WorldWideScience

Sample records for acrocentric chromosomes

  1. Nucleolar Organization, Ribosomal DNA Array Stability, and Acrocentric Chromosome Integrity Are Linked to Telomere Function

    Stimpson, Kaitlin M.; Sullivan, Lori L; Kuo, Molly E.; Sullivan, Beth A.

    2014-01-01

    The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional tel...

  2. Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function.

    Kaitlin M Stimpson

    Full Text Available The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA. The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2 causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.

  3. The FSHD-associated repeat, D4Z4, is a member of a dispersed family of homeobox-containing repeats, subsets of which are clustered on the short arms of the acrocentric chromosomes

    Lyle, R.; Wright, T.J.; Clark, L.N.; Hewitt, J.E. [Univ. of Manchester (United Kingdom)

    1995-08-10

    Facioscapulohumeral muscular dystrophy (FSHD) is in autosomal dominant neuromuscular disorder that maps to human chromosome 4q35. FSHD is tightly linked to a polymorphic 3.3-kb tandem repeat locus, D4Z4. D4Z4 is a complex repeat: it contains a novel homeobox sequence and two other repetitive sequence motifs. In most sporadic FSHD cases, a specific DNA rearrangement, deletion of copies of the repeat at D4Z4, is associated with development of the disease. However, no expressed sequences from D4Z4 have been identified. We have previously shown that there are other loci similar to D4Z4 within the genome. In this paper we describe the isolation of two YAC clones that map to chromosome 14 and that contain multiple copies of a D4Z4-like repeat. Isolation of cDNA clones that map to the acrocentric chromosomes and Southern blot analysis of somatic cell hybrids show that there are similar loci on all of the acrocentric chromosomes. D4Z4 is a member of a complex repeat family, and PCR analysis of somatic cell hybrids shows an organization into distinct subfamilies. The implications of this work in relation to the molecular mechanism of FSHD pathogenesis is discussed. We propose the name 3.3-kb repeat for this family of repetitive sequence elements. 44 refs., 7 figs.

  4. Chimpanzee chromosome 12 is homologous to human chromosome 2q

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Most of the 46 human chromosomes find their counterparts in the 48 chimpanzee chromosomes except for chromosome 2 which has been hypothesized to have been derived from a centric fusion of two chimpanzee acrocentric chromosomes. These two chromosomes correspond to the human chromosomes 2p and 2g. This conclusion is based primarily on chromosome banding techniques, and the somatic cell hybridization technique has also been used. (HLW)

  5. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Estabrooks, L L; Lamb, A.N.; Kirkman, H N; Callanan, N P; Rao, K W

    1992-01-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in aff...

  6. A Study on the Chromosomes of Konya Wild Sheep (Ovis orientalis spp.): Case Report

    KIRIKÇI, Kemal

    2003-01-01

    We investigated the shape and number of chromosomes of Konya wild sheep. A karyotype was prepared from G-band painted chromosomes. Konya wild sheep have 54 diploid chromosomes. The first three autosomal chromosomes were metacentric, and the other autosomal chromosomes and X chromosomes were acrocentric.

  7. Marker chromosome 21 identified by microdissection and FISH

    Sun, Y.; Palmer, C.G. [Indiana Univ. School of Medicine, Indianapolis, IN (United States); Rubinstein, J. [Univ. Affiliated Cincinnati Center for Developmental Disorders, OH (United States)] [and others

    1995-03-27

    A child without Down`s syndrome but with developmental delay, short stature, and autistic behavior was found to be mosaic 46,XX/47,XX,+mar(21) de novo. The marker was a small ring or dot-like chromosome. Microdissection of the marker was performed. The dissected fragments were biotinylated with sequence-independent PCR as a probe pool for fluorescence in situ hybridization (FISH). FISH results suggested an acrocentric origin of the marker. Subsequent FISH with {alpha}-satellite DNA probes for acrocentric chromosomes and chromosome-specific 21 and 22 painting probes confirmed its origin from chromosome 21. 14 refs., 3 figs.

  8. Dinoponera lucida Emery (Formicidae: Ponerinae): the highest number of chromosomes known in Hymenoptera

    Mariano, C. S. F.; Delabie, J. H. C.; Ramos, L. S.; Lacau, S.; Pompolo, S. G.

    We report the remarkable karyotype of Dinoponera lucida, a Brazilian endemic ponerine ant. Its chromosome number is 2n=106, most of the chromosomes are acrocentric and of very small size, and the karyotype formula is 88A+18M. A chromosome pair of the AMt type is reported. This is the largest number of chromosomes reported for the Hymenoptera order until now.

  9. Characterization of a rare short arm heteromorphism of chromosome 22 in a girl with down-syndrome like facies

    Abdelhafid Natiq

    2014-01-01

    Full Text Available Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.

  10. Transmission Behavior of B Chromosomes in Prochilodus lineatus (Characiformes, Prochilodontidae).

    Penitente, Manolo; Daniel, Sandro N; Senhorini, José A; Foresti, Fausto; Porto-Foresti, Fábio

    2015-01-01

    The population of Prochilodus lineatus found in the Mogi-Guaçu River is karyotypically polymorphic, carrying acrocentric, metacentric, and submetacentric B chromosomes. The analysis of each B chromosome frequency in this species revealed a variation in the distribution pattern, with the metacentric type having the highest frequency (73.30%), followed by submetacentric (25.22%) and acrocentric B chromosomes (1.48%). The transmission pattern of the supernumerary chromosomes was identified by controlled crosses, and it was shown that the acro- and submetacentric B chromosomes have a transmission pattern below the Mendelian rate (kB = 0.333 and kB = 0.385, respectively), but the metacentric variant has a cumulative transmission pattern (kB = 0.587). These results indicate that the acro- and submetacentric B chromosomes are undergoing an extinction process, while the metacentric B chromosomes appear to be accumulating in frequency with each generation. PMID:26795613

  11. Asymmetry and skin pigmentary anomalies in chromosome mosaicism.

    WOODS, C. G.; BANKIER, A.; J Curry; Sheffield, L J; Slaney, S F; Smith, K.; Voullaire, L; Wellesley, D.

    1994-01-01

    We report six persons mosaic for a chromosome anomaly. All were mentally retarded and dysmorphic. Unilateral or asymmetrical features were found in all cases, in one an unusual transverse terminal limb anomaly, and in the others various degrees of hemiatrophy of the left side of the body. Five of the subjects had skin pigmentary anomalies which were distributed in the lines of Blaschko. The abnormal cell lines found were ring chromosome 22, trisomy 22, a large acrocentric marker, a deletion o...

  12. Assignment of Atlantic salmon (Salmo salar) Linkage Groups to Specific Chromosomes: Conservation of Large Syntenic Blocks Corresponding to Whole Chromosome Arms in Rainbow Trout (Oncorhynchus mykiss)

    Phillips, Ruth; Keatley, Kimberly; Morasch, Matthew; Ventura, Abigail; Lubieniecki, Krzysztof; Koop, Ben; Danzmann, Roy; Davidson, William

    2009-01-01

    Background: Most teleost species, especially freshwater groups such as the Esocidae which are theclosest relatives of salmonids, have a karyotype comprising 25 pairs of acrocentric chromosomes and 48–52 chromosome arms. After the common ancestor of salmonids underwent a whole genome duplication,its karyotype would have 100 chromosome arms, and this is reflected in the modal range of 96–104 seenin extant salmonids (e.g., rainbow trout). The Atlantic salmon is an exception among the salmonids a...

  13. Y chromosome peculiarities and chromosomal G- and C-staining in Crocidura shantungensis Miller, 1901 (Soricomorpha: Soricidae)

    Irina Kartavtseva; I-S Park

    2010-01-01

    Cytogenetical examinations of Crocidura shantungensis Miller, 1901 from small Young Island of South Korea and the mainland of Russian Far East (Vladivostok) were carried out and literature data concerning Tsushima Island of Japan and Cheju Island of Korea were considered. The chromosome sets of all investigated specimens are characterized by 2n = 40 and NFa = 46. Four pairs of biarmed autosomes, 15 pairs of acrocentrics and two sex chromosomes were identified applying G- and C-banding....

  14. Four distinct alpha satellite subfamilies shared by human chromosomes 13, 14 and 21.

    Vissel, B; Choo, K H

    1991-01-01

    We describe the characterisation of four alpha satellite sequences which are found on a subset of the human acrocentric chromosomes. Direct sequence study, and analysis of somatic cell hybrids carrying specific human chromosomes indicate a unique 'higher-order structure' for each of the four sequences, suggesting that they belong to different subfamilies of alpha DNA. Under very high stringency of Southern hybridisation conditions, all four subfamilies were detected on chromosomes 13, 14 and ...

  15. New occurrence of B chromosomes in Partamona helleri (Friese, 1900) (Hymenoptera, Meliponini)

    Cinthia Caroline Cardoso Martins; Olivia Maria Pereira Duarte; Ana Maria Waldschmidt; Rogério Marco de Oliveira Alves; Marco Antônio Costa

    2009-01-01

    Cytogenetic analyses of the stingless bee Partamona helleri collected in the state of Bahia, Northeast Brazil revealed the chromosome numbers n = 18 in the haploid males and 2n = 35 in the diploid females. All karyotypes displayed one large acrocentric B chromosome, which differs from the minute B chromosomes previously described in the populations from southeastern Brazil. Giemsa staining, C-banding and DAPI/CMA3 fluorochrome staining also revealed a remarkable interpopulational divergence r...

  16. Transmission rate variation among three B chromosome variants in the fish Prochilodus lineatus (Characiformes, Prochilodontidae).

    Penitente, Manolo; Voltolin, Tatiana A; Senhorini, José A; Bortolozzi, Jehud; Foresti, Fausto; Porto-Foresti, Fábio

    2013-01-01

    Cytogenetic studies were developed in Prochilodus lineatus (Valenciennes 1836), describing an interesting system of small supernumerary chromosomes. The purpose of this work is to study the frequency and morphology of B chromosomes in individuals from the parental line and the inheritance patterns of these elements in individuals obtained from controlled crosses in the species P. lineatus. The transmission rate of B chromosomes revealed a k(B)=0.388 for the acrocentric type, a kB=0.507 for the metacentric type and a k(B)=0.526 for the submetacentric type. The obtained results raise hypothesis that B-acrocentric chromosomes are involved in an extinction process in this species, while the metacentric and submetacentric supernumerary elements comprises a neutral mechanism and follows a Mendelian transmission rate. PMID:24141415

  17. Chromosome phylogeny of the subfamily Pitheciinae (Platyrrhini, Primates) by classic cytogenetics and chromosome painting

    2010-01-01

    Background The New World monkey (Platyrrhini) subfamily Pitheciinae is represented by the genera Pithecia, Chiropotes and Cacajao. In this work we studied the karyotypes of Pithecia irrorata (2n = 48) and Cacajao calvus rubicundus (2n = 45 in males and 2n = 46 in females) by G- and C-banding, NOR staining and chromosome painting using human and Saguinus oedipus whole chromosome probes. The karyotypes of both species were compared with each other and with Chiropotes utahicki (2n = 54) from the literature. Results Our results show that members of the Pitheciinae have conserved several chromosome forms found in the inferred ancestral Platyrrhini karyotype (associations of human homologous segments 3a/21, 5/7a, 2b/16b, 8a/18, 14/15a and 10a/16a). Further, the monophyly of this subfamily is supported by three chromosomal synapomorphies (2a/10b, an acrocentric 15/14 and an acrocentric human 19 homolog). In addition, each species presents several autapomorphies. From this data set we established a chromosomal phylogeny of Pitheciinae, resulting in a single most parsimonious tree. Conclusions In our chromosomal phylogeny, the genus Pithecia occurred in a more basal position close to the inferred ancestor of Platyrrhini, while C. c. rubicundus and C. utahicki are closely related and are linked by exclusive synapomorphies. PMID:20565908

  18. Chromosomes of Belonocnema treatae Mayr, 1881 (Hymenoptera, Cynipidae

    Vladimir E. Gokhman

    2015-05-01

    Full Text Available Chromosomes of the asexual and sexual generation of the gall wasp Belonocnema treatae Mayr, 1881 (Cynipidae were analyzed. Females of both generations have 2n = 20, whereas males of the sexual generation have n = 10. Cyclical deuterotoky is therefore confirmed in this species. All chromosomes are acrocentric and form a continuous gradation in size. This karyotype structure is probably ancestral for many gall wasps and perhaps for the family Cynipidae in general. Chromosome no. 7 carries a characteristic achromatic gap that appears to represent a nucleolus organizing region.

  19. The chromosomes of Tsing-Ling pika, Ochotona huangensis Matschie, 1908 (Lagomorpha, Ochotonidae

    Alexey Vakurin

    2012-10-01

    Full Text Available The karyotype of the Tsing-Ling (Huanghe pika, Ochotona huangensis Matschie, 1908 from the forest habitats of the Qinling Mountains (Shaanxi Province, China was described for the first time. The chromosome set contains 42 chromosomes (NFa=80. The autosomes are 15 meta-submetacentric pairs and 5 subtelocentric pairs. The X chromosome is a medium sized submetacentric; the Y chromosome is a small sized acrocentric. C-banding revealed a localization of heterochromatin in the pericentromeric regions of all autosomes.

  20. Chromosome analysis of arsenic affected cattle

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  1. New cases of supernumerary chromosomes in characiform fishes

    Paulo Cesar Venere

    1999-09-01

    Full Text Available Supernumerary chromosomes were described for five species of Neotropical characiform fishes. These extra chromosomes were small, acrocentric and fully heterochromatic in Leporinus friderici from two different localities as well as in Leporinus sp., but metacentric and fully heterochromatic in Cyphocharax modesta and Prochilodus nigricans. In Characidium cf. zebra, this element was small, acrocentric and euchromatic. GC-rich DNA blocks were observed in the supernumerary chromosome of Leporinus sp. using chromomycin A3. The widespread occurrence of these extra chromosomal elements suggests their independent origins.São descritos os cromossomos supranumerários observados em cinco espécies de peixes pertencentes a quatro famílias distintas de caraciformes neotropicais. Esses cromossomos mostraram-se pequenos, totalmente heterocromáticos e acrocêntricos em Leporinus friderici e Leporinus sp. e metacêntricos e totalmente heterocromáticos em Cyphocharax modesta e Prochilodus nigricans. Em Characidium cf. zebra um pequeno extra acrocêntrico é visto totalmente eucromático. Um pequeno segmento rico em pares de bases GC pôde ser observado no cromossomo extra de Leporinus sp. após a coloração com cromomicina A3. Alguns aspectos relacionados à origem desses cromossomos extras entre os caraciformes são discutidos.

  2. Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera

    Schneeweiss, G.M.; Palomeque, T.; Colwell, A.E.; Weiss-Schneeweiss, H.

    2004-01-01

    Chromosome numbers and karyotypes of species of Orobanche, Cistanche, and Diphelypaea (Orobanchaceae) were investigated, and 108 chromosome counts of 53 taxa, 19 counted for the first time, are presented with a thorough compilation of previously published data. Additionally, karyotypes of representatives of these genera, including Orobanche sects. Orobanche and Trionychon, are reported. Cistanche (x = 20) has large meta- to submetacentric chromosomes, while those of Diphelypaea (x = 19) are medium-sized submeta-to acrocentrics. Within three analyzed sections of Orobanche, sects. Myzorrhiza (x = 24) and Trionychon (x = 12) possess medium-sized submeta- to acrocentrics, while sect. Orobanche (x = 19) has small, mostly meta- to submetacentric, chromosomes. Polyploidy is unevenly distributed in Orobanche and restricted to a few lineages, e.g., O. sect. Myzorrhiza or Orobanche gracilis and its relatives (sect. Orobanche). The distribution of basic chromosome numbers supports the groups found by molecular phylogenetic analyses: Cistanche has x = 20, the Orobanche-group (Orobanche sect. Orobanche, Diphelypaea) has x = 19, and the Phelipanche-group (Orobanche sects. Gymnocaulis, Myzorrhiza, Trionychon) has x = 12, 24. A model of chromosome number evolution in Orobanche and related genera is presented: from two ancestral base numbers, xh = 5 and xh = 6, independent polyploidizations led to x = 20 (Cistanche) and (after dysploidization) x = 19 (Orobanche-group) and to x = 12 and x = 24 (Phelipanche-group), respectively.

  3. Chromosome evolution in fishes: a new challenging proposal from Neotropical species

    Mauro Nirchio

    2014-12-01

    Full Text Available We present a database containing cytogenetic data of Neotropical actinopterygian fishes from Venezuela obtained in a single laboratory for the first time. The results of this study include 103 species belonging to 74 genera assigned to 45 families and 17 out of the 40 teleost orders. In the group of marine fishes, the modal diploid number was 2n=48 represented in 60% of the studied species, while in the freshwater fish group the modal diploid complement was 2n=54, represented in 21.21 % of the studied species. The average number of chromosomes and the mean FN were statistically higher in freshwater fish than in marine fish. The degree of diversification and karyotype variation was also higher in freshwater fish in contrast to a more conserved cytogenetic pattern in marine fish. In contrast to the assumption according to which 48 acrocentric chromosomes was basal chromosome number in fish, data here presented show that there is an obvious trend towards the reduction of the diploid number of chromosomes from values near 2n=60 with high number of biarmed chromosomes in more basal species to 2n=48 acrocentric elements in more derived Actinopterygii.

  4. Chromosome comparison of 17 species / sub-species of African Goliathini (Coleoptera, Scarabaeidae, Cetoniinae)

    Dutrillaux, Anne-Marie; Dutrillaux, Bernard

    2016-01-01

    Abstract The mitotic karyotypes of 17 species of African Goliathini (Cetoniinae) are described using various chromosome banding techniques. All but one are composed of 20 chromosomes, mostly metacentric, forming a karyotype assumed to be close to that of the Polyphaga ancestor. The most derived karyotypes are those of Goliathus goliatus Drury, 1770, with eight pairs of acrocentrics and Chlorocana africana Drury, 1773, with only14 chromosomes. In species of the genera Cyprolais Burmeister, 1842, Megalorhina Westwood, 1847, Stephanocrates Kolbe, 1894 and Stephanorrhina Burmeister, 1842, large additions of variable heterochromatin are observed on both some particular autosomes and the X chromosome. Species of the genera Eudicella White, 1839 and Dicronorrhina Burmeister, 1842 share the same sub-metacentric X. Although each species possesses its own karyotype, it remains impossible to propose robust phylogenetic relationships on the basis of chromosome data only. PMID:27551348

  5. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae).

    Bugrov, Alexander G; Jetybayev, Ilyas E; Karagyan, Gayane H; Rubtsov, Nicolay B

    2016-01-01

    Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in the

  6. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae)

    Bugrov, Alexander G.; Jetybayev, Ilyas E.; Karagyan, Gayane H.; Rubtsov, Nicolay B.

    2016-01-01

    Abstract Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in

  7. Chromosome synapsis and recombination in simple and complex chromosomal heterozygotes of tuco-tuco (Ctenomys talarum: Rodentia: Ctenomyidae).

