquid argon target is the most critical detector component in the DEAP-3600 dark matter experiment. Alpha decays near the inner surface of the acrylic vessel are one of the main sources of background in the detector. A fraction of the alpha energy, or the recoiling nucleus from the alpha decay, could misreconstruct in the fiducial volume and result in a false candidate dark matter event. Acrylic has low levels of inherent contamination from 238U and 232Th. Another background of particular concern is diffusion of 222Rn during manufacturing, leading to 210Pb contamination. The maximum acceptable concentrations in the DEAP-3600 acrylic vessel are ppt levels of 238U and 232Th equivalent, and 10−8 ppt 210Pb. The impurities in the bulk acrylic will be measured by vaporizing a large quantity of acrylic and counting the concentrated residue with ultra-low background HPGe detectors and a low background alpha spectrometer. An overview of the acrylic assay technique is presented

  14. Radiopurity measurement of acrylic for DEAP-3600

    Nantais, C. M.; Boulay, M. G. [Department of Physics, Engineering Physics, and Astronomy, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Cleveland, B. T. [SNOLAB, Lively, Ontario P3Y 1N2 Canada and Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada)

    2013-08-08

    The spherical acrylic vessel that contains the liquid argon target is the most critical detector component in the DEAP-3600 dark matter experiment. Alpha decays near the inner surface of the acrylic vessel are one of the main sources of background in the detector. A fraction of the alpha energy, or the recoiling nucleus from the alpha decay, could misreconstruct in the fiducial volume and result in a false candidate dark matter event. Acrylic has low levels of inherent contamination from {sup 238}U and {sup 232}Th. Another background of particular concern is diffusion of {sup 222}Rn during manufacturing, leading to {sup 210}Pb contamination. The maximum acceptable concentrations in the DEAP-3600 acrylic vessel are ppt levels of {sup 238}U and {sup 232}Th equivalent, and 10{sup −8} ppt {sup 210}Pb. The impurities in the bulk acrylic will be measured by vaporizing a large quantity of acrylic and counting the concentrated residue with ultra-low background HPGe detectors and a low background alpha spectrometer. An overview of the acrylic assay technique is presented.

  15. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  16. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  17. Occupational respiratory disease caused by acrylates.

    Savonius, B; Keskinen, H; Tuppurainen, M; Kanerva, L

    1993-05-01

    Acrylates are compounds used in a variety of industrial fields and their use is increasing. They have many features which make them superior to formerly used chemicals, regarding both their industrial use and their possible health effects. Contact sensitization is, however, one of their well known adverse health effects but they may also cause respiratory symptoms. We report on 18 cases of respiratory disease, mainly asthma, caused by different acrylates, 10 cases caused by cyanoacrylates, four by methacrylates and two cases by other acrylates. PMID:8334539

  18. Property Research of Instant Polymerization Acrylate Size Mixture%瞬时聚合丙烯酸酯浆料的性能研究

    吴长春; 武海良; 沈艳琴; 杨微

    2011-01-01

    探讨在采用瞬时聚合法直接合成固体丙烯酸酯浆料的过程中,疏水性单体丙烯酸丁酯用量对所生成丙烯酸酯浆料性能的影响.测试了不同丙烯酸丁酯用量下反应生成物的水溶性、水溶液黏度及对涤棉粗纱黏附性,并对合成的固体丙烯酸浆料进行红外表征.结果表明:在丙烯酸的中和度为50%、氧化还原引发体系中引发剂为单体量的6%时,丙烯酸丁酯为单体量的25%时合成的浆料性能最好,所生产的浆料为丙烯酸-丙烯酸钠盐-丙烯酸丁酯共聚物.%Effect of hydrophobic monomer butyl acrylate amount on acrylate size mixture property in the process of compounding solid acrylate size mixture directly by instant polymerization was discussed. Water-soluble, solution viscosity and adhesion to polyester cotton roving of polymer were tested in condition of different butyl acrylate amount. Infrared spectroscopy was done on solid acrylate size mixture. The result shows that property of the acrylate size mixture is the best,the size mixture is acrylate,acrylic acid,butyl acrylate copolymer when acrylic acid neutralization degree is 50% ,initiator content in redox initiation system is 6% ,butyl acrylate is 25%.

  19. Structural Parameters and Swelling Behavior of pH Sensitive Poly(acrylamide-co-acrylic acid) Hydrogels

    Thakur, A; Wanchoo, R. K.; Singh, P

    2011-01-01

    In the present work, hydrogels based on acrylamide (AAm) and acrylic acid (AAc), crosslinked with N,N’-methylenebisacrylamide (MBAAm) were prepared by free radical polymerization in solution. The effect of initial AAm/AAc mole ratio and nominal crosslinking ratio (moles of crosslinking agent/moles of polymer repeat unit) on the dynamic and equilibrium swelling behaviour of hydrogels was investigated. Hydrogels were characterized by the polymer volume fraction in the swollen state (ν2,s ), the...

  20. Study of Physical and Colloid-Chemical Properties of Acrylic Polyelectrolytes of “M-PAA” Series and Their Modification

    N.O Dzhakipbekova; A. B. Isa; M. F Fatkullina; E. O Dzhakipbekov

    2015-01-01

    The aim of this study is to search for the best basic technology to replace the base in the metallization of dielectrics. We studied conducting polymersacrylic polyelectrolytes. Polyelectrolytes include high molecular weight compounds containing macromolecules and ionogenic groups. Experimental studies have shown that the rational use of HSP for the regulation of colloid-chemical processes in the production should take into account the functional structure of the polymer, its conformatio...

  1. Asphaltenes-based polymer nano-composites

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  2. DSC analysis of EB-cured polyurethane-acrylate

    The gel films obtained by electron beam (EB) solid-state polymerization of urethane-acrylate prepolymers were characterized by differential scanning calorimetry (DSC). Two kinds of urethane-acrylates were synthesized by reaction of poly(butylene adipate)diol (PBAD), 4,4'-diphenylmethane diisocyanate (MDI) and 2-hydroxyethyl acrylate (HEA) for this purpose. One is a semicrystalline prepolymer (UA-251M) with a number average molecular weight (M-barn) of 3200, and the other is an amorphous one (UA-071M) with M-barn of 1450. The M-barn varied by changing M-barn of PBAD. UA-251M gel film decreased in glass transition temperature (Tg) and increased in heat capacity change (ΔCp) at Tg with increasing irradiation dose, while the Tg and ΔCp values of UA-071M gel film changed in the opposite way to those of UA-251M gel film. Above 5 Mrad, gel fraction reached more than 90 %, and the Tg and ΔCp values changed steeply for both prepolymers. This steep change in Tg and ΔCp was attributed to the crosslinking of PBAD chains as well as of terminal acryloyl groups. Since the Tg change of UA-071M gel film depends merely on the crosslinking, the crosslinking structure was evaluated using two equations which relate the shift in Tg to crosslinking. The molecular weight between crosslinking junctions was found to be larger than the M-barn of the prepolymer. The crosslinking by the EB polymerization restricted the mobility of the polymer chain less strongly than the crosslinking by the three-functional isocyanate and α,ω-dihydroxy(polypropylene oxide) with a molecular weight of 1000 did. (author)

  3. DSC analysis of EB-cured polyurethane-acrylate

    Ando, Masayuki; Uryu, Toshiyuki

    1987-10-01

    The gel films obtained by electron beam (EB) solid-state polymerization of urethane-acrylate prepolymers were characterized by differential scanning calorimetry (DSC). Two kinds of urethane-acrylates were synthesized by reaction of poly(butylene adipate)diol (PBAD), 4,4'-diphenylmethane diisocyanate (MDI) and 2-hydroxyethyl acrylate (HEA) for this purpose. One is a semicrystalline prepolymer (UA-251M) with a number average molecular weight (M-bar/sub n/) of 3200, and the other is an amorphous one (UA-071M) with M-bar/sub n/ of 1450. The M-bar/sub n/ varied by changing M-bar/sub n/ of PBAD. UA-251M gel film decreased in glass transition temperature (T/sub g/) and increased in heat capacity change (..delta..C/sub p/) at T/sub g/ with increasing irradiation dose, while the T/sub g/ and ..delta..C/sub p/ values of UA-071M gel film changed in the opposite way to those of UA-251M gel film. Above 5 Mrad, gel fraction reached more than 90 %, and the T/sub g/ and ..delta..C/sub p/ values changed steeply for both prepolymers. This steep change in T/sub g/ and ..delta..C/sub p/ was attributed to the crosslinking of PBAD chains as well as of terminal acryloyl groups. Since the T/sub g/ change of UA-071M gel film depends merely on the crosslinking, the crosslinking structure was evaluated using two equations which relate the shift in T/sub g/ to crosslinking. The molecular weight between crosslinking junctions was found to be larger than the M-bar/sub n/ of the prepolymer. The crosslinking by the EB polymerization restricted the mobility of the polymer chain less strongly than the crosslinking by the three-functional isocyanate and ..cap alpha..,..omega..-dihydroxy(polypropylene oxide) with a molecular weight of 1000 did.

  4. Catalytic routes towards acrylic acid, adipic acid and epsilon-caprolactam starting from biorenewables

    Beerthuis, R.; Rothenberg, G.; Shiju, N.R.

    2015-01-01

    The majority of bulk chemicals are derived from crude oil, but the move to biorenewable resources is gaining both societal and commercial interest. Reviewing this transition, we first summarise the types of today's biomass sources and their economical relevance. Then, we assess the biobased productions of three important bulk chemicals: acrylic acid, adipic acid and epsilon-caprolactam. These are the key monomers for high-end polymers (polyacrylates, nylon 6.6 and nylon 6, respectively) and a...

  5. Design and Characterization of Diclofenac Diethylamine Transdermal Patch using Silicone and Acrylic Adhesives Combination

    Panchaxari Dandigi M; Pampana Sowjanya; Pal Tapas; Devabhaktuni Bhavana; Aravapalli Anil Kumar

    2013-01-01

    Abstract Background and purpose of the study The objective of the study was to develop and characterize Diclofenac Diethylamine (DDEA) transdermal patch using Silicone and acrylic adhesives combination. Methods Modified solvent evaporation method was employed for casting of film over Fluoropolymer coated polyester release liner. Initial studies included solubilization of drug in the polymers using solubilizers. The formulations with combination of adhesives were attempted to combine the desir...

  6. Characterization of electron beam cured epoxy acrylate

    Epoxy resin has wide application in various industrial fields because of their good mechanical strength, superiority adhesion and low shrinkage etc. And the typical curing method for epoxy resins is thermal and press compaction. However, a curing method was used electron beam process in this study. Epoxy acrylate was fabricated from mixture of epoxy, acrylic acid, tetraphenylporphyrin (TPP) and hydroquinone monomethyl ether (MEHQ) with mole ratios. Then electron beam irradiation effect on the curing of the epoxy acrylate resin was investigated various absorption dose in nitrogen atmospheres at room temperature. The dynamic mechanical and thermal properties of the irradiated epoxy acrylate resins were characterized using dynamic mechanical analysis (DMA) and thermogravimetric analyzer (TGA). And the tensile and flexural strength were measured by an universal tensile machine (UTM)

  7. Resistance of acrylic vessel to gamma irradiation

    This paper describes the preliminary studies made in acrylic material in order to verify the effects of radiolysis in acrylic recipients in which the uranium ore standards are conditioned and check if the material is able to keep the 222Rn inside the vessel. The preliminary results after gamma irradiation of two kinds of recipients indicate no differences between the vessels irradiated and the ones no irradiated, related to color changes and tension resistance. (author)

  8. Rapid Output Growth of Special Acrylic Esters

    Wang Lianzhi

    2007-01-01

    @@ Acrylic esters are usually classified into general-purpose varieties and special varieties. The production and application of general-purpose varieties is already quite matured in the world and their output growth tends to be flat. Owing to the development of coatings, electronics, automobiles,textiles, printing and construction sectors, especially the application of radiation curing technology in various sectors, special acrylic esters have developed rapidly.

  9. Resistance of acrylic vessel to gamma irradiation

    Carneiro, Andre Cavalcanti; Menezes, Maria Angela de B.C.; Pereira, Marcio Tadeu; Rocha, Nirlando Antonio; Vilela, Jefferson Jose, E-mail: andreccarneiro@gmail.com, E-mail: menezes@cdtn.br, E-mail: mtp@cdtn.br, E-mail: nar@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Braga, Mario Roberto Martins S.S., E-mail: mariomartins@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2013-07-01

    This paper describes the preliminary studies made in acrylic material in order to verify the effects of radiolysis in acrylic recipients in which the uranium ore standards are conditioned and check if the material is able to keep the {sup 222}Rn inside the vessel. The preliminary results after gamma irradiation of two kinds of recipients indicate no differences between the vessels irradiated and the ones no irradiated, related to color changes and tension resistance. (author)

  10. Gel time of calcium acrylate grouting material.

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  11. Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin.

    Gong, Shi-Qiang; Epasinghe, D Jeevanie; Zhou, Bin; Niu, Li-Na; Kimmerling, Kirk A; Rueggeberg, Frederick A; Yiu, Cynthia K Y; Mao, Jing; Pashley, David H; Tay, Franklin R

    2013-06-01

    Quaternary ammonium methacryloxy silicate (QAMS), an organically modified silicate (ORMOSIL) functionalized with polymerizable methacrylate groups and an antimicrobial agent with a long lipophilic alkyl chain quaternary ammonium group, was synthesized through a silane-based sol-gel route. By dissolving QAMS in methyl methacrylate monomer, this ORMOSIL molecule was incorporated into an auto-polymerizing, powder/liquid orthodontic acrylic resin system, yielding QAMS-containing poly(methyl methacrylate). The QAMS-containing acrylic resin showed a predominant contact-killing effect on Streptococcus mutans (ATCC 35668) and Actinomyces naeslundii (ATCC 12104) biofilms, while inhibiting adhesion of Candida albicans (ATCC 90028) on the acrylic surface. The antimicrobial activities of QAMS-containing acrylic resin were maintained after a 3month water-aging period. Bromophenol blue assay showed minimal leaching of quaternary ammonium species when an appropriate amount of QAMS (<4wt.%) was incorporated into the acrylic resin. The results suggest that QAMS is predominantly co-polymerized with the poly(methyl methacrylate) network, and only a minuscule amount of free QAMS molecules is present within the polymer network after water-aging. Acrylic resin with persistent antimicrobial activities represents a promising method for preventing bacteria- and fungus-induced stomatitis, an infectious disease commonly associated with the wearing of removable orthodontic appliances. PMID:23485857

  12. Swelling Behaviors of Polyaniline-Poly(Acrylic Acid) Hydrogels

    ZHANG You-wei; ZHAO Jiong-xin; LI Xiao-feng; TAO Yong; WU Cheng-xun

    2005-01-01

    Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline(An) and ammonim persulfate(APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds wcre prepared. The swelling properties of the hydrogels in solutions of different pH values(adjusted by adding NaOH or HCl) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel,and molar ratios of AA to An, APS to An, and NaOH to AA.And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied.

  13. Solubility of dense CO2 in two biocompatible acrylate copolymers

    A. R. C. Duarte

    2006-06-01

    Full Text Available Biocompatible polymers and copolymers are frequently being used as part of controlled delivery systems. These systems can be prepared using a "clean and environment friendly" technology like supercritical fluids. One great advantage of this process is that compressed carbon dioxide has excellent plasticizing properties and can swell most biocompatible polymeric matrixes, thus promoting drug impregnation processes. Mass sorption of two acrylate biocompatible copolymers contact with supercritical carbon dioxide is reported. Equilibrium solubility of dense carbon dioxide in poly(methylmethacrylate-co-ethylhexylacrylate and poly(methylmethacrylate-co-ethylhexylacrylate-co-ethyleneglycoldimethacrylate was studied by a static method at 10.0 MPa and 313 K. The reticulated copolymer had Fickean behavior and its diffusion coefficient was calculated, under operating conditions.

  14. Adsorption properties of leather modified by radiation induced grafting with methyl methacrylate and butyl acrylate

    Adsorption properties of leathers modified by radiation induced grafting with butyl acrylate and methyl methacrylate have been investigated by the McBain method. Isotherms of adsorption and desorption of water vapour have been obtained and the specific surface for various leathers calculated. No change in the adsorption properties of modified leather was noticed up to 25% content of grafted polymer. At higher polymer content deterioration of hygienic properties of modified leather was observed. From the adsorption measurements it has been concluded that the size of millipores undergoes random distribution and no specific group of pores prevails. Explanation of the observed phenomena is proposed. (author)

  15. Influência da adição da goma arábica em filmes isolados de polímero acrílico: estudo das propriedades de intumescimento e de permeabilidade Influence of arabic gum in acrylic polymer isolated films: study of swelling properties and permeability

    Victor Gustavo Santos Gabas

    2003-12-01

    Full Text Available Goma arábica associada ao polímero acrílico Eudragit RS30D® na formação de filmes isolados foram obtidos e investigados como material potencialmente adequado à liberação modificada de fármacos. Foram preparadas dispersões aquosas de 4% (p/v e o citrato de trietila (20% massa polímero acrílico foi usado como plastificante. Dispersões foram vertidas em placa de Nylon revestida com Teflon® e colocadas em estufa a 60 ºC. A determinação do índice de intumescimento (Ii% em fluidos de simulação gástrica (FSG e intestinal (FSI, além da permeabilidade ao vapor d'água (TVA foram avaliadas. As dispersões propostas apresentaram habilidades filmogênicas. O polissacarídeo favoreceu, proporcionalmente à sua concentração, o grau de hidratação e a permeabilidade ao vapor d'água dos filmes formados. Estas particularidades observadas sugerem que os filmes constituídos por estas associações garantem acessibilidade com maior intensidade, quando comparado ao polimetacrilato individualmente, condição essa indispensável para uma biodegradação efetiva, em especial às regiões distais do trato gastrintestinal.Arabic gum combined with polymeric acrylic Eudragit RS30D® in isolated films for film coating, were obtained and investigated as potential material adapted for drug delivery systems. They were prepared aqueous dispersions of 4% (p/v, the triethyl citrate (20% w/w of the methacrylate polymer it was used with plasticizer. Sample of dispersions were poured over plate of Nylon covered with Teflon and placed in an air circulated oven at 60 ºC. Determination of the swelling index (Is% in fluids of gastric (SGF or intestinal simulation or intestinal (SIF, and the permeability to the water vapour (TVA were investigated. An increase in the amount of added polysaccharide favored the degree of hydration/swelling and permeability of the formed films. These observed particularities suggest that the films constituted by these

  16. Investigation of small molecular weight poly(acrylic acid) adsorption on γ-alumina

    Liu, Lei; Luo, Shi-Zhong [College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Wang, Bin, E-mail: bin_wang@scu.edu.cn [College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Guo, ZhanHu [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-08-01

    Highlights: • Small molecular weight poly(acrylic acid) incorporated on γ-alumina. • PAA adsorbed primarily on outer surface of alumina at low pH. • PAA infiltrated inside alumina pore at high pH. • Polymer chain reptation motion during the infiltration. - Abstract: The interactions between poly(acrylic acid) (PAA) and alumina have been widely investigated. In this study, the pattern of small molecular weight PAA (M{sub W} 3000) interaction with γ-alumina has been dissected. The alumina/PAA hybrids were prepared at pH 4.0, 5.5, and 7.0, respectively. Nitrogen absorption–desorption analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and elemental analysis were conducted to illustrate the characteristics of the hybrids. At pH 4.0, the coiled PAA conformation yielded polymer adsorption primarily on alumina outer surface. At higher pH values, the more stretched PAA molecules were able to infiltrate inside the alumina pores. The phenomenon is explained by the polymer chain reptation motion model. Coiled polymer chains are not oriented enough to penetrate the oxide pore channels. In contrary, stretched polymer chains are more likely to move along the pore channels.

  17. Investigation of small molecular weight poly(acrylic acid) adsorption on γ-alumina

    Highlights: • Small molecular weight poly(acrylic acid) incorporated on γ-alumina. • PAA adsorbed primarily on outer surface of alumina at low pH. • PAA infiltrated inside alumina pore at high pH. • Polymer chain reptation motion during the infiltration. - Abstract: The interactions between poly(acrylic acid) (PAA) and alumina have been widely investigated. In this study, the pattern of small molecular weight PAA (MW 3000) interaction with γ-alumina has been dissected. The alumina/PAA hybrids were prepared at pH 4.0, 5.5, and 7.0, respectively. Nitrogen absorption–desorption analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and elemental analysis were conducted to illustrate the characteristics of the hybrids. At pH 4.0, the coiled PAA conformation yielded polymer adsorption primarily on alumina outer surface. At higher pH values, the more stretched PAA molecules were able to infiltrate inside the alumina pores. The phenomenon is explained by the polymer chain reptation motion model. Coiled polymer chains are not oriented enough to penetrate the oxide pore channels. In contrary, stretched polymer chains are more likely to move along the pore channels

  18. Acrylate metathesis via the second-generation Grubbs catalyst: unexpected pathways enabled by a PCy3-generated enolate.

    Bailey, Gwendolyn A; Fogg, Deryn E

    2015-06-17

    The diverse applications of acrylate metathesis range from synthesis of high-value α,β-unsaturated esters to depolymerization of unsaturated polymers. Examined here are unexpected side reactions promoted by the important Grubbs catalyst GII. Evidence is presented for attack of PCy3 on the acrylate olefin to generate a reactive carbanion, which participates in multiple pathways, including further Michael addition, proton abstraction, and catalyst deactivation. Related chemistry may be anticipated whenever labile metal-phosphine complexes are used to catalyze reactions of substrates bearing an electron-deficient olefin. PMID:26030596

  19. Synthesis and characterization of organometallic copolymers of acrylic acid g-polyethylene, with Mo, Fe, Co, Zn and Ni

    In this study, the preparation of a series of low density polyethylenes grafted with acrylic acid is presented. The grafting reactions were initiated by different doses of γ radiation; it was observed that grafting increased with the doses of radiation. The prepared copolymers were coordinated with different metals, as Mo, Fe, Co, Zn and Ni. The amount of metal supported on the polymer was determined by atomic absorption. Infrared spectroscopy and thermogravimetric analysis confirmed the metal chelation on the graft copolymer. The film surfaces were observed by scanning electron microscopy. positron annihilation spectroscopy revealed a decrease on the free volume in the low density polyethylene after the grafting with acrylic acid. (Author)

  20. Examining the thermal degradation of polymer binders using FTIR spectroscopy

    B. Grabowska

    2010-01-01

    This article discusses the general theoretical basis for examining polymers using FTIR infrared spectroscopy. It presents results of research on using the FTIR to analyse the course of structural changes during the thermal degradation of polymer binders exemplified by a sodium salt of the maleic acid – acrylic acid copolymer. This polymer was selected for the research due to its structure (an aliphatic structure polymer) and its physical chemistry properties (polarity, presence of reactive CO...

  1. Durability of Polymer Modified Repair Mortars on Concrete Structures

    TCHETGNIA NGASSAM, Inès-Léana; Marceau, Sandrine; Chaussadent, Thierry

    2013-01-01

    Polymer modified mortars (PMM) used as repair products present higher intrinsic properties than classic mortar due to polymer effect in the cementitious matrix. But evolution of their adhesives properties is not well known. This article deals with adhesive behavior of two PMMs made in laboratory with styrene acrylate (SA) and ethylene vinyl acetate (EVA) polymers. It is highlighted that adhesion of these mortars depends on polymer amount in the mortar, on the environmental conditions, and on...

  2. Quartz crystal microbalance and infrared reflection absorption spectroscopy characterization of bisphenol A absorption in the poly(acrylate) thin films.

    Li, Guifeng; Morita, Shigeaki; Ye, Shen; Tanaka, Masaru; Osawa, Masatoshi

    2004-02-01

    The absorption process of bisphenol A (BPA) in a number of poly(acrylate) thin films, such as poly(2-methoxyethyl acrylate) (PMEA), poly(ethyl acrylate) (PEA), poly(n-butyl methacrylate) (PBMA), and poly(methyl methacrylate) (PMMA), has been investigated by quartz crystal microbalance (QCM) and infrared reflection absorption spectroscopy (IRRAS) measurements. Both QCM and IRRAS measurements show that the BPA molecules absorb in PMEA, PEA, and PBMA thin films but not in PMMA thin film. The differences in the BPA absorption behavior are mainly attributed to the difference in the glass transition temperature (T(g)) between these polymers. This absorption behavior also depends on the BPA concentration and polymer film thickness. Furthermore, IRRAS characterization demonstrates that the hydrogen bonding is formed between the hydroxyl group in BPA and the carbonyl group in the poly(acrylate) thin films. BPA molecule absorbed in these polymer thin films can be removed by ethanol rinse treatment. By optimizing experimental conditions for the QCM electrode modified by PMEA thin film, detection limitation of approximately 1 ppb for BPA can be realized by the in situ QCM measurement. This method is expected to be a sensitive in situ detection way for trace BPA in the environmental study. PMID:14750877

  3. (Meth)acrylate liquid crystalline polymers for membrane applications

    Rabie, F.; Sedláková, Zdeňka; Sheth, S.; Marand, E.; Martin, S. M.; Poláková, Lenka

    2015-01-01

    Roč. 132, č. 43 (2015), 42694_1-42694_8. ISSN 0021-8995 Institutional support: RVO:61389013 Keywords : copolymers * liquid crystals * membranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.768, year: 2014

  4. Acrylic polymer nanocomposite resins for water borne coating applications

    Nobel, M.L.

    2007-01-01

    Due to environmental and safety regulations the use of volatile organic components (VOC's) containing lacquers for exterior automotive purposes is under growing pressure. As a consequence there is a demand for more environmentally friendly alternatives like water borne coatings, high solid coatings,

  5. Photochemistry of Acrylates at 222 nm

    Excimer lamps as monochromatic UV sources with an intense short wavelength mission (specially Kr Cl, 222 nm) allow a photo initiator-free initiation of the acrylate polymerisation. Laser photolysis (Kr Cl excimer laser, pulse width 20 ns, up to 5 ml per pulse) gives rise to similar transient spectra (max << 280 nm) for all acrylates studied. As the rather unspecific spectra do not allow conclusions as to the main reaction channel, a product study has been performed by GC-MS following steady-state photolysis of acrylate solutions in acetonitrile, methanol and n-hexane. Somewhat unexpected, a-cleavage seems to be a main reaction channel, and quantum chemical calculations show that such a reaction can occur from either the excited singlet state or the un relaxed triplet state, but not from the relaxed triplet state that is observed spectroscopically. A reaction scheme accounting for the observed products is presented

  6. Kekuatan transversa resin akrilik hybrid setelah penambahan glass fiber dengan metode berbeda (The transverse strength of the hybrid acrylic resin after glass fiber reinforcement with different method

    Intan Nirwana

    2006-03-01

    Full Text Available Different types of fibers have been added to acrylic resin materials to improve their mechanical properties. The purpose of this study was to know the transverse strength of the hybrid acrylic resins after glass fiber reinforcement with difference method. This study used rectangular specimens of 65 mm in length, 10 mm in width and 2.5 mm in thickness. There were 3 groups consisting of 6 specimens each, hybrid acrylic resin without glass fiber (control, glass fibers dipped in methyl methacrylate monomer for 15 minutes before being reinforced into hybrid acrylic resin (first method, glass fibers reinforced into a mixture of polymer powder and monomer liquid after the hybrid acrylic resin was mixed directly (second method. All of the specimens were cured for 20 minutes at 100° C. Transverse strength was measured using Autograph. The statistical analyses using one way ANOVA and LSD test showed that there were significant differences in transverse strength (p < 0.05 among the groups. The means of transverse strength were 94,94; 118,27; and 116,34 MPa. It meant that glass fibers reinforcement into hybrid acrylic resin enhanced their transverse strength compared with control. Glass fiber reinforcement into hybrid acrylic resin with differenciate method didn’t enhance their transverse strength.

  7. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied. PMID:21866762

  8. Concepts for stereoselective acrylate insertion

    Neuwald, Boris

    2013-01-23

    Various phosphinesulfonato ligands and the corresponding palladium complexes [{((PaO)PdMeCl)-μ-M}n] ([{( X1-Cl)-μ-M}n], (PaO) = κ2- P,O-Ar2PC6H4SO2O) with symmetric (Ar = 2-MeOC6H4, 2-CF3C6H4, 2,6-(MeO)2C6H3, 2,6-(iPrO)2C 6H3, 2-(2′,6′-(MeO)2C 6H3)C6H4) and asymmetric substituted phosphorus atoms (Ar1 = 2,6-(MeO)2C6H 3, Ar2 = 2′-(2,6-(MeO)2C 6H3)C6H4; Ar1 = 2,6-(MeO)2C6H3, Ar2 = 2-cHexOC 6H4) were synthesized. Analyses of molecular motions and dynamics by variable temperature NMR studies and line shape analysis were performed for the free ligands and the complexes. The highest barriers of ΔGa = 44-64 kJ/mol were assigned to an aryl rotation process, and the flexibility of the ligand framework was found to be a key obstacle to a more effective stereocontrol. An increase of steric bulk at the aryl substituents raises the motional barriers but diminishes insertion rates and regioselectivity. The stereoselectivity of the first and the second methyl acrylate (MA) insertion into the Pd-Me bond of in situ generated complexes X1 was investigated by NMR and DFT methods. The substitution pattern of the ligand clearly affects the first MA insertion, resulting in a stereoselectivity of up to 6:1 for complexes with an asymmetric substituted phosphorus. In the consecutive insertion, the stereoselectivity is diminished in all cases. DFT analysis of the corresponding insertion transition states revealed that a selectivity for the first insertion with asymmetric (P aO) complexes is diminished in the consecutive insertions due to uncooperatively working enantiomorphic and chain end stereocontrol. From these observations, further concepts are developed. © 2012 American Chemical Society.

  9. Positron lifetime studies in vinyl polymers of medical importance

    Vinyl polymers used as artificial lens implants in ophthalmology were investigated by positron lifetime spectroscopy. The structure of these polymers with free volumes offers the possibility of charging them with anti-inflammatory drugs for sustained release. A correlation between the amount of normalised free volume and the ratio of the methyl methacrylate to ethyl-hexyl-acrylate, used as polymerisation monomers, was found

  10. Positron lifetime studies in vinyl polymers of medical importance

    Marques, M. F. Ferreira; Gordo, P. M.; Gil, C. Lopes; Kajcsos, Zs.; Gil, M. H.; Mariz, M. J.; Lima, A.P.

    2003-01-01

    Vinyl polymers used as artificial lens implants in ophthalmology were investigated by positron lifetime spectroscopy. The structure of these polymers with free volumes offers the possibility of charging them with anti-inflammatory drugs for sustained release. A correlation between the amount of normalised free volume and the ratio of the methyl methacrylate to ethyl-hexyl-acrylate, used as polymerisation monomers, was found.

  11. Polymers grafted by ionizing radiations. Regulated desorption of fertilizers

    Study and development of copolymers for progressive liberation of fertilizers in the soil through a membrane. These copolymers are obtained by grafting a hydrophilic acrylic monomer on a hydrophobic polymer (polyolefine). Desorption of a fertilizer through a membrane of graft polymer as a function of time and grafting ratio was tested both in the laboratory and by plant growing

  12. Preparation and Charcterization of Konjac Superabsorbent Polymer

    JIANG Fatang; LI Wanfen; ZHAN Xiaohui; CHEN Guofeng; ZHOU Jun; HUANG Jing; ZHANG Shenghua

    2006-01-01

    A superabsorbent polymer was prepared by grafting sodium acrylate (SA) onto Konjac flour using potassium persulfate (KPS) and N, N'-methylene bis acrylamide (MBA) as an initiator and crosslinker , respectively. The effect of various preparation conditions on its water absorbency was investigated. When the Konjac Flour content was 3.0 g , the acrylic acid ( AA ) content was 30.0 g, the amount of initiator was 0.150 g, the neutralization degree of monomer was 85% , the reaction temperature was 60 ℃ and the amount of crosslinker was 0.025 g, the polymer's absorbency was 750 times in pure water and 279 times in tap water at ambient temperature. It had also high water retention. The graft efficiency reached 67%. The analyses of FT-IR and SEM indicate that sodium acrylate is grafted on the polysaccharides of Konjac flour.

