WorldWideScience

Sample records for acrylic acid esters

  1. Acrylic Acid and Esters Will Be Oversupply

    Zheng Chengwang

    2007-01-01

    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  2. Rare linking hydrogels based on acrylic acid and carbohydrate esters

    U. Akhmedov

    2012-09-01

    Full Text Available The process of copolymerization of acrylic acid and esters poliallil sucrose; pentaerythritol and sorbitol, some of its laws are identified. The kinetic regularities of copolymerization and the optimum conditions of synthesis was established.

  3. Scientific Opinion on the safety evaluation of the active substance, acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked for use in active food contact materials

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2013-04-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked (CAS No. 117675-55-5, FCM Substance No 1022, to be used as liquid absorber in the form of fibres in absorbent pads for the packaging of fresh or frozen meat, poultry, and fish as well as fresh fruits and vegetables. The Panel considered that migration is not expected when the absorption capacity of the pads is not exceeded. Therefore no exposure from the consumption of the packed food is expected. The Panel also considered that none of these starting substances and the cross-linked polymer gives rise to concern for genotoxicity. Therefore the CEF Panel concluded that the use of the substance acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked does not raise a safety concern when used as fibres in absorber pads for the packaging of fresh or frozen meat, poultry, fish, fruits and vegetables under conditions under which the absorption capacity of the pads is not exceeded and mechanical release of the fibres from the pads is excluded.

  4. Enzymatic direct synthesis of acrylic acid esters of mono- and disaccharides

    Tsukamoto, Junko; Heabel, Sophie; Valenca, Gustavo P.; Peter, Martin; Franco, Telma

    2010-01-01

    BACKGROUND: There is an increased need to replace materials derived from fossil sources by renewables. Sugar-cane derived carbohydrates are very abundant in Brazil and are the cheapest sugars available in the market, with more than 400 million tons of sugarcane processed in the year 2007. The objective of this work was to study the preparation of sugar acrylates from free sugars and free acrylic acid, thus avoiding the previous preparation of protected sugar derivatives, such as glycosides, o...

  5. Rapid Output Growth of Special Acrylic Esters

    Wang Lianzhi

    2007-01-01

    @@ Acrylic esters are usually classified into general-purpose varieties and special varieties. The production and application of general-purpose varieties is already quite matured in the world and their output growth tends to be flat. Owing to the development of coatings, electronics, automobiles,textiles, printing and construction sectors, especially the application of radiation curing technology in various sectors, special acrylic esters have developed rapidly.

  6. SYNTHESIS OF ACRYLIC ESTERS IN PTC: KINETICS AND ECOLOGICAL ASPECTS

    G.Torosyan

    2013-06-01

    Full Text Available The synthesis of esters of acrylic acids, which are applied for synthesis of polymeric materials by phase transfer catalysis were discussed (PTC, which is very useful for reduction of reaction consumption of materials and power.This method has substantial advantages including high speed of the process, soft condition of reaction and reduced pollution.

  7. 21 CFR 175.210 - Acrylate ester copolymer coating.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  8. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions

    Thermo- and pH-responsive gel membranes were synthesized by γ-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl-L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30 deg. C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved

  9. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions

    Hasegawa, Shin; Ohashi, Hitoshi; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru E-mail: katsu@taka.jaeri.go.jp

    2005-04-01

    Thermo- and pH-responsive gel membranes were synthesized by {gamma}-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl-L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30 deg. C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved.

  10. Radiation sensitive acrylate composition

    This application relates to radiation-sensitive compositions and more particularly to such compositions comprising acrylated esters. As used in this specification, the term acrylated esters refers to either acrylic or methacrylic acid resins. 3 tabs

  11. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl- L-proline methyl ester)- graft-poly(acrylic acid) for selective permeation of metal ions

    Hasegawa, Shin; Ohashi, Hitoshi; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2005-04-01

    Thermo- and pH-responsive gel membranes were synthesized by γ-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl- L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30°C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved.

  12. Synthesis and Application of a New Acrylic Ester Resin for Recycling SIPA from its Water Solution

    2005-01-01

    A new acrylic ester polymer YWB-7 resin was prepared and characterized. The properties of YWB-7 resin were compared with those of the commercial Amberlite XAD-7, Diaion HP2MG and hypercrosslinked macroporous polymer NDA-150 resins. Both surface area and micropore area of YWB-7 resin were bigger than those of XAD-7 resin and HP2MG resin. The YWB-7 resin was successfully employed to recycle 5-sodiosulfoisophthalic acids (SIPA) from its solutions with and without methanol.

  13. Antimicrobial activity of poly(acrylic acid) block copolymers

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  14. Antimicrobial activity of poly(acrylic acid) block copolymers

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  15. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: Evidence of cyclodextrins cavity dependent complex stoichiometry

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-01

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions.

  16. SYNTHESIS OF ACRYLIC ESTERS IN PHASE TRANSFER CATALYSIS: KINETICS AND ECOLOGICAL ASPECTS

    GAGIK TOROSYAN

    2012-06-01

    Full Text Available Phase-Transfer Catalysis (PTC technology is used in the commercial manufacture and also in pollution mitigation treatment processes. In the paper is demonstrated the synthesis of esters of acrylic and metacrylic acids, which have wide applications in the industry for the synthesis of unique polymeric materials, by phase transfer catalysis method. It is necessary to notice that the synthesis of acrylic acids in PTC medium is more important because that compounds are more sensitive at acidic and basic conditions. Here is shown that the offered method has more advantages in comparison with the traditional methods. PTC is characterized by a higher degree of conversion of raw materials into useful products, smaller material and power resources consumption. The offered method for acrylic ester synthesis in comparison with the traditional methods has more advantages: higher process rates, mild reaction conditions, allowing lower energy costs, the complete elimination of hazardous and dangerous organic solvents, all leading to a sharp reduction of air pollution, and volume of generated wastewaters.

  17. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  18. Proton Exchange Membrane from the Blend of Copolymers of Vinyl Acetate- Acrylic Ester and Styrene-Acrylic Ester for Power Generation Using Fuel Cell

    Alvaro Realpe

    2014-10-01

    Full Text Available Proton exchange membranes for fuel cells were synthesized from the blend of copolymers of vinyl acetate-acrylic ester and styrene-acrylic ester, which were modified by sulfonation and addition of silica gel. Water uptake, ion exchange capacity, infrared spectroscopy and tensile tests were applied to characterize the prepared membranes. The results show that the prepared membranes with the processes of sulfonation and loaded with silica have the highest water uptake (92,7%. On the other hand, the sulfonation process lead to membranes with high ion exchange capacity and high mechanical strength (0,68 meq/g and 1,29 MPa, respectively. Therefore, the sulfonated membrane represents an alternative for the application as proton exchange membrane in fuel cells.

  19. Comparative examination of radiation polymerization in a thin layer of acrylic and methacrylic esters

    Some features of radiation polymerization of acrylic esters CH2 double-bond CH-COOR (AE) and their methacrylic analogs CH2 double-bond C(CH3)-COOR (ME) in a thin layer have not been explained within the framework of concepts of the radical mechanism of radiation polymerization. To determine the causes of the anomalies, the authors comparatively studied polymerization of a series of AE and ME in a thin layer under the effect of accelerated electrons, butyl acrylate and butyl methacrylate, ethylene glycol diacrylate and ethylene glycol dimethacrylate and diethylene glycol diacrylate and diethylene glycol dimethacrylate

  20. Radiochemical coupling of acrylic acid to polyvinylchloride

    Acrylic acid was coupled radiochemically to the surface of polyvinylchloride (PVC) foils. A 500 keV electron generator served as radiation source. After neutralization with ammonia, the surface of the PVC foils got hydrophilic properties. Their capacity of water uptake increased from 0,04 mg/cm2 to about 0,5 mg/cm2 and the condensation of water takes place in form of a clear transparent film and not in form of light scattering droplets. 6 refs., 20 figs., 8 tabs

  1. Adsorption of surfactants onto acrylic ester resins with different pore size distribution

    YANG Weiben; LI Aimin; CAI Jianguo; MENG Guanhua; ZHANG Quanxing

    2006-01-01

    In this study, a series of acrylic ester resins with different pore size distribution were prepared successfully by varying the type and the amount of pore-forming agents. In order to investigate the adsorption behavior and mechanism of surfactants on acrylic ester resins, three kinds of surfactants were utilized as adsorbates that were sodium 6-dodecyl benzenesulfonate (6-NaDBS),sodium 1-dodecyl benzene sulfonate (1-NaDBS) and sodium 1-dodecyl sulfonate, respectively. It was observed that the surface area was available in a particular pore size and an appropriate pore size of resins appeared to be more important for the adsorption of surfactants. As compared to commercial acrylic ester resins XAD-7 and HP2MG, 50# and 38# resins exhibited more excellent adsorption properties toward 1-NaDBS and 6-NaDBS. The experimental equilibrium data were fitted to the Langmuir, and double-Langmuir models. Two models provided very good fittings for all resins over the temperature range studied. The investigation dicated that electrostatic attraction and hydrogen bond between resins and surfactants were the main forces and had an obvious effect on adsorption process.

  2. Radiation-induced graft copolymerization of methyl acrylate and acrylic acid onto rubber wood fiber

    Graft copolymerization of methyl acrylate and acrylic acid monomers onto rubber wood fiber (RWF) was carried out by simultaneous radiation-induced technique. The parameters affecting the grafting reaction were investigated and the optimum conditions for both monomers obtained are as follows: impregnation time = 16 hours, total dose = 30 kGy, methanol : water ratio, 3:1, monomers concentration = 40 v/v % and sulphuric acid concentration = 0.1 mol/L. Fourier Transform Infrared (FTIR), thermogravimetry analysis (TGA), and scanning electron microscope (SEM) analyses used to characterize graft copolymers. The structural investigation by x-ray diffraction (XRD) shows the degree of crystallinity of rubber wood fiber decreased with the incorporation of poly(methyl acrylate) and poly(acrylic acid) grafts. (Author)

  3. Carboxylic Acid Esters as Substrates of Cholinesterases

    Brestkin, A. P.; Rozengart, E. V.; Abduvakhabov, A. A.; Sadykov, A. A.

    1983-10-01

    Data on the kinetics of the hydrolysis of various carboxylic acid esters by two main types of cholinesterases — acetylcholinesterase from human erythrocytes and butyrylcholinesterase from horse blood serum — are surveyed. It is shown that the rate of enzyme hydrolysis depends significantly on the structure of the acyl part of the ester molecule, the nature of the ester heteroatom, the structure of the alcohol component, and particularly the structure of the onium group. Esters based on natural products are of special interest as specific substrates of these enzymes. The role of the productive and non-productive sorption of the substrates in enzyme catalysis is demonstrated. The bibliography includes 81 references.

  4. Radiation induced grafting of acrylic acid onto extruded polystyrene surface

    Polystyrene materials with good solubility in liquid scintillation cocktails are used to wipe off different types of surfaces in order to determine the tritium removable contamination with the help of a liquid scintillation counter. This paper analyses hydrophilic surface modifications by radiation induced grafting of acrylic groups onto extruded polystyrene plates. Two grafting methods were used: (a) exposure of extruded polystyrene plates, immersed in aqueous acrylic acid solution, to a gamma radiation of a Co-60 source, and (b) exposure of extruded polystyrene plates to a Co-60 source, followed by the immersion of extruded polystyrene plates in aqueous acrylic acid solution. The grafting of acrylic was proved by IR spectrometry and by radiometric methods using acrylic acid labelled with tritium. - Highlights: ► Polystyrene (PS) is used to determine the removable surface contamination (RSC). ► RSC factor may be increased by PS surface modification. ► PS surface was modified by acrylic acid grafting using γ radiation 60Co source. ► Acrylic fragments insertion was determined by IR, and radiometric. ► Grafted PS discs increase RSC factor in the case of tritium contamination.

  5. Textile dyestuff adsorption by polysaccharide-g-acrylic acid

    Aimed of this study to determine the ability of polysacharide of banana peel as an adsorbent of textile dyes (Maxilon Yellow) before and after the grafting process. The grafting copolymerization process was done by using acrylic acid as monomer, then irradiated by gamma rays as initiator. Parameters observed were adsorption ability of dye, soaking time with KOH, acrylic acid concentration, irradiation dose and resistance to acids. The results showed the optimum absorption obtained at the time of KOH immersion for 3 hours, the concentration of acrylic acid by 20% and the irradiation dose of 30 kGy. Adsorption percentage of polysacharide to Maxilon Yellow after grafting increased by 18,48% compared to before grafting. Resistance to the acid test increased significantly. The results of this study are expected to overcome the problems of waste dyes in the textile industry. (author)

  6. COMPLEX OXIDE CATALYSTS OF ACRYLIC ACID OBTAINING BY ALDOL CONDENSATION METHOD

    Nebesnyi, R.

    2015-01-01

    The present work is dedicated to solving the problem of diversification of the raw materials base for acrylate monomers obtaining,  first of all acrylic acid. Acrylic acid and its derivatives are bulk products of organic synthesis with a wide range of applications. The main industrial method of acrylic acid production is  propylene oxidation. But this method has instable economic indicators as propylene is petroleum origin raw material.It is possible to expand the resource base of acrylic aci...

  7. Decarboxylation-based traceless linking with aroyl acrylic acids

    Nielsen, John

    1998-01-01

    beta-Keto carboxylic acids are known to decarboxylate readily. In our pursuit to synthesize beta-indolinyl propiophenones, we have exploited this chemistry as a mean of establishing a traceless handle. 2-Aroyl acrylic acids have been esterified to a trityl resin, after which Michael-type addition...

  8. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176.110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper...

  9. Use of Acrylic Acid Sodium Acrylate Polymer to Maintain Cocoa Seed Viability

    Pudji Rahardjo

    2010-08-01

    Full Text Available The main problem of cocoa seed storage is moisture content of the seeds because cocoa seeds will germinate if cocoa seeds moisture content is high. The objective of this research is to maintain the cocoa seeds viability in storage using acrylic acid sodium acrylate polymer (AASAP. The function of AASAP is to absorb humidity in storage due to their ability to retain water and to prevent water loss. The experiment was conducted in a laboratory of Indonesian Coffee and Cocoa Research Institute and in Kaliwining Experimental Garden. This experiment was arranged by factorial randomized complete design, in wich AASAP dosages 0%; 0.1% (0.1 g/100 seeds; 0.2% (0.2 g/100 seeds, 0.3% (0.3 g/100 seeds, 0,4% (0,4g/100 seeds, combined with seeds storage period 1, 2, 3 and 4 weeks. The experiment used 3 replications and each repli cation used 100 seeds. Parameter of observation consisted of percentage of seeds germinated in storage, percentage of seeds infected by fungi in storage, seeds moisture content, percentage of seeds germination after storage, and early growth of cocoa seedlings. The results of the experiment showed that AASAP application with some dosages cocoa seeds storage cause to germinate in storage during 2 weeks. AASAP application with some dosages in cocoa seeds storage for 2 weeks would not result in infection by fungi and did not significantly affect seed germination after storage for 1, 2 and 4 weeks, and percentage of germination of cocoa seed after storage for 3 weeks decreased with increase dosage of AASAP. Higher dosage of AASAP would reduce early growth of cocoa seedling. Key words : Theobroma cacao, seed, acrylic acid sodium acrylate, seed storage, viabilty.

  10. Radioinduced grafting of acrylic acid on expanded polystyrene matrices

    The unfixed surface radioactive contamination for low energy β radionuclides (3H and 14C) is determined by wiping the checked surfaces with sponge of absorbent materials. The activity built up by this sponge is measured by a liquid scintillator spectrometer. In this work, a method of obtaining sponges of expanded polystyrene with hydrophobic surface by radioinduced grafting of the acrylic acid is presented. These sponges have diameters of 28 mm, thicknesses of 1.5 - 2 mm and density of 22 mg/cm3. The samples were immersed in a grafting solution with the following composition: acrylic acid 30%, Cu SO4 1%; water 69% which were deeply impregnated in repeated operations under vacuum and pressure conditions, respectively. Finally, the samples were exposed to γ radiation emitted by a 60Co source (IETI 10 000 - IFIN-HH). The dose rates were 0.3, 0.5 and 1 Mrad/h. The range of the absorbed doses was 1 - 25 Mrad. The yields of radiochemical grafting have been determined by gravimetric, spectrophotometric and radiometric methods. The grafting agent used was 3H labelled acrylic acid. The solvation capacity and the quenching characteristics of the grafted sponges in liquid scintillators, as well as the sampling yields have been analyzed as function of irradiation procedure and the percentage of grafted acrylic fragments. The superficial grafting of the acrylic acid has been carried out by the mentioned technique, leading to the increase of the wiping efficiency of the unfixed surface contaminating activity, without changes of polymer solubility in liquid scintillators and without the perturbation of the radioactivity detection process. (authors)

  11. Acrylic acid obtaining from methanol and acetic acid in the presence of complex oxide catalysts

    Небесний, Роман Володимирович; Піх, Зорян Григорович; Шпирка, Ірина Іванівна; Івасів, Володимир Васильович; Небесна, Юлія Віталіївна; Фуч, Уляна Василівна

    2015-01-01

    The purpose of this work is to research process of single-stage acrylic acid obtaining from methanol and acetic acid, namely: to develop effective catalysts for the process of methanol oxidation to formaldehyde with its further aldol condensation with acetic acid to acrylic acid, and to determine optimum conditions for the process. Complex oxide catalysts consisting of oxides of boron, phosphorus, tungsten and vanadium supported on the silica gel have been investigated. The effect of vanadium...

  12. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  13. A New Process for Acrylic Acid Synthesis by Fermentative Process

    Lunelli, B. H.; Duarte, E. R.; de Toledo, E. C. Vasco; Wolf Maciel, M. R.; Maciel Filho, R.

    With the synthesis of chemical products through biotechnological processes, it is possible to discover and to explore innumerable routes that can be used to obtain products of high addes value. Each route may have particular advantages in obtaining a desired product, compared with others, especially in terms of yield, productivity, easiness to separate the product, economy, and environmental impact. The purpose of this work is the development of a deterministic model for the biochemical synthesis of acrylic acid in order to explore an alternative process. The model is built-up with the tubular reactor equations together with the kinetic representation based on the structured model. The proposed process makes possible to obtain acrylic acid continuously from the sugar cane fermentation.

  14. Synthesis of stearic acid triethanolamine ester over solid acid catalysts

    Tao Geng; Qiu Xiao Li; Ya Jie Jiang; Wei Wang

    2010-01-01

    The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm)is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).

  15. Surface cross-linked humic acid - polysodium acrylate superabsorbent

    Chu, M.; Zhu, S.; Li, H.; Huang, Z.; Zhang, X. [China University of Mining and Technology, Beijing (China)

    2005-03-01

    A novel composite super-absorbent of humic acid-polysodium acrylate was invented by surface cross-linking reaction of lignite humic acid and poly. Humic acid was abstracted from leonardite and poly was synthesized by solution polymerization. Water absorbing mechanism of composite superabsorbent was explored based on FTIR and SEM. The effect of surface cross-linking reaction conditions, such as the ratio of methanol to water, cross-linking agent concentration, and the amount of humic acid on water absorbing were investigated. Experiments show that the water absorbency of superabsorbent can be greatly improved by humic acid. When the mass fraction of humic acid is 10%, the ratio of cross-linking agent to PSA is 0.2%, and the ratio of methanol to water is 1.8, the water absorbency is the best: 750 g/g for deionied water and 260 g/g for running. water. 9 refs., 5 figs., 1 tab.

  16. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  17. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  18. Conformational Transition of Poly (Acrylic Acid) Detected by Microcantilever Sensing

    LI Kai; LIU Hong; ZHANG Qing-Chuan; XUE Chang-Guo; WU Xiao-Ping

    2007-01-01

    Poly (acrylic acid) (PAA) chains are grafted on one side of a microcantilever by the self-assembled method and the deflections of the microcantilever are detected as a function of medium pH from 3 to 11. It is found that when the pH varies, the microcantilever deflects because of the changing surface stress. By analysing the electrostatic repulsive effect, the surface stress change is related to the conformation transition of PAA from a collapse state to a swelling state. This method offers the interaction information among the polymer chains during the conformational transition and affords an alternative way to study conformational change of polymers.

  19. New liner and reticular polyelectrolytes based an acetoacetic ehter and acrylic acid: synthesis, structure and stimulating sensitivity characteristics

    Novel linear and crosslinked poly-carbolytes based on acetoacetic ester and acrylic acid were synthesized for the first time via Michael addition reaction followed by the radical poly-mineralization. The structure and properties of polyelectrolytes were characterized by FTIR, Raman and NMR spectroscopy, TGA, DSC, GPC, viscosimetry, and potentiometric titration. Considerable influence of water content on the swelling rate of hydrogel was established. The swelling-deswelling properties of hydrogels were studied in water-organic solvent mixtures, electric and magnetic fields. (author)

  20. NF EN 14103. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the ester and methylic ester content of linoleic acid; NF EN 14103. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en ester et en ester methylique de l'acide linolenique

    NONE

    2003-07-01

    This European standard aims at determining the ester and methylic ester content of fatty acids methylic esters (FAME) used as pure bio-fuels or as constituent of a heating or diesel fuel. This method allows also to determine the methylic ester content of linoleic acid. It allows to verify that the ester content of FAMEs is greater than 90% (m/m) and that the linoleic acid content is comprised between 1% (m/m) and 15% (m/m). The method is applicable to FAMEs with methylic ester contents comprised between C14 and C24. (J.S.)

  1. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction

  2. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    Grasselli, M.; Betz, N.

    2005-07-01

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction.

  3. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  4. Swelling Behaviors of Polyaniline-Poly(Acrylic Acid) Hydrogels

    ZHANG You-wei; ZHAO Jiong-xin; LI Xiao-feng; TAO Yong; WU Cheng-xun

    2005-01-01

    Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline(An) and ammonim persulfate(APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds wcre prepared. The swelling properties of the hydrogels in solutions of different pH values(adjusted by adding NaOH or HCl) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel,and molar ratios of AA to An, APS to An, and NaOH to AA.And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied.

  5. New initiation system for polymerization of acryl acid

    LI Hai-pu; ZHONG Hong; CHEN Qi-yuan; YIN Zhou-lan

    2005-01-01

    The redox initiation system for polyacrylate sodium of high molecular mass was designed and its effect with varying component dosage on the degree of polymerization was investigated. The results show that the proper type and amount of inorganic salt, as well as amine initiator, are conductive to the increase of degree of polymerization. The fine ingredient of the initiation system is as follows:the dosages of amine, persulphate and inorganic salt are 0.75%, 0.10% and 1.00% by mass based on acryl acid respectively, the molar ratio of sulphite to the persulphate is 1:1. Under such conditions the degree of polyacrylate can reach 7.43×107 with a acceptable polymerization time for industrial production.

  6. Study on preirradiation grafting of acrylic acid to cotton cellulose

    Grafting copolymerization of acrylic acid to cotton cellulose by using pre-irradiating method was investigated. At lower concentration of monomer (10%) the relationship between grafting yield and total dose, dose rate, reaction time and reaction temperature was measured. It was found that in the temperature range of 294 K to 323 K the grafting yield decreased with increasing of grafting reaction temperature. The grafting yields as a function of above reaction conditions were given by the expression Gr% = 5.9 x 10-10De20.27/RT(1-e-0.313te-6.87/RT), where R 8.314 x 10-3kj·K-1·mol-1, D = irradiation dose, T = reaction temperature, and t = reaction time

  7. Polymerisation by acrylamide and acrylic acid inverse suspension

    Sergio Alejandro LLoreda Blanco

    2010-04-01

    Full Text Available This work describes polymerisation by inverse suspension of acrylamide monomers and acrylic acid for forming homopolymers or copolymers This type of polymersitaion's advantages are described and reasons given for why it should be studied. The article stresses the importance of these types of monomer for obtaining materials presenting great affinity for water, such as super-absorbents and controlled liberation mechanism. Important aspects are presented such as type of initiation, monomer composition and continuous phase composition; parameters are described offering an important basis for formulating a system leading to successfully obtaining the desired materials' most relevant characteristics such as particle distribution and size polymerisation kinetics, conversion and water absorption capacity respecting the system's modifiable parameters. The foregoing is important since the product can be modified, bestowing propierties on it which are suitable for its use.

  8. Copolymerization of Indene with Acrylic Acid, Itaconic Acid and Acrylonitrile: Characterization and Reactivity Ratios

    Random copolymers of indene (In) with acrylic acid (AA), itaconic acid (IA) and acrylonitrile (AN) were synthesized by free radical polymerization in dioxane in the presence of azobisisobutyronitrile as an initiator at 60 degree C. The homopolymer of indene and acrylonitrile was prepared using K2MnO4 and sulphuric acid as an initiator, while acrylic acid and itaconic acid were prepared using K2S2O8 solution. The reactivity ratios of the monomers were calculated by different methods. X-ray diffraction as well as thermal analyses were studied. The latter was studied via thermogravimetric analysis and differential thermal analysis. The complexation with metal ions such as Cu+2 and Fe+2 was investigated. The copolymerization and the complexation processes were confirmed by FTIR spectroscopy. Also the activation energy of the prepared copolymers was determined

  9. Synthesis of poly(N-isopropylacrylamide-co-acrylic acid) model compounds for filtration experiments

    Hinge, Mogens; Christensen, Morten Lykkegaard; Scales, Peter;

    2005-01-01

    microgels. Capillary rheometry indicates that the blocks of poly(acrylic acid) are placed on the surface of the microgels. The combination of these three results reveal that the microgels have a core mainly consisting of poly(N-isopropylacrylamide) and a diffuse/cloudy surface consisting mainly of poly(acrylic...

  10. Blends of dissolved cellulose with acrylic acid copolymers or microfibrillated cellulose

    Saarikoski, Eve

    2015-01-01

    The aim of the thesis was to develop dissolved cellulose (dissolved in NaOH/ZnO) based blends with acrylic acid copolymers (poly(ethylene-co-acrylic acid) (PE-co-AA) or poly(acrylamide-co-acrylic acid) (PAA-co-AA)) or microfibrillated cellulose (MFC) in the way they could be used in injection molding or for film/coating applications. This thesis summarizes the research reported in five publications supported by some unpublished results. Rheological studies done in the contexts of this work...

  11. Catalytic routes towards acrylic acid, adipic acid and epsilon-caprolactam starting from biorenewables

    Beerthuis, R.; Rothenberg, G.; Shiju, N.R.

    2015-01-01

    The majority of bulk chemicals are derived from crude oil, but the move to biorenewable resources is gaining both societal and commercial interest. Reviewing this transition, we first summarise the types of today's biomass sources and their economical relevance. Then, we assess the biobased productions of three important bulk chemicals: acrylic acid, adipic acid and epsilon-caprolactam. These are the key monomers for high-end polymers (polyacrylates, nylon 6.6 and nylon 6, respectively) and a...

  12. A Convenient Synthesis of Amino Acid Methyl Esters

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  13. Poly (ethylene oxide)-block-poly (n-butyl acrylate)-blockpoly (acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties

    Petrov, P; Yoncheva, K. (Krassimira); Mokreva, P. (Pavlina); Konstantinov, S.; J M Irache; Müller, A.H.E. (Axel H.E.)

    2013-01-01

    The synthesis and aggregation behaviour in aqueous media of novel amphiphilic poly(ethylene oxide)- block-poly(n-butyl acrylate)-block-poly(acrylic acid) (PEO–PnBA–PAA) triblock terpolymers were studied. Terpolymers composed of two highly asymmetric hydrophilic PEO (113 monomer units) and PAA (10–17 units) blocks, and a longer soft hydrophobic PnBA block (163 or 223 units) were synthesized by atom transfer radical polymerisation (ATRP) of n-butyl acrylate and tert-butyl acrylate ...

  14. CATALYTIC HYDROGENATION OF ACRYLATE ASMMETRIC Dd(Ⅱ)—CHELATING RESINS CONTAINING AMINO ACID LIGANDS

    Wangying; WangHongzuo; 等

    1995-01-01

    The catalytic hydrogenation of palladium chelating resins containing chiral amino acid ligands based on lower crosslinked poly(chloroethyl acrylate) and some effects on the rate of hydrogenation were studied.

  15. FT-RAMAN SPECTROSCOPY FOR MONITORING THE POLYMERIZATION OF ACRYLIC ACID IN AQUEOUS SOLUTION

    Jiang Yu; Hui-zhou Liu; Jia-yong Chen

    1999-01-01

    FT-Raman spectroscopy was used to monitor the polymerization of acrylic acid in aqueous solution. A simple method to avoid the noise in the background during the signal processing via Fourier transformation was used in this work. The effects of the amount of initiator used on the polymerization are studied. When the amount of the initiator in the polymerization was increased, both the rate and extent of polymerization of acrylic acid will be increased.

  16. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  17. Radiation grafting of acrylic acid onto polypropylene films

    A study has been made for the preparation of membranes by the direct radiation grafting of acrylic acid (AAc) onto polypropylene (PP) films. The appropriate reaction conditions were selected under which the graft polymerization was carried out successfully. The effect of different solvents such as benzene, methanol/water mixture, isopropanol/water mixture, dimethyl formamide and distilled water on the swelling and grafting process of AAc onto PP films was investigated. In this grafting system ammonium ferrous sulphate (Mohr's salt) and ferric chloride were used as inhibitors to minimize the homopolymerisation of AAc and the suitable concentration of the inhibitor was found to be 1.0 and 1.5 wt% for Mohr's salt and ferric chloride, respectively. Also, the effect of monomer concentration on the rate of grafting was investigated. The dependence of the grafting rate on monomer concentration was found to be 1.1 order. This grafting system proceeded by diffusion controlled process. Some selected properties of the grafted films such as swelling behaviour, gel determination, mechanical and electrical properties were also investigated. It was found that the grafted membranes possess good hydrophilic properties which may make them promising in some practical applications. (author)

  18. Characterization of Functionalized Acrylic acid /4- Vinyl Pyridine Graft Copolymers

    Properties and characterization of the membranes prepared by radiation grafting of acrylic acid (AAc) or/ and 4-vinyl pyridine (4VP) onto low density polyethylene (LDPE) and polypropylene (PP) films were carried out. The FTIR spectra for the grafted membranes were studied to evaluate the structure change as a result of grafting. The swelling behaviour of the graft copolymer in methanol was studied. It was found that the grafting of AAc and/ or 4- VP onto LDPE and PP resulted in introducing good hydrophilic properties to such polymer substrates. The hydrophilic properties were directly proportional to the amount of functional groups. The mechanical properties (Young's modulus, elongation percent and tensile strength) of the grafted membranes also, have been investigated. As the grafting degree increases, the modulus also increases. Increasing the hydrophilicity of the membranes by chemical treatment enhances its mechanical properties. The thermal parameters of the grafted membranes such as δHm1. δHm2, and Trc have been also studied by using DSC

  19. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    Zakrevskyy, Yuriy, E-mail: yuriy.zakrevskyy@fh-koeln.de; Paasche, Jens; Lomadze, Nino; Santer, Svetlana, E-mail: santer@uni-potsdam.de [Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany); Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd [Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  20. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules

  1. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  2. Synthesis and characterization of cashew gum/acrylic acid nanoparticles

    Silva, Durcilene A. da; Feitosa, Judith P.A. [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara - C. Postal 6021, 60.455-760, Fortaleza, CE (Brazil); Paula, Haroldo C.B. [Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara - C. Postal 6021, 60.455-760, Fortaleza, CE (Brazil); Paula, Regina C.M. de [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara - C. Postal 6021, 60.455-760, Fortaleza, CE (Brazil)], E-mail: rpaula@dqoi.ufc.br

    2009-03-01

    This paper describes the preparation of nanoparticles from cashew gum (CG) and acrylic acid (AA) by free radical polymerization using cerium (IV) ammonium nitrate (CAN) as an initiator. The yields of the nanoparticles (NP) obtained by varying the R{sub CG/AA} from 0.5 to 2.0 were between 65 and 40%. The FT-IR spectra of the NP samples showed bands characteristic of the cashew gum spectrum and a new band at 1560 cm{sup -1} assigned to the stretching vibration of COO{sup -} groups of polyacrylic acid. On increasing the R{sub CG/AA} from 0.5 to 2.0 an increase in particle size was observed. The NP with an R{sub CG/AA} of 0.5 were smaller and had higher storage stability than the NP with an R{sub CG/AA} of 1.0 or 2.0. The increase in R{sub CG/AA} had no significant effect on the zeta potential of the NP in water. The NP were dried and re-dissolved in water to observe the effect of freeze-drying on particle size. For the NP with an R{sub CG/AA} of 0.5 an increase in particle size was observed from 71 to 402 nm, however, for the NP with an R{sub CG/AA} of 1.0 or 2.0 a small variation in particle diameter was noted. The behavior of the CG/AA NP was also found to be pH sensitive.

  3. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  4. Influence of acrylic esters and methacyrlic esters on flotation of pellets and release rate of verapamil hydrochloride.

    Lunio, Rafał; Sawicki, Wiesław

    2006-01-01

    Eudragit RL (ERL) and Eudragit RS (ERS) are biocompatible cationic copolymers, pH-independent and insoluble in aqueous environment. In this study drug delivery system consisting of a capsule filled with floating pellets with verapamil hydrochloride (VH) is proposed. The release of VH in the stomach results in better solubility in an acid gastric environment in vivo and may result in greater amount of the VH absorbed and its higher concentration in plasma. The scope of this study was to investigate the influence of ERL and ERS ratio on VH release in 0,1 M HCl from floating coating pellets. The stability of this film was also investigated. The ERL film is much more permeable than ERS, and an increase of ERL film thickness did not retard the release rate. The combination of ERL and ERS are forms of the sustained release film. It was a necessary to add the uncoated pellets, which constituted the initial dose. The start of flotation depends on permeability of polymeric film, and decreases with addition of ERS. There is no change in the start flotation time after 12 months under room condition (25 degrees C/60% RH). The drug delivery from uncoated pellets and pellets coated with ERL/ERS is stable after 12 months under room condition (25 degrees C/60% RH). PMID:17515332

  5. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide

    Graft co polymerizations of acrylamide and/or acrylic acid onto cassava starch by a simultaneous irradiation technique using gamma-rays as the initiator were studied with regard to various parameters of importance: the monomer-to-cassava starch ratio, total dose (kGy), dose rate (kGy h-1), acrylamide-to-acrylic acid ratio, and the addition of nitric acid and maleic acid as the additives. Grafting parameters were determined in relation to the water absorption of the saponified graft copolymer. The water absorption of the saponified graft copolymer in salt and buffer solutions of different ionic strengths was also measured, from which the super absorbent properties are found to be P H sensitive. The starch graft copolymers of acrylamide and acrylic acid give higher water absorption than the starch graft copolymers of either acrylamide or acrylic acid alone. The porosity of the saponified starch graft copolymers prepared by the acrylamide/acrylic acid ratios of 70:30 and 50:50 was much higher than the porosity of copolymers in terms of fine networks. Ionic strength and multi-oxidation states of the saline and buffer solutions markedly decreased the water absorption of the saponified cassava starch grafted super absorbent polymers.

  6. Polymorphism and polymerisation of acrylic and methacrylic acid at high pressure

    Oswald, Iain D. H.; Urquhart, Andrew J.

    2011-01-01

    The polymorphism and polymerisation of two related acids have been investigated under high pressure conditions. Acrylic acid crystallises as a new polymorph at 0.65 GPa whilst methacrylic acid crystallises in a new polymorph at a higher pressure of 1.5 GPa. Both these new polymorphs exhibit similar...

  7. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly( -caprolactone)-b-poly(acrylic acid)

    Javakhishvili, Irakli; Hvilsted, Søren

    2008-01-01

    Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid, subsequ......Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid...

  8. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  9. Synthesis of acrylic acid derivatives from carbon dioxide and ethylene mediated by molecular nickel complexes

    Lee, Sin Ying Tina

    2013-01-01

    This work aimed at the synthesis of acrylic acid derivatives from ethylene and CO2 and well as the investigation of β-hydride elimination reaction of nickelalactones with methyl iodide and methyl triflate to form methyl acrylate. The oxidative coupling reaction of ethylene and CO2 on nickel center was ligand selective, and gave low yields of nickelalactone product at mild synthetic conditions. Key intermediates identified and characterized in the β-H elimination reaction provided rich insight...

  10. Stereoselective Formation of Trisubstituted Vinyl Boronate Esters by the Acid-Mediated Elimination of α-Hydroxyboronate Esters

    Guan, Weiye; Michael, Alicia K.; McIntosh, Melissa L.; Koren-Selfridge, Liza; Scott, John P.; Clark, Timothy B.

    2014-01-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki–Miyaura coupling re...

  11. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  12. Acidic polyanion poly(acrylic acid) prevents calcium oxalate crystal deposition

    Kleinman, Jack G.; Alatalo, Laura J.; Beshensky, Ann M.; Wesson, Jeffrey A.

    2008-01-01

    Acidic macromolecules inhibit calcium oxalate nucleation, growth, aggregation and attachment to cells in vitro. To test for such an effect in vivo we used osmotic minipumps to continuously infuse several doses of the 5.1 kDa poly(acrylic acid) (pAA5.1) into rats fed a diet which causes renal calcium oxalate crystal deposition. Although kidneys of rats receiving the saline control contained calcium oxalate crystals, measured by polarized light microscopy, those of animals given pAA5.1 had sign...

  13. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma

    Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong

    2011-02-01

    Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.

  14. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, condensated... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  15. Fatty acid methyl esters production: chemical process variables

    Paulo César Narváez Rincón

    2010-06-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  16. EB curable coating based on soy-oil fatty acid modified acrylate

    Soy-oil fatty acid was used to synthesize the soy-oil fatty acid modified acrylic coating by esterification reaction. After coating and EB curing, the results showed that the properties of the film were excellent, and it was suitable for the coating of wood furniture cured by EB

  17. Effects of preirradiation graft polymerization of acrylic acid onto polyethylene film

    With the aid of preirradiation method of grafting onto low-density polyethylene film, a systematic investigation was made of grafting of aqueous acrylic acid under conditions such as monomer concentrations, irradiation dose, dose rate, reaction time, the effect of concentrations of Mohr's salt and sulphuric acid on the graft reaction. (author)

  18. Direct Synthesis of Hyperbranched Poly(acrylic acid-co-3-hydroxypropionate

    Efkan Çatıker

    2015-01-01

    Full Text Available Hyperbranched poly(acrylic acid-co-3-hydroxypropionate (PAcHP was synthesized by base-catalyzed hydrogen transfer polymerization of acrylic acid through one step. The copolymers obtained through solution and bulk polymerization were insoluble in water and all organic solvents tried. Structural and compositional characterizations of hyperbranched PAcHP were performed by using FTIR, solid 13C-NMR, TGA, and titrimetric analysis. Acrylate fraction of the hyperbranched PAcHP obtained via bulk polymerization was determined as 60–65% by comparing TGA curves of hyperbranched PAcHP and pure poly(3-hydroxy propionate (PHP. However, analytical titration of the same sample revealed that acrylic acid units were about 47.3%. The results obtained from TGA and analytical titration were used to evaluate the chemical structure of the copolymer. Hyperbranched PAcHP exhibited hydrogel properties. Swelling behavior of the copolymer was investigated at a wide pH range and ionic strength. The dynamic swelling profiles of hyperbranched PAcHP exhibited a fast swelling behavior in the first hour and achieved the equilibrium state within 12 h in PBS. Depending on the conditions, the copolymers exhibited swelling ratios up to 2100%. As the copolymer has easily biodegradable propionate and versatile functional acrylic acid units, it can be used as not only biodegradable material in medical applications but also raw material in personal care commodities.

  19. Preparation and characteristics of acrylic acid/styrene composite plasma polymerized membranes

    Plasma polymerization has gained increasing interest for the deposition of functional plasma-polymerized membranes suitable for a wide range of applications on account of its advantageous features. In this work, acrylic acid/styrene composite plasma polymerized membranes were synthesized by plasma polymerization of a mixture of acrylic acid and styrene monomers in a low-frequency after-glow capacitively coupled plasma (CCP) discharge process. The structure and composition of the plasma polymerized membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results showed that the partial pressure ratio between acrylic acid (AA) and styrene (St), applied discharge power and the energy of the extracted particles have considerable effects on the structure and the content of functional groups of the deposited membranes.

  20. Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain

    In vitro, both acrylamide and acrylic acid inhibited creatine kinase (CK) activity in rat brain homogenates, and acrylic acid was more potent than acrylamide. In vivo, however, when given i.p. 50 mg/kg per day for 8 days to rats, only acrylamide inhibited CK activity in the brain and caused apparent neurological signs. 14C in the brain 24 h after the injection of 14C-labelled chemicals was more than 7 times greater with acrylamide than with acrylic acid. The inhibition of CK activity by acrylamide varied in eight regions of the brain; from 54% in hypothalamus to 27% in cerebellar vermis. The regional difference of CK inhibition, however, did not agree well with either 14C distribution or with the distribution in regions which appear clinically or pathologically vulnerable to acrylamide. (orig.)