    Basheva, Ekaterina A; Torgasheva, Anna A; Gomez Fernandez, Maria Jimena; Boston, Emma; Mirol, Patricia; Borodin, Pavel M

    2014-09-01

    The chromosomal speciation hypothesis suggests that irregularities in synapsis, recombination, and segregation in heterozygotes for chromosome rearrangements may restrict gene flow between karyotypically distinct populations and promote speciation. Ctenomys talarum is a South American subterranean rodent inhabiting the coastal regions of Argentina, whose populations polymorphic for Robertsonian and tandem translocations seem to have a very restricted gene flow. To test if chromosomal differences are involved in isolation among its populations, we examined chromosome pairing, recombination, and meiotic silencing of unsynapsed chromatin in male meiosis of simple and complex translocation heterozygotes using immunolocalization of the MLH1 marking mature recombination nodules and phosphorylated histone γH2A.X marking unrepaired double-strand breaks. We observed small asynaptic areas labeled by γH2A.X in pericentromeric regions of the chromosomes involved in the trivalents and quadrivalents. We also observed a decrease of recombination frequency and a distalization of the crossover distribution in the heterozygotes and metacentric homozygotes compared to acrocentric homozygotes. We suggest that the asynapsis of the pericentromeric regions are unlikely to induce germ cell death and decrease fertility of the heterozygotes; however, suppressed recombination in pericentromeric areas of the multivalents may reduce gene flow between chromosomally different populations of the Talas tuco-tuco. PMID:24924853

  8. Study on karyotype and occurrence of B chromosomes in two endemic species of the genus Pimelodus (Siluriformes, Pimelodidae) from the river Iguaçu.

    Borin, Luciana Andreia; Martins-Santos, Isabel Cristina

    2004-01-01

    The current work describes, for the first time, the occurrence of B chromosomes in the genus Pimelodus. Cytogenetic analysis in P. ortmanni and Pimelodus sp., from the river Iguaçu basin, revealed a diploid number of 56 chromosomes. Whereas distribution pattern of C-banding in Pimelodus sp. showed predominance of heterochromatin at the two extremities of several pairs of chromosomes, centromere markings predominated in P. ortmanni. Additional chromosomes in the two species were observed with numerical intra-individual variations between zero and four B, together with interspecies differences in their frequency. In Giemsa-stained metaphases two distinct morphological types of B chromosomes were identified: Bm (B metacentric) and Ba (B acrocentric). In P. ortmanni both types of B chromosomes were totally heterochromatic; the Bm type in Pimelodus sp. had heterochromatin throughout its entire extension; the Ba type was partially heterochromatic with telomere markings on the long arm. PMID:15198710

  9. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    Martins Cesar

    2010-01-01

    Full Text Available Abstract Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s occurring in 39.6% of the analyzed individuals (both male and female were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement.

  10. Somatic Chromosomes of the Bornean Sambar Deer and Rusa Deer Interspecific Hybrids

    Ismail Idris

    2009-01-01

    Full Text Available Problem statement: Hybridization has potential benefits to the Malaysian farmed deer industries in terms of increased growth rate and increased proportion of muscle and an improved alignment of feed supply and annual energy requirement. Species or subspecies of different chromosome constitution could mate to produce healthy hybrid offspring in a normal ratio of males and females. If any of the hybrid offspring were sterile, the sterile offspring would be the heterogametic offspring. The study investigated the use of chromosome banding method to detect chromosomal variation and to define the chromosome homology and the possibility of the Bornean Sambar deer (Cervus unicolor brookei and Rusa deer (Cervus timorensis hybrids to reproduce. Approach: Samples were collected from the Livestock Breeding Station, Sabrang, Keningau, Sabah, East Malaysia. The animals studied consisted of two deer subspecies namely the Bornean Sambar deer, Rusa deer and their hybrids. The karyotypes of the Bornean Sambar deer, Rusa deer and their F1 hybrids have been investigated by solid giemsa staining, G-banding and Ag-NOR banding techniques. Results: Rusa and Bornean Sambar have different chromosome number; 60 and 62 respectively, but share the same fundamental number of chromosome arm, 70. The hybrids have 2n = 61, consisting of 9 metacentric to submetacentric autosomes and 24 pairs of acrocentric autosomes with two acrocentrics and one submetacentric chromosome being unpaired. The morphology of the sex chromosomes in the F1 hybrids was similar to that of the parental species. The Ag-NOR pattern and the conventional Giemsa staining of chromosomes were effective as markers in the characterization of the karyotypes of the parental lines and hybrids because of the presence of active NORs on different chromosomes of different species. G-band, in contrast, showed complete homology in the presence of euchromatic bands and heterochromatin blocks respectively on each chromosome

  11. Spontaneous and Stimulated Leukaemogenesis in Mice of the AKR Strain with 38 or 40 Chromosomes

    At the present time the precise role of chromosome anomalies in the development of cancers is still the subject of controversy in many respects. Some authorities regard chromosome anomalies as the result of the occurrence of tumours, while those subscribing to the theory of somatic mutations regard them as being the first stage thereof. An increased incidence of leukaemias has in fact been observed in people with various chromosome anomalies, such as trisomy 21. The part played by these chromosome anomalies has been studied in the development of spontaneous leukaemias or leukaemias stimulated by exposure to ionizing radiations, as observed in mice of the AKR strain. Mice of this strain normally have 40 chromosomes. The authors were able, some time ago, to isolate a substrain which only has 38 chromosomes (AKR/Tl Ald) due to centromeric fusion of two acrocentric chromosomes. The possible effect of this chromosome change has been studied by comparing, in the two cases, the incidence of lymphoid leukaemias and their period of latency in irradiated and non-irradiated individuals. To stimulate leukaemogenesis the authors adopted the technique of Professor Duplan in which a whole-body dose of 175 R was administered to 30-day-old mice four times at seven-day intervals. The leukaemia diagnosis was established by dissection carried out immediately after death, and in doubtful cases by a histological study. The results obtained are discussed in relation to the theories on the role of chromosome anomalies in carcinogenesis. (author)

  12. Sex chromosomes and karyotype of the (nearly) mythical creature, the Gila monster, Heloderma suspectum (Squamata: Helodermatidae).

    Johnson Pokorná, Martina; Rovatsos, Michail; Kratochvíl, Lukáš

    2014-01-01

    A wide variety of sex determination systems exist among squamate reptiles. They can therefore serve as an important model for studies of evolutionary transitions among particular sex determination systems. However, we still have only a limited knowledge of sex determination in certain important lineages of squamates. In this respect, one of the most understudied groups is the family Helodermatidae (Anguimorpha) encompassing the only two venomous species of lizards which are potentially lethal to human beings. We uncovered homomorphic ZZ/ZW sex chromosomes in the Gila monster (Heloderma suspectum) with a highly heterochromatic W chromosome. The sex chromosomes are morphologically similar to the ZZ/ZW sex chromosomes of monitor lizards (Varanidae). If the sex chromosomes of helodermatids and varanids are homologous, female heterogamety may be ancestral for the whole Anguimorpha group. Moreover, we found that the karyotype of the Gila monster consists of 2n = 36 chromosomes (14 larger metacentric chromosomes and 22 acrocentric microchromosomes). 2n = 36 is the widely distributed chromosomal number among squamates. In his pioneering works representing the only previous cytogenetic examination of the family Helodermatidae, Matthey reported the karyotype as 2n = 38 and suggested a different chromosomal morphology for this species. We believe that this was probably erroneously. We also discovered a strong accumulation of telomeric sequences on several pairs of microchromosomes in the Gila monster, which is a trait documented relatively rarely in vertebrates. These new data fill an important gap in our understanding of the sex determination and karyotype evolution of squamates. PMID:25119263

  13. Sex chromosomes and karyotype of the (nearly mythical creature, the Gila monster, Heloderma suspectum (Squamata: Helodermatidae.

    Martina Johnson Pokorná

    Full Text Available A wide variety of sex determination systems exist among squamate reptiles. They can therefore serve as an important model for studies of evolutionary transitions among particular sex determination systems. However, we still have only a limited knowledge of sex determination in certain important lineages of squamates. In this respect, one of the most understudied groups is the family Helodermatidae (Anguimorpha encompassing the only two venomous species of lizards which are potentially lethal to human beings. We uncovered homomorphic ZZ/ZW sex chromosomes in the Gila monster (Heloderma suspectum with a highly heterochromatic W chromosome. The sex chromosomes are morphologically similar to the ZZ/ZW sex chromosomes of monitor lizards (Varanidae. If the sex chromosomes of helodermatids and varanids are homologous, female heterogamety may be ancestral for the whole Anguimorpha group. Moreover, we found that the karyotype of the Gila monster consists of 2n = 36 chromosomes (14 larger metacentric chromosomes and 22 acrocentric microchromosomes. 2n = 36 is the widely distributed chromosomal number among squamates. In his pioneering works representing the only previous cytogenetic examination of the family Helodermatidae, Matthey reported the karyotype as 2n = 38 and suggested a different chromosomal morphology for this species. We believe that this was probably erroneously. We also discovered a strong accumulation of telomeric sequences on several pairs of microchromosomes in the Gila monster, which is a trait documented relatively rarely in vertebrates. These new data fill an important gap in our understanding of the sex determination and karyotype evolution of squamates.

  14. Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution.

    Rojo, V; Giovannotti, M; Naveira, H; Nisi Cerioni, P; González-Tizón, A M; Caputo Barucchi, V; Galán, P; Olmo, E; Martínez-Lage, A

    2014-01-01

    Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex chromosome evolution, we performed a cytogenetic analysis based on conventional staining, banding techniques and fluorescence in situ hybridization in the species I. monticola, for which previous cytogenetic investigations did not detect differentiated sex chromosomes. The karyotype is composed of 2n = 36 acrocentric chromosomes. NORs and the major ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in 5 chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all chromosomes, as well as clear pericentromeric and light telomeric C-bands in several chromosome pairs. These results highlight some chromosomal markers which can be useful to identify species-specific diagnostic characters, although they may not accurately reflect the phylogenetic relationships among the taxa. In addition, C-banding revealed the presence of a heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely heterochromatic. This finding sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further comparative cytogenetic analyses are needed to understand the processes underlying the origin, differentiation and plasticity of sex chromosome systems in lacertid lizards. PMID:24296524

  15. Chironomus group classification according to the mapping of polytene chromosomes

    Salleh, Syafinaz; Kutty, Ahmad Abas

    2013-11-01

    Chironomus is one of the important genera in Chironomidae family since they are widely diverse and abundance in aquatic ecosystem. Since Chironomus is very diverse, taxonomic work on this genus is very difficult and incomplete. Objective of this study is to form group classification of Chironomus according to the polytene chromosome mapping. The specific characteristics of polytene chromosomes in the salivary gland appeared to be particularly promising for taxonomic diagnosis of chironomid species. Chironomid larvae were collected from pristine sites at Sg. Langat and cultured in laboratory to reach fourth instar stage. The salivary glands were removed from larvae and chromosomes were stained with aceto orcein. Results showed that polytene chromosomes of Chironomus comprise of three long metacentric or submetacentric arms (BF, CD and AE arms) and one short acrocentric (G arm). In regards to nucleolar organizing region (NOR), Balbiani ring (BR), puffings and chromosome rearrangement, a number of four groups of different banding patterns were found. Two groups called as G group A and B have common NOR on arm BF and BR on arm G. However, group A has rearrangement pattern on arm CD and not in group B. This makes group B separated from group A. Another two groups called as groups C and D do not have common NOR on arm BF and also BR on arm G. Groups C and D were separated using arms G and arm AE. At arm G, only group C rearrangement pattern at unit 23c whereas group D was found to have large NOR at arm G and as well as arm AE, only group D has rearrangement pattern at unit 12c. This study indicates that chromosome arrangement could aid in revealing Chironomus diversity.

  16. New occurrence of B chromosomes in Partamonahelleri (Friese, 1900) (Hymenoptera, Meliponini).

    Martins, Cinthia Caroline Cardoso; Duarte, Olivia Maria Pereira; Waldschmidt, Ana Maria; de Oliveira Alves, Rogério Marco; Costa, Marco Antônio

    2009-10-01

    Cytogenetic analyses of the stingless bee Partamona helleri collected in the state of Bahia, Northeast Brazil revealed the chromosome numbers n = 18 in the haploid males and 2n = 35 in the diploid females. All karyotypes displayed one large acrocentric B chromosome, which differs from the minute B chromosomes previously described in the populations from southeastern Brazil. Giemsa staining, C-banding and DAPI/CMA(3) fluorochrome staining also revealed a remarkable interpopulational divergence regarding both the regular karyotype and the B chromosomes. The B chromosomes found in the samples from Jequié, Bahia, were entirely heterochromatic, while those found in Cravolândia, Bahia, displayed a euchromatic portion at the telomeric end of the long arm. CMA (3) labeling sites varied from seven to eight between the two localities in Bahia, due to the presence of an extra GC-rich block in the karyotype of the samples from Jequié. This is the first report of a large B chromosome in P. helleri and reveals the occurrence of a geographic differentiation within this species. PMID:21637454

  17. New occurrence of B chromosomes in Partamona helleri (Friese, 1900 (Hymenoptera, Meliponini

    Cinthia Caroline Cardoso Martins

    2009-01-01

    Full Text Available Cytogenetic analyses of the stingless bee Partamona helleri collected in the state of Bahia, Northeast Brazil revealed the chromosome numbers n = 18 in the haploid males and 2n = 35 in the diploid females. All karyotypes displayed one large acrocentric B chromosome, which differs from the minute B chromosomes previously described in the populations from southeastern Brazil. Giemsa staining, C-banding and DAPI/CMA3 fluorochrome staining also revealed a remarkable interpopulational divergence regarding both the regular karyotype and the B chromosomes. The B chromosomes found in the samples from Jequié, Bahia, were entirely heterochromatic, while those found in Cravolândia, Bahia, displayed a euchromatic portion at the telomeric end of the long arm. CMA3 labeling sites varied from seven to eight between the two localities in Bahia, due to the presence of an extra GC-rich block in the karyotype of the samples from Jequié. This is the first report of a large B chromosome in P. helleri and reveals the occurrence of a geographic differentiation within this species.

  18. Chromosomal aberration

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G1 phase. (author)

  19. Chromosomal mapping of chicken mega-telomere arrays to GGA9, 16, 28 and W using a cytogenomic approach.

    Delany, M E; Gessaro, T M; Rodrigue, K L; Daniels, L M

    2007-01-01

    Four mega-telomere loci were mapped to chicken chromosomes 9, 16, 28, and the W sex chromosome by dual-color fluorescence in situ hybridization using a telomeric sequence probe and BAC clones previously assigned to chicken chromosomes. The in-common features of the mega-telomere chromosomes are that microchromosomes are involved rather than macrochromosomes; in three cases (9, 16, 28) acrocentrics are involved with the mega-telomeres mapping to the p arms. Three of the four chromosomes (9, 16, W) encode tandem repeats which in two cases (9 and 16) involve the ribosomal DNA arrays (the 5S and 18S-5.8S-28S gene repeats, respectively). All involved chromosomes have a typical-sized telomere on the opposite terminus. Intra- and interindividual variation for mega-telomere distribution are discussed in terms of karyotype abnormalities and the potential for mitotic instability of some telomeres. The diversity and distribution of telomere array quantity in the chicken genome should be useful in contributing to research related to telomere length regulation - how and by what mechanism genomes and individual chromosomes establish and maintain distinct sets of telomere array sizes, as well as for future studies related to stability of the chicken genome affecting development, growth, cellular lifespan and disease. An additional impact of this study includes the listing of BAC clones (26 autosomal and six W BACs tested) that were cytogenetically verified; this set of BACs provide a useful tool for future cytogenetic analyses of the microchromosomes. PMID:17675845

  20. Clusters of alpha satellite on human chromosome 21 are dispersed far onto the short arm and lack ancient layers.

    Ziccardi, William; Zhao, Chongjian; Shepelev, Valery; Uralsky, Lev; Alexandrov, Ivan; Andreeva, Tatyana; Rogaev, Evgeny; Bun, Christopher; Miller, Emily; Putonti, Catherine; Doering, Jeffrey

    2016-09-01

    Human alpha satellite (AS) sequence domains that currently function as centromeres are typically flanked by layers of evolutionarily older AS that presumably represent the remnants of earlier primate centromeres. Studies on several human chromosomes reveal that these older AS arrays are arranged in an age gradient, with the oldest arrays farthest from the functional centromere and arrays progressively closer to the centromere being progressively younger. The organization of AS on human chromosome 21 (HC21) has not been well-characterized. We have used newly available HC21 sequence data and an HC21p YAC map to determine the size, organization, and location of the AS arrays, and compared them to AS arrays found on other chromosomes. We find that the majority of the HC21 AS sequences are present on the p-arm of the chromosome and are organized into at least five distinct isolated clusters which are distributed over a larger distance from the functional centromere than that typically seen for AS on other chromosomes. Using both phylogenetic and L1 element age estimations, we found that all of the HC21 AS clusters outside the functional centromere are of a similar relatively recent evolutionary origin. HC21 contains none of the ancient AS layers associated with early primate evolution which is present on other chromosomes, possibly due to the fact that the p-arm of HC21 and the other acrocentric chromosomes underwent substantial reorganization about 20 million years ago. PMID:27430641

  1. Chromosomal variation and constitutive heterochromatin in three porpoise species (genus Stenella).

    Stock, A D

    1981-01-01

    Chromosomes from cultured fibroblasts of two Pacific porpoise species, Stenella attenuata and S. longirostris, and one Atlantic species, S. dubia, were compared to test the feasibility of using variation in constitutive heterochromatin and other chromosomal characteristics for analyses of population relationships and defining stocks of endangered porpoises. The G-band karyotypes of the three species were identical except for minor band differences resulting from heterochromatin variation. The nucleolar organizer regions (NORs) were located on the same two pairs of acrocentric chromosomes in all three species, although individual variation occurred in the number of active NORs present. Differences in the distribution and amount of C-band heterochromatin were observed between the three species. Stenella attenuata and S. dubia were very similar in C-band pattern, while S. longirostris was distinctly different. Conspicuous heteromorphism between the C-heterochromatin of the homologs of several pairs of chromosomes was noted in all individuals examined. In addition, variation in the amount of heterochromatin was observed between the four S.attenuata individuals studied. Of the chromosomal characteristics studied, only C-heterochromatin variation holds promise for distinguishing interspecific populations of porpoises. The final decision regarding the feasibility of using C-band heterochromatin to distinguish interspecific populations of porpoises must await comparison of morphologically differing populations within what is currently regarded as a single species. PMID:7307585

  2. Synthetic chromosomes.

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes. PMID:26111960

  3. Nucleolar organizer regions and a new chromosome number for Rhea americana (Aves: Rheiformes

    Ricardo José Gunski

    1998-06-01

    Full Text Available Sequential banding analysis (Giemsa-C-banding-Ag NOR of chromosomes of the common rhea (Rhea americana was performed. Metaphases were obtained by peripheral blood lymphocyte culture and monolayer embryo cell culture. The diploid chromosome number was 80, different from the 2n = 82 in previous reports. Macrochromosome pairs 1, 2 and 5 were submetacentric and pair 3, subacrocentric. The 4th pair was acrocentric and all of the microchromosomes appeared to be acrocentric, with the exception of a clearly metacentric pair which was fully heterochromatic. The Z was slightly larger than the W, both being acrocentric and C-band negative. Nucleolar organizer regions were observed in the secondary constriction of a microchromosome pair. Correct identification of the NOR-bearing pair was possible only by sequential analyses, Giemsa staining followed by the Ag-NOR technique.Foram efetuadas análises seqüenciais de bandeamento cromossômico (Giemsa-banda-C-AgNOR em material da espécie Rhea americana (ema com o objetivo de identificar os cromossomos portadores de regiões organizadoras de nucléolos e confirmar o cariótipo desta espécie. As metáfases foram obtidas de culturas de leucócitos e de células de embrião. O número diplóide de cromossomos, determinado pela análise de metáfases oriundas de 19 espécimes, foi de 80 (2n = 80, NF = 95, o que difere da literatura. Os pares de macrocromossomos números 1, 2 e 5 eram submetacêntricos e o par 3 era sub-acrocêntrico, confirmado pelo bandeamento C. O par 4 era acrocêntrico, bem como todos os microcromossomos, com exceção de um metacêntrico inteiramente heterocromático. O cromossomo Z era ligeiramente maior que o W, sendo ambos acrocêntricos e banda-C negativos. A região organizadora de nucléolos foi observada na constrição secundária de um par de microcromossomos. A correta identificação do par portador da NOR só foi possível com a utilização da análise seqüencial de colora

  4. A comparative chromosome analysis of Thai wild boar (Sus scrofa jubatus and relationship to domestic pig (S. s. domestica by conventional staining, G-banding and high-resolution technique

    Pornnarong Siripiyasing

    2007-01-01

    Full Text Available This research is the first comparative chromosome analysis report of Thai wild boar (Sus scrofa jubatus and its relationship to domestic pig (S. s. domestica by conventional staining, G-banding and high-resolution technique. Blood samples of the Thai wild boar were taken from two males and two females kept in Nakhon Ratchasima Zoo. After standard whole blood lymphocyte culture at 37 oC for 72 hr. in the presence of colchicine, the metaphase spreads were performed on microscopic slides and airdried. Conventional staining, G-banding and high-resolution technique were applied to stain the chromosomes. The results showed that the number of diploid chromosomes of Thai wild boar was 2n (diploid = 38, and the fundamental numbers (NF were 62 in the male and female. The type of autosomes were 12 metacentric, 14 submetacentric, 4 acrocentric and 6 telocentric chromosomes, with X and Y chromosomes being metacentric chromosomes. We found that chromosomes 1, 5, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, X and Y had the same Gbanding and high-resolution technique patterns as those of domestic pig chromosomes. Chromosomes 2, 3, 4, 6, 9 and 15 are similar to those of domestic pig chromosomes. These results show the evolutionary relationship between the Thai wild boar and the domestic pig.