  13. 21 CFR 175.210 - Acrylate ester copolymer coating.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  14. 40 CFR 721.5325 - Nickel acrylate complex.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  15. Synthesis and Ionic Conductivity of Network Polymer Electrolytes with Internal Plasticizers

    Jun Jie KANG; Shi Bi FANG

    2004-01-01

    Network polymer electrolytes with free oligo(oxyethylene) chains as internal plasticizers were prepared by cross-linking poly(ethylene glycol) acrylates. The effects of salt concentration and properties of internal plasticizers on ionic conductivity were studied.

  16. Probing the cooperative dynamics varying the side-chain length of poly(alkyl acrylate)s: ESR experiments

    Andreozzi, Laura; Autiero, Ciro; Faetti, Massimo; Giordano, Marco; Zulli, Fabio

    2007-01-01

    Abstract The rotational dynamics of the tracer cholestane dissolved in unentangled nearly monodisperse poly(alkyl acrylate) melts has been investigated by means of electron spin resonance spectroscopy. Three samples of almost same molecular weight were selected, poly(methyl acrylate) poly(ethyl acrylate) and poly(n-butyl acrylate), whose linear viscoelastic properties were also characterised. Large temperature intervals were found with power laws relating shear flow relaxation and ...

  17. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction

  18. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    Grasselli, M.; Betz, N.

    2005-07-01

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction.

  19. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate copolymer

    Lee KD

    2013-08-01

    Full Text Available Kyung Dong Lee,1,* Young-Il Jeong,2,* Da Hye Kim,3,4 Gyun-Taek Lim,2 Ki-Choon Choi5 1Department of Oriental Medicine Materials, Dongshin University, Naju, South Korea; 2Department of Polymer Engineering, Chonnam National University, Gwangju, South Korea; 3Faculty of Life and Environmental Science, Shimane University, Matsue, Japan; 4United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; 5Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea *These authors contributed equally to this work Background: Although cisplatin is extensively used in the clinical field, its intrinsic toxicity limits its clinical use. We investigated nanoparticle formations of poly(acrylic acid-co-methyl methacrylate (PAA-MMA incorporating cisplatin and their antitumor activity in vitro and in vivo. Methods: Cisplatin-incorporated nanoparticles were prepared through the ion-complex formation between acrylic acid and cisplatin. The anticancer activity of cisplatin-incorporated nanoparticles was assessed with CT26 colorectal carcinoma cells. Results: Cisplatin-incorporated nanoparticles have small particle sizes of less than 200 nm with spherical shapes. Drug content was increased according to the increase of the feeding amount of cisplatin and acrylic acid content in the copolymer. The higher acrylic acid content in the copolymer induced increase of particle size and decrease of zeta potential. Cisplatin-incorporated nanoparticles showed a similar growth-inhibitory effect against CT26 tumor cells in vitro. However, cisplatin-incorporated nanoparticles showed improved antitumor activity against an animal tumor xenograft model. Conclusion: We suggest that PAA-MMA nanoparticles incorporating cisplatin are promising carriers for an antitumor drug-delivery system. Keywords: cisplatin, nanoparticle, poly(acrylic acid-co-methyl methacrylate, ion complexes

  20. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers’ perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied

  1. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H. [Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C3A7 (Canada)

    2015-05-22

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers’ perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied.

  2. Real-time monitoring of graphene oxide reduction in acrylic printable composite inks

    Porro, S.; Giardi, R.; Chiolerio, A.

    2014-06-01

    This work reports the electrical characterization of a water-based graphene oxide/acrylic composite material, which was directly inkjet printed to fabricate dissipative patterns. The graphene oxide filler, which is strongly hydrophilic due to its heavily oxygenated surface and can be readily dispersed in water, was reduced by UV irradiation during photo-curing of the polymeric matrix. The concurrent polymerization of the acrylic matrix and reduction of graphene oxide filler was demonstrated by real-time resistance measurements during UV light irradiation. The presence of graphene filler allowed decreasing the resistance of the pure polymeric matrix by nearly five orders of magnitude. This was explained by the fact that clusters of reduced graphene oxide inside the polymer matrix act as preferential pathways for the mobility of charge carriers, thus leading to an overall decrease of the material's resistance.

  3. Radiation-induced graft copolymerization of methyl acrylate and acrylic acid onto rubber wood fiber

    Graft copolymerization of methyl acrylate and acrylic acid monomers onto rubber wood fiber (RWF) was carried out by simultaneous radiation-induced technique. The parameters affecting the grafting reaction were investigated and the optimum conditions for both monomers obtained are as follows: impregnation time = 16 hours, total dose = 30 kGy, methanol : water ratio, 3:1, monomers concentration = 40 v/v % and sulphuric acid concentration = 0.1 mol/L. Fourier Transform Infrared (FTIR), thermogravimetry analysis (TGA), and scanning electron microscope (SEM) analyses used to characterize graft copolymers. The structural investigation by x-ray diffraction (XRD) shows the degree of crystallinity of rubber wood fiber decreased with the incorporation of poly(methyl acrylate) and poly(acrylic acid) grafts. (Author)

  4. Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface.

    Tanaka, Masaru; Mochizuki, Akira

    2010-01-01

    In previous studies, we reported that poly(2-methoxyethyl acrylate) (PMEA) exhibited excellent blood compatibility, although it has a simple chemical structure. Since then, we have been investigating the reasons for its blood compatibility. In this short review, we consider the reasons for this compatibility by comparing the structure of water in hydrated PMEA to the water structure of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(meth)acrylate analogs as reference polymers. The hydrated water in PMEA could be classified into three types; free water (or freezing water), freezing-bound water (or intermediate water), and non-freezing water (or non-freezing-bound water). We found that hydrated PMEA possessed a unique water structure, observed as cold crystallization of water in differential scanning calorimetry (DSC). Cold crystallization is interpreted as ice formation at low temperature, an attribute of freezing-bound water in PMEA. The cold crystallization peak was observed for hydrated poly(ethylene glycol) (PEG), poly(vinyl methyl ether) (PVME), polyvinylpyrrolidone (PVP), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(tetrahydrofurfuryl acrylate) (PTHFA), and newly synthesized poly(2-(2-ethoxyethoxy)ethyl acrylate), as well as various proteins and polysaccharides, which are well-known biocompatible polymers. On the other hand, cold crystallization of water was not observed in hydrated PHEMA and PMEA analogous polymers, which do not show excellent blood compatibility. Based on these findings, we hypothesized that freezing-bound water, which prevents the biocomponents from directly contacting the polymer surface or non-freezing water on the polymer surface, plays an important role in the excellent blood compatibility of PMEA. PMID:20699056

  5. HIGH SOLIDS-CONTENT NANOSIZE POLYMER LATEXES MADE BY A MODIFIED EMULSION COPOLYMERIZATION

    ZHANG Yuying; GUO Tianying; HAO Guangjie; SONG Maodao; Zhang Banghua

    2003-01-01

    Polymer nanoparticles were prepared in the methyl methacrylate (MMA)/buty lmethacrylate (BA) emulsion copolymerization process by a modified microemulsion copolymerization method. 2-Hydroxyethyl methacrylate(HEMA), acrylate (AA) and methyl acrylate (MAA) were used as reactive cosurfactants. With this process high polymer: surfactant weight ratios (40:1 or greater),relatively concentrated (~30wt. %) latexes and small (~60nm) particle diameters were obtained.Properties of the latexes were characterized by TEM, DSC, dynamic light scattering, and IR spectroscopy.

  6. Acrylic Tanks for Stunning Chemical Demonstrations

    Mirholm, Alexander; Ellervik, Ulf

    2009-01-01

    We describe the use of acrylic tanks (400 x 450 x 27 mm) for visualization of chemical demonstrations in aqueous solutions. Examples of well-suited demonstrations are oscillating reactions, pH indicators, photochemical reduction of Lauth's violet, and chemoluminiscent reactions. (Contains 1 figure.)

  7. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis.

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  8. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis

    Amal Nawasrah

    2016-05-01

    Full Text Available Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative. Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%, was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies.

  9. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A.

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  10. Large Acrylic Spherical Windows In Hyperbaric Underwater Photography

    Lones, Joe J.; Stachiw, Jerry D.

    1983-10-01

    Both acrylic plastic and glass are common materials for hyperbaric optical windows. Although glass continues to be used occasionally for small windows, virtually all large viewports are made of acrylic. It is easy to uderstand the wide use of acrylic when comparing design properties of this plastic with those of glass, and glass windows are relatively more difficult to fabricate and use. in addition there are published guides for the design and fabrication of acrylic windows to be used in the hyperbaric environment of hydrospace. Although these procedures for fabricating the acrylic windows are somewhat involved, the results are extremely reliable. Acrylic viewports are now fabricated to very large sizes for manned observation or optical quality instrumen tation as illustrated by the numerous acrylic submersible vehicle hulls for hu, an occupancy currently in operation and a 3600 large optical window recently developed for the Walt Disney Circle Vision under-water camera housing.

  11. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to

  12. New phase diagram for N-arylacrylamide/acrylamide/sodium acrylate copolymer gel

    Katayama, Seiji; Shimizu, Masanori; Akahori, Yukio

    1995-01-01

    Examination was made of changes in the volume of N-arylacrylamide(NAA)/acrylamide/sodium acrylate copolymer gel immersed in acetone-water and dioxane-water mixtures. The gel underwent reversible volume change from a swollen to collapsed state via discontinuous volume change with increase in solvent composition. Volume change at the transition point decreased with increase in NAA content, and the transition point shifted first toward lower solvent content with increase in NAA content and then toward higher solvent content. This is a volume phase transition characterized by two conventional patterns. Plots of transition solvent composition as a function of gel polymer composition indicated a nobel phase diagram for the polymer gel, which is essentially equivalent to miscibility diagram usually observed for polymer solutions.

  13. METHACRYLATE AND ACRYLATE ALLERGY IN DENTAL STUDENTS.

    Maya Lyapina

    2013-09-01

    Full Text Available A multitude of acrylic monomers is used in dentistry, and when dental personnel, patients or students of dental medicine become sensitized, it is of great importance to identify the dental ;acrylic preparations to which the sensitized individual can be exposed. Numerous studies confirm high incidence of sensitization to (meth acrylates in dentatal professionals, as well as in patients undergoing dental treatment and exposed to resin-based materials. Quite a few studies are available aiming to evaluate the incidence of sensitization in students of dental medicineThe purpose of the study is to evaluate the incidence of contact sensitization to some (meth acrylates in students of dental medicine at the time of their education, in dental professionals (dentists, nurses and attendants and in patients, the manifestation of co-reactivity.A total of 139 participants were included in the study, divided into four groups: occupationally exposed to (methacrylates and acrylic monomers dental professionals, 3-4 year-of-education students of dental medicine, 6th year–of-education students of dental medicine and patients with suspected or established sensitization to acrylates, without occupational exposure. All of them were patch-tested with methyl methacrylate (MMA, triethyleneglycol dimethacrylate (TREGDMA, ethyleneglycol dimethacrylate (EGDMA, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy phenyl]propane (bis-GMA, 2-hydroxyethyl methacrylate (2-HEMA, and tetrahidrofurfuril metacrylate. The overall sensitization rates to methacrylates in the studied population are comparative high – from 25.9% for MMA to 31.7% for TREGDMA. Significantly higher incidence of sensitization in the group of 3-4 course students compared to the one in the group of dental professionals for MMA and TREGDMA was observed. Highest was the incidence of sensitization to ethyleneglycol dimethacrylate, BIS-GMA, 2-HEMA and tetrahydrofurfuryl methacrylate in the group of patients, with

  14. Fluorinated bio-acceptable polymers via an ATRP macroinitiator approach

    Hansen, Natanya Majbritt Louie; Haddletion, D.M.; Hvilsted, Søren

    2007-01-01

    Polymers derived from bio-acceptable poly(methyl methacrylate) (PMMA), poly(2-methoxyethyl acrylate) (PMEA), and poly(oligo(ethylene glycol) methyl ether methacrylate) (PPEGMA) have been prepared via atom transfer radical polymerization (ATRP) utilizing an initiator prepared from a fluoroalkoxy......-bromoisobutyrate. The initiator generally also serves as an internal plasticizer lowering the glass transition temperature from the parent polymers. The surface characteristics of the fluoroinitiator containing polymers are altered compared with the nonfluorinated analogues. This is reflected in a significant...

  15. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni

    In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)

  16. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    Chen Changxin; Zhang Song; Ni Yuwei; Cai Seng; Huang Jie; Li Yong; Li Jiang-Tao

    2010-01-01

    Abstract An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σ ac...

  17. Evaluation of the Physical Stability of Zinc Oxide Suspensions Containing Sodium Poly-(acrylate) and Sodium Dodecylsulfate

    Chabni, Malika; Bougherra, Hadda; Lounici, Hakim; Ahmed-Zaïd, Toudert; Canselier, Jean-Paul; Bertrand, Joël

    2011-01-01

    The physical stability of zinc oxide (ZnO) aqueous suspensions has been monitored during two months by different methods of investigation. The suspensions were formulated with ZnO at a fixed concentration (5 wt%), sodium poly-(acrylate), as a viscosifier, and sodium dodecylsulfate (SDS), as a wetting agent. The rheological study shows that the suspensions exhibit a non-Newtonian, most often shear-thinning behavior and their apparent viscosity increases with polymer concentration. The rheogram...

  18. The Relationship Between Water Structure and Blood Compatibility in Poly(2-methoxyethyl Acrylate) (PMEA) Analogues.

    Sato, Kazuhiro; Kobayashi, Shingo; Kusakari, Miho; Watahiki, Shogo; Oikawa, Masahiko; Hoshiba, Takashi; Tanaka, Masaru

    2015-09-01

    Six types of poly(2-methoxyethyl acrylate) (PMEA) analogues were synthesized and the water structure in the hydrated polymers was characterized using differential scanning calorimetry (DSC). The hydrated PMEA analogues exhibited the different amounts of intermediate water. Non-thrombogenicity evaluation was performed on PMEA analogues for platelet adhesion and protein adsorption. Platelet adhesion was suppressed on PMEA analogues. In addition, the protein adsorption and deformation were suppressed by increasing the amount of intermediate water. This study demonstrates that the amount of intermediate water might play a key role in expressing the blood compatibility of polymeric materials. PMID:26017931

  19. Biofunctional polymers prepared by ionizing radiation

    Polymeric systems with biomedical and biochemical properties can be obtained by radiation induced polymerization. Those systems exhibit a pharmaceutical or biocatalytic activity if drugs or enzymes are immobilized in the polymer matrices. This work deals with the synthesis by gamma radiation of acrylic monomers and paracetamol, a drug with analgesic and anti thermic action, which can be used as medication in drug delivery systems. Besides, polyethylene and polypropylene radiation grafted with a hydrogel containing carboxylic groups (acrylic acid), showed to be a suitable substrate for the enzyme coupling, such as urease and glucose oxidase. The grafted matrices allow the immobilization of any biocomponent with protein structure. (author). 8 refs., 4 figs

  20. Synthesis and characterization of kappaphycus seaweed-poly (acrylic) acid superabsorbent hydrogel for agricultural use

    The main objective of this research is to synthesize and characterize kappaphycus seaweed-poly (acrylic) acid superabsorbent hydrogel for agricultural use. The superabsorbent polymers (SAPs), KCSW: PAA hydrogels were synthesized by using gamma radiation technique from Cobalt-60 source at absorbed dose 0f 5, 10 and 15 kGy. The effect of absorbed dose, seaweed concentration, and concentration of acrylic acid on the degree of swelling was studied and optimum swelling conditions were established. Irradiated samples of 3% KCSW, 50% neutralized AAC at an absorbed dose of 10kGy gave the highest degree of swelling and gel fraction and were found to be suitable for application in the agriculture. Samples with different concentrations of acrylic acid were characterized using FTIR and TGA. The water retention experiment in sandy soil showed high water retention capacity of KCSW: PAA hydrogel at a value of 92% for a period of 7 days. Effect of the germination of mung bean showed very promising result of 78% germination.(author)

  1. Aluminum nanoparticle/acrylate copolymer nanocomposites for dielectric elastomers with high dielectric constants

    Hu, Wei; Zhang, Suki N.; Niu, Xiaofan; Liu, Chao; Pei, Qibing

    2014-03-01

    Dielectric elastomers are useful for large-strain actuation and energy harvesting. Their application has been limited by their low dielectric constants and consequently high driving voltage. Various fillers with high dielectric constants have been incorporated into different elastomer systems to improve the actuation strain, force output and energy density of the compliant actuators and generators. However, agglomeration may happen in these nanocomposites, resulting in a decrease of dielectric strength, an increase of leakage current, and in many instances the degree of enhancement of the dielectric constant. In this work, we investigated aluminum nanoparticles as nanofillers for acrylate copolymers. This metallic nanoparticle was chosen because the availability of free electrons could potentially provide an infinite value of dielectric constant as opposed to dielectric materials including ferroelectric nanocrystals. Moreover, aluminum nanoparticles have a self-passivated oxide shell effectively preventing the formation of conductive path. The surfaces of the aluminum nanoparticles were functionalized with methacrylate groups to assist the uniform dispersion in organic solutions and additionally enable copolymerization with acrylate copolymer matrix during bulk polymerization, and thus to suppress large range drifting of the nanoparticles. The resulting Al nanoparticle-acrylate copolymer nanocomposites were found to exhibit higher dielectric constant and increased stiffness. The leakage current under high electric fields were significantly lower than nanocomposites synthesized without proper nanoparticle surface modification. The dielectric strengths of the composites were comparable with the pristine polymers. In dielectric actuation evaluation, the actuation force output and energy specific work density were enhanced in the nanocomposites compared to the pristine copolymer.

  2. Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition.

    Grabovac, Vjera; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-09-30

    The aim of the present study was to investigate the influence of molecular mass and thiol group content of poly(acrylic acid)-cysteine conjugates on the permeation of sulforhodamine 101 and penicillin G. acting as substrates for multidrug resistance-associated protein 2 efflux pump. Poly(acrylic acids) of 2 kDa, 100 kDa, 250 kDa, 450 kDa and 3000 kDa were conjugated with cysteine. The thiol group content of all these polymers was in the range from 343.3 ± 48.4 μmol/g to 450.3 ± 76.1 μmol/g. Transport studies were performed on rat small intestine mounted in Ussing-type chambers. Since 250 kDa poly(acrylic acid) showed the highest permeation enhancing effect, additionally thiolated 250 kDa polyacrylates displaying 157.2 μmol/g, 223.0 ± 18.1 and 355.9 μmol/g thiol groups were synthesized in order to investigate the influence of thiol group content on the permeation enhancement. The permeation of sulforhodamine was 3.93- and 3.85-fold improved using 250 kDa poly(acrylic acid)-cysteine conjugate exhibiting 355.9 ± 39.5 μmol/g and 223.0 ± 18.1 μmol/g thiol groups. Using the same conjugates the permeation of penicillin G was 1.70- and 1.59-fold improved, respectively. The study demonstrates that thiolated poly(acrylic acid) inhibits Mrp2 mediated transport and that the extent of inhibition depends on the molecular mass and degree of thiolation of the polymer. PMID:26238816

  3. Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization.

    Jiang, Lijia; Xiong, Wei; Zhou, Yushen; Liu, Ying; Huang, Xi; Li, Dawei; Baldacchini, Tommaso; Jiang, Lan; Lu, Yongfeng

    2016-06-13

    Microfabrication by two-photon polymerization is investigated using resins based on thiol-ene chemistry. In particular, resins containing different amounts of a tetrafunctional acrylic monomer and a tetrafunctional thiol molecule are used to create complex microstructures. We observe the enhancement of several characteristics of two-photon polymerization when using thiol-acrylic resins. Specifically, microfabrication is carried out using higher writing velocities and it produces stronger polymeric microstructures. Furthermore, the amount of shrinkage typically observed in the production of three-dimensional microstructures is reduced also. By means of microspectrometry, we confirm that the thiol-acrylate mixture in TPP resins promote monomer conversion inducing a higher degree of cross-linked network formation. PMID:27410383

  4. Study of Physical and Colloid-Chemical Properties of Acrylic Polyelectrolytes of “M-PAA” Series and Their Modification

    N.O Dzhakipbekova

    2015-12-01

    Full Text Available The aim of this study is to search for the best basic technology to replace the base in the metallization of dielectrics. We studied conducting polymersacrylic polyelectrolytes. Polyelectrolytes include high molecular weight compounds containing macromolecules and ionogenic groups. Experimental studies have shown that the rational use of HSP for the regulation of colloid-chemical processes in the production should take into account the functional structure of the polymer, its conformational state of macromolecules in solution, the degree of association, dissociation of functional groups, and other factors, which necessitates studying the physical and colloidal chemical characteristics of HSP solutions depending on the concentration.

  5. Use of radiation-induced polymers in cement slurries

    Water loss from cement slurries is reduced by incorporating within a cement slurry a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in 10-60 percent aqueous monomer solution with gamma radiation. The aqueous monomer solution preferably contains 25-99 percent acrylamide and 75-1 percent sodium acrylate. The polymer can be present in concentration of about 0.001 to about 3.0 weight percent, based on the aqueous phase of the slurry

  6. Use of radiation-induced polymers in cement slurries

    Water loss from cement slurries is reduced by incorporating within a cement slurry a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in 10 to 60 percent aqueous monomer solution with gamma radiation. The aqueous monomer solution preferably contains 25 to 99 percent acrylamide and 75 to 1 percent sodium acrylate. The polymer can be present in concentration of about 0.001 to about 3.0 weight percent, based on the aqueous phase of the slurry. (U.S.)

  7. Palladium (II) catalyized polymerization of norbornene and acrylates

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2000-08-29

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: [(L)Pd(R)(X)].sub.2, where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  8. Palladium (Ii) Catalyzed Polymerization Of Norbornene And Acrylates

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2001-10-09

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  9. Amylase catalyzed synthesis of glycosyl acrylates and their polymerization

    Kloosterman, Wouter M. J.; Jovanovic, Danijela; Brouwer, Sander; Loos, Katja

    2014-01-01

    The enzymatic synthesis of novel (di)saccharide acrylates from starch and 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate (2-HEA, 2-HEMA and 4-HBA) catalyzed by various commercially available amylase preparations is demonstrated. Both liquefaction and saccharification amylases were tested as biocatalysts. Transglycosidation products were only detected in reaction mixtures containing saccharification amylases. The glycoamylase from Aspergillus niger was found t...

  10. Characterization of Functionalized Acrylic acid /4- Vinyl Pyridine Graft Copolymers

    Properties and characterization of the membranes prepared by radiation grafting of acrylic acid (AAc) or/ and 4-vinyl pyridine (4VP) onto low density polyethylene (LDPE) and polypropylene (PP) films were carried out. The FTIR spectra for the grafted membranes were studied to evaluate the structure change as a result of grafting. The swelling behaviour of the graft copolymer in methanol was studied. It was found that the grafting of AAc and/ or 4- VP onto LDPE and PP resulted in introducing good hydrophilic properties to such polymer substrates. The hydrophilic properties were directly proportional to the amount of functional groups. The mechanical properties (Young's modulus, elongation percent and tensile strength) of the grafted membranes also, have been investigated. As the grafting degree increases, the modulus also increases. Increasing the hydrophilicity of the membranes by chemical treatment enhances its mechanical properties. The thermal parameters of the grafted membranes such as δHm1. δHm2, and Trc have been also studied by using DSC

  11. Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers

    2008-10-01

    Full Text Available The acrylate monomer, 7-acryloyloxy-4-methyl coumarin (AMC has been synthesized by reacting 7-hydroxy-4-methyl coumarin, with acryloyl chloride in the presence of NaOH at 0–5°C. Copolymers of 7-acryloyloxy-4-methyl coumarin (AMC with vinyl acetate (VAc were synthesized in DMF (dimethyl formamide solution at 70±1°C using 2,2′-azobisisobutyronitrile (AIBN as an initiator with different monomer-to-monomer ratios in the feed. The copolymers were characterized by Fourier transform infra red (FTIR spectroscopy. The copolymer composition was evaluated by 1H-NMR (proton nuclear magnetic resonance and was further used to determine reactivity ratios. The monomer reactivity ratios for AMC (M1-VAc (M2 pair were determined by the application of conventional linearization methods such as Fineman-Ross (r1 = 0.6924; r2 = 0.6431, Kelen-Tüdõs (r1 = 0.6776; r2 = 0.6374 and extended Kelen-Tüdõs (r1 = 0.6657; r2 = 0.6256. Thermo gravimetric analysis showed that thermal decomposition of the copolymers occurred in single stage in the temperature range of 263–458°C. The molecular weights of the polymers were determined using gel permeation chromatography. The homo and copolymers were tested for their antimicrobial properties against selected microorganisms.

  12. The use of epoxidised palm oil products (EPOP) for the synthesis of radiation curable resins. II. Ultraviolet (UV) curing of epoxidised RBD palm oil acrylate (EPOLA)

    Epoxidised RBD palm olein acrylate (EPOLA) and polyurethane acrylate (PUA) prepared at UTN laboratory were used as base polymers or oligomers in the formulations of ultraviolet (UV) curable resins. Mono-, di- and trifunctional monomers were utilized both as crosslinkers as well as for diluents. Curing was done by means of 20 cm wide IST UV machine with the conditions of 8A current and 4m/min conveyor speed. The properties of the cured films were investigated by using pencil hardness tester and gel content analysis

  13. Acrylic Rubber Latex in Ferrocement for Strengthening Reinforced Concrete Beams

    D. R. Kumar

    2010-01-01

    Full Text Available Problem statement: In India, the early deterioration of reinforced concrete structures has become a big social problem in recent years. An essential research is needed for the development of effective repair materials and their execution systems comes to an important issue from the viewpoint of the longevity of infrastructures at present. Ferrocement laminates are introduced to enhance the overall performance of Reinforced Concrete (RC structures and these days the use of it is a promising technology for increasing the flexural strength of deficient reinforced concrete members. Approach: The repair system aims to provide quantitative repair enhancement as well as extending the life of deteriorated concrete members. This research in particular inspired the initiation of the present work which aimed to develop a material with unique properties and a very wide range of practical applications. The mechanical properties of mortar through difference in polymer content with Acrilic Latex by ferrocement among three different volume fractions of mesh reinforcement were studied. Following the encouraging progress made in the formulation and evaluation of the polymer modified repair mortar, tests were carried out involving the application of the reinforced repair material to the soffit of the reinforced concrete beams of 3 m length. Results: The levels of damage of the original beams prior to repair did not affect the ultimate load of the strengthened beams tested. The performance of the strengthened beams was compared to the control beams with respect to cracking, deflection and ultimate strength which confirm preeminent results. Conclusion: This accomplished the fact that acrylic rubber latex modified ferrocement is a doable alternative strengthening component for the rehabilitation of reinforced concrete structures. Further developments in these systems will create dramatic improvement into the field of rehabilitation of old privileged structures.

  14. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    Udo Kielmann; Gunnar Jeschke; Inés García-Rubio

    2014-01-01

    Polymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of th...

  15. Synthesis of acrylate guar-gum for delivery of bio-active molecules

    Ajeet Kumar; Arnab De; Subho Mozumdar

    2015-08-01

    Modification of natural polymers by graft copolymerization is a promising technique as it functionalizes these biopolymer to their potential, imparting desirable properties onto them. Grafting with vinyl monomers is the route for modifying the properties of the naturally occurring guar-gum for their better industrial exploitation and development of various commercial products. Acrylated guar-gum chain is synthesized and analysed using Fourier transform infrared, differential scanning calorimetry and X-ray diffraction techniques to gain an insight into the particle size and structural features. Chlorpyrifos is then entrapped into the polymer, and its release is studied under various conditions. Critical factors influencing the size, entrapment efficiency and release behaviour of entrapped chlorpyrifos have been studied.

  16. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate

    Erika Kitakami

    2014-01-01

    Full Text Available Human periodontal ligament (PDL cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate (PMEA is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate and poly[(2-methacryloyloxyethyl phosphorylcholine-co-(n-butyl methacrylate]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET. In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment.

  17. Adhesion and proliferation of human periodontal ligament cells on poly(2-methoxyethyl acrylate).

    Kitakami, Erika; Aoki, Makiko; Sato, Chikako; Ishihata, Hiroshi; Tanaka, Masaru

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate) and poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(n-butyl methacrylate)]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET). In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment. PMID:25165689

  18. Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties

    Combining the intriguing optical properties of gold nanoparticles with the inherent physical and dynamic properties of polymers can give rise to interesting hybrid nanomaterials. In this study, we report the synthesis of poly(acrylic acid) (PAA)-capped gold nanoparticles. The polyelectrolyte-wrapped gold nanoparticles were fully characterized and studied via a combination of techniques, i.e. UV-vis and infrared spectroscopy, dark field optical microscopy, SEM imaging, dynamic light scattering and zeta potential measurements. Although PAA-capped nanoparticles have been previously reported, this study revealed some interesting aspects of the colloidal stability and morphological change of the polymer coating on the nanoparticle surface in an electrolytic environment, at various pH values and at different temperatures.

  19. Radiochemical coupling of acrylic acid to polyvinylchloride

    Acrylic acid was coupled radiochemically to the surface of polyvinylchloride (PVC) foils. A 500 keV electron generator served as radiation source. After neutralization with ammonia, the surface of the PVC foils got hydrophilic properties. Their capacity of water uptake increased from 0,04 mg/cm2 to about 0,5 mg/cm2 and the condensation of water takes place in form of a clear transparent film and not in form of light scattering droplets. 6 refs., 20 figs., 8 tabs

  20. Synthesis of ion exchange membrane by radiation grafting of acrylic acid onto polyethylene

    Radiation grafting of vinyl monomers onto polymer films has been extensively studied by many workers. In the preirradiation method of grafting a polymer substrate is activated by irradiation (either in the presence or absence of oxygen) and subsequently allowed to react with a monomer. The preirradiation method was utilized in this study to synthesize an ion exchange membrane useful for a battery separator by grafting acrylic acid onto polyethylene film. The battery separator should be chemically and thermally stable, sufficiently durable in electrolyte as well as highly electrically conductive. Membranes made from regenerated cellulose, e.g., cellophane, have long been used as a separator in the batteries with alkaline electrolyte, such as silver oxide primary cell. However, it has poor durability, as short as one year, due to breakdown of the membrane during operation or storing. The acrylic acid-grafted polyethylene film was found to be quite useful for a separator in the alkaline batteries. This membrane has a high electric conductivity and an excellent durability. (author)

  1. Effect of ionizing radiation on properties of acrylic pressure sensitive adhesives

    Pressure-sensitive adhesives for technical application are widely produced. The biological properties of adhesives depend on the type of monomers used. The available literature data as experience of the authors of this study in the area of pressure-sensitive acrylic adhesive, polymers used in medicine, polymerisation in aqueous media, radiation sterilization, permit to make an assumption that it is possible to elaborate the technology of production of pressure-sensitive adhesives in aqueous emulsion for medical applications. Identification of phenomena influencing the adhesive properties, especially its adhesion, cohesion, tack and durability is of great importance. The control of polymer structure is performed by means of adequate selection of conditions of synthesis and parameters of radiation processing. The authors investigate the influence on the final products of such factors as the type and amount of monomers used, their mutual ratio, as well as the ratio monomers and the dose of ionising radiation. There is no available literature information concerning the investigation of resistance of acrylic emulsion adhesive to sterilisation by electron beam. It is known from unpublished research that some adhesives are resistant to radiation, while others undergo destruction. It probably depends on the composition of emulsion, specifically on the additives which modify adhesives. Simultaneous achievement of good cohesion and adhesion in the case of such types of pressure sensitive adhesives is very difficult pressure sensitive adhesives is very difficult

  2. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30–500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations

  3. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Xiang, Aishuang [Princeton University, Chemical and Biological Engineering Department (United States); Yan, Weile [Texas Tech University, Civil and Environmental Engineering (United States); Koel, Bruce E., E-mail: bkoel@princeton.edu [Princeton University, Chemical and Biological Engineering Department (United States); Jaffe, Peter R., E-mail: jaffe@princeton.edu [Princeton University, Civil and Environmental Engineering Department (United States)

    2013-07-15

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.