  1. Encapsulating fatty acid esters of bioactive compounds in starch

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  2. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  3. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  4. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    Zhao, Yun, E-mail: yun.zhaotju@yahoo.com [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Fina, Alberto [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino – sede di Alessandria, V. T. Michel 5, 15121 Alessandria (Italy); Venturello, Alberto; Geobaldo, Francesco [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2013-10-15

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  5. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of...

  6. The influence of Copolimers Acrylic Acid onto Poli(Etilene Terephthalate)woven fabric

    To improve suitability of wearing poli etilene terephthalate (PET) wovenfabric, it need to enhance the ability in absorbing of water vapour. For theabove reason acrylic acid (AA) has been grafted onto PET wovenfabric(PET-g-AA). Fourier Transform Infrared (FT-IR) data show that poly(acrylic acid) have grafted onto PET woven fabric. Thermal propertiesobtained from DSC (Differential Scanning Calorimeter) measurements of PET-g-AA show that the grafting does not affect bulk properties of PET. Thedecrease of the tensile strength had occurred to PET-g-MMA, however it ratherinfluenced by the reaction time than the initial concentration of acrylicacid. (author)

  7. Synthesis of Acrylic Acid/Kaoline Powder Superabsorbent Composite by Inverse-suspending Polymerization

    ZHONG Jin-feng; XUE Yi-ming; WU Ji-huai; LIN Jian-ming; WEI Yue-lin

    2004-01-01

    An acrylic acid/kaoline powder superabsorbent composite with a water absorbency of the superabsorbent composite about 1/800 was synthesized by inverse-suspending polymerization reaction between acrylic acid monomer and kaoline ultrafine powder. The influence of the dispersant agent on the configuration of the products in the inverse suspension polymerization is investigated. The influences of the kaoline powder, cross-linker, initiator, neutralization degree and the volume ratio of oil to water phase on the water absorbency of the superabsorbent composites are discussed in the paper.

  8. A study on antithrombogenic polymeric dialytic membrane. Irradiation grafting acrylic acid and styrene into polyethylene films

    A new type of antithrombogenic polymeric dialytic membrane with a hydrophilic-hydrophobic microphase structure was prepared by grafting acrylic acid and styrene into polyethylene films, using peroxidation pre-irradiation technique. Various ratios of monomers influencing on properties of the grafted films were examined. Experimental results showed that the grafted films have superior mechanic strength, and their antithrombogenicity and permeability were 30 and 10 times higher than that of the ungrafted films respectively on condition of the volume ratio 1:1 (styrene vs acrylic acid)

  9. Graft Copolymerization of Acrylic Acid onto Fungal Cell Wall Structural Polysaccharide

    2001-01-01

    Acrylic acid was graft-copolymerized onto Rhi. oryzae's cell wall structural polysacchaxide directly and efficiently in aqueous solution with ceric ammonium nitrate as initiator. The maximal grafting percentage of 135.5% was obtained under the condition of [Ce4+]=5mmol.L-1, [AA]=1mol.L-1, T=60°C and t=3h. Graft copolymerization was suggested to proceed through free radical reaction mechanism. Grafting occurred primarily on chitosan. Acrylic acid was also attempted to be grafted onto Asp. niger cell wall structural polysaccharide, and only 44.2% of grafting percentage was resulted.

  10. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium

    Bejarano-Jimenez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Oritz-Ledon, C.A.; Chazaro-Ruiz, L.F.

    2014-01-01

    Super absorbent polymers of acrylic acid-graphene oxide (PAA-GO) were synthesized with different percentage of chemical neutralization (0, 10, and 20%) of the acrylic acid monomer before its polymerization. The influence of their swelling and adsorption/desorption capacity of cadmium ions in aqueous

  11. SYNTHESIS OF 2—HYDROXYETHYL ACRYLATE BY USING STRONG ACIDIC CATION ION EXCHANGE RESIN AS CATALYST

    GAODabin

    1992-01-01

    2-Hydroxyethyl acrylate is synthesized from acrylic acid and ethylene glycol under a simple and mild condition by using strong acidic cation ion exchange resin as a catalyst,which could be recycled as long as 10 times with high activation.

  12. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  13. The preparation nad water absorption of a copolymer from konjac-graft-acrylic acid by irradiation

    The konjac and acrylic acid were grafted by 4.0kGy 60Co γ-rays irradiation. The water absorption property of copolymers was studied. The results showed that the optimum feed ratio was konjac powder: acrylic acid: NaOH (9.5mol/L):water=3g: 21ml: 17.8ml: 131ml. And the optimum reation conditions: volume/mass ratio of acrylic acid and konjac was 7:1, neutralization degree of acrylic acid was 55%, gel drying temperature was 30 degree C. The copolymer particle size of 40 ∼ 80 mesh had the largest absorption of water, up to 886.5 times at room temperature. The water-absorption and water-holding capabilities were affected by temperature, and were better at the termperater lower than 60 degree C. The water absorption was also affected by pH and ion concentration of solution, and the ion concentration was the main factor. The largest water absorption at Na2HPO4 - citric acid buffer was only 15.8% of which in distilled water at the optimum pH=6. (authors)

  14. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

    Deegan, Alexander Paul

    2012-02-01

    INTRODUCTION: We present the case of a 49-year old male who presented with dyspnoea, cough, weight loss, night sweats and general malaise. He had been on treatment with oral fumaric acid esters (FAE, Fumaderm(R); Biogen Idec GmbH, Ismaning, Germany) for 6 months. METHODS: Report of a case. RESULTS: His chest X-ray showed patchy infiltrates in the left upper lobe which failed to resolve under empiric antibiotic therapy. A computed tomography of thorax revealed bilateral, mostly peripheral foci of consolidation with air bronchograms. Transbronchial biopsies showed a pattern of organising pneumonia (OP). CONCLUSIONS: Therapy with oral prednisolone (40 mg\\/day) resulted in a rapid clinical and radiological improvement. An association of FAE and OP has not previously been reported. Please cite this paper as: Deegan AP, Kirby B, Rogers S, Crotty TB and McDonnell TJ. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

  15. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Stojanović Marija M.

    2013-01-01

    Full Text Available Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully used as a reaction medium, since commonly used solvents with high Log P values are inapplicable due to ascorbic acid high polarity. Acylation of vitamin C using fatty acids, their methyl-, ethyl-, and vinyl esters, as well as triglycerides has been performed, whereas application of the activated acyl donors enabled higher molar conversions. In each case, majority of authors reported that using excessive amount of the acyl donor had positive effect on yield of product. Furthermore, several strategies have been employed for shifting the equilibrium towards the product by water content control. These include adjusting the initial water activity by pre-equilibration of reaction mixture, enzyme preparation with water vapor of saturated salt solutions, and the removal of formed water by the addition of molecular sieves or salt hydrate pairs. The aim of this article is to provide a brief overview of the procedures described so far for the lipase-catalyzed synthesis of fatty acid ascorbyl esters with emphasis on the potential application in food, cosmetics, and pharmaceutics. Furthermore, it has been pointed out that the main obstacles for process commercialization are long reaction times, lack of adequate purification methods, and high costs of lipases. Thus, future challenges in this area are testing new catalysts, developing continuous processes for esters production, finding cheaper acyl donors and reaction mediums, as well as identifying standard procedures for

  16. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Stojanović Marija M.; Carević Milica B.; Mihailović Mladen D.; Knežević-Jugović Zorica D.; Petrović Slobodan D.; Bezbradica Dejan I.

    2013-01-01

    Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully use...

  17. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  18. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids

    As an effective method for extraction of acrylic acid, aqueous two-phase systems based on morpholinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in morpholinium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of morpholinium ionic liquids to aqueous K2HPO4 solutions. It can be found that the ability of morpholinium ionic liquids for phase separation followed the order [HMMor][Br]>[OMMor][Br]>[BMMor][Br]>[EMMor][Br]. There was little difference between binodal curves of imidazolium ionic liquids and those of morpholinium ionic liquids. 50-90% of the extraction efficiency was observed for acrylic acid by aqueous two phase extraction of acrylic acid with morpholinium ionic liquids. It can be concluded that morpholinium ionic liquids/K2HPO4 were effective for aqueous two phases extraction of acrylic acid comparing to imidazolium ionic liquids/K2HPO4 systems because of their lower cost

  19. Depletion of abundant plasma proteins by poly(N-isopropylacrylamide-acrylic acid) hydrogel particles

    Such-Sanmartín, Gerard; Ventura-Espejo, Estela; Jensen, Ole N

    2014-01-01

    the application of pH-sensitive poly(N-isopropylacrylamide-acrylic acid) hydrogel particles for removal of abundant plasma proteins, prior to proteome analysis by MS. Protein depletion occurs by two separate mechanisms: (1) hydrogel particles incubated with low concentrations of plasma capture...

  20. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid)

    Javakhishvili, Irakli; Hvilsted, Søren

    2009-01-01

    Amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) with a thiol functionality in the PCL terminal has been prepared in a novel synthetic cascade. Initially, living anionic ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) employing the difunctional...

  1. Selective oxidation of propane to acrylic acid over mixed metal oxide catalysts

    Wei Zheng; Zhenxing Yu; Ping Zhang; Yuhang Zhang; Hongying Fu; Xiaoli Zhang; Qiquan Sun; Xinguo Hu

    2008-01-01

    The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic perfor-mances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1 V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H81 :O2 : H2O : N1 = 4.4 : 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.

  2. Monitor of Polymerization of Inverse Microemulsions Containing Methyl Methacrylate and Acrylic Acid

    Xiao LI; Sheng Ping XIA; Wei Jie ZENG; Wei Ying ZHANG; Sheng Xiong DONG

    2006-01-01

    The polymerization of the inverse microemulsions composed of methyl methacrylate,acrylic acid, sodium dodecyl sulfate and water was monitored by refractometer, conductometer and time-resolved light scattering device. The results showed that refractive index, conductivity or intensity distribution of scattered light changed along with polymerization, and different processes of polymerization could be identified.

  3. Fatty acid methyl ester profiles of bat wing surface lipids.

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration. PMID:25227993

  4. Stereoselective formation of trisubstituted vinyl boronate esters by the acid-mediated elimination of α-hydroxyboronate esters.

    Guan, Weiye; Michael, Alicia K; McIntosh, Melissa L; Koren-Selfridge, Liza; Scott, John P; Clark, Timothy B

    2014-08-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki-Miyaura coupling reaction to obtain alkenes of known geometry. PMID:24915498

  5. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate copolymer

    Lee KD

    2013-08-01

    Full Text Available Kyung Dong Lee,1,* Young-Il Jeong,2,* Da Hye Kim,3,4 Gyun-Taek Lim,2 Ki-Choon Choi5 1Department of Oriental Medicine Materials, Dongshin University, Naju, South Korea; 2Department of Polymer Engineering, Chonnam National University, Gwangju, South Korea; 3Faculty of Life and Environmental Science, Shimane University, Matsue, Japan; 4United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; 5Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea *These authors contributed equally to this work Background: Although cisplatin is extensively used in the clinical field, its intrinsic toxicity limits its clinical use. We investigated nanoparticle formations of poly(acrylic acid-co-methyl methacrylate (PAA-MMA incorporating cisplatin and their antitumor activity in vitro and in vivo. Methods: Cisplatin-incorporated nanoparticles were prepared through the ion-complex formation between acrylic acid and cisplatin. The anticancer activity of cisplatin-incorporated nanoparticles was assessed with CT26 colorectal carcinoma cells. Results: Cisplatin-incorporated nanoparticles have small particle sizes of less than 200 nm with spherical shapes. Drug content was increased according to the increase of the feeding amount of cisplatin and acrylic acid content in the copolymer. The higher acrylic acid content in the copolymer induced increase of particle size and decrease of zeta potential. Cisplatin-incorporated nanoparticles showed a similar growth-inhibitory effect against CT26 tumor cells in vitro. However, cisplatin-incorporated nanoparticles showed improved antitumor activity against an animal tumor xenograft model. Conclusion: We suggest that PAA-MMA nanoparticles incorporating cisplatin are promising carriers for an antitumor drug-delivery system. Keywords: cisplatin, nanoparticle, poly(acrylic acid-co-methyl methacrylate, ion complexes

  6. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions

    In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔHo), entropy (ΔSo) and free energy change (ΔGo) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)

  7. Grafting of acrylic acid onto polytetrafluoroethylene (PTFE) micropowder via pre-irradiation

    Grafting of acrylic acid (AAc) onto the surface of PTFE micropowder was performed by pre-irradiation method, in order to improve their dispersion in aqueous solution.The effects of various experimental parameters on the degree of grafting(G) were separately investigated, including: volume fraction of AAc, proper addition of concentrated sulfuric acid, mass fraction of inhibitor and reaction time. The result shows that G is increasing with increment of AAc concentration below 50%, and can be enhanced by adding a proper amount of sulfuric acid. Under our experimental conditions, G reached its saturated value when the mass concentration of the inhibitor was 0.8 g/L and the reaction time was 3 h. The introduction of more than 10% of poly(acrylic acid) chain on PTFE micropowder results in the good dispersion of PTFE micropowder in aqueous NaOH solution. (authors)

  8. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  9. CHARACTERIZATION OF RADIATION GRAFTING DEGREE OF POLYSTYRENE g-ACRYLIC ACID BY XPS

    CHE Jitai; ZHANG Wanxi

    1990-01-01

    It this work, characterization of radiation grafting degree of polystyrene-g-acrylic acid by XPS was studied. It is found that along with the main peak C1s there is a photoelectron peak at 289.0 eV that appears to be C1s of -C(=O)-OH group and shows the presence ofpolyacrylic acid grafted on the polystyrene.The grafting degree obtained by XPS is in agreement with that from the gravimetric method.

  10. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  11. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  12. Properties of radiation curable hyperbranched polyurethane acrylate from palm oil oleic acid

    Radiation curable hyperbranched urethane acrylate (HBPUA) from oleic acid of palm oil was synthesized aided by p-toluene sulfonic acid as a catalyst. This mixture was then used as the core (HBP-1) and reacted with palm oil oleic acid to form the hyperbranched polyol (HBP-2). HBPUA was prepared by reacting HBP-2 resin with diisocyanate and hydroxyl-containing acrylate monomer with the presence of 0.1-2 wt% dibutyltin dilaurate as a catalyst. The reaction was confirmed by several analytical data i.e. hydroxyl value (OHV), Fourier Transform infrared (FT IR) spectroscopy gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy analyses. The HBPUA was easily curable when subjected to electron beam (EB) or ultraviolet (UV) radiation. (authors)

  13. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  14. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  15. Phthalic acid esters found in municipal organic waste

    Hartmann, Hinrich; Ahring, Birgitte Kiær

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2- ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half of...... bioavailability, which is enhanced at higher temperature and higher degradation of solid organic matter, to which the highly hydrophobic DEHP is adsorbed. The investigated reactor configuration with a thermophilic and a hyper-thermophilic treatment is, therefore, a good option for CD combining high rate...

  16. Determination of acrylamide and acrylic acid by isocratic liquid chromatography with pulsed electrochemical detection.

    Casella, Innocenzo G; Pierri, Marianna; Contursi, Michela

    2006-02-24

    The electrochemical behaviour of the polycrystalline platinum electrode towards the oxidation/reduction of short-chain unsaturated aliphatic molecules such as acrylamide and acrylic acid was investigated in acidic solutions. Analytes were separated by reverse phase liquid chromatographic and quantified using a pulsed amperometric detection. A new two-step waveform, is introduced for detection of acrylamide and acrylic acid. Detection limits (LOD) of 20 nM (1. 4 microg/kg) and 45 nM (3.2 microg/kg) were determined in water solutions containing acrylamide and acrylic acid, respectively. Compared to the classical three-step waveform, the proposed two-step waveform shows favourable analytical performance in terms of LOD, linear range, precision and improved long-term reproducibility. The proposed analytical method combined with clean-up procedure accomplished by Carrez clearing reagent and subsequent extraction with a strong cation exchanger cartridges (SPE), was successfully used for the quantification of low concentrations of acrylamide in foodstuffs such as coffee and potato fries. PMID:16426623

  17. Improved synthesis of amino acid and dipeptide chloromethyl esters using bromochloromethane

    Gomes, P; Santos, MI; Trigo, MJ; Castanheiro, R.; Moreira, R.

    2003-01-01

    Peptide chloromethyl esters are important compounds in prodrug synthesis. A simple, mild and efficient method for the synthesis of chloromethyl esters of N-blocked amino acids and dipeptides using exclusively bromochloromethane is reported. These N-blocked amino acid and dipeptide chloromethyl esters react readily with the carboxylic acid group of aspirin and with the sulfonamido group of the antimalarial sulfamethazine, to give the corresponding prodrugs.

  18. Nanoparticles of Block Ionomer Complexes from Double Hydrophilic Poly(acrylic acid-b-poly(ethylene oxide-b-poly(acrylic acid Triblock Copolymer and Oppositely Charged Surfactant

    Sun Yuelong

    2009-01-01

    Full Text Available Abstract The novel water-dispersible nanoparticles from the double hydrophilic poly(acrylic acid-b-poly(ethylene oxide-b-poly(acrylic acid (PAA-b-PEO-b-PAA triblock copolymer and oppositely charged surfactant dodecyltrimethyl ammonium bromide (DTAB were prepared by mixing the individual aqueous solutions. The structure of the nanoparticles was investigated as a function of the degree of neutralization (DN by turbidimetry, dynamic light scattering (DSL,ζ-potential measurement, and atomic force microscope (AFM. The neutralization of the anionic PAA blocks with cationic DTAB accompanied with the hydrophobic interaction of alkyl tails of DTAB led to formation of core–shell nanoparticles with the core of the DTAB neutralized PAA blocks and the shell of the looped PEO blocks. The water-dispersible nanoparticles with negative ζ-potential were obtained over the DN range from 0.4 to 2.0 and their sizes depended on the DN. The looped PEO blocks hindered the further neutralization of the PAA blocks with cationic DTAB, resulting in existence of some negative charged PAA-b-PEO-b-PAA backbones even when DN > 1.0. The spherical and ellipsoidal nature of these nanoparticles was observed with AFM.

  19. Preparation of poly (acrylic acid)-modified chitosan amphiphilic gels by γ-rays irradiation

    Poly (acrylic acid)-modified chitosan amphiphilic gels were prepared via O-maleoyl-N-phthaloyl- chitosan as an intermediate by grafting with poly (acrylic acid). The reaction was carried out in a homogeneous sys- tem by γ-ray irradiation. Evidence of grafting was obtained from FTIR spectroscopy. The effects for grafting reaction were investigated systematically. Results show that the grafting degree depends on monomer concentration and ab- sorbed dose. The swelling behavior of chitosan samples with different grafting degree was studied in different buffers as a function of pH. It can be found that all the samples swollen slightly at low pH but very well at high pH. More- over, the swelling behavior of chitosan samples in DMF has been evaluated. (authors)

  20. Super absorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch

    Full text: Super absorbent was synthesized by radiation-induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage and germination energy were determined in order to evaluate the possibility of super absorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by FTIR. Results indicated that the sand mixed with 0.1%wt super absorbent can absorb more water than the sand without super absorbent. The germination energy of corn seeds mixed with 0.5% super absorbent was obviously higher than those without super absorbent. These experimental results showed that the super absorbent has considerable effect on seed germination and the growth of young plants. Keywords: Super absorbent, Radiation, Acrylic acid, Cassava starch

  1. Preparation of poly(acrylic acid) particles by dispersion polymerization in an ionic liquid.

    Minami, Hideto; Kimura, Akira; Kinoshita, Keigo; Okubo, Masayoshi

    2010-05-01

    Poly(acrylic acid) (PAA) particles were successfully prepared by dispersion polymerization of acrylic acid in ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoro-methanesulfonyl)amide ([DEME][TFSA]) at 70 degrees C with low hydrolysis grade (35.4%) poly(vinyl alcohol) as stabilizer. Interestingly, the PAA particles were easily extracted as particle state with water. Thus, the PAA particles had a cross-linked structure during the polymerization without cross-linker. Moreover, it was also noted that the cross-linking density of the PAA particles could be controlled by thermal treatment at various temperatures in [DEME][TFSA] utilizing the advantages of nonvolatility and high thermal stability of the ionic liquid. PMID:20043688

  2. Removal of Dyes from Aqueous Solutions Using Radiation Synthesized (2-Hydroxyethyl Methacrylate/Acrylic acid) Hydrogels

    Acrylic acid/2-hydroxyethyl methacrylate super absorbent hydrogels (AAc/ HEMA) were prepared by γ-radiation copolymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc). Characterization of AAc/HEMA hydrogel was done by FTIR, TGA, SEM and XRD. The swelling properties were studied as a function of time, ph and irradiation dose. The diffusion behavior of water into these hydrogels followed the Fickian character at all investigated irradiation doses. The adsorption of Direct Congo Red and Direct Blue dyes onto the AAc/ HEMA hydrogel was studied. Physico-chemical parameters like dye concentration, solution ph and temperature were varied to characterize the adsorption phenomenon. Experimental data were modeled by Freundlich isotherm. Thermodynamic parameters ( ΔHo, ΔGo and ΔSo ) were evaluated for the dyes adsorbent systems, which suggest that the adsorption process is a typical physical process and endothermic in nature

  3. Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric

    A pre-irradiation induced emulsion co-graft polymerization method was used to introduce acrylonitrile and acrylic acid onto a PE nonwoven fabric. The use of acrylic acid is meant to improve the hydrophilicity of the modified fabric. The kinetics of co-graft polymerization were studied. The existence of polyacrylonitrile (PAN) and poly(acrylic acid) (PAAc) graft chains was proven by Fourier transform infrared spectroscopy (FTIR) analysis. The existence of the nitrile groups in the graft chains indicates that they are ready for further amidoximation and adsorption of heavy metal ions. - Highlights: • Acrylonitrile and acrylic acid were co-grafted onto a PE nonwoven fabric. • Pre-irradiation induced emulsion graft polymerization technique is applied. • The existence of AAc resulted in the increased hydrophilicity of the grafted fabric

  4. Preparation and evaluation of chitosan-poly (acrylic acid hydrogels as stomach specific delivery for amoxicillin and metronidazole

    Hemant Yadav K

    2007-01-01

    Full Text Available The objective of the present work was to develop stomach specific delivery systems for amoxicillin and metronidazole using chitosan and poly(acrylic acid hydrogels. Chitosan and poly(acrylic acid hydrogels were prepared with different composition of copolymers. The hydrogels were evaluated for swelling studies, mucoadhesive studies, in vitro drug release, scanning electron microscopic and FTIR analysis. The effect of chitosan and poly (acrylic acid on swelling and in vitro drug release was carried out. The n value calculated was < 0.5 for all the formulations containing amoxicillin and metronidazole indicating Fickian diffusion mechanism. The hydrogels with chitosan and poly (acrylic acid ratio of 0.25:1 showed greater mucoadhesive property, maximum swelling and complete release of drugs, hence can be used for stomach specific delivery of drugs.

  5. Flocculation Efficiency of Poly(Acrylamide-Co-Acrylic Acid) Obtained by Electron Beam Irradiation

    Gabriela Craciun; Elena Manaila; Maria-Daniela Stelescu

    2013-01-01

    A correlation between physicochemical characteristics of flocculants obtained by electron beam irradiation and their efficiency for wastewater treatment is presented. For real wastewater treatment, our interest was focused upon total suspended solids, fatty matter, and chemical oxygen demand. Flocculation studies were carried out using a standard jar test. A treatment option based on poly(acrylamide-co-acrylic acid) for wastewater taken from a slaughterhouse plant is presented.

  6. Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly(acrylic acid)

    Guoquan Zhu; Fagang Wang; Qiaochun Gao; Yuying Liu

    2013-01-01

    In this study, a series of poly(γ-benzyl L-glutamate)/poly(acrylic acid) (PBLG/PAA) polymer blend films were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO). The structure and morphology of the polymer blend film were investigated by Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Thermal, mechanical, and chemical properties of PBLG/PAA polymer blend films were studied by Differential Scanning Calorimetry (DSC), Thermogra...

  7. Investigation on the Inverse Emulsion Polymerization of Acrylic Acid

    2002-01-01

    Polyacrylic acid particles in nano-scale were synthesized using an inverse (W/O) emulsion polymerization method. The particle size and size change of inverse micelles which solubilize a part of monomer solution was monitored by PCS (photon correlation spectroscopy) and the particles of polyacrylic acid were viewed in scanning electron microscope for the first time. It was concluded that the inverse micelles were primarily the polymerization reaction sites.

  8. Synthesis and characterization of kappaphycus seaweed-poly (acrylic) acid superabsorbent hydrogel for agricultural use

    The main objective of this research is to synthesize and characterize kappaphycus seaweed-poly (acrylic) acid superabsorbent hydrogel for agricultural use. The superabsorbent polymers (SAPs), KCSW: PAA hydrogels were synthesized by using gamma radiation technique from Cobalt-60 source at absorbed dose 0f 5, 10 and 15 kGy. The effect of absorbed dose, seaweed concentration, and concentration of acrylic acid on the degree of swelling was studied and optimum swelling conditions were established. Irradiated samples of 3% KCSW, 50% neutralized AAC at an absorbed dose of 10kGy gave the highest degree of swelling and gel fraction and were found to be suitable for application in the agriculture. Samples with different concentrations of acrylic acid were characterized using FTIR and TGA. The water retention experiment in sandy soil showed high water retention capacity of KCSW: PAA hydrogel at a value of 92% for a period of 7 days. Effect of the germination of mung bean showed very promising result of 78% germination.(author)

  9. Swelling of Bacterial Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External Stimuli

    This study evaluated various environmental factors affecting the swelling degree of bacterial cellulose-acrylic acid hydrogels. Aqueous bacterial cellulose-acrylic acid (4:1) mixtures were prepared and subjected to electron beam irradiation at 30 and 50 kGy. Swelling rate under influenced of pH, temperature and ionic strength was investigated from 1 to 24 hours. Swelling degree of hydrogels was dependent on irradiation dose: those synthesized at 50 kGy exhibited significant higher swelling degree (p<0.0001) in methanol (619 %) compared to water (510 %) at room temperature after 24 hours. External ionic strength affected swelling, for example elevation in sodium chloride concentration decreased swelling degree. Hydrogels were also sensitive to pH: swelling increased with increasing pH and was optimal at pH 7. Swelling also increased with increasing temperature from 25 to 50 degree Celsius. In conclusion, the ability of electron irradiated bacterial cellulose-acrylic acid hydrogels to respond to various external environment make it a material to be developed as an active delivery system for drugs, proteins and hormones. (author)

  10. Zeolite-catalysed preparation of alpha-hydroxy carboxylic acids and esters thereof

    2010-01-01

    A process for the production of lactic acid and 2-hydroxy-3-butenoic acid or esters thereof by conversion of glucose, fructose, sucrose, xylose and glycolaldehyde dissolved in a solvent in presence of a solid Lewis acidic catalyst.......A process for the production of lactic acid and 2-hydroxy-3-butenoic acid or esters thereof by conversion of glucose, fructose, sucrose, xylose and glycolaldehyde dissolved in a solvent in presence of a solid Lewis acidic catalyst....

  11. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  12. Chromatographic, Spectrometric and NMR Characterization of a New Set of Glucuronic Acid Esters Synthesized by Lipase

    Michel Marlier

    2007-01-01

    Full Text Available An enzymatic synthesis was developed on a new set of D-glucuronic acid esters and particularly the tetradecyl-D-glucopyranosiduronate also named tetradecyl D-glucuronate. Chromatographic analyses revealed the presence of the ester as a mixture of anomeric forms for carbon chain lengths superior to 12. TOF/MS and MS/MS studies confirmed the synthesis of glucuronic acid ester. The NMR study also confirmed the structure of glucuronic acid esters and clearly revealed an anomeric (α/β ratio equivalent to 3/2

  13. Depigmenting Effect of Kojic Acid Esters in Hyperpigmented B16F1 Melanoma Cells

    Ahmad Firdaus B. Lajis

    2012-01-01

    Full Text Available The depigmenting effect of kojic acid esters synthesized by the esterification of kojic acid using Rhizomucor miehei immobilized lipase was investigated in B16F1 melanoma cells. The depigmenting effect of kojic acid and kojic acid esters was evaluated by the inhibitory effect of melanin formation and tyrosinase activity on alpha-stimulating hormone- (α-MSH- induced melanin synthesis in B16F1 melanoma cells. The cellular tyrosinase inhibitory effect of kojic acid monooleate, kojic acid monolaurate, and kojic acid monopalmitate was found similar to kojic acid at nontoxic doses ranging from 1.95 to 62.5 μg/mL. However, kojic acid monopalmitate gave slightly higher inhibition to melanin formation compared to other inhibitors at doses ranging from 15.63 to 62.5 μg/mL. Kojic acid and kojic acid esters also show antioxidant activity that will enhance the depigmenting effect. The cytotoxicity of kojic acid esters in B16F1 melanoma cells was significantly lower than kojic acid at high doses, ranging from 125 and 500 μg/mL. Since kojic acid esters have lower cytotoxic effect than kojic acid, it is suggested that kojic acid esters can be used as alternatives for a safe skin whitening agent and potential depigmenting agents to treat hyperpigmentation.

  14. Impact of Acrylic Acid on ASP Flooding Performance: Interfacial Tension Behaviour

    Shuaib Ahmed Kalwar

    2014-01-01

    Full Text Available In chemical EOR, interfacial tension plays one of the important roles in carbonate reservoirs. Carbonate reservoirs are composed of calcium and magnesium minerals which affect the performance of alkali and surfactants to reduce interfacial tension. In this study, acrylic acid was used to inhibit precipitation and to create a compatible solution without any precipitations. The impact of acrylic acid on interfacial tension was investigated using various inhibitor concentrations with a hard brine composition of 59, 940 TDS. Sodium metaborate, alpha olefin sulfonate and internal olefin sulfonate were screened as promising chemicals for interfacial tension. Various fluid-fluid compatibility tests were first performed to find the optimum acid-alkali ratio to prevent any precipitations. The optimum acid-alkali ratio was found to be 0.6:1.0. This ratio was then used to keep all solution without any precipitations for 30 days at 80°C. It was also observed that the increase in acid-alkali concentrations can significantly reduce the interfacial tension. Using the optimum concentration for acid, alkali and surfactant, the interfacial tension reduced from 14.9-0.401 mN m-1.

  15. The active component of vanadium-molybdenum catalysts for the oxidation of acrolein to acrylic acid

    The catalytic properties of the vanadium-molybdenum oxide system were investigated in the oxidation of acrolein to acrylic acid. The active component of the catalyst is the compound VMo3O11, the maximum amount of which is observed at a content of 7-15 mole% V2O4. The compound VMo3O11 is formed in the thermodecomposition of silicomolybdovanadium heteropoly acids or isopoly compounds, reduced with respect to vanadium, and contains V4+ and Mo6+. The optimum treatment for the formation of this compound is treatment in the reaction mixture at 400 degrees C

  16. ESTERIFICATION OF ACRYLIC ACID WITH 1-BUTANOL IN LIQUID PHASE CATALYZED WITH AL-MCM-41

    Edson Avellaneda Maytán; Gustavo Paim Valença

    2010-01-01

    This work studies the esterification of acrylic acid with 1-butanol using Al-MCM-41 as catalyst with different degrees of acidity at different temperatures. Al-MCM-41 synthesis was made from bromate Cetyl trimethyl ammonium using as router agent, NH4OH (25%), deionized H2O and Al2(SO4)3. Catalytic tests were carried out by groups and worked with temperature ranges among (333 to 348) K and a small sample was collected at predetermined intervals of time for subsequent gas chromatography analysi...

  17. Ultra-Thin Films of Poly(acrylic acid)/Silver Nanocomposite Coatings for Antimicrobial Applications

    Alaa Fahmy; Eisa, Wael H.; Mohamed Yosef; Ali Hassan

    2016-01-01

    In this work not only colloids of poly(acrylic acid) (PAA) embedded with silver nanoparticles (Ag-NPs) but thin films (10 nm) also were deposited using electrospray deposition technique (ESD). A mixture of sodium borohydride (NaBH4) and ascorbic acid (AA) were utilized to reduce the silver ions to generate Ag-NPs in the PAA matrix. Moreover, sodium tricitrate was used to stabilize the prepared colloids. The obtained colloids and films were characterized using UV-visible, transmission electron...

  18. Structure and Proton Conductivity in Mixtures of Poly(acrylic acid) and Imidazole

    Yang, Han-Chang; Griffin, Philip J.; Winey, Karen I.; University of Pennsylvania Team

    2015-03-01

    Proton conductivity in polymer electrolyte membranes (PEMs) typically involves water, which requires that during operation the humidity of the PEM be carefully controlled. In contrast, anhydrous protic polymer membranes promote proton transport by incorporating heterocyclic molecules, such as imidazole and its derivatives, into acid-containing polymers. In this work, we explore the interplay between nanoscale-structure and proton conduction of poly(acrylic acid) (PAA) blended at varying compositions with 2-ethyl-4-methylimidazole (EMI). We present the glass transition temperature from differential scanning calorimetry, morphology characterization from X-ray scattering, and proton conductivity from electrical impedance spectroscopy.

  19. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. PMID:23008096

  20. Identification of rapeseed oil fatty acid esters in transesterification reactions by gas chromatography - mass spectrometry method

    Rapeseed oil transesterification with different alcohols - methyl, ethyl, n-propyl and isopropyl alcohol - has been carried out. Yields of fatty acid alkyl esters obtained from rapeseed oil were determined using the internal standard method. Results of interpretation of the obtained ester mass spectra are reported. The specimen of Latvian rape oil contains: 57.6% of oleic acid, 18.2% of linoleic acid, 8.2% linolenic acid, 3.3% palmitic acid, 2% of stearic acid and less than 1% of arachidic acid. Values of Kovats retention indices of the rapeseed oil fatty acid esters on the capillary columns DB-5 MS and DB-17 MS have been compared. More selective separation of fatty acid alkyl esters has been achieved on the stationary phase with higher content of phenyl groups (DB-17 MS). (authors)

  1. Synthesis and Characteristics of an Aspartame Analogue, L-Asparaginyl L-3-Phenyllactic Acid Methyl Ester

    Hu TAO; Da-Fu CUI; You-Shang ZHANG

    2004-01-01

    An aspartame analogue,L-asparaginyl L-3-phenyllactic acid methyl ester was synthesized with aspartic acid replaced by asparagine and peptide bond replaced by ester bond.The aspartic acid of aspartame could be replaced by asparagine as reported in the literature.In this analogue,the hydrogen ofamide group could still form a hydrogen bond with the oxygen of ester bond and the ester bond was isosteric with peptide bond.However,the product was not sweet,showing that the peptide bond could not be replaced by ester bond.The peptide C-N bond behaves as a double bond that is not free to rotate and the C,O,N and H atoms are in the same plane.The replacement of peptide bond by ester bond destroyed the unique conformation of peptide bond,resulting in the loss of sweet taste.

  2. Effects of phthalic acid esters on the liver and thyroid

    The effects, over periods from 3 days to 9 months of administration, of diets containing di-2-ethylhexyl phthalate are very similar to those observed in rats administered diets containing hypolipidemic drugs such as clofibrate. Changes occur in a characteristic order commencing with alterations in the distribution of lipid within the liver, quickly followed by proliferation of hepatic peroxisomes and induction of the specialized P-450 isoenzyme(s) catalyzing omega oxidation of fatty acids. There follows a phase of mild liver damage indicated by changes in incorporation of 3H-thymidine into DNA, by induction of glucose-6-phosphatase activity and a loss of glycogen, eventually leading to the formation of enlarged lysosomes through autophagy and the accumulation of lipofuscin. Associated changes are found in the kidney and thyroid. The renal changes are limited to the proximal convoluted tubules and are generally similar to changes found in the liver. The effects on the thyroid are more marked. Although the levels of thyroxine in plasma fall to about half normal values, serum triiodothyronine remains close to normal values while the appearance of the thyroid varies, very marked hyperactivity being noted 7 days after commencement of treatment, this is less marked at 14 days, but even after 9 months treatment there is clear cut evidence for hyperactivity with colloid changes which indicate this has persisted for some time. The short-term in vivo hepatic effects of the three phthalate esters can be reproduced in hepatocytes in tissue culture. All three phthalate esters, as well as clofibrate, have early marked effects on the metabolism of fatty acids in isolated hepatocytes. A hypothesis is presented to explain the progress from these initial metabolic effects to the final formation of liver tumors

  3. Effects of phthalic acid esters on the liver and thyroid

    Hinton, R.H.; Mitchell, F.E.; Mann, A.; Chescoe, D.; Price, S.C.; Nunn, A.; Grasso, P.; Bridges, J.W.

    1986-12-01

    The effects, over periods from 3 days to 9 months of administration, of diets containing di-2-ethylhexyl phthalate are very similar to those observed in rats administered diets containing hypolipidemic drugs such as clofibrate. Changes occur in a characteristic order commencing with alterations in the distribution of lipid within the liver, quickly followed by proliferation of hepatic peroxisomes and induction of the specialized P-450 isoenzyme(s) catalyzing omega oxidation of fatty acids. There follows a phase of mild liver damage indicated by changes in incorporation of /sup 3/H-thymidine into DNA, by induction of glucose-6-phosphatase activity and a loss of glycogen, eventually leading to the formation of enlarged lysosomes through autophagy and the accumulation of lipofuscin. Associated changes are found in the kidney and thyroid. The renal changes are limited to the proximal convoluted tubules and are generally similar to changes found in the liver. The effects on the thyroid are more marked. Although the levels of thyroxine in plasma fall to about half normal values, serum triiodothyronine remains close to normal values while the appearance of the thyroid varies, very marked hyperactivity being noted 7 days after commencement of treatment, this is less marked at 14 days, but even after 9 months treatment there is clear cut evidence for hyperactivity with colloid changes which indicate this has persisted for some time. The short-term in vivo hepatic effects of the three phthalate esters can be reproduced in hepatocytes in tissue culture. All three phthalate esters, as well as clofibrate, have early marked effects on the metabolism of fatty acids in isolated hepatocytes. A hypothesis is presented to explain the progress from these initial metabolic effects to the final formation of liver tumors.

  4. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic acid-chitosan

    Hortensia Ortega-Ortiz

    2010-06-01

    Full Text Available The antimicrobial activity of chitosan and water soluble interpolyelectrolyte complexes of poly(acrylic acid-chitosan was studied. Chitosans of two different molecular weights were tested at different concentration for 0.5 to 5 g·L-1 as antimicrobial agents against P. aeruginosa and P. oleovorans. In both cases, the best microbial inhibition was obtained with the concentration of 5 g·L-1. However, the interpolyelectrolyte complexes of poly(acrylic acid-chitosan with composition φ =2 produced higher antibacterial activity than the two chitosans at the concentration of 0.5 g·L-1. The NPEC2 complex was more effective than chitosans. This could be attributed to the number of moles of the amino groups of chitosan and the carboxylic acid groups of the interpolyelectrolyte complexes poly(acrylic acid.A atividade antimicrobiana de quitosana e complexos interpolieletrolíticos hidrossoluvéis de poli(ácido acrílico-quitosana foi estudada. Quitosanas de dois diferentes pesos moleculares foram testados em diferentes concentrações, 0,5 a 5 g • L-1, como agentes antimicrobianos nas P. aeruginosa e P. oleovorans. Em ambos os casos, obteu-se a melhor inibição microbiana com a concentração de 5 g • L-1, no entanto os complexos interpolieletrolíticos de poli (ácido acrílico-quitosana com composição φ = 2 apresentaram maior atividade antibacteriana do que os dois quitosans na concentração de 0,5 g • L-1. O complexo NPEC2 foi mais eficaz do que as quitosanas, sendo que o resultado pode ser atribuído ao número de moles dos grupos aminos da quitosana e aos grupos carboxílicos dos complexos de poli(ácido acrílico.