  5. Chromosome Microarray.

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed. PMID:27276104

  6. Chromosome number variation and evolution in Neotropical Leguminoseae (Mimosoideae) from northeastern Brazil.

    Santos, E C X R; Carvalho, R; Almeida, E M; Felix, L P

    2012-01-01

    Most members of the subfamily Mimosoideae have pantropical distributions, variable habits, and a basic chromosome number x = 13. We examined karyotypic evolution of 27 species of this subfamily occurring principally in northeastern Brazil by examining chromosomes stained with Giemsa. All of the species had semi-reticulated interphase nuclei and early condensing segments in the proximal region of both chromosome arms. The basic number x = 13 was the most frequent, with 2n = 2x = 26 in 19 of the species, followed by 2n = 4x = 52 and 2n = 6x = 78. However, the three species of the genus Calliandra had the basic number x = 8, with 2n = 2x = 16, while Mimosa cordistipula had 2n = 4x = 32. The karyotypes were relatively symmetrical, although bimodality was accentuated in some species, some with one or two acrocentric pairs. As a whole, our data support earlier hypotheses that the Mimosoideae subfamily has a basic number of x = 13 and underwent karyotypic evolution by polyploidy. However, x = 13 seems to be a secondary basic number that originated from an ancestral stock with x₁ = 7, in which polyploidy followed by descending disploidy gave rise to the current lineages with x = 13. Another lineage, including current representatives of Calliandra with x = 8, may have arisen by ascending disploidy directly from an ancestral monoploid stock with x₁ = 7. PMID:22843068

  7. Chromosomal Variability Between Populations of Electrophorus electricus Gill, 1864 (Pisces: Gymnotiformes: Gymnotidae).

    Cardoso, Adauto Lima; Ready, Jonathan Stuart; Pieczarka, Julio Cesar; Milhomem, Susana Suely Rodrigues; de Figueiredo-Ready, Wilsea Maria Batista; Silva, Fernando Henrique Ramos; Nagamachi, Cleusa Yoshiko

    2015-12-01

    The electric eel, Electrophorus electricus, the only species of its genus, has a wide distribution in the Amazon and Orinoco drainages. There is little previous information regarding the population variation in E. electricus, with only basic karyotype data from two populations (Amazon and Araguaia Rivers). Karyotypic description and analysis of CO1 barcode sequences were performed for E. electricus from three localities (Caripetuba, Irituia, and Maicuru Rivers). All samples share the 2n=52 (42 m-sm [meta-submetacentric] +10 st-a [subtelo-acrocentric]) with previously studied material. However, the Maicuru River samples differ from the other populations, as they have B chromosomes. The distribution of noncentromeric constitutive heterochromatin between samples is relatively divergent. All samples analyzed present the Nucleolar Organizer Region (NOR) located in a single chromosome pair. In the samples from Caripetuba, NORs were colocalized with a heterochromatin block, whereas the NOR was flanked by heterochromatin in Maicuru River samples and pericentromeric heterochromatin adjacent NOR was found in Irituia River samples. Alignment of CO1 barcode sequences indicated no significant differentiation between the samples analyzed. Results suggest that karyotypic differences between samples from the Caripetuba, Irituia, and Amazon Rivers represent chromosome polymorphisms. However, differences between the samples from the Maicuru and Araguaia Rivers and the remaining populations could represent interpopulation differentiation, which has not had time to accrue divergence at the CO1 gene level. PMID:25695141

  8. Mitotic chromosome structure

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  9. Fetal chromosome analysis: screening for chromosome disease?

    Philip, J; Tabor, Ann; Bang, J;

    1983-01-01

    A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were...... unbalanced chromosome abnormality in group A (women with elevated risk) is significantly higher than in group B + C (women without elevated risk) (relative risk 2.4). Women with a known familial translocation and women 40 years or more have a relative risk of 5.7 of having an unbalanced chromosome......The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...

  10. Chromosome painting in plants.

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in si

  11. Chromosome studies in the red howler monkey, Alouatta seniculus stramineus (Platyrrhini, Primates): description of an X1X2Y1Y2/X1X1X2X2 sex-chromosome system and karyological comparisons with other subspecies.

    Lima, M M; Seuánez, H N

    1991-01-01

    In the red howler monkey, Alouatta seniculus stramineus (2n = 47, 48, or 49), variations in diploid chromosome number are due to different numbers of microchromosomes. Males exhibit a Y;autosome translocation involving the short arm of an individual biarmed autosome. Consequently, the sex-chromosome constitution in the male is X1X2Y1Y2, with X1 representing the original X chromosome, X2 the biarmed autosome (No. 7), Y1 the Y;7p translocation product, and Y2 the acrocentric homolog of 7q. In the first meiotic division, a quadrivalent with a chain configuration can be observed in spermatocytes. Females have an X1X1X2X2 sex-chromosome constitution. Chromosome heteromorphisms were observed in pair 13, due to a pericentric inversion, and pair 19, due to the presence of constitutive heterochromatin. Microchromosomes, which varied in number between individuals, were also heterochromatic. NOR-staining was observed at two separate sites on a single chromosome pair (No. 10). A comparison of A.s. stramineus with A.s. macconnelli shows that these two subspecies have identical diploid chromosome numbers (47, 48, or 49), again due to a varying number of microchromosomes, and that they share a similar sex-chromosome constitution. Their karyotypes, however, are not identical, but can be derived from each other by a reciprocal translocation. Further comparisons with other A. seniculus subspecies reported in the literature indicate that this taxon is not karyologically uniform and that substantial chromosome shuffling has occurred between populations that have been considered to be subspecies by taxonomic criteria based on their morphometric attributes. PMID:1914523

  12. Cytogenetic characterization of three Balistoidea fish species from the Atlantic with inferences on chromosomal evolution in the families Monacanthidae and Balistidae

    de Lima, Lorena Corina Bezerra; Martinez, Pablo Ariel; Molina, Wagner Franco

    2011-01-01

    Abstract The Tetraodontiformes are the most derived group of teleostean fish. Among other apomorphies, they are characterized by a high degree of fusions or significant bone loss in the head and body. In the early phylogenetic proposals presented for this order, the families Balistidae and Monacanthidae have been unanimously considered to be closely related. Although they have moderate species diversity, they are scarcely known in cytogenetic aspect and chromosomal pattern comparisons between these groups have yet to be established. The species Cantherhines macrocerus (Hollard,1853), Cantherhines pullus (Ranzani, 1842) (Monacanthidae) and Melichthys niger (Bloch, 1786) (Balistidae) were cytogenetically analyzed using conventional (Ag-impregnation, C-banding, CMA3- and DAPI-fluorescence) and molecular (FISH with an 18S rDNA probe) cytogenetic protocols. The karyotypes of all three species were very similar possessing diploid chromosome numbers 2n = 40 and composed exclusively of acrocentric chromosomes. Single NOR-bearing pair as well as positive heterochromatic blocks at pericentromeric regions were identified in the karyotypes of the three species studied. NOR-bearing sites were positively labeled after Ag-impregnation, C-banding, CMA3-fluorescence and FISH with an 18S rDNA probe but were negative after DAPI-fluorescence. Such remarkable shared conspicuous chromosomal characters corroborate either close phylogenetic relationship of these families, previously established by morphological and molecular data, or rather conservative nature of karyotype differentiation processes. The later hypothesis, however, appears less probable due to centric or in tandem fusions documented for another Balistoidea species. PMID:24260619

  13. Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae

    E. Coluccia

    2011-05-01

    Full Text Available Muraenidae is a species-rich family, with relationships among genera and species and taxonomy that have not been completely clarified. Few cytogenetic studies have been conducted on this family, and all of them showed the same diploid chromosome number (2n=42 but with conspicuous karyotypic variation among species. The Mediterranean moray eel Gymnothorax unicolor was previously cytogenetically studied using classical techniques that allowed the characterization of its karyotype structure and the constitutive heterochromatin and argyrophilic nucleolar organizer regions (Ag-NORs distribution pattern. In the present study, we describe two new repetitive elements (called GuMboI and GuDdeI obtained from restricted genomic DNA of G. unicolor that were characterized by Southern blot and physically localized by in situ hybridization on metaphase chromosomes. As they are highly repetitive DNA sequences, they map in heterochromatic regions. However, while GuDdeI was localized in the centromeric regions, the GuMboI fraction was distributed on some centromeres and was co-localized with the nucleolus organizer region (NOR. Comparative analysis with other Mediterranean species such as Muraena helena pointed out that these DNA fractions are species-specific and could potentially be used for species discrimination. As a new contribution to the karyotype of this species, we found that the major ribosomal genes are localized on acrocentric chromosome 9 and that the telomeres of each chromosome are composed of a tandem repeat derived from a poly-TTAGGG DNA sequence, as it occurs in most vertebrate species. The results obtained add new information useful in comparative genomics at the chromosomal level and contribute to the cytogenetic knowledge regarding this fish family, which has not been extensively studied.

  14. Plant sex chromosome evolution.

    Charlesworth, Deborah

    2013-01-01

    It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past. PMID:23125359

  15. Vibrio chromosomes share common history

    Gevers Dirk; Chang Sarah; Chang LeeAnn; Kirkup Benjamin C; Polz Martin F

    2010-01-01

    Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Results Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II) were identified from 19 sequenced Vibrionales genomes ...

  16. Sequential cloning of chromosomes

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  17. A new chromosome was born: comparative chromosome painting in Boechera.

    Koch, Marcus A

    2015-09-01

    Comparative chromosome painting is a powerful tool to study the evolution of chromosomes and genomes. Analyzing karyotype evolution in cruciferous plants highlights the origin of aberrant chromosomes in apomictic Boechera and further establishes the cruciferous plants as important model system for our understanding of plant chromosome and genome evolution. PMID:26228436

  18. Chimpanzee chromosome 13 is homologous to human chromosome 2p

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Similarities between human and chimpanzee chromosomes are shown by chromosome banding techniques and somatic cell hybridization techniques. Cell hybrids were obtained from the chimpanzee lymphocyte LE-7, and the Chinese hamster mutant cell, Gal-2. Experiments showed that the ACPL, MDHs, and Gal-Act genes could be assigned to chimpanzee chromosome 13, and since these genes have been assigned to human chromosme 2p, it is suggested that chimpanzee chromosome 13 is homologous to human chromosome 2p. (HLW)

  19. Chromosome condensation and segmentation

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs

  20. Chromosomal abnormalities and autism

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  1. Chromosome numbers in Bromeliaceae

    2000-01-01

    The present study reports chromosome numbers of 17 species of Bromeliaceae, belonging to the genera Encholirium, Bromelia, Orthophytum, Hohenbergia, Billbergia, Neoglaziovia, Aechmea, Cryptanthus and Ananas. Most species present 2n = 50, however, Bromelia laciniosa, Orthophytum burle-marxii and O. maracasense are polyploids with 2n = 150, 2n = 100 and 2n = 150, respectively, while for Cryptanthus bahianus, 2n = 34 + 1-4B. B chromosomes were observed in Bromelia plumieri and Hohenbergia aff. u...

  2. Micromechanics of human mitotic chromosomes

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  3. Vibrio chromosomes share common history

    Gevers Dirk

    2010-05-01

    Full Text Available Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Results Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Conclusions Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA for one chromosome to be applied equally to both chromosomes.

  4. Chromosome numbers in Bromeliaceae

    Cotias-de-Oliveira Ana Lúcia Pires

    2000-01-01

    Full Text Available The present study reports chromosome numbers of 17 species of Bromeliaceae, belonging to the genera Encholirium, Bromelia, Orthophytum, Hohenbergia, Billbergia, Neoglaziovia, Aechmea, Cryptanthus and Ananas. Most species present 2n = 50, however, Bromelia laciniosa, Orthophytum burle-marxii and O. maracasense are polyploids with 2n = 150, 2n = 100 and 2n = 150, respectively, while for Cryptanthus bahianus, 2n = 34 + 1-4B. B chromosomes were observed in Bromelia plumieri and Hohenbergia aff. utriculosa. The chromosome number of all species was determined for the first time, except for Billbergia chlorosticta and Cryptanthus bahianus. Our data supports the hypothesis of a basic number of x = 25 for the Bromeliaceae family and decreasing aneuploidy in the genus Cryptanthus.

  5. Those amazing dinoflagellate chromosomes

    PETER J RIZZO

    2003-01-01

    Dinoflagellates are a very large and diverse group of eukaryotic algae that play a major role in aquatic food webs of both fresh water and marine habitats. Moreover, the toxic members of this group pose a health threat in the form of red tides. Finally, dinoflagellates are of great evolutionary importance,because of their taxonomic position, and their unusual chromosome structure and composition. While the cytoplasm of dinoflagellates is typically eukaryotic, the nucleus is unique when compared to the nucleus of other eukaryotes. More specifically, while the chromosomes of all other eukaryotes contain histones,dinoflagellate chromosomes lack histones completely. There are no known exceptions to this observation: all dinoflagellates lack histones, and all other eukaryotes contain histones. Nevertheless, dinoflagellates remain a relatively unstudied group of eukaryotes.

  6. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting

    Yerle Martine

    2003-11-01

    Full Text Available Abstract A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+ translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5 were elaborated and hybridised independently on chromosomal preparations of the bull who was a carrier of the mosaic translocation. The impossibility of differentiating chromosomes 2 and der(2 from other chromosomes of the metaphases did not allow the production of painting probes for these chromosomes. For all experiments, the quality of painting was comparable to that usually observed with probes obtained from flow-sorted chromosomes. The results obtained allowed confirmation of the interpretations proposed with G-banding karyotype analyses. In the bovine case, however, the reciprocity of the translocation could not be proven. The results presented in this paper show the usefulness of the microdissection technique for characterising chromosomal rearrangements in species for which commercial probes are not available. They also confirmed that the main limiting factor of the technique is the quality of the chromosomal preparations, which does not allow the identification of target chromosomes or chromosome fragments in all cases.

  7. A wide hybrid zone of chromosome races of the common shrew, Sorex araneus Linnaeus, 1758 (Mammalia, between the Dnieper and Berezina Rivers (Belarus

    Yu Borisov

    2010-12-01

    Full Text Available Karyological study of 75 specimens of the common shrew, Sorex araneus Linnaeus, 1758, from 8 localities in the Berezina River basin (eastern Belarus was carried out. A wide hybrid zone (not less than 100 km between the northern West Dvina chromosome race (XX / XYY, af, bc, gm, hk, ip, jl, no, qr, tu and the southern Turov race (XX / XYY, af, bc, g, h/k, i, jl, m, n, o, p, q, r, tu was revealed in this region. Frequencies of fused-unfused arms comprising four diagnostic metacentrics of the West Dvina race (g/m, h/k, n/o, q/r were calculated in all capture sites. Taking into consideration the absence of metacentric ip in specimens from six northern localities, the Borisov (Bs race (XX / XYY, af, bc, g/m, h/k, i, jl, n/o, p, q/r, tu (Orlov, Borisov, 2009 was distinguished in these sites. Common shrews from two southern localities on the right and left banks of the Berezina River (Berezino vicinity were referred to the Turov race. The presence of four metacentrics descended from the West Dvina race in the Bs race testifies to the hypothesis expressed earlier that the polymorphic populations of the S. araneus between the Dnieper and Berezina Rivers originated as a result of the West Dvina race spreading from the north and of hybridization between this race and local populations with acrocentric chromosomes.

  8. Chromosomes, cancer and radiosensitivity

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  9. Ring chromosome 13

    Brandt, C A; Hertz, Jens Michael; Petersen, M B; Vogel, F; Noer, H; Mikkelsen, M

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation with...

  10. The Y Chromosome

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  11. Chromosome Morphology in Kniphofia.

    J. M. J de Wet

    1960-12-01

    Full Text Available A number of species and varieties of the genus  Kniphofia (Liliaceae were studied cytologically. The somatic chromosome number is  2n = 12 in all the species. This is also true in  Notosceptrum natalense Baker.

  12. Chromosomes, cancer and radiosensitivity

    Samouhos, E.

    1983-08-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available.

  13. Telomere dysfunction and chromosome instability

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  14. Organization of the bacterial chromosome.

    Krawiec, S.; Riley, M

    1990-01-01

    Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction ...

  15. [Chromosomal organization of the genomes of small-chromosome plants].