  4. Super water absorbent by radiation graft polymerization of acrylic monomers onto cassava starch

    Water superabsorbent gel has been applying in personal care, agriculture, medical supplies and water purification. In agricultural application, the gel will help to control soil erosion, limit loss of nutrients and slit for plants, decrease irrigation frequency, improve infiltration, and increase water retention in prolonged arid soil and droughts. The gel absorbs many times its weight in available water. The gel from poly(acrylamide) was developed in the 60's to grow plants in the deserts. The other gel from poly(acrylic acid) was used to absorb rapidly in baby diapers, sanitary napkins. These polymers are commonly produced from natural gas, which have recently been introduced as a soil conditioner with great success. Prior to these polymers, peat moss, agro-waste (sugar-cane waste, coffee-shell, etc.), activated kaolin were the alternative soil additives to hold water (20 times its weight), but poly(acrylamide) absorbs 400 times its weight and polyacrylate is capable of absorbing greater amounts of liquid than poly(acrylamide). In addition, starch and cellulose are biodegradable naturally occurring polymers, which are not capable of holding a great amount of water, but their modification by graft polymerization or crosslinking through radiation or chemical initiation techniques, they become the potential superabsorbent polymers. Radiation initiation of chemical reactions has been widely known for making novel materials because the degree of polymerization, grafting and crosslinking process can easily be controlled. Recently, it was shown that the starch and cellulose derivatives such as carboxymethyl starch, carboxymethyl starch can be synthesized by radiation-induced crosslinking at high concentrations. Their utilization in agriculture seems to be appropriately evaluated. In this article, the graft polymerization and crosslinking of acrylic acid onto cassava starch and field trial of its product (GAM-Sorb S) are reported. (author)

  5. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization

    Dhruba Jyoti Haloi; Bishnu Prasad Koiry; Prithwiraj Mandal; Nikhil Kumar Singha

    2013-07-01

    This investigation reports a comparative study of poly(2-ethylhexyl acrylate) (PEHA) prepared via atom transfer radical polymerization (ATRP), reverse atom transfer radical polymerization (RATRP) and conventional free radical polymerization (FRP). The molecular weights and the molecular weight distributions of the polymers were measured by gel permeation chromatography (GPC) analysis. Structural characterization of the polymers was carried out by 1H NMR and MALDI-TOF-MS analyses. Thermal properties of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymerization results and the thermal properties of PEHAs prepared via ATRP, RATRP and FRP were compared.

  6. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  7. MODIFICATION OF ACRYLIC LACQUER BY DOUBLE-DUTY LYOPHILIC EMULSION

    Ф.Г. Фабуляк

    2012-12-01

    Full Text Available  General useful properties of acrylic lacquers have been studied. References to methods to modify them are given. It has been shown possibility modifying acrylic lacquers with the help of ethylene glycol is a prospective way of improving their properties.

  8. MODIFICATION OF ACRYLIC LACQUER BY DOUBLE-DUTY LYOPHILIC EMULSION

    Фабуляк, Ф.Г.; Національний авіаційний університет; Ульянкіна, Д.С.; Національний авіаційний університет; Таран, Т.В; Національний авіаційний університет

    2012-01-01

     General useful properties of acrylic lacquers have been studied. References to methods to modify them are given. It has been shown possibility modifying acrylic lacquers with the help of ethylene glycol is a prospective way of improving their properties.

  9. Artificial saliva effect on toxic substances release from acrylic resins

    Kostić Milena

    2015-01-01

    Full Text Available Background/Aim. Acrylic-based resins are intensively used in dentistry practice as restorative or denture-base materials. The purpose of this study was to analyze the surface structure of denture base resins and the amount of released potentially toxic substances (PTS immediately upon polymerization and incubation in different types of artificial saliva. Methods. Storage of acrylic samples in two models of artificial saliva were performed in a water bath at the temperature of 37 ± 1°C. Analysis of the surface structure of samples was carried out using scanning electronic microscopy analysis immediately after polymerization and after the 30-day incubation. The amounts of PTS per day, week and month extracts were measured using high-pressure liquid chromatography. Results. Surface design and amount of PTS in acrylic materials were different and depended on the types and duration of polymerization. The surfaces of tested acrylates became flatter after immersing in solutions of artificial saliva. The degree of acrylic materials release was not dependent on the applied model of artificial saliva. Conclusion. In order to improve biological features of acrylic resin materials, it was recommended that dentures lined with soft or hard coldpolymerized acrylates should be kept at least 1 to 7 days in water before being given to a patient. So, as to reach high degree of biocompatibility preparation of prosthetic restorations from heat-polymerized acrylate was unnecessary. [Projekat Ministarstva nauke Republike Srbije, br. 41017

  10. A comparison of properties between carboxylated acrylic rubbers prepared by γ-ray irradiation and chemical method

    Acrylic rubbers (ACM) carboxylated by acrylic acid or itaconic acid were prepared by 60Co γ-ray or chemical-initiator (K2S2O8) induced emulsion copolymerization. The polymers were characterized by Fourier transform infrared spectroscopy (FT-IR). Acid value, molecular weight and polydispersity index (PDI) of the polymers were determined by non-aqueous titration method and gel permeation chromatography (GPC), respectively. Vulcanization and mechanical properties of the filled ACM were studied by rheometric measurement, gel fraction analysis, mechanical property tests and dynamic mechanical thermal analysis (DMTA). The results show that the ACMs prepared by γ-ray irradiation have lower acid value, higher molecular weight and narrower PDI than chemically prepared ACMs of the same compositions. The itaconic acid carboxylated ACM has better cure characteristics and mechanical properties than the acrylic acid carboxylated ACM. The itaconic acid carboxylated ACM prepared by γ-ray irradiation has higher gel fraction and better cure characteristics as well as mechanical properties than that prepared by chemical method. (authors)

  11. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    Acosta-Torres LS

    2012-09-01

    Full Text Available Laura Susana Acosta-Torres,1 Irasema Mendieta,2 Rosa Elvira Nuñez-Anita,3 Marcos Cajero-Juárez,3 Víctor M Castaño41National School of Higher Education, School of Dentistry - Leon Unit, National Autonomus University of Mexico (UNAM, Leon, Guanajuato, 2Neurobiology Institute, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, 3Animal Biotechnology Laboratory, Faculty of Veterinary Medicine at San Nicolas de Hidalgo, Michoacán University, Michoacán, 4Molecular Materials Department, Applied Physics and Advanced Technology Center, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, MexicoBackground: Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work.Methods: Poly(methyl methacrylate [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay. Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles.Results: The results show that PMMA-silver nanoparticle discs

  12. Study of physico-chemical properties of the new film-type material based on ethyl acrylate and 2-hydroxyethyl acrylate

    Raykhan Rakhmetullaeva

    2015-03-01

    Full Text Available During recent years the complexes based on water swellable hydrophilic polymers with the drugs and preparation of the film materials used in medicine have attracted attention of researchers. Due to the controlled release of drugs and low toxicity, the polymeric film materials are used as drug delivery systems and dressings. Polymeric film materials for drug delivery were obtained first time by grafting 2-hydroxyethyl acrylate (HEA and ethyl acrylate (EA monomers onto polyvinyl alcohol (PVA. In this study, it was found that the films obtained without thermal treatment are soluble in an aqueous medium. Thus, they were heat treated in the range of 1-15 hours at 90-150ºC. Physico-chemical properties of the films have been studied depending on environmental effects as well as methods of obtaining films have been investigated. An increase of the thermal treatment time leads to a decrease in the degree of swelling and reduces the solubility properties of com­posite materials. The surface morphology and thermal properties of films based on HEA-EA were investigated by scanning electron microscopy, thermogravimet­ric analysis and differential scanning calorimetry. It was shown that the surface of obtained films were homogeneous without any bubbles.

  13. Control of the anchoring behavior of polymer-dispersed liquid crystals: effect of branching in the side chains of polyacrylates.

    Zhou, Jian; Collard, David M; Park, Jung O; Srinivasarao, Mohan

    2002-08-28

    A temperature-driven anchoring transition in a polymer/nematic fluid composite that is far from the bulk nematic-isotropic transition temperature is reported. A series of poly(methylheptyl acrylates) were studied to probe the subtle effects of the side chain structure of the polymer on control of the anchoring. A polymer-dispersed liquid crystal film made from TL205 and 1-methylheptyl acrylate shows only planar anchoring over the temperature range studied, while the films made from TL205 and each of the other methylheptyl acrylates or n-heptyl acrylate show the homeotropic-to-planar anchoring transition at temperatures between 70 and 78 degrees C. An interfacial model is proposed in which the different conformation of the side chains is suggested as the cause for the dramatic difference in the observed anchoring behavior. PMID:12188649

  14. Determination of gelation doses of gamma-irradiated hydrophilic polymers by different methods

    Poly(acrylic acid) and poly(vinyl pyrrolidone) are hydrophilic polymers. Poly(acrylic acid) is a polyelectrolyte which ionizes in water to produce an electrically conducting medium. In this study, it has been shown that the gelation dose of poly(acrylic acid) can be determined by conductimetric and titrimetric methods with NaOH and measuring pH of aqueous solution of γ-irradiated polymer. In order to develop new, simpler and rapid methods for the determination of gelation dose of PVP, its complexation with gallic acid in dilute aqueous solution has been used. The complex formation between gallic acid and irradiated PVP in aqueous solutions is followed by UV-vis spectroscopy. The reliability of the dose value found, 120 kGy for poly(acrylic acid) and 140 kGy for poly(vinyl pyrrolidone), are also verified by viscometric and solubility measurements. (author)

  15. Determination of gelation doses of gamma-irradiated hydrophilic polymers by different methods

    Yigit, Fatma; Tekin, Niket; Erkan, Sevin; Gueven, Olgun (Hacettepe Univ., Ankara (Turkey). Dept. of Chemistry)

    1994-04-01

    Poly(acrylic acid) and poly(vinyl pyrrolidone) are hydrophilic polymers. Poly(acrylic acid) is a polyelectrolyte which ionizes in water to produce an electrically conducting medium. In this study, it has been shown that the gelation dose of poly(acrylic acid) can be determined by conductimetric and titrimetric methods with NaOH and measuring pH of aqueous solution of [gamma]-irradiated polymer. In order to develop new, simpler and rapid methods for the determination of gelation dose of PVP, its complexation with gallic acid in dilute aqueous solution has been used. The complex formation between gallic acid and irradiated PVP in aqueous solutions is followed by UV-vis spectroscopy. The reliability of the dose value found, 120 kGy for poly(acrylic acid) and 140 kGy for poly(vinyl pyrrolidone), are also verified by viscometric and solubility measurements. (author).

  16. Comparison of the Retinal Straylight in Pseudophakic Eyes with PMMA, Hydrophobic Acrylic, and Hydrophilic Acrylic Spherical Intraocular Lens

    Ya-wen Guo

    2014-01-01

    Full Text Available Purpose. To investigate the intraocular straylight value after cataract surgery. Methods. In this study, 76 eyes from 62 patients were subdivided into three groups. A hydrophobic acrylic, a hydrophilic acrylic, and a PMMA IOL were respectively, implanted in 24 eyes, 28 eyes, and 24 eyes. Straylight was measured using C-Quant at 1 week and 1 month postoperatively in natural and dilated pupils. Results. The hydrophilic acrylic IOLs showed significantly lower straylight values than those of the hydrophobic acrylic IOLs in dilated pupils at 1 week and 1 month after surgery (P0.05. Moreover, no significant difference was found in straylight between natural and dilated pupils in each group at 1 week and 1 month postoperatively (P>0.05. Conclusions. Although the hydrophobic acrylic IOL induced more intraocular straylight, straylight differences among the 3 IOLs were minimal. Pupil size showed no effect on intraocular straylight; the intraocular straylight was stable 1 week after surgery.

  17. Chitosan-graft-poly(n-butyl acrylate) copolymer: Synthesis and characterization of a natural/synthetic hybrid material.

    Anbinder, Pablo; Macchi, Carlos; Amalvy, Javier; Somoza, Alberto

    2016-07-10

    Two chitosan polymers with different deacetylation degree and molecular weight were subjected to grafting reactions with the aim to enhance the properties of these bio-based materials. Specifically, n-butyl acrylate in different proportions was grafted onto two different deacetylation degree (DD%) chitosan using radical initiation in a surfactant free emulsion system. Infrared spectroscopy was used to confirm grafting and products grafting percentage and efficiency were evaluated against acrylate/chitosan ratio and DD%. Thermal and structural properties and the behavior against water of the raw and grafted biopolymers were studied using several experimental techniques: differential scanning calorimetry, transmission electron microscopy, dynamic light scattering, water swelling, contact angle and positron annihilation lifetime spectroscopy. The influence of the grafting process on the morphological and physicochemical properties of the prepared natural/synthetic hybrid materials is discussed. PMID:27106155

  18. Polymer films

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  19. Further investigations of the properties of polymer modified cements

    This report concludes the work done on behalf of the Department of the Environment on polymer modified cement composites. Topics covered include: the influence of cure schedule on flexural properties, observation of the onset and cracking during flexural testing, measurement of water permeability and caesium diffusion rates, and the use of Back Scattered Electron Imaging to identify the polymer phase. The properties of epoxide resin modified cements in the previous report were disappointing. Air entrainment of the mixing stage was a likely cause of the poor performance of these products and procedures to overcome this problem were devised. The range of polymer additives investigated was broadened by the inclusion of modified acrylic latexes and a polymensable acrylate resin additive. Properties for OPC and 9 BFS: 1 OPC cements are compared and the modification of properties achieved by polymer additions to both cement systems is discussed. (author)

  20. Proton microbeam irradiation effects on PtBA polymer

    J Kamila; S Roy; K Bhattacharjee; B Rout; B N Dev; R Guico; J Wang; A W Haberl; P Ayyub; P V Satyam

    2006-04-01

    Proton beam lithography has made it possible to make various types of 3D-structures in polymers. Usually PMMA, SU-8, PS polymers have been used as resist materials for lithographic purpose. Microbeam irradiation effects on poly-tert-butyl-acrylate (PtBA) polymer using 2.0 MeV proton microbeam are reported. Preliminary results on pattern formation on PtBA are carried out as a function of fluence. After writing the pattern, a thin layer of Ge is deposited. Distribution of Ge in pristine and ion beam patterned surface of PtBA polymer is studied using the optical and secondary electron microscopic experimental methods.

  1. Hyperbranched Acrylated Aromatic Polyester Used as a Modifier in UV-Curable Epoxy Acrylate Resins

    KOU,Hui-Guang; ASIF,Anila; SHI,Wen-Fang

    2003-01-01

    The viscosity, the shrinkage degree and the photoplymerization rate of the epoxy acrylate (EB600 ) blended with hyperbranched acrylated aromatic polyester ( HAAPE ) were investigated. The addition of HAAPE into EB600 largely reduces the viscosity of the blend formulation and the shrinkage degree. For example, EB600resin with 50% weight fraction of HAAPE has the 1250 cps of the viscosity and 2.0% of shrinkage degree, while the pure EB600 resin has 3000 cps of the viscosity and 10.5% of shrinkage degree. The photopolymerization rate of the rein is also promoted by HAAPE addition. The good miscibility between HAAPE and EB600 was also observed from the dynamic mechanical analysis. The tensile, flexural and compressive strength, and the thermal properties of the UVcured films are greatly improved.

  2. Electrografting of thin polymer films: Three strategies for the tailoring of functional adherent coatings

    Voccia, Samuel; Gabriel, Sabine; Serwas, Harry; Jérôme, Robert; Jérôme, Christine

    2006-01-01

    Cathodic electrografting is an efficient technique to impart adhesion to poly(meth)acrylate coatings onto inorganic conducting surfaces. Although this technique was restricted for many years to very few monomers ((meth)acrylonitrile and (meth)acrylates) and to deposition of very thin polymer films, recent developments have overcome these limitations. First of all, classical controlled/living polymerization techniques have been combined with cathodic electrografting as a powerful strategy for ...

  3. Radiation induced grafting of acrylic acid onto extruded polystyrene surface

    Polystyrene materials with good solubility in liquid scintillation cocktails are used to wipe off different types of surfaces in order to determine the tritium removable contamination with the help of a liquid scintillation counter. This paper analyses hydrophilic surface modifications by radiation induced grafting of acrylic groups onto extruded polystyrene plates. Two grafting methods were used: (a) exposure of extruded polystyrene plates, immersed in aqueous acrylic acid solution, to a gamma radiation of a Co-60 source, and (b) exposure of extruded polystyrene plates to a Co-60 source, followed by the immersion of extruded polystyrene plates in aqueous acrylic acid solution. The grafting of acrylic was proved by IR spectrometry and by radiometric methods using acrylic acid labelled with tritium. - Highlights: ► Polystyrene (PS) is used to determine the removable surface contamination (RSC). ► RSC factor may be increased by PS surface modification. ► PS surface was modified by acrylic acid grafting using γ radiation 60Co source. ► Acrylic fragments insertion was determined by IR, and radiometric. ► Grafted PS discs increase RSC factor in the case of tritium contamination.

  4. Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis

    Nanogels are sub-micron size, water-swellable crosslinked structures of hydrophilic polymers. In this work a radiation-based synthesis method that has been previously tested for neutral polymers is applied for production of nanogels of a synthetic polyelectrolyte--poly(acrylic acid) (PAA). In this technique dilute, deoxygenated PAA solution (pH 2) circulating in a closed loop is subjected to pulse irradiation with fast electrons. In each pulse many tens of radicals are instantaneously formed on every macromolecule. One of the major reaction paths of these radicals is intramolecular recombination leading to the formation of nanogels. It is demonstrated that radiation-induced reactions in our system show a typical feature of intramolecular crosslinking, i.e. a strong decrease in dimensions of a polymer coil without an accompanying decrease in molecular weight. In accordance with expectations based on earlier observations on non-polar polymers, intramolecular recombination of PAA-derived radicals proceeds according to non-classical kinetics. A model of non-homogeneous kinetics with time-dependent rate constant has been applied to describe this behaviour and the relationship between kinetic parameters and initial average number of radicals per chain is briefly discussed. The weight-average molecular weight of the products is influenced by side reactions, mainly degradation (chain breakage) and intermolecular crosslinking

  5. Design of novel biointerfaces (I). Blood compatibility of poly(2-methoxyethyl acrylate).

    Tanaka, Masaru

    2004-01-01

    We have reported that poly(2-methoxyethyl acrylate) (PMEA) shows excellent blood compatibility with respect to the coagulation, complement, leukocyte and platelet systems in vitro and ex vivo when compared with other polymer surfaces. In this study, to clarify the reasons for this good compatibility, the structure of water in the hydrated PMEA were investigated and compared to water structure of poly(2-hydroxyethyl methacrylate) (PHEMA) and polyacrylate analogs as references. The hydrated water in PMEA could be classified into three types; free water, freezing-bound water, and non-freezing water. Cold crystallization of water in the heating process was clearly observed at -42 degrees C. This cold crystallization is interpreted as the phase transition from the amorphous ice to the crystal ice that belongs to the freezing-bound water in PMEA. On the other hand, the cold crystallization peak (freezing bound water; which prevents the biocomponents from contacting the polymer surface or non-freezing water on the polymer surface) was not observed for hydrated PHEMA and PMEA analogous polymers. We hypothesized that the freezing-bound water layer between free water and non-freezing water was an important factor for the excellent blood compatibility of PMEA. PMID:15472391

  6. Development of carboxymethyl cellulose acrylate for various biomedical applications

    Pal, Kunal; Banthia, A. K.; Majumdar, D. K.

    2006-06-01

    The purpose of this work is to prepare a pH-sensitive hydrogel membrane of sodium carboxymethyl cellulose acrylate for drug delivery and other biomedical applications. The hydrogel was made by esterification of sodium carboxymethyl cellulose (SCMC) and acryloyl chloride (ACl). The esterified product was characterized by FTIR spectroscopy and XRD. Swelling, hemocompatibility, water vapor transmission rate, contact angle and diffusional studies were also done. Biocompatibility of the membrane was established by quantification of cell growth of L929 cells and mice splenocytes. The FTIR spectrum of the hydrogel suggested the formation of ester bonds between the hydroxyl groups of sodium carboxymethyl cellulose and the carbonyl group of acryloyl chloride. Water vapor transmission rate, hemocompatibility, contact angle and swelling studies indicated that the hydrogel can be tried as a wound dressing material. The hydrogel showed pH-dependent swelling behavior arising from the acidic pendant group in the polymer network. The permeability of the hydrogel membrane produced, as shown by salicylic acid diffusion, increased in response to an increase in pH of the external medium. The hydrogel membrane was permeable to salicylic acid at pH 7.2 but not at pH 2.0 (0.01N HCl). The effect of changes of pH on the hydrogel's permeability was found to be reversible. The hydrogel membrane was found to be compatible with the L929 mice fibroblast cell line and mice splenocytes. The esterified product of SCMC and ACl swells on increase of pH indicating its possible use in a pH-sensitive drug delivery system and as a wound dressing material.

  7. Development of carboxymethyl cellulose acrylate for various biomedical applications

    Pal, Kunal [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Banthia, A K [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Majumdar, D K [Delhi Institute of Pharmaceutical Sciences and Research, Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi 110017 (India)

    2006-06-15

    The purpose of this work is to prepare a pH-sensitive hydrogel membrane of sodium carboxymethyl cellulose acrylate for drug delivery and other biomedical applications. The hydrogel was made by esterification of sodium carboxymethyl cellulose (SCMC) and acryloyl chloride (ACl). The esterified product was characterized by FTIR spectroscopy and XRD. Swelling, hemocompatibility, water vapor transmission rate, contact angle and diffusional studies were also done. Biocompatibility of the membrane was established by quantification of cell growth of L929 cells and mice splenocytes. The FTIR spectrum of the hydrogel suggested the formation of ester bonds between the hydroxyl groups of sodium carboxymethyl cellulose and the carbonyl group of acryloyl chloride. Water vapor transmission rate, hemocompatibility, contact angle and swelling studies indicated that the hydrogel can be tried as a wound dressing material. The hydrogel showed pH-dependent swelling behavior arising from the acidic pendant group in the polymer network. The permeability of the hydrogel membrane produced, as shown by salicylic acid diffusion, increased in response to an increase in pH of the external medium. The hydrogel membrane was permeable to salicylic acid at pH 7.2 but not at pH 2.0 (0.01N HCl). The effect of changes of pH on the hydrogel's permeability was found to be reversible. The hydrogel membrane was found to be compatible with the L929 mice fibroblast cell line and mice splenocytes. The esterified product of SCMC and ACl swells on increase of pH indicating its possible use in a pH-sensitive drug delivery system and as a wound dressing material.

  8. Development of carboxymethyl cellulose acrylate for various biomedical applications

    The purpose of this work is to prepare a pH-sensitive hydrogel membrane of sodium carboxymethyl cellulose acrylate for drug delivery and other biomedical applications. The hydrogel was made by esterification of sodium carboxymethyl cellulose (SCMC) and acryloyl chloride (ACl). The esterified product was characterized by FTIR spectroscopy and XRD. Swelling, hemocompatibility, water vapor transmission rate, contact angle and diffusional studies were also done. Biocompatibility of the membrane was established by quantification of cell growth of L929 cells and mice splenocytes. The FTIR spectrum of the hydrogel suggested the formation of ester bonds between the hydroxyl groups of sodium carboxymethyl cellulose and the carbonyl group of acryloyl chloride. Water vapor transmission rate, hemocompatibility, contact angle and swelling studies indicated that the hydrogel can be tried as a wound dressing material. The hydrogel showed pH-dependent swelling behavior arising from the acidic pendant group in the polymer network. The permeability of the hydrogel membrane produced, as shown by salicylic acid diffusion, increased in response to an increase in pH of the external medium. The hydrogel membrane was permeable to salicylic acid at pH 7.2 but not at pH 2.0 (0.01N HCl). The effect of changes of pH on the hydrogel's permeability was found to be reversible. The hydrogel membrane was found to be compatible with the L929 mice fibroblast cell line and mice splenocytes. The esterified product of SCMC and ACl swells on increase of pH indicating its possible use in a pH-sensitive drug delivery system and as a wound dressing material

  9. Radiation hardening of epoxide-acrylate compositions

    Radiation setting of epoxy oligomers modified with vinyl monomers was studied. The setting was accomplished under the effect of γ-radiation of 60Co at the dose rate of 1750 Mrad/s. The content of the gel fraction in the radiation set epoxy-acrylate-styrene compositions increases by 20%, and the phase transition temperature is higher than for compositions set under normal conditions. In all compositions investigated the maximum content of the gel fraction is observed at 8-9 Mrad dose and is 60-70%, on the average. An increase in degree of setting up to 92-98% can be achieved by additional heat treatment of the compositions

  10. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  11. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  12. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing.

    Chen, Yu; Zhang, Yong; Wang, Fengju; Meng, Weiwei; Yang, Xinlin; Li, Peng; Jiang, Jianxin; Tan, Huimin; Zheng, Yongfa

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed. PMID:27040191

  13. COMPLEX OXIDE CATALYSTS OF ACRYLIC ACID OBTAINING BY ALDOL CONDENSATION METHOD

    Nebesnyi, R.

    2015-01-01

    The present work is dedicated to solving the problem of diversification of the raw materials base for acrylate monomers obtaining,  first of all acrylic acid. Acrylic acid and its derivatives are bulk products of organic synthesis with a wide range of applications. The main industrial method of acrylic acid production is  propylene oxidation. But this method has instable economic indicators as propylene is petroleum origin raw material.It is possible to expand the resource base of acrylic aci...

  14. SYNTHESIS AND CHARACTERIZATION OF POLYURETHANE ACRYLATES FOR UV CURABLE COATING AGENTS

    MI NA PARK; YOUNG SOO KANG; SUN WHA OH; BYUNG HYUN AHN; MYUNG JUN MOON

    2007-01-01

    The single hydroxyl-terminated urethane acrylate oligomers were synthesized from 2-mercaptoethanol (2-MEOH), alkyl (methyl, butyl, and 2-ethylhexyl) acrylate, and 2,2-azobisisobutyronitrile (AIBN, initiator), with dibutyltin dilaurate (DBTDL) as a catalyst. 2-MEOH was used as a functional chain transfer agent. Poly(alkyl urethane) acrylate oligomers were obtained by the reaction of single hydroxyl-terminated polyalkyl acrylates and 2-isocyanatoethyl acrylate. They were characterized by NMR, F...

  15. Photon energy absorption parameters for some polymers

    Singh, Tejbir; Rajni [Physics Department, M.M. University, Mullana-133 203 Haryana (India); Kaur, Updesh [Physics Department, P.K.R.J.S.S. School, Ambala City, Haryana (India); Singh, Parjit S., E-mail: dr_parjit@hotmail.co [Physics Department, Punjabi University, Patiala-147 002 Punjab (India)

    2010-03-15

    Some photon energy absorption parameters viz. mass energy absorption coefficient (mu/rho){sub en}, photon energy absorption effective atomic number (Z{sub PEA}), electron density (N{sub e}) and KERMA relative to air has been computed in the energy range from 1 keV to 20 MeV for some polymers such as nylon, poly-acrylo-nitrile, poly-methyl-acrylate, poly-vinyl-chloride, poly-styrene, synthetic rubber and poly-tetra-fluro-ethylene. The dependence of different parameters on incident photon energy and chemical composition of the selected polymers has been studied .

  16. Develop Roll-to-Roll Manufacturing Process of ZrO2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    Joshi, Pooran C [ORNL; Compton, Brett G [ORNL; Li, Jianlin [ORNL; Jellison Jr, Gerald Earle [ORNL; Duty, Chad E [ORNL

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  17. Rare linking hydrogels based on acrylic acid and carbohydrate esters

    U. Akhmedov

    2012-09-01

    Full Text Available The process of copolymerization of acrylic acid and esters poliallil sucrose; pentaerythritol and sorbitol, some of its laws are identified. The kinetic regularities of copolymerization and the optimum conditions of synthesis was established.

  18. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  19. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics. PMID:24661889

  20. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process. PMID:22279908

  1. Construction and properties of acrylic vessels in the RENO detector

    The aim of the RENO (Reactor Experiment for Neutrino Oscillation) is to measure the smallest neutrino mixing angle, θ13. The RENO detector consists of four concentric cylindrical layers: the target, γ-catcher, buffer and veto. Acrylic is used for the target and γ-catcher vessels, both of which contain liquid scintillator. Acrylic was chosen because it has good transmittance in the wavelength range of 400–430nm and also does not react with liquid-scintillating solvents. In order to reduce systematic uncertainties, the target volume should be identical to a level of less than 0.1% between the near and far detectors. Furthermore, the acrylic vessel should not have any leaks. In this paper, we investigate the optical properties, design and construction of the acrylic vessels used in the RENO detector.

  2. [Reaction of 1,8-naphthyridine azides with ethyl acrylate].

    Livi, O; Ferrarini, P L; Bertini, D; Tonetti, I

    1975-12-01

    The reaction of 1,8-naphthyridine azides with ethyl acrylate leads to the formation of 2-pyrazolines instead of 1,2,3-triazolines. Some of the compounds obtained have undergone pharmacological and microbiological (antibacterial) testing. PMID:1204828

  3. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  4. Fast and Efficient [2+2] UV Cycloaddition for Polymer Modification via Flow Synthesis

    CONRADI, Matthias Horst; Junkers, Thomas

    2014-01-01

    The alkene enone [2 + 2] photocycloaddition reaction between polymer-bound maleimide and functional alkenes has been tested in a UV-flow reactor, demonstrating a very high efficiency of the reaction. As a test reaction, polymer end group modifications were carried out on maleimide-functional poly(butyl acrylate). The polymer was prepared by atom transfer radical polymerization (ATRP) using a N-hydroxysuccinimide-functionalized initiator, followed by exchange reaction of the activated ester wi...

  5. The Effect of 3rd Component on the Melt Rheology of Polymer Blend System

    Koyama, Kiyohito; Uematsu, Hideyuki; Sugimoto, Masataka; Taniguchi, Takashi; Inada, Teiichi; Iwakura, Tetsuro

    2008-07-01

    Uniaxial elongational flow behavior of polymer blend system containing three components (acrylic polymer, epoxy resin and SiO2) was investigated. The strain softening was observed at 80 °C and the strain hardening was observed at 60 °C for the same sample. We found that these non-linear properties in uniaxial elongational flow behavior can be varied by temperature change for polymer blend containing three components.