  5. Partial oxidation of D-xylose to maleic anhydride and acrylic acid over vanadyl pyrophosphate

    Xylose is the second most abundant sugar after glucose. Despite its tremendous potential to serve as a renewable feedstock, few commercial processes exploit this resource. Here, we report a new technology in which a two-fluid nozzle atomizes a xylose-water solution into a capillary fluidized bed operating above 300 °C. Xylose-water droplets form at the tip of the injector, vaporize then react with a heterogeneous mixed oxide catalyst. A syringe pump metered the solution to the reactor charged with 1 g of catalyst. Product yield over vanadyl pyrophosphate was higher compared to molybdenum trioxide-cobalt oxide and iron molybdate; it reached 25% for maleic anhydride, 17% for acrylic acid and 11% for acrolein. Gas residence time was 0.2 s. The catalyst was free of coke even after operating for 4 h – based on a thermogravimetric analysis of catalyst withdrawn from the reactor. Below 300 °C, powder agglomerated at the tip of the injector at 300 °C; it also agglomerated with a xylose mass fraction of 7% in water. - Highlights: • D-xylose reacts to form maleic anhydride and acrylic acid above 250 °C. • Vanadyl pyrophosphate is both active and selective for maleic and acrylic acid. • Acid and acrolein yield approaches 50% for a xylose mass fraction of 3% in water. • Catalyst agglomerates at low temperatures and high xylose aqueous mass fraction. • Atomization quality is a determining factor to minimize agglomeration

  6. Thermal and FTIR analysis of the miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine)/poly (styrene-co-acrylic acid) systems

    Hadj-Hamou, Assia Siham; Habi, Abderrahmane [Laboratoire des Materiaux Polymeres, Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, B.P. 32, El Alia, Algiers 16111 (Algeria); Djadoun, Said, E-mail: matpolylab@yahoo.fr [Laboratoire des Materiaux Polymeres, Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2010-01-10

    The miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine) containing 20 mol% of 4-vinylpyridine (IBM4VP20) and poly (styrene-co-acrylic acid) containing 27 or 32 mol% of acrylic acid (SAA27 or SAA32) mixtures were investigated by DSC, TGA and FTIR spectroscopy in the 25-180 {sup o}C temperature range. The results showed that sufficient specific carboxyl-pyridine hydrogen bonding interactions occurred between these copolymers and led to miscible blends as cast from THF and to inter-polymer complexes of significantly improved thermal stability when butan-2-one is the common solvent. The self-association effect on the inter-polymer interactions was evidenced by the decrease of complexation yields, observed when the carboxylic content is increased above 27 mol% as with SAA32. The trend of phase behaviour predicted by a thermodynamic analysis of the specific interactions of hydrogen bonding type that occurred between the two components of the SAA27/IBM4VP20 blends, neglecting the weak carboxyl-ester interactions and the functional group accessibility effect, carried out using the Painter-Coleman association model that considers the screening effects, is in a fair agreement with the experimental results. Moreover an LCST is predicted to occur at relatively high temperature.

  7. Thermal and FTIR analysis of the miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine)/poly (styrene-co-acrylic acid) systems

    The miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine) containing 20 mol% of 4-vinylpyridine (IBM4VP20) and poly (styrene-co-acrylic acid) containing 27 or 32 mol% of acrylic acid (SAA27 or SAA32) mixtures were investigated by DSC, TGA and FTIR spectroscopy in the 25-180 oC temperature range. The results showed that sufficient specific carboxyl-pyridine hydrogen bonding interactions occurred between these copolymers and led to miscible blends as cast from THF and to inter-polymer complexes of significantly improved thermal stability when butan-2-one is the common solvent. The self-association effect on the inter-polymer interactions was evidenced by the decrease of complexation yields, observed when the carboxylic content is increased above 27 mol% as with SAA32. The trend of phase behaviour predicted by a thermodynamic analysis of the specific interactions of hydrogen bonding type that occurred between the two components of the SAA27/IBM4VP20 blends, neglecting the weak carboxyl-ester interactions and the functional group accessibility effect, carried out using the Painter-Coleman association model that considers the screening effects, is in a fair agreement with the experimental results. Moreover an LCST is predicted to occur at relatively high temperature.

  8. Synthesis of superabsorbent hydrogel by radiation crosslinking of acrylic acid, semi-refined kappa-carrageenan and sugarcane bagasse blend

    Superabsorbent hydrogels have three-dimensional networks that enable it to exhibit great water absorption capacity leading to its promising applications. However, existing commercial hydrogels are mainly acrylic acid which causes environmental problems. In this study, the incorporation of agricultural waste as filler and polysaccharide from natural sources as binder for the production of superabsorbent hydrogel was done to reduce the use of acrylic acid as well as its environmental impact while adding value to the incorporated materials. A series of superabsorbent hydrogel with the blend of acrylic acid, semi-refined kappa carrageenan and sugarcane bagasse were synthesized by radiation crosslinking. The gel fraction and swelling capacity of the hydrogels were determined and studied. The characterizations were facilitated by Fourier transform infrared spectroscopy technique (FTIR) and Thermogravimetric Analysis (TGA). In the results obtained from analyses, the characteristic peaks of acrylic acid and sugarcane bagasse were observed in the FTIR spectra and the three step peaks if synthesized hydrogel in its TGA implies an improvement in thermal stability of the product. The synthesized superabsorbent hydrogel blends had exhibited comparable gel fraction to that of the polyacrylic acid hydrogel, had great swelling capacity, and achieved equilibrium degree of swelling within 72-96 hours. The optimum synthesized superabsorbent hydrogel is 3% semi-refined kappa-carrageenan, 3% sugarcane bagasse, 15% acrylic acid neutralize up to 50% and irradiated at 15kGy dose which exhibited a swelling of 599.53 and gel fraction of 39.73. (author)

  9. Use of acrylic acid in the synthesis of molecularly imprinted polymers for the analysis of cyproheptadine

    The synthesis and comparative characterization of molecularly imprinted polymers (MIPs) with cyproheptadine (CYP), using two different monomers, acrylic acid (AA) and methacrylic acid (MAA), are described. Polyacids (PA) [poly(methacrylic acid) (PMAA) and poly(acrylic acid) (PAA)] were obtained by the radical polymerization of MAA and AA, respectively, in dichloromethane as the porogen solvent-imprinted medium. The non-covalent imprinting process was performed via thermal decomposition of an azo-initiator at 60 deg. C, using ethylene glycol dimethacrylate as the cross-linker and 2,2'-azobis(2-methylpropionitrile) as the initiator. The selectivities of MIPs and NIPs particles were evaluated in binding experiments of the four synthesized polymeric materials (MIPaa, MIPmaa, NIPmaa and NIPaa) with CYP. The effects of monomers on: a) the surface morphology, b) the binding capacity and c) the swelling properties of imprinted and non-imprinted polymers were studied and are presented here. Polymer material morphology was assessed with scanning electron microscopy (SEM). This revealed differences in monomer function, depending on which one was employed, as well as differences in function when polymerization occurred in the presence of template or without it. Non-specific retention of the template to NIPs was higher for NIPs-PAA polymers than for NIPs-PMAA materials. In terms of specific binding (ΔQ = QMIP - QNIP), MIPmaa showed the greatest value (53.47%) in comparison with MIPaa (50.07%)

  10. Synthesis of acrylic prepolymer

    An acrylic prepolymer was synthesized from glycidyl methacrylate (GMA), butyl methacrylate (BMA), methyl methacrylate (MMA) and acrylic acid (AA). Butyl acetate (BAc), benzoyl peroxide (BzO), 4-methoxyphenol (MPh) and triethylamine (TEA) were used as solvent, initiator, inhibitor and catalyst respectively. Observations of the synthesis leading to the formation of acrylic prepolymer are described. (author)

  11. Study on extraction mechanism of scandium (III) with alkylphosphonic acid monoalkyl ester

    The extraction mechanism of Sc(III)from hydrochloric acid solutions with s-octylphosphonic acid mono-iso-octyl ester (PT-19), iso-propylphosphonic acid mono-(1-hexyl-4-ethyl) octyl ester(PT-2) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester(P507)in heptane is investigated. The extraction reaction of Sc(III) expressed by the equations of chemical reactions are given. The equilibrium constants and thermodynamic functions of extraction reactions are calculated. The IR and NMR spectra of the extraction complexes of Sc(III) are discussed as well

  12. Occurrence of fatty acid esters of 3-MCPD, 2-MCPD and glycidol in infant formula.

    Wöhrlin, Friederike; Fry, Hildburg; Lahrssen-Wiederholt, Monika; Preiß-Weigert, Angelika

    2015-01-01

    The discovery of fatty acid esters of monochloropropanediol (MCPD) and glycidol generated during the refinement process in vegetable fats and oils caused concerns about possible adverse health effects. As these fats are components of infant formula, the current investigation of the MCPD and glycidyl ester contents in infant formula was necessary to update the data for risk assessment purposes. For the analysis of 3-MCPD, 2-MCPD and glycidyl esters in infant formula, an existing method for fats and oils had to be modified and validated. The fat fraction containing MCPD and glycidyl esters was extracted from infant formula by accelerated solvent extraction (ASE). The extracted fat was then analysed according to an established method for fats and oils. Glycidyl esters are converted to monobrompropanediol (3-MBPD) esters, MCPD and 3-MBPD esters hydrolysed subsequently and after derivatisation detected by GC-MS. Seven different products of infant formula, covering two types and five lots each, altogether 70 samples, were bought in retail markets and analysed. In all samples, 3-MCPD and glycidyl esters could be detected. Both 3-MCPD and glycidyl esters' concentration levels were found to be lower in comparison with earlier investigations described in the literature. The occurrence of 2-MCPD esters in infant formula was investigated for the first time and revealed concentrations about half of 3-MCPD ester concentrations. PMID:26179516

  13. Physicochemical and electrochemical characterization of battery separator prepared by radiation induced grafting of acrylic acid onto microporous polypropylene membranes

    2009-05-01

    Full Text Available Mutual radiation grafting technique was used to graft acrylic acid on micrometer thick micro-porous polypropylene membrane using high-energy gamma radiation. Grafting could not be achieved in aqueous acrylic acid solution. The presence of Mohr’s salt effectively retarded the homopolymerization of acrylic acid but did not lead to grafting enhancement. Mohr’s salt in presence of acids was found to be effective in enhancing the grafting yield. Contact angle measurement studies of the grafted and radiation treated polypropylene showed that initial grafting as well as radiation treatment of poly(propylene in aqueous medium and in presence of Mohr’s salt enhances its affinity towards the grafting solution. The enhancement in the polar component of surface energy of treated polypropylene membrane is the primary cause of grafting enhancement. The membranes grafted to an extent of ~20% were found to perform comparably with the battery separator presently being used by battery industry.

  14. Synthesis of hemicellulose-acrylic acid graft copolymer super water absorbent resin by ultrasonic irradiation technology

    Liu, Fangfang; Conghui DU; Linya ZHANG

    2015-01-01

    The hemicellulose super water absorbent resin is prepared by using ultrasonic irradiation technology, with the waste liquid produced during the preparation of viscose fiber which contains a large amount of hemicellulose as raw material, acrylic acid as graft monomer, N,N’-methylene bis acrylamide (NMBA) as cross linking agent, and (NH4)2S2O8-NaHSO3 as the redox initiation system. The synthesis conditions, structure and water absorption ability of resin are discussed. The results indicate that...

  15. Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly(acrylic acid

    Guoquan Zhu

    2013-01-01

    Full Text Available In this study, a series of poly(γ-benzyl L-glutamate/poly(acrylic acid (PBLG/PAA polymer blend films were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO. The structure and morphology of the polymer blend film were investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. Thermal, mechanical, and chemical properties of PBLG/PAA polymer blend films were studied by Differential Scanning Calorimetry (DSC, Thermogravimetric (TG Analysis, Tensile Tests, and measurements of Surface Contact Angles. The results revealed that the introduction of PAA could exert great effects on the structure and properties of the polypeptide films.

  16. Modification of magnetite coating formation in presence of alkaline acrylic acid

    In Indian PHWR's, the hot conditioning of primary heat transport system is carried out to form a protective magnetite coating on the inner surface of PHT system at the start up of the reactor and also after decontamination of PHT system to minimize the release of loose crud particulates and corrosion of the PHT system. An attempt has been made to modify the chemistry conditions for the formation of protective magnetite coating on CS coupons in a static autoclave at 523K to view its impact on the nature of the protectivity. In continuation of our efforts to modify the film with various organic additives like Glycerol, Ethylene glycol, PEG, in this paper the effect of acrylic acid on magnetite coating formation is discussed. The metal oxide powders synthesized by polymer combustion route in PVA, PEG and PAA resulted in nano crystallites. To see the effect of theses organics in reducing the crystallite sizes and improving the corrosion resistance behaviour in hydrothermal conditions the experiments are carried out. In presence of Acrylic acid (AA) at different concentrations (50, 100, 500ppm) at alkaline pH (LiOH -10.4 ) in static autoclave, magnetite coating is formed on CS coupons. The coupons were characterized by XRD, SEM, Raman and Electrochemical impedance and Potentiodynamic Anodic Polarization (PDAP) studies. The addition of acrylic acid results in smaller crystallite sizes and the crystallites look like thread bundles for 50ppm concentration of AA. PDAP studies indicate better film protectivity for magnetite coating formed in 50 ppm AA. Corrosion rate is observed to be less for CS coupons in presence of 50 and 100 ppm AA. The tendency for the film formed to dissolve is less for both 50 and 100 ppm AA developed coating in comparison to coating developed in LiOH alone. The impedance studies indicated the pore resistance of the film increased two fold and seven fold for 50 and 100 ppm acrylic acid case in comparison to simple LiOH case where as the charge

  17. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  18. Novel Routes for the Design of Poly((meth)acrylic acid) Containing Polymer Structures by Controlled Radical Polymerization

    Van Camp, W

    2007-01-01

    Easy preparation of specialty polymers containing poly((meth)acrylic acid) Poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) are well-known polymers in a high number of applications because of their pH-responsive nature, their hydrophylic characteristics and for their interaction with metal ions. PAA, high tech material An increasing part of high tech polymer materials introduce P(M)AA as segments in well-defined polymer structures. These can be block copolymers, polymer brushes, sta...

  19. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible. PMID:26720136

  20. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of); Lim, Yun Kyong; Kook, Joong-Ki [Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Cho, Dong-Lyun [School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju (Korea, Republic of); Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of)

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH{sub 2} of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  1. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  2. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  3. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  4. Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil.

    Thaiyasuit, Prachasanti; Pianthong, Kulachate; Worapun, Ittipon

    2012-01-01

    This study aims to examine methods and the most suitable conditions for producing methyl ester from crude rubber seed oil. An acid esterification-alkaline transesterification process is proposed. In the experiment, the 20% FFA of crude rubber seed oil could be reduced to 3% FFA by acid esterification. The product after esterified was then tranesterified by alkaline transesterification process. By this method, the maximum yield of methyl ester was 90% by mass. The overall consumption of methanol was 10.5:1 by molar ratio. The yielded methyl ester was tested for its fuel properties and met required standards. The major fatty acid methyl ester compositions were analyzed and constituted of methyl linoleate 41.57%, methyl oleate 24.87%, and methyl lonolenate 15.16%. Therefore, the cetane number of methyl ester could be estimated as 47.85, while the tested result of motor cetane number was 51.20. PMID:22277892

  5. Spectroscopic and density functional theory studies of trans-3-(trans-4-imidazolyl)acrylic acid

    Arjunan, V.; Remya, P.; Sathish, U.; Rani, T.; Mohan, S.

    2014-08-01

    The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry of trans-3-(trans-4-imidazolyl)acrylic acid have been determined from B3LYP methods with 6-311++G** and cc-pVTZ basis sets. The effects of substituents (acrylyl group) on the imidazole vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of trans-3-(trans-4-imidazolyl)acrylic acid have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and the assignments made are compared with the experimental values. The energies of important MO’s of the compound are also determined from DFT method. The total electron density and electrostatic potential of the compound are determined by natural bond orbital analysis. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities employing natural population analysis (NPA) are calculated.

  6. Antimicrobial and Thermal Properties of Metal Complexes of Grafted Fabrics with Acrylic Acid by Gamma Irradiation

    Cotton, cotton/PET blend and PET fabrics were treated against microbial effect by radiation - induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions Co (II), Ni (II) and Cu (II). The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the growth of microorganisms was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behavior was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the antimicrobial resistance of the fabrics and the antimicrobial resistance could be arranged according to the metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexed with Cu (II) > grafted fabrics complexed with Ni (II) > grafted fabrics complexed with Co (II)

  7. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels.

    Bajpai, S K; Chand, Navin; Soni, Shweta

    2015-01-01

    Drug Gliclazide (Glz) has limited solubility and low bioavailability. In order to obtain a controlled release of this drug and to improve its bioavailability, the drug has been loaded into poly(caprolactone) (PCL)/poly(acrylic acid) (PAAc) hydrogels, prepared by free radical polymerization of acrylic acid in the presence of poly(caprolactone) in acetone medium using azo-isobutyronitrile as initiator and N,N' methylene bisacrylamide as cross-linking agent. The swelling behaviour of these hydrogels has been investigated in the physiological gastric and intestinal fluids to obtain an optimum composition suitable for delivery of a biologically active compound. The gels were loaded with anti-diabetic drug Glz and a detailed investigation of release of drug has been carried out. Various kinetic models have been applied on the release data. Finally, the Albino wistar rats were treated for Streptozotocin plus nicotinamide - induced diabetes using a Glz-loaded PCL/PAAc hydrogel. The results indicated a fair reduction in the glucose level of rats. PMID:26135033

  8. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption

    Benamer, S., E-mail: benamers@yahoo.fr [Division of Nuclear Applications, Centre de Recherche Nucleaire d' Alger, BP-399 Alger-Gare (Algeria); Mahlous, M.; Tahtat, D.; Nacer-Khodja, A.; Arabi, M. [Division of Nuclear Applications, Centre de Recherche Nucleaire d' Alger, BP-399 Alger-Gare (Algeria); Lounici, H.; Mameri, N. [Ecole Nationale Polytechnique d' El-Harrach Alger (Algeria)

    2011-12-15

    Radiation-induced grafting of acrylic acid onto chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of cobalt-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted material was performed by FTIR spectroscopy and the swelling measurements at different pHs. The grafting yield increased with the increase in dose, it reached 80% at 40 kGy irradiation dose. The removal of Pb and Cd ions from aqueous solutions was investigated with both ungrafted and grafted chitosan beads. The sorption behavior of the sorbents was examined through pH, kinetics and equilibrium measurements. Grafted chitosan beads presented higher sorption capacity for both metal ions than unmodified chitosan beads. - Highlights: > Pb and Cd ions are removed from aqueous solution by adsorption on chitosan beads. > Crosslinking process improves chemical stability of chitosan beads. > Radiation grafting of acrylic acid onto chitosan improves its metal adsorption capacity. > Increase in grafting degree enhances the adsorption capacity of the material. > Gamma radiation is a powerful tool for an accurate control of the grafting yield.

  9. Synthesis of ion exchange membrane by radiation grafting of acrylic acid onto polyethylene

    Radiation grafting of vinyl monomers onto polymer films has been extensively studied by many workers. In the preirradiation method of grafting a polymer substrate is activated by irradiation (either in the presence or absence of oxygen) and subsequently allowed to react with a monomer. The preirradiation method was utilized in this study to synthesize an ion exchange membrane useful for a battery separator by grafting acrylic acid onto polyethylene film. The battery separator should be chemically and thermally stable, sufficiently durable in electrolyte as well as highly electrically conductive. Membranes made from regenerated cellulose, e.g., cellophane, have long been used as a separator in the batteries with alkaline electrolyte, such as silver oxide primary cell. However, it has poor durability, as short as one year, due to breakdown of the membrane during operation or storing. The acrylic acid-grafted polyethylene film was found to be quite useful for a separator in the alkaline batteries. This membrane has a high electric conductivity and an excellent durability. (author)

  10. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption

    Radiation-induced grafting of acrylic acid onto chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of cobalt-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted material was performed by FTIR spectroscopy and the swelling measurements at different pHs. The grafting yield increased with the increase in dose, it reached 80% at 40 kGy irradiation dose. The removal of Pb and Cd ions from aqueous solutions was investigated with both ungrafted and grafted chitosan beads. The sorption behavior of the sorbents was examined through pH, kinetics and equilibrium measurements. Grafted chitosan beads presented higher sorption capacity for both metal ions than unmodified chitosan beads. - Highlights: → Pb and Cd ions are removed from aqueous solution by adsorption on chitosan beads. → Crosslinking process improves chemical stability of chitosan beads. → Radiation grafting of acrylic acid onto chitosan improves its metal adsorption capacity. → Increase in grafting degree enhances the adsorption capacity of the material. → Gamma radiation is a powerful tool for an accurate control of the grafting yield.

  11. Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane

    Liu, Yanjun; Ma, Huiying; Lv, Chunying; Yang, Jia; Fu, Xueqi

    2009-07-01

    A series of pH-sensitive poly (acrylic acid)-graft-polypropylene hollow fiber microfiltration membranes were prepared by UV-photo-irradiation. Bovine serum albumin (BSA) was chosen as the model protein to investigate its absorption and fouling behaviors on membranes. The results showed that the hydrophilicity of grafted membrane was improved by poly(acrylic acid) chains with parts of membrane pores blocked. The grafted membranes were markedly pH-dependent on the water permeability as pH was altered from 1 to 11. The zeta potential of grafted membranes calculated by streaming potential was negative in most pH range. Electrostatic interaction energy calculated by DLVO theory showed the electric interaction force between grafted membrane and BSA was attractive. With the rise of grafting degree, the electric attractive force between grafted membrane and BSA increased as pH=3 and decreased as pH=8, while it kept basically unchanged as pH=4.7. As a result, most serious fouling was observed as pH=4.7. Grafted membranes had a lower BSA absorption and better antifouling behavior as pH=8, while the opposite result was revealed as pH=3. In conclusion, the absorption and fouling behavior of BSA on membranes was pH-dependent due to the pH-dependence of membrane charge, and the conformation of BSA and grafting chains.

  12. Investigation of small molecular weight poly(acrylic acid) adsorption on γ-alumina

    Liu, Lei; Luo, Shi-Zhong [College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Wang, Bin, E-mail: bin_wang@scu.edu.cn [College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Guo, ZhanHu [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-08-01

    Highlights: • Small molecular weight poly(acrylic acid) incorporated on γ-alumina. • PAA adsorbed primarily on outer surface of alumina at low pH. • PAA infiltrated inside alumina pore at high pH. • Polymer chain reptation motion during the infiltration. - Abstract: The interactions between poly(acrylic acid) (PAA) and alumina have been widely investigated. In this study, the pattern of small molecular weight PAA (M{sub W} 3000) interaction with γ-alumina has been dissected. The alumina/PAA hybrids were prepared at pH 4.0, 5.5, and 7.0, respectively. Nitrogen absorption–desorption analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and elemental analysis were conducted to illustrate the characteristics of the hybrids. At pH 4.0, the coiled PAA conformation yielded polymer adsorption primarily on alumina outer surface. At higher pH values, the more stretched PAA molecules were able to infiltrate inside the alumina pores. The phenomenon is explained by the polymer chain reptation motion model. Coiled polymer chains are not oriented enough to penetrate the oxide pore channels. In contrary, stretched polymer chains are more likely to move along the pore channels.

  13. Investigation of small molecular weight poly(acrylic acid) adsorption on γ-alumina

    Highlights: • Small molecular weight poly(acrylic acid) incorporated on γ-alumina. • PAA adsorbed primarily on outer surface of alumina at low pH. • PAA infiltrated inside alumina pore at high pH. • Polymer chain reptation motion during the infiltration. - Abstract: The interactions between poly(acrylic acid) (PAA) and alumina have been widely investigated. In this study, the pattern of small molecular weight PAA (MW 3000) interaction with γ-alumina has been dissected. The alumina/PAA hybrids were prepared at pH 4.0, 5.5, and 7.0, respectively. Nitrogen absorption–desorption analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and elemental analysis were conducted to illustrate the characteristics of the hybrids. At pH 4.0, the coiled PAA conformation yielded polymer adsorption primarily on alumina outer surface. At higher pH values, the more stretched PAA molecules were able to infiltrate inside the alumina pores. The phenomenon is explained by the polymer chain reptation motion model. Coiled polymer chains are not oriented enough to penetrate the oxide pore channels. In contrary, stretched polymer chains are more likely to move along the pore channels

  14. Successful treatment of recalcitrant cutaneous sarcoidosis with fumaric acid esters

    Hanefeld Christoph

    2002-12-01

    Full Text Available Abstract Background Sarcoidosis is a multisystem disease of unknown origin characterized by the formation of noncaseating granulomas, in particular in the lungs, lymph nodes, eyes, and skin. Systemic treatment for cutaneous sarcoidosis can be used for large disfiguring lesions, generalized involvement, or recalcitrant lesions that did not respond to topical therapy. Case presentations We report three patients with recalcitrant cutaneous sarcoidosis who were treated with oral fumaric acid esters (FAE. Three female patients presented with cutaneous sarcoidosis that have proved to be refractory to various therapies, including corticosteroids and chloroquine. We treated the patients with FAE in tablet form using two formulations differing in strength (Fumaderm® initial, Fumaderm®. Dosage of FAE was performed according to the standard therapy regimen for psoriasis patients. After treatment with FAE (4–12 months, a complete clearance of skin lesions was achieved in the three patients. The side effects observed in this trial correspond to the well-known spectrum of adverse effects of FAE (flush, minor gastrointestinal complaints, lymphopenia. Conclusions On the basis of our findings FAE therapy seems to be a safe and effective regimen for patients with recalcitrant cutaneous sarcoidosis. Nevertheless further investigations are necessary to confirm our preliminary results.

  15. Surface properties of ionomers based on styrene-b-acrylic acid copolymers obtained by copolymerization in emulsion

    Surface properties of styrene-b-acrylic acid copolymers obtained in emulsion and suitable ionomers before and after UV-irradiation were studied by measurements of contact angles and FTIR-ATR spectroscopy. The research focused on the influence of different content of carboxylic acid groups in copolymers, of various types and contents of alkali metal salts in ionomers and of cesium acrylate or methacrylate in ionomers on hydrophilicity of the surfaces of these samples and the course of photodegradation in them. Hydrophilicity of initial copolymer surfaces was higher than this of polystyrene as a result of presence of carboxylic acid groups, which also made the surfaces of these copolymers more sensitive to UV-irradiation. Hydrophilicity of the surfaces of ionomers containing cesium acrylates depended on the content of cesium salt in the samples. The course of ionomer photooxidation was also dependent on the content of this salt. The surface of ionomer containing cesium methacrylate was more polar than this of ionomer containing cesium acrylate. Styrene-based ionomers containing 3.7 mol% of various alkali metal acrylates had less polar surfaces than initial copolymer and they were also more resistant to UV-irradiation in comparison to the initial copolymer. Copolymers obtained in emulsion and suitable ionomers had more polar surfaces and they were more sensitive to UV-light compared to copolymers obtained in bulk and their ionomers.

  16. Acrylic and Methacrylic Acids Obtaining by Gas-Phase Aldol Condensation of Carbonyl Compounds on B2O3?P2O5?WO3?V2O5/SiO2 Catalysts

    Nebesnyi, Roman; Petelka, Oksana; Shpyrka, Iryna

    2013-01-01

    Prospects of acrylic acid obtaining by acetic acid aldol condensation with formaldehyde are considered. Complex oxide catalysts of the process have been developed. It is shown that raw materials costs in case of acrylic acid production by the condensation method are commeasurable with those in case of its production by oxidation method (main industrial method of acrylic acid production).This method of acrylic acid obtaining may be used as an alternative and enables diversifying the raw materi...

  17. Synthesis and characterization of organometallic copolymers of acrylic acid g-polyethylene, with Mo, Fe, Co, Zn and Ni

    In this study, the preparation of a series of low density polyethylenes grafted with acrylic acid is presented. The grafting reactions were initiated by different doses of γ radiation; it was observed that grafting increased with the doses of radiation. The prepared copolymers were coordinated with different metals, as Mo, Fe, Co, Zn and Ni. The amount of metal supported on the polymer was determined by atomic absorption. Infrared spectroscopy and thermogravimetric analysis confirmed the metal chelation on the graft copolymer. The film surfaces were observed by scanning electron microscopy. positron annihilation spectroscopy revealed a decrease on the free volume in the low density polyethylene after the grafting with acrylic acid. (Author)

  18. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    Liangming Wei; Changxin Chen; Zhongyu Hou; Hao Wei

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dim...

  19. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass.

    Swift, T; Swanson, L.; Geoghegan, M; Rimmer, S.

    2016-01-01

    Fluorescence spectroscopy on a series of aqueous solutions of poly(acrylic acid) containing a luminescent label showed that polymers with molar mass, Mn < 16.5 kDa did not exhibit a pH responsive conformational change, which is typical of higher molar mass poly(acrylic acid). Below this molar mass, polymers remained in an extended conformation, regardless of pH. Above this molar mass, a pH-dependent conformational change was observed. Diffusion-ordered nuclear magnetic resonance spectroscopy ...

  20. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate. PMID:20361751

  1. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  2. Use of acrylic acid in the synthesis of molecularly imprinted polymers for the analysis of cyproheptadine

    Feas, Xesus [Analytical Chemistry, Nutrition and Bromatology, Campus Lugo, University of Santiago de Compostela. E-27002, Lugo, Galiza (Spain); Fente, Cristina A. [Analytical Chemistry, Nutrition and Bromatology, Campus Lugo, University of Santiago de Compostela. E-27002, Lugo, Galiza (Spain)], E-mail: cfente@lugo.usc.es; Hosseini, S. Vali [Analytical Chemistry, Nutrition and Bromatology, Campus Lugo, University of Santiago de Compostela. E-27002, Lugo, Galiza (Spain); Seijas, Julio A. [Organic Chemistry, Campus Lugo, University of Santiago de Compostela. Aptdo 280, E-27080, Lugo (Spain); Vazquez, Beatriz I.; Franco, Carlos M.; Cepeda, Alberto [Analytical Chemistry, Nutrition and Bromatology, Campus Lugo, University of Santiago de Compostela. E-27002, Lugo, Galiza (Spain)

    2009-03-01

    The synthesis and comparative characterization of molecularly imprinted polymers (MIP{sub s}) with cyproheptadine (CYP), using two different monomers, acrylic acid (AA) and methacrylic acid (MAA), are described. Polyacids (PA) [poly(methacrylic acid) (PMAA) and poly(acrylic acid) (PAA)] were obtained by the radical polymerization of MAA and AA, respectively, in dichloromethane as the porogen solvent-imprinted medium. The non-covalent imprinting process was performed via thermal decomposition of an azo-initiator at 60 deg. C, using ethylene glycol dimethacrylate as the cross-linker and 2,2'-azobis(2-methylpropionitrile) as the initiator. The selectivities of MIP{sub s} and NIP{sub s} particles were evaluated in binding experiments of the four synthesized polymeric materials (MIP{sub aa}, MIP{sub maa}, NIP{sub maa} and NIP{sub aa}) with CYP. The effects of monomers on: a) the surface morphology, b) the binding capacity and c) the swelling properties of imprinted and non-imprinted polymers were studied and are presented here. Polymer material morphology was assessed with scanning electron microscopy (SEM). This revealed differences in monomer function, depending on which one was employed, as well as differences in function when polymerization occurred in the presence of template or without it. Non-specific retention of the template to NIP{sub s} was higher for NIP{sub s}-PAA polymers than for NIP{sub s}-PMAA materials. In terms of specific binding ({delta}Q = Q{sub MIP} - Q{sub NIP}), MIP{sub maa} showed the greatest value (53.47%) in comparison with MIP{sub aa} (50.07%)

  3. Studies on novel interpenetrating networks of urethane modified poly(ester-amide and vinyl ester of bisphenol-C

    Pragnesh N. Dave

    2016-05-01

    Full Text Available Bisphthalamic acids were prepared by reaction of maleic anhydride and aromatic diamines. Novel poly(ester-amides (PEAs were prepared by reaction of DGEBF with bisphthalamic acids. Acrylation of PEAs was carried out using acryloyl chloride; products are called acrylated poly(ester-amides (APEAs. Epoxy resin based unsaturated poly(ester-amide resins (UPEAs can be prepared by many methods but here these were prepared by reported method. These UPEAs were then treated with acryloyl chloride to afford acrylated UPEAs resin (i.e. AUPEAs. Interpenetrating networks of equal proportional urethane modified poly(ester-amide and acrylated poly(ester-amide and vinyl ester of biaphenol c (VE resin were prepared. Urethane modified APEAs and AUPEAs were characterized by elemental analysis, molecular weight was determined by vapor pressure osmometer and by IR spectral study and by thermogravimetry. Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA.

  4. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied. PMID:21866762

  5. Oxidative stability of fatty acid alkyl esters: a review.

    Michal Angelovič

    2015-12-01

    Full Text Available The purpose of this study was to investigate and to process the current literary knowledge of the physico-chemical properties of vegetable oil raw used for biodiesel production in terms of its qualitative stability. An object of investigation was oxidative stability of biodiesel. In the study, we focused on the qualitative physico-chemical properties of vegetable oils used for biodiesel production, oxidative degradation and its mechanisms, oxidation of lipids, mechanisms of autooxidation, effectivennes of different synthetic antioxidants in relation to oxidative stability of biodiesel and methods of oxidative stability determination. Knowledge of the physical and chemical properties of vegetable oil as raw material and the factors affecting these properties is critical for the production of quality biodiesel and its sustainability. According to the source of oilseed, variations in the chemical composition of the vegetable oil are expressed by variations in the molar ratio among different fatty acids in the structure. The relative ratio of fatty acids present in the raw material is kept relatively constant after the transesterification reaction. The quality of biodiesel physico-chemical properties is influenced by the chain length and the level of unsaturation of the produced fatty acid alkyl esters. A biodiesel is thermodynamically stable. Its instability primarily occurs from contact of oxygen present in the ambient air that is referred to as oxidative instability. For biodiesel is oxidation stability a general term. It is necessary to distinguish ‘storage stability' and ‘thermal stability', in relation to oxidative degradation, which may occur during extended periods of storage, transportation and end use. Fuel instability problems can be of two related types, short-term oxidative instability and long-term storage instability. Storage instability is defined in terms of solid formation, which can plug nozzles, filters, and degrade engine

  6. Synthesis and characterization of new biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups

    2010-01-01

    Two novel biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups were synthesized via the macromolecular substitution reactions of poly(dichlorophosphazene) with the sodium salt of lactic acid ester and sodium methoxyethoxyethoxide.Their structures were confirmed by ~(31)p NMR,~1H NMR,~(13)C NMR,IR,DSC,and elemental analysis.The lower critical solution temperature(LCST) behavior in water and in vitro degradation property of the polymers was investigated....

  7. Chelation in metal intoxication XXX: α-mercapto-β-aryl acrylic acids as antidotes to cadmium toxicity

    α-Mercapto-β-(2-furyl) acrylic acid (MFA), α-mercapto-β-(2-hydroxyphenyl) acrylic acid (MHA), β-1,2-phenylene di-α-mercaptoacrylic acid (1,2-PDMA) and β-l,4-phenylene di-α-mercapto acrylic acid (1,4-PDMA) were compared to sodium N-benzyl-D-glucamine dithiocarbamate (NBG-DTC) an effective cadmium chelator, for their ability to mobilize Cd and influence the Cd induced tissue metallothionein (MT) in rats administered 109CdCl2, 72 hr earlier. MFA was almost as effective as NBG-DTC but more effective than MHA in enhancing urinary and faecal excretion of Cd, reducing tissue and blood levels of Cd and in lowering Cd induced increase in hepatic and renal MT contents. 1,2-PDMA and l,4-PDMA were effective only in reducing the hepatic burden of Cd. The results do not indicate any direct relationship between the efficacy of α-mercapto-β-aryl acrylic acids to decorporate body Cd and their lipophilic-hydrophilic character or number-arrangement of their sulfhydryl groups. (author)

  8. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  9. Electromechanical reliability of flexible transparent electrodes during and after exposure to acrylic acid

    The effect of deposition temperature on pulsed laser deposition (PLD) fabricated flexible transparent electrodes subjected to mechanical loading, after exposure to acrylic acid, and the combined effect of fatigue and corrosion on sputter-deposited polyester-based indium tin oxide (ITO) films are both investigated in this study. Acrylic acid containing pressure sensitive adhesives, which are commonly used in various flexible device stacks, can corrode the ITO film. In addition, fatigue due to cyclic loading can lead to film cracking. The combined effect of fatigue and corrosion can lead to catastrophic failure of the system. We found that PLD-produced ITO on polyethylene naphthalate samples deposited at 150 °C performs better than samples deposited at 50 °C under uniaxial mechanical loading. They were found to exhibit higher crack onset strain than their 50 °C counterparts. However, they were observed to be more sensitive to increasing acid concentrations. Scanning electron microscopy images show a larger number of adhesive cracks on the surfaces of the 150 °C-deposited samples than the 50 °C-deposited samples. Atomic force microscopy results reveal that the increased temperature causes a significant increase in surface roughness which may affect the corrosion behavior of the ITO film. Furthermore, in situ electrical resistance measurements and crack density analysis suggest that the combination of fatigue and corrosion can cause film failure at low strains, less than those needed for failure with no corrosion. For example, at 0.9% applied strain and 500,000 cycles, the crack density under fatigue–corrosion is 1.7 times that of the fatigue-only case. - Highlights: ► ITO films were deposited on polymers with PLD or magnetron sputtering. ► The combination of fatigue and corrosion was investigated using a custom apparatus. ► Adhesion and film roughness played roles in the fatigue-corrosion behavior

  10. A new and direct synthesis of lactic acid from acrylic acid using an excimer laser with high intensity

    A new and direct method of XeF (351 nm) laser irradiation of acrylic acid 1 solution containing H2O2 are described for the chemical synthesis of lactic acid 2. Increase in the yield strongly depended on the irradiation dose and H2O2 feeding rate, and the formation of 2 showed the quantum yield, 0.3, and the selectivity, 50%, at the maximum yield. Product analysis indicated that OH radicals formed with high density by the laser-photolysis of H2O2 are equally bonded to the carbons of α- and β-positions of 1 to produce 2 and 3-hydroxy propanoic acid with ratio of 1 to 1. (author)

  11. Pemisahan dan Pemurnian Phthalic Acid Ester dari Minyak Nyamplung

    William Ekaputra Taifan

    2013-09-01

    Full Text Available Minyak nyamplung dikenal sebagai minyak yang tidak dapat dikonsumsi. Oleh sebab itu, penelitian tentang minyak ini hanya fokus pada konversi minyak menjadi biodiesel. Pada penelitian ini, kami berusaha untuk memisahkan resin beracun dari fraksi metanol menggunakan ekstraksi pelarut diikuti kolom kromatografi. Resin beracun ini diidentifikasi sebagai phthalic acid ester (PAE. PAE ini biasanya digunakan sebagai zat aditif di industri polimer. Minyak nyamplung mengandung 1,8% PAE, yang masih jauh melebihi nilai ambang batas. Isolasi PAE dari minyak ini diharapkan dapt mengubah minyak yang tidak dapat dikonsumsi menjadi suplemen makanan yang bernilai. Proses isolasi PAE dimulai dengan memisahkan senyawa yang diinginkan dari lipid menggunakan ekstraksi pelarut bertingkat dengan metanol dan n-heksan. Analisa mass spectra dari fraksi pertama dan fraksi kedua metanol menunjukkan kandungan PAE sebesar 60% dan 6% pada tiap fraksi. Fraksi heksan tidak mengandung PAE. PAE yang terkandung pada fraksi metanol diisolasi lebih lanjut dari asam lemak menggunakan liquid column chromatography dengan n-heksan – etil asetat sebagai mobile phase. Bis- 2ethylhexyl phthalate diidentifikasi pada ketiga fraksi sesuai dengan hasil analisa GC-MS. Fraksi pertama diambil pada kondisi mobile phase 5% etil asetat, sedangkan fraksi kedua merupakan campuran 5% etil asetat dan 10% etil asetat. Fraksi ketiga diambil pada kondisi mobile phase 10% etil asetat mengandung PAE sebesar 98%. Fraksi keempat merupakan campuran 10% dan 15% mobile phase dan mengandung PAE sebesar 97%. Akhirnya, kandungan PAE pada fraksi metanol sebesar 58%. Dari hasil analisa, dapat disimpulkan bahwa mobile phase yang optimum untuk kromatografi adalah 10- 15% etil asetat dalam n-heksan.

  12. A facile one pot strategy for the synthesis of well-defined polyacrylates from acrylic acid via RAFT polymerization.

    Li, Qianbiao; Wang, Taisheng; Dai, Jingwen; Ma, Chao; Jin, Bangkun; Bai, Ruke

    2014-03-28

    A facile one pot strategy for the preparation of linear and hyperbranched polyacrylates has been successfully developed by the combination of in situ esterification of acrylic acid with halogenated compounds promoted by 1,1,3,3-tetramethylguanidine (TMG) and RAFT polymerization. PMID:24534953

  13. Structure-function properties of amylose-oleic acid inclusion complexes grafted with poly(methyl acrylate)

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  14. Comparison of various models to describe the charge-pH dependence of poly(acrylic acid)

    Lützenkirchen, J.; Male, van J.; Leermakers, F.A.M.; Sjöberg, S.

    2011-01-01

    The charge of poly(acrylic acid) (PAA) in dilute aqueous solutions depends on pH and ionic strength. We report new experimental data and test various models to describe the deprotonation of PAA in three different NaCl concentrations. A simple surface complexation approach is found to be very success

  15. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  16. 40 CFR 721.10142 - Oxabicycloalkane carboxylic acid alkanediyl ester (generic).

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxabicycloalkane carboxylic acid... New Uses for Specific Chemical Substances § 721.10142 Oxabicycloalkane carboxylic acid alkanediyl... substance identified generically as oxabicycloalkane carboxylic acid alkanediyl ester (PMN P-06-199)...

  17. Selective synthesis of thiodiglycol dicarboxylic acid esters via -TsOH/C-catalysed direct esterification

    Dahong Jiang; Min Huang

    2012-09-01

    The esterification of thiodiglycol and long alkyl-chain carboxylic acids is reported. Reaction of thiodiglycol with carboxylic acid via -TsOH/C-catalysed direct esterification afforded thiodiglycol dicarboxylic acid esters in good yields and chemoselectivity. The use of immobilized -TsOH on activated carbon as catalyst is crucial for the transformation.