    Muravenko, O V; Zelenin, A V

    2009-11-01

    An effective approach to study the chromosome organization in genomes of plants with small chromosomes and/or with low-informative C-banding patterns was developed in the course of investigation of the karyotypes of cotton plant, camomile, flax, and pea. To increase the resolving power of chromosome analysis, methods were worked out for revealing early replication patterns on chromosomes and for artificial impairment of mitotic chromosome condensation with the use of a DNA intercalator, 9-aminoacridine (9-AMA). To estimate polymorphism of the patterns of C-banding of small chromosomes on preparations obtained with the use of 9-AMA, it is necessary to choose a length interval that must not exceed three average sizes of metaphase chromosomes without the intercalator. The use of 9-AMA increases the resolution of differential C- and OR-banding and the precision of physical chromosome mapping by the FISH method. Of particular importance in studying small chromosomes is optimization of the computer-aided methods used to obtain and process chromosome images. The complex approach developed for analysis of the chromosome organization in plant genomes was used to study the karyotypes of 24 species of the genus Linum L. It permitted their chromosomes to be identified for the first time, and, in addition, B chromosomes were discovered and studied in the karyotypes of the species of the section Syllinum. By similarity of the karyotypes, the studied flax species were distributed in eight groups in agreement with the clusterization of these species according to the results of RAPD analysis performed in parallel. Systematic positions and phylogenetic relationships of the studied flax species were verified. Out results can serve as an important argument in favour of the proposal to develop a special program for sequencing the genome of cultivated flax (L. usitatissimum L.), which is a major representative of small-chromosome species. PMID:20058798

  16. Chromosome 19 International Workshop

    Pericak-Vance, M.A. (Duke Univ., Durham, NC (United States). Medical Center); Ropers, H.H. (Univ. Hospital Nijmegen, (The Netherlands). Dept. of Human Genetics); Carrano, A.J. (Lawrence Livermore National Lab., CA (United States))

    1993-01-04

    The Second International Workshop on Human Chromosome 19 was hosted on January 25 and 26, 1992, by the Department of Human Genetics, University Hospital Nijmegen, The Netherlands, at the 'Meerdal Conference Center'. The workshop was supported by a grant from the European Community obtained through HUGO, the Dutch Research Organization (NWO) and the Muscular Dystrophy Association (MDA). Travel support for American participants was provided by the Department of Energy. The goals of this workshop were to produce genetic, physical and integrated maps of chromosome 19, to identify inconsistencies and gaps, and to discuss and exchange resources and techniques available for the completion of these maps. The second day of the meeting was largely devoted to region or disease specific efforts. In particular, the meeting served as a platform for assessing and discussing the recent progress made into the molecular elucidation of myotonic dystrophy.

  17. Molecular fundamentals of chromosomal mutagenesis

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  18. Electochemical detection of chromosome translocation

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli;

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...... impedance spectroscopy was selected as the sensing method on a microfabricated chip with array of 12 electrode sets. Two independent chips (Chip1 and Chip2) were used for targeting the chromosomal fragments involved in the translocation. Each chip was differentially functionalized with DNA probes matching...

  19. Intraspecific chromosome variability

    N Dubinin

    2010-12-01

    Full Text Available (Editorial preface. The publication is presented in order to remind us of one of dramatic pages of the history of genetics. It re-opens for the contemporary reader a comprehensive work marking the priority change from plant cytogenetics to animal cytogenetics led by wide population studies which were conducted on Drosophila polytene chromosomes. The year of the publication (1937 became the point of irretrievable branching between the directions of Old World and New World genetics connected with the problems of chromosome variability and its significance for the evolution of the species. The famous book of T. Dobzhansky (1937 was published by Columbia University in the US under the title “Genetics and the origin of species”, and in the shadow of this American ‘skybuilding’ all other works grew dim. It is remarkable that both Dobzhansky and Dubinin come to similar conclusions about the role of chromosomes in speciation. This is not surprising given that they both might be considered as representatives of the Russian genetic school, by their birth and education. Interestingly, Dobzhansky had never referred to the full paper of Dubinin et al. (1937, though a previous short communication in Nature (1936 was included together with all former papers on the related subject. In full, the volume of the original publication printed in the Biological Journal in Moscow comprised 47 pages, in that number 41 pages of the Russian text accompanied by 16 Figs, a table and reference list, and, above all, 6 pages of the English summary. This final part in English is now reproduced in the authors’ version with the only addition being the reference list in the originally printed form.

  20. Reference-assisted chromosome assembly

    Kim, Jaebum; Larkin, Denis M; Cai, Qingle; Asan,; Zhang, Yongfen; Ge, Ri-Li; Auvil, Loretta; Capitanu, Boris; Zhang, Guojie; Lewin, Harris A.; Ma, Jian

    2013-01-01

    One of the most difficult problems in modern genomics is the assembly of full-length chromosomes using next generation sequencing (NGS) data. To address this problem, we developed “reference-assisted chromosome assembly” (RACA), an algorithm to reliably order and orient sequence scaffolds generated by NGS and assemblers into longer chromosomal fragments using comparative genome information and paired-end reads. Evaluation of results using simulated and real genome assemblies indicates that ou...

  1. Chromosome Connections: Compelling Clues to Common Ancestry

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  2. X-chromosome workshop.

    Paterson, A D

    1998-01-01

    Researchers presented results of ongoing research to the X-chromosome workshop of the Fifth World Congress on Psychiatric Genetics, covering a wide range of disorders: X-linked infantile spasms; a complex phenotype associated with deletions of Xp11; male homosexuality; degree of handedness; bipolar affective disorder; schizophrenia; childhood onset psychosis; and autism. This report summarizes the presentations, as well as reviewing previous studies. The focus of this report is on linkage findings for schizophrenia and bipolar disorder from a number of groups. For schizophrenia, low positive lod scores were obtained for markers DXS991 and DXS993 from two studies, although the sharing of alleles was greatest from brother-brother pairs in one study, and sister-sister in the other. Data from the Irish schizophrenia study was also submitted, with no strong evidence for linkage on the X chromosome. For bipolar disease, following the report of a Finnish family linked to Xq24-q27, the Columbia group reported some positive results for this region from 57 families, however, another group found no evidence for linkage to this region. Of interest, is the clustering of low positive linkage results that point to regions for possible further study. PMID:9686435

  3. Chromosome analysis and sorting

    Doležel, Jaroslav; Kubaláková, Marie; Suchánková, Pavla; Kovářová, Pavlína; Bartoš, Jan; Šimková, Hana

    Weinheim : Wiley-VCH, 2007 - (Doležel, J.; Greilhuber, J.; Suda, J.), s. 373-403 ISBN 978-3-527-31487-4 R&D Projects: GA ČR GA521/04/0607; GA ČR GP521/05/P257; GA ČR GD521/05/H013; GA MŠk(CZ) LC06004 Grant ostatní: Mendelova zemědělská a lesnická univerzita v Brně / Agronomická fakulta(CZ) ME 844 Institutional research plan: CEZ:AV0Z5038910 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : Plant flow cytometry * chromosome sorting * flow cytogenetics Subject RIV: EB - Genetics ; Molecular Biology http://books. google .com/books?id=3cwakORieqUC&pg=PA373&lpg=PA373&dq=Chromosome+analysis+and+sorting&source=web&ots=8IyvJlBQyq&sig=_NlXyQQgBCwpj1pTC9YITvvVZqU

  4. Cohesin in determining chromosome architecture

    Haering, Christian H., E-mail: christian.haering@embl.de [Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg (Germany); Jessberger, Rolf, E-mail: rolf.jessberger@tu-dresden.de [Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany)

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  5. Causes of oncogenic chromosomal translocation

    Aplan, Peter D.

    2005-01-01

    Non-random chromosomal translocations are frequently associated with a variety of cancers, especially hematologic malignancies and childhood sarcomas In addition to their diagnostic utility, chromosomal translocations are increasingly being used in the clinic to guide therapeutic decisions. However, the mechanisms which cause these translocations remain poorly understood. Illegit...

  6. Genetics Home Reference: ring chromosome 20 syndrome

    ... 3 links) Encyclopedia: Chromosome Encyclopedia: Epilepsy Health Topic: Epilepsy Genetic and Rare Diseases Information Center (1 link) Ring chromosome 20 Additional NIH Resources (2 links) National Human Genome Research Institute: Chromosome Abnormalities National Institute of ...

  7. Genetics Home Reference: ring chromosome 14 syndrome

    ... Encyclopedia: Chromosome Health Topic: Developmental Disabilities Health Topic: Epilepsy Genetic and Rare Diseases Information Center (1 link) Ring chromosome 14 Additional NIH Resources (2 links) National Human Genome Research Institute: Chromosome Abnormalities National Institute of ...

  8. Bacterial chromosome organization and segregation.

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation. PMID:26566111

  9. ADN et chromosomes

    Hayes, Hélène

    2000-01-01

    Chaque chromosome contient une seule molécule d’ADN. L’ADN déroulé d’un noyau de cellule humaine mesurerait environ 1,8 m : chaque molécule d’ADN est enroulée et compactée en plusieurs étapes, grâce à l’association de différentes protéines, et loge dans le noyau de 6 µm de diamètre. Le degré de condensation de l’ADN est variable selon les régions chromosomiques et les régions les moins condensées sont les plus riches en gènes. L’ADN est composé d’une variété de séquences codantes ou non et ré...

  10. X-Chromosome dosage compensation.

    Meyer, Barbara J

    2005-01-01

    In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the

  11. Chromatid Painting for Chromosomal Inversion Detection Project

    National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...

  12. Chromatid Painting for Chromosomal Inversion Detection Project

    National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...

  13. Mitotic chromosome condensation in vertebrates

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  14. Mitotic chromosome condensation in vertebrates

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  15. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-01-01

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat. PMID:23884766

  16. Chromosome conservation in squamate reptiles revealed by comparative chromosome painting

    Giovannotti, M.; Pokorná, Martina; Kratochvíl, L.; Caputo, V.; Olmo, E.; Ferguson-Smith, M. A.; Rens, W.

    Manchester : ICCS, 2011. 78-78. [Intarnational Chromosome Conference /18./. 29.08.2011-02.09.2011, Manchester] Institutional research plan: CEZ:AV0Z50450515 Keywords : squamate reptiles Subject RIV: EG - Zoology

  17. Numerous transitions of sex chromosomes in Diptera.

    Beatriz Vicoso

    2015-04-01

    Full Text Available Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot, but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes. Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.

  18. Familial transmission of a deletion of chromosome 21 derived from a translocation between chromosome 21 and an inverted chromosome 22.

    Aviv, H; Lieber, C; Yenamandra, A; Desposito, F

    1997-06-27

    Chromosome analysis of a newborn boy with Down syndrome resulted in the identification of a family with an unusual derivative chromosome 22. The child has 46 chromosomes, including two chromosomes 21, one normal chromosome 22, and a derivative chromosome 22. Giemsa banding and fluorescent in situ hybridization (FISH) studies show that the derivative chromosome is chromosome 22 with evidence of both paracentric and pericentric inversions, joined to the long arm of chromosome 21 from 21q21.2 to qter. The rearrangement results in partial trisomy 21 extending from 21q21.2 to 21q terminus in the patient. The child's mother, brother, maternal aunt, and maternal grandmother are all carriers of the derivative chromosome. All have 45 chromosomes, with one normal chromosome 21, one normal chromosome 22, and the derivative chromosome 22. The rearrangement results in the absence of the short arm, the centromere, and the proximal long arm of chromosome 21 (del 21pter-21q21.2) in carriers. Carriers of the derivative chromosome in this family have normal physical appearance, mild learning disabilities and poor social adjustment. PMID:9182781

  19. Meiosis and chromosome painting of sex chromosome systems in Ceboidea.

    Mudry, M D; Rahn, I M; Solari, A J

    2001-06-01

    The identity of the chromosomes involved in the multiple sex system of Alouatta caraya (Aca) and the possible distribution of this system among other Ceboidea were investigated by chromosome painting of mitotic cells from five species and by analysis of meiosis at pachytene in two species. The identity of the autosome #7 (X2) involved in the multiple system of Aca and its breakage points were demonstrated by both meiosis and chromosome painting. These features are identical to those described by Consigliere et al. [1996] in Alouatta seniculus sara (Assa) and Alouatta seniculus arctoidea (Asar). This multiple system was absent in the other four Ceboidea species studied here. However, data from the literature strongly suggest the presence of this multiple in other members of this genus. The presence of this multiple system among several species and subspecies that show high levels of chromosome rearrangements may suggest a special selective value of this multiple. The meiotic features of the sex systems of Aca and Cebus apella paraguayanus (Cap) are strikingly different at pachytene, as the latter system is similar to the sex pair of man and other primates. The relatively large genetic distances between species presently showing this multiple system suggest that its origin is not recent. Other members of the same genus should be investigated at meiosis and by chromosome painting in order to know the extent and distribution of this complex sex-chromosome system. PMID:11376445

  20. Chromosome fragility in Freemartin cattle

    V. Barbieri

    2010-04-01

    Full Text Available The aim of the present study was to verify chromosome fragility in freemartin cattle using chromosome aberration (CA and sister chromatid exchange (SCE tests. A total of eighteen co-twins were investigated. Fourteen animals were identified as cytogenetically chimeric (2n=60, XX/XY while 4 were classified as normal. Freemartin cattle showed a higher percentage of aneuploid cells (18.64% and highly significant statistical differences (P < 0.001 in mean values of gaps (4.53 ± 2.05, chromatid breaks (0.26 ± 0.51, and significant statistical differences (P < 0.005 in mean values of chromosome breaks (0.12 ± 0.43 when compared to 10 control animals from single births (aneuploid cells, 11.20%; gaps, 2.01 ± 1.42; chromatid breaks, 0.05 ± 0.22; chromosome breaks, 0.02 ± 0.14.

  1. Methods for chromosome-specific staining

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  2. Chromosome evolution in Neotropical butterflies

    Saura, Anssi; Von Schoultz, Barbara; Saura, Anja O.; Brown, Keith S., Jr.

    2013-01-01

    We list the chromosome numbers for 65 species of Neotropical Hesperiidae and 104 species or subspecies of Pieridae. In Hesperiidae the tribe Pyrrhopygini have a modal n = 28, Eudaminae and Pyrgini a modal n = 31, while Hesperiinae have n = around 29. Among Pieridae, Coliadinae have a strong modal n = 31 and among Pierinae Anthocharidini are almost fixed for n = 15 while Pierini vary with n = 26 as the most common chromosome number. Dismorphiinae show wide variation. We discuss these results i...

  3. Chromosome Architecture and Genome Organization

    Giorgio Bernardi

    2015-01-01

    How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The strategy used to address this issue was to analyze the correlations between chromosome architecture and the compositional patterns of DNA sequences spanning a size range from a few hundreds to a few...

  4. Numerically abnormal chromosome constitutions in humans

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  5. Chromosome evolution in Neotropical butterflies.

    Saura, Anssi; Von Schoultz, Barbara; Saura, Anja O; Brown, Keith S

    2013-06-01

    We list the chromosome numbers for 65 species of Neotropical Hesperiidae and 104 species or subspecies of Pieridae. In Hesperiidae the tribe Pyrrhopygini have a modal n = 28, Eudaminae and Pyrgini a modal n = 31, while Hesperiinae have n = around 29. Among Pieridae, Coliadinae have a strong modal n = 31 and among Pierinae Anthocharidini are almost fixed for n = 15 while Pierini vary with n = 26 as the most common chromosome number. Dismorphiinae show wide variation. We discuss these results in the context of chromosome numbers of over 1400 Neotropical butterfly species and subspecies derived from about 3000 populations published here and in earlier papers of a series. The overall results show that many Neotropical groups are characterized by karyotype instability with several derived modal numbers or none at all, while almost all taxa of Lepidoptera studied from the other parts of the world have one of n = 29-31 as modal numbers. Possibly chromosome number changes become fixed in the course of speciation driven by biotic interactions. Population subdivision and structuring facilitate karyotype change. Factors that stabilize chromosome numbers include hybridization among species sharing the same number, migration, sexual selection and possibly the distribution of chromosomes within the nucleus. PMID:23865963

  6. Chromosome Architecture and Genome Organization

    Bernardi, Giorgio

    2015-01-01

    How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The strategy used to address this issue was to analyze the correlations between chromosome architecture and the compositional patterns of DNA sequences spanning a size range from a few hundreds to a few thousands Kilobases. This is a critical range that encompasses isochores, interphase chromatin domains and boundaries, and chromosomal bands. The solution rests on the following key points: 1) the transition from the looped domains and sub-domains of interphase chromatin to the 30-nm fiber loops of early prophase chromosomes goes through the unfolding into an extended chromatin structure (probably a 10-nm “beads-on-a-string” structure); 2) the architectural proteins of interphase chromatin, such as CTCF and cohesin sub-units, are retained in mitosis and are part of the discontinuous protein scaffold of mitotic chromosomes; 3) the conservation of the link between architectural proteins and their binding sites on DNA through the cell cycle explains the “mitotic memory” of interphase architecture and the reversibility of the interphase to mitosis process. The results presented here also lead to a general conclusion which concerns the existence of correlations between the isochore organization of the genome and the architecture of chromosomes from interphase to metaphase. PMID:26619076

  7. Evolution of Sex Chromosomes in Insects

    Kaiser, Vera B; Bachtrog, Doris

    2010-01-01

    Sex chromosomes have many unusual features relative to autosomes. Y (or W) chromosomes lack genetic recombination, are male- (female-) limited, and show an abundance of genetically inert heterochromatic DNA but contain few functional genes. X (or Z) chromosomes also show sex-biased transmission (i.e., X chromosomes show female-biased and Z-chromosomes show male-biased inheritance) and are hemizygous in the heterogametic sex. Their unusual ploidy level and pattern of inheritance imply that sex...

  8. Retrospective dosimetry using chromosome painting

    Chromosome aberration frequency measured in peripheral lymphocytes of persons exposed to ionizing radiation has been used since 1960s for dose assessment. Suspected overexposure is usually evaluated by the frequency of dicentrics and centric rings using an appropriate in vitro calibration curve. However, these chromosome aberrations are unstable with time after exposure and dose reconstruction may encounter uncertainties when the time between the exposure and the analysis is considerable or even unknown. It appears that translocations persist with time after exposure and may be used as an indication of acute past overexposures. Moreover, they appear to accumulate the cytogenetical information, which correlates with the dose received under fractionated, chronic or even occupational exposure conditions. Translocations may be detected using G-banding, which allows to score the total amount of radiation induced translocations but it is a time consuming method, or by Chromosome Painting, a method base on the Fluorescence in situ Hybridization (FISH) technique, painting only some chromosome pairs with specific whole chromosome probes and then extrapolating the observed translocation frequencies to the full genome. The latter method allows a faster aberration scoring than G-banding and appears to be the most promissory tool for biodosimetry, particularly when it is necessary to assess low doses and consequently to score a large number of metaphases, e.g. radiation workers exposed within dose limits. As with the unstable chromosome aberration, it is necessary an in vitro calibration curve based on the frequency of stable chromosome aberrations to assess doses. Our laboratory performed calibration curves for Co60 γ-rays based on the frequencies of unstable (dicentrics and centric rings detected by conventional Giemsa staining) and stable chromosome aberrations (translocations and inversions, detected by G-banding). In order to minimize the interlaboratory variability, we

  9. The Reduction of Chromosome Number in Meiosis Is Determined by Properties Built into the Chromosomes

    Paliulis, Leocadia V.; Nicklas, R. Bruce

    2000-01-01

    In meiosis I, two chromatids move to each spindle pole. Then, in meiosis II, the two are distributed, one to each future gamete. This requires that meiosis I chromosomes attach to the spindle differently than meiosis II chromosomes and that they regulate chromosome cohesion differently. We investigated whether the information that dictates the division type of the chromosome comes from the whole cell, the spindle, or the chromosome itself. Also, we determined when chromosomes can switch from ...