  6. Transfer Reactions in Phenyl Carbamate Ethyl Acrylate Polymerizations

    Bennet, Francesca; Roelle, Thomas; Faecke, Thomas; Weiser, Marc-Stephan; Bruder, Friedrich-Karl; Barner-Kowollik, Christopher; Junkers, Thomas

    2013-01-01

    The transfer reactions occurring during polymerization of 2-(phenylcarbamoyloxy)ethyl acrylate (PhCEA) were studied by a detailed product mapping with electrospray ionization mass spectrometry (ESI-MS). Unlike postulated before, PhCEA exhibits the same characteristic transfer reactions as other acrylic monomers at elevated temperatures, resulting in vinyl-terminated and saturated products. Transfer to monomer via abstraction of a hydrogen atom from the ester side chain as suggested before is ...

  7. Synthesis of highly carboxylate acrylic resins for leather impregnation

    Ollé Otero, Lluís; Solé, M.M.; Shendrik, Alexander; Labastida, L.; Bacardit Dalmases, Anna

    2012-01-01

    This work describes the synthesis of new leather finishing acrylic resins. Four resins ware synthesized varying the concentration of ethyl acrylate, and metracrylic acid. Sodium lauryl sulphate was used as emulsifying system. By means of an experimental design, an optimal resin for leather impregnation was defined. The results obtained indicated that the variation of the monomer concentration influences the resin properties, the hardness of the film, and the penetration into the leather. Most...

  8. Durability of concrete protected by an acrylic painting

    Aguiar, J. L. Barroso de; Ramos, Amparo C.; Soares, Helena I.

    2005-01-01

    The fast degradation of concrete is a problem that occurs in some structures. In order to have less degradation, the use of protection systems could be recommended. Acrylic paintings have properties that make possible its use as a protection material of concrete. In our study, one concrete that could be classified as a C33/43, was protected with two coats of an acrylic painting. The durability of the protected concrete was studied. Tests made were: capillarity absorption, oxygen perm...

  9. Artificial saliva effect on toxic substances release from acrylic resins

    Kostić Milena; Krunić Nebojša; Najman Stevo; Nikolić Ljubiša; Nikolić Vesna; Rajković Jelena; Petrović Milica; Igić Marko; Ignjatović Aleksandra

    2015-01-01

    Background/Aim. Acrylic-based resins are intensively used in dentistry practice as restorative or denture-base materials. The purpose of this study was to analyze the surface structure of denture base resins and the amount of released potentially toxic substances (PTS) immediately upon polymerization and incubation in different types of artificial saliva. Methods. Storage of acrylic samples in two models of artificial saliva were performed in a water bath a...

  10. A Hydrogen Ion-Selective Sensor Based on Non-Plasticised Methacrylic-acrylic Membranes

    Musa Ahmad

    2002-08-01

    Full Text Available A methacrylic-acrylic polymer was synthesised for use as a non-plasticised membrane for hydrogen ion-selective sensor incorporating tridodecylamine as an ionophore. The copolymer consisted of methyl methacrylate and n-butyl acrylate monomers in a ratio of 2:8. Characterisation of the copolymer using FTNMR demonstrated that the amount of each monomer incorporated during solution polymerisation was found to be similar to the amount used in the feed before polymerisation. The glass transition temperature of the copolymer determined by differential scanning calorimetry was -30.9 ºC. Potentiometric measurements conducted showed a linear pH response range of 4.3 – 9.6 with the response slope of 56.7 mV/decade. The selectivity of the sensors towards hydrogen ions was similar to other plasticiser based membrane electrodes and the logarithmic selectivity coefficients for discrimination against interference cations is close to –9.7. However, the incorporation of a lipophilic anion as membrane additive is essential in ensuring optimum performance of the hydrogen ion sensor.

  11. The Effect of Reactives Diluents to the Physical Properties of Acrylated Palm Oil Based Polyurethane Coatings

    Onn Munirah

    2016-01-01

    Full Text Available The development of polyurethane with hydroxyl access in a molecule leads to a new alternative of low toxicity green product. Palm oil is one of the major commodities in Malaysia. The potential of palm oil to be used as coatings raw material such as alkyd is limited due to low unsaturated side on fatty acid chains. To overcome this limitation, palm oil was modified through transesterification process to produce polyol. Acrylated isocyanate (urethane oligomer was then grafted onto polyol to produce polyurethane with vinylic ends. The polyurethane was formulated with different cross-linkers (reactive diluents and cured under UV radiation. The effect of three different diluents; monoacrylate, diacrylate and triacrylate on the properties of cured polymer were studied in this research. Fourier Transform Infrared (FTIR, Hydroxyl Value Titration, Gel Content, and Volatile Organic Compound (VOC were used for characterization. Physical testing performed were Pencil Hardness and Pull-Off Adhesion test. Novel palm oil-based polyurethane coatings have been found to have good properties with mono acrylate functionality.

  12. Influence of Initiator on Synthesis and Properties of Polyurethane-acrylate Hybrid Emulsion

    HU Guowen; SHEN Huifang; FIU Heqing; CHEN Huanqin

    2008-01-01

    The prepolymer polyurethanes(PUs)based on isophorone diisocyanate(IPDI),poly(propylene glycol)(PPG),1,4-butanedioi(BDO)and dimethylopropionic acid(DMPA)were synthesized at 75-80℃ for 7-8 hours,using dibutyltin dilauate(DBTDL)as catalyzer,and polyturethane-acrylate hybrid emulsion was prepared after methyl methacrylate(MMA)was polymerized,using potassium persulfate and azobisisobutyronitrile(AIBN)as initiator,respectively.The influences of these factors such as the kind of initiator,the feed method of initiator and the addition of initiator on properties of polyurethane-acrylate were studied.The FTIR and GPC of aqueous polyurethane were analyzed.The FTIR spectra show that the degree of microphase-separate between the soft segments and rigid segments is high.The analysis of molecular weights stated that molecular weights increased most significantly after amine was added.The experimental results reveal that the appearance of emulsion is excellent,the film is harder and the water absorption radio of the film is less when oil-solubility AIBN is used as initiator.The semi-continuous can increase the molecular weight of polymer and the optimum amount of the initiator was 3% for MMA.

  13. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base

    ArRejaie, Aws S.; Abdel-Halim, Mohamed Saber; Rahoma, Ahmed

    2016-01-01

    Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers. PMID:27366150

  14. Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites

    Dashtizadeh, Ahmad; Abdouss, Majid; Mahdavi, Hossein; Khorassani, Manuchehr

    2011-01-01

    To prepare nano-composite emulsion acrylic resins with improved surface hardness and solvent resistance, nano-silica particles were treated with surfactants. The monomers of methyl methacrylate/butylacrylate were co-polymerized on the surface of dispersed silica particles. Several emulsions with different silica contents and copolymer mole fractions were prepared. Finally the emulsions were modified to water-based acrylic coatings and improved properties such as surface hardness, solvent resistance and glossiness were determined. The study of coatings was directed to find the improved resin by optimum surface properties. Size distribution and morphology of latexes were characterized by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. The glass transition temperature of nano-composites was measured and discussed its relation with silica contents, monomer mole fractions and improved properties of coatings. The optimum pendulum hardness of coatings was on 0.46 methyl methacrylate mole fraction and 120 g silica content. An increase in pendulum hardness of nano-composites with the addition of modified silica was observed. DLS and TEM studies indicate that silica particles were dispersed homogenously through the polymer matrix.

  15. Antimicrobial activity of poly(acrylic acid) block copolymers

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  16. Antimicrobial activity of poly(acrylic acid) block copolymers

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  17. Application of reactive acrylate microgels in water-base coatings

    SA Sheng-shu; ZHANG Bao-hua; YANG Qing; WANG Xia-qin; MAO Zhi-ping

    2009-01-01

    Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent prop-erties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in preparing paints or in coating-modification. Reactive acrylate microgels were prepared by emulsion co-polymerization with zwitterions surfactant, anionic surfactant and nonionic surfactant as co-emulsifier. The water-base baking paints made from reactive acrylate micro-gels and melamine-formaldehyde resin had excellent combination properties. The aluminium powder can be well-dispersed in the paints. The influences of monomer components on the properties of the water-base baking paints were discussed in this paper. And the baking paints were also compared with the marketing solvent acrylate baking paints. It was found that the water-base acrylate amino baking paints had better combination properties than the organic solvent acrylate baking paints, which means that the water-base baking paints had a bright marketing future.

  18. Advances in acrylic-alkyd hybrid synthesis and characterization

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  19. SYNTHESIS OF POLYACRYLAMIDE WITH PENDANT POLY(BUTYL ACRYLATE) CHAINS USING THE MACROMER TECHNIQUE AND STUDIES ON THEIR PROPERTIES

    Hong-quan Xie; Gui-ying Liao; Yu Gao

    2004-01-01

    An amphiphilic graft polymer, (PAM-g-PBA), polyacrylamide (PAM) having poly(n-butyl acrylate) (PBA) side chains, was obtained by radical copolymerization of acrylamide with PBA macromer in solution. The macromer was synthesized by free radical polymerization of butyl acrylate in the presence of different amounts of thioglycolic acid as the chain transfer agent, followed by termination with glycidyl methacrylate. The reactivity ratio and effects of copolymerization conditions on the conversion of macromer or grafting efficiency were studied. The crude products were purified by extraction with toluene and water successively. Thc purified graft copolymer was characterized by IR, DSC and TEM. PAM-g-PBA can bring about microphase separation and exhibits good emulsifying properties and water absorbency. PAM-g-PBA exhibits a very good compatibilizing effect on the acrylic rubber/poly(vinyl chloride) blends. 2%-3% of the graft copolymer is enough for enhancing the tensile strength of the blends. The tensile strength of the blends is more than twice that without the compatibilizer. DSC and SEM demonstrated the enhancement of compatibility in the presence of the graft copolymer.

  20. Graft copolymerization of N-maleoyl-N-phthaloyl-chitosan (MAPHCS) and acrylic acid via γ-ray irradiation

    Chitosan is a well-known abundant natural polymer with good biodegradability, biocompatibility and bioactivity. But its insolubility in common organic solvents of chitosan have hindered its utilization and basic research. N-maleoyl-N-phthaloyl-chitosan (MAPHCS), soluble in DMF or DMSO, was synthesized and characterized by Fourier transform infrared spectra analysis (FT-IR) and 1H-NMR. The graft copolymerization of acrylic acid onto chitosan was carried out with N-maleoyl-N-phthaloyl-chitosan as intermediate in homogeneous system and initiated by γ-irradiation. The double bond of MAPHCS may be the grafting site because the grafting field was much higher than that of the graft copolymerization of acrylic acid and phthaloylchitosan via γ-ray irradiation. The chemical structure of the graft copolymer was characterized by FT-IR and 1H-NMR. As indicated in FTIR spectra, the evidence of the stronger absorbance at 2800-3000 cm-1 for C-H and at 1720 cm-1 for carboxyl group implied significantly the successful introduction of the poly (acrylic acid) on the chitosan chain. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were also used to characterize the copolymer. Effects of synthesis variables on the graft copolymerization were studied in light of the grafting percentage. The grafting percentage increased with the dose at lower doses, and then decreased. The maximum grafting percentage was up to 132%. (authors)

  1. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution

    Nitri Arinda

    2009-04-01

    Full Text Available Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the experiment closed to its theoretical value.The optimum condition then could be applied in shell polymerization of core-shell polymers. The results of the researchshowed that semicontinuous technique obtained optimum sodium lauryl sulfate concentration at 20 CMC (criticalmicelle concentration and ammonium persulfate concentration is 3%. By using batch technique that the biggestparticle size is 123 nm with conversion 95.8% and monodisperse. The shorter of feeding time the more monomer ofethyl acrylate being polymerized, it is showed by the higher conversion up to 94.4% and the bigger particle size is107.9 nm.

  2. Photostabilizers in acrylate-based optical aids

    Pospíšil, Jan; Laštůvková, H.; Nešpůrek, Stanislav; Bandlitz, S.; Habicher, W. D.

    Palermo : University of Palermo, 2000, s. 1. [International Conference on Polymer, Modification, Degradation and Stabilization: Modest 2000 /1./. Palermo (IT), 03.09.2000-07.09.2000] R&D Projects: GA MŠk ME 184 Subject RIV: CD - Macromolecular Chemistry

  3. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  4. Grafting of acrylic acid onto polypropylene films irradiated with argon ions

    Polypropylene (PP) foils were irradiated with 100 keV energy Argon ions at different fluences ranging from 1012 up to 2 x 1015 cm-2 and then grafted with acrylic acid (AA). The grafting yield was measured by weight difference and the structural changes on the films were analysed using Fourier transform infrared spectroscopy (FTIR). Different parameters that determined the grafting process such us fluence, grafting time and monomer concentration were analysed. The grafting reached an optimum value at 79% in aqueous solution at 30 min grafting time. The grafting yield as a function of the ion fluence plot, presented a maximum value, as previously found in a study of heavy beam on polymers

  5. Synthesis of acrylic copolymers consisting of multiple amine pendants for dispersing pigment.

    Chen, Yu-Min; Hsu, Ru-Siou; Lin, Hsiao-Chu; Chang, Shinn-Jen; Chen, Shih-Chun; Lin, Jiang-Jen

    2009-06-01

    A class of acrylic copolymers with narrow molecular weight distribution from butyl methacrylate and glycidyl methacrylate comonomers via atom transfer radical polymerization was synthesized. Various types of polarities including hydroxyl-amines, glycols, and carboxylic acids were then grafted onto the oxirane side groups. The resultant comb-like copolymers with different polar pendants were tested for homogenizing a representative Yellow pigment in 1,6-hexanediol diacrylate medium. Specifically, the polyacrylates with 1,3-diamine pendants (7-10 multiplicity on each polymer strain) enabled to homogeneously disperse the pigment than the analogous copolymers with hydroxyl or carboxylic acid groups. Ultimately, the pigment dispersion with an average size of ca. 20 nm in diameter, high transmittance and low viscosity was achieved. Furthermore, the pigment dispersion was allowed to UV-cure into a film, and for the first time, the primary structures of the pigment particles (ca. 50 nm in diameter) were observed by transmission electronic microscope. PMID:19364609

  6. Loading rate effects on the fracture of Ni/Au nano-coated acrylic particles

    Z. L. Zhang

    2012-03-01

    Full Text Available Mechanical failure of monodisperse Ni/Au coated acrylic particles has been investigated by individual compression tests using nanoindentation-based technique equipped with a flat diamond punch. We have found that both fracture property and morphology of particles depend on the compression loading rate. The breaking strain of the metal coating decreases with increasing loading rate, while the breaking stress increases. Two obvious fracture patterns with cracking in meridian or latitude direction are identified according to the loading rate, and attributed respectively to tension- or bendingdominated deformation of the coating. The findings reported here give a significant guiding to the manufacture design of metal coated polymer particles for Anisotropic Conductive Adhesive (ACA packaging.

  7. Formation of microporous polymeric materials by microemulsion radiation polymerization of butyl acrylate

    A microemulsion system composed of butyl acrylate (BA) and water with the mixture of sodium 12-acryloxy-9-octadecenate (SAO) and octylphenoxypoly(ethoxyethanol) (OP-10) as emulsifier was initiated by γ-ray at room temperature to polymerize and produce microporous polymeric materials. The morphology and swelling characteristics of the resulting polymeric materials were studied. It was found that they depend strongly on the composition (water content, crosslinker content, emulsifier content) of the precursor microemulsions. In addition, the swelling properties of polymer so prepared were also found to be sensitive to the pH of the swelling medium. The change in swelling behaviors of the polymeric materials is discussed in terms of the polyelectrolyte effect exhibited by polymerized anionic emulsifier SAO. (author)

  8. Linear Viscoelasticity of Spherical SiO 2 Nanoparticle-Tethered Poly(butyl acrylate) Hybrids

    Goel, Vivek

    2010-12-01

    The melt state linear viscoelastic properties of spherical silica nanoparticles with grafted poly(n-butyl acrylate) chains of varying molecular weight were probed using linear small amplitude dynamic oscillatory measurements and complementary linear stress relaxation measurements. While the pure silica-tethered-polymer hybrids with no added homopolymer exhibit solid-like response, addition of matched molecular weight free matrix homopolymer chains to this hybrid, at low concentrations of added homopolymer, maintains the solid-like response with a lowered modulus that can be factored into a silica concentration dependence and a molecular weight dependence. While the silica concentration dependence of the modulus is strong, the dependence on molecular weight is weak. On the other hand, increasing the amount of added homopolymer changes the viscoelastic response to that of a liquid with a relaxation time that scales exponentially with hybrid concentration. © 2010 American Chemical Society.

  9. Thermal degradation of biopolymer binders: the example of starch-poly(acrylic acid

    B. Grabowska

    2010-01-01

    Full Text Available To characterise a polymer, it is of fundamental importance to determine its parameters, like the temperatures of destruction, vitrification, melting point, specific mass losses or polymorphic transformations, which frequently determine the quality of the product and its applications. Thermal analyses were conducted of samples of a biopolymer binder: a starch-poly(acrylic acid composition and a moulding sand with a biopolymer binder previously hardened with microwaves. In order to determine the thermal stability of the examined samples by determining the destruction temperature and the thermal effects of transformations taking place during heating, FTIR spectroscopy and thermal analysis (DSC, DTG, TG methods were used. In addition, volatile products of degradation were analysed using the thermogravimetry (TG method coupled online with mass spectrometry (MS. These examinations were also aimed at identifying the changes that can take place in the moulding sand when it comes into contact with liquid metal.

  10. Dielectric properties of solution-grown-undoped and acrylic-acid-doped ethyl cellulose

    P K Khare; Sandeep K Jain

    2000-02-01

    Dielectric capacities and losses were measured, in the temperature (50–170°C) and frequency (01–100 kHz range), for undoped and acrylic acid (AA) doped ethyl cellulose (EC) films (thickness about 20 m) with progressive increase in the concentration of dopant in the polymer matrix. The variation of capacity with temperature is attributed to thermal expansion in the lower temperature region to the orientation of dipolar molecules in the neighbourhood of glass transition temperature () and random thermal motion of molecules above . The dielectric losses exhibit a broad peak. Doping with AA is found to affect the magnitude and position of the peak. AA is found to have a two-fold action. Firstly, it enhances the chain mobility and secondly, it increases the dielectric loss by forming charge transfer complexes.

  11. Grafting of acrylic acid on etched latent tracks induced by swift heavy ions on polypropylene films

    In order to continue with a systematic study that include different polymers and monomers, the residual active sites produced by heavy ion beams, that remain after the etching process, were used to start the grafting process. To produce tracks, foils of polypropylene (PP) were irradiated with 208Pb of 25.62 MeV/n. Then, these were etched and grafted with acrylic acid (AA) monomers. Experimental curves of grafting yield as a function of grafting time with the etching time as a parameter were measured. Also, the grating yield as a function of the fluence and etching time was obtained. In addition, the permeation of solutions, with different pH, through PP grafted foils was measured

  12. Modification of magnetite coating formation in presence of alkaline acrylic acid

    In Indian PHWR's, the hot conditioning of primary heat transport system is carried out to form a protective magnetite coating on the inner surface of PHT system at the start up of the reactor and also after decontamination of PHT system to minimize the release of loose crud particulates and corrosion of the PHT system. An attempt has been made to modify the chemistry conditions for the formation of protective magnetite coating on CS coupons in a static autoclave at 523K to view its impact on the nature of the protectivity. In continuation of our efforts to modify the film with various organic additives like Glycerol, Ethylene glycol, PEG, in this paper the effect of acrylic acid on magnetite coating formation is discussed. The metal oxide powders synthesized by polymer combustion route in PVA, PEG and PAA resulted in nano crystallites. To see the effect of theses organics in reducing the crystallite sizes and improving the corrosion resistance behaviour in hydrothermal conditions the experiments are carried out. In presence of Acrylic acid (AA) at different concentrations (50, 100, 500ppm) at alkaline pH (LiOH -10.4 ) in static autoclave, magnetite coating is formed on CS coupons. The coupons were characterized by XRD, SEM, Raman and Electrochemical impedance and Potentiodynamic Anodic Polarization (PDAP) studies. The addition of acrylic acid results in smaller crystallite sizes and the crystallites look like thread bundles for 50ppm concentration of AA. PDAP studies indicate better film protectivity for magnetite coating formed in 50 ppm AA. Corrosion rate is observed to be less for CS coupons in presence of 50 and 100 ppm AA. The tendency for the film formed to dissolve is less for both 50 and 100 ppm AA developed coating in comparison to coating developed in LiOH alone. The impedance studies indicated the pore resistance of the film increased two fold and seven fold for 50 and 100 ppm acrylic acid case in comparison to simple LiOH case where as the charge

  13. Biodegradable Polymers

    Isabelle Vroman; Lan Tighzert

    2013-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  14. Design and characterization of diclofenac diethylamine transdermal patch using silicone and acrylic adhesives combination

    Panchaxari Dandigi M

    2013-01-01

    Full Text Available Abstract Background and purpose of the study The objective of the study was to develop and characterize Diclofenac Diethylamine (DDEA transdermal patch using Silicone and acrylic adhesives combination. Methods Modified solvent evaporation method was employed for casting of film over Fluoropolymer coated polyester release liner. Initial studies included solubilization of drug in the polymers using solubilizers. The formulations with combination of adhesives were attempted to combine the desirable features of both the adhesives. The effect of the permeation enhancers on the drug permeation were studied using pig ear skin. All the optimized patches were subjected to adhesion, dissolution and stability studies. A 7-day skin irritancy test on albino rabbits and an in vivo anti-inflammatory study on wistar rats by carrageenan induced paw edema method were also performed. Results The results indicated the high percent drug permeation (% CDP-23.582 and low solubility nature (1% of Silicone adhesive and high solubility (20% and low% CDP (10.72% of acrylic adhesive. The combination of adhesives showed desirable characteristics for DDEA permeation with adequate % CDP and sufficient solubility. Release profiles were found to be dependent on proportion of polymer and type of permeation enhancer. The anti-inflammatory study revealed the sustaining effect and high percentage inhibition of edema of C4/OLA (99.68%. The acute skin irritancy studies advocated the non-irritant nature of the adhesives used. Conclusion It was concluded that an ideal of combination of adhesives would serve as the best choice, for fabrication of DDEA patches, for sustained effect of DDEA with better enhancement in permeation characteristics and robustness.

  15. Design and Characterization of Diclofenac Diethylamine Transdermal Patch using Silicone and Acrylic Adhesives Combination

    Dandigi M Panchaxari

    2013-01-01

    Full Text Available Background and purpose of the studyThe objective of the study was to develop and characterize Diclofenac Diethylamine (DDEA transdermal patch using Silicone and acrylic adhesives combination.MethodsModified solvent evaporation method was employed for casting of film over Fluoropolymer coated polyester release liner. Initial studies included solubilization of drug in the polymers using solubilizers. The formulations with combination of adhesives were attempted to combine the desirable features of both the adhesives. The effect of the permeation enhancers on the drug permeation were studied using pig ear skin. All the optimized patches were subjected to adhesion, dissolution and stability studies. A 7-day skin irritancy test on albino rabbits and an in vivo anti-inflammatory study on wistar rats by carrageenan induced paw edema method were also performed.ResultsThe results indicated the high percent drug permeation (% CDP-23.582 and low solubility nature (1% of Silicone adhesive and high solubility (20% and low% CDP (10.72% of acrylic adhesive. The combination of adhesives showed desirable characteristics for DDEA permeation with adequate% CDP and sufficient solubility. Release profiles were found to be dependent on proportion of polymer and type of permeation enhancer. The anti-inflammatory study revealed the sustaining effect and high percentage inhibition of edema of C4/OLA (99.68%. The acute skin irritancy studies advocated the non-irritant nature of the adhesives used.ConclusionIt was concluded that an ideal of combination of adhesives would serve as the best choice, for fabrication of DDEA patches, for sustained effect of DDEA with better enhancement in permeation characteristics and robustness.

  16. Leakage current and stability of acrylic elastomer subjected to high DC voltage

    Hammami, S.; Jean-Mistral, C.; Jomni, F.; Gallot-Lavallée, O.; Rain, P.; Yangui, B.; Sylvestre, A.

    2015-04-01

    Dielectric elastomers such as 3M VHB4910 acrylate film have been widely used for electromechanical energy conversion such as actuators, sensors and generators, due to their lightweight, high efficiency, low cost and high energy density. Mechanical and electric properties of such materials have been deeply investigated according to various parameters (temperature, frequency, pre-stress, nature of the compliant electrodes…). Models integrating analytic laws deduced from experiments increase their accuracy. Nevertheless, leakage current and electrical breakdown reduce the efficiency and the lifetime of devices made with these polymers. These two major phenomena are not deeply investigated in the literature. Thus, this paper describes the current-voltage characteristics of acrylate 3M VHB4910 and investigates the stability of the current under high electric field (kV) for various temperatures (from 20°C to 80°C) and over short (300 s) and long (12h) periods. Experimental results show that, with gold electrodes at ambient temperature, the current decreases with time to a stable value corresponding to the conduction current. This decrease occurs during 6 hours, whereas in the literature values of current at short time (less than 1 hour) are generally reported. This decrease can be explained by relaxations mechanisms in the polymer. Schottky emission and Poole-Frenkel emission are both evaluated to explain the leakage current. It emerges from this study that the Schottky effect constitutes the main mechanism of electric current in the 3M VHB4910. For high temperatures, the steady state is reached quickly. To end, first results on the leakage current changes for pre-stretch VHB4910 complete this study.

  17. Determination of gelation doses of gamma-irradiated hydrophilic polymers by different methods

    Yiǧit, Fatma; Tekin, Niket; Erkan, Sevin; Güven, Olgun

    1994-04-01

    Poly(acrylic acid) and poly(vinyl pyrrolidone) are hydrophilic polymers. Poly(acrylic acid) is a polyelectrolyte which ionizes in water to produce an electrically conducting medium. Therefore, the gelation dose of poly(acrylic acid) can be determined by conductometric titration, simple titration and the measurement of pH. The conventional techniques of determining gelation dose are very time and material consuming especially for poly(acrylic acid) and subject to serious errors due to its electrolytic behavior. In this study, it has been shown that the gelation dose of poly(acrylic acid) can be determined by conductimetric and titrimetric methods with NaOH and measuring pH of aqueous solution of γ-irradiated polymer. In order to develop new, simpler and rapid methods for the determination of gelation dose of PVP, its complexation with gallic acid in dilute aqueous solution has been used. The complex formation between gallic acid and irradiated PVP in aqueous solutions is followed by UV-vis spectroscopy. The reliability of the dose value found, 120 kGy for poly(acrylic acid) and 140 kGy for poly(vinyl pyrrolidone), are also verified by viscometric and solubility measurements.

  18. Nucleation and Growth of Hydroxyapatite on Hierarchically Ordered Polymer Nanofibers

    Chen, Xi; Dong, Bin; Wang, Bingbing; Li, Christopher

    2011-03-01

    The hierarchically ordered polymer nanofibers, named as nanofiber shish kebabs (NFSKs), were constructed via combination of electrospinning polycaprolactone (PCL) (shish polymer) and controlled crystallization of polycaprolactone-b-poly acrylic acid (PCL-b-PAA) (kebab polymer). These NFSKs were then employed as a template to control the nucleation and growth of hydroxypatite nanocrystals. Electron microscopy and diffraction technique were used to characterize this novel hybrid structure. The growth of minerals starts on the surface of single crystal kebabs and eventually covers the surface of NFSKs. The formation mechanism of hydroxyapatite on NFSKs is of great interest because of the NFSKs' potential application as bone scaffold materials.

  19. Development of highly-filled, bioactive acrylic-based composite bone cements for orthopedic and craniofacial surgery: Tuning of material properties after incorporation of calcium phosphate and antimicrobial fillers

    Rodriguez, Lucas Carlos

    Bone cements are used in a variety of healthcare specialties ranging from orthopedics to dentistry to craniofacial surgery to spinal disc reconstruction. These materials need characteristics which mimic their surrounding tissues. Currently available materials have struggled to maintain these necessary characteristics. Poly (methyl methacrylate) is a very high strength bio-inert polymer which has been utilized in healthcare since the 1940's. Calcium phosphate cements are well established as being bone mimicking, but cannot sustain the compressive loads in a weight bearing application. This study sought to solve the problem of currently available bone cements by filling calcium phosphates and antimicrobials into an acrylic polymer matrix. The intended outcome was a material capable of retaining high mechanical stability from the acrylic polymer phase, while becoming sufficiently bone mimicking and antimicrobial. This thesis work presented, characterizes the material properties of the developed materials and eventually isolates a material of interest for future studies.

  20. Macromolecular design and function of novel stimuli-sensitive polymers

    The ways of creation of new pH- and thermo-sensitive polymers of linear and crosslinked structure is studied and general principle of their function is established in this work. The wide range of new pH-sensitive polymers are obtained by γ-radiation copolymerization of different nature vinyl ethers with acrylic acids, their derivatives and other ones. It was shown that structure of three-dimension networks obtained by copolymerization of monomers with great difference in activity is heterogeneous and there are phases of low and high density of crosslinks in network structure. The hydrophilic-hydrophobic balance of polymer macro chain obtained can be regulated in wide range during synthesis process. This possibility as well as structure heterogeneity of polymer networks have special significance at their function as pH- and thermo-sensitive polymers and polymer reagent at poly-complex formation

  1. ²H-NMR and ¹³C-NMR study of the hydration behavior of poly(2-methoxyethyl acrylate), poly(2-hydroxyethyl methacrylate) and poly(tetrahydrofurfuryl acrylate) in relation to their blood compatibility as biomaterials.

    Miwa, Yuko; Ishida, Hiroyuki; Tanaka, Masaru; Mochizuki, Akira

    2010-01-01

    We recorded ²H-NMR spectra of (deuterated) water in the presence of poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl methacrylate) (PHMEA) and poly(tetrahydrofurfuryl acrylate) (PTHFA). The observed ²H-NMR peak intensities varied substantially with water content and temperature, depending upon either strong binding to polymer surface or suppressed peaks due to freezing. Indeed, ²H-NMR signals in the presence of PHEMA were strongly dependent upon its water content, while those of hydrated PMEA and PTHFA remained unchanged even at -30°C and -20°C. The latter were considerably broadened at -50°C and -30°C, respectively, due to freezing water from the super-cooled state. As a result, the states of the water molecules in PMEA and PTHFA can be classified into three types; free, freezing bound and non-freezing water molecules. The states of the water in PHEMA depend on the water content, and the water can be classified into two types, free and non-freezing water, which exhibit rapid fluctuation and restricted mobility because of the presence of macromolecules, respectively. A kind of freezing bound water, however, should exist in PHEMA. This is also consistent with the substantially decreased ²H spin-lattice relaxation times of hydrated PHEMA as compared with those of PMEA or PTHFA. It is also interesting to note that the flexibility of bound water or polymer (PMEA > PTHFA > PHEMA) is related to a characteristic parameter for biocompatibility such as the production of TAT (thrombin-antithrombin III complex) as a marker of activation of the coagulation system. Therefore, it is naturally recognized that such differential polymer dynamics might be responsible for concomitant changes in structure and dynamics of surrounding water molecules in the vicinity of constituent polymer network. PMID:20573319

  2. The effect of acrylic comonomers on the hydrolytic stability of polyacrylamides at high temperature in alkaline solution

    Dexter, R.W.; Ryles, R.G.

    1988-05-01

    A major cause of instability in acrylamide-based polymers used in tertiary oil recovery is hydrolysis of the amide groups, especially at alkaline pH and high temperatures. Changes in polymer composition resulting from hydrolysis can cause precipitation from sea-water solutions. This work has studied the effects of the sodium salts of acrylic acid and acrylamidomethyl propane sulfonic acid (AMPS) on the rate of hydrolysis of acrylamide copolymers in alkaline solutions at high temperatures. Copolymers were prepared containing 0 - 50% of the anionic comonomers and hydrolyzed in aqueous solution at pH 8.5 at 90/sup 0/, 107/sup 0/, and 120/sup 0/C. The extent of hydrolysis was measured by a conductimetric method, analyzing for the total carboxylate content. It was found that the rate of hydrolysis decreased as the mole ratio of either of the anionic comonomers increased and that AMPS was more effective in preventing hydrolysis at all of the temperatures studied.