  18. Preparation of fatty acid methyl esters from Osage orange (Maclura pomifera) oil and evaluation as biodiesel

    Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...

  19. Adsorptive features of poli(acrylic acid-co-hydroxyapatite) composite for UO22+

    The copolymer of poli(acrylic acid-co-hydroxyapatite) (PAA-HAP) was prepared and characterized by means of FT-IR and SEM analysis. The adsorptive features of PAA-HAP for UO22+ was studied as a function of pH, adsorbent dosage, initial metal ion concentration and temperature. The adsorption isotherm data fitted well to the Langmuir isotherm model. The adsorbed UO22+ can be desorbed effectively by 0.1 M HNO3. The maximum adsorption capacities for UO22+ of the dry PAA-HAP was 1.86 x 10-4 mol/g. The high adsorption capacity and kinetics results indicate that PAA-HAP can be used as an alternative adsorbent to remove UO22+ from aqueous solution. (author)

  20. Cascade enzymatic catalysis in poly(acrylic acid) brushes-nanospherical silica for glucose detection.

    Zhao, Yan; Wang, Ying; Zhang, Xiaobin; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-08-01

    The ultrasensitive monitoring of glucose with a fast and accurate method is significant in potential therapeutics and optimizes protein biosynthesis. Incorporation of enzyme into matrix is considered as promising candidates for constructing highly sensitive glucose-responsive systems. In this study, three-dimensional poly(acrylic acid) brushes-nanospherical silica (PAA-nano silica) with high amplification capability and stability were used to covalently immobilize bienzymes for cascade enzymatic catalysis. The major advantages of PAA-nano silica-bienzyme co-incorporation is that the enzymes are proximity distribution, and such close confinement both minimized the diffusion of intermediates among the enzymes in the consecutive reaction and improve the utilization efficiency of enzymes, thereby enhancing the overall reaction efficiency and specificity. Thus, this present bienzymatic biosensor shows robust signal amplification and ultrasensitivity of glucose-responsive properties with a detection limit of 0.04μM. PMID:27216683

  1. Study on swelling behaviour of hydrogel based on acrylic acid and pectin from dragon fruit

    Abdullah, Mohd Fadzlanor; Lazim, Azwani Mat

    2014-09-01

    Biocompatible hydrogel based on acrylic acid (AA) and pectin was synthesized using gamma irradiation technique. AA was grafted onto pectin backbone that was extracted from dragon fruit under pH 3.5 and extracts and ethanol ratios (ER) 1:0.5. The optimum hydrogel system with high swelling capacity was obtained by varying the dose of radiation and ratio of pectin:AA. FTIR-ATR spectroscopy was used to verify the interaction while thermal properties were analyzed by TGA and DSC. Swelling studies was carried out in aqueous solutions with different pH values as to determine the pH sensitivity. The results show that the hydrogel with a ratio of 2:3 (pectin:AA) and 30 kGy radiation dose has the highest swelling properties at pH of 10.

  2. Grafting of acrylic acid onto polypropylene films irradiated with argon ions

    Polypropylene (PP) foils were irradiated with 100 keV energy Argon ions at different fluences ranging from 1012 up to 2 x 1015 cm-2 and then grafted with acrylic acid (AA). The grafting yield was measured by weight difference and the structural changes on the films were analysed using Fourier transform infrared spectroscopy (FTIR). Different parameters that determined the grafting process such us fluence, grafting time and monomer concentration were analysed. The grafting reached an optimum value at 79% in aqueous solution at 30 min grafting time. The grafting yield as a function of the ion fluence plot, presented a maximum value, as previously found in a study of heavy beam on polymers

  3. Poly-Acrylic Acid Derivatives as Diesel Flow Improver for Paraffin-Based Daqing Diesel

    Cuiyu Jiang; Ming Xu; Xiaoli Xi; Panlun Qi; Hongyan Shang

    2006-01-01

    Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR,-COOH,-CONHR, and -COO-NH3+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0# diesel by 6-7 ℃.

  4. Michael-type addition of azoles of broad-scale acidity to methyl acrylate

    Krzysztof Z. Walczak

    2011-02-01

    Full Text Available An optimisation of Michael-type addition of azole derivatives of broad-scale acidity – ranging from 5.20 to 15.00 pKa units – namely 4-nitropyrazole, 3,5-dimethyl-4-nitropyrazole, 4(5-nitroimidazole, 4,5-diphenylimidazole, 4,5-dicyanoimidazole, 2-methyl-4(5-nitroimidazole, 5(4-bromo-2-methyl-4(5-nitroimidazole and 3-nitro-1,2,4-triazole to methyl acrylate as an acceptor was carried out. The optimisation process involved the use of an appropriate basic catalyst (DBU, DIPEA, NaOH, NaH, TEDA, a donor/base/acceptor ratio and the reaction temperature. The reactions were performed in DMF as solvent. Target Michael adducts were obtained in medium to excellent yields. Importantly, for imidazole and 1,2,4-triazole derivatives, no corresponding regioisomers were obtained.

  5. Thermal degradation of biopolymer binders: the example of starch-poly(acrylic acid

    B. Grabowska

    2010-01-01

    Full Text Available To characterise a polymer, it is of fundamental importance to determine its parameters, like the temperatures of destruction, vitrification, melting point, specific mass losses or polymorphic transformations, which frequently determine the quality of the product and its applications. Thermal analyses were conducted of samples of a biopolymer binder: a starch-poly(acrylic acid composition and a moulding sand with a biopolymer binder previously hardened with microwaves. In order to determine the thermal stability of the examined samples by determining the destruction temperature and the thermal effects of transformations taking place during heating, FTIR spectroscopy and thermal analysis (DSC, DTG, TG methods were used. In addition, volatile products of degradation were analysed using the thermogravimetry (TG method coupled online with mass spectrometry (MS. These examinations were also aimed at identifying the changes that can take place in the moulding sand when it comes into contact with liquid metal.

  6. Property and AFM analysis of copolymer from konjac graft acrylic acid by irradiation

    The water absorption property and construction of konjac glucomannon, copolymer and regenerated copolymer demonstrated by Atomic Force Microscopy(AFM)was studied in this paper. Result showed that the copolymer was 887.8 times distilled water and the water absorption of konjac glucomannan was only 60 times. The biggest water absorption speed of distilled water was 64.7 g.g-1. min-1.The water reserving percent was 92% at room temperature after 24 h from fully water absorbing.The largest second tap water absorption was 366 times which was higher than the first. The AFM images indicated konjac grafts acrylic acid and hydrophilic sturcture comes into being. During the course of regeneration the dimensional sturcture of the copolymer was changed to more regularly.So the water absorption of copolymer was higher than konjac and regenerater's was higher than copolymer. (authors)

  7. Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties

    Combining the intriguing optical properties of gold nanoparticles with the inherent physical and dynamic properties of polymers can give rise to interesting hybrid nanomaterials. In this study, we report the synthesis of poly(acrylic acid) (PAA)-capped gold nanoparticles. The polyelectrolyte-wrapped gold nanoparticles were fully characterized and studied via a combination of techniques, i.e. UV-vis and infrared spectroscopy, dark field optical microscopy, SEM imaging, dynamic light scattering and zeta potential measurements. Although PAA-capped nanoparticles have been previously reported, this study revealed some interesting aspects of the colloidal stability and morphological change of the polymer coating on the nanoparticle surface in an electrolytic environment, at various pH values and at different temperatures.

  8. Dielectric properties of solution-grown-undoped and acrylic-acid-doped ethyl cellulose

    P K Khare; Sandeep K Jain

    2000-02-01

    Dielectric capacities and losses were measured, in the temperature (50–170°C) and frequency (01–100 kHz range), for undoped and acrylic acid (AA) doped ethyl cellulose (EC) films (thickness about 20 m) with progressive increase in the concentration of dopant in the polymer matrix. The variation of capacity with temperature is attributed to thermal expansion in the lower temperature region to the orientation of dipolar molecules in the neighbourhood of glass transition temperature () and random thermal motion of molecules above . The dielectric losses exhibit a broad peak. Doping with AA is found to affect the magnitude and position of the peak. AA is found to have a two-fold action. Firstly, it enhances the chain mobility and secondly, it increases the dielectric loss by forming charge transfer complexes.

  9. Superabsorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch. Chapter 18

    Superabsorbent was synthesized by radiation induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage, and germination energy were also determined in order to evaluate the possibility of superabsorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by the Fourier transform infrared spectroscopy (FTIR). Results indicated that the sand mixed with 0.1% wt superabsorbent could absorb more water than the sand without superabsorbent. The germination energy of corn seeds mixed with 0.5% superabsorbent was obviously higher than those without superabsorbent. These experimental results showed that the superabsorbent has considerable effects on seed germination and the growth of young plants. (author)

  10. Grafting of acrylic acid on etched latent tracks induced by swift heavy ions on polypropylene films

    In order to continue with a systematic study that include different polymers and monomers, the residual active sites produced by heavy ion beams, that remain after the etching process, were used to start the grafting process. To produce tracks, foils of polypropylene (PP) were irradiated with 208Pb of 25.62 MeV/n. Then, these were etched and grafted with acrylic acid (AA) monomers. Experimental curves of grafting yield as a function of grafting time with the etching time as a parameter were measured. Also, the grating yield as a function of the fluence and etching time was obtained. In addition, the permeation of solutions, with different pH, through PP grafted foils was measured

  11. 混合溶剂法合成酯基锡(甲酯)及其对PVC的热稳定性%Synthesis of Ester-tin(methyl acrylate) by Mixing Solvent and its Effect on the Thermal Stability of PVC

    张书华; 刘波; 李洪森; 张娅娅; 朱晓鹰; 唐家玲; 陈砾

    2011-01-01

    Ester-tin(methyl acrylate) was synthesized by mixing solvent method with phase transfer catalyst The results show that the optimal reaction time is 5~6 h, the optimal reaction temperature is 53~58℃ and the concentration of Na2CO3aq. Used is 20%. The product synthesized by the proposed above method can still keep clear within 120 days after being synthesized; however, the same ester-tin(methyl acrylate) synthesized by the conventional method of using NaHCO3 will occur precipitation and sand out an odious small within seven days after being synthesized. The ester-tin(methyl acrylate) synthesized by the proposed new method was characterized by IR and 1H-NMR, and the results show that the product characterized has the similar IR spectrum and chemical shift of the main functional group as those of the ester-tin(methyl acrylate) synthesized by the conventional method of using NaHCO3. The thermal degradation of ester-tin(methyl acrylate)/PVC was investigated by TG/DTG in the flowing atmosphere of air at 50~650℃ and was compared with that of methyltin mercaptively/PVC. The results show that the ester-tin(methyl acrylate) exhibits a better primary stability but little poorer initial coloration characteristics than methyltin mercaptide. When temperature is over 300℃, the degradation speed of ester-tin(methyl acrylate)/PVC becomes slower, and the mass loss percentage is lower too. The dynamic thermal stability was tested on a plasticator and Color Quest XE. The transparency of ester-tin(methyl acrylate)/PVC only decreases from 7.54 to 8.95 after processing over 15 min at 180~183℃. These test results indicate that the ester-tin(methyl acrylate) can help the PVC to have not only an excellent transparency but also a good processing stability. The ester-tin(methyl acrylate) synthesis method proposed solves the key problem in ester-tin synthesis and its product can be used to produce transparent PVC goods.%采用混合溶剂法和相转移催化剂合成酯基锡(甲酯).

  12. Preparation of porous chitosan-poly(acrylic acid)-calcium phosphate hybrid nanoparticles via mineralization

    CHEN ChangJing; DENG Yu; YAN ErYun; HU Yong; JIANG XiQun

    2009-01-01

    In this work,the preparation of chitosan-poly(acrylic acid)-calcium phosphate hybrid nanoparticles (CS-PAA-CaP NP) based on the mineralization of calcium phosphate (CAP) on the surface of chitosan-poly (acrylic acid) nanoparticles (CS-PAA NPs) was reported. CS-PAA-CaP NPs were achieved by directly adding ammonia to the aqueous solution of CS-PAA nanoparticles or by thermal decomposition of urea in the aqueous solution of CS-PAA nanoparticles,resulting in the mineralization of CaP on the surface of CS-PAA NPs. Through these two routes,especially using urea as a pH-regulator,the precipitation of CS-PAA NPs,a common occurrence in basic environment,was avoided. The size,morphology and ingredient of CS-PAA-CaP hybrid nanoparticles were characterized by dynamic light scattering (DLS),transmission electron microscope (TEM),scanning electron microscope (SEM),thermogravimetry analysis (TGA) and X-ray diffractometer (XRD). When urea was used as the pH regulator to facilitate the mineralization during the thermal urea decomposition procedure,regular CS-PAA-CaP hybrid nanoparticles with a porosity-structural CaP shells and 400-600 nm size were obtained. TGA result revealed that the hybrid NPs contained approximately 23% inorganic component,which was consistent with the ratio of starting materials. The XRD spectra of hybrid nanoparticles indicated that dicalcium phosphate (DCP:CaHPO4) crystal was a dominant component of mineralization.The porous structure of the CS-PAA-CaP hybrid NPs might be greatly useful in pharmaceutical and other medical applications.

  13. Fluorescence and Judd-Ofelt analysis of rare earth complexes with maleic anhydride and acrylic acid

    WEN Shipeng; ZHANG Xiaoping; HU Shui; ZHANG Liqun; LIU Li

    2008-01-01

    Two kinds of Eu-complexes, Eu(TTA)2(Phen)(AA) and Eu(TTA)2(Phen)(MA) (HTFA=2-Thenoyltrifluoroacetone, Phen=1,10-phenanthroline, AA=acrylic acid, MA=Maleic anhydride), which combined the excellent fluorescence properties of Eu(TTA)2(Phen)(H2O) and the reactivity of acrylic acid and maleic anhydride with radicals, were synthesized. The two complexes were characterized by elemental analysis, infrared (IR) spectra, and X-ray photoelectron spectroscopy (XPS). Based on the data shown from the fluorescent spectra of the Eu-MA and Eu-AA complexes, the Ωλ (λ=2 and 4) experimental intensity parameters were calculated. The results demonstrated that the Ω2 intensity parameters for the two complexes were smaller than those for the Eu(TTA)2(Phen)(H2O) complex, indicating that a less symmetri-cal chemical environment existed in the complexes. It implied that the radiative efficiency of the 5D0 of these two complexes could be en-hanced by ligand of MA and AA, respectively. The luminescent lifetime of the Eu-AA (τ=7.26×10-4 s) or Eu-MA complex (τ=-8.12×10-4 s) was higher than that of the Eu(TTA)2(Phen)(H2O) complex, which was attributed to the substitution of the water molecule (H2O) in Eu(TTA)2(Phen)(H2O) by the MA or AA ligand.

  14. Corrosion Inhibitive Evaluation of an Environmentally Friendly Water-Base Acrylic Terpolymer on Mild Steel in Hydrochloric Acid Media

    Azghandi, Mojtaba Vakili; Davoodi, Ali; Farzi, Gholam Ali; Kosari, Ali

    2013-12-01

    The corrosion inhibitive performance of an environmentally friendly water-base acrylic terpolymer [methyl methacrylate/Butyl Acrylate/Acrylic acid (ATP)] on mild steel in 1 M HCl was investigated by alternating current and direct current electrochemical techniques and the quantum chemical method. An efficiency of more than 97 pct was obtained with 0.8 mmol/L ATP. The increase in inhibitor concentration and immersion time has a positive effect, while the temperature influence is negligible on the inhibitor efficiency. The present terpolymer obeys the Langmuir isotherm, and thermodynamic calculation reveals a chemisorption type on the surface. Density functional calculations showed that the lone pairs of electrons of oxygen in the structure of three monomers are suitable sites to adsorb onto the metal surface. Finally, in the presence of ATP, a decrease in surface roughness and corrosion attacks was demonstrated by atomic force microscopy and optical microscopy examinations, respectively.

  15. Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition.

    Grabovac, Vjera; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-09-30

    The aim of the present study was to investigate the influence of molecular mass and thiol group content of poly(acrylic acid)-cysteine conjugates on the permeation of sulforhodamine 101 and penicillin G. acting as substrates for multidrug resistance-associated protein 2 efflux pump. Poly(acrylic acids) of 2 kDa, 100 kDa, 250 kDa, 450 kDa and 3000 kDa were conjugated with cysteine. The thiol group content of all these polymers was in the range from 343.3 ± 48.4 μmol/g to 450.3 ± 76.1 μmol/g. Transport studies were performed on rat small intestine mounted in Ussing-type chambers. Since 250 kDa poly(acrylic acid) showed the highest permeation enhancing effect, additionally thiolated 250 kDa polyacrylates displaying 157.2 μmol/g, 223.0 ± 18.1 and 355.9 μmol/g thiol groups were synthesized in order to investigate the influence of thiol group content on the permeation enhancement. The permeation of sulforhodamine was 3.93- and 3.85-fold improved using 250 kDa poly(acrylic acid)-cysteine conjugate exhibiting 355.9 ± 39.5 μmol/g and 223.0 ± 18.1 μmol/g thiol groups. Using the same conjugates the permeation of penicillin G was 1.70- and 1.59-fold improved, respectively. The study demonstrates that thiolated poly(acrylic acid) inhibits Mrp2 mediated transport and that the extent of inhibition depends on the molecular mass and degree of thiolation of the polymer. PMID:26238816

  16. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Isabel Bento; Teresa Duarte, M.; M. João M. Curto; Inês F. Antunes; Hélène Ramos; Fátima C. Teixeira

    2006-01-01

    A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2)nCO2R of different lengths (n = 0-6, 9, 10) are described.Nucleophilic substitution reactions on halo esters (X(CH2)nCO2R) by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultin...

  17. Enzymatic synthesis of oligo- and polysaccharide fatty acid esters

    Broek, van den L.A.M.; Boeriu, C.G.

    2013-01-01

    Amphiphilic oligo- and polysaccharides (e.g. polysaccharide alkyl or alkyl-aryl esters) form a new class of polymers with exceptional properties. They function as polymeric surfactants, whilst maintaining most of the properties of the starting polymeric material such as emulsifying, gelling, and fil

  18. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  19. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2015-12-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  20. pH-Responsive Behavior of Poly(acrylic acid) Brushes of Varying Thickness

    Yadav, Vivek; Robertson, Megan; Conrad, Jacinta

    2015-03-01

    We have investigated the pH-dependent response of polyelectrolyte brushes of varying thickness. Our model system consists of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized using a grafting-from approach at constant grafting density. As the polymer brush thickness increased, the brushes exhibited greater hysteresis in static water contact angle as a function of pH. We extracted the pKa of the polymer brushes from contact angle measurements. The relationship between the pKa and brush thickness depended on the order in which the brushes were exposed to solutions of varying pH: pKa decreased on increasing brush thickness when going from basic to acidic medium whereas pKa increased on increasing brush thickness when going from acidic to basic medium. We speculate that the origin of hysteresis can be explained by pH-dependent conformational changes in these polyelectrolyte brushes.

  1. Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    Medina-González, Yaocihuatl; De Caro, Pascale; Thiebaud-Roux, Sophie; Lacaze-Dufaure, Corinne

    2007-01-01

    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and ...

  2. Novel Approach: Tungsten Oxide Nanoparticle as a Catalyst for Malonic Acid Ester Synthesis via Ozonolysis

    Bilal A. Wasmi

    2014-01-01

    Full Text Available Malonic acid ester was synthesized via the one-step ozonolysis of palm olein. Malonic acid ester was spectroscopically characterized using gas chromatography mass spectroscopy (GC-MS. Tungsten oxide nanoparticles were used as the catalyst, which was characterized via X-ray powder diffraction (XRD and field emission scanning electron microscopy (FE-SEM. Tungsten oxide provided several advantages as a catalyst for the esterification malonic acid such as simple operation for a precise ozonation method, an excellent yield of approximately 10%, short reaction times of 2 h, and reusability due to its recyclability.

  3. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylphenoxypoly(oxyethylene)...

  4. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  5. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  6. 40 CFR 721.4097 - 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, methyl ester.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 7-Oxabicyclo heptane-3-carboxylic acid... Specific Chemical Substances § 721.4097 7-Oxabicyclo heptane-3-carboxylic acid, methyl ester. (a) Chemical...-oxabicyclo heptane-3-carboxylic acid, methyl ester (PMN P-98-101) is subject to reporting under this...

  7. Plasma Cholesterol Ester Fatty Acids: A New Biochemical Abnormality in Obstructive Jaundice

    Scriven, M. W.; Horrobin, D. F.; Puntis, M. C. A.

    1995-01-01

    Changes in fatty acid patterns may explain many of the observed abnormalities found in obstructive jaundice. This study looked at fatty acids in plasma cholesterol esters, in a group of patients with obstructive jaundice and a matched group of controls. Significant abnormalities were demonstrated, most importantly a fall in essential fatty acids, in the jaundiced group. Overall the saturation of this fraction, as assessed by double bond index, rose. The essential fatty acids ar...

  8. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. - Highlights: • Dispersed Ag/PAA NPs with small size were synthesized. • Ag/PAA NPs exhibited excellent antimicrobial properties. • Interaction mechanism between Ag/PAA NPs and bacteria was verified

  9. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities

    Ni, Zhihui [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Wang, Zhihua [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Sun, Lei, E-mail: sunlei@henu.edu.cn [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Binjie [Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng 475004 (China); Zhao, Yanbao [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. - Highlights: • Dispersed Ag/PAA NPs with small size were synthesized. • Ag/PAA NPs exhibited excellent antimicrobial properties. • Interaction mechanism between Ag/PAA NPs and bacteria was verified.

  10. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  11. Synthesis and Characterization of Esters Derived from Ricinoleic Acid and Evaluation of their Low Temperature Property

    A series of ester compounds derived from ricinoleic acid to be used as bio lubricants base stock have been synthesized. The resulting products were confirmed by FTIR and NMR analyses. The synthesis was carried out in three stages: epoxidation of ricinoleic acid; synthesis of 10,12-dihydroxy-9-acyloxy stearic acid from epoxidized ricinoleic acid with various fatty acids and esterification of the acyloxy stearic acid products with octanol to yield octyl-10,12-dihydroxy-9-acyloxy stearate. The viscosities, flash points and pour points (PP) behavior of the products were measured. The resulting esters had an increased in molar weight and viscosity and decreased in pour points as compared to ricinoleic acid. (author)

  12. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  13. Synthesis of poly(acrylic acid-maleic acid)SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions

    A novel composite material of SiO2-Al2O3 based on poly(acrylic acid-maleic acid) was synthesized by irradiated with 60Co γ-rays at a dose of 25 KGy. The composite material was characterized using FTIR, TGA and BET surface area. Adsorption of 134Cs from HNO3 was studied as a function of contact time, temperature and concentration of Cs. Sorption behavior of 134Cs in different concentration of HCl, HNO3, acetic acid, ascorbic acid, citric acid, NaCl and NaNO3 solutions has been investigated. It can be concluded that the P(AA-MA)/SiO2/Al2O3 is promising adsorbent for Cs removal from acidic liquid radioactive waste. (author)

  14. The effect of unsaturated fatty acid and triglyceride oil addition on the mechanical and antibacterial properties of acrylic bone cements.

    Persson, Cecilia; Robert, Elise; Carlsson, Elin; Robo, Céline; López, Alejandro; Godoy-Gallardo, Maria; Ginebra, Maria-Pau; Engqvist, Håkan

    2015-09-01

    Acrylic bone cements have an elastic modulus several times higher than the surrounding trabecular bone. This has been hypothesized to contribute to certain clinical complications. There are indications that the addition of specific fatty acids and triglyceride oils may reduce the elastic modulus of these types of cements. Some of these additives also appear to have inherent antibiotic properties, although this has never been evaluated in bone cements. In this study, several types of fatty acids and triglyceride oils were evaluated for use in acrylic bone cements. Their mechanical properties were evaluated under uniaxial compression testing and selected cements were then further characterized in terms of microstructure, handling and antibacterial properties using scanning electron microscopy, polymerization temperature measurements, agar diffusion tests and bactericidal activity assays of cement extracts. It was found that any of the evaluated fatty acids or triglyceride oils could be used to tailor the stiffness of acrylic bone cements, although at varying concentrations, which also depended on the type of commercial base cement used. In particular, the addition of very small amounts of linoleic acid (agar diffusion test as well as demonstrating 100% bactericidal activity against the same strain. PMID:25876889

  15. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. PMID:24433897

  16. Synthesis of Hydrogel Based on Nata De Coco and Acrylic Acid as Co-Monomer Using Free Radical Polymerization Method

    Nata de Coco or known as bacterial cellulose is produced by Acetobacter xylinum where it is more stable than plant cellulose. Moreover, it also provides outstanding advantages to be developed as an environmental responsive hydrogels. In this study the bacterial cellulose-g-acrylic acid hydrogel was synthesized by using a free radical polymerization method. Ammonium persulfate (APS) was used to initiate the reaction, while N,N'-methylene bis acrylamide has been used as the crosslinking agent. In order to test the hydrogel respond, swelling tests were made at different pH. Furthermore, ATR-FTIR analysis was used to determine the interactions between bacterial cellulose and acrylic acid. Finally, the determination of glass transition (Tg) was made by using DSC. (author)

  17. Electron Beam Synthesis and Characterization of Acrylamide/Acrylic Acid Hydrogels Using Trimethylolpropane Trimethacrylate as Cross-Linker

    Gabriela Craciun

    2016-01-01

    Full Text Available The purpose of the paper is to present the synthesis and characterization of hydrogels prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using potassium persulfate as initiator and trimethylolpropane trimethacrylate as cross-linker, via the radiation technique. The samples were subjected to electron beam treatment in the dose range of 2 to 4 kGy and the influence of the absorbed dose and amount of cross-linker on the swelling properties, diffusion coefficient, and network parameters of hydrogels was investigated. A possible reaction mechanism for acrylamide/acrylic acid/trimethylolpropane trimethacrylate hydrogels was also suggested. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy.

  18. Low-temperature side-chain cleavage and decarboxylation of polythiophene esters by acid catalysis

    Søndergaard, Roar; Norrman, Kion; Krebs, Frederik C

    2012-01-01

    substituents have been examined by TGA‐MS using different sulphonic acids. A substantial lowering of the cleavage temperature is observed, and the ester cleavage can even be performed in situ on roll‐to‐roll‐coated films on polyethylene terephthalate (PET). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A......Solubility switching of polymers is very useful in thin layer processing of conjugated polymers, as it allows for multilayer processing and increases the stability of the polymer. Acid catalyzed thermocleavage of ester groups from thiophene polymers carrying primary, secondary, and tertiary......: Polym Chem, 2012...

  19. The occurrence of 2-hydroxy-6-methoxybenzoic acid methyl ester in Securidaca longepedunculata Fresen root bark

    Lognay G.

    2000-01-01

    Full Text Available As part of our ongoing search for natural fumigants from Senegalese plants, we have investigated Securicicidaca longepedunculata root barks and demonstrated that 2-hydroxy-benzoic acid methyl ester (methyl salicylate, I is responsible of their biocide effect against stored grain insects. A second unknown apparented product, II has been systematically observed in all analyzed samples. The present paper describes the identification of this molecule. The analytical investigations including GCMS, GLC and 1H-NMR. spectrometry led to the conclusion that II corresponds to the 2-hydroxy-6-methoxybenzoic acid methyl ester.

  20. The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative.

    Dowling, Adam H

    2011-06-01

    The aim was to investigate the influence of number average molecular weight and concentration of the poly(acrylic) acid (PAA) liquid constituent of a GI restorative on the compressive fracture strength (σ) and modulus (E).

  1. Structural Parameters and Swelling Behavior of pH Sensitive Poly(acrylamide-co-acrylic acid) Hydrogels

    Thakur, A; Wanchoo, R. K.; Singh, P

    2011-01-01

    In the present work, hydrogels based on acrylamide (AAm) and acrylic acid (AAc), crosslinked with N,N’-methylenebisacrylamide (MBAAm) were prepared by free radical polymerization in solution. The effect of initial AAm/AAc mole ratio and nominal crosslinking ratio (moles of crosslinking agent/moles of polymer repeat unit) on the dynamic and equilibrium swelling behaviour of hydrogels was investigated. Hydrogels were characterized by the polymer volume fraction in the swollen state (ν2,s ), the...

  2. Poly(acrylic acid) interpolymer complexation: use of a fluorescence time resolved anisotropy as a poly(acrylamide) probe

    Swift, T.; Swanson, L; Rimmer, S.

    2014-01-01

    A low concentration poly(acrylamide) sensor has been developed which uses the segmental mobility of another polymer probe with a covalently attached fluorescent marker. Interpolymer complexation with poly(acrylic acid) leads to reduced segmental mobility which can be used to determine the concentration of polymer in solution. This technique could be useful in detecting the runoff of polymer dispersants and flocculants in fresh water supplies following water purification processes

  3. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors.

    Yin, Ming-Jie; Yao, Mian; Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Wai, Ping-Kong A

    2016-02-17

    Poly(acrylic acid) (PAA), as a highly ionic conductive hydrogel, can reversibly swell/deswell according to the surrounding pH conditions. An optical maskless -stereolithography technology is presented to rapidly 3D pattern PAA for device fabrication. A highly sensitive miniature pH sensor is demonstrated by in situ printing of periodic PAA micropads on a tapered optical microfiber. PMID:26643765

  4. Improvement in the behavior of bromelain coupled to pNIPAm polymers containing acrylamide or acrylic acid

    Rubab Mahmood

    2014-01-01

    Bromelain was coupled to N-isopropyl acrylamide (NIPAm)polymers, synthesized using NIPAm and various concentrations of acrylamide (Ac) or acrylic acid (AAc). Incorporation of Ac/AAcinto the polymer increased the LCST (lower critical solutiontemperature) in a concentration dependent manner but AAc wasmore effective in this regard; the LCST rose to 40°C when 6 percent AAc was used. Incorporation of Ac/AAc increased the coupling of enzyme to the polymer and the η (effectiveness factor) o...

  5. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni

    In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)

  6. Experimental Study and Numerical Solution of Poly Acrylic Acid Supported Magnetite Nanoparticles Transport in a One-Dimensional Porous Media

    M. Golzar; S. F. Saghravani; Azhdari Moghaddam, M.

    2014-01-01

    Recently, iron nanoparticles have attracted more attention for groundwater remediation due to its potential to reduce subsurface contaminants such as PCBs, chlorinated solvents, and heavy metals. The magnetic properties of iron nanoparticles cause to attach to each other and form bigger colloid particles of iron nanoparticles with more rapid sedimentation rate in aqueous environment. Using the surfactants such as poly acrylic acid (PAA) prevents iron nanoparticles from forming large flocs tha...

  7. Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis

    Nanogels are sub-micron size, water-swellable crosslinked structures of hydrophilic polymers. In this work a radiation-based synthesis method that has been previously tested for neutral polymers is applied for production of nanogels of a synthetic polyelectrolyte--poly(acrylic acid) (PAA). In this technique dilute, deoxygenated PAA solution (pH 2) circulating in a closed loop is subjected to pulse irradiation with fast electrons. In each pulse many tens of radicals are instantaneously formed on every macromolecule. One of the major reaction paths of these radicals is intramolecular recombination leading to the formation of nanogels. It is demonstrated that radiation-induced reactions in our system show a typical feature of intramolecular crosslinking, i.e. a strong decrease in dimensions of a polymer coil without an accompanying decrease in molecular weight. In accordance with expectations based on earlier observations on non-polar polymers, intramolecular recombination of PAA-derived radicals proceeds according to non-classical kinetics. A model of non-homogeneous kinetics with time-dependent rate constant has been applied to describe this behaviour and the relationship between kinetic parameters and initial average number of radicals per chain is briefly discussed. The weight-average molecular weight of the products is influenced by side reactions, mainly degradation (chain breakage) and intermolecular crosslinking

  8. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30–500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations

  9. Development of Graft Copolymer Flocculant Based on Acrylamide and Acrylic Acid for the dewatering of coal

    Most coal preparation processes were carried out in water medium. The water content of coal product has a negative impact on handling and specific energy value. The moisture content may be attributed to the proportion of fine coal, which presents the greatest dewatering problem. A novel polymeric flocculant has been developed by graft copolymerization of acrylamide (AAm) with acrylic acid (AAc) using gamma irradiation technique. The grafted copol621621ymer P(AAm/AAc) was characterized by Fourier-transform infrared spectroscopy (FTIR), and thermo-gravimetric analysis (TGA). The effects of reaction parameters, such as total absorbed dose, and monomer concentration on grafting yield were investigated. The flocculation performance of the graft copolymer P(AAm/AAc) was investigated in coal suspension. It was observed that the grafting ratio was one of the key factors for the flocculating effects. The copolymers with various grafting ratios showed different flocculating properties. It was found that as the grafting ratio increased, the flocculating effect also increased. The flocculation performance of the grafted copolymer was better than that of the commercial flocculant, poly-acrylamide (Magnafloc 1011).

  10. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Xiang, Aishuang [Princeton University, Chemical and Biological Engineering Department (United States); Yan, Weile [Texas Tech University, Civil and Environmental Engineering (United States); Koel, Bruce E., E-mail: bkoel@princeton.edu [Princeton University, Chemical and Biological Engineering Department (United States); Jaffe, Peter R., E-mail: jaffe@princeton.edu [Princeton University, Civil and Environmental Engineering Department (United States)

    2013-07-15

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.

  11. Carboxymethyl starch cross-linked by electron beam radiation in presence of acrylic acid sensitizer

    Carboxymethyl starch (CMS) can be cross-linked by electron beam radiation to form a biocompatible and environment-friendly hydrogel at a high absorbed dose and a condensed CMS concentration. Acrylic acid (AAc) can be used as a sensitizer in order to reduce the absorbed doses to an acceptable certain level. At an absorbed dose of 3-4 kGy, the gel content of crosslinked CMS can be obtained about 50% with 5% (w/w) AAc concentration used. The compressive strength of CMS samples increased with increasing their cross-linked densities due to raising absorbed doses. The swelling ratio of cross-linked CMS was also attainable at a maximum of 50 times in the distilled water. The enzymatic degradation of cross-linked CMS was carried out in acetate buffer pH 4.6 with 0.1% α-amylase enzymatic solution incubated at 40℃ for 6 h. The crosslinked CMS samples were degraded slower than uncrosslinked CMS ones. The results indicated that the highly cross-linked CMS was almost fully degradable when the enzymatic hydrolysis was performed during 6 h. The FT IR spectra of cross-linked CMS in the presence of AAc were examined to observe the carboxyl group of AAc in the structure of cross-linked CMS. The hydrophilic of cross-linked CMS surface was determined by a contact-angle analysis. (authors)

  12. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    Lu, Ping; Hsieh, You-Lo

    2009-10-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  13. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  14. Synthesis and characterization of polycaprolactone/acrylic acid (PCL/AA) hydrogel for controlled drug delivery

    Nazar Mohammad Ranjha; Jahanzeb Mudassir; Sajid Majeed

    2011-12-01

    In the present work biodegradable pH-sensitive polycaprolactone/acrylic acid (PCL/AA) hydrogels have been developed using ethylene glycol dimethacrylate (EGDMA) as a cross-linker and benzoyl peroxide as initiator. For these prepared hydrogels swelling studies, sol–gel fraction analysis and porosity measurements were performed. Results show that swelling of the hydrogels decreases on increasing the concentration of PCL and EGDMA, however swelling of hydrogels increases on increasing the concentration of AA. Results of sol–gel fraction analysis show that gel fraction increases on increasing concentration of monomer AA, polymer PCL as well as cross-linker EGDMA. As far as porosity is concerned, it increases on increasing the concentration of AA and PCL while porosity decreases on increasing the concentration of EGDMA. Hydrogels were characterized by measuring diffusion coefficient () and equilibrium water content (EWC). Network formation, morphology and crystallinity of PCL/AA hydrogels were investigated using FTIR, SEM and XRD, respectively. Tramadol hydrochloride was loaded as model drug and its release pattern was analysed using various kinetic models like zero order, first order, Higuchi and Peppas. Results indicated that most of the samples followed non-Fickian release mechanism.

  15. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation

    The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 x 10-11 mol/cm2) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm2. The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108o to 41o and the surface free energy increased from 22.1 x 10-5 to 62.1 x 10-5 N cm-1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film

  16. Thermal Properties of Poly(allylamine hydrochloride)/Poly(acrylic acid) Layer-by-Layer Assemblies

    Lutkenhaus, Jodie; Shao, Lin

    2010-03-01

    Layer-by-layer (LbL) assemblies are promising for global energy and health applications, but their materials properties are not well understood. LbL assemblies are created from the alternate adsorption of oppositely charged species from solution to a substrate. Particularly, little is known about the thermal properties of LbL assemblies because the supporting substrate impedes characterization. It is not initially clear if electrostatic LbL assemblies possess a glass transition temperature, if they are rubbery or glassy, or if their heat capacity is comparable to their homopolymer constituents. Here, we isolate large areas of LbL assemblies from a low-energy substrate, which facilitates thermal characterization via modulated differential scanning calorimetry (MDSC) and thermal gravimetric analysis (TGA). LbL assemblies of poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) were deposited onto hydrophobic substrates, and subsequently isolated. Results highlight that PAH/PAA LbL films are glassy, and have low mobility because of the high density of ion pair crosslinks. The techniques presented here are general, and can be applied to any LbL film.

  17. Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption

    Radiation-induced grafting of acrylic acid onto alginate/chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of Co-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted and un-grafted beads was performed by FTIR spectroscopy and the swelling measurements at different pHs was studied. It is found that as the pH value increases the swelling degree increases up to pH 6 but with further increase in pH value the swelling decreases. Also, it is noticed that the grafting yield increased with increase the irradiation dose. Both un-grafted and grafted alginate/chitosan beads were examined as sorbents for the removal of Pb ions from aqueous solutions. The sorption behavior of the sorbents was examined through pH, and equilibrium measurements. Grafted alginate/chitosan beads presented higher sorption capacity for Pb ions than un-grafted beads. (author)

  18. Synthesis, structure and phase transition property of acrylic acid grafted paraffin

    Zhao, Xiaowen; Liu, Pengfei; Ye, Lin

    2014-05-01

    Polar monomer acrylic acid (AA) was used to modify paraffin in order to improve the latent heat of paraffin as phase change materials. The composition and sequence structure of the grafted products were characterized by FTIR, 13C NMR, 1H NMR and GPC analysis, and the thermal properties of paraffin-g-AA were investigated. It was found that AA was confirmed to be grafted onto the molecular chain of paraffin successfully. The mechanism of free radical grafting of AA may be only monomeric grafts. At low grafting ratio, the structure B can be mainly formed as a result of the radical coupling termination; while at the high grafting ratio, structure A was the primary structure as a result of the radical chain growth process. The number-average molecular weight of the grafted samples increased at first but leveled off with increasing grafting ratio, while the weight-average molecular weight increased gradually. The latent heat capacity of the grafted paraffin can be improved obviously at low grafting ratio due to the formation of structure B.

  19. Study on Radiated Polymerization of Acrylic Acid on Montmorillonite and Bentonite Used as Bioactivity Carriers

    The radiated polymerization of acrylic acid (AAc) on bentonite (BT) and montmorillonite (MMT) having structured silicate layers to produce hybrid materials were investigated. AAc concentrations of 10 and 40 % w/w were used to polymerize with MMT and BT at the absorbed doses of 3.6 and 6.4 kGy, respectively. The formed PAAc concentration of MMT-PAAc was 68 % and 40 % for BT-PAAc. The results of X-ray diffraction patterns were indicated that, the basal distances (d001) of MMT and BT after polymerization were ≈ 15 Å compared with BT was 12.17 Å and MMT did not appear the d001 peak. The cellulase immobilized yields of MMT-AAc and BT-AAc were determined by Lowry method with values were of 40.6 % and 68.3 %, respectively. The cellulase activity of the immobilization samples were checked by diffusion the sample solutions on agar after that measure of diameter of CMC hydrolysis circles. The results indicated that, the immobilized cellulase samples still maintain enzymatic activity after three times reuse. (author)

  20. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV–vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity. - Highlights: • The characterization of zinc chloride containing PAA hydrogel was investigated. • The gel content increased with an increase in absorbed dose up to 75 kGy. • Finally, the zinc chloride based hydrogels have an antibacterial activity

  1. Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid.