  10. Radiation-induced chromosomal instability

    Ritter, S. [GSI, Biophysics, Darmstadt (Germany)

    1999-03-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/{mu}m) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  11. Dean flow fractionation of chromosomes

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  12. Chromosome segregation in plant meiosis

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  13. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    Homolka, David; Ivánek, Robert; Čapková, Jana; Jansa, Petr; Forejt, Jiří

    2007-01-01

    Roč. 17, č. 10 (2007), s. 1431-1437. ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA301/06/1334; GA ČR GA301/07/1383 Grant ostatní: Howard Hughes Medical Institute(US) HHMI 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromosomal translocations * meiotic X chromosome inactivation * spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  14. Escape Artists of the X Chromosome.

    Balaton, Bradley P; Brown, Carolyn J

    2016-06-01

    Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer. PMID:27103486

  15. Adults with Chromosome 18 Abnormalities.

    Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D

    2015-08-01

    The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child. PMID:25403900

  16. Making chromosome abnormalities treatable conditions.

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  17. Using Chromosomes to Teach Evolution: Chromosomal Rearrangements in Speciation Events.

    Offner, Susan

    1994-01-01

    Uses diagrams to aid in discussing how the English map of the human chromosomes, published by Offner in 1993, can be used to illustrate some important questions in evolution, as well as give students a glimpse into some of the mechanisms underlying evolutionary change. (ZWH)

  18. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

    Nishida, Chizuko; Ishijima, Junko; KOSAKA, Ayumi; Tanabe, Hideyuki; Habermann, Felix A.; Griffin, Darren K.; MATSHUDA, Yoichi; 秀之, 田辺

    2008-01-01

    Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7–10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falcon...

  19. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

    Nishida, Chizuko; Ishijima, Junko; KOSAKA, Ayumi; Tanabe, Hideyuki; Habermann, Felix A.; Griffin, Darren K.; Matsuda, Yoichi

    2008-01-01

    Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7Y10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falcon...

  20. Mathematical glimpse on the Y chromosome degeneration

    Lobo, M. P.

    2006-04-01

    The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up sqrt{2} more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

  1. Vibrio chromosome-specific families

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...

  2. Chromosome Territory Modeller and Viewer.

    Tkacz, Magdalena A; Chromiński, Kornel; Idziak-Helmcke, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2016-01-01

    This paper presents ChroTeMo, a tool for chromosome territory modelling, accompanied by ChroTeVi-a chromosome territory visualisation software that uses the data obtained by ChroTeMo. These tools have been developed in order to complement the molecular cytogenetic research of interphase nucleus structure in a model grass Brachypodium distachyon. Although the modelling tool has been initially created for one particular species, it has universal application. The proposed version of ChroTeMo allows for generating a model of chromosome territory distribution in any given plant or animal species after setting the initial, species-specific parameters. ChroTeMo has been developed as a fully probabilistic modeller. Due to this feature, the comparison between the experimental data on the structure of a nucleus and the results obtained from ChroTeMo can indicate whether the distribution of chromosomes inside a nucleus is also fully probabilistic or is subjected to certain non-random patterns. The presented tools have been written in Python, so they are multiplatform, portable and easy to read. Moreover, if necessary they can be further developed by users writing their portions of code. The source code, documentation, and wiki, as well as the issue tracker and the list of related articles that use ChroTeMo and ChroTeVi, are accessible in a public repository at Github under GPL 3.0 license. PMID:27505434

  3. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  4. Chromosome Territory Modeller and Viewer

    Idziak-Helmcke, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2016-01-01

    This paper presents ChroTeMo, a tool for chromosome territory modelling, accompanied by ChroTeVi–a chromosome territory visualisation software that uses the data obtained by ChroTeMo. These tools have been developed in order to complement the molecular cytogenetic research of interphase nucleus structure in a model grass Brachypodium distachyon. Although the modelling tool has been initially created for one particular species, it has universal application. The proposed version of ChroTeMo allows for generating a model of chromosome territory distribution in any given plant or animal species after setting the initial, species-specific parameters. ChroTeMo has been developed as a fully probabilistic modeller. Due to this feature, the comparison between the experimental data on the structure of a nucleus and the results obtained from ChroTeMo can indicate whether the distribution of chromosomes inside a nucleus is also fully probabilistic or is subjected to certain non-random patterns. The presented tools have been written in Python, so they are multiplatform, portable and easy to read. Moreover, if necessary they can be further developed by users writing their portions of code. The source code, documentation, and wiki, as well as the issue tracker and the list of related articles that use ChroTeMo and ChroTeVi, are accessible in a public repository at Github under GPL 3.0 license. PMID:27505434

  5. Multicolor spectral karyotyping of human chromosomes.

    Schröck, E; du Manoir, S; Veldman, T; Schoell, B; Wienberg, J; Ferguson-Smith, M A; Ning, Y; Ledbetter, D H; Bar-Am, I; Soenksen, D; Garini, Y; Ried, T

    1996-07-26

    The simultaneous and unequivocal discernment of all human chromosomes in different colors would be of significant clinical and biologic importance. Whole-genome scanning by spectral karyotyping allowed instantaneous visualization of defined emission spectra for each human chromosome after fluorescence in situ hybridization. By means of computer separation (classification) of spectra, spectrally overlapping chromosome-specific DNA probes could be resolved, and all human chromosomes were simultaneously identified. PMID:8662537

  6. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH SPERM DISORDERS

    L. Y. Pylyp; L. A. Spinenko; V. D. Zukin; N. M. Bilko

    2013-01-01

    Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intrac...

  7. Evolution of sex chromosomes ZW of Schistosoma mansoni inferred from chromosome paint and BAC mapping analyses.

    Hirai, Hirohisa; Hirai, Yuriko; LoVerde, Philip T

    2012-12-01

    Chromosomes of schistosome parasites among digenetic flukes have a unique evolution because they exhibit the sex chromosomes ZW, which are not found in the other groups of flukes that are hermaphrodites. We conducted molecular cytogenetic analyses for investigating the sex chromosome evolution using chromosome paint analysis and BAC clones mapping. To carry this out, we developed a technique for making paint probes of genomic DNA from a single scraped chromosome segment using a chromosome microdissection system, and a FISH mapping technique for BAC clones. Paint probes clearly identified each of the 8 pairs of chromosomes by a different fluorochrome color. Combination analysis of chromosome paint analysis with Z/W probes and chromosome mapping with 93 BAC clones revealed that the W chromosome of Schistosoma mansoni has evolved by at least four inversion events and heterochromatinization. Nine of 93 BAC clones hybridized with both the Z and W chromosomes, but the locations were different between Z and W chromosomes. The homologous regions were estimated to have moved from the original Z chromosome to the differentiated W chromosome by three inversions events that occurred before W heterohcromatinization. An inversion that was observed in the heterochromatic region of the W chromosome likely occurred after W heterochromatinization. These inversions and heterochromatinization are hypothesized to be the key factors that promoted the evolution of the W chromosome of S. mansoni. PMID:22831897

  8. Chromosome Aberrations by Heavy Ions

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  9. A case of trisomy of chromosome 15

    Coldwell, S; Fitzgerald, B.; Semmens, J.M.; Ede, R; Bateman, C

    1981-01-01

    We describe a case of trisomy of chromosome 15 in an infant who presented at birth with numerous abnormalities. As far as we are aware this chromosomal abnormality has not been described before. On the basis of this one case there appear to be no features which are specific to this chromosomal abnormality.

  10. The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    Wienberg, Johannes; Jauch, Anna; Lüdecke, H J; Senger, G; Horsthemke, B; Claussen, U; Cremer, Thomas; Arnold, N.; Lengauer, Christoph

    1994-01-01

    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of ...

  11. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    Wen Ying

    2010-07-01

    Full Text Available Abstract Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs, and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously

  12. Holoprosencephaly due to numeric chromosome abnormalities.

    Solomon, Benjamin D; Rosenbaum, Kenneth N; Meck, Jeanne M; Muenke, Maximilian

    2010-02-15

    Holoprosencephaly (HPE) is the most common malformation of the human forebrain. When a clinician identifies a patient with HPE, a routine chromosome analysis is often the first genetic test sent for laboratory analysis in order to assess for a structural or numerical chromosome anomaly. An abnormality of chromosome number is overall the most frequently identified etiology in a patient with HPE. These abnormalities include trisomy 13, trisomy 18, and triploidy, though several others have been reported. Such chromosome number abnormalities are almost universally fatal early in gestation or in infancy. Clinical features of specific chromosome number abnormalities may be recognized by phenotypic manifestations in addition to the HPE. PMID:20104610

  13. Novel insights into mitotic chromosome condensation

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division.

  14. Temporal genomic evolution of bird sex chromosomes

    Wang, Zongji; Zhang, Jilin; Yang, Wei;

    2014-01-01

    driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... evolved very recently. CONCLUSIONS: In conclusion, we uncover that the sequence and expression patterns of Z chromosome genes covary with their ages of becoming Z-linked. In contrast to the mammalian X chromosomes, such patterns are mainly driven by mutational bias and genetic drift in birds, due...... to the opposite sex-biased inheritance of Z vs. X....

  15. Dynamics of chromosome segregation in Escherichia coli

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate this...... and reliable method enabled us to start the analysis on the distribution of various chromosomal loci inside slowly growing cells. With the actual counting and measuring no longer being any problem we could easily analyze 14 loci distributed on the E.coli chromosome. More than 15.000 cells were...... on the P1 par system. Using the new system, which is based on the pMT1 par system from Yersenia pestis, we labeled loci on opposite sides of the E.coli chromosome simultaneously and were able to show that the E.coli chromosome is organized with one chromosomal arm in each cell half. This astounding...

  16. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    Daniela Mierla

    2012-06-01

    Full Text Available Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, karyotype analysis by G-banding was performed from peripheral blood in 967 women infertility. Results: Chromosomal abnormalities were found to 79 women (8,17%. The percentage of chromosomal abnormalities in the studied population correlates with the data in the literature. Chromosomal abnormalities could play the important role in etiology of infertility and are more frequently detected in this group of patients compared to general population. In the infertile couples balanced chromosomal abnormalities are the main cause of spontaneous abortions.

  17. [The evolution of human Y chromosome].

    Yang, Xianrong; Wang, Meiqin; Li, Shaohua

    2014-09-01

    The human Y chromosome is always intriguing for researchers, because of its role in gender determination and its unusual evolutionary history. The Y chromosome evolves from an autosome, and its evolution has been characterized by massive gene decay. The lack of recombination and protein-coding genes and high content of repetitive sequences have hindered the progress in our understanding of the Y chromosome biology. Recently, with the advances in comparative genomics and sequencing technology, the research on Y chromosome has become a hotspot, with an intensified debate about Y-chromosome final destination resulting from degeneration. This review focuses on the structure, inheritance characteristics, gene content, and the origin and evolution of Y chromosome. We also discuss the long-term destiny of Y chromosome. PMID:25252301

  18. Transient Microgeographic Clines during B Chromosome Invasion.

    Camacho, Juan Pedro M; Shaw, Michael W; Cabrero, Josefa; Bakkali, Mohammed; Ruíz-Estévez, Mercedes; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores

    2015-11-01

    The near-neutral model of B chromosome evolution predicts that the invasion of a new population should last some tens of generations, but the details on how it proceeds in real populations are mostly unknown. Trying to fill this gap, we analyze here a natural population of the grasshopper Eyprepocnemis plorans at three time points during the last 35 years. Our results show that B chromosome frequency increased significantly during this period and that a cline observed in 1992 had disappeared in 2012 once B chromosome frequency reached an upper limit at all sites sampled. This indicates that, during B chromosome invasion, transient clines for B chromosome frequency are formed at the invasion front on a microgeographic scale. Computer simulation experiments showed that the pattern of change observed for genotypic frequencies is consistent with the existence of B chromosome drive through females and selection against individuals with a high number of B chromosomes. PMID:26655780

  19. Mitosis. Microtubule detyrosination guides chromosomes during mitosis.

    Barisic, Marin; Silva e Sousa, Ricardo; Tripathy, Suvranta K; Magiera, Maria M; Zaytsev, Anatoly V; Pereira, Ana L; Janke, Carsten; Grishchuk, Ekaterina L; Maiato, Helder

    2015-05-15

    Before chromosomes segregate into daughter cells, they align at the mitotic spindle equator, a process known as chromosome congression. Centromere-associated protein E (CENP-E)/Kinesin-7 is a microtubule plus-end-directed kinetochore motor required for congression of pole-proximal chromosomes. Because the plus-ends of many astral microtubules in the spindle point to the cell cortex, it remains unknown how CENP-E guides pole-proximal chromosomes specifically toward the equator. We found that congression of pole-proximal chromosomes depended on specific posttranslational detyrosination of spindle microtubules that point to the equator. In vitro reconstitution experiments demonstrated that CENP-E-dependent transport was strongly enhanced on detyrosinated microtubules. Blocking tubulin tyrosination in cells caused ubiquitous detyrosination of spindle microtubules, and CENP-E transported chromosomes away from spindle poles in random directions. Thus, CENP-E-driven chromosome congression is guided by microtubule detyrosination. PMID:25908662

  20. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  1. International workshop of chromosome 19

    Pericak-Vance, M.A. (Duke Univ. Medical Center, Durham, NC (United States). Div. of Neurology); Carrano, A.J. (Lawrence Livermore National Lab., CA (United States))

    1991-09-16

    This document summarizes the workshop on physical and genetic mapping of chromosome 19. The first session discussed the major disease loci found on the chromosome. The second session concentrated on reference families, markers and linkage maps. The third session concentrated on radiation hybrid mapping, somatic cell hybrid panels, macro restriction maps and YACs, followed by cDNA and long range physical maps. The fourth session concentrated on compiling consensus genetic and physical maps as well as discussing regions of conflict. The final session dealt with the LLNL cosmid contig database and comparative mapping of homologous regions of the human and mouse genomes, and ended with a discussion of resource sharing. 18 refs., 2 figs. (MHB)

  2. Chromosomal instability determines taxane response

    Swanton, Charles; Nicke, Barbara; Schuett, Marion; Eklund, Aron C.; Ng, Charlotte; Li, Qiyuan; Hardcastle, Thomas; Lee, Alvin; Roy, Rajat; East, Philip; Kschischo, Maik; Endesfelder, David; Wylie, Paul; Kim, Se Nyun; Chen, Jie-Guang

    2009-01-01

    Microtubule-stabilizing (MTS) agents, such as taxanes, are important chemotherapeutics with a poorly understood mechanism of action. We identified a set of genes repressed in multiple cell lines in response to MTS agents and observed that these genes are overexpressed in tumors exhibiting chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells....

  3. Baseline chromosome aberrations in children

    Merlo, D.F.; Ceppi, M.; Stagi, E.; Bocchini, V.; Šrám, Radim; Rössner st., Pavel

    2007-01-01

    Roč. 172, - (2007), s. 60-67. ISSN 0378-4274 Grant ostatní: EU(EU) 2002-02198; EU(EU) 2005-016320 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : chromosome aberrations * children * molecular epidemiology Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.826, year: 2007

  4. Clonality - X Chromosome Inactivation Assay

    sprotocols

    2014-01-01

    Author: Molecular Profiling Initiative, NCI This method was successful in our lab using prostate tissue and for our specific objectives. Investigators must be aware that they will need to tailor the following protocol for their own research objectives and tissue under study. Investigators can utilize X chromosome inactivation (methylation) to determine the clonality status of a tumor or premalignant lesion in females. The technique is based on a methylation-sensitive restriction enzym...

  5. Hobo transposons causing chromosomal breakpoints.

    Ladevèze, V; Aulard, S.; Chaminade, N; Périquet, G; Lemeunier, F

    1998-01-01

    Several laboratory surveys have shown that transposable elements (TEs) can cause chromosomal breaks and lead to inversions, as in dysgenic crosses involving P-elements. However, it is not presently clear what causes inversions in natural populations of Drosophila. The only direct molecular studies must be taken as evidence against the involvement of mobile elements. Here, in Drosophila lines transformed with the hobo transposable element, and followed for 100 generations, we show the appearan...

  6. Chromosome aberration assays in Allium

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  7. Chromosome rearrangements and transposable elements.

    Lonnig, Wolf-Ekkehard; Saedler, Heinz

    2002-01-01

    There has been limited corroboration to date for McClintock's vision of gene regulation by transposable elements (TEs), although her proposition on the origin of species by TE-induced complex chromosome reorganizations in combination with gene mutations, i.e., the involvement of both factors in relatively sudden formations of species in many plant and animal genera, has been more promising. Moreover, resolution is in sight for several seemingly contradictory phenomena such as the endless reshuffling of chromosome structures and gene sequences versus synteny and the constancy of living fossils (or stasis in general). Recent wide-ranging investigations have confirmed and enlarged the number of earlier cases of TE target site selection (hot spots for TE integration), implying preestablished rather than accidental chromosome rearrangements for nonhomologous recombination of host DNA. The possibility of a partly predetermined generation of biodiversity and new species is discussed. The views of several leading transposon experts on the rather abrupt origin of new species have not been synthesized into the macroevolutionary theory of the punctuated equilibrium school of paleontology inferred from thoroughly consistent features of the fossil record. PMID:12429698

  8. Whole chromosome painting of B chromosomes of the red-eye tetra Moenkhausia sanctaefilomenae (Teleostei, Characidae)

    Scudeler, Patricia Elda Sobrinho; Diniz, Débora; Wasko, Adriane Pinto; Oliveira, Claudio; Foresti, Fausto

    2015-01-01

    Abstract B chromosomes are dispensable genomic elements found in different groups of animals and plants. In the present study, a whole chromosome probe was generated from a specific heterochromatic B chromosome occurring in cells of the characidae fish Moenkhausia sanctaefilomenae (Steindachner, 1907). The chromosome painting probes were used in fluorescence in situ hybridization (FISH) experiments for the assessment of metaphase chromosomes obtained from individuals from three populations of Moenkhausia sanctaefilomenae. The results revealed that DNA sequences were shared between a specific B chromosome and many chromosomes of the A complement in all populations analyzed, suggesting a possible intra-specific origin of these B chromosomes. However, no hybridization signals were observed in other B chromosomes found in the same individuals, implying a possible independent origin of B chromosome variants in this species. FISH experiments using 18S rDNA probes revealed the presence of non-active ribosomal genes in some B chromosomes and in some chromosomes of the A complement, suggesting that at least two types of B chromosomes had an independent origin. The role of heterochromatic segments and ribosomal sequences in the origin of B chromosomes were discussed. PMID:26753081

  9. Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting

    2013-01-01

    Background The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family. Results W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes. Conclusions Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. PMID:23822802

  10. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  11. The peripheral chromosome scaffold, a novel structural component of mitotic chromosomes.