  3. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A., E-mail: glau_bn@hotmail.co [University of Extreme South of Santa Catarina Criciuma, SC (Brazil). Dept. of Materials Engineering; Silveira, F.Z. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Chemical Engineering

    2010-07-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  4. Gamma radiation synthesis of comb-type graft hydrogels based on poly(acrylic acid) and 4-vinylpyridine

    A pH-sensitive comb-type hydrogel was obtained by gamma radiation polymerization and crosslinking of acrylic acid (AAc) in solution. The pH-sensitive 4-vinylpyridine (4VP) was then grafted to the poly acrylic acid (PAAc) hydrogel using gamma radiation from a 60Co source. The comb type graft polymers obtained (net-PAAc)-g-4VP has been studied through determination of graft yield and swelling behavior. The critical pH value was found to be 5.6. The apparent mechanical properties appear to be qualitatively better than hydrogels of PAAc upon swelling. The new comb-type system presents faster swelling response (30 h) than the polyacrylic acid hydrogel (50 h). The increase in dose rate from 7.3 to 11.3 kGy h-1, increase the radiation grafting percentage of 4VP in the system. Comb-type polymers were also characterized by DSC, TGA and FTIR-ATR. (author)

  5. Synthesis and Characterization of Encapsulated Nanosilica Particles with an Acrylic Copolymer by in Situ Emulsion Polymerization Using Thermoresponsive Nonionic Surfactant

    Daryoosh Vashaee

    2013-08-01

    Full Text Available Nanocomposites of encapsulated silica nanoparticles were prepared by in situ emulsion polymerization of acrylate monomers. The synthesized material showed good uniformity and dispersion of the inorganic components in the base polymer, which enhances the properties of the nanocomposite material. A nonionic surfactant with lower critical solution temperature (LCST was used to encapsulate the silica nanoparticles in the acrylic copolymer matrix. This in situ method combined the surface modification and the encapsulation in a single pot, which greatly simplified the process compared with other conventional methods requiring separate processing steps. The morphology of the encapsulated nanosilica particles was investigated by dynamic light scattering (DLS and transmission electron microscopy (TEM, which confirmed the uniform distribution of the nanoparticles without any agglomerations. A neat copolymer was also prepared as a control sample. Both the neat copolymer and the prepared nanocomposite were characterized by Fourier transform infrared spectroscopy (FTIR, thermal gravimetric analyses (TGA, dynamic mechanical thermal analysis (DMTA and the flame resistance test. Due to the uniform dispersion of the non-agglomerated nanoparticles in the matrix of the polymer, TGA and flame resistance test results showed remarkably improved thermal stability. Furthermore, DMTA results demonstrated an enhanced storage modulus of the nanocomposite samples compared with that of the neat copolymer, indicating its superior mechanical properties.

  6. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution

    2016-01-01

    PURPOSE This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. MATERIALS AND METHODS Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). RESULTS The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P.05), except for the Yamahachi New Ace MF-MA 180-second group (Pteeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth. PMID:27555897

  7. Synthesis and Demulsibility of the Terpolymer Demulsifier of Acryl Resin

    KANG,Wan-Li; MENG,Ling-Wei; ZHANG,Hong-Yan; LIU,Shu-Ren

    2008-01-01

    Terpolymer demulsifier of acryl resin has been synthesized through solution polymerization with water as a dissolvent,potassium persulfate as an initiator and the monomers of methyl methacrylate,butyl acrylate and acrylic acid as starting materials.The effects of the reaction temperature,dripping time,the amount of monomers and initiator on the dehydration rate of the demulsifier were investigated by an orthogonal experiment.It shows that the stronger influence on the dehydration rate among six factors is reaction temperature,dripping time,and amount of catalyst,while monomer has weak influence.The performance of the demulsifier was evaluated under different demulsification time,temperatures and concentrations of the screened demulsifiers.The result shows that the dehydration rate of the demulsifier can reach over 67%,which is better than that by the emulsion polymerization way.

  8. Textile dyestuff adsorption by polysaccharide-g-acrylic acid

    Aimed of this study to determine the ability of polysacharide of banana peel as an adsorbent of textile dyes (Maxilon Yellow) before and after the grafting process. The grafting copolymerization process was done by using acrylic acid as monomer, then irradiated by gamma rays as initiator. Parameters observed were adsorption ability of dye, soaking time with KOH, acrylic acid concentration, irradiation dose and resistance to acids. The results showed the optimum absorption obtained at the time of KOH immersion for 3 hours, the concentration of acrylic acid by 20% and the irradiation dose of 30 kGy. Adsorption percentage of polysacharide to Maxilon Yellow after grafting increased by 18,48% compared to before grafting. Resistance to the acid test increased significantly. The results of this study are expected to overcome the problems of waste dyes in the textile industry. (author)

  9. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation.

    Tasnádi, Gábor; Hall, Mélanie; Baldenius, Kai; Ditrich, Klaus; Faber, Kurt

    2016-09-10

    The enzymatic phosphorylation of phenoxyethanol, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate catalyzed by acid phosphatases PhoN-Sf and PiACP at the expense of inorganic di-, tri-, hexameta- or polyphosphate was applied to the preparative-scale synthesis of phosphorylated compounds. The reaction conditions were optimized with respect to enzyme immobilization, substrate concentration, pH and type of phosphate donor. The mild reaction conditions prevented undesired polymerization and hydrolysis of the acrylate ester moiety. Application of a continuous flow system allowed facile scale-up and mono-phosphates were obtained in up to 26% isolated yield with space-time yields of 0.89kgL(-1)h(-1). PMID:27422352

  10. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins

    Nour M. Ajaj-ALKordy

    2014-01-01

    Conclusion: Within the limitations of this study, it can be concluded that the high-impact acrylic resin is a suitable denture base material for patients with clinical fracture of the acrylic denture.

  11. Vacuum-deposited polymer/silver reflector material

    Affinito, John D.; Martin, Peter M.; Gross, Mark E.; Bennett, Wendy D.

    1994-09-01

    Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less the 50$CNT per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 micrometers to .8 micrometers . It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute2. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process- for Polymer Multi- Layer.

  12. Technology and the use of acrylics for provisional dentine protection.

    Kapusevska, Biljana; Dereban, Nikola; Popovska, Mirjana; Nikolovska, Julijana; Radojkova Nikolovska, Vеrа; Zabokova Bilbilova, Efka; Mijoska, Aneta

    2013-01-01

    Acrylics are compounds polymerized from monomers of acrylic, metacrylic acid or acrylonitrates. The purpose of this paper is to present the technology and use of acrylics for provisional dentine protection in the practice of dental prosthodontics. For this reason, we followed 120 clinical cases from the everyday clinical practice, divided into 4 groups of 30 patients who needed prosthetic reconstruction. The first group included cases in which we applied celluloid crowns for dentine protection, for the second group we used acrylic teeth from a set of teeth for complete dentures; in the third and fourth groups the fabrication was done with the system of an impression matrix and the acrylic resin block technique respectively. In all the examined patients, the gingival index by Silness and Loe and the vitality of the dental pulp were verified clinically, after preparation and 8 days from the placement of the provisional crown. The value for dental sensitivity measured after preparation was 2.59, and 8 days after the placement of the provisional crown it bwas 3.1. From these results we can conclude that after the 8th day from the placement of the provisional crown, there was an adaptation period, characterized by a decrease in the painful sensations. The value of the Silness and Loe gingival index measured after the preparation was 1.34, and 8 days from the placement of the provisional crown was 0.94. The results inclined us to the fact that the provisional acrylic crowns facilitated the reparation of the periodontal tissue. PMID:24566021

  13. Poly(met)acrylates as reducers of pour point of Brazilian crude oil; Poli(met)acrilatos como redutores de ponto de fluidez de petroleo cru brasileiro

    Cesar-Oliveira, Maria Aparecida Ferreira; Zawadzki, Sonia Faria [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos (LABPOL)]. E-mail: mafco@quimica.ufpr.br; zawadzki@quimica.ufpr.br; Tabak, David [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Quimica Organica. Lab. de Polimeros e Catalise (LAPOCAT)]. E-mail: dtabak@uninet.com.br; Lucas, Elizabete Fernandes [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas. Lab. de Macromoleculas e Coloides na Industria de Petroleo (LMCP)]. E-mail: elucas@ima.ufrj.br

    2000-07-01

    Several types of crude oil have a large amount of wax, which can crystallize, at low temperatures, reducing the oil flow. Polymeric additives are able to prevent the wax deposition and to reduce the pour point of the oil, what improves the oil flow at low temperatures. Some acrylic polymers containing C{sub 12+} pendant groups are found in the literature as efficient additives for crude oils. Nevertheless, this type of polymer has not yet been used in Brazilian crude oils. In this work, octadecyl acrylate (ODA) was synthesized by transe esterification of methyl acrylate (MA). By using these monomers, several copolymers of MA-ODA (containing different compositions and different molecular weights) were obtained by solution copolymerization. The performance of the copolymers as pour point depressants was verified by using a crude oil from Bacia de Campos, RJ, Brazil. Increasing the ODA content in the copolymer, its efficiency increases and the best results were obtained with the copolymer MA:ODA (36:64). The crude oil containing this copolymer as additive presented a pour point reduction of 26 deg C but the lower the copolymer molecular weight the worse the polymeric additive performance. (author)

  14. Solar collectors. Technical progress report No. 1, September 5, 1978-March 5, 1979. [Listing of glazings, housing materials, acrylic coatings, etching processes and AR coatings

    Baum, B.; Gage, M.

    1979-04-27

    A broad information search was carried out in four areas: glazings, housing materials, acrylic coatings, etching processes and AR coatings. An extensive list of all (known) US transparent polymers was developed as well as tables of plastic, ceramic and metallic materials that could conceivably function as a housing. In addition, a compilation was made of commercially available solvent and water-base acrylic coatings for use as a uv protective coating for the glazing. Eighteen transparent polymers were chosen as possible glazings and twelve materials (plastic and wood) as possible housings and exposed in the Weather-Ometer as tensile bars and for the glazings as disks for optical transmission. These same materials were also exposed on our roof to monitor soiling. A variety of solvent and water-base acrylics were selected as protective coatings and ordered. Two commercial films - Tedlar 20 and Halar 500 - with strong absorption in the uv and two commercial films containing uv absorbers - Tedlar UT and Korad 201R - were laminated by several different processes to four promising glazing materials: polyvinyl fluoride (Tedlar), polymethyl methacrylate (Plexiglass), crosslinked ethylene/vinyl acetate and thermoplastic polyester (Llumar). A variety of etching processes were briefly explored and AR coating studies started on the above four glazing films.

  15. The development of epoxidised palm oil acrylate (EPOLA) and its applications

    The topics are discussed briefly. Acrylated palm oil is prepared through acrylation process, whereby, acrylic acid is introduced into oxirane group of the EPOP (epoxidised palm oil products), EPOLA (epoxidised palm oil products acrylate) was found curable when subjected to UV (ultrviolet) light giving soft coatings. EPOLA is used as radiation curable filler/sealer, radiation curable pressure sensitive adhesives and satisfactorily be coated on wood substrates (rubberwood parquets)

  16. Nanopigmented Acrylic Resin Cured Indistinctively by Water Bath or Microwave Energy for Dentures

    L. S. Acosta-Torres; Arenas, M. C.; R. E. Nuñez­-Anita; F. H. Barceló-Santana; C. A. Álvarez-Gayosso; Palacios-Alquisira, J.; J. de la Fuente-Hernández; Marcos Cajero-Juárez; V. M. Castaño

    2014-01-01

    The highlight of this study was the synthesis of nanopigmented poly(methyl methacrylate) nanoparticles that were further processed using a water bath and/or microwave energy for dentures. The experimental acrylic resins were physicochemically characterized, and the adherence of Candida albicans and biocompatibility were assessed. A nanopigmented acrylic resin cured by a water bath or by microwave energy was obtained. The acrylic specimens possess similar properties to commercial acrylic resin...

  17. Novel azo-peresters radical initiators used for the synthesis of acrylic pressure-sensitive adhesives

    2008-04-01

    Full Text Available Acrylic pressure-sensitive adhesives (PSA based on two monomers: 2-ethylhexyl acrylate and acrylic acid were synthesized in organic solvent ethyl acetate using AIBN (2, 2'-azo-diisobutyronitrile and new synthesized azo-peresters as radical initiators. After polymerization the viscosity, molecular weight and polydispersity of synthesized acrylic PSA were evaluated. The novel synthesized radical azo-perester initiators were synthesized, isolated and compared with industrial predominant usable azo-initiator AIBN.

  18. Triphenylphosphine-Catalyzed Michael Addition of Alcohols to Acrylic Compounds

    LIU, Hai-Ling; JIANG, Huan-Feng; WANG, Yu-Gang

    2007-01-01

    A facile triphenylphosphine-catalyzed Michael addition of alcohols to acrylic compounds was described. The reaction was carried out in open air at refluxing temperature in the presence of 10 mol% PPh3. Michael addition of saturated and unsaturated alcohols to acrylonitrile or acrylates has been examined. The reaction gaveβ-alkoxy derivatives with isolated yields of 5%-79%. PPh3 is cheaper and more stable than those trialkylphosphines previously used for the similar reactions, and the products can be easily separated from the reaction mixture via distillation.

  19. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  20. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  1. XPS study of graphite - Polymer interfaces of polyacrylate composites

    Complete text of publication follows. Polyacrylate - acrylamide - graphite composite samples were prepared via frontal polymerization. Three different types of acrylate monomers were used to prepare samples and eight different samples were prepared with each type of acrylate monomers. The acrylate/acrylamide monomer ratio was varied between 0.1 and 7.5. The graphite concentration was constant in all samples. To verify or disprove polymer - graphite interactions in the composites, the composite - graphite interfaces were studied by Al K-alpha excited XPS, using a custom made high energy resolution electron spectrometer in fixed retardation mode. Primary spectra showed by 2-4 shouldered structures in the C 1s. O 1s peaks were also studied, however less structured peaks and shoulders were found than in the cases of C 1s. On the basis of literature, a typical bound energy was assign to the C and O atoms in different chemical bond states. On the basis of these facts, the C 1s and O 1s photopeaks were decomposed according to different chemical bond states. Thus an ambiguous connection has been found between the acrylate/acrylamide molar ratio and peak ratio. The chemical bound formed between the polymer and graphite in the composites has also been verified. (author)

  2. Synthesis and magnetic heating characteristics of thermoresponsive poly (N-isopropylacrylamide-co-acrylic acid)/nano Fe3O4 nanparticles

    In this work the synthesis of thermo-sensitive polymer coated magnetic nanoparticles and their inductive heating have been studied. Poly (N-isopropylacrylamide-co-acrylic acid) (NA) polymers were first synthesized by emulsion polymerization of poly(N-isopropylacrylamide) (NIP) in water and followed by encapsulating magnetic nanoparticles (MNPs). As increasing the concentration of acrylic acid (AA), the lower critical solution temperature (LCST) increased, so that with 150% of AA (molar ratio) the LCST reached 42 °C, which is close to the temperature of hyperthermia treatment. Magnetization and ac susceptibility measurements were conducted to depict some characteristics of the NIP-MNPs and NA-MNPs that are related with the loss power. Attempts to analyze the rate of magnetic inductive heating were performed to show the Brownian relaxation origin of additional heat source created by the magnetite nanoparticles capped with thermosensitive polymers. Our results suggest that these thermo-sensitive polymer-coated magnetic nanoparticles show a potential for hyperthermia and drug delivery application. (paper)

  3. Synthesis and magnetic heating characteristics of thermoresponsive poly (N-isopropylacrylamide-co-acrylic acid)/nano Fe3O4 nanparticles

    Thu Trang Mai, Thi; Le, Thi Hong Phong; Pham, Hong Nam; Do, Hung Manh; Phuc Nguyen, Xuan

    2014-12-01

    In this work the synthesis of thermo-sensitive polymer coated magnetic nanoparticles and their inductive heating have been studied. Poly (N-isopropylacrylamide-co-acrylic acid) (NA) polymers were first synthesized by emulsion polymerization of poly(N-isopropylacrylamide) (NIP) in water and followed by encapsulating magnetic nanoparticles (MNPs). As increasing the concentration of acrylic acid (AA), the lower critical solution temperature (LCST) increased, so that with 150% of AA (molar ratio) the LCST reached 42 °C, which is close to the temperature of hyperthermia treatment. Magnetization and ac susceptibility measurements were conducted to depict some characteristics of the NIP-MNPs and NA-MNPs that are related with the loss power. Attempts to analyze the rate of magnetic inductive heating were performed to show the Brownian relaxation origin of additional heat source created by the magnetite nanoparticles capped with thermosensitive polymers. Our results suggest that these thermo-sensitive polymer-coated magnetic nanoparticles show a potential for hyperthermia and drug delivery application.

  4. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites. PMID:22900673

  5. Functional Nanoporous Polymers from Block Copolymer Precursors

    Guo, Fengxiao

    functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  6. Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin

    Sobiesiak, M.

    2016-04-01

    The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.

  7. pH-Responsive Behavior of Poly(acrylic acid) Brushes of Varying Thickness

    Yadav, Vivek; Robertson, Megan; Conrad, Jacinta

    2015-03-01

    We have investigated the pH-dependent response of polyelectrolyte brushes of varying thickness. Our model system consists of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized using a grafting-from approach at constant grafting density. As the polymer brush thickness increased, the brushes exhibited greater hysteresis in static water contact angle as a function of pH. We extracted the pKa of the polymer brushes from contact angle measurements. The relationship between the pKa and brush thickness depended on the order in which the brushes were exposed to solutions of varying pH: pKa decreased on increasing brush thickness when going from basic to acidic medium whereas pKa increased on increasing brush thickness when going from acidic to basic medium. We speculate that the origin of hysteresis can be explained by pH-dependent conformational changes in these polyelectrolyte brushes.

  8. Radiation induced solid-state polymerization of long-chain acrylates containing fluorocarbon chain

    γ-Ray irradiation post-polymerizations of long-chain acrylates containing fluorocarbon chain, H(CF2)10CH2OCOCH=CH2 and H(CF2)8CH2OCOCH=CH2, were investigated and also the structures and thermal properties of comb-like polymers obtained were studied. It was found that these monomers exhibited very high polymerizability at wide temperature ranges around the melting points. Because the fluorocarbon chains are less flexible and thicker than the hydrocarbon chains, it can be expected that the aggregation force among the monomer molecules is strong and the conformational freedom of functional group for polymerization is large. According to the DSC and the X-ray diffraction measurements of the comb-like polymers obtained, the fluorocarbon chains are aggregated in a mode of hexagonal packing in the lamellar crystals. This situation can be considered as an optimum condition for the γ-ray irradiation post-polymerization. (author)

  9. Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy

    A poly(vinylpyrrolidone-co-butyl acrylate) (60VP-40BA) membrane is synthesized as a tractable and hydrophilic material, obtaining a water-swelling percentage around 60%. An investigation of molecular mobility by means of differential scanning calorimetry, dynamic mechanical analysis and broadband dielectric relaxation spectroscopy (DRS) is fulfilled in the dry membrane. Dielectric and viscoelastic relaxation measurements are carried out on the 60VP-40BA sample at several frequencies between −150 and 150 °C. The dielectric spectrum shows several relaxation processes labelled γ, β and α in increasing order of temperature, whereas in the mechanical spectrum only the β and α relaxation processes are completely defined. In the dielectric measurements, conductive contributions overlap the α-relaxation. The apparent activation energies have similar values for the β-relaxation in both, the mechanical and the dielectric measurements. The β process is a Johari–Golstein secondary relaxation and it is related to the local motions of the pyrrolidone group accompanied by the motion of the segments of the polymer backbone. The γ process is connected with the butyl unit's motions, both located in the side chains of the polymer. (paper)

  10. Synthesis and Performance of Siloxane Modified Acrylic Emulsion%有机硅氧烷改性丙烯酸乳液合成及性能研究

    温振华; 张三平; 周婵; 田丰; 胡章枝

    2011-01-01

    通过乳液聚合法,用羟基硅油与硅烷偶联剂A-151(乙烯基三乙氧基硅烷)或KH-570(γ-甲基丙烯酰氧基丙基三甲氧基硅烷)对丙烯酸酯进行化学改性,借助硅烷偶联剂中的碳碳双键和硅氧烷结构将羟基硅油与丙烯酸酯连接起来.然后利用红外光谱(FT-IR)对改性丙烯酸酯的微观结构进行表征,研究结果表明:Si-O键成功地共聚到了丙烯酸长链中.并对改性后乳液的各项性能进行对比,结果发现通过KH-570改性后的丙烯酸酯乳液在各项性能上都有明显的提升.%Through emulsion polymerization, hydroxyl silicone oil and silane coupling agent A - 151 (VTES) or KH -570 (7 - methacryl trimethoxysilane) were used for chemical modification of acrylates. The carbon - carbon double bond and the siloxane structure in silane coupling agent kept the hydroxyl silicon oil and acrylate connected. The microstructure of modified acrylate was characterized by FT - IR. The results showed that the Si-O bond was successfully copolymerized into the acrylate polymer chain. And the performance of the modified emulsion was compared and the performance KH - 570 modified acrylic emulsion has been significantly improved.

  11. Humidity-responsive starch-poly (methyl acrylate) films.

    Blown films prepared from starch-poly(methyl acrylate) graft copolymers plasticized with urea and water display shrinkage at relative humidities greater than 50%. Shrinkage at relative humidities below approximately 75% is strongly correlated with the urea/starch weight ratio, which controls the eq...

  12. Bond strength between acrylic resin and maxillofacial silicone

    Marcela Filié Haddad

    2012-12-01

    Full Text Available The development of implant dentistry improved the possibilities of rehabilitation with maxillofacial prosthesis. However, clinically it is difficult to bond the silicone to the attachment system. OBJECTIVES: This study aimed to evaluate the effect of an adhesive system on the bond strength between acrylic resin and facial silicone. MATERIAL AND METHODS: A total of 120 samples were fabricated with auto-polymerized acrylic resin and MDX 4-4210 facial silicone. Both materials were bonded through mechanical retentions and/or application of primers (DC 1205 primer and Sofreliner primer S and adhesive (Silastic Medical Adhesive Type A or not (control group. Samples were divided into 12 groups according to the method used to attach the silicone to the acrylic resin. All samples were subjected to a T-peel test in a universal testing machine. Failures were classified as adhesive, cohesive or mixed. The data were evaluated by the analysis of variance (ANOVA and the Tukey's HSD test (α=.05. RESULTS: The highest bond strength values (5.95 N/mm; 3.07 N/mm; 4.75 N/mm were recorded for the samples that received a Sofreliner primer application. These values were significantly higher when the samples had no scratches and did not receive the application of Silastic Medical Adhesive Type A. CONCLUSIONS: The most common type of failure was adhesive. The use of Sofreliner primer increased the bond strength between the auto-polymerized acrylic resin and the Silastic MDX 4-4210 facial silicone.

  13. SYNTHESIS OF ACRYLIC ESTERS IN PTC: KINETICS AND ECOLOGICAL ASPECTS

    G.Torosyan

    2013-06-01

    Full Text Available The synthesis of esters of acrylic acids, which are applied for synthesis of polymeric materials by phase transfer catalysis were discussed (PTC, which is very useful for reduction of reaction consumption of materials and power.This method has substantial advantages including high speed of the process, soft condition of reaction and reduced pollution.

  14. Design and Synthesis of Novel Fluorine-containing Acrylates

    2005-01-01

    A series of novel fluorine-containing acrylates 6a-6g were synthesized via the condensation of ethyl cyanoacetate and trifluoroacetic anhydride, followed by chloridization and the coupling reaction with amines. These new compounds exhibited some biological activity as preliminary bioassay indicated. A plausible reaction mechanism was outlined and discussed.

  15. Calibration of an Electron Linear Accelerator using an acrylic puppet

    The finality of this work is to find the dose for electron beams using acrylic puppets and inter comparing with the measurements in water, found also its respective conversion factor. With base in this, its may be realize interesting measurements for the good performance of a linear accelerator and special clinical treatments in less time. (Author)

  16. Decarboxylation-based traceless linking with aroyl acrylic acids

    Nielsen, John

    1998-01-01

    beta-Keto carboxylic acids are known to decarboxylate readily. In our pursuit to synthesize beta-indolinyl propiophenones, we have exploited this chemistry as a mean of establishing a traceless handle. 2-Aroyl acrylic acids have been esterified to a trityl resin, after which Michael-type addition...

  17. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176.110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper...

  18. Comparison of classical dermatoscopy and acrylic globe magnifier dermatoscopy

    Lorentzen, Henrik F; Eefsen, Rikke Løvendahl; Weismann, Kaare

    2008-01-01

    % confidence interval 83-97%). Sensitivity for melanoma, benign melanocytic naevi and basal cell carcinoma was 100%, 98% and 85%, respectively. Specificity was 95%, 94% and 100% for melanoma, naevi and basal cell carcinoma. Acrylic globe dermatoscopy enables a diagnostic accuracy similar to epiluminescence...

  19. Analysis and Testing of Bisphenol A—Free Bio-Based Tannin Epoxy-Acrylic Adhesives

    Shayesteh Jahanshahi; Antonio Pizzi; Ali Abdulkhani; Alireza Shakeri

    2016-01-01

    A tannin-based epoxy acrylate resin was prepared from glycidyl ether tannin (GET) and acrylic acid. The influence of the reaction condition for producing tannin epoxy acrylate was studied by FT-MIR, 13C-NMR, MALDI-TOF spectroscopy and shear strength. The best reaction conditions for producing tannin epoxy acrylate resin without bisphenol A was by reaction between GET and acrylic acid in the presence of a catalyst and hydroquinone at 95 °C for 12 h. FT-MIR, 13C-NMR and MALDI-TOF analysis have...

  20. Electromechanical reliability of flexible transparent electrodes during and after exposure to acrylic acid

    The effect of deposition temperature on pulsed laser deposition (PLD) fabricated flexible transparent electrodes subjected to mechanical loading, after exposure to acrylic acid, and the combined effect of fatigue and corrosion on sputter-deposited polyester-based indium tin oxide (ITO) films are both investigated in this study. Acrylic acid containing pressure sensitive adhesives, which are commonly used in various flexible device stacks, can corrode the ITO film. In addition, fatigue due to cyclic loading can lead to film cracking. The combined effect of fatigue and corrosion can lead to catastrophic failure of the system. We found that PLD-produced ITO on polyethylene naphthalate samples deposited at 150 °C performs better than samples deposited at 50 °C under uniaxial mechanical loading. They were found to exhibit higher crack onset strain than their 50 °C counterparts. However, they were observed to be more sensitive to increasing acid concentrations. Scanning electron microscopy images show a larger number of adhesive cracks on the surfaces of the 150 °C-deposited samples than the 50 °C-deposited samples. Atomic force microscopy results reveal that the increased temperature causes a significant increase in surface roughness which may affect the corrosion behavior of the ITO film. Furthermore, in situ electrical resistance measurements and crack density analysis suggest that the combination of fatigue and corrosion can cause film failure at low strains, less than those needed for failure with no corrosion. For example, at 0.9% applied strain and 500,000 cycles, the crack density under fatigue–corrosion is 1.7 times that of the fatigue-only case. - Highlights: ► ITO films were deposited on polymers with PLD or magnetron sputtering. ► The combination of fatigue and corrosion was investigated using a custom apparatus. ► Adhesion and film roughness played roles in the fatigue-corrosion behavior

  1. Effect of poly (2-methoxyethyl acrylate)-coated oxygenators on haemolysis.

    Kocakulak, M; Ozgürtaş, T; Ayhan, H

    2006-01-01

    Blood contact with artificial device surfaces and mechanical trauma are two major factors for haemolysis. Poly(2-methoxyethyl acrylate) (PMEA) is an amphiphilic polymer with a polyethylene chain that is hydrophobic and a mildly hydrophilic tail. PMEA coating has showed positive effects on protein adsorption, platelet loss, platelet aggregation and post-operative bleeding in previous studies. In this study, effects of poly(2-metoxyethyl acrylate) (PMEA)-coated oxygenators on haemolysis was investigated. PMEA-coated (SX18-Capiox) oxygenators were used. Desorbed erythrocyte, free haemoglobin indirect bilirubin and total bilirubin quantities from fibre samples of oxygenators were studied. Erythrocyte, total bilirubin and direct bilirubin values were measured from blood aliquots taken in five different times during cardiopulmonary by-pass (CPB); baseline (T1), during CPB (T2), at the end of CPB (T3), after protamine injection (T4) and in intensive care (T5). In both coated and non-coated oxygenators haemolysis rate was in clinically acceptable safety range. Average desorbed free haemoglobin was 6663 mg/dl from coated and 29.405 mg/dl from non-coated fibres. Average desorbed total bilirubin was 0.0068 mg/dl from coated and 0.023 mg/dl from noncoated fibres. We observed less haemolysis, as reflected by lower desorbed free haemoglobin and indirect bilirubin from coated oxygenators and less decrease in blood erythrocyte number. Blood bilirubin concentration was low in the coated group when compared to the control group. This study describes the relationship between PMEA coating and haemolysis at the blood contacting surface. PMEA coating reduces red blood cell damage during extracorporeal circulation. PMID:16768295

  2. Radiation Grafting of Acrylate Type Monomers onto Cellulose by Mutual and Preirradiation Techniques

    Radiation grafting is a frequently used technique to modify some properties of the widely used natural polymer cellulose (e.g. water absorption capacity, dyeability). In this work the properties of cotton fibres grafted with a wide variety of monomers were investigated as a function of the irradiation dose, grafting conditions and chemical structure of the monomers. The grafting was performed using both the preirradiation and mutual grafting methods. Before grafting we studied the effect of irradiation on the cotton-cellulose used in the experiments. Samples were irradiated in air, at room temperature by 60Co γ-rays up to 30 kGy dose. The degree of polymerization (DP) of the samples decreased from 1780 to 480 after 10 kGy irradiation. This change in DP did not result in a significant change in the tensile strength of the samples up to 30 kGy dose. No damage on the surface of the fibres was observed by using scanning electron microscopy even after 40 kGy irradiation. Preirradiation grafting: after irradiation the samples were immediately soaked in deoxygenated monomer solutions (water/methanol 80/20, in the case of 2-ethylhexyl acrylate pure methanol) at 40 degree for 1 hour with continuous stirring and nitrogen gas bubbling. The monomers used for grafting were acrylamide, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, N,N'-methylene bisacrylamide and 2-ethylhexyl acrylate. Mutual grafting: samples were soaked in deoxygenated monomer (N-vinyl pyrrolidone) or aqueous monomer solution (N-vinyl pyrrolidone or acrylamide) of different concentration containing also Mohr salt (to avoid homopolymerization) and irradieted in sealed glass ampulles at room temperature by 60Co gamma rays up to 40 kGy dose (dose rate 15 kGy/h). SEM pictures clearly showed the formation of a coating layer on the fibres. The grafting yield was measured by the percent increase in the mass of the samples and also by FTIR spectroscopy. Optimum grafting conditions were determined by varying

  3. Osteoblast response to oxygen functionalised plasma polymer surfaces

    Kelly, J M

    2001-01-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma c...

  4. Polymer-based waveguide devices for WDM applications

    Viens, Jean-Francois; Callender, Claire L.; Noad, Julian P.; Eldada, Louay A.; Norwood, Robert A.