    Lin, Chia-Lung; Lee, Chia-Fen; Chiu, Wen-Yen

    2005-11-15

    Ferrofluids, which are stable dispersions of magnetic particles, behave as liquids that have strong magnetic properties. Nanoparticles of magnetite with a mean diameter of 10-15 nm, which are in the range of superparamagnetism, are usually prepared by the traditional method of co-precipitation from ferrous and ferric electrolyte solution. When diluted, the ferrofluid dispersions are not stable if anionic or cationic surfactants are used as the stabilizer. This work presents an efficient way to prepare a stable aqueous nanomagnetite dispersion. A stable ferrofluid containing Fe3O4 nanoparticles was synthesized via co-precipitation in the presence of poly(acrylic acid) oligomer. The mechanism, microstructure, and properties of the ferrofluid were investigated. The results indicate that the PAA oligomers promoted the nucleation and inhibited the growth of the magnetic iron oxide, and the average diameter of each individual Fe3O4 particle was smaller than 10 nm. In addition, the PAA oligomers provided both electrostatic and steric repulsion against particle aggregation, and the stability of dispersions could be controlled by adjusting the pH value of solution. A small amount of Fe2O3 was found in the nanoparticles but the superparamagnetic behavior of the nanoparticles was not affected. PMID:16009367

  2. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. PMID:27370745

  3. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  4. AFM Analysis of Copolymer From Konjac With Acrylic Acid by γ Irradiation

    The water absorption property and atomic force microscopy (AFM) analysis were studied to discover the relativity of water absorption and construction of original konjac powder, grafted copolymer and regenerator. The results show that the water absorption, speed and reserving percent of the grafted copolymer are affected by the size, the liquid ion concentration, the ambient temperature and water reserving time of the gel. At room temperature, the largest water absorption, water absorption speed and water reserving percent of grafted copolymer are 887 times, 64.7 g·g-1·min-1 and 92% in distilled water and 273 times, 27.6 g·g-1·min-1 and 84% in tap water respectively. The AFM images of grafted copolymer indicate that konjac grafts acrylic acid and then hydrophilic structure comes into being. During the course of regeneration the three dimensional structure of the copolymer was changed to more regularly. So the water absorption of copolymer is higher than that of konjac, and the water absorption of regenerator is 360 times, higher than that of copolymer. (authors)

  5. Synthesis and characterization of acrylamide-acrylic acid hydrogels and adsorption of some textile dyes

    Acrylamide (AAm)-acrylic acid (AAc) hydrogels have been prepared at AAm initial compositions of 15%, 20% and 30%. AAm-AAc monomer mixtures have been irradiated in a 60Co-γ source at different doses and percent conversions have been determined gravimetrically. 100% conversion of monomers into hydrogels was achieved at 8 kGy dose. These hydrogels were swollen in distilled water at pH 3.03, 4.18, 4.68, 5.05, 5.30, 6.0, 7.0, 8.0. The results of swelling tests at pH 8.0 indicated that poly(AAm-AAc) hydrogels prepared from solution containing 15% (mol%) AAm showed maximum % swelling as 3000%. Poly(AAm-AAc) hydrogels have been considered for the removal of some textile dyes from aqueous solutions. Among the two common textile dyes tested, Janus Green B (JGB) has showed the highest adsorption capacity while Congo Red (CR) was not adsorbed by these hydrogels. Adsorption isotherms were constructed for JGB and poly(AAm/AAc) gel systems. It is concluded that cross-linked poly(AAm/AAc) hydrogels can be successfully used in the purification of waste water containing certain textile dyes

  6. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels.

    Ha, Heonjoo; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2015-03-25

    Graphene oxide (GO) aerogels, high porosity (>99%) low density (∼3-10 mg cm(-3)) porous materials with GO pore walls, are particularly attractive due to their lightweight, high surface area, and potential use in environmental remediation, superhydrophobic and superoleophilic materials, energy storage, etc. However, pure GO aerogels are generally weak and delicate which complicates their handling and potentially limits their commercial implementation. The focus of this work was to synthesize highly elastic, mechanically stable aerogels that are robust and easy to handle without substantially sacrificing their high porosity or low density. To overcome this challenge, a small amount of readily available and thermally cross-linkable poly(acrylic acid) (PAA) was intermixed with GO to enhance the mechanical integrity of the aerogel without disrupting other desirable characteristic properties. This method is a simple straightforward procedure that does not include multistep or complicated chemical reactions, and it produces aerogels with mass densities of about 4-6 mg cm(-3) and >99.6% porosity that can reversibly support up to 10,000 times their weight with full recovery of their original volume. Finally, pressure sensing capabilities were demonstrated and their oil absorption capacities were measured to be around 120 g oil per g aerogel(-1) which highlights their potential use in practical applications. PMID:25714662

  7. Removal of some basic dyes by poly (Vinyl Alcohol/ acrylic acid)Hydrogel

    A study has made on the preparation and properties of poly (vinyl alcohol/ acrylic acid) hydrogel for the purpose of removal of cationic dyes from aqueous solutions. The effect of dose and monomer concentration on the uptake property of the hydrogel toward dye was studied. The uptake of basic methylene blue-9 dye with PVA/AAc was studied by the batch adsorption technique. The effect of pH on the dye uptake was demonstrated to find out that the suitable pH for maximum uptake occurred at pH 5. It was observed that as the concentration of dye is increased the dye uptake decreased. Furthermore, the uptake of dye by hydrogels increased as the temperature was elevated. The recovery of dye adsorbed is possible by treating the hydrogel with 5% HCl. The results obtained suggested this hydrogel possessed good removal properties towards basic methylene blue-9 dye, and this suggests that such hydrogels could be acceptable for practical uses

  8. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions

    Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with γ-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834x10-6 and 1323x10-6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes

  9. Syntheses and Crystal Structures of Two Complexes with 3-(3-Pyridyl)acrylic Acid

    2005-01-01

    The reaction of 3-(3-pyridyl)acrylic acid (H(3-PYA)) with Co(NO3)2·6H2O or Complex 1 crystallizes in monoclinic, space group C2/c with a = 9.9473(12), b = 13.7227(16), c =14.7376(18) (A), β = 99.043(2)°, V = 1986.7(4) (A)3, Z = 4, Dc = 1.549 g/cm3, μ = 0.921 mm 1, F(000)= 964, R = 0.0786 and wR = 0.1443. Six types of hydrogen bonds and π-π packing interactions molecular architecture. Complex 2 crystallizes in monoclinic, space group P21/n with a =11.3630(16), b = 7.0346(10), c = 12.1365(18) (A), β = 112.545(3)°, V = 896.0(2) (A)3, Z = 2, Dc =1.997 g/cm3,μ = 0.785 mm-1, F(000) = 438, R = 0.0787 and wR = 0.1550. The discrete entity Mn(Ⅱ)(3-PYD)2(H2O)4 is extended into a 3-D supramolecular architecture by four kinds of hydrogen bonds.

  10. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  11. Graft copolymerization of N-maleoyl-N-phthaloyl-chitosan (MAPHCS) and acrylic acid via γ-ray irradiation

    Chitosan is a well-known abundant natural polymer with good biodegradability, biocompatibility and bioactivity. But its insolubility in common organic solvents of chitosan have hindered its utilization and basic research. N-maleoyl-N-phthaloyl-chitosan (MAPHCS), soluble in DMF or DMSO, was synthesized and characterized by Fourier transform infrared spectra analysis (FT-IR) and 1H-NMR. The graft copolymerization of acrylic acid onto chitosan was carried out with N-maleoyl-N-phthaloyl-chitosan as intermediate in homogeneous system and initiated by γ-irradiation. The double bond of MAPHCS may be the grafting site because the grafting field was much higher than that of the graft copolymerization of acrylic acid and phthaloylchitosan via γ-ray irradiation. The chemical structure of the graft copolymer was characterized by FT-IR and 1H-NMR. As indicated in FTIR spectra, the evidence of the stronger absorbance at 2800-3000 cm-1 for C-H and at 1720 cm-1 for carboxyl group implied significantly the successful introduction of the poly (acrylic acid) on the chitosan chain. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were also used to characterize the copolymer. Effects of synthesis variables on the graft copolymerization were studied in light of the grafting percentage. The grafting percentage increased with the dose at lower doses, and then decreased. The maximum grafting percentage was up to 132%. (authors)

  12. Study on Synthesis, Characterization and Antiproliferative Activity of Novel Diisopropylphenyl Esters of Selected Fatty Acids.

    Reddy, Yasa Sathyam; Kaki, Shiva Shanker; Rao, Bala Bhaskara; Jain, Nishant; Vijayalakshmi, Penumarthy

    2016-01-01

    The present study describes the synthesis, characterization and evaluation of antiproliferative activity of novel diisopropylphenyl esters of alpha-linolenic acid (ALA), valproic acid (VA), butyric acid (BA) and 2-ethylhexanoic acid (2-EHA). These esters were chemically synthesized by the esterification of fatty acids with 2,6-diisopropylphenol and 2,4-diisopropylphenol (propofol). The structure of new conjugates viz. propofol-(alpha-linolenic acid) (2,6P-ALA and 2,4P-ALA), propofol-valproic acid (2,6P-VA and 2,4P-VA), propofol-butyric acid (2,6P-BA and 2,4P-BA) and propofol-(2-ethylhexanoic acid) (2,6P2-EHA and 2,4P-2-EHA) were characterized by FT-IR, NMR ((1)H, (13)C) and mass spectral data. The synthesized conjugates having more lipophilic character were tested for antiproliferative in vitro studies on A549, MDA-MB-231, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. All the conjugates showed specific growth inhibition on studied cancer cell lines. Among the synthesized esters, the conjugates synthesized from BA, VA and 2-EHA exhibited prominent growth inhibition against A549, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. The preliminary results suggest that the entire novel conjugates possess antiproliferative properties that reduce the proliferation of cancer cells in vitro. PMID:26666272

  13. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L. (Michigan)

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  14. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  15. ISOLATION AND CHARACTERIZATION OF AN ACID, BILE SALT-INDEPENDENT, RETINYL ESTER HYDROLASE FROM RAT LIVER MICROSOMES

    Previous work in this laboratory has revealed the presence of both acidic and neutral bile-salt independent retinyl ester hydrolase activities in rat liver homogenates. Here we present the purification, identification and characterization of an acid retinyl ester hydrolase activity from solubilized ...

  16. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  17. 75 FR 20785 - Polyglyceryl Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the Requirement of a...

    2010-04-21

    ... . II. What Does this Correction Do? In the Federal Register of July 8, 2009, (74 FR 32456), EPA's... AGENCY 40 CFR Part 180 Polyglyceryl Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the..., concerning polyglyceryl phthalate ester of coconut oil fatty acids; exemption from the requirement of...

  18. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  19. Preparation of sphingolipid fatty acid methyl esters for determination by gas-liquid chromatography.

    MacGee, J; Williams, M G

    1981-01-30

    Sphingolipid fatty acids are first converted to a mixture of free acids and their n-butyl esters by heating the specimen at 85 degree C in aqueous butanolic hydrogen chloride; the butyl esters are then saponified with methanolic potassium hydroxide. After acidification and extraction into hexane, the fatty acids are extracted into a very small volume of aqueous trimethyl(m-trifluorotolyl)ammonium hydroxide (TMTFTH), injection of an aliquot of the TMTFTH extract into the gas chromatograph yields the fatty acid methyl esters by pyrolytic methylation of the quaternary ammonium salts of the fatty acids. The preparation of a specimen ready for the gas--liquid chromatographic (GLC) analysis with quantitative recovery of the sphingolipid fatty acids can be accomplished in less than 2 h. By comparison, none of a number of well-accepted techniques for the release of sphingomyelin fatty acids by hydrolysis or methanolysis released the fatty acids quantitatively in less than 3 h, and all required additional manipulations before GLC analysis. PMID:7217267

  20. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin

    Mai, Sui; Kim, Young Kyung; Toledano, Manuel; Breschi, Lorenzo; Ling, Jun Qi; PASHLEY David H.; Franklin R Tay

    2009-01-01

    Polyvinylphosphonic acid (PVPA), a biomimetic analog of phosphoproteins, is crucial for recruiting polyacrylic acid (PAA)-stabilized amorphous calcium phosphate nanoprecursors during biomimetic remineralization of dentin collagen matrices. This study tested the null hypothesis that phosphoric acid esters of methacrylates in dentin adhesives cannot replace PVPA during bimimetic remineralization of resin-dentin interfaces. Human dentin specimens were bonded with: I) XP Bond, an etch-and-rinse a...

  1. Synthesis and characterization of biodegradable polymer: Poly (ethene maleic acid ester-co-D,L-lactide acid)

    Mei Na Huang; Yan Feng Luo; Jia Chen; Yong Gang Li; Chun Hua Fu; Yuan Liang Wang

    2007-01-01

    A novel biodegradable polymer-poly (ethene maleic acid ester-co-D,L-lactide acid) was synthesized by copolymerizing lactide and prepolymer, which was prepared by the condensation of maleic anhydride and glycol, using p-toluene sulphonic acid as a catalyst, attempting to improve the hydrophilicity, increase flexibility and modulate the degradation rate. FTIR, 1H NMR, MALLS and DSC were employed to characterize these polymers.

  2. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  3. 4-[(2-Hydroxy-4-pentadecyl-benzylidene-amino]-benzoic Acid Methyl Ester

    Gadada Naganagowda

    2013-11-01

    Full Text Available A new Schiff base, 4-[(2-hydroxy-4-pentadecyl-benzylidene-amino]-benzoic acid methyl ester was synthesized and its UV, IR, 1H-NMR, 13C-NMR and ESI-MS spectroscopic data are presented.

  4. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  5. Evaluation of mosquito repellent activity of isolated oleic acid, eicosyl ester from Thalictrum javanicum

    Abinaya Gurunathan

    2016-01-01

    Full Text Available To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicumand to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti(dengue vector and Culex quinquefasciatus(filarial vector. Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase. Ecdysone 20-monooxygenase assay (radioimmuno assay was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm and C. quinquefasciatus (LC50/24 h - 12.5 ppm than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively. The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatusthan the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicummay be considered as a potent source of mosquito larvicidal property.

  6. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  7. Synthesis and bioactivity of novel caffeic acid esters from Zuccagnia punctata.

    Ramachandra, M S; Subbaraju, G V

    2006-12-01

    Synthesis of novel caffeic acid esters (1 and 2) was accomplished starting from appropriately substituted benzaldehydes (3 and 9). While compound 2 exhibited potent anti-oxidative activity in both the nitroblue tetrazolium and 1,1-diphenyl-2-picrylhydrazyl radical-scavenging models, compound 1 showed moderate 5-lipoxygenase inhibitory activity. PMID:17145655

  8. Quantification of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Muhammad Nasimullah Qureshi; Fazal Wajid; Inayat-ur-Rahman

    2015-01-01

    Objective: To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima) using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results: A total of nine fatty acids were detected in quantifiable amou...

  9. Chemometric analysis of mass spectra of cis and trans fatty acid picolinyl esters

    Leth, Torben

    1997-01-01

    configuration. Picolinyl esters of fatty acids are prepared by adding carbonyl-diimidazole, 3-hydroxy-methylpyridine and 4-pyrrolidin-o-pyridine to a solution of free fatty acids in dichloromethane. The picolinyl esters dissolved in heptane are then separated by capillary GC on a CP Sil 88 column equipped with...... between cis and trans fatty acids of C16:1, C18:1,n-9, C18:1,n-12, C18:2 and C22:1 in two- and three-dimensional score plots. With Soft Independent Modelling of Class Analogy (SIMCA), it is possible to calculate models that can predict from the mass spectra of unknown fatty acids whether they are of the...

  10. Preparation and Reactions of Amino Acid Ester Sulfones as New Remote Asymmetrical Induced Reagents

    ZHOU,Cheng-He; BAI,Xue; LI,Tan-Qing; WU,Jun; Alfred Hassner

    2004-01-01

    @@ The development of chiral auxiliary-controlled asymmetric synthesis has been receiving increasing interest in recent yearsfi,2] Various chiral auxiliary reagents have been observed[3] and a lot of results showed that variation of the chiral auxiliary could influence asymmetric induction. Recently, it has been reported the reaction of the aminated sulfones as a remote chiral auxiliary with α,β-unsaturated carbonyl compounds.[4] Here we would like to report the preparation of amino acid ester sulfones as new remote asymmetrical induced reagents and their reactions with α,β-unsaturated esters.

  11. Fatty acid methyl esters as reactive diluents in solvent-borne thermally cured coil-coatings

    Johansson, Katarina

    2006-01-01

    This work describes how a fatty acid methyl ester (FAME) derived from a vegetable oil can be introduced as reactive diluent in a solvent-borne thermally cured coil-coating system. The evaluated reactive diluent, rape seed methyl ester (RME), has been evaluated both in a fully formulated clear coat system and via model studies. A reactive diluent is a compound that acts as a solvent in the liquid paint, lowering the viscosity, and chemically reacts into the final film during cure. Introduction...

  12. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    Jonas, A J; Butler, I J

    1989-01-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentr...

  13. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    Ion Dragalin; Olga Morarescu; Maria Sedcenco; Radu Marin Rosca

    2015-01-01

    The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%), confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  14. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    Ion Dragalin

    2015-12-01

    Full Text Available The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%, confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  15. Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery

    Lyndon Jones

    2012-01-01

    Full Text Available Contact lenses, as an alternative drug delivery vehicle for the eye compared to eye drops, are desirable due to potential advantages in dosing regimen, bioavailability and patient tolerance/compliance. The challenge has been to engineer and develop these materials to sustain drug delivery to the eye for a long period of time. In this study, model silicone hydrogel materials were created using a molecular imprinting strategy to deliver the antibiotic ciprofloxacin. Acetic and acrylic acid were used as the functional monomers, to interact with the ciprofloxacin template to efficiently create recognition cavities within the final polymerized material. Synthesized materials were loaded with 9.06 mM, 0.10 mM and 0.025 mM solutions of ciprofloxacin, and the release of ciprofloxacin into an artificial tear solution was monitored over time. The materials were shown to release for periods varying from 3 to 14 days, dependent on the loading solution, functional monomer concentration and functional monomer:template ratio, with materials with greater monomer:template ratio (8:1 and 16:1 imprinted tending to release for longer periods of time. Materials with a lower monomer:template ratio (4:1 imprinted tended to release comparatively greater amounts of ciprofloxacin into solution, but the release was somewhat shorter. The total amount of drug released from the imprinted materials was sufficient to reach levels relevant to inhibit the growth of common ocular isolates of bacteria. This work is one of the first to demonstrate the feasibility of molecular imprinting in model silicone hydrogel-type materials.

  16. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu2+ was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu2+ were as the following order: chitin L = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances

  17. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    Nguyen Quoc Hien [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Commission, Truong tre Str., Linh xuan, Thu duc, Ho Chi Minh City (Viet Nam)]. E-mail: hiennq@hcm.vnn.vn; Dang Van Phu [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Commission, Truong tre Str., Linh xuan, Thu duc, Ho Chi Minh City (Viet Nam); Nguyen Ngoc Duy [College of Natural Sciences, National University Ho Chi Minh City, 227 Nguyen Van Cu, Ho Chi Minh City (Viet Nam); Ha Thuc Huy [College of Natural Sciences, National University Ho Chi Minh City, 227 Nguyen Van Cu, Ho Chi Minh City (Viet Nam)

    2005-07-01

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu{sup 2+} was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu{sup 2+} were as the following order: chitin < PD-chitin < PD-chitin-g-PANa < chitosan (DD76%). In addition, equilibrium isotherms were well fitted by Langmuir equation with the constants K {sub L} = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances.

  18. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation.

    Tasnádi, Gábor; Hall, Mélanie; Baldenius, Kai; Ditrich, Klaus; Faber, Kurt

    2016-09-10

    The enzymatic phosphorylation of phenoxyethanol, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate catalyzed by acid phosphatases PhoN-Sf and PiACP at the expense of inorganic di-, tri-, hexameta- or polyphosphate was applied to the preparative-scale synthesis of phosphorylated compounds. The reaction conditions were optimized with respect to enzyme immobilization, substrate concentration, pH and type of phosphate donor. The mild reaction conditions prevented undesired polymerization and hydrolysis of the acrylate ester moiety. Application of a continuous flow system allowed facile scale-up and mono-phosphates were obtained in up to 26% isolated yield with space-time yields of 0.89kgL(-1)h(-1). PMID:27422352

  19. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    Jonas, A J; Butler, I J

    1989-07-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentrations increased only modestly and briefly after an oral challenge with 200 mg/kg of oral L-tryptophan, reflecting the absorptive defect. An oral challenge with 200 mg/kg of tryptophan ethyl ester resulted in a prompt increase in serum tryptophan to a peak of 555 microM. Sustained treatment with 20 mg/kg q6h resulted in normalization of serum (66 +/- 15 microM) and cerebrospinal fluid tryptophan concentrations (mean = 2.3 microM). Cerebrospinal fluid 5-HIAA increased to more normal concentrations (mean = 33 ng/ml). No toxicity was observed over an 8-mo period of treatment, chronic diarrhea resolved, and body weight, which had remained unchanged for 7 mo before ester therapy, increased by approximately 26%. We concluded that tryptophan ethyl ester is effective at circumventing defective gastrointestinal neutral amino acid transport and may be useful in the treatment of Hartnup disease. PMID:2472426

  20. Enzymatic esterification of tapioca maltodextrin fatty acid ester.

    Udomrati, Sunsanee; Gohtani, Shoichi

    2014-01-01

    In this work new types of hydrophobically modified maltodextrin were prepared by enzyme-catalyzed reaction of maltodextrin and three fatty acids: decanoic acid (C-10), lauric acid (C-12) and palmitic acid (C-16). Lipase obtained from Thermomyces lanuginosus was found to be a useful biocatalyst in the maltodextrin esterification. Esterified maltodextrin with a degree of substitution (DS) 0.015-0.084 was prepared at the optimum conditions of 60 °C for 4 h. The DS was found to be at its highest when maltodextrin and fatty acids were taken in the ratio 1:0.5. The functional properties of these esterified maltodextrin were investigated. All esterified maltodextrin did not completely dissolve in water. Esterified maltodextrin at a concentration of 25% (w/w) exhibited Newtonian flow behavior similar to that of native maltodextrin. Esterified maltodextrin had a higher viscosity compare to native maltodextrin. X-ray diffraction pattern of esterified maltodextrin indicated crystallization of the fatty acid side chains. The thermal stability of esterified maltodextrin was checked by differential scanning calorimetry (DSC). Esterified maltodextrin was then used as an emulsifier to make n-hexadecane O/W emulsions. The emulsions were characterized according to their oil droplet characteristics and emulsification index. PMID:24274521

  1. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.

    Ladkau, Nadine; Assmann, Miriam; Schrewe, Manfred; Julsing, Mattijs K; Schmid, Andreas; Bühler, Bruno

    2016-07-01

    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes. PMID:26969251

  2. Hydrophobically Modified Polyelectrolytes: V. Interaction of Fluorocarbon Modified Poly (acrylic acid) with Various Added Surfactants

    ZHOU,Hui(周晖); SONG,Guo-Qaiang(宋国强); GUO,Jin-Feng(郭金峰); ZHANG,Yun-xiang (章云祥); DIEING,Reinhold; MA,Lian(马莲); HAEUSSLING,Lukas

    2001-01-01

    The interactions between fiuorocarbon-medified pol(sodium acrylate) and various kinds of added surfactant have been studied by means of viscometric measurement. Association behavior was found in both hydrogenated and fluorinated anionic, nonionic and cationic surfactants. Among them, the interactions between fluorocarbon-modified poly ( sodium acrylate) and cationic surfactants are the strongest, owing to the cooperation of both electrostatic attractions and hydrophobic associations. The anionic surfactants have the weakest effects on the solution properties because of the existence of unfavorable electrostatic repulsion. The hydrophobic interactions between copolymers and fluorinated surfactants are much stronger than those between copolymers and hydrogenated surfactants.

  3. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension. PMID:27008813

  4. Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters.

    de Jong, Bouke Wim; Siewers, Verena; Nielsen, Jens

    2016-02-01

    Saccharomyces cerevisiae has previously been engineered to become a cell factory for the production of fatty acid ethyl esters (FAEEs), molecules suitable for crude diesel replacement. To find new metabolic engineering targets for the improvement of FAEE cell factories, three different FAEE-producing strains of S. cerevisiae, constructed previously, were compared and characterized by quantification of key fluxes and genome-wide transcription analysis. From both the physiological and the transcriptional data, it was indicated that strain CB2I20, with high expression of a heterologous wax ester synthase gene (ws2) and strain BdJ15, containing disruptions of genes DGA1, LRO1, ARE1, ARE2 and POX1, which prevent the conversion of acyl-CoA to sterol esters, triacylglycerides and the degradation to acetyl-CoA, triggered oxidative stress that consequently influenced cellular growth. In the latter strain, stress was possibly triggered by disabling the buffering capacity of lipid droplets in encapsulating toxic fatty acids such as oleic acid. Additionally, it was indicated that there was an increased demand for NADPH required for the reduction steps in fatty acid biosynthesis. In conclusion, our analysis clearly shows that engineering of fatty acid biosynthesis results in transcriptional reprogramming and has a significant effect on overall cellular metabolism. PMID:26590613

  5. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. PMID:26471553

  6. Isolation from Cussonia barteri of 1'-O-chlorogenoylchlorogenic acid and 1'-O-chlorogenoylneochlorogenic acid, a new type of quinic acid esters.

    Papajewski, S; Vogler, B; Conrad, J; Klaiber, I; Roos, G; Walter, C U; Süssmuth, R; Kraus, W

    2001-11-01

    1'-O-Chlorogenoylchlorogenic acid and 1'-O-chlorogenoylneochlorogenic acid, a new type of quinic acid esters, have been isolated, in addition to six known quinic acid esters, rutin, and a mixture of saponins, from the methanol extract of Cussonia barteri Seemann (Araliaceae) leaves collected in Cameroon. Structure determination was achieved by NMR, mass, IR, and UV spectroscopy. All compounds were tested for inhibitory activity on 5-lipoxygenase and cyclooxygenase-1, for antimicrobial activity against Bacillus subtilis, Pseudomonas fluorescens, and Cladosporium cucumerinum, and for haemolytic activity. PMID:11731915

  7. SYNTHESIS OF POLY(DIVINYLBENZENE-co-ACRYLIC ACID) HOLLOW MICROSPHERES WITH GOLD NANOPARTICLES ON THE INTERIOR SURFACE

    Wei Liu; Xin-lin Yang; Xu-gang He

    2009-01-01

    Poly(divinylbenzene-co-acrylic acid) (poly(DVB-co-AA)) hollow microspheres with gold nanoparticles on the interior surfaces were prepared from the gold nanoparticles-coated poly(methacrylic acid) (PMAA@Au@poly(DVB-co-AA)) core-shell microspheres by removal of the PMAA core in water.Au nanoparticles-coated PMAA microspheres were afforded by the in-situ reduction of gold trichloride with PMAA microsphere as stabilizer via the interaction between carboxylic acid groups and Au nanoparticles.Gold nanoparticles-coated (PMAA@Au@poly(DVB-co-AA)) microspheres were formed during the distillation precipitation copolymerization of divinylbenzene and acrylic acid in acetonitrile with Au-coated PMAA microspheres as seeds.The thickness of the poly(DVB-co-AA) shell-layer was controlled by the amount of the solvent distilled off the polymerization system.The PMAA microspheres,Au nanoparticles-coated PMAA microspberes,core-shell microspheres,and hollow microspheres with Au nanoparticles on the interior surfaces were studied by transmission electron microscopy and scanning electron microscopy.The stabilization to L-cysteine and the preliminary catalytic property of the Au nanoparticles on the inner surface of hollow poly(DVB-co-AA) microspheres were investigated.

  8. Advances in the Research and Development of Acrylic Acid Production from Biomass%从生物量生产丙烯酸的研究和开发进展

    许晓波; 林建平; 岑沛霖

    2006-01-01

    The shortage of petroleum has resulted in worldwide efforts to produce chemicals from renewable resources. Among these attempts, the possibility of producing acrylic acid from biomass has caught the eye of many researchers. Converting the carbohydrates first to lactic acid by fermentation and then dehydrating lactic acid to acrylic acid is hitherto the most effective way for producing acrylic acid from biomass. While the lactic acid fermentation has been commercialized since longer times, the dehydration process of lactic acid is still under development because of its low yield. Further efforts should be made before this process became economically feasible.Because of the existence of acrylic acid pathways in some microorganisms, strain improvement and metabolic engineering provides also a possibility to produce acrylic acid directly from biomass by fermentation.

  9. Fatty Acid Methyl Esters of Melon Seed Oil: Characterisation for Potential Diesel Fuel Application

    Paul M. EJIKEME

    2011-06-01

    Full Text Available Fatty acid methyl esters (FAME, biodiesel, are alternative diesel fuels usually obtained from renewable sources, mainly, vegetable and animal oils through transesterification among other processes. Melon seed oil was extracted from melon seeds bought from a local market, degummed and alkali refined using standard methods. FAME of the oil was produced using methanol in the molar ration of 1:6, 1% sodium hydroxide catalyst at the reaction temperature of 60 deg C for the duration of 1h. Results obtained showed that the fatty acid methyl esters had a specific gravity of 0.8786, viscosity of 6.24 centistokes, pH of 7.23, heating value of 36.34 J/g and flash point of 148 deg C. The FAME yield was 87.35% under the reaction conditions that applied. The infrared spectra of both the refined oil and the methyl esters from it, showed peaks at 1721.3cm-1 and 1167.8cm-1 (C=O and C-O stretches large and medium absorbance's for oils and methyl esters. Generally, the fuel properties of the FAME compared with values obtained under the same conditions for conventional petroleum diesel that was sourced from a retail outlet; suggesting that biodiesel from MSO could be used alone or in blends with petrodiesel to power compression ignition (diesel engines.

  10. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  11. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L-phenyl...

  12. Direct analysis of intact glycidyl fatty acid esters in edible oils using gas chromatography-mass spectrometry

    H. van Steenbergen; K. Hrnčiřík; A. Ermacora; S. de Koning; H.-G. Janssen

    2013-01-01

    Glycidyl esters (GE), fatty acid esters of glycidol, are process contaminants formed during edible oil processing. A novel direct method for the determination of intact GE in oils and fats based on gas chromatography-mass spectrometry (GC-MS) is presented. The method consists of a simple extraction

  13. A convenient enantioselective decarboxylative aldol reaction to access chiral α-hydroxy esters using β-keto acids

    Zhiqiang Duan

    2014-04-01

    Full Text Available We show a convenient decarboxylative aldol process using a scandium catalyst and a PYBOX ligand to generate a series of highly functionalized chiral α-hydroxy esters. The protocol tolerates a broad range of β-keto acids with inactivated aromatic and aliphatic α-keto esters. The possible mechanism is rationalized.

  14. 21 CFR 172.848 - Lactylic esters of fatty acids.

    2010-04-01

    ... fruits and vegetables Dehydrated fruit and vegetable juices Edible vegetable fat-water emulsions As... produce the intended physical or technical effect, and they may be used with shortening and edible fats... derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used as...

  15. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae. PMID:25422103

  16. Mutagenicity assessment of acrylate and methacrylate compounds and implications for regulatory toxicology requirements.

    Johannsen, F R; Vogt, Barbara; Waite, Maureen; Deskin, Randy

    2008-04-01

    Esters of acrylic acid and methacrylic acid, more commonly known as acrylates and methacrylates, respectively, are key raw materials in the coatings and printing industry, with several of its chemical class used in food packaging. The results of over 200 short-term in vitro and in vivo mutagenicity studies available in the open literature have been evaluated. Despite differences in acrylate or methacrylate functionality or in the number of functional groups, a consistent pattern of test response was seen in a typical regulatory battery of mutagenicity tests. No evidence of point mutations was observed when acrylic acid or over 60 acrylates and methacrylates were investigated in Salmonella bacterial tests or in hprt mutation tests mammalian cells, and no evidence of a mutagenic effect was seen when tested in whole animal clastogenicity and/or aneuploidy (chromosomal aberration/micronucleus) studies. Consistent with the in vivo testing results, acrylic acid exhibited no evidence of carcinogenicity in chronic rodent cancer bioassays. In contrast, acrylic acid and the entire acrylate and methacrylate chemical class produced a consistently positive response when tested in the mouse lymphoma assay and/or other in vitro mammalian cell assays designed to detect clastogenicity. The biological relevance of this in vitro response is questioned based on the non-concordance of in vitro results with those of in vivo studies addressing the same mutagenic endpoint (clastogenicity). Thus, in short-term mutagenicity tests, the acrylates and methacrylates behave as a single chemical category, and genotoxicity behavior of a similar chemical can be predicted with confidence by inclusion within this chemical class, thus avoiding unnecessary testing. PMID:18346829

  17. Recovery of sterols as fatty acid steryl esters from waste material after purification of tocopherols.

    Nagao, Toshihiro; Hirota, Yoshinori; Watanabe, Yomi; Kobayashi, Takashi; Kishimoto, Noriaki; Fujita, Tokio; Kitano, Motohiro; Shimada, Yuji

    2004-08-01

    Tocopherols are purified industrially from soybean oil deodorizer distillate by a process comprising distillation and ethanol fractionation. The waste material after ethanol fractionation (TC waste) contains 75% sterols, but a purification process has not yet been developed. We thus attempted to purify sterols by a process including a lipase-catalyzed reaction. Candida rugosa lipase efficiently esterified sterols in TC waste with oleic acid (OA). After studying several factors affecting esterification, the reaction conditions were determined as follows: ratio of TC waste/OA, 1:2 (wt/wt); water content, 30%; amount of lipase, 120 U/g-reaction mixture; temperature, 40 degrees C. Under these conditions, the degree of esterification reached 82.7% after 24 h. FA steryl esters (steryl esters) in the oil layer were purified successfully by short-path distillation (purity, 94.9%; recovery, 73.1%). When sterols in TC waste were esterified with FFA originating from olive, soybean, rapeseed, safflower, sunflower, and linseed oils, the FA compositions of the steryl esters differed somewhat from those of the original oils: The content of saturated FA was lower and that of unsaturated FA was higher. The m.p. of the steryl esters synthesized (21.7-36.5 degrees C) were remarkably low compared with those of the steryl esters purified from high-b.p. soybean oil deodorizer distillate substances (56.5 degrees C; JAOCS 80, 341-346, 2003). The low-m.p. steryl esters were soluble in rapeseed oil even at a final concentration of 10%. PMID:15638248

  18. Characterization of interpenetrating networks of acrylic acid (AAc) and N-isopropylacrylamide (NIPAAm) synthesized by ionizing radiation

    Interpenetrating networks of poly(acrylic acid) (PAAc) and poly(N-isopropylacrylamide) (PNIPAAm) were synthesized in two consecutive steps utilizing ionizing radiation in the first step and chemical reaction in the second step. The first network of PAAc hydrogel was formed by ionizing radiation (gamma or electron beam). The secondary gel of PNIPAAm was synthesized directly within the primary gel of PAAc from an aqueous solution of N-isopropylacrylamide (NIPAAm) containing a crosslinking agent, accelerator and redox initiator. The interpenetrating networks (IPNs) were characterized morphologically by scanning electron microscopy (SEM), and their thermal behavior was analyzed by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA).

  19. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  20. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  1. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-01-01

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C5- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C2), malonic (C3), succinic (C4) and maleic (C4) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin–Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies. PMID:27338349

  2. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Eva Vavříková

    2016-06-01

    Full Text Available A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica, which accepted C5- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C2, malonic (C3, succinic (C4 and maleic (C4 acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin–Ciocalteau reagent (FCR and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl than isoquercitrin; ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.

  3. IPN's of Acrylic Acid and N-Isopropylacrylamide by Gamma and Electron Beam Irradiation

    In recent years, temperature and pH sensitive hydrogels have been investigated widely because of their unique properties and versatile applications in medicine and biotechnology, as well as drug delivery. However a serious limitation of hydrogels in many applications is the low mechanical strength of such gels when highly swollen. To overcome this problem, sensitive hydrogels were prepared with satisfactory mechanical properties as a semi-interpenetranting network, where one of them is a mechanically stable polymer. In this work temperature sensitive monomer N-isopropylacrylamide (NIPAAm) and a pH sensitive monomer, acrylic acid (AAc) were prepared as an interpenetranting network by a sequential method. Poly (AAc) hydrogels were prepared in glass tubes 3 mm inner diameter, at room temperature from an aqueous solutions 50%vol under argon atmosphere, and irradiated with a Co60 gamma source, at doses from 5 to 30 kGy and dose rate of 3 kGy/h. Poly (AAc) hydrogels were also prepared by electron beam irradiation with a Van de Graaff at a dose rate of 19.4 kGy/min, and radiation doses from 10 to 30 kGy. After polymerization and crosslinking, the gels were washed in water during 48 h, and dried in vacuo to constant weight. Poly (NIPAAm) as secondary gel was synthetized directly within the primary gels in aqueous solution with the croslinker N, N' methylenebisacrylamide (BIS), the accelerator N,N,N,N tetramethyl ethylenediamidne TMEDA, and potasium persulfate as initiator. Equilibrium swelling properties of hydrogels were studied in pH 2.2-8 range and temperature 10-45degree; LCST and pH critic point of the IPN's were determined; the composition of the interpenetrating network was measured by elemental analysis, and the morphological structure characterized by SEM. The volume of the cells of PAAC hydrogels decreased with increase in radiation dose, their mechanic hardness increased and they lost elasticity. The interpenetrating networks of samples with PAAc irradiated at

  4. Chemically Cross-Linked Poly(acrylic-co-vinylsulfonic Acid Hydrogel for the Delivery of Isosorbide Mononitrate

    Talib Hussain

    2013-01-01

    Full Text Available We report synthesis, characterization, and drug release attributes of a series of novel pH-sensitive poly(acrylic-co-vinylsulfonic acid hydrogels. These hydrogels were prepared by employing free radical polymerization using ethylene glycol dimethacrylate (EGDMA and benzyl peroxide (BPO as cross-linker and initiator, respectively. Effect of acrylic acid (AA, polyvinylsulfonic acid (PVSA, and EGDMA on prepared hydrogels was investigated. All formulations showed higher swelling at high pHs and vice versa. Formulations containing higher content of AA and EGDMA show reduced swelling, but one with higher content of PVSA showed increased swelling. Hydrogel network was characterized by determining structural parameters and loaded with isosorbide mononitrate. FTIR confirmed absence of drug polymer interaction while DSC and TGA demonstrated molecular dispersion of drug in a thermally stable polymeric network. All the hydrogel formulations exhibited a pH dependent release of isosorbide mononitrate which was found to be directly proportional to pH of the medium and PVSA content and inversely proportional to the AA contents. Drug release data were fitted to various kinetics models. Results indicated that release of isosorbide mononitrate from poly(AA-co-VSA hydrogels was non-Fickian and that the mechanism was diffusion-controlled.

  5. Gamma radiation synthesis of comb-type graft hydrogels based on poly(acrylic acid) and 4-vinylpyridine

    A pH-sensitive comb-type hydrogel was obtained by gamma radiation polymerization and crosslinking of acrylic acid (AAc) in solution. The pH-sensitive 4-vinylpyridine (4VP) was then grafted to the poly acrylic acid (PAAc) hydrogel using gamma radiation from a 60Co source. The comb type graft polymers obtained (net-PAAc)-g-4VP has been studied through determination of graft yield and swelling behavior. The critical pH value was found to be 5.6. The apparent mechanical properties appear to be qualitatively better than hydrogels of PAAc upon swelling. The new comb-type system presents faster swelling response (30 h) than the polyacrylic acid hydrogel (50 h). The increase in dose rate from 7.3 to 11.3 kGy h-1, increase the radiation grafting percentage of 4VP in the system. Comb-type polymers were also characterized by DSC, TGA and FTIR-ATR. (author)

  6. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases.

    Shi, Xueyan; Liu, Feipeng; Mao, Jianyou

    2016-03-17

    Chiral 2-arylcarboxylic acid esters are important intermediates in preparation of enantioenriched 2-arylpropionic acids type Non-steroidal anti-inflammatory drugs (NSAIDs). Enantiomer separation of 2-arylcarboxylic acid esters is crucial for evaluation of the asymmetric synthesis efficiency and the enantiomer excess of chiral 2-arylcarboxylic acid derivatives. The capillary gas chromatography (CGC) enantiomer separation of 17 pairs of 2-arylcarboxylic acid esters enantiomers was conducted by using seven different β-cyclodextrin derivatives (CDs) as chiral stationary phases. It was found that for the 7 pairs of 2-phenylpropionates enantiomers, CDs with both alkyl and acyl substituents especially 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin exhibited better enantiomer separation abilities than the other CDs examined. For the 7 pairs of 2-(4-substituted phenyl)propionates enantiomers, 2,3,6-tri-O-methyl-β-cyclodextrin possessed better enantiomer separation abilities than the other CDs. Among the 3 pairs of 2-phenylbutyrates enantiomers examined, only methyl 2-phenylbutyrate enantiomers could be separated by three CDs among the 7 CDs tested, while enantiomers of ethyl 2-phenylbutyrate and isopropyl 2-phenylbutyrate couldn't be separated by any of the 7 CDs tested. Besides the structures of CDs, the structures of 2-arylcarboxylic acid esters including different ester moieties, substituents of phenyl, and different carboxylic acids moieties in 2-arylcarboxylic acid esters also affected the enantiomer separation results greatly. The CGC enantiomer separation results of 2-arylcarboxylic acid esters on different CDs are useful for solving the enantiomer separation problem of 2-arylcarboxylic acid esters. PMID:26920785

  7. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g-1. The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm2 s-1 (40 oC), and 14.6 h (110 oC). The cold filter plugging and pour points were -15 oC and -19 oC, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition.