    Sheval, Eugene V; Polyakov, Vladimir Y

    2008-06-01

    Using an original high-salt extraction protocol, we observed a novel chromosome substructure, referred to as the peripheral chromosome scaffold. This chromosome domain contained the perichromosomal layer proteins pKi-67, B23/nucleophosmin and fibrillarin, but no DNA fragments (i.e., the loop domain bases were not associated with the peripheral scaffold). Modern models of chromosome organization do not predict the existence of a peripheral chromosome scaffold domain, and thus our observations have conceptual implications for understanding chromosome architecture. PMID:18337132

  12. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  13. Radiation induced chromosome instability in human fibroblasts

    Evidence has been arising that some biological effects can manifest many cell divisions after irradiation. We have demonstrated that de novo chromosome instability can be detected 10- 15 mean population doubling after heavy ion irradiations. This chromosome instability is characterized by end to end fusions between specific chromosomes. The specificity of the instability may differ from one donor to another but for the same donor, the same instability should be observed after irradiation, during the senescence process and after SV40 transfection (before crisis). In irradiated primary culture fibroblasts, the expression of the delayed chromosomal instability lasts for several cell divisions without inducing cell death. Several rounds of fusions- breakage-fusions can be performed and unbalanced clones emerge (gain or loss of chromosomes with the shorter telomeres would become unstable first.. The difference in the chromosomal instability among donors could be due to a polymorphism in telomere lengths. This could induce large variation in long term response to irradiation among individuals. (author)

  14. Chromosome engineering: power tools for plant genetics.

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. PMID:20933291

  15. Karyotype characterization and ZZ/ZW sex chromosome heteromorphism in two species of the catfish genus Ancistrus Kner, 1854 (Siluriformes: Loricariidae from the Amazon basin

    Renildo R. de Oliveira

    2007-09-01

    Full Text Available We present karyotypic characteristics and report on the occurrence of ZZ/ZW sex chromosomes in Ancistrus ranunculus (rio Xingu and Ancistrus sp. "Piagaçu" (rio Purus, of the Brazilian Amazon. Ancistrus ranunculus has a modal number of 2n=48 chromosomes, a fundamental number (FN of 82 for both sexes, and the karyotypic formula was 20m+8sm+6st+14a for males and 19m+9sm+6st+14a for females. Ancistrus sp. "Piagaçu" presented 2n=52 chromosomes, FN= 78 for males and FN= 79 for females. The karyotypic formula was 16m+8sm+2st+26a for males and 16m+9sm+2st+25a for females. The high number of acrocentric chromosomes in karyotype of Ancistrus sp. "Piagaçu" differs from the majority of Ancistrini genera studied so far, and may have resulted from pericentric inversions and translocations. The lower number of chromosomes in A. ranunculus indicates that centric fusions also occurred in the evolution of Ancistrus karyotypes. We conclude that karyotypic characteristics and the presence of sex chromosomes can constitute important cytotaxonomic markers to identify cryptic species of Ancistrus. However, sex chromosomes apparently arose independently within the genus and thus do not constitute a reliable character to analyze phylogenetic relations among Ancistrus species.Nós apresentamos características cariotípicas e registramos a ocorrência de cromossomos sexuais ZZ/ZW em Ancistrus ranunculus (rio Xingu e Ancistrus sp. "Piagaçu" (rio Purus, da Amazônia Brasileira. Ancistrus ranunculus teve um número modal de 2n=48 cromossomos, um número fundamental (NF de 82 para ambos os sexos, e a fórmula cariotípica 20m+8sm+6st+14a para machos e 19m+9sm+6st+14a para fêmeas. Ancistrus sp. "Piagaçu" apresentou 2n=52 cromossomos, NF=78 para machos e NF= 79 para fêmeas. A fórmula cariotípica foi de 16m+8sm+2st+26a para machos e 16m+9sm+2st+25a para fêmeas. O alto número de cromossomos acrocêntricos no cariótipo de Ancistrus sp. "Piagaçu" difere da maioria dos

  16. Novel Gene Acquisition on Carnivore Y Chromosomes

    Murphy, William J.; A J Pearks Wilkerson; Terje Raudsepp; Richa Agarwala; Schäffer, Alejandro A.; Roscoe Stanyon; Chowdhary, Bhanu P

    2006-01-01

    Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we...

  17. Identification of bacterial cells by chromosomal painting.

    Lanoil, B. D.; Giovannoni, S J

    1997-01-01

    Chromosomal painting is a technique for the microscopic localization of genetic material. It has been applied at the subcellular level to identify regions of eukaryotic chromosomes. Here we describe the development of bacterial chromosomal painting (BCP), a related technology for the identification of bacterial cells. Purified genomic DNAs from six bacterial strains were labeled by nick translation with the fluorochrome Fluor-X, Cy3, or Cy5. The average size of the labeled fragments was ca. 5...

  18. Holoprosencephaly due to Numeric Chromosome Abnormalities

    Solomon, Benjamin D.; Rosenbaum, Kenneth N.; Meck, Jeanne M.; Muenke, Maximilian

    2010-01-01

    Holoprosencephaly (HPE) is the most common malformation of the human forebrain. When a clinician identifies a patient with HPE, a routine chromosome analysis is often the first genetic test sent for laboratory analysis in order to assess for a structural or numerical chromosome anomaly. An abnormality of chromosome number is overall the most frequently identified etiology in a patient with HPE. These abnormalities include trisomy 13, trisomy 18, and triploidy, though several others have been ...

  19. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    Daniela Mierla; Viorica Radoi; Veronica Stoian

    2012-01-01

    Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, ka...

  20. Meiosis I: When Chromosomes Undergo Extreme Makeover

    Miller, Matthew P.; Amon, Angelika; Ünal, Elçin

    2013-01-01

    The ultimate success of cell division relies on the accurate partitioning of the genetic material. Errors in this process occur in nearly all tumors and are the leading cause of miscarriages and congenital birth defects in humans. Two cell divisions, mitosis and meiosis, use common as well as unique mechanisms to ensure faithful chromosome segregation. In mitosis, alternating rounds of DNA replication and chromosome segregation preserves the chromosome complement of the progenitor cell. In co...

  1. How does DNA break during chromosomal translocations?

    Nambiar, Mridula; Raghavan, Sathees C.

    2011-01-01

    Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal t...

  2. Multiple chromosomes of Azotobacter vinelandii.

    1989-01-01

    The number of copies of the genes leuB, nifH, nifD, and nifK per cell of Azotobacter vinelandii has been determined to be about 80. A beta-lactamase gene was integrated into the A. vinelandii chromosome by single-point crossover. Subsequently, we have been able to detect nearly 80 copies of this beta-lactamase gene per cell of A. vinelandii when cultured for a large number of generations in the presence of ampicillin. The multiple copies of the beta-lactamase gene do not seem to be present on...

  3. Advances in plant chromosome genomics

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Šimková, Hana

    2014-01-01

    Roč. 32, č. 1 (2014), s. 122-136. ISSN 0734-9750 R&D Projects: GA ČR GAP501/10/1740; GA ČR GAP501/10/1778; GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : BAC library * Chromosome sorting * Cytogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.015, year: 2014

  4. Chromosome banding in Amphibia. XXIV. The B chromosomes of Gastrotheca espeletia (Anura, Hylidae).

    Schmid, M; Ziegler, C G; Steinlein, C; Nanda, I; Haaf, T

    2002-01-01

    The mitotic chromosomes of an Ecuadorian population of the marsupial frog Gastrotheca espeletia were analyzed by means of banding techniques and fluorescence in situ hybridization. This species is characterized by unusual supernumerary (B) chromosomes. The maximum number of B chromosomes is 9 and they occur in three different morphological types. Banding analyses show that the B chromosomes are completely heterochromatic, consist of AT base pair-rich repeated DNA sequences, replicate their DNA in very late S-phase of the cell cycle, and are probably derived from a centromeric or paracentromeric region of a standard (A) chromosome. Exceptionally, the B chromosomes carry 18S + 28S ribosomal RNA genes and the conserved vertebrate telomeric DNA sequence appears to be underrepresented. Flow cytometric measurements of the nuclear DNA content differentiate between individuals with different numbers of B chromosomes. Significantly more B chromosomes are present in female than in male animals. PMID:12438715

  5. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    Linde-Laursen, Ib

    1984-01-01

    homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  6. Chromosome heteromorphisms in the Japanese, 3

    The type and frequency of chromosome variants detected by the C-staining method were ascertained in 1,857 individuals residing in Hiroshima. The most frequent heteromorphic variant was the total inversion of the C-band in chromosome 9 found in 27 individuals (1.45%). The total inversion of the C-band in chromosome 1 was not seen in this sample, but the partial inversion of the C-band in chromosome 1 was found in 18 persons (0.97%). Partial inversion was also detected in the C-band in chromosome 9 in 22 individuals (1.18%). In chromosome 16, neither total nor partial inversion of the C-band was observed in the present study. The frequencies of chromosomes 1, 9, and 16 with a very large C-band were 0.70%, 0.22%, and 0.54%, respectively. Aside from these (1, 9, and 16) a very large C-band was found occasionally in chromosomes 4, 5, 6, 11, 12, 14, and 15, and an unusual insertion of the Y chromosome was observed. A total of 128 C-band variants (6.89%) was found in the 1,857 Hiroshima residents. (author)

  7. Microtubule detyrosination guides chromosomes during mitosis

    Barisic, Marin; Silva e Sousa, Ricardo; Tripathy, Suvranta K.; Magiera, Maria M.; Zaytsev, Anatoly V.; Pereira, Ana L.; Janke, Carsten; Grishchuk, Ekaterina L.; Maiato, Helder

    2015-01-01

    Before chromosomes segregate into daughter cells they align at the mitotic spindle equator, a process known as chromosome congression. CENP-E/Kinesin-7 is a microtubule plus-end-directed kinetochore motor required for congression of pole-proximal chromosomes. Because the plus-ends of many astral microtubules in the spindle point to the cell cortex, it remains unknown how CENP-E guides pole-proximal chromosomes specifically towards the equator. Here we found that congression of pole-proximal c...

  8. Exceptional Complex Chromosomal Rearrangements in Three Generations

    Hannie Kartapradja

    2015-01-01

    Full Text Available We report an exceptional complex chromosomal rearrangement (CCR found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband’s mother, which was confirmed using the whole chromosome painting (WCP FISH. High resolution whole genome microarray analysis of DNA from the proband’s mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother’s and grandmother’s CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  9. Cognitive and medical features of chromosomal aneuploidy.

    Hutaff-Lee, Christa; Cordeiro, Lisa; Tartaglia, Nicole

    2013-01-01

    This chapter describes the physical characteristics, medical complications, and cognitive and psychological profiles that are associated with chromosomal aneuploidy conditions, a group of conditions in which individuals are born with one or more additional chromosome. Overall, chromosomal aneuploidy conditions occur in approximately 1 in 250 children. Information regarding autosomal disorders including trisomy 21 (Down syndrome), trisomy 13 (Patau syndrome), and trisomy 18 (Edward syndrome) are presented. Sex chromosome aneuploidy conditions such as Klinefelter syndrome (47,XXY), XYY, trisomy X, and Turner syndrome (45,X), in addition to less frequently occurring tetrasomy and pentasomy conditions are also covered. Treatment recommendations and suggestions for future research directions are discussed. PMID:23622175

  10. Chromosomal aberrations in ore miners of Slovakia

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  11. Complex distal 10q rearrangement in a girl with mild intellectual disability

    Sarri, Catherine; Douzgou, Sofia; Gyftodimou, Yolanda;

    2011-01-01

    several reports of satellited non-acrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is, to our knowledge, the third report of a 10qs chromosome. The phenotype observed in the proband prompted a search for a structural rearrangement of chromosome 10q......We report on an intellectually disabled girl with a de novo satellited chromosome 10 (10qs) and performed a review of the literature of the non-acrocentric satellited chromosomes (NASC). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites....... By microsatellite analysis we observed a 4 Mb deletion on the long arm of chromosome 10, approximately 145 kb from the telomere. FISH and array CGH analyses revealed a complex rearrangement involving in range from the centromere to the telomere: A 9.64 Mb 10q26.11-q26.2 duplication, a 1.3 Mb region...

  12. Retrospective dosimetry by chromosomal analysis

    The joint EU/CIS project ECP-6, was set up to examine whether cytogenetic dosimetry is possible for persons irradiated years previously at Chernobyl. The paper describes the possibility of achieving this by the examination of blood lymphocytes for unstable and stable chromosome aberrations; dicentrics and translocations. Emphasis was placed on the relatively new fluorescence in situ hybridization (FISH) method for rapid screening for stable translocations. In a collaborative experiment in vitro dose response calibration curves for dicentrics and FISH were produced with gamma radiation over the range 0-1.0 Gy. A pilot study of about 60 liquidators with registered doses ranging from 0-300 mSv was undertaken to determine whether the chromosomal methods may verify the recorded doses. It was concluded that the dicentric is no longer valid as a measured endpoint. Translocations may be used to verify early dosimetry carried out on highly irradiated persons. For the vast majority of lesser exposed subjects FISH is impractical as an individual dosimeter; it may have some value for comparing groups of subjects

  13. Chromosomal instability determines taxane response.

    Swanton, Charles; Nicke, Barbara; Schuett, Marion; Eklund, Aron C; Ng, Charlotte; Li, Qiyuan; Hardcastle, Thomas; Lee, Alvin; Roy, Rajat; East, Philip; Kschischo, Maik; Endesfelder, David; Wylie, Paul; Kim, Se Nyun; Chen, Jie-Guang; Howell, Michael; Ried, Thomas; Habermann, Jens K; Auer, Gert; Brenton, James D; Szallasi, Zoltan; Downward, Julian

    2009-05-26

    Microtubule-stabilizing (MTS) agents, such as taxanes, are important chemotherapeutics with a poorly understood mechanism of action. We identified a set of genes repressed in multiple cell lines in response to MTS agents and observed that these genes are overexpressed in tumors exhibiting chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival" genes is associated with poor outcome in estrogen receptor-positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane resistance but carboplatin sensitivity, indicating that CIN may determine MTS response in vivo. Thus, pretherapeutic assessment of CIN may optimize treatment stratification and clinical trial design using these agents. PMID:19458043

  14. Chromosomal replicons of higher plants

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs

  15. Chromosomal replicons of higher plants

    Van' t Hof, J.

    1987-03-16

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs.

  16. Increased chromosome radiosensitivity during pregnancy

    It was necessary to consider the risks of exposure of pregnant women, not only in relation to the child, but also in relation to their own hypersensitivity. We have demonstrated that pregnancy increases radiosensitivity of chromosome in the mouse at the end of gestation. This is of importance since it may have implications on radioprotection of pregnant women and give experimental guidelines to the problems of hypersensitivity to drugs and cancer aggravation during pregnancy. Blood obtained from women at various times of pregnancy was exposed to ionizing radiations. By comparison to non-pregnant women, an increase in chromosome breakage was observed in metaphases from lymphocytes, after short-term culture in the presence of the serum of the same donor. Immediately after delivery, this increase in radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase in radiosensitivity. Pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy. This study provides the first evidence in human that radiosensitivity may vary in relation to physiological conditions

  17. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M. (La Trobe Univ., Bundoora, Victoria (Australia)); Riggs, A.D. (Beckman Inst., Duarte, CA (USA))

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which is G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.

  18. Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae

    Artoni Roberto F

    2011-07-01

    Full Text Available Abstract Background The Characidium (a Neotropical fish group have a conserved diploid number (2n = 50, but show remarkable differences among species and populations in relation to sex chromosome systems and location of nucleolus organizer regions (NOR. In this study, we isolated a W-specific probe for the Characidium and characterized six Characidium species/populations using cytogenetic procedures. We analyzed the origin and differentiation of sex and NOR-bearing chromosomes by chromosome painting in populations of Characidium to reveal their evolution, phylogeny, and biogeography. Results A W-specific probe for efficient chromosome painting was isolated by microdissection and degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR amplification of W chromosomes from C. gomesi. The W probe generated weak signals dispersed on the proto sex chromosomes in C. zebra, dispersed signals in both W and Z chromosomes in C. lauroi and, in C. gomesi populations revealed a proximal site on the long arms of the Z chromosome and the entire W chromosome. All populations showed small terminal W probe sites in some autosomes. The 18S rDNA revealed distinctive patterns for each analyzed species/population with regard to proto sex chromosome, sex chromosome pair, and autosome location. Conclusions The results from dual-color fluorescence in situ hybridization (dual-color FISH using W and 18S rDNA probes allowed us to infer the putative evolutionary pathways for the differentiation of sex chromosomes and NORs, from structural rearrangements in a sex proto-chromosome, followed by gene erosion and heterochromatin amplification, morphological differentiation of the sex chromosomal pair, and NOR transposition, giving rise to the distinctive patterns observed among species/populations of Characidium. Biogeographic isolation and differentiation of sex chromosomes seem to have played a major role in the speciation process in this group of fish.

  19. Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae)

    2011-01-01

    Background The Characidium (a Neotropical fish group) have a conserved diploid number (2n = 50), but show remarkable differences among species and populations in relation to sex chromosome systems and location of nucleolus organizer regions (NOR). In this study, we isolated a W-specific probe for the Characidium and characterized six Characidium species/populations using cytogenetic procedures. We analyzed the origin and differentiation of sex and NOR-bearing chromosomes by chromosome painting in populations of Characidium to reveal their evolution, phylogeny, and biogeography. Results A W-specific probe for efficient chromosome painting was isolated by microdissection and degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) amplification of W chromosomes from C. gomesi. The W probe generated weak signals dispersed on the proto sex chromosomes in C. zebra, dispersed signals in both W and Z chromosomes in C. lauroi and, in C. gomesi populations revealed a proximal site on the long arms of the Z chromosome and the entire W chromosome. All populations showed small terminal W probe sites in some autosomes. The 18S rDNA revealed distinctive patterns for each analyzed species/population with regard to proto sex chromosome, sex chromosome pair, and autosome location. Conclusions The results from dual-color fluorescence in situ hybridization (dual-color FISH) using W and 18S rDNA probes allowed us to infer the putative evolutionary pathways for the differentiation of sex chromosomes and NORs, from structural rearrangements in a sex proto-chromosome, followed by gene erosion and heterochromatin amplification, morphological differentiation of the sex chromosomal pair, and NOR transposition, giving rise to the distinctive patterns observed among species/populations of Characidium. Biogeographic isolation and differentiation of sex chromosomes seem to have played a major role in the speciation process in this group of fish. PMID:21787398

  20. Chromosomal characterization of Pseudonannolene strinatii (Spirostreptida, Pseudonannolenidae

    Kleber Agari Campos

    2004-03-01

    Full Text Available The chromosomes of the cave millipede Pseudonannolene strinatii Mauriès, 1974 were investigated. The diploid chromosome number was found to be 2n=16, XX/XY; the C-banding technique revealed a large amount of heterochromatin while the silver staining technique (Ag-NOR evidenced the presence of heteromorphism of the NORs in some cells.

  1. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    Maria Maurer

    2015-07-01

    Full Text Available Background: Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods: This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results: Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion: Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  2. Mechanisms of Chromosome Number Evolution in Yeast

    Gordon, Jonathan L.; Byrne, Kevin P.; Wolfe, Kenneth H.