    1999-10-01

    This paper summarizes the work currently in progress at CRC Canada on wavelength multiplexing components based on polymer waveguide devices for operation at 1550 nm. Planar arrayed waveguide gratings (AWGs) of various bandwidths were designed, fabricated and tested using acrylate polymer materials developed by Allied Signal Inc. Eight channel polymer demultiplexers fabricated by standard lithography show on-chip losses of 8 dB and a crosstalk of -25 dB between channels spaced 1.6 nm part. Owing to the thermo- optic properties of these polymers, the spectral response of the device scan be tuned by more than 7 nm without changes in optical crosstalk or on-chip loss. Very compact AWGs made with Allied Signal polymers are being designed and tested to address the need for cost effective, high bandwidth optical components in the telecom and datacom industries.

  5. Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process

    Agrawal, Garima; Schuerings, Marco Philipp; van Rijn, Patrick; Pich, Andrij

    2013-01-01

    A newly developed N-vinylcaprolactam/acetoacetoxyethyl methacrylate/acrylic acid based microgel displays in situ reductive reactivity towards HAuCl4, forming hybrid polymer-gold nanostructures at ambient temperature without additional reducing agents. The colloidal gold nanostructure is selectively

  6. Preparation and Characterization of Low Dispersity Anionic Multiresponsive Core-Shell Polymer Nanoparticles

    Pinheiro, J.P.; Moura, L.; Fokkink, R.G.; Farinha, J.P.S.

    2012-01-01

    We prepared anionic multistimuli responsive core-shell polymer nanoparticles with very low size dispersity. By using either acrylic acid (AA) or methacrylic acid (MA) as a comonomer in the poly(N-isopropyl acrylamide) (PNIPAM) shell, we are able to change the distribution of negative charges in the

  7. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates.

    Jiang, Jingxian; Zhang, Guangfa; Wang, Qiongyan; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu

    2016-04-27

    Because the emission of perfluorooctanoic acid (PFOA) was completely prohibited in 2015, the widely used poly- and perfluoroalkyl substances with long perfluoroalkyl groups must be substituted by environmentally friendly alternatives. In this study, one kind of potential alternative (i.e., fluorinated polymers with short perfluorobutyl side chains) has been synthesized from the prepared monomers {i.e., (perfluorobutyl)ethyl acrylate (C4A), (perfluorobutyl)ethyl methacrylate (C4MA), 2-[[[[2-(perfluorobutyl)]sulfonyl]methyl]amino]ethyl acrylate (C4SA), and methacrylate (C4SMA)}, and the microstructure, super wetting performance, and applications of the synthesized fluorinated polymers were systematically investigated. The thermal and crystallization behaviors of the fluoropolymer films were characterized by differential scanning calorimetry and wide-angle X-ray diffraction analysis, respectively. Dynamic water-repellent models were constructed. The stable low surface energy and dynamic water- and oil-repellent properties of these synthesized fluorinated polymers with short perfluorobutyl side chains were attributed to the synergetic effect of amorphous fluorinated side chains in perfluoroalkyl acrylate and crystalline hydrocarbon pendant groups in stearyl acrylate. Outstanding water- and oil-repellent properties of fabrics and any other substrates could be achieved by a facile dip-coating treatment using a fluorinated copolymer dispersion. As a result, we believe that our prepared fluorinated copolymers are potential candidates to replace the fluoroalkylated polymers with long perfluorinated chains in nonstick and self-cleaning applications in our daily life. PMID:27052113

  8. Poly (ethylene oxide)-block-poly (n-butyl acrylate)-blockpoly (acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties

    Petrov, P; Yoncheva, K. (Krassimira); Mokreva, P. (Pavlina); Konstantinov, S.; J M Irache; Müller, A.H.E. (Axel H.E.)

    2013-01-01

    The synthesis and aggregation behaviour in aqueous media of novel amphiphilic poly(ethylene oxide)- block-poly(n-butyl acrylate)-block-poly(acrylic acid) (PEO–PnBA–PAA) triblock terpolymers were studied. Terpolymers composed of two highly asymmetric hydrophilic PEO (113 monomer units) and PAA (10–17 units) blocks, and a longer soft hydrophobic PnBA block (163 or 223 units) were synthesized by atom transfer radical polymerisation (ATRP) of n-butyl acrylate and tert-butyl acrylate ...

  9. Effect of water structure on blood compatibility--thermal analysis of water in poly(meth)acrylate.

    Tanaka, Masaru; Mochizuki, Akira

    2004-03-15

    The purpose of this study is to clarify the main factor causing excellent blood compatibility of poly(2-methoxyethyl acrylate)(PMEA) by the comparison between PMEA and seven PMEA analogous polymers. The polymers have a typical functional group as ester side chains such as methoxyethyl, hydroxyethyl, phenoxyethyl, and alkyl groups. The properties of the polymers relating to water were investigated in terms of contact angle, equilibrium water content (EWC), and thermal analysis by differential scanning calorimetry. The water in PMEA could be classified into three types: nonfreezing water, freezing bound water, and free water while the water in the analogous polymers was classified into just two types: free and nonfreezing waters, regardless of the chemical structure of the side chain. The surface property represented by the contact angle of water corresponded to the content of the bound water (nonfreezing water + freezing bound water). The platelet compatibility in vitro did not depend on the contents of these waters, or on the contact angle. On the basis of the results of this work and the previous work on the platelet compatibility of poly(MEA-co-HEMA) (Tanaka et al. Biomacromolecules 2002;3;36-41), the main factor causing the excellent compatibility of PMEA is discussed. PMID:14986323

  10. Process for depositing strong adherend polymer coating onto an electrically conductive surface

    Bertrand, Olivier; Jérôme, Robert; Gautier, Sandrine; Maquet, Véronique; Detrembleur, Christophe; Jérôme, Christine; Voccia, Samuel; Claes, Michaël; Lou, Xudong; Labaye, David-Emmanuel

    2002-01-01

    Process for depositing by electrografting a strong adherent polymer coating onto an electrically conductive surface comprising an electrochemical grafting at the surface of an active monomer for forming a primer coating P onto said surface and having as general formula: X0 (meth)acrylate wherein X is either part of a preformed polymer or is an intermediate agent for polyaddition reaction or is an anchoring group for attachment of a molecule having at least one complementary reactive group. Su...

  11. Radiation Syntheses of Molecularly Imprinted Polymer for Metal Ion Selective Separation

    The copolymer metal complexes in the form of imprinted polymers were prepared from Poly (vinyl alcohol) (PVA), Acrylic acid (AAc), Acrylamide (AAm) and 2-Acrylamido-2-methyl propane sulfonic acid (AMPS) monomers irradiated in presence of different metal ions and crosslinking agent. Characteristics and some properties of the prepared imprinted and grafted polymers were investigated. Also the possibility of their applications in various fields can be determined using atomic absorption (AA), inductive coupled plasma (ICP), X-ray fluorescence (XRF) and UV- spectrophotometer

  12. Formulation Development and Polymer Optimization for Once-Daily Sustained Release Matrix Tablets of Domperidone

    Biswas R*,1; Basak SC1; Shaikh Sa2

    2011-01-01

    Domperidone is a dopamine receptor blocking agent, which acts on the dopamine receptors in the chemo-emetic trigger zone produces an antiemetic effect. The purpose of this study was to develop and optimize the polymer for once-daily sustained release matrix tablets of domperidone. The tablets were prepared by the wet granulation method. Aqueous solution of polyvinyl pyrrolidone was used as granulating agent along with hydrophilic matrix material like HPMC, IM-OR-023 and acrylic polymer e.g. E...

  13. PREPARATION OF BIODEGRADABLE FLAX SHIVE CELLULOSE-BASED SUPERABSORBENT POLYMER UNDER MICROWAVE IRRADIATION

    Hao Feng; Jian Li,; Lijuan Wang

    2010-01-01

    Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS) as an initiator and N,N’-methylenebisacrylamide (MBA) as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA). The ...

  14. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.

    Ogiwara, Takuya; Katsumura, Ayaka; Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2015-12-14

    Calcium phosphate mineralization was conducted by using polymer composites of liquid-crystalline (ethyl)cellulose (EC) or (hydroxypropyl)cellulose (HPC) with poly(acrylic acid) (PAA) as a scaffolding medium for the inorganic deposition. The EC/PAA and HPC/PAA samples were prepared in colored film form from EC and HPC lyotropic liquid crystals of left-handed and right-handed chiral nematics, respectively, by polymerization and cross-linking of acrylic acid as the main solvent component. The mineralization was allowed to proceed in a batchwise operation by soaking the liquid-crystalline films in an aqueous salt solution containing the relevant ions, Ca(2+) and HPO4(2-). The calcium phosphate-deposited EC/PAA and HPC/PAA composites (weight gain, typically 15-25% and 6-11%, respectively) retained the chiral nematic organization of the respective original handedness but exhibited selective light-reflection of longer wavelengths relative to that of the corresponding nonmineralized samples. From X-ray diffraction and energy-dispersive X-ray spectroscopy measurements, it was deduced that the calcium and phosphorus were incorporated inside the polymer matrices in three forms: amorphous calcium phosphate, hydroxyapatite, and a certain complex of PAA-Ca(2+). Dynamic mechanical analysis and thermogravimetry revealed that the inorganic hybridization remarkably enhanced the thermal and mechanical performance of the optically functionalized cellulosic/synthetic polymer composites; however, the effect was more drastic in the EC/PAA series rather than the HPC/PAA series, reflecting the difference in the deposited mineral amount between the two. PMID:26536381

  15. Associative Polymer-Polymer and Polymer-Surfactant Systems: Phase Behaviour and the Influence of Chemical Reactions

    Santos, Salome

    2010-01-01

    Aqueous mixtures of two non-ionic polymers, poly(acrylic acid) (PAA) and the amphiphilic triblock copolymer, (EO)27(PO)67(EO)27, known by its trade name Pluronic® P104, showed an associative phase separation (miscibility gap), which decreased with the decrease of PAA length. It was found that PAA is a much less selective “solvent” to P104 molecules than water. P104 aggregates are disintegrated and thus the liquid crystalline structures are destroyed upon replacement of water by PAA. Oppos...

  16. Nontraditional methods of synthesising metal-containing polymers

    Pomogailo, Anatolii D.; Savost'yanov, V. S.

    1991-07-01

    Complexes of metals with (meth)acrylates and acrylamides are used as examples for examining the application of nontraditional methods for initiating polymerisation of metal-containing monomers: graft, low-temperature, electrochemical, matrix, solid-state (under high pressure with shear deformation), frontal and spontaneous. Such approaches are demonstrated to be very effective for preparing metal-containing polymers with a wide spectrum of relative molecular masses and with different solubility and stereotacticity. The bibliography includes 39 references.

  17. The use of dielectric spectroscopy for the characterisation of the precipitation of hydrophobically modified poly(acrylic-acid) with divalent barium ions

    Christensen, Peter Vittrup; Keiding, Kristian

    2009-01-01

    The use of dielectric spectroscopy as a monitor for coagulation processes was investigated. Hydrophobically modified poly(acrylic-acid) polymers were used as model macromolecules and coagulated with barium ions. The coagulation process was quantified using a photometric dispersion analyser, thereby...... serving as a point of reference for the dielectric spectroscopy. It was found that the hydrophobic modification increased the dosage of barium needed to obtain complete coagulation, whereas the dosage required to initiate coagulation was lowered. The coagulation of the polymer samples caused the...... relaxation time of the measured dielectric dispersion to increase, and this parameter was found to be a good indicator of the formation of polymer aggregates. The magnitude of the dielectric dispersion decreased as a function of barium dosage, but when coagulation was initiated an increase was observed. The...

  18. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni; Obtencion y caracterizacion de copolimeros organometalicos de acido acrilico-i-polietileno, con Mo, Fe, Co, Zn y Ni

    Dorantes, G.; Urena, F.; Lopez, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Lopez, R. [Universidad Autonoma del Estado de Mexico (Mexico)

    1997-07-01

    In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)

  19. Preparation of Fe 3O 4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride) by emulsifier-free emulsion polymerization and its interaction with DNA

    Li, Xiaolong; Liu, Guoqiang; Yan, Wei; Chu, Paul K.; Yeung, Kelvin W. K.; Wu, Shuilin; Yi, Changfeng; Xu, Zushun

    2012-04-01

    Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.

  20. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. PMID:27126169

  1. Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topology

    Hietala, Sami; Strandman, Satu; Jarvi, Paula;

    2009-01-01

    Rheological properties of aqueous solutions of well-defined four-armed amphiphilic star block copolymers, poly(acrylic acid)-block-polystyrene (PAA-b-PS)(4), were investigated as a function of the length of the PS blocks, polymer concentration, and temperature and compared with a corresponding...... triblock copolymer. These polymers, synthesized by atom transfer radical polymerization (ATRP), were found to form hydrogels due to intermolecular association originating from the PS blocks. The increasing length of the PS block was observed to lead to more elastic networks due to increased hydrophobic...... interaction. Polymers bearing shorter PS blocks gave gels with relatively long linear response followed by strain hardening before shear thinning while the longer PS blocks lead to formation of elastic but brittle gels with limited linear regime before shear thinning. Star-block copolymers showed more elastic...

  2. Synthesis of polyacrylic-acid-based thermochromic polymers

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  3. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    Ladan Espandar

    2011-01-01

    Full Text Available Ladan Espandar1, Shameema Sikder2, Majid Moshirfar31Department of Ophthalmology, Tulane University, New Orleans, LA, USA; 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 3John A Moran Eye Center, University of Utah, Salt Lake City, UT, USAAbstract: Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular lens (IOL. The hydrophilic design of the lens is optimized to address dysphotopsia while maintaining biocompatibility, optical clarity, resistance to damage, and resistance to biocontamination. Aspheric lenses decrease postoperative spherical aberration. The addition of the Softec lens provides clinicians with another option for IOL placement; however, randomized comparative studies of this lens to others already on the market remain to be completed.Keywords: hydrophilic acrylic intraocular lens, Softec HD intraocular lens, aspheric intraocular lens, IOL

  4. A New Process for Acrylic Acid Synthesis by Fermentative Process

    Lunelli, B. H.; Duarte, E. R.; de Toledo, E. C. Vasco; Wolf Maciel, M. R.; Maciel Filho, R.

    With the synthesis of chemical products through biotechnological processes, it is possible to discover and to explore innumerable routes that can be used to obtain products of high addes value. Each route may have particular advantages in obtaining a desired product, compared with others, especially in terms of yield, productivity, easiness to separate the product, economy, and environmental impact. The purpose of this work is the development of a deterministic model for the biochemical synthesis of acrylic acid in order to explore an alternative process. The model is built-up with the tubular reactor equations together with the kinetic representation based on the structured model. The proposed process makes possible to obtain acrylic acid continuously from the sugar cane fermentation.

  5. Surface modification of nanoparticles for radiation curable acrylate clear coatings

    Bauer, F.; Gläsel, H.-J.; Hartmann, E.; Bilz, E.; Mehnert, R.

    2003-08-01

    To obtain transparent, scratch and abrasion resistant coatings a high content of nanosized silica and alumina filler was embedded in radiation-curable acrylate formulations by acid catalyzed silylation using trialkoxysilanes. 29SiMAS NMR and MALDI-TOF mass spectrometry were employed to elucidate the structure of the surface-grafted methacryloxypropyl-, vinyl- and n-propyl-trimethoxysilane. In accordance with NMR findings, MALDI-TOF MS showed highly condensed oligomeric siloxanes of more than 20 monomeric silane units. A ladder-like structure of bound polysiloxanes is proposed rather than a simplified picture of tridentate silane bonding. Hence, silane coupling agents do not only modify the chemical nature of the filler surface but also strongly effect the rheological properties of the acrylate nanodispersions.

  6. Radiation cross-linking of epoxide-acrylic compositions

    The process of hardening of epoxy-acryl compositions on copper, aluminium, iron, and glass substrates has been studied under the action of ionizing radiation (accelerated electrons, γ-radiation). Irradiated samples have been heat treated for 2 hours at 100 and 150 deg C for accelerating posteffect. In the epoxy oligomer-acrylic acid system structurization is completed at a dose of 10-12 Mrad. The content of gel fraction equals 30-62% when irradiation is performed in air and up to 85% when the samples are irradiated under film. The effect has been established of natural epoxy oligomers and various plasticizers on the structurization process. The possibility has been shown of obtaining heat-resistant coatings based on epoxy oligomers

  7. Surface modification of nanoparticles for radiation curable acrylate clear coatings

    To obtain transparent, scratch and abrasion resistant coatings a high content of nanosized silica and alumina filler was embedded in radiation-curable acrylate formulations by acid catalyzed silylation using trialkoxysilanes. 29SiMAS NMR and MALDI-TOF mass spectrometry were employed to elucidate the structure of the surface-grafted methacryloxypropyl-, vinyl- and n-propyl-trimethoxysilane. In accordance with NMR findings, MALDI-TOF MS showed highly condensed oligomeric siloxanes of more than 20 monomeric silane units. A ladder-like structure of bound polysiloxanes is proposed rather than a simplified picture of tridentate silane bonding. Hence, silane coupling agents do not only modify the chemical nature of the filler surface but also strongly effect the rheological properties of the acrylate nanodispersions

  8. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Barleany, Dhena Ria, E-mail: dbarleany@yahoo.com; Ulfiyani, Fida; Istiqomah, Shafina; Rahmayetty [Department of Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon, Banten (Indonesia); Heriyanto, Heri; Erizal [Centre for Application of Isotopes and Radiation, Jakarta (Indonesia)

    2015-12-29

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)

  9. Influence of Methacrylic-Acrylic Copolymer Composition on Plasticiser-free Optode Films for pH Sensors

    Musa Ahmad

    2003-03-01

    Full Text Available In this work we have examined the use of plasticiser-free polymeric films incorporating a proton selective chromoionophore for optical pH sensor. Four types of methacrylic-acrylic copolymers containing different compositions of n-butyl acrylate (nBA and methyl methacrylate (MMA were synthesised for use as optical sensor films. The copolymers were mixed with appropriate amounts of chromoionophore (ETH5294 and a lipophilic salt before spin coated on glass slides to form films for the evaluation of pH response using spectrophotometry. Co-polymer films with high nBA content gave good response and the response time depended on the film thickness. A preliminary evaluation of the optical films of high nBA content with pHs from 2 - 14 showed distinguishable responses from pH 5 - 9. However, the adhesion of the pH sensitive film was good for copolymers with higher content of MMA but not for films with high nBA.

  10. Chemically Cross-Linked Poly(acrylic-co-vinylsulfonic Acid Hydrogel for the Delivery of Isosorbide Mononitrate

    Talib Hussain

    2013-01-01

    Full Text Available We report synthesis, characterization, and drug release attributes of a series of novel pH-sensitive poly(acrylic-co-vinylsulfonic acid hydrogels. These hydrogels were prepared by employing free radical polymerization using ethylene glycol dimethacrylate (EGDMA and benzyl peroxide (BPO as cross-linker and initiator, respectively. Effect of acrylic acid (AA, polyvinylsulfonic acid (PVSA, and EGDMA on prepared hydrogels was investigated. All formulations showed higher swelling at high pHs and vice versa. Formulations containing higher content of AA and EGDMA show reduced swelling, but one with higher content of PVSA showed increased swelling. Hydrogel network was characterized by determining structural parameters and loaded with isosorbide mononitrate. FTIR confirmed absence of drug polymer interaction while DSC and TGA demonstrated molecular dispersion of drug in a thermally stable polymeric network. All the hydrogel formulations exhibited a pH dependent release of isosorbide mononitrate which was found to be directly proportional to pH of the medium and PVSA content and inversely proportional to the AA contents. Drug release data were fitted to various kinetics models. Results indicated that release of isosorbide mononitrate from poly(AA-co-VSA hydrogels was non-Fickian and that the mechanism was diffusion-controlled.

  11. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. PMID:23544572

  12. Preparation and self-sterilizing properties of Ag@TiO{sub 2}–styrene–acrylic complex coatings

    Zhou, Xiang-dong; Chen, Feng; Yang, Jin-tao, E-mail: yangjt@zjut.edu.cn; Yan, Xiao-hui; Zhong, Ming-qiang, E-mail: zhongmingqiang@hotmail.com

    2013-04-01

    In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO{sub 2} particle incorporation into styrene–acrylic latex. The Ag@TiO{sub 2} particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO{sub 2} particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO{sub 2} nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO{sub 2} nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO{sub 2} loading concentration of 2–5 wt.%. The weathering endurance of the complex coating was also measured. - Highlights: ► We prepared Ag@TiO{sub 2}–styrene–acrylic complex latex in one pot. ► Good antibacterial performances of complex coatings were observed. ► The complex coating was resistant to weathering after 48 h. ► The complex coating exhibits good heat-insulating effect.

  13. Controlled release of diclofenac sodium from pH-responsive carrageenan-g-poly(acrylic acid) superabsorbent hydrogel

    Hossein Hosseinzadeh

    2010-07-01

    In this paper, controlled release of diclofenac sodium (DS) from pH-sensitive carrageenan-gpoly(acrylic acid) superabsorbent hydrogels was investigated. The hydrogels were prepared by graft copolymerization of acrylic acid (AA) onto kappa-carrageenan, using ammonium persulfate (APS) as a free radical initiator in the presence of methylene bisacrylamide (MBA) as a crosslinker. Infrared spectroscopy was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). The synthesized hydrogels were subjected to equilibrium swelling studies in simulated gastric and intestinal fluids (SGF and SIF). Hydrogels containing drug DS, at different drug-to-polymer ratios, were prepared by direct adsorption method. The loading yield was found to depend on both the impregnation time and the amount of encapsulated drug. In vitro drug-release studies in different buffer solutions showed that the most important parameter affecting the drug-release behaviour of hydrogels is the pH of the solution. The mechanism involved in release was Fickian ( ≤ 0.43, = 0.348) and Super Case II kinetics ( > 1, = 1.231) at pH 1.2 and 7.4, respectively.

  14. Ultraviolet-induced surface modification of polyurethane films in the presence of oxygen or acrylic acid vapours

    Weibel, Daniel Eduardo, E-mail: danielw@iq.ufrgs.b [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Fassini Michels, Alexandre [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Horowitz, Flavio [Laser and Film Optics Laboratory, Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Silva Cavalheiro, Ricardo da [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Vingre da Silva Mota, Gunar [Curso de Fisica, Universidade Federal do Amapa, Macapa, AP (Brazil)

    2009-07-31

    An efficient surface functionalization of polyurethane (PU) films has been obtained by ultraviolet (UV)-assisted modification in the presence of oxygen or acrylic acid (AA) vapours. Film analyses were carried out by water contact angle measurements, X-ray photoelectron spectroscopy (XPS) and Near-edge X-ray absorption fine structure (NEXAFS). Film hydrophilicity increased with photolysis time in the presence of oxygen or AA vapours. Incorporation of COO and C=O functional groups at the polymer surface after the UV-assisted treatments was observed. In addition, High resolution XPS and NEXAFS results showed that a thin film of poly (acrylic acid) (PAA) is formed over the PU films during the UV irradiation with AA vapours. The obtained results are compared with previous published oxygen and AA low-power plasma treatments. Similarity between both treatment methodologies is shown. UV surface functionalization and polymerization of PAA can be used instead of a traditional plasma treatment with the advantage of set-up simplicity and lower costs.

  15. Ultraviolet-induced surface modification of polyurethane films in the presence of oxygen or acrylic acid vapours

    An efficient surface functionalization of polyurethane (PU) films has been obtained by ultraviolet (UV)-assisted modification in the presence of oxygen or acrylic acid (AA) vapours. Film analyses were carried out by water contact angle measurements, X-ray photoelectron spectroscopy (XPS) and Near-edge X-ray absorption fine structure (NEXAFS). Film hydrophilicity increased with photolysis time in the presence of oxygen or AA vapours. Incorporation of COO and C=O functional groups at the polymer surface after the UV-assisted treatments was observed. In addition, High resolution XPS and NEXAFS results showed that a thin film of poly (acrylic acid) (PAA) is formed over the PU films during the UV irradiation with AA vapours. The obtained results are compared with previous published oxygen and AA low-power plasma treatments. Similarity between both treatment methodologies is shown. UV surface functionalization and polymerization of PAA can be used instead of a traditional plasma treatment with the advantage of set-up simplicity and lower costs.

  16. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w−1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g−1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g−1 and 523 g g−1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)

  17. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  18. Preparation and self-sterilizing properties of Ag@TiO2–styrene–acrylic complex coatings

    In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO2 particle incorporation into styrene–acrylic latex. The Ag@TiO2 particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO2 particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO2 nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO2 nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO2 loading concentration of 2–5 wt.%. The weathering endurance of the complex coating was also measured. - Highlights: ► We prepared Ag@TiO2–styrene–acrylic complex latex in one pot. ► Good antibacterial performances of complex coatings were observed. ► The complex coating was resistant to weathering after 48 h. ► The complex coating exhibits good heat-insulating effect

  19. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions

    Thermo- and pH-responsive gel membranes were synthesized by γ-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl-L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30 deg. C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved

  20. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions

    Hasegawa, Shin; Ohashi, Hitoshi; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru E-mail: katsu@taka.jaeri.go.jp

    2005-04-01

    Thermo- and pH-responsive gel membranes were synthesized by {gamma}-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl-L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30 deg. C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved.

  1. Preparation of pH- and thermo-sensitive hydrogel by two-step grafting of acrylamide and acrylic acid onto preirradiated polyethylene film

    Two-step grafting reaction of acrylamide (AAm) and acrylic acid (AAc) onto preirradiated polyethylene (PE) film were performed. The effects of irradiation dose, reaction temperature and reaction time on the grafting yield were studied. The effect of reaction time of the first step grafting on the yield of the second step grafting was also evaluated. The original and the irradiated PE films were tested by Fourier transform infrared (FTIR) spectroscopy in the attenuated total reflectance mode (ATR). The AAm and AAc grafted PE film appeared thermo- and pH-sensitive which are similar to the interpenetrating polymer network hydrogel. (author)

  2. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  3. Development of a platform for nasal delivery of peptides and vaccines using powder carriers based on starch/poly(acrylic) acid

    Coucke, Delphine

    2009-01-01

    The interest in and importance of systemic drug delivery via the nasal route have expanded in recent decades since nasal administration offers an interesting alternative for the conventional oral and parenteral drug delivery routes. In this thesis, the nasal route was selected as an alternative route for peptide and vaccine delivery. A spray-dried combination of maize starch (Amioca®) and a cross-linked acrylic acid-based polymer (Carbopol® 974P) was used as powder carrier to amplify the ...

  4. Insights on the biodegradation of acrylic reline resins

    Neves, Maria Cristina Bettencourt, 1976-

    2012-01-01

    Acrylic reline resins are extensively used in dentistry, since they readapt dentures to the continuous reabsorbed underlying tissues. Since present in the oral cavity for long periods of time, these materials are objective of the biodegradation phenomena, which represents the change on their chemical, physical and mechanical properties due to the oral environment conditions and its constituents. These processes may permanently alter the properties of the material and compromise its function. ...

  5. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    Ladan Espandar; Shameema Sikder; Majid Moshirfar

    2011-01-01

    Ladan Espandar1, Shameema Sikder2, Majid Moshirfar31Department of Ophthalmology, Tulane University, New Orleans, LA, USA; 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 3John A Moran Eye Center, University of Utah, Salt Lake City, UT, USAAbstract: Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular le...

  6. Hydrogen bonding on the surface of poly(2-methoxyethyl acrylate).

    Li, Guifeng; Ye, Shen; Morita, Shigeaki; Nishida, Takuma; Osawa, Masatoshi

    2004-10-01

    Hydrogen bonding on the interface and in the bulk of a poly(2-methoxyethyl acrylate) (PMEA) thin film has been investigated by sum frequency generation, infrared reflection absorption, and Raman scattering measurements in different kinds of solutions containing hydrogen-bonding donators. These results indicate that the majority of the carbonyl groups on the PMEA surface are hydrogen-bonded with water or ethanol molecules, while the PMEA bulk is still dominated by the free carbonyl group. PMID:15453716

  7. Late opacification of a hydrophilic acrylic intraocular lens

    Al-Bdour Muawyah

    2008-01-01

    Full Text Available Cataract extraction and intraocular lens implantation is considered to be a safe procedure in most cases. However, the new advances in the surgical technique namely phacoemulsification and hence the increased use of foldable intraocular lenses have given rise to new complications including late opacification of intraocular lenses. In this case we report late opacification of a foldable hydrophilic acrylic intraocular lens and the surgical technique for its exchange.

  8. THE IMPORTANCE OF COAGULATION BATH IN ACRYLIC FIBER PRODUCTION

    İsmail TİYEK; BOZDOĞAN, Faruk

    2005-01-01

    In the production of acrylic fibers using wet-spinning method, fiber formation takes places in the coagulation bath. Therefore, physical properties of the fibers, produced by the wet-spinning method, is affected by coagulation bath conditions. For this reason, coagulation bath parameters have to be checked very well. In this paper, both the physical events such as diffusion and phase transition, occured in the coagulation bath, and some coagulation bath parameters that affect these physical e...

  9. Acrylic microspheres-based optosensor for visual detection of nitrite.

    Noor, Nur Syarmim Mohamed; Tan, Ling Ling; Heng, Lee Yook; Chong, Kwok Feng; Tajuddin, Saiful Nizam

    2016-09-15

    A new optosensor for visual quantitation of nitrite (NO2(-)) ion has been fabricated by physically immobilizing Safranine O (SO) reagent onto a self-adhesive poly(n-butyl acrylate) [poly(nBA)] microspheres matrix, which was synthesized via facile microemulsion UV lithography technique. Evaluation and optimization of the optical NO2(-) ion sensor was performed with a fiber optic reflectance spectrophotometer. Scanning electron micrograph showed well-shaped and smooth spherical morphology of the poly(nBA) microspheres with a narrow particles size distribution from 0.6 μm up to 1.8 μm. The uniform size distribution of the acrylic microspheres promoted homogeneity of the immobilized SO reagent molecules on the microspheres' surfaces, thereby enhanced the sensing response reproducibility (<5% RSD) with a linear range obtained from 10 to 100 ppm NO2(-) ion. The micro-sized acrylic immobilization matrix demonstrated no significant barrier for diffusion of reactant and product, and served as a good solid state ion transport medium for reflectometric nitrite determination in food samples. PMID:27080889

  10. Acrylate Functionalized Tetraalkylammonium Salts with Ionic Liquid Properties

    Silvia Janietz

    2012-05-01

    Full Text Available Acrylate functionalized ionic liquids based on tetraalkylammonium salts with terminal acrylates- and methylacrylates were synthesized. Melting points and ionic conductivity of twenty compounds in six groups were determined. Within one group the effect of three different counterions was investigated and discussed. The groups differ in cationic structure elements because of their functional groups such as acrylate and methacrylate, alkyl residues at the nitrogen and number of quaternary ammonium atoms within the organic cation. The effect of these cationic structure elements has been examined concerning the compiled parameters with a view to qualifying them as components for solid state electrolytes. The newly synthesized ionic liquids were characterized by NMR and FTIR analysis. The exchange of halide ions like bromide as counter ions to weakly coordinating [PF6], [OTf] or [TFSI] reduces the melting points significantly and leads to an ion conductivity of about 10−4 S/cm at room temperature. In the case of the dicationic ionic liquid, an ion conductivity of about 10−3 S/cm was observed.

  11. Polymer Chemistry

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  12. Star Polymers.

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings. PMID:27299693

  13. Study on Preparation Fluorine-containing and Properties of Acrylic Emulsion%含氟丙烯酸酯乳液的制备及性能研究

    王伟; 孙祥山; 刘彦军

    2012-01-01

    以全氟辛基丙烯酸乙酯为主要单体,制备了核壳型含氟丙烯酸酯乳液,采用红外光谱和激光粒度对聚合物进行了表征,并对纯棉织物进行了拒水拒油整理,研究了聚合方法、整理工艺对纯棉织物表面拒水拒油性能的影响,通过SEM对整理后织物表面进行了分析。结果表明含氟丙烯酸酯乳液作为织物整理剂整理后的织物具有良好的拒水拒油性。%Core/shell structure fluorine-containing acrylic emulsion was prepared by using perfluoroalkyl octyl ethyl acrylate as main monomer. The polymer was characterized by using infrared spectroscopy and laser particle size analyzer and cotton textile was finished with water and oil repellent finishment. The influence of polymerization process and finishing technology to the properties of water and oil repellent finishment were studied. The textile surface was analyzed by SEM after finishing. The results show that the fluorine- containing acrylic emulsion textile finishing agent has good water-repellent and oil-repellent properties.

  14. 3-dimensional polymer gel dosimetry

    Recently developed techniques in conformal radiotherapy demand special properties of radiation dosimeters. Polymer gel dosimeter evaluated by nuclear magnetic resonance (NMR) is promising tool which can be used for measuring rather complicated 3-dimensional dose distributions with required precision of ± 5 %. This system is based on radiation-induced polymerisation and cross-linking of acrylic monomers which are uniformly dispersed in aqueous gel. The formation of cross-linked polymers in the irradiated regions of the gel increases the NMR relaxation rates of neighbouring water protons. BANG-2 type polymer gel was prepared. The composition of gel dosimeter was as follows: 3 % N,N'-methylene-bisacrylamide, 3 % acrylic acid, 1 % sodium hydroxide, 5 % gelatine, and 88 % water, where all percentages are by weight. The dosimeters in glass vessels were homogeneously irradiated by 60Co gamma photons in a Gammacell 220 unit and by 4 MV, 6 MV and 18 MV X ray photons on Varian Clinac 600C and 2100 C linear accelerators by doses in the range of 0-50 Gy. Evaluation of dosimeters was performed on Siemens EXPERT 1 T and Siemens VISION 1,5 T scanners. Multi-echo CPMG sequence with 16 echoes was used for the evaluation of T2-relaxation times in irradiated gel dosimeters. The dependence of 1/T2 response of dosimeters was studied on following factors: absorbed dose, energy of applied radiation, temperature during NMR evaluation, time since irradiation to NMR evaluation and strength of the magnetic field. An exponential dependence of 1/T2 response on absorbed dose in the range of 0-50 Gy was observed, in the range 0-10 Gy the data could be fitted by a linear function. There was observed no dependence of 1/T2 response on: energy (for three different photon energies used in this study), strength of magnetic field of NMR scanner, time from irradiation of the dosimeters to NMR evaluation. Increase of gel dosimeter 1/T2 response with the decrease of the temperature during NMR evaluation

  15. Capacitive pH-Sensors using pH sensitive polymer

    Chinnam, Krishna Chytanya

    2009-01-01

    This project aims in building a new experimental setup for capacitive measurements of a pH-Sensor. PAA-IOA (Poly Acrylic Acid co – Iso Octyl Acrylate) is the dielectric material over the in-plane interdigitated gold electrodes where PAA IOA acts as an H+ ion sensing layer. The changes in the capacitance of the sensor when the sensor is dipped into different pH solutions will be quantized accordingly. The dipping setup is built in such a way that the electrodes (containing the polymer layer) c...

  16. Biofunctional polymers prepared by ionizing radiation; Polimeros biofuncionais preparados pela radiacao ionizante

    Martellini, Flavia; Rodas, Andrea C.D.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Queiroz, Alvaro A.A. de [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1995-12-31

    Polymeric systems with biomedical and biochemical properties can be obtained by radiation induced polymerization. Those systems exhibit a pharmaceutical or biocatalytic activity if drugs or enzymes are immobilized in the polymer matrices. This work deals with the synthesis by gamma radiation of acrylic monomers and paracetamol, a drug with analgesic and anti thermic action, which can be used as medication in drug delivery systems. Besides, polyethylene and polypropylene radiation grafted with a hydrogel containing carboxylic groups (acrylic acid), showed to be a suitable substrate for the enzyme coupling, such as urease and glucose oxidase. The grafted matrices allow the immobilization of any biocomponent with protein structure. (author). 8 refs., 4 figs.

  17. Bistable electroactive polymer for refreshable Braille display with improved actuation stability

    Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing

    2012-04-01

    Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.

  18. Direct observation of interaction between proteins and blood-compatible polymer surfaces.

    Hayashi, Tomohiro; Tanaka, Masaru; Yamamoto, Sadaaki; Shimomura, Masatsugu; Hara, Masahiko

    2007-12-01

    The adhesion force between blood-compatible polymer (poly(2-methoxyethyl acrylate: PMEA) and proteins (fibrinogen and bovine serum albumin (BSA)) were measured by atomic force microscopy. The PMEA surface showed almost no adhesion to native protein molecules, whereas non-blood-compatible poly(n-butyl acrylate): PBA strongly adhered to proteins. Interestingly, adhesion did appear between PMEA and proteins when the proteins were denatured. In all cases, these trends were not affected by the conditions of the solution. Combining the results with previous reports, the authors conclude that interfacial water molecules play a critical role in the protein resistance of PMEA. PMID:20408647

  19. Holographic interference field-induced localized orientational structures in diacrylate-based polymers

    Zheng, Wenjun; Su, Meng-Yao

    2014-07-01

    Structures with orientational order were produced in a diacrylate-based polymer by exposing the diacrylate resin to a holographic irradiation created by means of two-beam interferometry. The holographic irradiation acted both as the driving force for the alignment of mesogenic groups and as the optical source that provided energy for generating free radicals for the crosslinking of the acrylate units. In the region exposed to the holographic irradiation, part of the diacrylate resin was aligned, and the alignment state was fixed upon the completion of the crosslink of the acrylic groups, which was initiated by a nonlinear optical process.

  20. Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration

    In this study, three sulfonated water-soluble polymers based on poly(vinyl alcohol) of different molecular weights (10,000, 50,000 and 100,000 Da) were prepared and tested against commercially available poly(acrylic acid) for the removal of cobalt using polymer assisted ultrafiltration. High rejection rates were obtained between pH 3 and 6 with sulfonated poly(vinyl alcohol) (PVA 10,000 and 50,000 Da) whereas poly(acrylic acid) (PAA) of similar molecular weights performed rather poorly in this pH range. Sulfonation improved significantly sorption capability of PVA. Sulfonated PVA 10,000 was the best complexing agent with rejection rate above 95% between pH 3 and 6. For unmodified PVA the rejection rate was only 30-45% at pH 6 and there was no rejection at pH 3 at all. PAA rejection rate was above 90% at pH 6 and only about 10% at pH 3. Large scale experiment in cross-flow, continuous apparatus conducted by using PVA-SO3H 10,000 Da to remove 60Co radioisotope from water solutions showed excellent results demonstrating the potential of this polymer to purify acidic radioactive wastes containing cobalt radioisotopes.

  1. An interesting grafting reactivity of EB preirradiated polypropylene film[Radiation grafting; Polypropylene; Free radical; peroxide; Acrylic acid; Acrylamide

    Chen Jie E-mail: chenjjd@online.sh.cn; Yang Liming; Chen Liqin; Wu Minhong; Nho, Y.C.; Kaetsua, Isao

    2004-02-01

    An interesting grafting reactivity of electron beam preirradiated polypropylene (PP) film was found by grafting of acrylic acid (AAc) and acrylamide (AAm) repeatedly or intermittently. The preirradiated PP film could be grafted several times intermittently and the free radicals or peroxides on the samples could be determined after several times grafting reaction. The effects of storage time, reaction time and repeated reaction times on the degree of grafting were investigated. The trapped radicals, peroxy-radicals and peroxides on the preirradiated and reacted PP films were determined by using electron spin resonance (ESR) and 1,1-diphenyl-2-picryl hydrazyl (DPPH), respectively. An interpenetrating polymer networks (IPN) with both temperature and pH sensitive properties was obtained by two times grafting of AAm and AAc onto preirradiated PP film.

  2. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite.

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Zhang, Song; Ni, Yuwei; Cai, Seng; Huang, Jie

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2-12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  3. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    Chen Changxin

    2010-01-01

    Full Text Available Abstract An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σ ac of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz, showing a good agreement with the measured results.

  4. Designed drug-release systems having various breathable polyurethane film-backed hydrocolloid acrylated adhesive layers for moisture healing.

    Chang, Ching-Hsien; Liu, Hsia-Wei; Huang, Ching-Cheng

    2014-01-01

    A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements. PMID:25226905

  5. Copper mediated controlled radical copolymerization of styrene and2-ethylhexyl acrylate and determination of their reactivity ratios.

    Bishnu Prasad Koiry

    2014-10-01

    Full Text Available Copolymerization is an important synthetic tool to prepare polymers with desirable combination of properties which are difficult to achieve from the different homopolymers concerned. This investigation reports the copolymerization of 2-ethylhexyl acrylate (EHA and styrene using copper bromide (CuBr as catalyst in combination with N,N,N’,N,N- pentamethyldiethylenetriamine (PMDETA as ligand and 1-phenylethyl bromide (PEBr as initiator. Linear kinetic plot and linear increase in molecular weights versus conversion indicate that copolymerization reactions were controlled. The copolymer composition was calculated using 1H NMR studies. The reactivity ratio of styrene and EHA (r1 and r2 were determined using the Finemann-Ross (FR, inverted Finemann-Ross (FR and Kelen-Tudos (KT methods. Thermal properties of the copolymers were also studied by using TGA and DSC analysis.

  6. Analysis and Testing of Bisphenol A—Free Bio-Based Tannin Epoxy-Acrylic Adhesives

    Shayesteh Jahanshahi

    2016-04-01

    Full Text Available A tannin-based epoxy acrylate resin was prepared from glycidyl ether tannin (GET and acrylic acid. The influence of the reaction condition for producing tannin epoxy acrylate was studied by FT-MIR, 13C-NMR, MALDI-TOF spectroscopy and shear strength. The best reaction conditions for producing tannin epoxy acrylate resin without bisphenol A was by reaction between GET and acrylic acid in the presence of a catalyst and hydroquinone at 95 °C for 12 h. FT-MIR, 13C-NMR and MALDI-TOF analysis have confirmed that the resin has been prepared under these conditions. The joints bonded with this resin were tested for block shear strength. The results obtained indicated that the best strength performance was obtained by the bioepoxy-acrylate adhesive resin prepared at 95 °C for a 12-h reaction.

  7. Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide

    Pang, Beili; Ryu, Chong-Min; Jin, Xin; Kim, Hyung-Il

    2013-11-01

    Acrylic pressure sensitive adhesives (PSAs) with higher thermal stability for thin wafer handling were successfully prepared by forming composite with the graphene oxide (GO) nanoparticles modified to have vinyl groups via subsequent reaction with isophorone diisocyanate and 2-hydroxyethyl methacrylate. The acrylic copolymer was synthesized as a base resin for PSAs by solution radical polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and acrylic acid followed by further modification with GMA to have the vinyl groups available for UV curing. The peel strength of PSA decreased with the increase of gel content which was dependent on both modified GO content and UV dose. Thermal stability of UV-cured PSA was improved noticeably with increasing the modified GO content mainly due to the strong and extensive interfacial bonding formed between the acrylic copolymer matrix and GO fillers

  8. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Full-text: The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidized palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) for example EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80 %) than the palm oil based compounds (up to 70 %), where the different is around 10-15 %. The hardness property from this two type coatings can reached until 50 % at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newton's (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photo initiator give higher adhesion property and their also showed a higher glossiness property on the glass substrate compared to the coatings containing irgacure-819 photo initiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough. (author)

  9. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough

  10. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Ibrahim, Mohammad Izzat [Faculty of Science, University of Malaya (UM), 50603 Kuala Lumpur (Malaysia); Yunus, Nurulhuda Mohd [Faculty of Science and Technology, National University Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  11. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  12. Investigation into the mechanism of polymer thread drag reduction

    Smith, Ronald E.; Tiederman, William G.

    1990-01-01

    The mechanism of drag reduction is investigated that occurs when a long chain, high molecular weight polymer is injected along the centerline of a pipe with a concentration high enough to form a coherent unbroken thread. The objective was to test the hypothesis that drag reduction is caused by the diffusion of polymer molecules from the thread into the near wall region of the pipe. The objective was realized through the measurement of the polymer concentration in the near wall region, the drag reduction and the radial location of the thread. The concentration was measured using a laser induced fluorescence technique where the polymer was marked with fluorescein dye. The experiments were conducted in a 3.18 cm diameter, clear acrylic pipe at Re = 40,000 using a 5000 ppm concentration solution of Separan AP 273 as the injectant. The drag reduction increased from zero at the point of injection to a maximum value about 200 diameters downstream of the injector.

  13. Electrical permittivity of Ni and NiZn ferrite-polymer composites

    Razzitte, A.C. [Laboratorio de Fisicoquimica de Materiales Ceramicos Electronicos (LAFMACEL), Departamento de Quimica, Universidad de Buenos Aires, Paseo Colon 850, Capital Fedcral 1063, Buenos Aires (Argentina)]. E-mail: arazzit@fi.uba.ar; Fano, W.G. [Departamento de Electronica, Facultad.de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, Capital Fedcral 1063, Buenos Aires (Argentina); Jacobo, S.E. [Laboratorio de Fisicoquimica de Materiales Ceramicos Electronicos (LAFMACEL), Departamento de Quimica, Universidad de Buenos Aires, Paseo Colon 850, Capital Fedcral 1063, Buenos Aires (Argentina)

    2004-12-31

    Electrical properties of polymers, well known for their insulating properties, may be improved by adding various functional fillers. Polymer-ferrite composites have been a subject of recent extensive research. Electric properties of such composites depend on the size, shape and amount of added filler in general. When polymer-ferrite composites are particularly used as electromagnetic wave absorbers and EMI shielding materials, it is very important to explain the variation of permeability and permittivity in the measured frequency ranges. In this paper, acrylic-Ni ferrite composites and acrylic-NiZn ferrite composites were used. The effects of the weight fraction of ferrite on the frequency dispersion characteristics of the complex permittivity are studied.

  14. A study of ethanol production of yeast cells immobilized with polymer carrier produced by radiation polymerization

    Polymer carriers, poly(hydroxyethyl acrylate(HEA)-methoxy polyethylene glycol methylacrylate (M-23G)) and poly(hydroxyethyl acrylate(HEA)-glycidyl methylacrylate (GMA)) used for the immobilization of yeast cells were prepared by radiation polymerization at low temperature. Yeast cells were immobilized through adhesion and multiplication of yeast cells. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition of polymers and the optimum monomer composition was 20%:10% in poly(HEA-M-23G) and 17%:6% in poly(HEA-GMA). In this case, the ethanol productivity of immobilized yeast cells was about 4 times that of cells in free system. The relationship between the activity of immobilized yeast cells and the water content of the polymer carrier were also discussed. (author)

  15. Effect of Nanoclay on Thermal Conductivity and Flexural Strength of Polymethyl Methacrylate Acrylic Resin

    Tahereh Ghaffari; Ali Barzegar; Fahimeh Hamedi Rad; Elnaz Moslehifard

    2016-01-01

    Statement of the Problem: The mechanical and thermal properties of polymethyl methacrylate (PMMA) acrylic resin should be improved to counterweigh its structural deficiencies. Purpose: The aim of this study was to compare the flexural strength and thermal conductivity of conventional acrylic resin and acrylic resin loaded with nanoclay. Materials and Method: The methacrylate monomer containing the 0.5, 1 and 2 wt% of nanoclay was placed in an ultrasonic probe and mixed with the PMMA p...

  16. Effect of Atmospheric Pressure Glow Discharge Treatment on Polymerization of Acrylic Fabric and Its Printing Behavior

    D M El-Zeer

    2014-03-01

    Full Text Available Acrylic fibers have been treated by atmospheric pressure glow discharge (APGD plasma in open air to enhance surface antistatic properties. The treated surfaces are investigated by scanning electron microscopy (SEM, Fourier-Transition Infrared Spectroscopy (FTIR and Atomic Force Microscope (AFM. Plasma treatment of acrylic fabric has been found to increase the surface roughness, modify the nature and density of surface functionalities, and drastically improve the wettability and antistatic ability of acrylic fibers.

  17. Allergic contact dermatitis from sculptured acrylic nails: special presentation with an airborne pattern

    Paula Maio; Rodrigo Carvalho; Cristina Amaro; Raquel Santos; Jorge Cardoso

    2012-01-01

    Methylmethacrylate was first reported in 1941 as a cause of contact dermatitis. Since then, occupational contact allergies to acrylates in dentistry, orthopedic surgery, printing industry and industry have been reported, but few reports are found in the literature as a consequence of the contact with sculptured artificial acrylic nails which are increasingly popular. We describe here 3 patients with contact allergy to acrylates in artificial sculptured nails. Patch tests were performed with t...

  18. Polymer Informatics

    Adams, Nico

    Polymers are arguably the most important set of materials in common use. The increasing adoption of both combinatorial as well as high-throughput approaches, coupled with an increasing amount of interdisciplinarity, has wrought tremendous change in the field of polymer science. Yet the informatics tools required to support and further enhance these changes are almost completely absent. In the first part of the chapter, a critical analysis of the challenges facing modern polymer informatics is provided. It is argued, that most of the problems facing the field today are rooted in the current scholarly communication process and the way in which chemists and polymer scientists handle and publish data. Furthermore, the chapter reviews existing modes of representing and communicating polymer information and discusses the impact, which the emergence of semantic technologies will have on the way in which scientific and polymer data is published and transmitted. In the second part, a review of the use of informatics tools for the prediction of polymer properties and in silico design of polymers is offered.

  19. Polymers & People

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  20. Radiation grafting processes and properties of leathers modified with butyl acrylate

    Conditions for radiation induced grafting with butyl acrylate dispersed in water emulsion onto chrome-tanned pig skins have been worked out for γ-rays and electron beam irradiations. The highest yield of grafting was observed at monomer concentration approximately 25% (w/w), dose equal to 25 kGy and dose rate not exceeding 10 MGy/h. At these conditions the yield of grafting attained a value approximately 25% and content of homopolymer in the leather amounted to 6%. The efficiency of monomer to polymer conversion decreases when the concentration of monomer in emulsion and dose rate increases. Yield of homopolymer is independent of the dose rate. An explanation of the observed relations has been proposed. The physical and used properties of grafted leathers were tested. Radiation processed leathers were found superior to samples finished by traditional methods. One has to point to better tolerance against chemical cleaning and reduced water take-up without loss of high permeability of water vapour, responsible for good hygienic properties of leather products. Recommendations for industrial scale radiation grafting are given. (author)

  1. Synthesis and characterization of polycaprolactone/acrylic acid (PCL/AA) hydrogel for controlled drug delivery

    Nazar Mohammad Ranjha; Jahanzeb Mudassir; Sajid Majeed

    2011-12-01

    In the present work biodegradable pH-sensitive polycaprolactone/acrylic acid (PCL/AA) hydrogels have been developed using ethylene glycol dimethacrylate (EGDMA) as a cross-linker and benzoyl peroxide as initiator. For these prepared hydrogels swelling studies, sol–gel fraction analysis and porosity measurements were performed. Results show that swelling of the hydrogels decreases on increasing the concentration of PCL and EGDMA, however swelling of hydrogels increases on increasing the concentration of AA. Results of sol–gel fraction analysis show that gel fraction increases on increasing concentration of monomer AA, polymer PCL as well as cross-linker EGDMA. As far as porosity is concerned, it increases on increasing the concentration of AA and PCL while porosity decreases on increasing the concentration of EGDMA. Hydrogels were characterized by measuring diffusion coefficient () and equilibrium water content (EWC). Network formation, morphology and crystallinity of PCL/AA hydrogels were investigated using FTIR, SEM and XRD, respectively. Tramadol hydrochloride was loaded as model drug and its release pattern was analysed using various kinetic models like zero order, first order, Higuchi and Peppas. Results indicated that most of the samples followed non-Fickian release mechanism.

  2. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  3. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  4. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ∼30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ∼four times while its response rate increased by ∼50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ∼four times with the increase in the block length of the AN moiety

  5. [Modern polymers in matrix tablets technology].

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described. PMID:25739125

  6. Piezoelectric Nanoparticle-Polymer Composite Materials

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  7. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu2+ was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu2+ were as the following order: chitin L = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances

  8. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    Nguyen Quoc Hien [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Commission, Truong tre Str., Linh xuan, Thu duc, Ho Chi Minh City (Viet Nam)]. E-mail: hiennq@hcm.vnn.vn; Dang Van Phu [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Commission, Truong tre Str., Linh xuan, Thu duc, Ho Chi Minh City (Viet Nam); Nguyen Ngoc Duy [College of Natural Sciences, National University Ho Chi Minh City, 227 Nguyen Van Cu, Ho Chi Minh City (Viet Nam); Ha Thuc Huy [College of Natural Sciences, National University Ho Chi Minh City, 227 Nguyen Van Cu, Ho Chi Minh City (Viet Nam)

    2005-07-01

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu{sup 2+} was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu{sup 2+} were as the following order: chitin < PD-chitin < PD-chitin-g-PANa < chitosan (DD76%). In addition, equilibrium isotherms were well fitted by Langmuir equation with the constants K {sub L} = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances.

  9. Dry chemical pretreatment of titanium and polymers for adhesive bonding. Trockenchemische Vorbehandlung von Titan und Kunststoffen fuer das Kleben

    Krueger, G.; Hennemann, O.D. (Fraunhofer-Institut fuer Angewandte Materialforschung, Bremen (Germany))

    1993-01-01

    Titan alloys have to be pretreated to increase the adhesive bonding strength. Because of environmental reasons dry chemical pretreatment methods are preferred compared to wet chemical techniques. One successful method is a silicatisation referring to the Saco-technique. Layers generated by this method on titanium or polymer substrates lead to highly water-resistant adhesive bondings. Also adhesive joints of Ti with polymer show high bond strength when polymer and Ti are Saco treated. With a suitable optimization of the technological parameters it is possible to adhesively bond polymers also with anaerobic acrylic esters. (orig.).

  10. Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate

    Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...

  11. High-performance 193-nm photoresist materials based on a new class of polymers containing spaced ester finctionalities

    Khojasteh, Mahmoud; Chen, K. Rex; Kwong, Ranee W.; Lawson, Margaret C.; Varanasi, Pushkara R.; Patel, Kaushal S.; Kobayashi, Eiichi

    2003-06-01

    ArF lithography has been selected as the imaging method for the 90 nm technology node. Manufacturing related issues will have to be addressed when designing advanced 193 nm resists that are production worthy. Post exposure bake (PEB) sensitivity, dissolution properties and process window are some issues that need continuous improvement. Initially our investigation focused on a cyclic olefin (CO) platform which led us to a better understanding of the relationship between polymer structure and physical properties and how to improve cyclic olefin resist performance. Since then we have developed a new class of acrylate polymers with pendant "spaced ester" functionality. We have investigated the potential use of "spaced ester" functionality on improving the lithographic performance of CO and acrylate resist platforms. We have found that with "spaced ester" as pending group in CO polymer structures, it can lower the Tg and improve the dissolution properties of the CO resists. Resists formulated with acrylate containing "spaced ester" group exhibit excellent PEB temperature sensitivity (1 nm/°C), and are soluble in PGMEA. In addition, we have demonstrated sub-100 nm resolution with excellent process window through formulation optimization for acrylate based resists. This paper will focus on the "spaced ester" based polymer design, material properties; resist characteristics, and the lithographic performance for logic dense line applications.

  12. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand

    Ding, Zhaoyang; Cao, Xuejun

    2013-01-01

    Background Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate...

  13. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    Saruchi; Kaith, B. S.; Vaneet Kumar; Jindal, R

    2016-01-01

    A novel interpenetrating polymer network (IPN) has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial meth...

  14. Preparation and characterization of electrically conductive composites of poly(vinyl alcohol–g–poly(acrylic acid hydrogels impregnated with polyaniline (PANI

    2008-01-01

    Full Text Available Novel electrically conducting composite materials consisting of poly(aniline (PANI nanoparticles dispersed in a poly(vinyl alcohol (PVA-g-poly(acrylic acid (PAA hydrogels were prepared within the polymer matrix by in situ polymerization of aniline. The conversion yield of aniline into PANI particles was determined gravimetrically while structural confirmation of the synthesized polymer was sought by Fourier Transform Infrared (FTIR, UV-visible analysis and X-ray diffraction (XRD technique. Morphology and dimension of PANI particles embedded into the colored optically semi-transparent hydrogels were evaluated by Scanning Electron Microscopy (SEM analysis. Electrical conductivity of composite hydrogels of different composition was determined by LCR meter while electroactive behavior of composite hydrogels swollen in electrolyte solution was investigated by Effective Bend Angle (EBA measurements.

  15. Synthesis, Structures and Properties of Three Metal-organic Frameworks Based on 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic Acid

    Three new transition metal complexes based on Ozagrel [Cu(Ozagrel)]n (1), [Zn(Ozagrel)(Cl)]n (2), [Mn2-(Ozagrel)(1,4-ndc)2]·(H2O)n (3), (Ozagrel = 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic acid; 1,4-ndc = 1,4-Naphthalenedicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyse, IR, TG, PXRD, electrochemical analysis and single crystal X-ray diffraction. X-ray structure analysis reveals that 1 and 3 are 3D coordination polymers, while complex 2 is a two-dimensional network polymer, the 2D layers are further packed into 3D supramolecular architectures that are connected through hydrogen bonds. The electrochemistry of 1-3 was studied by cyclic voltammetry in methanol and water using a glassy carbon working electrode. Also, thermal decomposition process and powder X-ray diffraction of complexes were investigated

  16. Compatibility analysis of Nylon 6 and poly(ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using isothermal crystallization kinetics

    Nylon 6 is a widely used engineering polymer, and has relatively poor impact strength. Ethylene, n-Butyl acrylate, maleic anhydride (E-nBA-MAH) terpolymer is blended with Nylon 6 to enhance its impact strength. Mixture should be compatible to be used in applications. The bare interaction energy between Nylon 6 and E-nBA-MAH terpolymer is calculated according to melting point depression approach using both Flory-Huggins (FH) Theory and Sanchez-Lacombe Equation of State (SL EOS). It demonstrates that blends are thermodynamically favorable to any arrangements. Yet, isothermal crystallization kinetics and WAXS crystallization peaks of blends reveal that mixtures of various compositions have different crystallization behaviors and require alternating crystallization energy due to crystalline structures of individual polymers. Also, SEM images support that after 5% addition of elastomeric terpolymer, interaction loosens due to strong crystalline structure of Nylon 6.

  17. Acrylic fragmentation in total hip replacements and its biological consequences.

    Jasty, M; Jiranek, W; Harris, W H

    1992-12-01

    Loosening of total joint prostheses is in part related to the fragmentation of the acrylic cement mantle surrounding the prosthesis and the biologic consequences to the particulate acrylic. Fractographic studies of femoral cement mantles retrieved at revision surgery and autopsy showed frequent fractures in varying stages of development in the cement and wear at the fracture surfaces. Defects in the cement mantle, thin mantles, sharp corners on the prosthesis, separation at the cement mantle interface, and pores in the cement were frequently associated with cement fractures. The progressive fractures and wear led to the liberation of particulate acrylic debris into the surrounding tissues. The tissues at the bone-cement interface removed at revision surgery showed that a macrophage, giant-cell foreign-body granulomatous reaction occurs in response to the particulate, but not bulk cement. This tissue can produce a variety of chemical mediators of inflammation and bone resorption, and can resorb bone in organ cultures. A granulomatous tissue reaction with a very similar appearance can be produced in experimental animals using particulate-form polymethylmethacrylate (PMMA), but not the bulk form of PMMA. The tissue reaction is not mediated by the classic cell or humeral immune mechanisms. Subcutaneous injection of particulate PMMA powder into fully immunocompetent C3Hf/SED mice as well as three strains of mice with progressive immunologic deficiencies (nude/nude, SCID, and triple deficient Nu-bg-XID/SED mice) led to a foreign-body reaction in all strains at five weeks as shown by histologic and immunohistochemical examination despite the differences in immune deficiency. This, along with the scarcity of lymphocytes in the human tissues, suggests that the biologic reactions to fragmented cement can be produced and sustained by nonimmune phagocytosis and activation by macrophages and giant cells without significant contribution by the immune system. PMID:1446427

  18. Stiffness and strength of composite acrylic bone cements

    I. Knets

    2007-01-01

    Full Text Available Purpose: Different acrylic bone cements based upon PMMA-MMA system are applicable for implant fixation inbone tissue. The aim of present study is the optimisation of the structure of some new bone acrylic cements madeon the basis of PMMA-ethylmethacrylate-triethyleneglycoldimethacrylate and bone cements having additives (HAand radio pacifier, and the finding of the effect of these modifications on the flexural strength and stiffness.Design/methodology/approach: Different new bone cements on the basis of PMMA-EMA-TEGDMA system(ABC were developed experimentally. The stiffness and strength of the samples of these modified cements weredetermined in the special three point bending equipment.Findings: A comparison of the flexural properties of new PMMA-EMA-TEGDMA cements and commercialavailable PMMA-MMA cement showed that commercial bone cement had larger values of ultimate strengthand modulus of elasticity, but the difference is not very important. As concerns the polymerisation peaktemperature, then there is a significant difference between commercial PMMA-MMA cement (~ 800C andPMMA-EMA-TEGDMA modified cements (50 – 600C. The introduction of 10% and 18% of HA into solidphase does not influence essentially strength and modulus of elasticity of the PMMA-EMA-TEGDMA bonecements. The introduction of radio pacifier BaSO4 into bone cement leads to flexural strength diminishing.Low polymerisation peak temperature and appropriate mechanical properties of bone cements developed allowsregarding new 3-D structure acrylic bone cements as promising biomaterials.Research limitations/implications: It is supposed to carry out animal testing to learn more about reaction ofmodified implanted material on the biological environment.Practical implications: The new materials could be efficiently used as bone cements because they will notdamage surrounding biological tissue during curing.Originality/value: Paper is providing the new information about possibilities to

  19. INCIDENCE AND CAUSES OF FRACTURE OF ACRYLIC RESIN COMPLETE DENTURE

    Sampa

    2014-12-01

    Full Text Available CONTEXT (BACKGROUND: Replacement of missing teeth and the associated structures are done with the help of artificial prosthesis. Acrylic resin, by virtue of its excellent properties is widely used as a material of choice for fabrication of denture base. In spite of its higher esthetic quality, tissue compatibility and ease of manipulation, it has an inherent deficiency of proneness to fracture. AIMS: The present study was being undertaken to find out the incidence of fracture of acrylic resin base of complete denture and analyze the cause, so that suitable remedial measures might be suggested to reduce the frequency of denture fracture. SETTINGS AND DESIGN: The present study was conducted over a period of 18 months in the Prosthetic Department of Dr R Ahmed Dental College & Hospital, Kolkata. METHODS AND MATERIAL: The 81 reported fracture cases out of 646 complete dentures were selected for this study. Formally consent followed by detailed history was taken. After intra-oral and physical examination, the dentures were repaired following text book recommended procedure using cold cure acrylic resin and prepared for last phase of survey, which was the intra oral examination like adaptation, retention and stability of the repaired dentures in the second visit of the patients. STATISTICAL ANALYSIS: The data were subjected to SPSS, version 16, and statistically analyzed using cross tab. RESULTS: In the present survey, 81 cases of complete denture fractures have been reported within the survey period. CONCLUSIONS: It appears from the present study, the rate of lower complete denture fracture is more common than upper complete denture fracture

  20. Modificação de polímeros termorrígidos por separação de fases induzida por reação química: Sistema éter diglicidílico do Bisfenol-A e trietilenotetramina com copolímeros acrílicos Modification of thermosetting polymers by induced phase separation by chemical reaction: Diglycidyl ether of Bisphenol-A and triethylenetetramine with acrylic copolymers

    Garcia Filiberto González

    2008-03-01

    Full Text Available O comportamento da separação de fases e da gelificação do sistema do éter diglicidílico do Bisfenol-A com trietilenotetramina modificado com diferentes copolímeros acrílicos foi estudado. As massas moleculares e as concentrações de grupos carboxílicos nos copolímeros provocaram mudanças significativas na morfologia e provocaram ligeiras mudanças para a observação da separação de fases. Contudo, não mudaram de maneira significativa os tempos de gelificação e não afetaram a velocidade da reação. O sistema modificado com os copolímeros acrílicos mostrou o efeito de retardação cinética. A morfologia foi relacionada com a aderência ao cisalhamento, em juntas de aço-aço, através de ensaios de resistência mecânica usando juntas de cisalhamento simples, as que foram produzidas com o sistema modificado com os copolímeros acrílicos segundo a norma ASTM D 1002. Amostras com a fase dispersa apresentando morfologia com partículas de diâmetro médio menor que 0,10 µm mostraram o melhor desempenho de aderência ao cisalhamento para as massas moleculares dos copolímeros estudadas. Entretanto, um melhor comportamento mecânico para as concentrações de grupos carboxílicos nos copolímeros acrílicos foi observado para a morfologia com distribuição de tamanhos de partículas na faixa de 0,20 a 0,52 µm.The cloud point and the gel time behavior of an epoxy system based on diglycidyl ether of Bisphenol-A with triethylenetetramine modified with different acrylic copolymers were studied. The molecular weights and the concentration of carboxyl groups in the copolymers affected the morphology and the cloud point, but did not affect the gel times and reaction rates significantly. The system modified with the acrylic copolymers exhibited kinetic retardation effects. The morphology was related to adherence to the lap shear in steel-steel joints, through mechanical resistance essays using a single-lap-joint, which was produced

  1. Radiation Synthesis of Stimuli-Responsive Hydrogels and Their Interactions with Poly(acrylic acid) and Ionic Surfactants

    those with high content of hydrophobic moiety. Considerable improvement of thermo-induced collapse behavior, namely high amplitude and narrower temperature interval of collapse was shown for the certain sample. In the present work also novel pH-responsive hydrogels of cationic and amphoteric nature were synthesized by gamma-radiation copolymerization of vinyl ethers of monoethanolamine (VEMEA) and ethyleneglycol (VEEG) as well as VEMEA and acrylic acid (AA). The synthesis regularities have been studied. The effects of the feed mixture, cross-linker concentration, absorbed dose on the gel/sol fractions and swelling behavior of the hydrogels is studied. The swelling behavior of the hydrogels was studied as a function of pH. It was found that the isoelectric point of the polyampholyte hydrogels based on VEMEA and AA depends on the composition of copolymers. The interactions of the amphoteric hydrogels based on VEMEA and AA with linear poly(acrylic acid) and poly(vinyl ether of monoethanolamine) lead to the formation of gel-polymer interpolyelectrolyte compexes. It was demonstrated that the cationic hydrogels VEMEA-VEEG are able to bind poly(acrylic acid) to form polyelectrolyte complexes with swelling properties typical for polyampholytes

  2. Corrigendum: Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    Espandar L

    2011-02-01

    Full Text Available Espandar L, Sikder S, Moshirfar M. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision. Clin Ophthalmol. 2011;5:65–70.There was an error in the reported optic size of Lenstec’s Softec HD intraocular lens, which was reported to be 5.5 mm in Espandar et al’s work, but is 5.75 mm.Please see the specifications on Lenstec’s Web site for further details (see http://www.lenstec.com/lenstec/hd_specs.html.Read the original article

  3. BARRIER PROPERTIES OF VINYLIDENE CHLORIDE/METHYL ACRYLATE COPOLYMER

    LI Yuesheng; WENG Zhixue; PAN Zuren

    1997-01-01

    A series of vinylidene dichloride (VDC) copolymers with methyl acrylate (MA) as comonomer (3-12 wt%), was prepared by free-radical suspension copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at1.0 MPa and at 30℃, and those to water vapor were measured at 30℃ and 100% relative humidity. All the VDC/MA copolymers studied are semicrystalline. As the MA content increases, the permeability coefficients of the copolymers to oxygen, carbon dioxide, and water vapor are progressively increased, caused by decrease in crystalline fraction and increase in free volume of VDC/MA copolymers.

  4. A Study of an Acrylic Cerenkov Radiation Detector

    Porter, B; De Barbaro, P; Bodek, Arie; Budd, H S

    1999-01-01

    An experiment investigating the angle of Cerenkov light emitted by 3-MeV electrons traversing an acrylic detector has been developed for use in the advanced physics laboratory course at the University of Rochester. In addition to exploring the experimental phenomena of Cerenkov radiation and total internal reflection, the experiment introduces students to several experimental techniques used in actual high energy and nuclear physics experiments, as well as to analysis techniques involving Poisson statistics. [to be published in Am. J. Phys. 67 (Oct/Nov 1999).

  5. PREPARATION AND PROPERTIES OF SILICONE-ACRYLATE COPOLYMER LATEX

    Mu-jie Yang; Wei Zhang

    2004-01-01

    Silicone-acrylate copolymer latex was prepared through three different polymerization processes, i.e., the batch process, preemulsified monomer addition and the monomer addition process. The results revealed that the monomer addition process is a desirable approach to produce narrow particle size distribution latex with higher polymerization conversion and less amount of coagulum. The effect of silicone content on the glossiness and water absorption of latex film was investigated and the results showed that the glossiness of latex film is improved up to a silicone content of 10% of total monomers, but becomes impaired thereafter, whereas water absorption is reduced accordingly.

  6. 133Xe labelling of acrylate for catheter embolisation

    A method for radio-nucleide labelling of histo-acryl/lipiodol with 133Xe gas is described. The method consists of disolving the gas in lipiodol under sterile conditions. After embolisation and angiography, the localisation of the embolising material can be determined by means of a scintillation camera. The labelling method was used in 15 patients. In all patients the position of the embolising material, as demonstrated by scintigraphy, corresponded with the radiological findings. It was not possible to demonstrate escape of the material by scintigraphy. (orig.)

  7. Thermal and FTIR analysis of the miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine)/poly (styrene-co-acrylic acid) systems

    Hadj-Hamou, Assia Siham; Habi, Abderrahmane [Laboratoire des Materiaux Polymeres, Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, B.P. 32, El Alia, Algiers 16111 (Algeria); Djadoun, Said, E-mail: matpolylab@yahoo.fr [Laboratoire des Materiaux Polymeres, Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2010-01-10

    The miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine) containing 20 mol% of 4-vinylpyridine (IBM4VP20) and poly (styrene-co-acrylic acid) containing 27 or 32 mol% of acrylic acid (SAA27 or SAA32) mixtures were investigated by DSC, TGA and FTIR spectroscopy in the 25-180 {sup o}C temperature range. The results showed that sufficient specific carboxyl-pyridine hydrogen bonding interactions occurred between these copolymers and led to miscible blends as cast from THF and to inter-polymer complexes of significantly improved thermal stability when butan-2-one is the common solvent. The self-association effect on the inter-polymer interactions was evidenced by the decrease of complexation yields, observed when the carboxylic content is increased above 27 mol% as with SAA32. The trend of phase behaviour predicted by a thermodynamic analysis of the specific interactions of hydrogen bonding type that occurred between the two components of the SAA27/IBM4VP20 blends, neglecting the weak carboxyl-ester interactions and the functional group accessibility effect, carried out using the Painter-Coleman association model that considers the screening effects, is in a fair agreement with the experimental results. Moreover an LCST is predicted to occur at relatively high temperature.

  8. Thermal and FTIR analysis of the miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine)/poly (styrene-co-acrylic acid) systems

    The miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine) containing 20 mol% of 4-vinylpyridine (IBM4VP20) and poly (styrene-co-acrylic acid) containing 27 or 32 mol% of acrylic acid (SAA27 or SAA32) mixtures were investigated by DSC, TGA and FTIR spectroscopy in the 25-180 oC temperature range. The results showed that sufficient specific carboxyl-pyridine hydrogen bonding interactions occurred between these copolymers and led to miscible blends as cast from THF and to inter-polymer complexes of significantly improved thermal stability when butan-2-one is the common solvent. The self-association effect on the inter-polymer interactions was evidenced by the decrease of complexation yields, observed when the carboxylic content is increased above 27 mol% as with SAA32. The trend of phase behaviour predicted by a thermodynamic analysis of the specific interactions of hydrogen bonding type that occurred between the two components of the SAA27/IBM4VP20 blends, neglecting the weak carboxyl-ester interactions and the functional group accessibility effect, carried out using the Painter-Coleman association model that considers the screening effects, is in a fair agreement with the experimental results. Moreover an LCST is predicted to occur at relatively high temperature.

  9. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    Salih, A. M. [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor, Malaysia and Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum 1111 (Sudan); Ahmad, Mansor Bin; Ibrahim, Nor Azowa [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor (Malaysia); Dahlan, Khairul Zaman Hj Mohd [Polycomposite Sdn Bhd, No.75-2, Jalan TKS 1, Taman Kajang Sentral, 43000 Kajang, Selangor (Malaysia); Tajau, Rida [Radiation Processing Technology Division, Nuclear Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Mahmood, Mohd Hilmi [No. 107, Jalan 2, Taman Kajang Baru, Sg Jelok, 43000 Kajang, Selangor (Malaysia); Yunus, Wan Md. Zin Wan [Department of Chemistry, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000, Sungai Besi Camp, Kuala Lumpur (Malaysia)

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  10. Thermal and mechanical properties of palm oil-based polyurethane acrylate/ clay nano composites prepared by in-situ intercalative method and electron beam radiation

    Full-text: Palm oil based-polyurethane acrylate (POBUA)/ clay nano composites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5 % wt), and then subjected to polycondensation reaction with MDI. Nano composites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nano clay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Angstrom, while the structure morphology of the nano composites was investigated by TEM and SEM. The nano composites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nano composites was significantly increased by incorporation of nano clay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nano composites. Tensile strength and Young's modulus of the nano composites showed remarkable improvement compared to the neat POBUA. (author)

  11. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA

  12. Poly (N-vinyl-2-pyrrolidone-co-acrylic acid): Comparing of Traditional Heating and Microwave-Assisted Free Radical Polymerization

    In organic chemistry microwave irradiation has become a common heat source and the use of microwave irradiation is also increasingly studied for polymerization reactions. Polymers have been synthesized at long reaction times by classical thermal methods. In contrast, microwave-assisted polymer synthesis is a well-known and most useful method, which is requiring shorter reaction times. In this study, our aims are to compare THPS and MAPS methods between themselves, and investigate the effect of temperature in MAPS method at different parameters such as reaction times, weight average molecular weight (Mw), polydispersity index (PDI), hydrodynamic radius (Rh), intrinsic and Mark Houwink equation constant (a) of copolymers, viscosity Firstly we synthesized N-vinyl-2-pyrrolidone-acrylic acid copolymers (P(VP-co-AA)) both with traditional heating polymer synthesis (THPS) and microwave-assisted polymer synthesis (MAPS) method comparatively in this study. Secondly, to research temperature effect on MAPS method in addition to microwave irradiation power, polymer synthesis at 40 degree C, 50 degree C and 80 degree C were tried. For analyzing of copolymers Fourier Transform Infrared (FT-IR) spectroscopy and Gel Permeation Chromatography (GPC) system with four detectors were used. (author)

  13. Organometallic Polymers.

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  14. Coloured Polymers

    Pesando, I.

    1993-01-01

    We show that non-oriented coloured polymers (self--avoiding walks with different types of links) are in the same universality class of the ordinary self--avoiding walks, while the oriented coloured are not.

  15. Polymer electrolytes

    Abbrent, Sabina; Greenbaum, S.; Peled, E.; Golodnitsky, D.

    Singapore: World Scientific Publishing, 2015 - (Dudney, N.; West, W.; Nanda, J.), s. 523-589 ISBN 978-981-4651-89-9 Institutional support: RVO:61389013 Keywords : polymer electrolytes * applications * mesuring techniques Subject RIV: CD - Macromolecular Chemistry

  16. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators

    Jankova, Katja Atanassova; Bednarek, Melania; Hvilsted, Søren

    2005-01-01

    Multifunctional initiators for atom transfer radical polymerization (ATRP) are prepared by converting ditrimethylolpropane with four hydroxyl groups, dipentaerythritol with six hydroxyl groups, and poly(3-ethyl-3-hydroxymethyl-oxetane) with similar to 11 hydroxyl groups to the corresponding 2......-bromoisobutyrates or 2-bromopropionates as obtained by reaction with acid bromides. Star polystyrene (PS) is produced by using these macroinitiators and neat styrene in a controlled manner by ATRP at 110 degrees C, employing the catalytic system CuBr and bipyridine. M. up to 51,000 associated with narrow molecular...

  17. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    Jayaraman, R.; Vickraman, P.; Subramanian, N. M. V.; Justin, A. Simon

    2016-05-01

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) - filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10-5 Scm-1 was noted for 57.5 wt% -7.5 wt% plasticizer - filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10-5 S cm-1 and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 - 1000 cm-1 both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  18. Acrylate-silica polymer nanocomposites obtained by sol-gel reactions. Structure, properties and scaffold preparation.

    Rodríguez Hernandez, Jose Carlos

    2008-01-01

    El manuscrito versa sobre el desarrollo y caracterización de materiales híbridos basados en poliacrilato de hidroxietilo (a partir de ahora PHEA) reforzado por la inclusión de una fase amorfa de sílice. Ambas fases fueron sintetizadas simultáneamente: la fase orgánica se obtiene a través de una reacción de polimerización radicalaria inducida por la pequeña adición de un iniciador térmico (peróxido de benzoilo); además, la sílice (SiO2) fue polimerizada a través de una reacción sol-gel cataliz...

  19. Surface modification of acrylate polymer networks with bioactive motives for tissue engineering

    Kompertová, Hana; Guryča, Vilém; Hobzová, Radka; Přádný, Martin; Michálek, Jiří

    Lausanne : International Union of Material Research Science, 2007. M149. [Conference Junior Euromat. 04.09.2006-08.09.2006, Lausanne] Institutional research plan: CEZ:AV0Z40500505 Keywords : porous hydrogels * SEM * biocompatibility Subject RIV: CD - Macromolecular Chemistry http://webdb.dgm.de/dgm_lit/prg/FMPro?-db=w_review&-format=prog_paper_results.htm&-lay=standard&TB=755&-max=20&-skip=240&-token.0=755&-find=

  20. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones

    Bruckmeier, Christian

    2010-05-24

    The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β-hydride elimination and the liberation of the acrylate species. © 2010 American Chemical Society.

  1. Neutral, anionic, cationic, and zwitterionic diblock copolymers featuring poly(2-methoxyethyl acrylate) hydrophobic segments

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Amphiphilic diblock copolymers incorporating hydrophobic poly(2-methoxyethyl acrylate) (PMEA) and hydrophilic neutral poly(ethylene glycol) monomethyl ether (mPEG), anionic poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA), cationic poly(2-dimethylaminoethyl methacrylate) (PDMAEMA), and...

  2. Synthesis of poly(N-isopropylacrylamide-co-acrylic acid) model compounds for filtration experiments

    Hinge, Mogens; Christensen, Morten Lykkegaard; Scales, Peter;

    2005-01-01

    microgels. Capillary rheometry indicates that the blocks of poly(acrylic acid) are placed on the surface of the microgels. The combination of these three results reveal that the microgels have a core mainly consisting of poly(N-isopropylacrylamide) and a diffuse/cloudy surface consisting mainly of poly(acrylic...

  3. The mechanism study on overcoming oxygen inhibition of polyether type multifunctional acrylate

    The high reactive polyester type multifunctional acrylic resin and polyether type multifunctional acrylate was prepared and used for EB cured coatings. The experimental results have showed that when the absorbed dose reaches 60 KGy, the hardness kept to 80%. In order to overcome oxygen inhibition the authors also performed further mechanism study of anti-oxidation

  4. Synthesis, Characterization, and Aqueous Lubricating Properties of Amphiphilic Graft Copolymers Comprising 2-Methoxyethyl Acrylate

    Javakhishvili, Irakli; Røn, Troels; Jankova Atanasova, Katja; Hvilsted, Søren; Lee, Seunghwan

    2014-01-01

    Amphiphilic anionic and cationic graft copolymers possessing poly(2-hydroxyethyl methacrylate) (PHEMA) backbone and poly(methacrylic acid), poly(2-methoxyethyl acrylate-co-methacrylic acid), and poly(2-methoxyethyl acrylate-co-2-(dimethylamino)ethyl methacrylate) grafts are constructed by merging...

  5. Contact-killing of adhering streptococci by a quaternary ammonium compound incorporated in an acrylic resin

    Mei, Li; Ren, Yijin; Loontjens, Ton J. A.; van der Mei, Henny C.; Busscher, Henk J.

    2012-01-01

    Purpose: Acrylates for bonding of joint prostheses and stainless-steel brackets in orthopedics and orthodontics are prone to bacterial adhesion and biofilm formation, respectively, leading to serious infectious complications. Here we describe the preparation of a contact-killing acrylic resin by inc

  6. Development of radiation curable surface coating based on soybean oil. part I. preparation and characterization of acrylated oil

    An epoxy acrylate was synthesized from epoxidized soybean oil (ESOL) by using acrylic acid monomer. Triethyl amine (TEA) and hydroquinone were used as catalyst and inhibitor respectively. The epoxidized soybean oil acrylate (ESOLA) is done by introducing acrylic acid into oxirane groups of the epoxidized oil (ESOL). This reaction was confirmed by analytical data in terms of oxirane oxygen content, acid value, viscosity and spectroscopically analysis

  7. Effect of Beverages on the Hardness and Tensile Bond Strength of Temporary Acrylic Soft Liners to Acrylic Resin Denture Base

    Safari A.

    2013-12-01

    Full Text Available Statement of Problem: Two potential problems commonly identified with a denture base incorporating a resilient liner are failure of the bond between acrylic resin and soft liner material, and loss of resiliency of the soft liner over time. Since patients may drink different beverages, it is important to evaluate their effects on physical properties of soft lining materials.Purpose: The objective of this in vitro study was to evaluate the effect of different beverages on the hardness of two temporary acrylic-based soft lining materials and their bond strength to the denture base resin.Materials and Method: For the hardness test; a total of 80 rectangular specimens (40mm×10mm×3mm were fabricated from a heat-polymerized polymethylmethacrylate. Two commercially auto-polymerized acrylic resin-based resilient liners; Coe-Soft and Visco-gel were prepared according to the manufacturers’ instructions and applied on the specimens. For the tensile test, 160 cylindrical specimens (30mm×10mm were prepared. The liners were added between specimens with a thickness of 3 mm. The specimens of both soft liners were divided into 4 groups (n=10 and immersed in distilled water as the control group, Coca-Cola, 8% and 50% ethanol. All groups were stored in separate containers at 37oC for 12 days. All beverages were changed daily. The hardness was determined using a Shore A durometer and tensile bond strength was determined in a ZwickRoell testing machine at a cross-head speed of 5mm/min. The results were analyzed using two-way ANOVA.Results: There was no significant interaction between the soft liners and the drinks for both hardness (p= 0.748 and bond strength (p= 0.902. There were statistically signifi-cant differences between all drinks for both hardness (p< 0.001 and bond strength (p< 0.05.Conclusion: Within the limitations of this study, it seems that drinking Coca-Cola and alcoholic beverages would not be potentially causing any problems for the temporary

  8. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  9. The transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion

    Devi Rianti

    2006-12-01

    Full Text Available A laboratoric experimental study was conducted on the transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion. The aim of this study is to know the difference of acrylic resin transverse strengths caused by immersion time variations in a concentrate solution. The study was carried out on unpolished acrylic resin plates with 65 × 10 × 2,5 mm dimension; solution with 15% Coleus amboinicus, Lour extract, and 30, 60, 90 days immersion times to measure the transverse strength and sterilized aquadest was used as control. Acrylic resin plates transverse strength was measured using Autograph AG-10 TE. The data was analyzed using One-Way Anova and LSD with 5% degree of significance. The result showed that longer immersion time will decrease the transverse strength of the acrylic resin plates. After 90 days immersion time, the transverse strength decrease is still above the recommended standard transverse strength.

  10. Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty

    T Calvo-Fernández

    2010-10-01

    Full Text Available This paper reports a biological evaluation of a non-resorbable acrylic cement loaded with alendronate for the treatment of osteoporotic vertebral compression fractures. The cement formulation was based on polymethyl methacrylate and acrylic monomers; one of these had covalently linked vitamin E residues. The same cement in the absence of alendronate was used as a control. The setting of the charged cement presented a maximum polymerization temperature of 44ºC, a setting time of 24 min, a residual monomer content lower than 3 wt.%, a compressive strength of 99±10 MPa and an elastic modulus of 1.2±0.2 GPa. Cytotoxicity studies using human osteoblast cultures revealed that the leachable substances of the alendronate loaded cement collected between 1 and 7 days decreased cell viability to values lower than 80%. However, morphological changes and cellular damage in cells produced by the extracts decreased with the leak time. Cell adhesion and growth on charged cement was significantly lower than on the control. Implantation of the cement paste in the intra-femoral cavity of rabbits showed that initially the osteogenic activity was evident for the cement charged with alendronate, and the osteosynthesis process took place mainly in the trabeculae and was manifested by the presence of a non-mineralised osseous spicule. The interface between material and adjacent bone tissue was initially characterized by a variable fibrous response that in many cases it appeared reduced to thin connective tissue after a 24-week-period.

  11. Water structure and blood compatibility of poly(tetrahydrofurfuryl acrylate).

    Mochizuki, Akira; Hatakeyama, Tatsuko; Tomono, Yuka; Tanaka, Masaru

    2009-01-01

    We previously reported that poly(2-methoxyethyl acrylate) (PMEA), which has excellent blood compatibility, contains a large amount of freezing bound water. In order to confirm the role of freezing bound water in determining blood compatibility, poly(tetrahydrofurfuryl acrylate) (PTHFA) was newly synthesized and the thermal properties of water in PTHFA were investigated by differential scanning calorimetry (DSC), as freezing bound water was observed as cold crystallization in DSC heating curves. In addition, the blood compatibility of PTHFA, including activations of platelets, the coagulation system and the complement system, was investigated. The temperature of cold crystallization of water in PTHFA was higher than that of water in PMEA; moreover, the amount of freezing bound water in PTHFA was smaller than that in PMEA. The effect of freezing bound water on blood compatibility was investigated by comparing PTHFA, PMEA, poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-methoxyethyl methacrylate) (PMEMA). The latter two samples showed no cold crystallization. Activations of platelets, the coagulation system and the complement system were enhanced in the following order: PMEA < PHEMA < PTHFA < PMEMA, PMEA < PMEMA < PTHFA < PHEMA and PMEA < PTHFA < PMEMA < PHEMA, respectively. The above results were reasonably explained by the amount and/or the stability of freezing bound water. PMID:19323878

  12. Bond strength of acrylic teeth to denture base resin after various surface conditioning methods before and after thermocycling

    Saavedra, Guilherme; Valandro, Luz Felipe; Leite, Fabiola Pessoa; Amaral, Regina; Oezcan, Mutlu; Bottino, Marco A.; Kimpara, Estevao T.

    2007-01-01

    This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol)

  13. Enzyme-catalyzed synthesis of saccharide acrylate monomers from nonedible biomass.

    Kloosterman, Wouter M J; Brouwer, Sander G M; Loos, Katja

    2014-08-01

    Various cellulase preparations were found to catalyze the transglycosidation between cotton linters and 2-hydroxyethyl acrylate. The conversion and enzyme activity were found to be optimal in reaction mixtures that contained 5 vol % of the acrylate. The structures of the products were revealed by using TLC and (1) H and (13) C NMR spectroscopy. The enzyme-catalyzed reaction resulted in two products. The minor product originated from transglycosidation to hemicellulose and was found to be 2-(β-xylosyloxy)-ethyl acrylate. The major product was identified as 2-(β-glucosyloxy)-ethyl acrylate and the yield of the product was 5 wt % based on the amount of consumed cellulose. Glycosidation products with oligosaccharide moieties could not be detected in the reaction mixture. This result can be explained by the hydrolytic activities of the used cellulase preparation. Cellulase from Trichoderma reesei was found to possess, in addition to endoglucanase activity, cellobiosidase and β-glucosidase activities. Five other cellulase preparations from different origins were tested as well for catalysis of oligosaccharide acrylate synthesis. For most cellulase preparations the major transglycosidation product appeared to be 2-(β-glucosyloxy)-ethyl acrylate. Nevertheless, the endo-β-(1,4)-glucanase from Trichoderma longibrachiatum was found to catalyze the synthesis of 2-(β-cellobiosyloxy)-ethyl acrylate. Unlike the other cellulase preparations, endo-β-(1,4)-glucanase from T. longibrachiatum showed no detectable β-glucosidase activity and therefore oligosaccharide acrylate monomers were not further hydrolyzed into the monosaccharide acrylate 2-(β-glucosyloxy)-ethyl acrylate. PMID:24866837

  14. ASPECTS OF THERMODYNAMICS OF POLYMER MIXTURES

    CHAI Zhikuan

    1987-01-01

    In this brief review article some aspects of the thermodynamics of polymer mixtures are discussed,mainly based on the author's research. The studies of poly (methyl methacrylate)/chlorinated polyethylene (CPE), poly (butyl acrylate)/CPE and CPE/CPE (different chlorine content) mixture verify the "dissimilarity" and "similarity" principles for predicting miscibility of polymer mixtures. The sign of heat of mixing of oligomeric analogues is not sufficient in predicting the miscibility. The Flory equation of state theory has been applied to simulate the phase boundaries of polymer mixtures. The empirical entropy parameter Q12 plays an important role in the calculation, this reduces the usefulness of the theory. With energy parameter X12 ≠ 0 and Q12 ≠ 0 the spinodals so calculated are reasonable compared to experiments.A hole model was suggested for the statistics of polymer mixtures. The new hole theory combines the features of both the Flory equation of state theory and the Sanchez lattice fluid theory and can be reduced to them under some conditions.

  15. Molecularly imprinted polymers with assistant recognition polymer chains for bovine serum albumin

    2010-01-01

    A new protein molecularly imprinted polymer (MIP) was prepared with grafting polyvinyl alcohol as assistant recognition polymer chains (ARPCs). The ARPCs and acrylamide monomers were interpenetrated and then polymerized on the surface of macroporous acrylate adsorbent spheres. The template BSA was removed by treatment with 2.00 mol L-1 potassium chloride (KCl) solution and the adsorbed proteins were detected with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 0.150, 0.500, and 2.00 mol L-1 KCl solutions were used as eluent to wash the adsorbed proteins. The SDS-PAGE results show that proteins washed out with 2.00 mol L-1KCl solution were from nonspecific adsorption of macroporous acrylate adsorbent spheres, and proteins washed out with 0.500 mol L-1KC1 solution were specific proteins imprinted by MIP resins. MIP resins with ARPCs had better recognition to the target proteins than that without ARPCs. The adsorption capacity of MIP resins immobilized ARPCs to the template BSA was about 80-100 μg g-1 when it was used for the adsorption of proteins mixture, and the specific adsorption of the target protein was obviously increased.

  16. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.

  17. Thermal and topographical characterization of polyester- and styrene/acrylate-based composite powders by scanning probe microscopy

    The thermal properties of two conventional polyester-based toners and a chemically prepared styrene/acrylate toner with different thermal histories were studied by scanning probe microscopy (SPM) and differential scanning calorimetry (DSC). The thermal transition temperatures detected by SPM agreed with the results of the DSC measurements. The validity of SPM for detecting thermal transitions was further confirmed by studying two amorphous reference polymers with different glass transition points (Tg) and three crystalline reference polymers with different melting points (Tm). When the toner sample was heated by the SPM probe above the glass transition temperature of the toner powder (Tprobe > Tg), changes occurred in the surface topography and roughness causing different levels of local sintering of the particles. A set of roughness parameters calculated from the SPM image data were used to quantify the most essential features of toner surfaces. Environmental scanning electron microscopy (ESEM) was used to study the penetration depth of heat dissipated by the SPM probe. The probe-annealing was compared with oven-annealing in order to establish the effect of thermal history on the thermal properties of the materials

  18. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA

  19. Optimal Design for Reactivity Ratio Estimation: A Comparison of Techniques for AMPS/Acrylamide and AMPS/Acrylic Acid Copolymerizations

    Alison J. Scott

    2015-11-01

    Full Text Available Water-soluble polymers of acrylamide (AAm and acrylic acid (AAc have significant potential in enhanced oil recovery, as well as in other specialty applications. To improve the shear strength of the polymer, a third comonomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS, can be added to the pre-polymerization mixture. Copolymerization kinetics of AAm/AAc are well studied, but little is known about the other comonomer pairs (AMPS/AAm and AMPS/AAc. Hence, reactivity ratios for AMPS/AAm and AMPS/AAc copolymerization must be established first. A key aspect in the estimation of reliable reactivity ratios is design of experiments, which minimizes the number of experiments and provides increased information content (resulting in more precise parameter estimates. However, design of experiments is hardly ever used during copolymerization parameter estimation schemes. In the current work, copolymerization experiments for both AMPS/AAm and AMPS/AAc are designed using two optimal techniques (Tidwell-Mortimer and the error-in-variables-model (EVM. From these optimally designed experiments, accurate reactivity ratio estimates are determined for AMPS/AAm (rAMPS = 0.18, rAAm = 0.85 and AMPS/AAc (rAMPS = 0.19, rAAc = 0.86.

  20. Thermal and topographical characterization of polyester- and styrene/acrylate-based composite powders by scanning probe microscopy

    Backfolk, Kaj [Stora Enso Oyj, Imatra Research Centre, FI-55 800 Imatra (Finland)], E-mail: Kaj.Backfolk@storaenso.com; Sirvioe, Petri [Stora Enso Oyj, Imatra Research Centre, FI-55 800 Imatra (Finland); Department of Physical Chemistry, Abo Akademi University, Porthaninkatu 3-5, FI-20500 Turku (Finland); Ihalainen, Petri [Department of Physical Chemistry, Abo Akademi University, Porthaninkatu 3-5, FI-20500 Turku (Finland); Peltonen, Jouko [Laboratory of Paper Coating and Converting, Abo Akademi University, Porthaninkatu 3-5, FI-20500 Turku (Finland)

    2008-04-10

    The thermal properties of two conventional polyester-based toners and a chemically prepared styrene/acrylate toner with different thermal histories were studied by scanning probe microscopy (SPM) and differential scanning calorimetry (DSC). The thermal transition temperatures detected by SPM agreed with the results of the DSC measurements. The validity of SPM for detecting thermal transitions was further confirmed by studying two amorphous reference polymers with different glass transition points (T{sub g}) and three crystalline reference polymers with different melting points (T{sub m}). When the toner sample was heated by the SPM probe above the glass transition temperature of the toner powder (T{sub probe} > T{sub g}), changes occurred in the surface topography and roughness causing different levels of local sintering of the particles. A set of roughness parameters calculated from the SPM image data were used to quantify the most essential features of toner surfaces. Environmental scanning electron microscopy (ESEM) was used to study the penetration depth of heat dissipated by the SPM probe. The probe-annealing was compared with oven-annealing in order to establish the effect of thermal history on the thermal properties of the materials.