  8. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Ghulam Murtaza

    2015-03-01

    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  9. Effect of acid additives on graft copolymerization and water absorption of graft copolymers of cassava starch and acrylamide/acrylic acid

    Gelatinized cassava starch was radiation graft copolymerized with acrylamide or acrylic acid in the presence of sulfuric acid, nitric acid or maleic acid at a specific dose rate to a fixed total dose. Homopolymer or free copolymer was extracted by water to obtain the pure graft copolymer, which was subsequently saponified with 5% potassium hydroxide solution at room temperature for 90 min. The saponified graft copolymer was investigated for the effect of acid additives and water absorption. The addition of 2% maleic acid into the grafting reaction containing acrylamide-to-starch ratio of 2.5:1 can produce the superabsorbent copolymer having water absorption as high as 2,256 ± 25 g g-1. The effect of acid additive was explained. (author)

  10. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Voragen, A.G.J.; Gruppen, H.

    2008-01-01

    In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeA

  11. Antibacterial properties of soap containing some fatty acid esters.

    Pandey, N K; Natraj, C V; Kalle, G P; Nambudiry, M E

    1985-02-01

    Synopsis Chemical microbial inhibitors compatible with formulations of soaps and deodorant perfumes are more effective if they are substantive to the skin. However, highly effective inhibitors are toxic and their substantivity on skin may accentuate the toxicity. Natural compounds such as short to medium chain fatty acids and their derivatives, which are known to be germicidal, offer a viable alternative to chemical inhibitors. We report here the synthesis of sodium 2-lauroyloxy propionate and an in vivo method to test its substantivity on skin following its incorporation in soaps. Among several compounds tested, sodium 2-lauroyloxy propionate was found to be highly substantive in soap formulation. PMID:19460009

  12. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    Abinaya Gurunathan; Jamuna Senguttuvan; S Paulsamy

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. Th...

  13. Thermally cured coil-coatings utilizing novel resins and fatty acid methyl esters as reactive diluents

    Johansson, Katarina

    2008-01-01

    Solvent-borne thermally cured coil-coating resins contain large amounts of volatile organic solvents in order to obtain suitable flow for film application. This work describes how the expensive and environmental hazardous volatile organic solvent content of a solvent-borne thermally cured polyester/melamine coil-coating system can be reduced by introduction of fatty acid methyl esters (FAMEs) as reactive diluents and modification of the polyester binder resin. The evaluated reactive diluents,...

  14. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang

    2013-09-01

    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  15. Bioactivity and Chemical Synthesis of Caffeic Acid Phenethyl Ester and Its Derivatives

    Pengxuan Zhang

    2014-10-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, as one of the main active ingredients of the natural product propolis, shows the unique biological activities such as anti-tumor, anti-oxidation, anti-inflammatory, immune regulation, and so on. These have attracted the attention of many researchers to explore the compound with potent biological activities. This review aims to summarize its bioactivities, synthetic methods and derivatives, which will be helpful for further study and development of CAPE and its derivatives.

  16. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    Cheng-Fang Tsai; Yueh-Hsiung Kuo; Wei-Lan Yeh; Caren Yu-Ju Wu; Hsiao-Yun Lin; Sheng-Wei Lai; Yu-Shu Liu; Ling-Hsuan Wu; Jheng-Kun Lu; Dah-Yuu Lu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current ...

  17. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M. J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimet...

  18. Syntheses of Macrocyclic Amides from L-Amino Acid Esters by RCM

    2007-01-01

    A series of succinate-derived macrocyclic amides( 1 ) was synthesized via ring-closing metathesis (RCM) as the key step. The substrate included 12 to 15 members. The metathesis precursors were obtained from the amide coupling of tert-butyl 3-carboxyhex-5-enoate(2) with numerous side-chain alkenylated amino acid esters of general type(3)derived from L-lysine and L-ornithine.

  19. Some novel antimicrobial therapeutic agents for acetylcholinesterase inhibitors; synthesis of hydroxyquinoline ester involving amino acid

    Şakıyan, İffet; Aynacı, Elif; Arslan, Fatma; Öğütcü, Hatice; Sarı, Nurşen

    2015-01-01

    The aim of this work was to investigate the new effective agents candidate for treatment of the Alzheimer’s disease. So, a series of new and highly active acetylcholinesterase inhibitors derived from hydroxyquinoline ester containing amino acid were synthesized. Antibacterial activities of the molecules were studied by the well-diffusion method against Listeria monocytogenes 4b, Staphylococcus aureus, Escherichia coli, Salmonella typhi H, Brucella abortus, Staphylococcus epidermis sp., ...

  20. Synthesis and Properties of Lactic Acid-based Cross-linked Poly(ester-amide)

    Yue Ying HE; Cong Ming XIAO

    2006-01-01

    A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties of the LCPEA. The tensile strength, elastic modulus and bend strength of the LCPEA of 65% gel fraction were 4.65, 136.55 and 39.63 MPa, respectively. The thermal decomposition temperature (50 wt%) of the LCPEA was around 410 ℃.

  1. Surface components of chylomicrons from rats fed glyceryl or alkyl esters of fatty acids: minor components.

    Yang, L Y; Kuksis, A; Myher, J J; Pang, H

    1992-08-01

    The lipid class, fatty acid and molecular species composition of the minor polar surface components of rat lymph chylomicrons were determined during absorption of menhaden oil and corn oil or of the corresponding fatty acid ethyl esters. In addition to the previously reported minor polar lipids (sphingomyelin, phosphatidylserine, phosphatidylinositol, phosphatidic acid and lysophosphatidylcholine), we identified phosphatidylglycerol, dimethylphosphatidylethanolamine, ceramide and cholesteryl sulfate in the chylomicrons from both oil and ester feeding. The dietary fatty acids were found to be incorporated to a variable extent into the different phospholipid classes, the proportions of which remained the same during both types of feeding. No evidence was obtained for the presence of the minor glycerophospholipids characteristic of the lysosomal membranes (e.g., bis-phosphatidic, lysobisphosphatidic and semilysobis-phosphatidic acids), although special efforts were made to identify them. These results indicate that the chylomicrons arising from the monoacylglycerol and phosphatidic acid pathways of triacylglycerol biosynthesis become enveloped in closely similar monolayers of phospholipids. Hence, all triacylglycerols may be secreted from the villus cells via a common mechanism as suggested by the previously demonstrated convergence (at the 2-monoacylglycerol stage) of the monoacylglycerol and the phosphatidic acid pathways of mucosal triacylglycerol formation [Yang, Y.L., and Kuksis, A. (1991) J. Lipid Res. 32, 1173-1186]. PMID:1406072

  2. Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID

    Carvalho, Myller S.; Pinho, David M.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Laboratorio de Materiais e Combustiveis, Instituto de Quimica, Universidade de Brasilia, DF (Brazil); Mendonca, Marcio A. [Faculdade de Agronomia e Medicina Veterinaria, Universidade de Brasilia, DF (Brazil); Resck, Ines S. [Laboratorio de Ressonancia Magnetica Nuclear, Universidade de Brasilia, DF (Brazil)

    2012-04-15

    An analytical method using high performance liquid chromatography with UV detection (HPLC-UV) (method A) was used for simultaneous determination of total amounts of triacylglycerides, diacylglycerides, monoacylglycerides and fatty acid methyl esters in alcoholysis of different oil (cotton, canola, sunflower, corn and soybean) samples. Analyses were carried out at 40 deg C for 20 min using a gradient of methanol (MeOH) and 2-propanol-hexane 5:4 (v/v) (PrHex): 100% of MeOH in 0 min, 50% of MeOH and 50% of PrHex in 10 min maintained with isocratic elution for 10 min. Another HPLC-UV method (method B) with acetonitrile isocratic elution for 34 min was used to determine the fatty acid composition of oils analyzing their methyl ester derivatives. Contents were determined with satisfactory repeatability (relative standard deviation, RSD < 3%), linearity (r{sup 2} > 0.99) and sensitivity (limit of quantification). Method B was compared with an official gas chromatographic method with flame ionization detection (GC-FID) from American Oil Chemists' Society (AOCS) in the determination of fatty acid methyl esters (FAME) in biodiesel real samples. (author)

  3. Stereospecific analysis of fatty acid esters of chloropropanediol isolated from fresh goat milk.

    Myher, J J; Kuksis, A; Marai, L; Cerbulis, J

    1986-05-01

    The fatty acid esters of chloropropanediol isolated from goat milk fat in small quantities were subjected to a stereospecific analysis via phospholipase C and phosphocholine esters as intermediates. Synthetic rac-1-chloro-2,3-dioleoyl-propanediol was prepared by standard methods and was used as a control. The stereospecific analyses were performed following a release of the fatty acids from the primary positions of each chloropropanediol diester with pancreatic lipase. The resulting X-1-chloro-2-acylpropanediols were then converted into the corresponding phosphocholine derivatives by a stepwise reaction with phosphorus oxychloride and choline chloride. The X-1-chloro-2-acyl-3-phosphocholinepropanediols were subjected to hydrolysis with phospholipase C (C. perfringens), which hydrolyzed 50% of the phosphatide within two min and the rest of it in two hr. From previous experience with glycerol esters, it was assumed that the more rapidly hydrolyzed molecules were the sn-1-chloro-2-acyl-propanediol derivatives and the more slowly hydrolyzed ones the sn-2-acyl-3-chloropropanediol derivatives. A hydrolysis with phospholipase A2 (Crotalus adamanteus) released 50% of the total fatty acid along with the corresponding lyso compound within 10 min, after which there was no further reaction. The hydrolysis products were assayed directly by gas liquid chromatography (GLC) or were isolated by thin layer chromatography (TLC) prior to quantitation by GLC. Both naturally occurring and synthetic chloropropanediol diesters behaved similarly on stereospecific analysis and were therefore concluded to be racemic. PMID:3724368

  4. Evaluation of iodination on the ethyl ester of poppy seed oil fatty acid by NAA method

    Evaluation of iodination on the ethyl ester of poppy seed oil fatty acid by NAA method. Poppy seed oil has been known for having unsaturated bonds. Therefore, the addition of iodine is expected to give a poly-iodo organic compound which can be used for roentgenography diagnosis. However, since the oil has a high viscosity which is not suitable for the mentioned purpose it must be changed into its simple ester prior to the iodination. It was observed that there was no significant change in the double bonds of the alkyl chain, and the reaction yield was also satisfactory. A preliminary experiment showed that direct iodination using I2 on the ethyl ester did not proceed well. Therefore a iodobromination of the ethyl ester was carried out followed by exchange reaction with I2 in chloroform. The evaluation using NAA method appeared to show that exchange reaction between Br in the iodobrominated compound and I in the I2 could proceed well. However, determination of the iodine content did not agree with that of the bromine. It might be caused by the instability of the compounds. It was also observed that I2 liberated from compounds diffused and penetrated the polyethylene material used for sample purse in the neutron activation. (author). 16 refs.; 4 figs

  5. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO2 good potentials for use in esterification of high acid value oil

  6. Antibacterial Effect of Acrylic Acid-Grafted Cotton, Wool and Polyester Fabrics on the Growth of Staphylococcus Aureus

    The effects of nutrient time (t) and acrylic acid graft yield (GY) on the growth of Staphylococcus aureus bacteria on cotton, wool and polyester fabrics have been studied. The bacterial growth increases with the increase in t after a 6 h-incubation period (IP). For cotton fabrics, the IP increases from 6 h to 12 h as the GY increases to 20%. The initial growth rate (R) is found to decrease with the increase in graft yield. The order (n) and rate constant (k) of the growth process are calculated at 303 K from the logarithmic dependence of R on GY. Both kinetic parameters are dependent on the type of fabric. The growth rate constant k is the lowest for grafted cotton and the highest for grafted polyester fabrics. The inhibiting effect of grafted poly acrylic acid (PAA), on the S. aureus growth rate is attributed to the release of hydrogen ions (H+) from the grafts into the nutrient aqueous solution. The accumulation of H+ ions, which increase with the increase in GY, at the cell wall and their possible diffusion inside the cell cause a perturbing effect that impairs the viability of the cells. This is observed from the increase in the polysaccharide layer around the cell due to increase in GY to 20%. Transmission electron micrographs revealed the existence of considerable changes in the shape of the cells as a result of PAA grafted on the fabrics

  7. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  8. Dye-sensitized solar cell with poly(acrylic acid-co-acrylonitrile)-based gel polymer electrolyte

    Highlights: ► A nontoxic, easily synthesized poly(acrylic acid-co-acrylonitrile) showed suitable transmittance for dye-sensitized solar cell. ► A cell with relatively large active area fabricated with this polymer material showed acceptable efficiency. ► The gel polymer matrix affected the charge recombination, I3− diffusion, double layer capacitance, and electron lifetime in the cell. - Abstract: A non-conducting, nontoxic poly(acrylic acid-co-acrylonitrile) (PAA) was prepared and used as a supporting matrix for the electrolyte of dye-sensitized solar cells (DSSCs). DSSCs of active area 0.80 cm × 1.10 cm fabricated with PAA, 0.5 M LiI, 0.05 M I2, 0.5 M 3-tert-butylpyridine, and 0.1 M 1-methyl-3-propylimidazolium iodide in 3-methoxypropionitrile solvent showed an average solar energy conversion efficiency of 1.61% under simulated sunlight illumination of 100 mW cm−2, AM 1.5. The effects of the gel polymer matrix on the electrochemical properties of DSSCs were studied using the electrochemical impedance spectroscopy. Relative to the non-gel reference cells, the results showed a decrease in charge recombination, ionic diffusion, and double layer capacitance and an increase in electron lifetime. These results could play an important role in determining the future direction for the development of high-performance gel polymer electrolytes.

  9. Controlled release of diclofenac sodium from pH-responsive carrageenan-g-poly(acrylic acid) superabsorbent hydrogel

    Hossein Hosseinzadeh

    2010-07-01

    In this paper, controlled release of diclofenac sodium (DS) from pH-sensitive carrageenan-gpoly(acrylic acid) superabsorbent hydrogels was investigated. The hydrogels were prepared by graft copolymerization of acrylic acid (AA) onto kappa-carrageenan, using ammonium persulfate (APS) as a free radical initiator in the presence of methylene bisacrylamide (MBA) as a crosslinker. Infrared spectroscopy was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). The synthesized hydrogels were subjected to equilibrium swelling studies in simulated gastric and intestinal fluids (SGF and SIF). Hydrogels containing drug DS, at different drug-to-polymer ratios, were prepared by direct adsorption method. The loading yield was found to depend on both the impregnation time and the amount of encapsulated drug. In vitro drug-release studies in different buffer solutions showed that the most important parameter affecting the drug-release behaviour of hydrogels is the pH of the solution. The mechanism involved in release was Fickian ( ≤ 0.43, = 0.348) and Super Case II kinetics ( > 1, = 1.231) at pH 1.2 and 7.4, respectively.

  10. Ultraviolet-induced surface modification of polyurethane films in the presence of oxygen or acrylic acid vapours

    Weibel, Daniel Eduardo, E-mail: danielw@iq.ufrgs.b [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Fassini Michels, Alexandre [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Horowitz, Flavio [Laser and Film Optics Laboratory, Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Silva Cavalheiro, Ricardo da [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Vingre da Silva Mota, Gunar [Curso de Fisica, Universidade Federal do Amapa, Macapa, AP (Brazil)

    2009-07-31

    An efficient surface functionalization of polyurethane (PU) films has been obtained by ultraviolet (UV)-assisted modification in the presence of oxygen or acrylic acid (AA) vapours. Film analyses were carried out by water contact angle measurements, X-ray photoelectron spectroscopy (XPS) and Near-edge X-ray absorption fine structure (NEXAFS). Film hydrophilicity increased with photolysis time in the presence of oxygen or AA vapours. Incorporation of COO and C=O functional groups at the polymer surface after the UV-assisted treatments was observed. In addition, High resolution XPS and NEXAFS results showed that a thin film of poly (acrylic acid) (PAA) is formed over the PU films during the UV irradiation with AA vapours. The obtained results are compared with previous published oxygen and AA low-power plasma treatments. Similarity between both treatment methodologies is shown. UV surface functionalization and polymerization of PAA can be used instead of a traditional plasma treatment with the advantage of set-up simplicity and lower costs.

  11. Ultraviolet-induced surface modification of polyurethane films in the presence of oxygen or acrylic acid vapours

    An efficient surface functionalization of polyurethane (PU) films has been obtained by ultraviolet (UV)-assisted modification in the presence of oxygen or acrylic acid (AA) vapours. Film analyses were carried out by water contact angle measurements, X-ray photoelectron spectroscopy (XPS) and Near-edge X-ray absorption fine structure (NEXAFS). Film hydrophilicity increased with photolysis time in the presence of oxygen or AA vapours. Incorporation of COO and C=O functional groups at the polymer surface after the UV-assisted treatments was observed. In addition, High resolution XPS and NEXAFS results showed that a thin film of poly (acrylic acid) (PAA) is formed over the PU films during the UV irradiation with AA vapours. The obtained results are compared with previous published oxygen and AA low-power plasma treatments. Similarity between both treatment methodologies is shown. UV surface functionalization and polymerization of PAA can be used instead of a traditional plasma treatment with the advantage of set-up simplicity and lower costs.

  12. Preparation of acrylic acid-modified chitin improved by an experimental design and its application in absorbing toxic organic compounds

    Huang, Chao-Ming, E-mail: charming@mail.ksu.edu.tw [Department of Materials Engineering, Kun Shan University, Tainan, Taiwan (China); Chen, Lung-Chuan, E-mail: lcchen@mail.ksu.edu.tw [Department of Materials Engineering, Kun Shan University, Tainan, Taiwan (China); Yang, Hui-Chia, E-mail: yang.junkdna@gmail.com [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China); Li, Min-Hsing, E-mail: a1487561a@yahoo.com.tw [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China); Pan, Ting-Chung, E-mail: tcpan@mail.ksu.edu.tw [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Acrylic acid-modified chitin. Black-Right-Pointing-Pointer Experimental design. Black-Right-Pointing-Pointer Graft copolymerization. Black-Right-Pointing-Pointer Adsorption of toxic organic compounds. Black-Right-Pointing-Pointer Very high adsorption capacity. - Abstract: Chitin grafted poly (acrylic acid) (chi-g-PAA) is synthesized and characterized as an adsorbent of toxic organic compounds. Chi-g-PAA copolymers are prepared using of ammonium cerium (IV) nitrate (Ce{sup 4+}) as the initiator. The highest grafting percentage of AA in chitin obtained using the traditional technique is 163.1%. A maximum grafting percentage of 230.6% is obtained using central composite design (CCD). Experimental results are consistent with theoretical calculations. The grafted copolymer is characterized by Fourier transform Infrared spectroscopy and solid state {sup 13}C NMR. A representative chi-g-AA copolymer is hydrolyzed to a type of sodium salt (chi-g-PANa) and used in the adsorption of malachite green (MG), methyl violet (MV), and paraquat (PQ) in aqueous. The monolayer adsorption capacities of these substances are 285.7, 357.1, and 322.6 mg/g-adsorbent, respectively. Thermodynamic calculations show that the adsorption of MG, MV, and PQ are more favored at diluted solutions. The high adsorption capacity of chi-g-PANa for toxic matter indicates its potential in the treatment of wastewater and emergency treatment of PQ-poisoned patients.

  13. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries.

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  14. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites

    Song, Cunfeng [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chang, Ying; Cheng, Ling; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Zhang, Long; Zhong, Lina [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China)

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. - Highlights: • A new type of antibacterial agent (PSA/Ag-NPs nanocomposites) was synthesized. • The antibacterial activity against S. aureus and E. coli was studied. • Inhibition zone, MIC, MBC, and bactericidal kinetics were evaluated. • PSA/Ag-NPs nanocomposites showed excellent antibacterial activity.

  15. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. - Highlights: • A new type of antibacterial agent (PSA/Ag-NPs nanocomposites) was synthesized. • The antibacterial activity against S. aureus and E. coli was studied. • Inhibition zone, MIC, MBC, and bactericidal kinetics were evaluated. • PSA/Ag-NPs nanocomposites showed excellent antibacterial activity

  16. Pengaruh Katalis H2SO4 pada Reaksi Epoksidasi Metil Ester PFAD (Palm Fatty Acid Distillate)

    Sinaga, Mersi Suriani

    2010-01-01

    Ester epoksi selain sebagai pelunak juga dapat memperbaiki ketahanan komponen polivinil klorida (PVC) terhadap panas dan cahaya. Penelitian ini dilakukan untuk merumuskan kondisi katalis yang sesuai bagi pembuatan senyawa epoksi metil ester PFAD dari senyawa metil ester PFAD. Metil ester PFAD terdiri dari ester lemak jenuh dan tidak jenuh., metode pemisahan kristalisasi dengan pelarut metanol untuk memisahkan ester lemak jenuh dari ester lemak tak jenuh, yang bertujuan meningkatkan kemamp...

  17. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions.

    Deutch-Kolevzon, Rivka; Aserin, Abraham; Garti, Nissim

    2011-10-01

    Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ(10)). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ(10) increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilutions. When added to the micellar system, CoQ(10) forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ(10) destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases. Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ(10); as a result CoQ(10) crystallization is retarded. PMID:21723268

  18. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L® and Novozym 388®, were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 oC and total reaction time 6 h. Lipozyme TL-100L® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  19. Development of Manufacturing Method of Highly Functional Material Gallic acid-CLA Ester Using Irradiation

    Increasing interest and current trends for natural materials with various health beneficial functions by radiation (RT)-biotechnology (BT) fusion by developed countries. However, the information and development of new functional materials using the RT-BT fusion technology is still limited. The target material developed and manufactured by RT-BT fusion technology may have a multi-functional effect on human health and it can be applied for pharmaceutical materials as well as functional food ingredient. The market of functional new materials has been grown dramatically and a multi-functional material manufactured by RT-BT fusion technology may have a great economic impact for both the domestic and overseas market. Development of GA-CLA ester by chemical synthetic method. Transformation of linoleic acid to conjugated linoleic acid by irradiation. Identification and confirmation of the biological functions including antioxidative, cancer cell proliferation inhibition, anti-microbial, enhancement of immune response and lipid metabolism of GA-CLA ester. Increase industrial applicability of the new materials. Development of GA-CLA ester by chemical synthetic method(2 patents submitted). Development of the optimum methodology of GA-CLA and its derivative, octadeca-9,12-dienyl-3,4,5-trihydroxy benzoate). Identification and confirmation of biological activities of GA-CLA. Extramural funding from the Ministry of Commerce, Industry, and Energy subjected by gallic acid-fatty acid derivatives (205,000,000 Won). Provides the basic data for successful project 'Development of cosmeceutical and cosmetics using gallic acid fatty acid derivatives' funded by Ministry of Commerce, Industry, and Energy and collaboration with the Technology-invested venture company, SunBiotech, Co. and problem-solving for industrial application. Complete the patent procedure and publish the results to international or domestic peer-reviewed journals

  20. Development of Manufacturing Method of Highly Functional Material Gallic acid-CLA Ester Using Irradiation

    Cho, C. H.; Byun, M. W.; Jeong, I. Y.; Kim, D. H

    2006-01-15

    Increasing interest and current trends for natural materials with various health beneficial functions by radiation (RT)-biotechnology (BT) fusion by developed countries. However, the information and development of new functional materials using the RT-BT fusion technology is still limited. The target material developed and manufactured by RT-BT fusion technology may have a multi-functional effect on human health and it can be applied for pharmaceutical materials as well as functional food ingredient. The market of functional new materials has been grown dramatically and a multi-functional material manufactured by RT-BT fusion technology may have a great economic impact for both the domestic and overseas market. Development of GA-CLA ester by chemical synthetic method. Transformation of linoleic acid to conjugated linoleic acid by irradiation. Identification and confirmation of the biological functions including antioxidative, cancer cell proliferation inhibition, anti-microbial, enhancement of immune response and lipid metabolism of GA-CLA ester. Increase industrial applicability of the new materials. Development of GA-CLA ester by chemical synthetic method(2 patents submitted). Development of the optimum methodology of GA-CLA and its derivative, octadeca-9,12-dienyl-3,4,5-trihydroxy benzoate). Identification and confirmation of biological activities of GA-CLA. Extramural funding from the Ministry of Commerce, Industry, and Energy subjected by gallic acid-fatty acid derivatives (205,000,000 Won). Provides the basic data for successful project 'Development of cosmeceutical and cosmetics using gallic acid fatty acid derivatives' funded by Ministry of Commerce, Industry, and Energy and collaboration with the Technology-invested venture company, SunBiotech, Co. and problem-solving for industrial application. Complete the patent procedure and publish the results to international or domestic peer-reviewed journals.

  1. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  2. The Chemical and Physical Properties of Poly( ε -caprolactone) Scaffolds Functionalised with Poly(vinyl phosphonic acid-co-acrylic acid)

    Bassi, A. K.; Gough, J. E.; Zakikhani, M.; Downes, S

    2011-01-01

    There is a clinical need for a synthetic alternative to bone graft substitute (BGS) derived from demineralised bone matrix. We report the electrospinning of Poly(ε-caprolactone) (PCL) to form a 3-dimensional scaffold for use as a synthetic BGS. Additionally, we have used Poly(vinyl phosphonic acid-co-acrylic acid) (PVPA) to improve bone formation. Fibres were formed using a 10% w/v PCL/acetone solution. Infrared spectroscopy confirmed that the electrospinning process had no effect on the func...

  3. NaY zeolites modified by La~(3+) and Ba~(2+): the effect of synthesis details on surface structure and catalytic performance for lactic acid to acrylic acid

    闫婕; 余定华; 李恒; 孙鹏; 黄和

    2010-01-01

    Modified NaY zeolites have been widely studied and the modification metal element is normally single, while few researches have been conducted on NaY zeolites modified by two kinds of metals. In our study, a series of La3+ and Ba2+ modified NaY zeolites were synthesized through different impregnation procedures. Lactic acid dehydration to acrylic acid was selected as a probe reaction to test the catalytic performance of these zeolites synthesized. The effects of synthesis details on their pore structures an...

  4. CHEMOTHERAPEUTIC POLYMERS ⅩⅩⅢ SYNTHESIS AND ANTITUMOR ACTIVITY OF POLYPHOSPHATES CONTAINING BOTH NUCLEIC ACID BASE AND PHOSPHONOACETIC ACID ETHYL ESTER

    ZHUO Renxi; LIU Zhenghua; LI Li

    1989-01-01

    Eight new polyphosphates containing both nucleic acid base and phosphonoacetic acid ethyl ester were synthesized by the polycondensation of P, P- dichloride of phosphonoacetic acid ethyl ester with 1, 3-dihydroxyalkyl - 5 - fluorouracil, 1,3 - dihydroxyalkyl - uracil and 1, 3 - dihydroxyalkylthymine. These polyphosphates were tested against Ehrlich Ascites Carcinoma in mice. Polymer Ⅱa and Ⅱc exhibited excellent antitumor activity. Ⅱc also showed lower toxicity.

  5. Direct Colorimetric Detection of Hydrogen Peroxide Using 4-Nitrophenyl Boronic Acid or Its Pinacol Ester

    Gregory Su; Yibin Wei; Maolin Guo

    2011-01-01

    A colorimetric method for the direct determination of hydrogen peroxide in aqueous solution is described. H2O2 stoichiometrically converts 4-nitrophenyl boronic acid or 4-nitrophenyl boronic acid pinacol ester into 4-nitrophenol, which can be quantified by measuring the absorption at 400 nm in neutral or basic media. The reactions proceed fast under basic conditions and complete in 2 minutes to at pH 11 and 80?C. The linear range for the colorimetric method extends beyond 1.0 to 40 µM H2O2, a...

  6. NMR Studies of a New Binding Mode of the Amino Acid Esters by Porphyrinatozinc(Ⅱ)

    2001-01-01

    The binding mode of the amino acid ethyl esters(guest) by 5-(2-carboxylphenyl)-10,15,20-triphenylporphyrinatozinc(Ⅱ)(host 1) was studied by means of 1H NMR spectra. The binding mode is the hydrogen-bonding between the amino group of the guest and the carboxyl group of host 1 plus the coordination between the zinc atom of porphyrinatozinc(Ⅱ) and the carbonyl group of the guest. This is a novel binding mode of the metalloporphyrin to amino acid derivatives.

  7. Scalable preparation of high purity rutin fatty acid esters following enzymatic synthesis

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing;

    2010-01-01

    Investigations into expanded uses of modified flavonoids are often limited by the availability of these high purity compounds. As such, a simple, effective and relatively fast method for isolation of gram quantities of both long and medium chain fatty acid esters of rutin following scaled......-up biosynthesis reactions was established. Acylation reactions of rutin and palmitic or lauric acids were efficient in systems containing dried acetone and molecular sieves, yielding from 70–77% bioconversion after 96 h. Thereafter, high purity isolates (>97%) were easily obtained in significant quantities...

  8. Integrated process of distillation with side reactors for synthesis of organic acid esters

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  9. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.

    Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2014-09-01

    In recent years, significant advances have been made to engineer robust microbes for overproducing biochemical products from renewable resources. These accomplishments have to a large extend been based on plasmid based methods. However, plasmid maintenance may cause a metabolic burden on the host cell and plasmid-based overexpression of genes can result in genetically unstable strains, which contributes to loss in productivity. Here, a chromosome engineering method based on delta integration was applied in Saccharomyces cerevisiae for the production of fatty acid ethyl esters (FAEEs), which can be directly used as biodiesel and would be a possible substitute for conventional petroleum-based diesel. An integration construct was designed and integrated into chromosomal delta sequences by repetitive transformation, which resulted in 1-6 copies of the integration construct per genome. The corresponding FAEE production increased up to 34 mg/L, which is an about sixfold increase compared to the equivalent plasmid-based producer. The integrated cassette in the yeast genome was stably maintained in nonselective medium after deletion of RAD52 which is essential for efficient homologous recombination. To obtain a further increase of FAEE production, genes encoding endogenous acyl-CoA binding protein (ACB1) and a bacterial NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) were overexpressed in the final integration strain, which resulted in another 40% percent increase in FAEE production. Our integration strategy enables easy engineering of strains with adjustable gene copy numbers integrated into the genome and this allows for an easy evaluation of the effect of the gene copy number on pathway flux. It therefore represents a valuable tool for introducing and expressing a heterologous pathway in yeast. PMID:24752598

  10. Hydroxy Ketones Part XIII-Fries Rearrangement of the Phenyl Esters of Thiophene-2-Carboxylic Acid

    G. S. Saharia

    1971-04-01

    Full Text Available Fries migration of the esters of phenol, isomeric cresols and naphthols with thiophene-2-carboxylic acid has been investigated at 120 Degree C and 160 Degree C in absence of a solvent, with a view to study the behaviour of the sulphur atom in the thiophene ring towards an acid catalyst and its interference in the complex formation necessary for the migration. The isomeric ortho- and para-hydroxy ketones have been isolated employing chemical methods and each is characterised by the preparation of its 2:4-dinitrophenylhydrazone. The yields of the hydroxy ketones were poor and ranged from 4-8% in the case of para and from 9-18% in the case of ortho. Further, in all cases studied, above 50% of the ester was recovered unchanged. These suggest that the charge density at the sulphur atom is greater than at the phenoxyl oxygen atom as compared with similar migrations high and no unreached ester was encountered.

  11. Preparation and characterization of polyacrylamide-modified kaolinite containing poly [acrylic acid-co-methylene bisacrylamide] nanocomposite hydrogels

    Zaharia, Anamaria; Sarbu, Andrei; Radu, Anita-Laura;

    2015-01-01

    Novel nanocomposite hydrogel structures based on cross-linked poly(acrylic acid) (PAA) and kaolinite (Kaol), modified with different loadings of polyacrylamide (PAAm), were prepared by inverse dispersion polymerization. Ceric ammonium nitrate as an initiator in the presence of nitric acid was used...... to graft PAAm from the Kaol surface. The surface-modified Kaol showed enhanced interactions between the filler and the PAA matrix, through interactions between amino (-NH2) from PAAm and carboxylic groups (-COOH) from PAA. The XRD and TEM measurements confirmed the exfoliated nanocomposites with the...... Kaol filler. The swelling degree (SD) of the swollen hydrogel nanocomposite was increased following the addition of polyacrylamide-modified Kaol particles into the hydrogel structures. Rheological characterization showed that an increase in the storage modulus (G') could be a consequence of a good...

  12. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A., E-mail: glau_bn@hotmail.co [University of Extreme South of Santa Catarina Criciuma, SC (Brazil). Dept. of Materials Engineering; Silveira, F.Z. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Chemical Engineering

    2010-07-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  13. Characterization of pH-sensitive Poly (acrylic acid-co-N-vinyl-2-pyrrolidone) Hydrogels Prepared by Gamma Radiation

    YANG Ming-cheng; HE Su-qin; LIU Wen-tao; SONG Hong-yan; ZHU Cheng-shen

    2007-01-01

    The pH-sensitive copolymer hydrogels were prepared with the monomers of acrylic acid and N-vinyl-2-pyrrolidone based on gamma radiation technique. The morphology of the hydrogels was monitored by using scanning electron microscope. The influence of absorbed dose, monomer compasition and concentration on the swelling ratio (SR) of the hydrogels were investigated in detail. The effect of pH and temperature of the swelling medium on the swelling behavior of the hydrogels were also examined. The results show that the SR of the copolymer hydrogels decreases with the monomer concentration and absorbed dose increasing. The copolymer hydrogels show a better pH-sensitive behavior. In alkaline solution, the SR of the hydrogels is much higher than in acid solution.

  14. Chemometric analysis of mass spectra of cis and trans fatty acid picolinyl esters

    Leth, Torben

    1997-01-01

    Capillary GC of fatty acid methyl esters with MS detection only yields information about the molecular weight of the compound. However, if picolinyl esters of fatty acids are analysed in this way it is possible to obtain more information about their structure, perhaps even the cis or trans...... a quadropole MS-detector. The mass spectra clearly show the molecular weight and the position of double bonds in the fatty acids, but whether the configuration is cis or trans is impossible to discern visually. However, with the use of principal component analysis, it is possible to distinguish...... between cis and trans fatty acids of C16:1, C18:1,n-9, C18:1,n-12, C18:2 and C22:1 in two- and three-dimensional score plots. With Soft Independent Modelling of Class Analogy (SIMCA), it is possible to calculate models that can predict from the mass spectra of unknown fatty acids whether they are of the...

  15. Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation

    The pH-responsive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared via a two-step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto this poly(vinyl alcohol) hydrogels with subsequent irradiation (5-20 kGy). These graft hydrogels showed pH-sensitive swelling behavior. These hydrogels were used as carrier for the controlled release of insulin. The in vitro release of insulin was observed for the insulin-loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose

  16. Sintesis Metil Ester Sulfonat Dari Asam Stearat Dan Metil Ester Sulfonat Dari Asam Oleat

    Samosir, Yustina

    2011-01-01

    The Synthesis of Methyl Ester Sulfonate (MES) from stearic acid and from oleic acid through the stages of esterification reaction, that are esterification from stearic acid and oleic acid that forms methyl ester stearic acid and methyl ester oleic acid next stage was sulfonating the two of methyl esters to form a methyl ester sulfonate stearic acid and methyl ester oleic acid sulfonate. Furthermore, both fatty acid methyl ester sulfonate is neutralized with NaOH to obtain sulfonate salt. ...

  17. Production and Optimization of Oleic Acid Ethyl Ester Synthesis Using Lipase From Rice Bran (Oryza sativa L.) and Germinated Jatropha Seeds (Jatropha curcas L.) by Response Surface Methodology

    Indro Prastowo; Chusnul Hidayat; Pramudji Hastuti

    2015-01-01

    Recently, the fatty acid ethyl ester has been synthesized in place of fatty acid methyl ester since ethanol has been more renewable. In this research, oleic acid ethyl ester (OAEE) was synthesized using germinated jatropha seeds (Jatropha curcas.L) and rice bran (Oryza sativa) as source of lipase. The objective of the research was to optimize the synthesis conditions using Response Surface Methodology. Factors, such as crude enzyme concentration, molar ratio of oleic acid to ethanol, and the...

  18. Features of separation on polymeric reversed phase for two classes of higher saturated fatty acids esters

    Deineka, V. I.; Lapshova, M. S.; Zakharenko, E. V.; Deineka, L. A.

    2013-11-01

    The principles of sorption on polymeric reversed phase (PRP) YMS C30 for members of the two classes of esters formed by higher saturated fatty acids, i.e., lutein diesters ( I) and triacylglycerols ( II), are investigated. It is shown that the logarithm of the retention factor increases nonlinearly with an increase of the length of the acid radical, although the retention on PRP is higher in the case of I and lower in the case of II, compared to their retention on traditional monomeric reversed phase (MRP) Kromasil-100 5C18; however, the equivalence of the contributions to the retention of I that correspond to an identical change in acids, does not depend on the length of the hydrocarbon radical of the second acid. It is noted that the Van't Hoff plot for PRP contains a curve break, indicating a change in the retention mechanism upon a rise in temperature.

  19. Dehydrogenative Cross-Coupling Reaction between N-Aryl α-Amino Acid Esters and Phenols or Phenol Derivative for Synthesis of α-Aryl α-Amino Acid Esters.

    Salman, Muhammad; Zhu, Zhi-Qiang; Huang, Zhi-Zhen

    2016-04-01

    A novel dehydrogenative cross-coupling (DCC) reaction between N-arylglycine esters and phenols or 1,3,5-trimethoxybenzene was developed by copper catalysis using di-tert-butyl peroxide (DTBP) as an oxidant. Under optimized conditions, a range of N-arylglycine esters 1 underwent the DCC reaction smoothly with various phenols 2 or 1,3,5-trimethoxybenzene 4 to give desired α-aryl α -amino acid esters 3 or 5, respectively, with high ortho regioselectivities in a moderate to excellent yield. A possible mechanism involving aromatic electrophilic substitution is proposed. PMID:26984111

  20. Preparation and drug-loading properties of Fe{sub 3}O{sub 4}/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    Lu, Wensheng [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China); Shen, Yuhua, E-mail: s_yuhua@163.com [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Xie, Anjian [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhang, Weiqiang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China)

    2013-11-15

    Fe{sub 3}O{sub 4}/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe{sub 3}O{sub 4} nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe{sub 3}O{sub 4} nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  1. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes. PMID:25224149

  2. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  3. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and Cholesteryl Ester Storage Diseases.

    Porto, Anthony F

    2014-09-01

    Lysosomal acid lipase (LAL) is responsible for the hydrolysis of cholesterol esters and triglycerides. LAL is coded by the LIPA gene on chromosome 10q23.31. Its deficiency leads to two autosomal recessive disorders, Wolman disease (WD) and Cholesteryl Ester Storage Disease (CESD). WD has an estimated incidence of 1 in 500,000 live births and is the result of a complete loss of LAL and presents in infancy with vomiting, diarrhea, poor weight gain and hepatomegaly subsequently leading to death. CESD is the result of partial loss of LAL and its presentation is more variable. Patients may be asymptomatic or present with nonspecific gastrointestinal symptoms, hepatomegaly, elevated transaminases and dystipidemia which may be confused with the diagnosis of Non-alcoholic Fatty Liver Disease. CESD is currently underdiagnosed and has an estimated prevalence as high as I in 40,000 individuals. Radiologic findings in WD is calcification of the adrenal glands. Hepatomegaly is noted on CT scan in both WD and CESD. MRI may demonstrate accumulation of cholesterol esters and may be useful to study effects of potential medical therapies. The diagnosis of WD and CESD is based on LIPA gene sequencing and the measurement of LAL levels in peripheral blood leukocytes. Treatment of LAL deficiency is currently limited to control of cholesterol levels and to prevent premature atherosclerosis. Use of enzyme replacement therapy with recombinant human LAL in short-term studies has shown to be safe and effective. PMID:25345094

  4. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  5. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    Jin, Xin; Zhou, Pei; Zheng, Chunying [Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Li, Hui, E-mail: lihui@bit.edu [Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)

    2015-05-15

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in a novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.

  6. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    A copper complex ([Cu(py)2(L)2]·2CH3OH)n (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in a novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved

  7. Poly(glycidyl methacrylate) microspheres: preparation by poly(acrylic acid)-stabilized dispersion polymerization and effect of some reaction parameters

    Koubková, Jana; Horák, Daniel

    2013-01-01

    Roč. 2, č. 3 (2013), s. 218-225. ISSN 2164-9634 R&D Projects: GA ČR GCP207/12/J013 Institutional support: RVO:61389013 Keywords : glycidyl methacrylate * dispersion polymerization * poly(acrylic acid) Subject RIV: CD - Macromolecular Chemistry

  8. Systematic investigation of the synthesis of core-shell poly(styrene-co-acrylic acid) colloids with varying shell thickness and core diameter

    Hinge, Mogens; Keiding, Kristian

    2006-01-01

    (acrylic acid). Further the TEM images of the colloids supported the core-shell morphology of the produced poly(ST-co-AA) colloids. This shows that the produced poly(ST-co-AA) colloids have a core-shell morphology and that the shell thickness can be increased by increasing the acrylic acid concentration in the...... morphology of the material for an specific application is going on. It is known from SFEP of styrene that the final colloidal size can be controlled by adjusting the ionic strength of the synthesis feed [1] and it is suggested that adding acrylic acid to the synthesis will result in a change in...... determined as a function of time. Results show a shift in polymerization from styrene in the core to acrylic acid at the surface during the synthesis. This gives poly(ST-co-AA) colloids that has a core-shell morphology with a core mainly consisting of poly(styrene) and a shell mainly consisting of poly...