    2011-01-01

    The whole-genome duplication (WGD) that occurred during yeast evolution changed the basal number of chromosomes from 8 to 16. However, the number of chromosomes in post-WGD species now ranges between 10 and 16, and the number in non-WGD species (Zygosaccharomyces, Kluyveromyces, Lachancea, and Ashbya) ranges between 6 and 8. To study the mechanism by which chromosome number changes, we traced the ancestry of centromeres and telomeres in each species. We observe only two mechanisms by which the number of chromosomes has decreased, as indicated by the loss of a centromere. The most frequent mechanism, seen 8 times, is telomere-to-telomere fusion between two chromosomes with the concomitant death of one centromere. The other mechanism, seen once, involves the breakage of a chromosome at its centromere, followed by the fusion of the two arms to the telomeres of two other chromosomes. The only mechanism by which chromosome number has increased in these species is WGD. Translocations and inversions have cycled telomere locations, internalizing some previously telomeric genes and creating novel telomeric locations. Comparison of centromere structures shows that the length of the CDEII region is variable between species but uniform within species. We trace the complete rearrangement history of the Lachancea kluyveri genome since its common ancestor with Saccharomyces and propose that its exceptionally low level of rearrangement is a consequence of the loss of the non-homologous end joining (NHEJ) DNA repair pathway in this species. PMID:21811419

  3. Physical map of the Bacillus cereus chromosome.

    Kolstø, A B; Grønstad, A; Oppegaard, H

    1990-01-01

    A physical map of the Bacillus cereus chromosome has been constructed by aligning 11 NotI fragments, ranging in size from 200 to 1,300 kilobases. The size of the chromosome is about 5.7 megabases. This is the first Bacillus genome of which a complete physical map has been described.

  4. Non-disjunction of chromosome 13

    Bugge, Merete; Collins, Andrew; Hertz, Jens Michael;

    2007-01-01

    recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms that...

  5. Chromosome number9 specific repetitive DNA sequence

    Human repetitive DNA libraries have been constructed and various recombinant DNA clones isolated that are likely candidates for chromosome specific sequences. The first clone tested (pHuR 98; plasmid human repeat 98) was biotinylated and hybridized to human chromosomes in situ. The hybridized recombinant probe was detected with fluoresceinated avidin, and chromosomes were counter-stained with either propidium iodide or distamycin-DAPI. Specific hybridization to chromosome band 9q1 was obtained. The localization was confirmed by hybridizing radiolabeled pHuR 98 DNA to human chromosomes sorted by flow cytometry. Various methods, including orthogonal field pulsed gel electrophoresis analysis indicate that 75 kilobase blocks of this sequence are interspersed with other repetitive DNA sequences in this chromosome band. This study is the first to report a human repetitive DNA sequence uniquely localized to a specific chromosome. This clone provides an easily detected and highly specific chromosomal marker for molecular cytogenetic analyses in numerous basic research and clinical studies

  6. Compositions for chromosome-specific staining

    Gray, Joe W.; Pinkel, Daniel

    1998-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  7. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes. PMID:27263828

  8. Mapping of human chromosomal regions related to neoplasia: evidence from chromosomes 1 and 17

    Rowley, J.D.

    1977-12-01

    In clonal aberrations leading to an excess or partial excess of chromosome I, trisomy for bands 1q25-1q32 was noted in the myeloid cells from all of 34 patients who had various disorders such as acute leukemia, polycythemia vera, and myelofibrosis. This was not the result of a particularly fragile site in that region of the chromosome because the break points in reciprocal translocations that involve it occurred almost exclusively in the short arm. Two consistent rearrangements that have been observed in chromosome 17 produced either duplication of the entire long arm or a translocation of the distal portion of the long arm to chromosome 15. The nonrandom chromosomal changes found in hematologic disorders can now be correlated with the gene loci on these chromosomes or chromosomal segments. Seventy-five genes related to various metabolic enzymes have been mapped; it may be significant that chromosomes carrying gene loci related to nucleic acid metabolism are more frequently involved in hematologic disorders (and other malignancies as well) than are gene loci related to intermediary or carbohydrate metabolism. Furthermore, the known virus-human chromosome associations are closely correlated with the chromosomes affected in hematologic disorders. If one of the effects of carcinogens (including viruses) is to activate genes that regulate host cell DNA synthesis, and if translocations or duplications of specific chromosomal segments produce the same effect, then either of these mechanisms might provide the affected cell with a proliferative advantage.

  9. Advances in understanding paternally transmitted Chromosomal Abnormalities

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  10. Review of the Y chromosome and hypertension

    D. Ely

    2000-06-01

    Full Text Available The Y chromosome from spontaneously hypertensive rats (SHR has a locus that raises blood pressure 20-25 mmHg. Associated with the SHR Y chromosome effect is a 4-week earlier pubertal rise of testosterone and dependence upon the androgen receptor for the full blood pressure effect. Several indices of enhanced sympathetic nervous system (SNS activity are also associated with the SHR Y chromosome. Blockade of SNS outflow reduced the blood pressure effect. Salt sensitivity was increased by the Y chromosome as was salt appetite which was SNS dependent. A strong correlation (r = 0.57, P<0.001 was demonstrable between plasma testosterone and angiotensin II. Coronary collagen increased with blood pressure and the presence of the SHR Y chromosome. A promising candidate gene for the Y effect is the Sry locus (testis determining factor, a transcription factor which may also have other functions.

  11. Genetic conflict and sex chromosome evolution

    Meiklejohn, Colin D; Tao, Yun

    2009-01-01

    Chromosomal sex determination systems create the opportunity for the evolution of selfish genetic elements that increase the transmission of one sex chromosome at the expense of its homolog. Because such selfish elements on sex chromosomes can reduce fertility and distort the sex ratio of progeny, unlinked suppressors are expected to evolve, bringing different regions of the genome into conflict over the meiotic transmission of the sex chromosomes. Here we argue that recurrent genetic conflict over sex chromosome transmission is an important evolutionary force that has shaped a wide range of seemingly disparate phenomena including the epigenetic regulation of genes expressed in the germline, the distribution of genes in the genome, and the evolution of hybrid sterility between species. PMID:19931208

  12. New Y chromosomes and early stages of sex chromosome differentiation: sex determination in Megaselia

    Walther Traut

    2010-09-01

    The phorid fly Megaselia scalaris is a laboratory model for the turnover and early differentiation of sex chromosomes. Isolates from the field have an XY sex-determining mechanism with chromosome pair 2 acting as X and Y chromosomes. The sex chromosomes are homomorphic but display early signs of sex chromosome differentiation: a low level of molecular differences between X and Y. The male-determining function $(M)$, maps to the distal part of the Y chromosome’s short arm. In laboratory cultures, new Y chromosomes with no signs of a molecular differentiation arise at a low rate, probably by transposition of to these chromosomes. Downstream of the primary signal, the homologue of the Drosophila doublesex (dsx) is part of the sex-determining pathway while Sex-lethal (Sxl), though structurally conserved, is not.

  13. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome. PMID:23329112

  14. Novel gene acquisition on carnivore Y chromosomes.

    2006-03-01

    Full Text Available Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced. We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.

  15. Chromosome differentiation patterns during cichlid fish evolution

    Nirchio Mauro

    2010-06-01

    Full Text Available Abstract Background Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation which has led to an extensive ecological diversity and their enormous importance to tropical and subtropical aquaculture. To increase our understanding of chromosome evolution among cichlid species, karyotypes of one Asian, 22 African, and 30 South American cichlid species were investigated, and chromosomal data of the family was reviewed. Results Although there is extensive variation in the karyotypes of cichlid fishes (from 2n = 32 to 2n = 60 chromosomes, the modal chromosome number for South American species was 2n = 48 and the modal number for the African ones was 2n = 44. The only Asian species analyzed, Etroplus maculatus, was observed to have 46 chromosomes. The presence of one or two macro B chromosomes was detected in two African species. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA gene revealed a variable number of clusters among species varying from two to six. Conclusions The karyotype diversification of cichlids seems to have occurred through several chromosomal rearrangements involving fissions, fusions and inversions. It was possible to identify karyotype markers for the subfamilies Pseudocrenilabrinae (African and Cichlinae (American. The karyotype analyses did not clarify the phylogenetic relationship among the Cichlinae tribes. On the other hand, the two major groups of Pseudocrenilabrinae (tilapiine and haplochromine were clearly discriminated based on the characteristics of their karyotypes. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA gene did not follow the chromosome diversification in the family. The dynamic evolution of the repeated units of rRNA genes generates patterns of chromosomal distribution that do not help follows the phylogenetic relationships among taxa. The presence of B chromosomes in cichlids is of particular interest because they may not be represented in

  16. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting

    Yerle Martine; Ducos Alain; Pinton Alain

    2003-01-01

    Abstract A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+) translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5) were elaborated and...

  17. Sex chromosome evolution: platypus gene mapping suggests that part of the human X chromosome was originally autosomal.

    Watson, J M; Spencer, J. A.; Riggs, A D; Graves, J.A.

    1991-01-01

    To investigate the evolution of the mammalian sex chromosomes, we have compared the gene content of the X chromosomes in the mammalian groups most distantly related to man (marsupials and monotremes). Previous work established that genes on the long arm of the human X chromosome are conserved on the X chromosomes in all mammals, revealing that this region was part of an ancient mammalian X chromosome. However, we now report that several genes located on the short arm of the human X chromosome...

  18. Chromosome number evolution in skippers (Lepidoptera, Hesperiidae).

    Lukhtanov, Vladimir A

    2014-01-01

    Lepidoptera (butterflies and moths), as many other groups of animals and plants, simultaneously represent preservation of ancestral karyotype in the majority of families with a high degree of chromosome number instability in numerous independently evolved phylogenetic lineages. However, the pattern and trends of karyotype evolution in some Lepidoptera families are poorly studied. Here I provide a survey of chromosome numbers in skippers (family Hesperiidae) based on intensive search and analysis of published data. I demonstrate that the majority of skippers preserve the haploid chromosome number n=31 that seems to be an ancestral number for the Hesperiidae and the order Lepidoptera at whole. However, in the tribe Baorini the derived number n=16 is the most typical state which can be used as a (syn)apomorphic character in further phylogenetic investigations. Several groups of skippers display extreme chromosome number variations on within-species (e.g. the representatives of the genus Carcharodus Hübner, [1819]) and between-species (e.g. the genus Agathymus Freeman, 1959) levels. Thus, these groups can be used as model systems for future analysis of the phenomenon of chromosome instability. Interspecific chromosomal differences are also shown to be useful for discovering and describing new cryptic species of Hesperiidae representing in such a way a powerful tool in biodiversity research. Generally, the skipper butterflies promise to be an exciting group that will significantly contribute to the growing knowledge of patterns and processes of chromosome evolution. PMID:25610542

  19. Chromosome number evolution in skippers (Lepidoptera, Hesperiidae

    Vladimir Lukhtanov

    2014-11-01

    Full Text Available Lepidoptera (butterflies and moths, as many other groups of animals and plants, simultaneously represent preservation of ancestral karyotype in the majority of families with a high degree of chromosome number instability in numerous independently evolved phylogenetic lineages. However, the pattern and trends of karyotype evolution in some Lepidoptera families are poorly studied. Here I provide a survey of chromosome numbers in skippers (family Hesperiidae based on intensive search and analysis of published data. I demonstrate that the majority of skippers preserve the haploid chromosome number n=31 that seems to be an ancestral number for the Hesperiidae and the order Lepidoptera at whole. However, in the tribe Baorini the derived number n=16 is the most typical state which can be used as a (synapomorphic character in further phylogenetic investigations. Several groups of skippers display extreme chromosome number variations on within-species (e.g. the representatives of the genus Carcharodus Hübner, [1819] and between-species (e.g. the genus Agathymus Freeman, 1959 levels. Thus, these groups can be used as model systems for future analysis of the phenomenon of chromosome instability. Interspecific chromosomal differences are also shown to be useful for discovering and describing new cryptic species of Hesperiidae representing in such a way a powerful tool in biodiversity research. Generally, the skipper butterflies promise to be an exciting group that will significantly contribute to the growing knowledge of patterns and processes of chromosome evolution.

  20. Nonrandom chromosomal changes in human malignant cells

    Rowley, J D

    1977-01-01

    The role of chromosomal changes in human malignant cells has been the subject of much debate. The observation of nonrandom chromosomal changes has become well recognized in chronic myelogenous leukemia, and more recently in acute myelogenous leukemia. In the present report, data are presented on the sites of duplication of chromosome No. 1 in hematologic disorders. Trisomy for region lq25 to lq32 was observed in every one of 34 patients whose cells showed duplication of some part of chromosome No. 1. Adjacent regions lq21 to lq25, and lq32 to lqter, also were trisomic in the majority of patients. Two patients had deletions, one of lq32 to qter, and the other, of lp32 to pter. The sites of chromosomal breaks leading to trisomy differ from those involved in balanced reciprocal translocations. Some of these sites are sometimes, but not always, vulnerable in constitutional chromosomal abnormalities. The nature of the proliferative advantage conferred on myeloid cells by these chromosomal changes is unknown.

  1. Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1.

    Munkvold, J D; Greene, R A; Bermudez-Kandianis, C E; La Rota, C M; Edwards, H; Sorrells, S F; Dake, T; Benscher, D; Kantety, R; Linkiewicz, A M; Dubcovsky, J; Akhunov, E D; Dvorák, J; Miftahudin; Gustafson, J P; Pathan, M S; Nguyen, H T; Matthews, D E; Chao, S; Lazo, G R; Hummel, D D; Anderson, O D; Anderson, J A; Gonzalez-Hernandez, J L; Peng, J H; Lapitan, N; Qi, L L; Echalier, B; Gill, B S; Hossain, K G; Kalavacharla, V; Kianian, S F; Sandhu, D; Erayman, M; Gill, K S; McGuire, P E; Qualset, C O; Sorrells, M E

    2004-10-01

    The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected. PMID:15514041

  2. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.

    Trask, B; van den Engh, G; Mayall, B; Gray, J W

    1989-11-01

    Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping. PMID:2479266

  3. Adaptation through chromosomal inversions in Anopheles

    Diego eAyala

    2014-05-01

    Full Text Available Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species - human malaria vectors - is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequencies and a number of phenotypic traits. Here, we provide an extensive literature review of the different adaptive traits associated with chromosomal inversions in the genus Anopheles. Traits having important consequences for the success of present and future vector control measures, such as insecticide resistance and behavioral changes, are discussed.

  4. Chromosomal abnormalities in patients with sperm disorders

    L. Y. Pylyp

    2013-02-01

    Full Text Available Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intracytoplasmic sperm injection in particular, enable the transmission of chromosomal abnormalities to the progeny. Therefore, cytogenetic studies are important in patients with male factor infertility before assisted reproduction treatment. The purpose of the current study was to investigate the types and frequencies of chromosomal abnormalities in 724 patients with infertility and to estimate the risk of chromosomal abnormalities detection in subgroups of patients depending on the severity of spermatogenic disruption, aiming at identifying groups of patients in need of cytogenetic studies. Karyotype analysis was performed in 724 blood samples of men attending infertility clinic. Chromosomal preparation was performed by standard techniques. At least 20 GTG-banded metaphase plates with the resolution from 450 to 750 bands per haploid set were analysed in each case. When chromosomal mosaicism was suspected, this number was increased to 50. Abnormal karyotypes were observed in 48 (6.6% patients, including 67% of autosomal abnormalities and 33% of gonosomal abnormalities. Autosomal abnormalities were represented by structural rearrangements. Reciprocal translocations were the most common type of structural chromosomal abnormalities in the studied group, detected with the frequency of 2.6% (n = 19, followed by Robertsonian translocation, observed with the frequency of 1.2% (n = 9. The frequency of inversions was 0.6% (n = 4. Gonosomal abnormalities included 14 cases

  5. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system.

    Grabowska-Joachimiak, Aleksandra; Kula, Adam; Książczyk, Tomasz; Chojnicka, Joanna; Sliwinska, Elwira; Joachimiak, Andrzej J

    2015-06-01

    Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species. PMID:25394583

  6. Visualization of yeast chromosomal DNA

    Lubega, Seth

    1990-01-01

    The DNA molecule is the most significant life molecule since it codes the blue print for other structural and functional molecules of all living organisms. Agarose gel electrophoresis is now being widely used to separate DNA of virus, bacteria, and lower eukaryotes. The task was undertaken of reviewing the existing methods of DNA fractionation and microscopic visualization of individual chromosonal DNA molecules by gel electrophoresis as a basis for a proposed study to investigate the feasibility of separating DNA molecules in free fluids as an alternative to gel electrophoresis. Various techniques were studied. On the molecular level, agarose gel electrophoresis is being widely used to separate chromosomal DNA according to molecular weight. Carl and Olson separate and characterized the entire karyotype of a lab strain of Saccharomyces cerevisiae. Smith et al. and Schwartz and Koval independently reported the visualization of individual DNA molecules migrating through agarose gel matrix during electrophoresis. The techniques used by these researchers are being reviewed in the lab as a basis for the proposed studies.

  7. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-01-01

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene si...

  8. Tracking Chromosome Evolution in Southern African Gerbils Using Flow-Sorted Chromosome Paints

    Knight, L.I.; Ng, B. L.; Cheng, W; Fu, B.; Yang, F.; Rambau, R V

    2013-01-01

    Desmodillus and Gerbilliscus (formerly Tatera) comprise a monophyletic group of gerbils (subfamily Gerbillinae) which last shared an ancestor approximately 8 million years ago; diploid chromosome number variation among the species ranges from 2n = 36 to 2n = 50. In an attempt to shed more light on chromosome evolution and speciation in these rodents, we compared the karyotypes of 7 species, representing 3 genera, based on homology data revealed by chromosome painting with probes derived from ...

  9. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    Janes, Daniel E.; Nicole Valenzuela; Tariq Ezaz; Chris Amemiya; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of seque...

  10. System for the analysis of plant chromosomes

    The paper describes a computer system for the automation workers of recognition analysis and interpretation of plant chromosomes. This system permit to carry out the analysis in a more comfortable and faster way, using the image processing techniques

  11. Lattice animal model of chromosome organization

    Iyer, Balaji V. S.; Arya, Gaurav

    2012-07-01

    Polymer models tied together by constraints of looping and confinement have been used to explain many of the observed organizational characteristics of interphase chromosomes. Here we introduce a simple lattice animal representation of interphase chromosomes that combines the features of looping and confinement constraints into a single framework. We show through Monte Carlo simulations that this model qualitatively captures both the leveling off in the spatial distance between genomic markers observed in fluorescent in situ hybridization experiments and the inverse decay in the looping probability as a function of genomic separation observed in chromosome conformation capture experiments. The model also suggests that the collapsed state of chromosomes and their segregation into territories with distinct looping activities might be a natural consequence of confinement.

  12. Chromosome studies in the genus Jatropha L.

    R.Sasikala and M.Paramathma

    2010-07-01

    Full Text Available The inflorescences of ten species of the genus Jatropha were fixed in Cornoy’s fluid (6:3:1. Acetocarmine stain (2% wasused for staining the pollen mother cells. Seven species exhibited 11 bivalents and 2n =22 and x=11. But the two otherspecies, J.villosa var. villosa and J.villosa var. ramnadensis showed only 10 bivalents and 2n number of 20 chromosomesand x=10. The study concluded the occurrence of two kinds of haploid chromosome numbers of n =10 and n =11. ExceptJatropha tanjorensis, cytological investigation in all species exhibited normal and complete pairing and bivalent formationin metaphase I and equal separation of chromosome in anaphase and indicated that the course of meiosis was normal.Jatropha tanjorensis did not exhibit normal course of meiosis and no proper count of chromosomes could be made. Presentchromosomal studies in Jatropha revealed the existence of two basic chromosomes numbers x = 5 and x = 6.

  13. Haploidization via Chromosome Elimination: Means and Mechanisms.

    Ishii, Takayoshi; Karimi-Ashtiyani, Raheleh; Houben, Andreas

    2016-04-29

    The ability to generate haploids and subsequently induce chromosome doubling significantly accelerates the crop breeding process. Haploids have been induced through the generation of plants from haploid tissues (in situ gynogenesis and androgenesis) and through the selective loss of a parental chromosome set via inter- or intraspecific hybridization. Here, we focus on the mechanisms responsible for this selective chromosome elimination. CENH3, a variant of the centromere-specific histone H3, has been exploited to create an efficient method of haploid induction, and we discuss this approach in some detail. Parallels have been drawn with chromosome-specific elimination, which occurs as a normal part of differentiation and sex determination in many plant and animal systems. PMID:26772657

  14. Cancer chromosomal instability: therapeutic and diagnostic challenges

    McGranahan, Nicholas; Burrell, Rebecca A.; Endesfelder, David; Novelli, Marco R; Swanton, Charles

    2012-01-01

    This review provides a much-needed translational perspective into the issue of aneuploidy and chromosomal instability, discussing the prognostic value of CIN assessment in human tumours, methods to analyze it and how it could be therapeutically targeted.

  15. Methods and compositions for chromosome-specific staining

    Gray, Joe W.; Pinkel, Daniel

    2003-07-22

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  16. Label Free Chromosome Translocation Detection with Silicon nanowires

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer;

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore...

  17. Y chromosome evolution: emerging insights into processes of Y chromosome degeneration

    Bachtrog, Doris

    2014-01-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene determining gender but also because of its unusual evolutionary trajectory. Previously an autosome, Y chromosome evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species as well as in plants have shed light on the current gene content of the Y, its origins and its long-term fate. Comparative analysis of young and old Y chromosomes have given further insights into the evolutionary and molecular forces triggering Y degeneration and its evolutionary destiny. PMID:23329112

  18. The hierarchically organized splitting of chromosomal bands for all human chromosomes

    Liehr Thomas

    2009-01-01

    Full Text Available Abstract Background Chromosome banding is widely used in cytogenetics. However, the biological nature of hierarchically organized splitting of chromosomal bands of human chromosomes is an enigma and has not been, as yet, studied. Results Here we present for the first time the hierarchically organized splitting of chromosomal bands in their sub-bands for all human chromosomes. To do this, array-proved multicolor banding (aMCB probe-sets for all human chromosomes were applied to normal metaphase spreads of three different G-band levels. We confirmed for all chromosomes to be a general principle that only Giemsa-dark bands split into dark and light sub-bands, as we demonstrated previously by chromosome stretching. Thus, the biological band splitting is in > 50% of the sub-bands different than implemented by the ISCN nomenclature suggesting also a splitting of G-light bands. Locus-specific probes exemplary confirmed the results of MCB. Conclusion Overall, the present study enables a better understanding of chromosome architecture. The observed difference of biological and ISCN band-splitting may be an explanation why mapping data from human genome project do not always fit the cytogenetic mapping.

  19. Sequence conservation on the Y chromosome

    Gibson, L.H.; Yang-Feng, L. [Yale Univ. School of Medicine, New Haven, CT (United States); Lau, C. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The Y chromosome is present in all mammals and is considered to be essential to sex determination. Despite intense genomic research, only a few genes have been identified and mapped to this chromosome in humans. Several of them, such as SRY and ZFY, have been demonstrated to be conserved and Y-located in other mammals. In order to address the issue of sequence conservation on the Y chromosome, we performed fluorescence in situ hybridization (FISH) with DNA from a human Y cosmid library as a probe to study the Y chromosomes from other mammalian species. Total DNA from 3,000-4,500 cosmid pools were labeled with biotinylated-dUTP and hybridized to metaphase chromosomes. For human and primate preparations, human cot1 DNA was included in the hybridization mixture to suppress the hybridization from repeat sequences. FISH signals were detected on the Y chromosomes of human, gorilla, orangutan and baboon (Old World monkey) and were absent on those of squirrel monkey (New World monkey), Indian munjac, wood lemming, Chinese hamster, rat and mouse. Since sequence analysis suggested that specific genes, e.g. SRY and ZFY, are conserved between these two groups, the lack of detectable hybridization in the latter group implies either that conservation of the human Y sequences is limited to the Y chromosomes of the great apes and Old World monkeys, or that the size of the syntenic segment is too small to be detected under the resolution of FISH, or that homologeous sequences have undergone considerable divergence. Further studies with reduced hybridization stringency are currently being conducted. Our results provide some clues as to Y-sequence conservation across species and demonstrate the limitations of FISH across species with total DNA sequences from a particular chromosome.

  20. Chromosomal profile of indigenous pig (Sus scrofa

    P. Guru Vishnu

    2015-02-01

    Full Text Available Aim: The objective of this study was to investigate the chromosomal profile of indigenous pigs by computing morphometric measurements. Materials and Methods: A cytogenetic study was carried out in 60 indigenous pigs to analyze the chromosomal profile by employing the short term peripheral blood lymphocyte culture technique. Results: The modal chromosome number (2n in indigenous pigs was found to be 38 and a fundamental number of 64 as in the exotic. First chromosome was the longest pair, and thirteenth pair was the second largest while Y-chromosome was the smallest in the karyotype of the pig. The mean relative length, arm ratio, centromeric indices and morphological indices of chromosomes varied from 1.99±0.01 to 11.23±0.09, 1.04±0.05 to 2.95±0.02, 0.51±0.14 to 0.75±0.09 and 2.08±0.07 to 8.08±0.15%, respectively in indigenous pigs. Sex had no significant effect (p>0.05 on all the morphometric measurements studied. Conclusion: The present study revealed that among autosomes first five pairs were sub metacentric, next two pairs were sub telocentric (6-7, subsequent five pairs were metacentric (8-12 and remaining six pairs were telocentric (13-18, while both allosomes were metacentric. The chromosomal number, morphology and various morphometric measurements of the chromosomes of the indigenous pigs were almost similar to those established breeds reported in the literature.

  1. Assembly of Lampbrush Chromosomes from Sperm Chromatin

    Gall, Joseph G.; Murphy, Christine

    1998-01-01

    We have examined the behavior of demembranated sperm heads when injected into the germinal vesicle (GV) of amphibian oocytes. Xenopus sperm heads injected into Xenopus GVs swelled immediately and within hours began to stain with an antibody against RNA polymerase II (Pol II). Over time each sperm head became a loose mass of chromosome-like threads, which by 24–48 h resolved into individually recognizable lampbrush chromosomes (LBCs). Although LBCs derived from sperm are unreplicated single ch...

  2. Demasculinization of the Anopheles gambiae X chromosome

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  3. Delayed chromosomal instability induced by DNA damage.

    Marder, B A; Morgan, W. F.

    1993-01-01

    DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined ...

  4. Plasmid and chromosome segregation in prokaryotes

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic......-like apparatus in prokaryotes. The identification of chromosomal homologues of the well-characterized plasmid partitioning genes indicates that there could be a general mechanism of bacterial DNA partitioning. Udgivelsesdato: July 1...

  5. Principles of chromosomal organization: lessons from yeast

    Zimmer, Christophe; Fabre, Emmanuelle

    2011-01-01

    The spatial organization of genes and chromosomes plays an important role in the regulation of several DNA processes. However, the principles and forces underlying this nonrandom organization are mostly unknown. Despite its small dimension, and thanks to new imaging and biochemical techniques, studies of the budding yeast nucleus have led to significant insights into chromosome arrangement and dynamics. The dynamic organization of the yeast genome during interphase argues for both the physica...

  6. Localization of topoisomerase II in mitotic chromosomes

    1985-01-01

    In the preceding article we described a polyclonal antibody that recognizes cSc-1, a major polypeptide component of the chicken mitotic chromosome scaffold. This polypeptide was shown to be chicken topoisomerase II. In the experiments described in the present article we use indirect immunofluorescence and immunoelectron microscopy to examine the distribution of topoisomerase II within intact chromosomes. We also describe a simple experimental protocol that differentiates antigens that are int...

  7. Female meiotic sex chromosome inactivation in chicken.

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  8. Abnormal sex chromosome constitution and longitudinal growth

    Aksglaede, Lise; Skakkebaek, Niels E; Juul, Anders

    2008-01-01

    Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles.......Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles....

  9. Y chromosome microdeletions in Turkish infertile men

    Zamani Ayse; Kutlu Ruhusen; Durakbasi-Dursun H; Gorkemli Huseyin; Acar Aynur

    2006-01-01

    AIMS: To detect the frequency and types of both chromosomal abnormalities and Y chromosome microdeletions in infertile men attending to our university intracytoplasmic sperm injection ICSI/IVF centre and fertile control subjects in our patient population. SETTINGS AND DESIGN: A total of 50 infertile men who were referred to IVF center of Meram medical faculty were selected for the molecular azospermia factor (AZF) screening program. MATERIALS AND METHODS: Karyotype analysis and polymeras...

  10. Die Haplotypisierung des Y-Chromosoms

    Roewer, Lutz

    2001-01-01

    Haploid vererbte Polymorphismen des Y-Chromosoms sind wichtige diagnostische Werkzeuge der forensischen Genetik und verwandter Disziplinen, insbesondere der Anthropologie. Geschlechtsspezifität und uniparentaler Erbgang der Merkmale ermöglichen eine Reihe von Untersuchungen, die mit autosomalen Markern erfolglos bleiben müssen. Kurze tandem-repetitive STR-Sequenzen, die polymorphen Marker der Wahl im forensischen Labor, sind auch auf dem Y-Chromosom nachzuweisen. Aufgrund der rekombinationsfr...

  11. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Kumaran Narayanan; Qingwen Chen

    2011-01-01

    Gene expression from bacterial artificial chromosome (BAC) clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented...

  12. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation.

    Watson, J M; Spencer, J. A.; Riggs, A D; Graves, J.A.

    1990-01-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. We conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these g...

  13. Chromosomal variations in the primate Alouatta seniculus seniculus.

    Yunis, E J; Torres de Caballero, O M; Ramírez, C; Ramírez, Z E

    1976-01-01

    Chromosome analysis in 23 specimens of Alouatta s. seniculus trapped in different localities of Colombia were examined with the C- and Q-banding techniques. The chromosome numbers (2n=44) showed variations from 2n = 43 to 2n = 45 involving three and five microchromosomes, respectively. Two specimens also showed a structural chromosome variation involving a pericentric inversion of the chromosome No. 13. Chromosome measurements revealed an X chromosome with a value significantly smaller to that established for the standard mammalian X chromosome. PMID:817992

  14. Characterizing the chromosomes of the platypus (Ornithorhynchus anatinus).

    McMillan, Daniel; Miethke, Pat; Alsop, Amber E; Rens, Willem; O'Brien, Patricia; Trifonov, Vladimir; Veyrunes, Frederic; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Warren, Wesley; Grützner, Frank; Ferguson-Smith, Malcolm A; Graves, Jennifer A Marshall

    2007-01-01

    Like the unique platypus itself, the platypus genome is extraordinary because of its complex sex chromosome system, and is controversial because of difficulties in identification of small autosomes and sex chromosomes. A 6-fold shotgun sequence of the platypus genome is now available and is being assembled with the help of physical mapping. It is therefore essential to characterize the chromosomes and resolve the ambiguities and inconsistencies in identifying autosomes and sex chromosomes. We have used chromosome paints and DAPI banding to identify and classify pairs of autosomes and sex chromosomes. We have established an agreed nomenclature and identified anchor BAC clones for each chromosome that will ensure unambiguous gene localizations. PMID:18185982

  15. Evolutionary stability of sex chromosomes in snakes.

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. PMID:26702042

  16. Origin and evolution of X chromosome inactivation.

    Gribnau, Joost; Grootegoed, J Anton

    2012-06-01

    Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals. PMID:22425180

  17. Comparative Analysis on the Chromosome Karyotypes of Coptis teeta Populations of Yunnan in Different Ecological Areas%不同生态区云南黄连居群的染色体核型比较

    黄骥; 毛钧; 夏志华; 商晗武

    2012-01-01

    The karyotypes of 8 populations of Coptis teeta ,which distributed in different ecological areas (4 in east slope and the other 4 in west slope of Mt. Gaoligong), were studied using the methods of root tip squash and carbol fuchsin dyeing. The results show as follows: (1)In these populations, the chromosome numbers are same 2n=2x=18; (2)Except that the karyotype of one population in east slope belongs to 3A type,the karyotypes of rest 7 populations belong to 2A type; (3)Despite the fact that the karyotypical features appear to be similar for the populations in the same ecological area (i. e. east slope or west slope), large karyotypical differences exist among those populations in different ecological areas. First,the occurrence and numbers of acrocentric chromosomes (st chro. ) and telocentric chromosomes (t chro. ) are variable among the populations in the east and west slope. Second, the degrees of karyotype asymmetry of the populations in east slope are higher than those of the populations in west slope.%采用根尖压片和卡宝品红染色法,对分布于高黎贡山的东、西坡不同生态带的8个云南黄连居群进行染色体核型比较分析.结果表明,8个居群染色体数目均为2n=2x=18,核型基本一致,除东坡一个居群为3A型外,其余均为2A型;总体上同一生态区域内各居群的核型表现出较大的相似性,但不同生态区域的居群间却存在较大的差异,主要为近端部和端部着丝点染色体的有无及数目在东西坡居群间存在较大变化;东坡居群的不对称程度均较西坡高.

  18. Localization of ecdysterone on polytene chromosomes of Drosophila melanogaster.

    Gronemeyer, H; Pongs, O

    1980-01-01

    Ecdysterone has been crosslinked in situ to polytene chromosomes of salivary glands of Drosophila melanogaster by photoactivation. The crosslinked hormone has been localized on the chromosomes by indirect immunofluorescence microscopy. At different developmental stages the hormone was detected at different chromosomal loci. These chromosomal sites correspond to ecdysterone-inducible puff sites. Thus, the hormone binds directly to chromosomal loci, whose transcription depends on the presence o...

  19. Investigation of Partamona helleri (Apidae, Meliponini) B chromosome origin. An approach by microdissection and whole chromosome painting

    Martins, Cinthia; Diniz, Debora; Sobrinho-Scudeler, Patricia; Foresti, Fausto; Campos, Lucio; Costa, Marco

    2012-01-01

    The stingless bee Partamona helleri in southeast Brazil shows the regular chromosome number 2n = 34 and a variable number of up to four minute B1 or B2 chromosomes. Previous cytogenetic analyses have indicated morphological similarities between the B1 chromosome and chromosome segments in the regular karyotype. In this study, microdissection and chromosome painting were employed along with C banding, NOR banding, and base-specific fluorochrome staining to investigate the origin of the B1 chro...

  20. The Program of Sex Chromosome Pairing in Meiosis Is Highly Conserved Across Marsupial Species: Implications for Sex Chromosome Evolution

    Page, Jesús; Berríos, Soledad; Parra, María Teresa; Viera, Alberto; Suja, José Ángel; Prieto, Ignacio; Barbero, José Luis; Rufas, Julio S; Fernández-Donoso, Raúl

    2005-01-01

    Marsupials present a series of genetic and chromosomal features that are highly conserved in very distant species. One of these features is the absence of a homologous region between X and Y chromosomes. According to this genetic differentiation, sex chromosomes do not synapse during the first meiotic prophase in males, and a special structure, the dense plate, maintains sex chromosome association. In this report we present results on the process of meiotic sex chromosome pairing obtained fro...

  1. Molecular mapping of chromosomes 17 and X

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.

  2. Klinefelter syndrome and other sex chromosomal aneuploidies

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  3. Chromosomal organization of adrenergic receptor genes

    The adrenergic receptors (ARs) (subtypes α1, α2, β1, and β2) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β2-and α2-AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α1-AR gene to chromosome 5q32→q34, the same position as β2-AR, and the β1-AR gene to chromosome 10q24→q26, the region where α2-AR, is located. In mouse, both α2-and β1-AR genes were assigned to chromosome 19, and the α1-AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α1-and β2-AR genes in humans are within 300 kilobases (kb) and the distance between the α2- and β1-AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  4. Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes

    Bozek, M.; Leitch, A. R.; Leitch, I. J.; Záveská Drábková, Lenka; Kuta, E.

    2012-01-01

    Roč. 170, č. 4 (2012), s. 529-541. ISSN 0024-4074 R&D Projects: GA ČR GP206/07/P147 Institutional support: RVO:67985939 Keywords : chromosomal evolution * endopolyploidy * holokinetic chromosome * karyotype evolution * tetraploides * centromeres * TRNF intergenic spacer Subject RIV: EF - Botanics Impact factor: 2.589, year: 2012

  5. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  6. Chromosomal geometry in the interface from the frequency of the radiation induced chromosome aberrations

    Ionizing radiation induces DNA double-strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosomal aberrations. Stable chromosomal aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). When DSBs induction and interaction is done at random, and the proximity effects are neglected, the expected relation between translocations and inversions is F=86, based on chromosome arm length. The number of translocations and inversions is analyzed by using G-banding in 16 lymphocytes cultures from blood samples acutely irradiated with γ-rays (dose range: 0,5 Gy - 3 Gy). The result obtained was: F=13,5, significantly smaller than F=86. Literature data show similar small F values, but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have more interaction probability. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. A DSBs interaction probability function with cut-off length= 1μ is assumed. According to our results, the confinement volume is ≅ 6.4% of the nuclear volume. Nevertheless, we presume that large spread in F data could be due to temporal variation in overlapping and spatial chromosomal confinement. (authors). 14 refs

  7. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  8. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia; Svendsen, Winnie Edith

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method of manipula......An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method of...... manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties of...

  9. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes

    Zhou, Qi; Wang, Jun; Huang, Ling; Nie, Wenhui; Wang, Jinhuan; Liu, Yan; Zhao, Xiangyi; Yang, Fengtang; Wang, Wen

    2008-01-01

    BACKGROUND: The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. RESULTS: We studied the intriguing case of black...... muntjac, in which a recent X-autosome fusion and a subsequent large autosomal inversion within just the past 0.5 million years have led to inheritance patterns identical to the traditional X-Y (neo-sex chromosomes). We compared patterns of genome evolution in 35-kilobase noncoding regions and 23 gene...... SNX22 abolished a microRNA target site. Finally, expression analyses revealed complex patterns of expression divergence between neo-Y and neo-X alleles. CONCLUSION: The nascent neo-sex chromosome system of black muntjacs is a valuable model in which to study the evolution of sex chromosomes in mammals...

  10. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    Janes, Daniel E.; Valenzuela, Nicole; Ezaz, Tariq; Amemiya, Chris; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced. With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries. PMID:20981143