  9. Amino acid esters substituted phosphorylated emtricitabine and didanosine derivatives as antiviral and anticancer agents.

    Sekhar, Kuruva Chandra; Janardhan, Avilala; Kumar, Yellapu Nanda; Narasimha, Golla; Raju, Chamarthi Naga; Ghosh, S K

    2014-07-01

    Owing to the promising antiviral activity of amino acid ester-substituted phosphorylated nucleosides in the present study, a series of phosphorylated derivatives of emtricitabine and didanosine substituted with bioactive amino acid esters at P-atom were synthesized. Initially, molecular docking studies were screened to predict their molecular interactions with hemagglutinin-neuraminidase protein of Newcastle disease virus and E2 protein of human papillomavirus. The title compounds were screened for their antiviral ability against Newcastle disease virus (NDV) by their in ovo study in embryonated chicken eggs. Compounds 5g and 9c exposed well mode of interactions with HN protein and also exhibited potential growth of NDV inhibition. The remaining compounds exhibited better growth of NDV inhibition than their parent molecules, i.e., emtricitabine (FTC) and didanosine (ddI). In addition, the in vitro anticancer activity of all the title compounds were screenedagainst HeLa cell lines at 10 and 100 μg/mL concentrations. The compounds 5g and 9c showed an effective anticancer activity than that of the remaining title compounds with IC50 values of 40 and 60 μg/mL, respectively. The present in silico and in ovo antiviral and in vitro anticancer results of the title compounds are suggesting that the amino acid ester-substituted phosphorylated FTC and ddI derivatives, especially 5g and 9c, can be used as NDV inhibitors and anticancer agents for the control and management of viral diseases with cancerous condition. PMID:24789416

  10. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    Sumeyya Akyol; Veli Ugurcu; Aynur Altuntas; Rukiye Hasgul; Ozlem Cakmak; Omer Akyol

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury ...

  11. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  12. Caffeic acid phenethyl ester protects lung alveolar epithelial cellsfrom cigarette smoke-induced damage

    BARLAS, FIRAT BARIŞ; ERDOGAN, SUAT

    2015-01-01

    Background/aim: To evaluate the influence of caffeic acid phenethyl ester (CAPE) on cigarette smoke (CS)-induced cell damage, oxidative stress, and inflammation in human alveolar epithelial cells. Materials and methods: A549 alveolar epithelial cells were divided into control, CS exposure, CAPE, and CS+CAPE treatment groups. Undiluted CS-exposed medium (100%) and three dilutions (50%, 25%, and 10%) of CS-exposed media were applied to cultured A549 cells, which were analyzed after 3 h of inc...

  13. Synthesis and Antitumor Activity of Amino Acid Ester Derivatives Containing 5-Fluorouracil

    Jing Xiong

    2009-08-01

    Full Text Available A series of amino acid ester derivatives containing 5-fluorouracil were synthesized using 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride (EDC•HCl and N-hydroxybenzotriazole (HOBt as a coupling agent. The structures of the products were assigned by NMR, MS, IR etc. The in vitro antitumor activity tests against leukaemia HL-60 and liver cancer BEL-7402 indicated that (R-ethyl 2-(2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H-ylacetamido-3-(4-hydroxyphenyl propanoate showed more inhibitory effect against BEL-7402 than 5-FU.

  14. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester

    Trably, Eric; Batstone, Damien J.; Christensen, Nina;

    2008-01-01

    enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic...... microorganism described previously as an anaerobic benzaldehyde degrader. Within the archaeal community, there was a shift between two different species of the genus Methanosaeta sp., indicating a highly specific impact of DBP or degradation products on archaeal species. RNA-directed probes were designed from...

  15. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    Martin J. G. Hébert

    2015-01-01

    Full Text Available Two novel boron compounds containing caffeic acid phenethyl ester (CAPE derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE.

  16. Synthesis, Crystal Structure and Biological Activities of Novel Anthranilic(Isophthalic) Acid Esters

    YAN Tao; YU Guan-ping; LIU Peng-fei; XIONG Li-xia; YU Shu-jing; LI Zheng-ming

    2012-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low resistance,a series of novel anthranilic(isophthalic) acid esters was designed and synthesized based on the structure of ryanodine modulating agent.All the compounds were characterized by 1H NMR spectra,elemental analysis or high resolution mass spectrometry(HRMS).The preliminary results of biological activity assessment indicate that some of the title compounds exhibit certain but unremarkable insecticidal activity against Mythimna separata Walker at 200 mg/L and fungicidal activities against five funguses at 50 mg/L.

  17. Chan-Evans-Lam Amination of Boronic Acid Pinacol (BPin) Esters: Overcoming the Aryl Amine Problem.

    Vantourout, Julien C; Law, Robert P; Isidro-Llobet, Albert; Atkinson, Stephen J; Watson, Allan J B

    2016-05-01

    The Chan-Evans-Lam reaction is a valuable C-N bond forming process. However, aryl boronic acid pinacol (BPin) ester reagents can be difficult coupling partners that often deliver low yields, in particular in reactions with aryl amines. Herein, we report effective reaction conditions for the Chan-Evans-Lam amination of aryl BPin with alkyl and aryl amines. A mixed MeCN/EtOH solvent system was found to enable effective C-N bond formation using aryl amines while EtOH is not required for the coupling of alkyl amines. PMID:27045570

  18. Can propolis and caffeic acid phenethyl ester (CAPE be promising agents against cyclophosphamide toxicity?

    Sumeyya Akyol

    2016-03-01

    Full Text Available Propolis is a mixture having hundreds of polyphenols including caffeic acid phenethyl ester (CAPE. They have been using in several medical conditions/diseases in both in vitro and in vivo experimental setup. Cyclophosphamide has been used to treat a broad of malignancies including Hodgkin's and non-Hodgking's lymphoma, Burkitt's lymphoma, chronic lymphocytic leukemia, Ewing's sarcoma, breast cancer, testicular cancer, etc. It may cause several side effects after treatment. In this mini review, the protective effects of propolis and CAPE were compared each other in terms of effectiveness against cyclophosphamide-induced injuries. [J Intercult Ethnopharmacol 2016; 5(1.000: 105-107

  19. Synthesis ,Structure and Biological Activities of Some Novel Anthranilic Acid Esters Containing N-Pyridyl-pyrazole

    DONG,Weili; XU,Junying; XIONG,Lixia; LIU,Xinghai; LI,Zhengming

    2009-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low residue,a novel series of anthranilic acid esters containing N-pyridylpyrazole were designed and synthesized.All of the compounds were characterized and confirmed by IR,1H NMR,MS and elemental analysis.The single crystal structure of 14d was determined by X-ray diffraction.The bioassay tests showed that the synthesized compounds exhibited good insecti-tidal activities against Mythimna separata Walker and Culex pipiens pallens.

  20. Equilibrium partitioning of drug molecules between aqueous and amino acid ester-based ionic liquids

    Highlights: ► Partition coefficients of twelve drug molecules in ILs have been determined. ► The possible mechanism has been investigated from 13C NMR measurements. ► Hydrophobic π–π interaction is the main driving force for the partitioning of drug molecules. -- Abstract: In this work, a series of novel room temperature ionic liquids (ILs) have been synthesized with cheap, naturally α-amino acid ester as cations and bis(trifluoromethylsulfonyl)imide as anion. The glass transition temperature and thermal decomposition temperature of these ILs, partition coefficients of some coumarins and purine alkaloids between water and the amino acid ester-based ILs at T = 298.15 K, and Gibbs energy, enthalpy and entropy changes for the transfer of caffeine and 6,7-dihydroxycoumarin from water to [LeuC2][Tf2N] have been determined. It is shown that these ILs are highly effective materials for the extraction of drug compounds like coumarin, 4-hydroxycoumarin, 7-hydroxycoumarin, 3-aminocoumarin, coumarin-3-carboxylic acid, 6,7-dihydroxycoumarin, 6,7-dihydroxy-4-methylcoumarin, caffeine, theobromine, theophylline, inosine, and 2,6-diaminopurine. The partition process is driven by enthalpy term, and partition coefficients of the drug molecules increase with the increase of hydrophobicity of both the drug molecules and the ILs. Furthermore, the possible partition mechanism has been investigated from 13C NMR measurements

  1. Breast Cancer Genetic and Molecular Subtype Impacts Response to Omega-3 Fatty Acid Ethyl Esters.

    Chen, Ching Hui; Fabian, Carol; Hursting, Stephen; deGraffenried, Linda A

    2016-01-01

    Epidemiological studies have correlated frequent omega-3 (n-3) fatty acid consumption with a lower risk for breast cancer; however, recent prospective studies have been less conclusive. Efforts in the preventive setting have focused on the use of n-3 fatty acids, and the pharmaceutical ethyl esters (EE) of these natural compounds, for high-risk patient populations. Limited understanding of specific mechanisms by which these agents function has hampered identification of the cancer subtype(s) that would gain the greatest therapeutic benefit. In this study, we investigated the in vitro effects of n-3 EEs in four distinct breast cancer subtypes and explored how they affect not only breast cancer cell survival but also modulate the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma signaling pathways. Similar to the high variance in response observed in human studies, we found that the effectiveness of n-3 EEs depends on the molecular characteristics of the MCF-7, CAMA-1, MDA-MB-231, and SKBR3 breast cancer cell lines and is closely associated with the suppression of NF-κB. These data strongly suggest that the use of n-3 fatty acids and their pharmaceutical ether esters in the prevention and therapeutic setting should be guided by specific tumor characteristics. PMID:27367296

  2. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    Van Vunakis, H.; Freeman, D.S.; Gjika, H.B.

    1975-10-01

    Antibodies that bind an /sup 125/I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 10/sup 4/, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay.

  3. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    Antibodies that bind an 125I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 104, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay

  4. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester.

    Majewska, Paulina; Serafin, Monika; Klimek-Ochab, Magdalena; Brzezińska-Rodak, Małgorzata; Żymańczyk-Duda, Ewa

    2016-06-01

    A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68-93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50-55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids). PMID:26989983

  5. Thermosensitive membranes by radiation-induced graft polymerization of N-isopropyl acrylamide/acrylic acid on polypropylene nonwoven fabric

    Radiation-induced graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) mixture was investigated on polypropylene nonwoven fabric to develop a thermosensitive material. The grafting was carried out using methanol, acetone and butanone as homopolymerization inhibitor in the reaction medium. Butanone was observed to give the maximum grafting. It was observed that the grafting is significantly influenced by the reaction conditions, such as radiation dose, monomer concentration, monomer ratio, solvent composition and reaction temperature. The degree of grafting increased as the AA and NIPAAm concentration in the reaction medium increased. The degree of grafting increased as the AA fraction in the NIPAAm/AA mixture increased. The temperature dependence of the grafting process is very much governed by the thermosensitive nature of the grafted chains right from the stage when initial grafting has taken place.

  6. Radiation synthesis of pH-sensitive hydrogels from β-cyclodextrin-grafted PEG and acrylic acid for drug delivery

    A water-soluble macromonomer (PEG-β-CD) was synthesised by reaction of β-cyclodextrin with poly(ethylene glycol) diglycidyl ether. Then, a novel hydrogel with pH-sensitivity was prepared by irradiating the mixture of acrylic acid and PEG-β-CD with electron beam. Compared with the normal PAAc hydrogel, this novel hydrogel had a higher swelling ratio at pH 3-8. 5-Fluorouracil (5-FU) was chosen as a model drug, and the kinetics of 5-FU releasing behavior was studied. Compared with the PAAc hydrogel, the results showed the release time of 5-FU from the cyclodextrin containing hydrogel was prolonged. It may be ascribed to the formation of inclusion complexes between the drug molecules and cyclodextrin groups.

  7. An interesting grafting reactivity of EB preirradiated polypropylene film[Radiation grafting; Polypropylene; Free radical; peroxide; Acrylic acid; Acrylamide

    Chen Jie E-mail: chenjjd@online.sh.cn; Yang Liming; Chen Liqin; Wu Minhong; Nho, Y.C.; Kaetsua, Isao

    2004-02-01

    An interesting grafting reactivity of electron beam preirradiated polypropylene (PP) film was found by grafting of acrylic acid (AAc) and acrylamide (AAm) repeatedly or intermittently. The preirradiated PP film could be grafted several times intermittently and the free radicals or peroxides on the samples could be determined after several times grafting reaction. The effects of storage time, reaction time and repeated reaction times on the degree of grafting were investigated. The trapped radicals, peroxy-radicals and peroxides on the preirradiated and reacted PP films were determined by using electron spin resonance (ESR) and 1,1-diphenyl-2-picryl hydrazyl (DPPH), respectively. An interpenetrating polymer networks (IPN) with both temperature and pH sensitive properties was obtained by two times grafting of AAm and AAc onto preirradiated PP film.

  8. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    Sheikh, N., E-mail: nasheikh@aeoi.org.i [Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Jalili, L. [Polymer group, Technology and Engineering Department, Yazd University, Yazd (Iran, Islamic Republic of); Anvari, F. [Radiation Applications Research School, Nuclear Science and Technology Research Institute, Yazd (Iran, Islamic Republic of)

    2010-06-15

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  9. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    Liu, Chao; Thormann, Esben; Claesson, Per M.;

    2014-01-01

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...... and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of...... steps. The higher molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were...

  10. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2

  11. PHOTO-INDUCED DOPED POLYANILINE BY THE VINYLIDENE CHLORIDE AND METHYL ACRYLATE COPOLYMER AS PHOTO ACID GENERATOR

    LI Suzhen; WAN Meixiang

    1997-01-01

    The emeraldine base form of polyaniline (PANI) can be doped by a photo-induced doping method. In this method a copolymer of vinylidene chloride and methyl acrylate (VCMAC) was used as photo acid generator which can release proton when it is exposed to ultraviolet light (λ = 254 nm). The structure of PANI-VCMAC system before and after irradiation was characterized by elemental analysis, IR, XPS, and SEM images. Results obtained indicate that the photo-induced doping characteristics, such as doping position and type of charge carriers, are similar to that of PANI doped with HCl. The poor roomtemperature conductivity (~ 10-5S/cm) of PANI-VCMAC system after irradiation may be due to low doping degree (~pH= 3) and the difference in morphology as compared with PANI-HCl film.

  12. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  13. Preparation and characterization of ZnS/poly(acrylamide-co-acrylic acid) dendritical nanocomposites by γ-irradiation

    Zinc sulfide poly(acrylamide-co-acrylic acid) [ZnS/P(AM-co-AA)] nanocomposites with a dendritical structure were successfully prepared in one step by γ-irradiation technique in an aqueous system at room temperature and under ambient pressure. The results from X-ray powder diffraction (XRD) analysis and IR spectrum of the final product showed the formation of ZnS nanoparticles and the polymerization of monomers, respectively. The photoluminescence (PL) peak of the as-prepared product centered at 450 nm, which showed an obvious red shift compared with the ZnS bulk material. The presence of copolymer was considered to be the main reason that influenced the shape and photoluminescence property of the composite

  14. Improvement in the behavior of bromelain coupled to pNIPAm polymers containing acrylamide or acrylic acid

    Rubab Mahmood

    2014-08-01

    Full Text Available Bromelain was coupled to N-isopropyl acrylamide (NIPAmpolymers, synthesized using NIPAm and various concentrations of acrylamide (Ac or acrylic acid (AAc. Incorporation of Ac/AAcinto the polymer increased the LCST (lower critical solutiontemperature in a concentration dependent manner but AAc wasmore effective in this regard; the LCST rose to 40°C when 6 percent AAc was used. Incorporation of Ac/AAc increased the coupling of enzyme to the polymer and the η (effectiveness factor of the coupled enzyme, moderately. Various studies indicate that such incorporation of hydrophilic monomers into the polymer does not impair its capacity to couple enzyme or expression of the activity of bound enzyme but seems to actually improve the stability of the enzyme against heat induced inactivation and alkaline pH.

  15. Tensile properties of low density polypropylene (LDPE)/palm kernel shell (PKS) biocomposites: The effect of acrylic acid (AA)

    The surface of palm kernel was modified by acrylic acid (AA). Low density polyethylene (LDPE) was filled by palm kernel shell at various 0, 10, 20, 30 and 40 php. The effect of AA as a coupling agent on LDPE/PKS biocomposites on tensile properties and morphology was investigated. The results show that the increasing of filler content decreased the tensile strength and break elongation but increased the Young's modulus. The presence of AA indicates higher tensile strength and Young's modulus but lower elongation at break compared to untreated LDPE/PKS biocomposites. The scanning electron microscope study show that the better interfacial interaction between palm kernel shell and low density polyethylene with addition of AA.

  16. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  17. SYNTHESIS OF SOAP-FREE ACRYLIC HYDROSOLS

    Li Jia; Zong-hui Liu; De-qing Wei

    2002-01-01

    Poly(methyl methacrylate/ethyl acrylate/acrylic acid) hydrosols were prepared by employing soap-freepolymerization, and (acrylic acid/butyl acrylate) oligomer was used as the polymeric surfactant. The effect of reactioncondition on the morphology and particle size of the hydrosols was investigated. The minimum amount of acrylic acid in thehydrosols is 2%. The maximum weight average molecular weight (Mw) of polymer that assures soap-free emulsionconversion into hydrosol is about 1.2 × 105-1.3 × 105. The particle transforming process was investigated, and an obviouschange of particle diameter and morphology was observed.

  18. Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications

    Mueller, Christiane; Leithner, Katharina; Hauptstein, Sabine; Hintzen, Fabian [Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB-Centrum for Chemistry und Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy (Austria); Salvenmoser, Willi [University of Innsbruck, Department for Evolutionary Developmental Biology, Institute of Zoology and Center for Molecular Biosciences (Austria); Bernkop-Schnuerch, Andreas, E-mail: andreas.bernkop@uibk.ac.at [Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB-Centrum for Chemistry und Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy (Austria)

    2013-01-15

    Particle diffusion through the intestinal mucosal barrier is restricted by the viscoelastic and adhesive properties of the mucus gel layer, preventing their penetration to the underlying absorptive endothelial cells. To overcome this natural barrier, we developed nanoparticles which have a remarkable ability to cleave mucoglycoprotein substructures responsible for the structural and rheological properties of mucus. After rheological screening of various mucolytic proteases, nanoparticles composed of poly(acrylic acid) and papain were prepared and characterized regarding particle size and zeta potential. Analysis of nanoparticles showed mean diameters sub-200 nm (162.8-198.5 nm) and negative zeta potentials advancing the mobility in mucus gel. Using diffusion chamber studies and the rotating diffusion tubes method, we compared the transport rates of papain modified (PAPC) and unaltered poly(acrylic acid) (PAA) particles through freshly excised intestinal porcine mucus. Results of the diffusion assays demonstrated strongly enhanced permeation behavior of PAPC particles owing to local mucus disruption by papain. Improved transport rates, reduction in mucus viscosity and the retarded release of hydrophilic macromolecular compounds make proteolytic enzyme functionalized nanoparticles of substantial interest for improved targeted drug delivery at mucosal surfaces. Although cytotoxicity tests of the nanoparticles could not be performed, safety of papain and PAA was already verified making PAPC particles a promising candidate in the pharmaceutical field of research. The focus of the present study was the development of particles which penetrate the mucus barrier to approach the underlying epithelium. Improvements of particles that penetrate the mucus followed by cell uptake in this direction are ongoing.

  19. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.

    Ogiwara, Takuya; Katsumura, Ayaka; Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2015-12-14

    Calcium phosphate mineralization was conducted by using polymer composites of liquid-crystalline (ethyl)cellulose (EC) or (hydroxypropyl)cellulose (HPC) with poly(acrylic acid) (PAA) as a scaffolding medium for the inorganic deposition. The EC/PAA and HPC/PAA samples were prepared in colored film form from EC and HPC lyotropic liquid crystals of left-handed and right-handed chiral nematics, respectively, by polymerization and cross-linking of acrylic acid as the main solvent component. The mineralization was allowed to proceed in a batchwise operation by soaking the liquid-crystalline films in an aqueous salt solution containing the relevant ions, Ca(2+) and HPO4(2-). The calcium phosphate-deposited EC/PAA and HPC/PAA composites (weight gain, typically 15-25% and 6-11%, respectively) retained the chiral nematic organization of the respective original handedness but exhibited selective light-reflection of longer wavelengths relative to that of the corresponding nonmineralized samples. From X-ray diffraction and energy-dispersive X-ray spectroscopy measurements, it was deduced that the calcium and phosphorus were incorporated inside the polymer matrices in three forms: amorphous calcium phosphate, hydroxyapatite, and a certain complex of PAA-Ca(2+). Dynamic mechanical analysis and thermogravimetry revealed that the inorganic hybridization remarkably enhanced the thermal and mechanical performance of the optically functionalized cellulosic/synthetic polymer composites; however, the effect was more drastic in the EC/PAA series rather than the HPC/PAA series, reflecting the difference in the deposited mineral amount between the two. PMID:26536381

  20. Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications

    Particle diffusion through the intestinal mucosal barrier is restricted by the viscoelastic and adhesive properties of the mucus gel layer, preventing their penetration to the underlying absorptive endothelial cells. To overcome this natural barrier, we developed nanoparticles which have a remarkable ability to cleave mucoglycoprotein substructures responsible for the structural and rheological properties of mucus. After rheological screening of various mucolytic proteases, nanoparticles composed of poly(acrylic acid) and papain were prepared and characterized regarding particle size and zeta potential. Analysis of nanoparticles showed mean diameters sub-200 nm (162.8–198.5 nm) and negative zeta potentials advancing the mobility in mucus gel. Using diffusion chamber studies and the rotating diffusion tubes method, we compared the transport rates of papain modified (PAPC) and unaltered poly(acrylic acid) (PAA) particles through freshly excised intestinal porcine mucus. Results of the diffusion assays demonstrated strongly enhanced permeation behavior of PAPC particles owing to local mucus disruption by papain. Improved transport rates, reduction in mucus viscosity and the retarded release of hydrophilic macromolecular compounds make proteolytic enzyme functionalized nanoparticles of substantial interest for improved targeted drug delivery at mucosal surfaces. Although cytotoxicity tests of the nanoparticles could not be performed, safety of papain and PAA was already verified making PAPC particles a promising candidate in the pharmaceutical field of research. The focus of the present study was the development of particles which penetrate the mucus barrier to approach the underlying epithelium. Improvements of particles that penetrate the mucus followed by cell uptake in this direction are ongoing.

  1. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. PMID:23692633

  2. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO2/graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO2 nanocomposite hydrogels. Both TiO2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  3. Poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-10-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO{sub 2} and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO{sub 2}/graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO{sub 2} was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2} nanocomposite hydrogels. Both TiO{sub 2} and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO{sub 2} and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water.

  4. Structure- Property Behavior of Poly (acrylic acid) Hydrogels Synthesized by Radiation Induced Polymerization

    Hydrogel containing hydroxyl group based on glycerol, ethylene glycol and acrylic monomer, have been prepared by using gamma radiation. The application of the prepared hydrogel for recovery of CU2+, Co2+, Ni2+, and Pb2+ was also studied. The hydrogel for complexes with metals have been isolated and characterized by using different spectroscopic techniques IR and thermal analysis. TGA thermo grams were used to determine the kinetic parameters such as activation energy and order of reaction. The complexometric titration showed that the hydrogels have a great affinity to recover the metal ions in the following order Pb2+ > Ni2+ > Cu2+ > Co2+. However the hydrogel containing glycerol has a great tendency towards metals recovery than than the one containing ethylene glycol

  5. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  6. RAFT-Mediated Polymerization-Induced Self-Assembly of Poly(Acrylic Acid-b-Poly(Hexafluorobutyl Acrylate: Effect of the pH on the Synthesis of Self-Stabilized Particles

    Jianhua Zhou

    2016-05-01

    Full Text Available This paper describes a very simple strategy towards self-stabilized poly(acrylic acid-block-poly(hexafluorobutyl acrylate (PAA-b-PHFBA block copolymer particles via reversible addition-fragmentation chain transfer (RAFT-mediated polymerization-induced self-assembly. Hexafluorobutyl acrylate (HFBA monomer conversion and number-average molar mass of PAA-b-PHFBA increased gradually with the increase in the pH value of the aqueous phase. When pH < 10, the molecular weight distributions of PAA-b-PHFBA were narrow, however, when the pH was raised to 11.55, PAA-b-PHFBA block copolymers had a broader distribution (ĐM = 1.82 with a serious trailing toward the low molecular weight. Furthermore, the morphology and size of PAA-b-PHFBA latex particles were measured by transmission electron microscopy and dynamic light scattering. The results indicated that the PAA-b-PHFBA latex particles had a clear spherical core-shell structure and the latex particles’ size increased with the increase of pH value.

  7. QSTR studies regarding the ECOSAR toxicity of benzene-carboxylic acid' esters to fathead minnow fish (Pimephales promelas).

    Tarko, Laszlo; Putz, Mihai V; Ionascu, Cosmin; Putz, Ana-Maria

    2014-01-01

    The present work employs 152 benzene-carboxylic acid' esters having computed the toxicity within the range [2.251, 10.222] for fathead minnow fish (Pimephales promelas). Calibration set includes many pairs having very similar chemical structure, size, shape and hydrophilicity, but very different value of ECOSAR toxicity or vice versa. The QSTR study, which uses all esters as calibration set, emphasized a large percent (16.2%) of outliers. In this QSTR study most of the estimated values of toxicity for outliers are much lower than ECOSAR toxicity. The LogP and some aromaticity descriptors are predictors. The best QSTR for esters having low value (toxicity and the best QSTR for esters having high value (> 5.5) of ECOSAR toxicity are obtained when the number of outliers is very small. These QSTRs are different enough and highlight opposite influences of certain descriptors on toxicity. The results emphasize two possibilities: (a) the esters having low value of ECOSAR toxicity and the esters having high value of ECOSAR toxicity are included in two different classes from the point of view of structure-toxicity relationship and/or (b) many high values of ECOSAR toxicity are wrong. By comparison, a QSTR using experimental values of toxicity against rats for 37 benzene-carboxylic esters included in the same database gives good correlation experimental/computed values of toxicity, the number of outliers is null and the result of validation test is good. PMID:24724900

  8. The amphiphilic alkyl ester derivatives of l-ascorbic acid induce reorganization of phospholipid vesicles.

    Giudice, Francesca; Ambroggio, Ernesto E; Mottola, Milagro; Fanani, Maria Laura

    2016-09-01

    l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications. PMID:27342371

  9. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  10. Ultrasound assisted synthesis of isopropyl esters from palm fatty acid distillate.

    Deshmane, Vishwanath G; Gogate, Parag R; Pandit, Aniruddha B

    2009-03-01

    Esterification is one of the most preferred synthesis routes for organic esters which are most frequently used as plasticizers, solvents and perfumery and flavour chemicals. The present work deals with acid catalyzed synthesis of isopropyl esters from palm fatty acid distillate (PFAD) in the presence of ultrasonic irradiations operating at 25kHz frequency and 1kW of supplied power. Effect of different operating parameters such as molar ratio of reactants, catalyst quantity and operating temperature has been studied with an aim of optimization. It has been observed that ultrasound enhances the rate of reaction and the extent of equilibrium conversion. The optimum parameters for this process have been found to be 1:5 molar ratio of PFAD to isopropanol, catalyst concentration of 5% of PFAD and 60 degrees C reaction temperature. Maximum conversion levels of about 80% have been obtained in 6h of reaction time under these optimized conditions. Analysis of the kinetic data indicates that the reaction follows first order reversible path. PMID:18977682

  11. Molecular recognition of isomeric protonated amino acid esters monitored by ESI-mass spectrometry

    Andrea Liesenfeld

    2014-04-01

    Full Text Available Two new 9,9’-spirobifluorene-derived crown ethers were prepared and used to recognise constitutionally isomeric amino acid derivatives. The performance of the receptors was evaluated by ESI-mass spectrometry using the isomer labelled guest method (ILGM. This method revealed the preferred binding of L-norleucine and L-leucine compared to L-isoleucine for both receptors. Furthermore, non-covalent isotope effects demonstrate the relevance of dispersive interactions for the overall binding event. These effects also provide hints for the relative spatial orientation of the guest molecules within the host–guest complex, and thereby prove the importance of the spirobifluorene moiety for the observed binding of the protonated amino acid esters.

  12. Molecular recognition of isomeric protonated amino acid esters monitored by ESI-mass spectrometry.

    Liesenfeld, Andrea; Lützen, Arne

    2014-01-01

    Two new 9,9'-spirobifluorene-derived crown ethers were prepared and used to recognise constitutionally isomeric amino acid derivatives. The performance of the receptors was evaluated by ESI-mass spectrometry using the isomer labelled guest method (ILGM). This method revealed the preferred binding of L-norleucine and L-leucine compared to L-isoleucine for both receptors. Furthermore, non-covalent isotope effects demonstrate the relevance of dispersive interactions for the overall binding event. These effects also provide hints for the relative spatial orientation of the guest molecules within the host-guest complex, and thereby prove the importance of the spirobifluorene moiety for the observed binding of the protonated amino acid esters. PMID:24778737

  13. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives.

    Yan, Zheng; Li, Chunyang; Zhang, Lixia; Liu, Qin; Ou, Shiyi; Zeng, Xiaoxiong

    2016-02-10

    The enzymatic acylation of anthocyanin from black rice with aromatic acid methyl esters as acyl donors and Candida antarctica lipase B was carried out under reduced pressure. The highest conversion of 91% was obtained with benzoic acid methyl ester as acyl donor; cyanidin 3-(6″-benzoyl)-glucoside, cyanidin 3-(6″-salicyloyl)-glucoside, and cyanidin 3-(6″-cinnamoyl)-glucoside were successfully synthesized. This is the first report on the enzymatic acylation of anthocyanin from black rice with methyl aromatic esters as acyl donors and lipase as biocatalyst. Furthermore, the acylation with aromatic carboxylic acids enhanced both the thermostability and light resistivity of anthocyanin. In particular, cyanidin 3-(6″-cinnamoyl)-glucoside was the most stable among the three acylated anthocyanins synthesized. PMID:26766135

  14. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the

  15. In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone /starch hydrogels grafted with acrylic acid synthesized by gamma radiation

    Co-polymeric hydrogels containing N-vinyl pyrrolidone and starch grafted with acrylic acid were synthesized by gamma radiation. Their gel contents, grafting process and swelling were evaluated. The gels were also characterized by thermal gravimetric analysis. The gel content found to be increase with increasing the irradiation dose up to 50 kGy then decrease. The grafting percent increase by increasing the percentage of acrylic acid in the grafted hydrogels. The thermal stability and the rate of the thermal decomposition showed to be changed according to the different composition of the hydrogels. It also showed a decrease in the maximum rate of the thermal decomposition by the increasing of the irradiation dose from 20 to 30 kGy and increases by increasing the irradiation dose from 30 to 70 kGy. The hydrogels loaded with vitamin B12 as drug model, demonstrated a decrease release in acidic medium than the neutral one

  16. Radiation Synthesis of Stimuli-Responsive Hydrogels and Their Interactions with Poly(acrylic acid) and Ionic Surfactants

    those with high content of hydrophobic moiety. Considerable improvement of thermo-induced collapse behavior, namely high amplitude and narrower temperature interval of collapse was shown for the certain sample. In the present work also novel pH-responsive hydrogels of cationic and amphoteric nature were synthesized by gamma-radiation copolymerization of vinyl ethers of monoethanolamine (VEMEA) and ethyleneglycol (VEEG) as well as VEMEA and acrylic acid (AA). The synthesis regularities have been studied. The effects of the feed mixture, cross-linker concentration, absorbed dose on the gel/sol fractions and swelling behavior of the hydrogels is studied. The swelling behavior of the hydrogels was studied as a function of pH. It was found that the isoelectric point of the polyampholyte hydrogels based on VEMEA and AA depends on the composition of copolymers. The interactions of the amphoteric hydrogels based on VEMEA and AA with linear poly(acrylic acid) and poly(vinyl ether of monoethanolamine) lead to the formation of gel-polymer interpolyelectrolyte compexes. It was demonstrated that the cationic hydrogels VEMEA-VEEG are able to bind poly(acrylic acid) to form polyelectrolyte complexes with swelling properties typical for polyampholytes

  17. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat [Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Amin, Mohd. Cairul Iqbal Mohd [Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  18. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  19. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier

  20. Vinyl ether/acrylic acid terpolymer hydrogels synthesized by γ-radiation: characterization, thermosensitivity and pH-sensitivity

    The radiation copolymerization of hydrophilic ethylene glycol vinyl ether (EGVE), hydrophobic butyl vinyl ether (BVE) and/or acidic comonomer acrylic acid (AA) was realized in the presence of crosslinking agent diethylene glycol divinyl ether (DEGDVE). The swelling studies which were carried out at 4 and 37 deg. C in phosphate buffer solution (PBS, pH 7.4) showed that equilibrium swelling ratios of the hydrogels (except EGVE homopolymer hydrogel) decreases with increasing temperature and swelling process obeys non-Fickian diffusion mechanism. The pH-dependent swelling behaviour of the hydrogels was examined in buffered solutions at various pHs. The swelling process is reversible and pH-dependent for the AA-containing hydrogel. While this hydrogel shows a fully hydrated form at pH>6; it extensively dehydrates below pH 6. The gels are stable after the repeated swelling experiments. The molecular structure of the hydrogels was studied by Fourier Transform Infrared Spectroscopy and their thermal behaviour was investigated by Differential Scanning Calorimetry and Thermal Gravimetric Analysis. The surface and cross-section structures of the gels were examined by a Scanning Electron Microscope

  1. Optimal Design for Reactivity Ratio Estimation: A Comparison of Techniques for AMPS/Acrylamide and AMPS/Acrylic Acid Copolymerizations

    Alison J. Scott

    2015-11-01

    Full Text Available Water-soluble polymers of acrylamide (AAm and acrylic acid (AAc have significant potential in enhanced oil recovery, as well as in other specialty applications. To improve the shear strength of the polymer, a third comonomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS, can be added to the pre-polymerization mixture. Copolymerization kinetics of AAm/AAc are well studied, but little is known about the other comonomer pairs (AMPS/AAm and AMPS/AAc. Hence, reactivity ratios for AMPS/AAm and AMPS/AAc copolymerization must be established first. A key aspect in the estimation of reliable reactivity ratios is design of experiments, which minimizes the number of experiments and provides increased information content (resulting in more precise parameter estimates. However, design of experiments is hardly ever used during copolymerization parameter estimation schemes. In the current work, copolymerization experiments for both AMPS/AAm and AMPS/AAc are designed using two optimal techniques (Tidwell-Mortimer and the error-in-variables-model (EVM. From these optimally designed experiments, accurate reactivity ratio estimates are determined for AMPS/AAm (rAMPS = 0.18, rAAm = 0.85 and AMPS/AAc (rAMPS = 0.19, rAAc = 0.86.

  2. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics. PMID:16078853

  3. Preparation of Quarternized Acrylic Acid Grafted Cotton Fabric Waste for the Removal of Sulphate from Aqueous Solution

    Acrylic acid (AAc) grafted cotton fabric was prepared by radiation- induced graft polymerization. Grafting conditions were optimized and the sample with grafting percentage 160% were used for further experiments. (AAc) grafted chains were quaternized by introduction of a tertiary amine function onto the sample by the estrification of the carboxylic groups, via an acid chloride intermediate, with 4-hydroxy-N-methyl piperidine. The tertiary amine of the piperidine ring was then quarternized with benzyl chloride. The prepared anion exchanger was characterized by FTIR and SEM. Adsorption experiments were conducted with quarternized (AAc) grafted cotton fabric for sulphate removal at concentration (100-500 ppm) at different ph values. Adsorbed sulphate amounts were found to be (60, 32.5 and 22.5 mg/g) at ph 3, 7 and 9, respectively, showing the efficiency of the adsorbent material in the removing sulphate. Also the results showed that the adsorption data fit the Freundlich isotherm model. Kinetic data were fitted using pseudo-first-order, pseudo-second order equations and with the pseudo-second-order equation generated being in best agreement with the experimental data for the adsorption systems

  4. Diffusion coefficient, porosity measurement, dynamic and equilibrium swelling studies of Acrylic acid/Polyvinyl alcohol (AA/PVA hydrogels

    Nazar Mohammad Ranjha

    2015-06-01

    Full Text Available Objective of the present work was to synthesize hydrogels of acrylic acid/polyvinyl alcohol (AA/PVA by free radical polymerization by using glutaradehyde (GA as crosslinkers. The hydrogels were evaluated for swelling, diffusion coefficient and network parameters like the average molecular weight between crosslink’s, polymer volume fraction in swollen state, number of repeating units between crosslinks and crosslinking density by using Flory-Huggins theory. It was found that the degree of swelling of AA/PVA hydrogels increases greatly within the pH range 5-7. The gel fraction and porosity increased by increasing the concentration of AA or PVA. Increase in degree of crosslinking, decreased the porosity and inverse was observed in gel fraction. Selected samples were loaded with metoprolol tartrate. Drug release was studied in USP hydrochloric acid solution of pH 1.2 and phosphate buffer solutions of pH 5.5 and 7.5. Various kinetics models like zero order, first order, Higuchi and Peppas model were used for in vitro kinetic studies. The results showed that the drug release followed concentration dependent effect (First order kinetics with non-Fickian diffusion. FTIR and SEM used to study the structure, crystallinity, compatibility, thermal stability and morphology of prepared and drug loaded hydrogels respectively.

  5. RENEWABLE ENERGY CONTENT OF FATTY ACID METHYL ESTERS (FAME AND GLYCEROL

    Giuseppe Toscano

    2009-12-01

    Full Text Available Fatty acid methyl esters (FAME and glycerol produced by transesterification reaction contain atoms that in the reagents belong to methanol and, therefore, are not renewable. A method to evaluate the content of the renewable and non-renewable energetic fraction, released during their combustion, was 52 Fig. 2 - Correlation between EFNR and NCM of FAME. Fig. 3 - Correlation between NCM and NS. Fig. 4 - Correlations between EFNR and NS. 07_Toscano(541_47 26-01-2010 9:35 Pagina 52 developed using a thermochemical criteria, based on bond dissociation energies and the knowledge of the molecular structure of the reagents and the products. Results show that the fraction of non-renewable energy in the most diffused FAME is lower than 1% depending on the lengths of the carbonaceous methyl esters. Meanwhile, the energetic supply for the GL of this fraction is about 1.6%. The data reported in this document can be used to develop a criteria that corrects the fiscal mechanism aspects of some renewable energy products.

  6. Kapok oil methyl esters

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specifications in biodiesel standards and some prior results. The kinematic viscosity of kapok oil methyl esters was greater than expected, an observation traced to the elevated amounts of methyl esters with cyclic moieties. Overall, kapok oil is a potential biodiesel feedstock. The 1H and 13C NMR spectra of kapok methyl esters are reported. - Highlights: • Methyl esters of kapok oil generally acceptable as a biodiesel fuel. • Kapok oil methyl esters a fuel with elevated content of fatty acid methyl esters containing cyclic moieties. • Kinematic viscosity of kapok oil methyl esters elevated likely due to fatty ester methyl esters with cyclic moieties. • Discusses and compares present results with prior literature

  7. NF EN 14213. - Heating fuels. - Fatty acid methyl esters (FAME) - Requirements and test methods; NF EN 14213. - Fioul domestique. - Esters methyliques d'acides gras (EMAG). - Exigences et methodes d'essais

    NONE

    2004-04-01

    This standard specifies requirements and test methods for marketed and delivered fatty acid methyl ester (FAME) to be used as heating oil solely or as a blending component for the production of heating oil. At 100% concentration it is applicable to fuel for use in heating equipment designed or subsequently adapted to run on 100% FAME.

  8. Enhanced microemulsion formation in lipid-based drug delivery systems by combining mono-esters of medium-chain fatty acids with di- or tri-esters

    Darshil P Patel; Ping Li; Abu T. M. Serajuddin

    2012-01-01

    To develop strategies for selecting appropriate lipids from mono-, di- and tri-esters of medium-chain fatty acids for the development of lipid-based drug delivery systems, ternary phase diagrams of propylene glycol(PG) monocaprylate (Capryol® 90; HLB~7), PG dicaprylocaprate (Labrafac™PG; HLB~2) and glycerol tricaprylocaprate (Labrafac™Lipophile WL1349; HLB~2) were determined in combination with a commonsurfactant, PEG-35 castor oil (Cremophor®EL, HLB~13), and water. Particle size and v...

  9. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    2010-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene......

  10. Modification of Oxidized Paraffin Wax Grafted by Acrylic Acid%氧化蜡接枝丙烯酸的改性研究

    陈鹏; 纪灵娴; 王德; 丛玉凤; 黄玮

    2013-01-01

    Melted oxidized paraffin wax grafted by acrylic acid was studied in this paper ,it was discussed respectively about factors influencing grafted rate of melted oxidized paraffin wax , like reaction temperature , the dosage of ammonium persulphate ,the dosage of acrylic acid and reaction time etc .It was ascertained that the proper conditions of orthogonal technology of melted oxidized paraffin wax grafted by acrylic acid ,reaction temperature was 85 ℃ ,the dosage of ammonium persulphate 3 .5% ~ 4 .5% , the dosage of acrylic acid 40% , reaction time 3 h .Finally , according to optimum proposal summarized by orthogonal experiment ,modified oxidized paraffin wax was prepared with great characters of acid value ,grafted rate ,storage and centrifuge stability etc .%对丙烯酸接枝熔融氧化蜡进行了研究,分别探讨了反应温度、过硫酸铵质量分数、丙烯酸质量分数、反应时间等因素对熔融氧化蜡的接枝率的影响,确定了合适的丙烯酸接枝熔融氧化蜡的正交工艺条件为:反应温度为85℃,过硫酸铵质量分数为3.5%~4.5%,丙烯酸质量分数为40%,反应时间为3h,最终按照正交实验总结出的优化方案制备出了接枝率、酸值、贮存与离心稳定性等性质优异的改性氧化蜡。

  11. Storage Stability Improvement of Copolymer Grafted Polypropylene-AcrylicAcid (PP-AA), by means of Various After Treatment Processes

    Polypropylene yams that have been subjected to irradiation induced graftco-polymerization with acrylic acid, have gained its moisture regain and dyeability, that fulfilled the requirement as textile material for garment.However, the copolymer grafted PP-AA has suffered from degradation in thestorage, which was indicated in the previous study that the strengthretention has dropped tremendously by photo-oxidation or photo-degradation.After treatments of PP-AA yams with chemical compound that was able toprevent further photo-oxidation, will be expected to improve the stability ofPP-AA in storage. In this research activity, the polypropylene (PP) yams weresubjected to irradiation induced graft co-polymerization by means ofγ-Ray Co-60 as irradiation source with acrylic acid (AA) as monomer.Various after treatments were subjected to the grafted PP-AA yams such asalkalisation process; dyeing (anionic dyes, cationic dyes and nonionic dyes);as well as processing with optical brightening agent and UV stabilizer,separately. The PP-AA yams (before and after treatment) were subjected tostorage from 1 month up to 42 months, and then being tested for theirmoisture regain, strength retention and elongation at breaks. The samplesbeing stored for 12 months were subjected to radical analysis. It isconcluded from the experiment that after treatment of grafted PP-AA by meansof those various processes were able to improve the stability of copolymergrafted PP-AA in storage. The presence of peroxide radical in the ESR(electron spin resonance) spectrum on PP-AA yams before treatment and theones after treated with alkaline and being stored for 12 months haveindicated the presence of photo oxidation or photo degradation, while thepresence of poly enyl radical in the ESR spectrum of after treated PP-AA withdyes having azo and azine compound as chromophore, as well as with UVstabilizer with carbonyl as chromophore and being stored for 12 months haveproved that its presence have protected such

  12. Highly Lewis Acidic Arylboronate Esters Capable of Colorimetric Turn-On Response.

    Oehlke, Alexander; Auer, Alexander A; Schreiter, Katja; Friebe, Nadine; Spange, Stefan

    2015-12-01

    A series of boronate-π-acceptor compounds containing different types of π bridges (1,4-phenylen or thien-2,5-diyl or furan-2,5-diyl) that link the switchable boronate ester group with the efficient TCF acceptor group (TCF=2-dicyanomethylen-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran) has been synthesized. A TCF chromophore of this type undergoes transition to a donor-π-acceptor compound upon coordination of Lewis bases at the Lewis acidic boron center, which is accompanied by an enhanced intramolecular charge-transfer interaction. The Lewis acid character has been investigated by spectroscopic measurements (UV/Vis, NMR spectroscopies) as well as DFT and ab initio-based calculations. It is shown that the TCF acceptor group and thiophene or furan π-bridges directly bound to the boron atom cooperatively increase the Lewis acidity. UV/Vis titration experiments confirm fluoride binding constants in the range of up to 10(8)  M(-1) in CH2 Cl2 . In addition to the strong boron fluoride binding motif, Lewis interactions also occur with weaker Lewis bases, such as pyridine or aliphatic alcohols. The unique combination of chromophoric and Lewis acidic properties is responsible for the intense colorimetric turn-on response detectable after complex formation. PMID:26489784

  13. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. PMID:26606266

  14. Insights into the formation mechanism of chloropropanol fatty acid esters under laboratory-scale deodorization conditions.

    Hori, Katsuhito; Hori-Koriyama, Natsuko; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-08-01

    Chloropropanol fatty acid esters (CPFAEs) are well-known contaminants in refined oils and fats, and several research groups have studied their formation. However, the results obtained in these studies were not satisfactory because the CPFAEs were not analyzed comprehensively. Thus, in the present study, a comprehensive analysis was performed to obtain new details about CPFAE formation. Each lipid (monopalmitin, dipalmitin, tripalmitin, monoolein, diolein, triolein, and crude palm oil) was heated at 250°C for 90 min, and the CPFAEs were analyzed using supercritical fluid chromatography/tandem mass spectrometry. It was found that CP fatty acid monoesters were formed from monoacylglycerols and diacylglycerols after heating in the presence of a chlorine compound. In addition, CP fatty acid diesters were formed from diacylglycerols and triacylglycerols under the same conditions. In the case of crude palm oil, only CP fatty acid diesters were formed. Therefore, these results indicated that CPFAEs in refined palm oil were formed mainly from triacylglycerols. PMID:26822095

  15. Synergetic deoxy reforming of cellulose and fatty acid esters for liquid hydrocarbon-rich oils.

    Wang, Chao; Sui, Jingjing; Lu, Weipeng; Li, Baopeng; Li, Guoxing; Ding, Yihong; Huang, Yong; Geng, Jianxin

    2015-11-01

    A series of liquid hydrocarbons (alkylbenzenes, alkanes, and alkenes) were obtained by a synergetic deoxy reforming (SDR) process of cellulose and linoleic acid methyl ester (LAME) at 350°C and 4-6MPa in a closed system without external source of hydrogen. The liquid product was obtained with a yield of 15wt% at a LAME/cellulose ratio of 0.2. In contrast, the direct deoxy reforming of cellulose produces oil that contains plenty of phenols and oxygen-containing compounds. Due to the insufficiency of water employed (30wt%), a radical reaction pathway was proposed. Quantum chemical calculations indicate that the radicals from LAME interfere with the reactions of the intermediate products from cellulose, being responsible for the removal of phenols and the formation of hydrocarbons. The SDR process offers an embryonic insight in an alternative technique for preparation of hydrocarbon fuels. PMID:26241841

  16. Study on the concentration of unsaturated fatty acid methyl esters by urea complexation

    This study was done to obtain concentrated unsaturated fatty acid methyl esters (FAME) by urea complexation from soybean derived FAME. Effects of urea-to-FAME ratio, 95% ethanol-to-FAME ratio, crystallization temperature and time on the purification of unsaturated FAME were investigated through single factor experiments. Optimum conditions to obtain maximum FAME yield of NUCF with the purity of unsaturated FAME greater than 98% were established using Box-Behnken design (BBD) method and response surface methodology (RSM). Under optimal conditions, the FAME yield was 58.08%, and the purity of unsaturated FAME was 98% at a urea-to-FAME ratio of 1.23, 95% ethanol-to-FAME ratio of 7 and crystallization temperature of 0 degree C. Verification results revealed that the predicted values were reasonably close to experimentally observed values of 56.93% and 98.01%. (author)

  17. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future. PMID:26138876

  18. Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture

    Kazancioglu HO

    2015-12-01

    Full Text Available Hakki Oguz Kazancioglu,1 Sertac Aksakalli,2 Seref Ezirganli,1 Muhammet Birlik,2 Mukaddes Esrefoglu,3 Ahmet Hüseyin Acar1 1Department of Oral and Maxillofacial Surgery, 2Department of Orthodontics, Faculty of Dentistry, 3Department of Histology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey Background: Narrow maxilla is a common problem in orthodontics and dentofacial orthopedics. To solve this problem, a procedure called rapid maxillary expansion (RME has been used. However, relapse tendency is a major problem of RME. Although relapse tendency is not clearly understood, various treatment procedures and new application has been investigated. The present study aimed to investigate the possible effectiveness of caffeic acid phenethyl ester (CAPE on new bone formation in rat midpalatal suture after RME.Materials and methods: Twenty male Sprague Dawley rats were used in this study. The animals were randomly divided into two groups as control and CAPE group. In CAPE group, CAPE was administered systemically via intraperitoneal injection. RME procedure was performed on all animals. For this purpose, the springs were placed on the maxillary incisors of rats and activated for 5 days. After then, the springs were removed and replaced with short lengths of rectangular retaining wire for consolidation period of 15 days. At the end of the study, histomorphometric analysis was carried out to assess of new bone formation.Results: New bone formation was significantly greater in CAPE group than the control group (P<0.05. CAPE enhances new bone formation in midpalatal suture after RME.Conclusion: These results show that CAPE may decrease the time needed for retention. Keywords: rapid maxillary expansion, bone formation, caffeic acid phenethyl ester, midpalatal suture, histopathology

  19. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wu, Sheng-Yen [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30043, Taiwan (China); Wei, Ming-Hsiung, E-mail: ccma@che.nthu.edu.tw [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Tao Yuan 32546, Taiwan (China)

    2010-05-07

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO{sup -}NA{sup +}) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  20. Characterization and Absorbing Properties of Oil Palm Empty Fruit Bunch Filled Poly (Acrylic Acid-co-Acrylamide) Super absorbent Polymer Composites

    Oil palm empty fruit bunch graft poly (acrylic acid-co-acrylamide) super absorbent composite (OPEFB-g-(PAA-co-PAM) SAPC) was synthesized by graft copolymerization of the acrylic acid (AA) and acrylamide (AM) comonomer onto OPEFB fibre using ammonium persulfate (APS) and N,N-methylene bisacarylamide (MBA) as an initiator and crosslinked, respectively. The absorbency in various chloride salt solutions indicated that the absorbency decreased with increasing ionic strength of the salt solutions. Moreover, the absorbency under load (AUL) of SAPC was investigated at various applied loading and results show that, AUL decreased with increasing applied loading. Infrared Spectroscopy (IR) and Thermogravimetric Analysis (TGA) were carried out to confirm the chemical structure and thermal properties of the synthesized super absorbent, respectively. (author)

  1. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  2. Separation of middle rare earths by solvent extraction using 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant

    Danilo; Fontana; Loris; Pietrelli

    2009-01-01

    The extraction of the trivalent middle rare earths from chloride media by kerosene solutions of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant was studied. The separation factors between the elements using solution simulating wastes from NiMH spent batteries have been evaluated: the order of the extractive ability of extractant can be confirmed in ThGdEuSm.

  3. Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

    Prasad E FUNDE

    2008-12-01

    Full Text Available (FAME Fatty acid methyl ester is made virgin or used vegetable oils (both edible and non-edible and animal fats. Fatty acid methyl ester operates in compression ignition engines like petro-diesel. Fatty acid methyl ester can be blended in any ratio with petroleum diesel fuels. It can be stored just like the petroleum diesel fuel. Petrodiesel can be replaced by biodiesel due to its superiority. It has various advantages. The seeds of Capparis deciduas are found to contain non-edible oil in the range of about 63.75 %. The percentage of biodiesel yield increases with concentration of KOH as a catalyst. The aim of this article is to demonstrate the cost effective new source of energy by single step reaction i.e. production of oil by combining extraction and reaction of extract with the mixture of alcohols. In this article the effect of catalyst concentration, time, water content and temperature on in-situ transesterification is studied to obtain optimum yield and Fatty acid methyl ester (Biodiesel Fuel characterization tests show the striking similarity of various physical & chemical properties and campers to ASTM standards.

  4. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  5. Characterization of spirochetal isolates from arthropods collected in South Moravia, Czech Republic, using fatty acid methyl esters analysis

    Čechová, L.; Durnová, E.; Šikutová, Silvie; Halouzka, Jiří; Němec, M.

    2004-01-01

    Roč. 808, č. 2 (2004), s. 249-254. ISSN 1570-0232 R&D Projects: GA ČR GA206/03/0726 Institutional research plan: CEZ:AV0Z6093917 Keywords : spirochetes * arthropods * fatty acid methyl esters Subject RIV: EE - Microbiology, Virology Impact factor: 2.176, year: 2004

  6. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  7. A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry

    The melting point is one of the most important physical properties of a chemical compound and plays a significant role in determining possible applications. For fatty acid esters the melting point is essential for a variety of food and non-food applications, the latter including biodiesel and its c...

  8. The Effects of Various Acid Catalyst on the Esterification of Jatropha Curcas Oil based Trimethylolpropane Ester as Biolubricant Base Stock

    Noor Hafizah Arbain; Jumat Salimon

    2011-01-01

    Biolubricant production of trimethylolpropane ester (ET) was conducted via esterification of fatty acid (FA) of Jatropha curcas oil with trimethylolpropane (TMP). The condition for this reaction was as follows: temperature was 150 °C, time of reaction was 3 hours, molar ratio of FA: TMP was 4:1 and 2% wt/wt concentrated catalyst (based on weight of FA). Different catalyst was used in this reaction such as perchloric acid, sulfuric acid, p-toluenesulfonic acid, hydrochloric acid and nitric aci...

  9. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ∼30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ∼four times while its response rate increased by ∼50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ∼four times with the increase in the block length of the AN moiety

  10. Synthesis of Graft Copolymer of Sodium Humate-Acrylic Acid%腐植酸钠-丙烯酸接枝共聚物的合成研究

    张荣明; 生金峰; 李鹏; 程焱召

    2011-01-01

    Grafting copolymerization of sodium humate with acrylic acid initiated by potassium persulfate was studied by aqueous solution polymerization method. The influential factors, such as reaction temperature, reaction time, initiator rate, the neutralization degree of acrylic acid and the reactant mass ratio were explored. The results showed that the optimum condition was 90% neutralization degree of acrylic acid, 50:1 (g/g) of acrylic acid to sodium humate, 4.0% initiator in reactant (compared with AA), and 60℃ for 8h. The structure of product was characterizedby IR.%采用水溶液聚合方法,以过硫酸钾为引发剂,腐植酸、丙烯酸为原料接枝共聚。考察了丙烯酸中和度、引发剂用量、物料比、反应温度和反应时间等因素对合成腐植酸钠-丙烯酸接枝共聚物的影响。结果表明,最佳聚合工艺条件为:丙烯酸中和度90%,反应温度60℃,反应时间8h,加入引发剂浓度为4.0%(AA单体为参照),丙烯酸与腐植酸钠物料比为50:1(g/g),通过红外光谱对聚合物的结构进行了表征。

  11. Capture of Tumor Cells on Anti-EpCAM-Functionalized Poly(acrylic acid)-Coated Surfaces.

    Andree, Kiki C; Barradas, Ana M C; Nguyen, Ai T; Mentink, Anouk; Stojanovic, Ivan; Baggerman, Jacob; van Dalum, Joost; van Rijn, Cees J M; Terstappen, Leon W M M

    2016-06-15

    The presence of tumor cells in blood is predictive of short survival in several cancers and their isolation and characterization can guide toward the use of more effective treatments. These circulating tumor cells (CTC) are, however, extremely rare and require a technology that is sufficiently sensitive and specific to identify CTC against a background of billions of blood cells. Immuno-capture of cells expressing the epithelial cell adhesion molecule (EpCAM) are frequently used to enrich CTC from blood. The choice of bio conjugation strategy and antibody clone is crucial for adequate cell capture but is poorly understood. In this study, we determined the binding affinity constants and epitope binding of the EpCAM antibodies VU1D-9, HO-3, EpAb3-5, and MJ-37 by surface plasmon resonance imaging (SPRi). Glass surfaces were coated using a poly(acrylic acid) based coating and functionalized with anti-EpCAM antibodies. Binding of cells from the breast carcinoma cell line (SKBR-3) to the functionalized surfaces were compared. Although EpAb3-5 displayed the highest binding affinity HO-3 captured the highest amount of cells. Hence we report differences in the performance of the different antibodies and more importantly that the choice of antibody to capture CTC should be based on multiple assays. PMID:27187784

  12. Radiation synthesis and characterization of pH-sensitive poly(acrylic acid-co-N-vinyl-2-pyrrolidone) hydrogels

    Hydrogels are crosslinked, three-dimensional hydrophilic polymer networks that swell but do not dissolve when brought into contact with water. These materials have been investigated extensively for potential applications in the biomedical field because of their similarities to soft tissues and their good tissue and blood compatibility. More specifically, pH-sensitive hydrogels are used for sustained gastro-intestinal drug delivery systems due to the intimacy and extended duration of contact. In this work, pH-sensitive copolymer hydrogels were prepared using acrylic acid and N-vinyl-2-pyrrolidone by γ-ray irradiation at ambient temperature. Effects of dose, monomer concentration, monomer composition, temperature and pH on the swelling ratio (SR) of the copolymer hydrogels were investigated in detail. The results show that SR of the copolymer hydrogels decreases with the monomer concentration and with the increase of absorbed dose. These copolymer hydrogels show good pH-sensitive behavior. These material shows no noticeable change in swelling at lower pH (pH<4) but an abrupt increase in swelling at higher pH (from pH7 to pH9.8). At pH 1.4, the SR of the copolymer hydrogels increases with the temperature. To the contrary, at pH 9.8, the SR of the copolymer hydrogels decreases with the temperature. (authors)

  13. Radiation preparation and characterization of pH-sensitive hydrogel of acrylic acid/cyclodextrin based copolymer

    A β-cyclodextrin (β-CD) based monomer (MAH-β-CD) containing vinyl and carboxyl functional groups was synthesized by reaction of β-CD with maleic anhydride (MAH). A novel hydrogel, poly(AAc-co-MAH-β-CD) with pH and ionic strength sensitivities, was prepared by irradiating the aqueous solution mixture of acrylic acid (AAc) and MAH-β-CD with electron beam. The effect of the feed ratio of the components and irradiation dose on the swelling and deswelling properties of the hydrogel was studied, respectively, the effect of pH and ionic strength on the swelling ratio was determined. Experimental results showed that these copolymer hydrogels did not show any noticeable change in swelling ratio at lower pH range (pH 1-3). However they showed an abrupt increase in swelling ratio at the range of pH 3-6, due to the ionization of carboxyl groups. Fourier transform infrared (FT-IR) spectrometer was applied in the attenuated total reflectance (ATR) mode for analyzing the structure change of the hydrogels after the treatment of different pH buffer solutions. (author)

  14. Structure formation of soil dispersions in the presence of polyelectrolytes on the basis of allyl alcohol and acryl acid derivatives

    Amankait Asanov

    2015-09-01

    Full Text Available Some changes of structural composition and surface properties of soil dispersions in the presence of polyelectrolytes, based on allyl alcohol and acryl acid derivatives, have been studied. The results show, that the changes in the structure of soil dispersions composition are connected with the added concentration and pH value, that depend on mole ratio and nature of functional groups, as well as on the nature of counterions and concomitant electrolytes, changing with the conditions of polymer analogous conversion and neutralization reaction. Experimental data show, that the change in the conformational state and the length of the macromolecule has a significant impact on the structure-forming effect and the amount of polyelectrolyte, needed to achieve the same degree of structure-forming effect of soil dispersions. The causes for the revealed reasons are shown on the basis of the results of the experiment. Along with this, it was found that particular changes of structural composition and surface properties of the soil dispersions depend on the type and concentration of the added polyelectrolyte.

  15. Response of Swelling Behavior of Weak Branched Poly(ethylene imine)/Poly(acrylic acid) Polyelectrolyte Multilayers to Thermal Treatment.

    Gu, Yuanqing; Weinheimer, Emily K; Ji, Xiang; Wiener, Clinton G; Zacharia, Nicole S

    2016-06-21

    Weak polyelectrolyte multilayers (PEMs) prepared by the layer-by-layer technique have attracted a great deal of attention as smart responsive materials for biological and other applications in aqueous medium, but their dynamic behavior as a function of exposure to a wide temperature range is still not well understood. In this work, the thermally dependent swelling behavior of PEMs consisting of branched poly(ethylenimine) and poly(acrylic acid) is studied by temperature controlled in situ spectroscopic ellipsometry. Because of diffusion and interpenetration of polyelectrolytes during film deposition, the PEMs densify with increasing bilayer number, which further affects their water uptake behavior. Upon heating to temperatures below 60 °C, the worsened solvent quality of the PEM in water causes deswelling of the PEMs. However, once heated above this critical temperature, the hydrogen bonds within the PEMs are weakened, which allows for chain rearrangement within the film upon cooling, resulting in enhanced water uptake and increased film thickness. The current work provides fundamental insight into the unique dynamic behavior of weak polyelectrolyte multilayers in water at elevated temperatures. PMID:27232180

  16. Preparation of thermosensitive membranes by radiation grafting of acrylic acid/ N-isopropyl acrylamide binary mixture on PET fabric

    Gupta, Bhuvanesh; Mishra, Swaiti; Saxena, Shalini

    2008-05-01

    Thermosensitive membranes were prepared by radiation-induced graft copolymerization of monomers on PET fabrics. A binary mixture of N-isopropyl acrylamide (NIPAAm) and acrylic acid (AA) was grafted on polyester fabric as a base material to introduce thermosensitive poly( N-isopropyl acrylamide) pendant chains having LCST slightly higher than 37 °C in the membrane. The influence of ferrous sulfate, radiation dose and monomer composition on the degree of grafting was studied. The structure of the grafted fabric was characterized by thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy. The thermosensitive nature of the fabric was monitored by swelling at different temperatures. The graft copolymerization of AA with NIPAAm enhanced the LCST of the resultant membrane to ˜37 °C. The moisture vapor transmission rate (MVTR) and air permeability of the fabric decreased slightly, may be due to the slight blocking of the fabric pores. The immobilization of tetracycline hydrochloride as the model drug and its release characteristics at different temperatures were monitored.

  17. STUDY OF COMPOSITE MEMBRANE OF CELLULOSE ACETATE OR POLYVINYL ALCOHOL BLENDED WITH METHYLMETHACRYLATE-ACRYLIC ACID COPOLYMER FOR PERVAPORATION SEPARATION

    Huan-lin Chen; Jun Tan; Mo-e Liu; Chang-luo Zhu

    1999-01-01

    In this paper, methylmethacrylate-acrylic acid MMA-AA hydrophilic and hydrophobic copolymers were prepared by copolymerization for preparing membrane materials. The composite membrane of cellulose acetate (CA) blended with MMA-AA hydrophobic copolymer was used for the separation of methanol from pentane-methanol mixture. When the methanol concentration was only 1 wt%, the permeate flux still maintained at 350 g/m2h and separation factor was as big as 800. The composite membrane of PVA (polyvinyl alcohol) blended with MMA-AA hydrophilic copolymer was used for the separation of ethanolwater mixture. The permeate flux was increased to 975 g/m2h at 74℃ and the separation factor reached 3000at 25℃. The PVA/MMA-AA blended membrane surface modified by ammonia plasma was also investigated for separating ethanol-water mixture. Both permeate flux and separation factor of the membrane was improved. However, there was no obvious difference of plasma treatment time in the interval of 20~40 min.

  18. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    Wang, Honglong.; Xu, Lu.; Li, Rong.; Pang, Lijuan.; Hu, Jiangtao.; Wang, Mouhua.; Wu, Guozhong.

    2016-09-01

    The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  19. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA

  20. Study of iron (III) complexed with radiation grafted acrylic acid onto poly (tetrafluoroethylene-Co-perfluoro vinyl ether) films

    To introduce functional moieties to a poly (tetrafluoroethylene-Co-perfluoro vinyl ether) film (PFA) graft copolymerization of vinyl monomer such as acrylic acid (AAc) was attempted by a simultaneous technique in aqueous solution using γ-irradiation. The graft copolymer was complexed with the Fe (III) in aqueous solution. The grafted copolymer-metal complexes were examined by infrared (IR), ultraviolet (UV), energy-dispersive X-ray (EDX) and electron spin resonance (ESR) techniques. The effect of temperature on the trunk copolymer, untreated grafted and treated grafted copolymer films was examined by IR and thermogravimetric analysis (TGA). The overall results suggest octahedral environment for Fe (III) and revealed the high ability of the obtained ligand-metal complexes. Furthermore, scanning electron microscope (SEM) investigation of the grafted and modified films, both unheated and heated (200 degree C) showed changes in the structure and surface morphology. It was found that the modified grafted membranes may make them promising for some practical applications such as the recovery of metal from aqueous systems

  1. Enhancing antibiofouling performance of Polysulfone (PSf) membrane by photo-grafting of capsaicin derivative and acrylic acid

    Wang, Jian; Sun, Haijing; Gao, Xueli; Gao, Congjie

    2014-10-01

    Biofouling is a critical issue in membrane water and wastewater treatment. Herein, antibiofouling PSf membrane was prepared by UV-assisted graft polymerization of acrylic acid (AA) and a capsaicin derivative, N-(5-methyl-3-tert-butyl-2-hydroxy benzyl) acrylamide (MBHBA), on PSf membrane. AA and MBHBA were used as hydrophilic monomer and antibacterial monomer separately. The membranes were characterized by FTIR-ATR, contact angle, SEM, AFM, cross-flow filtration unit, antifouling and antibacterial measurements. Verification of MBHBA and AA that photo-chemically grafted onto the PSf membrane surface is confirmed by carbonyl stretching vibration at ∼1655 cm-1 and ∼1730 cm-1, separately. The increasing AA concentration accelerates the graft-polymerization of MBHBA and resulted in a more hydrophilic surface. Consequently, antifouling property of the membranes was improved on a large level. The flux recovery rate can achieve 100% during the cyclic test, which may be attributed to the more hydrophilic and smooth surface, as well as the decreased membrane pore size. Most importantly, the presence of AA in graft co-polymer does not affect the antibacterial activity of MBHBA. That may be induced by the increasing chain length and flexibility of the grafted polymer chains.

  2. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change. - Highlights: • Jute fibers were grafted by PAAc followed by immobilization with chitosan. • The treated Jute fibers were used as dye adsorbent from wastewater. • The different factors which affect the adsorption process were studied. • The higher adsorption capacity was achieved at low pH. • The treated Jute fibers can be used for three times after regeneration processes

  3. A drug-loaded gel based on polyelectrolyte complexes of poly (acrylic acid) with poly (vinylpyrrolidone) and chitosan

    A drug-loaded gel (CSPP) based on ionic crosslinked chitosan (CS) and polyelectrolyte complexes of poly (acrylic acid) (PAA) with poly (vinylpyrrolidone) (PVP) was prepared by dropping CS solution containing suitable amount of PVP into PAA and trisodium citrate co-existing gelling solution. The surface and cross-section morphology of the gel was observed using scanning electron microscopy, and the observation showed that the CSPP gel had more compact structure than CS gel. In vitro release profiles of model drug from the CSPP gel, which was prepared under different conditions, were investigated in simulative gastric fluid (pH 1.8) using an UV/vis spectrophotometer. The results showed that the rapid release of the model was restrained due to the complex of PVP and PAA, and the CSPP gel could serve as a suitable candidate in drug delivery system such as the site-specific controlled release of the drug in stomach. In addition, the release mechanism of drug was analyzed by fitting the amount of drug released into Peppa's potential equation.

  4. Experimental Study and Numerical Solution of Poly Acrylic Acid Supported Magnetite Nanoparticles Transport in a One-Dimensional Porous Media

    M. Golzar

    2014-01-01

    Full Text Available Recently, iron nanoparticles have attracted more attention for groundwater remediation due to its potential to reduce subsurface contaminants such as PCBs, chlorinated solvents, and heavy metals. The magnetic properties of iron nanoparticles cause to attach to each other and form bigger colloid particles of iron nanoparticles with more rapid sedimentation rate in aqueous environment. Using the surfactants such as poly acrylic acid (PAA prevents iron nanoparticles from forming large flocs that may cause sedimentation and so increases transport distance of the nanoparticles. In this study, the transport of iron oxide nanoparticles (Fe3O4 stabilized with PAA in a one-dimensional porous media (column was investigated. The slurries with concentrations of 20,100 and 500 (mg/L were injected into the bottom of the column under hydraulic gradients of 0.125, 0.375, and 0.625. The results obtained from experiments were compared with the results obtained from numerical solution of advection-dispersion equation based on the classical colloid filtration theory (CFT. The experimental and simulated breakthrough curves showed that CFT is able to predict the transport and fate of iron oxide nanoparticles stabilized with PAA (up to concentration 500 ppm in a porous media.

  5. Selective surface functionalization of polystyrene induced by synchrotron or UV radiation in the presence of oxygen or acrylic acid vapors

    Efficient surface functionalization of Polystyrene (PS) thin films by electromagnetic radiation in combination with a reactive gaseous atmosphere was obtained. Monochromatic synchrotron (SR) or polychromatic UV radiation were used as excitation sources. When SR was used, O2 was introduced after irradiation into the UHV chamber. UV irradiation was carried out keeping a constant flow of O2 or acrylic acid (AA) vapors during the photolysis. FTIR-ATR and XPS-NEXAFS spectra were obtained at the UFRGS and the LNLS, Campinas respectively. PS films were functionalized by monochromatic SR and then expose to O2 at specific transitions such us C 1s →σ*C-C excitation. It was found a high rate of COO, C=O and C-O groups at the surface (> 70%). UV-assisted treatment in the presence of AA vapors showed that an efficient polymerization process took place, such as, it was observed in previous AA low pressure RF plasma treatments. UV-assisted functionalization has the advantage of lower costs and simple set-up compared to plasma treatments. (author)

  6. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels. PMID:27230478

  7. TEMPERATURE AND pH RESPONSE, AND SWELLING BEHAVIOR OF POROUS ACRYLONITRILE-ACRYLIC ACID COPOLYMER HYDROGELS

    Jian Huang; Zhi-ming Huang; Yong-zhong Bao; Zhi-xue Weng

    2006-01-01

    Macroporous acrylonitrile-acrylic acid (AN-AA) copolymer hydrogels were synthesized by free-radical solution polymerizations, using ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TEMED) redox initiator system and alcohols porogens. The morphology, temperature and pH sensitive swelling behavior, and swelling kinetics of the resulting hydrogels were investigated. It was found that alcohol type and concentration had great influences on the pore structure and porosity of hydrogels. The pore size of hydrogel increases with the moderate increase of the length of alcohol alkyl chain. However, a further increase of alkyl length would result in the formation of cauliflower-like structure and the decrease of pore size. The porosity of hydrogels increases with the increase of porogen concentration in the polymerization medium. The hydrogels with macroporous structure swell or shrink much faster in response to the change of pH in comparison with the conventional hydrogel without macroporous structure. Furthermore, the response rate is closely related to the porosity of the hydrogels, which could be easily controlled by modulating the concentration of the porogen in the medium. The circular swelling behavior of hydrogels indicated the formation of a relaxing three-dimensional network.

  8. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    Ramasamy, Mohankandhasamy [Division of Bionanotechnology, Gachon University, Seongnam 461-701 (Korea, Republic of); Kim, Yu Jun; Gao, Haiyan [Department of Polymer Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yi, Dong Kee, E-mail: vitalis@mju.ac.kr [Department of Chemistry, Myongji University, Yongin 449-728 (Korea, Republic of); An, Jeong Ho, E-mail: jhahn1us@skku.edu [Department of Polymer Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-03-01

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.

  9. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  10. Preparation and swelling behavior of a novel self-assembled β-cyclodextrin/acrylic acid/sodium alginate hydrogel.

    Huang, Zhanhua; Liu, Shouxin; Zhang, Bin; Wu, Qinglin

    2014-11-26

    A novel biodegradable β-cyclodextrin/acrylic acid/sodium alginate (CSA) hydrogel with a three-dimensional network structure was self-assembled by inverse suspension copolymerization. The CSA resin was pH sensitive and had good water absorption properties in pH 6-8 buffer solutions. At a β-CD:AA:SA mass ratio of 1:9:3 the CSA water absorbency was found to be 1403 g/g and the CSA hydrogel strength was 4.968 N. In 0.005-0.1 mol/L chloride salt and sulfate salt solutions the CSA water absorbencies increased as follows: NaCl>KCl>MgCl2>CaCl2>FeCl3, and Na2SO4>K2SO4>FeSO4>Al2(SO4)3, respectively. The release of water from the CSA hydrogel occurred slowly over 120 h. The biodegradation efficiency of the resin reached 85.3% for Lentinula edodes. The super water absorbency, good salt resistance and excellent water retention properties of CSA make it suitable for application as an agricultural water retention agent in saline soils. PMID:25256504

  11. Amphoteric surfactants containing ?-hydroxy ester group and an amino acid residue

    Eissa, A. M. F.

    2006-09-01

    Full Text Available A series of amphoteric surfactants containing α-hydroxy ester group and an amino acid residue were prepared with the addition of epoxy derivatives (which were prepared from epoxidation of alkyl methacrylate to different types of amino acids (glycine, alanine, valine, isoleucine, phenylalanine, tyrosine, serine, threonine, aspartic and anthranilic acid.The structures of the prepared compounds were confirmed by infrared spectra, proton magnetic resonance spectra, Mass spectra and elementary analysis. Surface tension, Kraft point, foaming power, critical micelle concentration emulsion and Ca++ stabilities were determined. Antimicrobial activity and biodegradability were also screened.Se prepararon una serie de tensioactivos anfóteros conteniendo un grupo alfa hidroxi éster y un residuo de aminoácido por adición de derivados epoxy (obtenidos mediante epoxidación de metacrilato de alquilo a diferentes tipos de aminoácidos (glicina, alanina, valina, isoleucina, fenilalanina, tirosina, serina, treonina y ácidos aspártico y antranílico. Las estructuras de los compuestos preparados se confirmaron por los espectros de infrarrojo, de masa, resonancia magnética nuclear de protones y análisis elemental. Se determinaron la tensión superficial, el punto de Kraft, el poder espumante, la concentración micelar crítica en emulsión y las estabilidades de Ca++. También se estudiaron la actividad antimicrobiana y la biodegradabilidad.

  12. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating

    Kurokawa, S.; Kikuchi, T.; Sakairi, M. [Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: takahasi@elechem1-mc.eng.hokudai.ac.jp

    2008-11-30

    Micro-dot arrays and micro-walls of acrylic acid/melamine resin were fabricated on aluminum by anodizing, atomic force microscope (AFM) probe processing, and electrophoretic deposition. Barrier type anodic oxide films of 15 nm thickness were formed on aluminum and then the specimen was scratched with an AFM probe in a solution containing acrylic acid/melamine resin nano-particles to remove the anodic oxide film locally. After scratching, the specimen was anodically polarized to deposit acrylic acid/melamine resin electrophoretically at the film-removed area. The resin deposited on the specimen was finally cured by heating. It was found that scratching with the AFM probe on open circuit leads to the contamination of the probe with resin, due to positive shifts in the potential during scratching. Scratching of the specimen under potentiostatic conditions at -1.0 V, however, resulted in successful resin deposition at the film-removed area without probe contamination. The rate of resin deposition increased as the specimen potential becomes more positive during electrophoretic deposition. Arrays of resin dots with a few to several tens {mu}m diameter and 100-1000 nm height, and resin walls with 100-1000 nm height and 1 {mu}m width were obtained on specimens by successive anodizing, probe processing, and electrophoretic deposition.

  13. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating

    Micro-dot arrays and micro-walls of acrylic acid/melamine resin were fabricated on aluminum by anodizing, atomic force microscope (AFM) probe processing, and electrophoretic deposition. Barrier type anodic oxide films of 15 nm thickness were formed on aluminum and then the specimen was scratched with an AFM probe in a solution containing acrylic acid/melamine resin nano-particles to remove the anodic oxide film locally. After scratching, the specimen was anodically polarized to deposit acrylic acid/melamine resin electrophoretically at the film-removed area. The resin deposited on the specimen was finally cured by heating. It was found that scratching with the AFM probe on open circuit leads to the contamination of the probe with resin, due to positive shifts in the potential during scratching. Scratching of the specimen under potentiostatic conditions at -1.0 V, however, resulted in successful resin deposition at the film-removed area without probe contamination. The rate of resin deposition increased as the specimen potential becomes more positive during electrophoretic deposition. Arrays of resin dots with a few to several tens μm diameter and 100-1000 nm height, and resin walls with 100-1000 nm height and 1 μm width were obtained on specimens by successive anodizing, probe processing, and electrophoretic deposition

  14. Quantification of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Muhammad Nasimullah Qureshi

    2015-02-01

    Full Text Available Objective: To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results: A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6 and linolenic acid (ω-3 were obtained in appreciable amount as 16.98% and 14.80% respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  15. Quantiifcation of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Muhammad Nasimullah Qureshi; Fazal Wajid; Inayat-ur-Rahman

    2015-01-01

    Objective:To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima) using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results:A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6) and linolenic acid (ω-3) were obtained in appreciable amount as 16.98%and 14.80%respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  16. Parallel Synthesis of a Library of Symmetrically- and Dissymmetrically-disubstituted Imidazole-4,5-dicarboxamides Bearing Amino Acid Esters

    Rosanna Solinas

    2009-01-01

    Full Text Available The imidazole-4,5-dicarboxylic acid scaffold is readily derivatized with amino acid esters to afford symmetrically- and dissymmetrically-disubstituted imidazole-4,5-dicarboxamides with intramolecularly hydrogen bonded conformations that predispose the presentation of amino acid pharmacophores. In this work, a total of 45 imidazole-4,5-dicarboxamides bearing amino acid esters were prepared by parallel synthesis. The library members were purified by column chromatography on silica gel and the purified compounds characterized by LC-MS with LC detection at 214 nm. A selection of the final compounds was also analyzed by 1H-NMR spectroscopy. The analytically pure final products have been submitted to the Molecular Library Small Molecule Repository (MLSMR for screening in the Molecular Library Screening Center Network (MLSCN as part of the NIH Roadmap.

  17. Alanine Esters of Enterococcal Lipoteichoic Acid Play a Role in Biofilm Formation and Resistance to Antimicrobial Peptides

    Fabretti, Francesca; Theilacker, Christian; Baldassarri, Lucilla; Kaczynski, Zbigniew; Kropec, Andrea; Holst, Otto; Huebner, Johannes

    2006-01-01

    Enterococcus faecalis is among the predominant causes of nosocomial infections. Surface molecules like d-alanine lipoteichoic acid (LTA) perform several functions in gram-positive bacteria, such as maintenance of cationic homeostasis and modulation of autolytic activities. The aim of the present study was to evaluate the effect of d-alanine esters of teichoic acids on biofilm production and adhesion, autolysis, antimicrobial peptide sensitivity, and opsonic killing. A deletion mutant of the d...

  18. Esters of o- and m-carborane-C-carboxylic acids with o- and m-C-carborane alcohols

    Acid chlorides of o- and m-carborane-C-carboxylic acids reacted with primary o- and m-C-carborane alcohols in anhydrous benzene to form in a high yield (81-86%) previously unknown corresponding o- and m-carborane-containing two- and three-nuclear esters. The composition and structure of the compounds prepared have been characterized by elementary analysis, 1H and 11B NMR, IR and UV spectroscopy, by measuring their molecular weights and melting points

  19. 合成4-苯甲酰基-1,7-庚二酸二甲酯的方法改进%Process Improvement on the Synthesis of 4-Benzoyl-heptanedioic Acid Dimethyl Ester

    康从民; 李园园; 吕英涛

    2013-01-01

    采用改进方法,苯乙酮与丙烯酸甲酯缩合制得4-苯甲酰基-1,7-庚二酸二甲酯,其结构经1H NMR和MS确证.较适宜的反应条件为:苯乙酮50 mmol,n(丙烯酸甲酯)∶n(苯乙酮)=2.5∶1.O,无水环境下,以甲醇钠为催化剂,于50℃反应24h,收率12.8%.%4-Benzoyl-heptanedioic acid dimethyl ester was prepared by condensation of acetophenone with methyl acrylate by improve method. The structure was confirmed by 1H NMR and MS. The optimal reaction conditions at 50 ℃ for 24 h were as follows: acetophenone was 50 mmol, n( methyl acrylate) : n(acetophenone) was 2. 5 :1. 0, catalyst was MeONa in water-free. The yield was 12. 8% under the optimal conditions.

  20. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    One-dimensional alternative chains of two lanthanum complexes: [La(L1)3(CH3OH)(H2O)2].5H2O (L1=anion of α-cyano-4-hydroxycinnamic acid ) 1 and [La(L2)3(H2O)2].3H2O (L2=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C31H36LaN3O17, triclinic, P-1, a=9.8279(4)A, b=11.8278(5)A, c=17.8730(7)A, α=72.7960(10)o, β=83.3820(10)o, γ=67.1650(10)-bar , Z=2, R1=0.0377, wR2=0.0746; for 2: C33H37LaO14, triclinic, P-1, a=8.7174(5)A, b=9.9377(5)A, c=21.153(2)A, α=81.145(2)o, β=87.591(2)o, γ=67.345(5)o, Z=2, R1=0.0869, wR2=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two η3-O bridges and four bridges (two η2-O and two η3-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands