WorldWideScience

Sample records for acquired photosynthetic traits

  1. Homophily and the Speed of Social Mobilization: The Effect of Acquired and Ascribed Traits

    Alstott, Jeff; Velu, Chander

    2014-01-01

    Large-scale mobilization of individuals across social networks is becoming increasingly prevalent in society. However, little is known about what affects the speed of social mobilization. Here we use a framed field experiment to identify and measure properties of individuals and their relationships that predict mobilization speed. We ran a global social mobilization contest and recorded personal traits of the participants and those they recruited. We studied the effects of ascribed traits (gender, age) and acquired traits (geography, and information source) on the speed of mobilization. We found that homophily, a preference for interacting with other individuals with similar traits, had a mixed role in social mobilization. Homophily was present for acquired traits, in which mobilization speed was faster when the recuiter and recruit had the same trait compared to different traits. In contrast, we did not find support for homophily for the ascribed traits. Instead, those traits had other, non-homophily effects...

  2. Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species.

    Wang, Zhe; Liu, Xin; Bao, Weikai

    2016-02-01

    Ecophysiological studies of bryophytes have generally been conducted at the shoot or canopy scale. However, their growth forms are diverse, and knowledge of whether bryophytes with different shoot structures have different functional trait levels and scaling relationships is limited. We collected 27 bryophyte species and categorised them into two groups based on their growth forms: erect and prostrate species. Twenty-one morphological, nutrient and photosynthetic traits were quantified. Trait levels and bivariate trait scaling relationships across species were compared between the two groups. The two groups had similar mean values for shoot mass per area (SMA), light saturation point and mass-based nitrogen (N(mass)) and phosphorus concentrations. Erect bryophytes possessed higher values for mass-based chlorophyll concentration (Chl(mass)), light-saturated assimilation rate (A(mass)) and photosynthetic nitrogen/phosphorus use efficiency. N(mass), Chl(mass) and A(mass) were positively related, and these traits were negatively associated with SMA. Furthermore, the slope of the regression of N(mass) versus Chl(mass) was steeper for erect bryophytes than that for prostrate bryophytes, whereas this pattern was reversed for the relationship between Chl(mass) and A(mass). In conclusion, erect bryophytes possess higher photosynthetic capacities than prostrate species. Furthermore, erect bryophytes invest more nitrogen in chloroplast pigments to improve their light-harvesting ability, while the structure of prostrate species permits more efficient light capture. This study confirms the effect of growth form on the functional trait levels and scaling relationships of bryophytes. It also suggests that bryophytes could be good models for investigating the carbon economy and nutrient allocation of plants at the shoot rather than the leaf scale. PMID:26552378

  3. EFFECT OF PLANT DENSITY ON AGRONOMIC TRAITS AND PHOTOSYNTHETIC PERFORMANCE IN THE MAIZE IBM POPULATION

    Mario Franić; Maja Mazur; Mirna Volenik; Josip Brkić; Andrija Brkić; Domagoj Šimić

    2015-01-01

    Photosynthesis is a vital process in plant physiology. Performance index is an indicator of plant vitality and is used as a main parameter in chlorophyll fluorescence measurements. Plant density is an important factor in maize production that can affect grain yield. Objective of this paper was to estimate the effect of plant density on agronomic traits and photosynthetic efficiency in the maize IBM population. The results showed a decrease in grain yield per plant basis (20 plants per plot) i...

  4. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China?

    Li, Feng-Lan; Zan, Qi-Jie; Hu, Zheng-Yu; Shin, Paul-K. S.; Cheung, Siu-Gin; Wong, Yuk-Shan; Tam, Nora Fung-Yee; Lei, An-Ping

    2016-01-01

    A higher photosynthesis and lower energetic cost are recognized as important characteristics for invasive species, but whether these traits are also important for the ability of alien mangrove species to become invasive has seldom been reported. A microcosm study was conducted to compare the photosynthetic characteristics, energetic cost indices and other growth traits between two alien species (Sonneratia apetala and S. caseolaris) and four native mangrove species over four seasons in a subtropical mangrove nature reserve in Shenzhen, South China. The aim of the study was to evaluate the invasive potential of Sonneratia based on these physiological responses. The annual average net photosynthetic rate (Pn), stomatal conductance (Gs) and total carbon assimilation per unit leaf area (Atotal) of the two alien Sonneratia species were significantly higher than the values of the native mangroves. In contrast, the opposite results were obtained for the leaf construction cost (CC) per unit dry mass (CCM) and CC per unit area (CCA) values. The higher Atotal and lower CC values resulted in a 72% higher photosynthetic energy-use efficiency (PEUE) for Sonneratia compared to native mangroves, leading to a higher relative growth rate (RGR) of the biomass and height of Sonneratia with the respective values being 51% and 119% higher than those of the native species. Higher photosynthetic indices for Sonneratia compared to native species were found in all seasons except winter, whereas lower CC values were found in all four seasons. The present findings reveal that alien Sonneratia species may adapt well and become invasive in subtropical mangrove wetlands in Shenzhen due to their higher photosynthetic characteristics coupled with lower costs in energy use, leading to a higher PEUE. The comparison of these physiological responses between S. apetala and S. caseolaris reveal that the former species is more invasive than the latter one, thus requiring more attention in future. PMID

  5. A Bias for the Natural? Children's Beliefs about Traits Acquired through Effort, Bribes, or Medicine

    Lockhart, Kristi L.; Keil, Frank C.; Aw, Justine

    2013-01-01

    Three studies compared beliefs about natural and late blooming positive traits with those acquired through personal effort, extrinsic rewards or medicine. Young children (5-6 years), older children (8-13 years), and adults all showed a strong bias for natural and late blooming traits over acquired traits. All age groups, except 8- to 10-year-olds,…

  6. Low temperature wheat germplasm and its leaf photosynthetic traits and structure characteristics

    ZHANG Songwu; MIAO Fang; WANG Changfa

    2004-01-01

    Low temperature germplasm with constant low plant temperature was found in the nature through a long-time observation on wheat canopy temperature and traits; correspondingly, high temperature germplasm with constant high plant temperature also exists. Compared with the high temperature germplasm, the chlorophyll content and the net photosynthetic rate of the three functional leaves on the top of the low temperature wheat germplasm are higher and the structure tends to be more complicated, which is characterized by smaller mesophyll cells and more closely arranged cell layers, more and denser chloroplasts with thick stroma, more granas and well developed grana lamellae, a larger vascular bundle area with smaller interspace. All these characteristics embody the consistency of structure and function and provide the theoretical bases for looking for and cultivating the new low temperature materials in agricultural practice.

  7. Estimating plant traits of grasslands from UAV-acquired hyperspectral images

    Capolupo, Alessandra; Kooistra, Lammert; Berendonk, Clara; Boccia, Lorenzo; Suomalainen, Juha

    2015-01-01

    Grassland ecosystems cover around 40% of the entire Earth's surface. Therefore, it is necessary to guarantee good grassland management at field scale in order to improve its conservation and to achieve optimal growth. This study identified the most appropriate statistical strategy, between partial least squares regression (PLSR) and narrow vegetation indices, for estimating the structural and biochemical grassland traits from UAV-acquired hyperspectral images. Moreover, the influence of ferti...

  8. Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches

    Alessandra Capolupo; Lammert Kooistra; Clara Berendonk; Lorenzo Boccia; Juha Suomalainen

    2015-01-01

    Grassland ecosystems cover around 40% of the entire Earth’s surface. Therefore, it is necessary to guarantee good grassland management at field scale in order to improve its conservation and to achieve optimal growth. This study identified the most appropriate statistical strategy, between partial least squares regression (PLSR) and narrow vegetation indices, for estimating the structural and biochemical grassland traits from UAV-acquired hyperspectral images. Moreover, the influence of ferti...

  9. Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches

    Alessandra Capolupo

    2015-12-01

    Full Text Available Grassland ecosystems cover around 40% of the entire Earth’s surface. Therefore, it is necessary to guarantee good grassland management at field scale in order to improve its conservation and to achieve optimal growth. This study identified the most appropriate statistical strategy, between partial least squares regression (PLSR and narrow vegetation indices, for estimating the structural and biochemical grassland traits from UAV-acquired hyperspectral images. Moreover, the influence of fertilizers on plant traits for grasslands was analyzed. Hyperspectral data were collected from an experimental field at the farm Haus Riswick, near Kleve in Germany, for two different flight campaigns in May and October. The collected image blocks were geometrically and radiometrically corrected for surface reflectance. Spectral signatures extracted for the plots were adopted to derive grassland traits by computing PLSR and the following narrow vegetation indices: the MERIS Terrestrial Chlorophyll Index (MTCI, the ratio of the Modified Chlorophyll Absorption in Reflectance and Optimized Soil-Adjusted Vegetation Index (MCARI/OSAVI modified by Wu, the Red-edge Chlorophyll Index (CIred-edge, and the Normalized Difference Red Edge (NDRE. PLSR showed promising results for estimating grassland structural traits and gave less satisfying outcomes for the selected chemical traits (crude ash, crude fiber, crude protein, Na, K, metabolic energy. Established relations are not influenced by the type and the amount of fertilization, while they are affected by the grassland health status. PLSR is found to be the best strategy, among the approaches analyzed in this paper, for exploring structural and biochemical features of grasslands. Using UAV-based hyperspectral sensing allows for the highly detailed assessment of grassland experimental plots.

  10. Genetic adaptation versus ecophysiological plasticity of photosynthetic-related traits in young Picea glauca trees along a regional climatic gradient

    Lahcen eBenomar

    2016-02-01

    Full Text Available Assisted population migration (APM is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i the degree of genetic adaptation of seed sources to their environment of origin and (ii the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions.We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature gradient of 2.2 °C. During the second growing season, we measured, height growth (H2014 and traits related to resources use efficiency and photosynthetic rate (Amax. All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, Amax, stomatal conductance (gs, the ratio of mesophyll to stomatal conductance, water use efficiency and photosynthetic nitrogen-use efficiency showed significant variation related to both physiological plasticity related to test site, and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources presented a similar level of physiological plasticity. H2014, Amax and gs, but not carboxylation

  11. Genetic Adaptation vs. Ecophysiological Plasticity of Photosynthetic-Related Traits in Young Picea glauca Trees along a Regional Climatic Gradient.

    Benomar, Lahcen; Lamhamedi, Mohammed S; Rainville, André; Beaulieu, Jean; Bousquet, Jean; Margolis, Hank A

    2016-01-01

    Assisted population migration (APM) is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i) the degree of genetic adaptation of seed sources to their environment of origin and (ii) the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions. We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss) along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature (MAT) gradient of 2.2°C. During the second growing season, we measured height growth (H2014) and traits related to resources use efficiency and photosynthetic rate (A max). All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, A max, stomatal conductance (g s ), the ratio of mesophyll to stomatal conductance, water use efficiency, and photosynthetic nitrogen-use efficiency showed significant variation in both physiological plasticity due to the planting site and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources showed a similar level of physiological plasticity. H2014, A max and g s , but not carboxylation capacity (V

  12. Characterization and molecular interpretation of the photosynthetic traits of Lonicera confusa in Karst environment.

    Geng Wu

    Full Text Available Lonicera confusa was a medical plant which could adapt to the Ca-rich environment in the karst area of China. The photosynthesis, relative chlorophyll content,differentially expressed genes (DEGs and differentially expressed proteins (DEPs of L. confusa that cultivated in calcareous and sandstone soils were investigated. The results showed that the relative chlorophyll content and net photosynthesis rate of L. confusa in calcareous soil are much higher than that planted in sandstone soil, the higher content of calcium might play a role in keeping the chloroplast from harm and showed higher photosynthesis rate. The transpiration and stomata conductance were decreased in calcareous soil, which might result from the closure of stomata. The GeneFishing and proteomic results showed that the expression of DEGs and DEPs were critical for photosynthesis and stomata closure, such as RuBisCO, photosynthetic electron transfer c and malate dehydrogenase varied in the leaves of L. confusa that cultivated in different soils. These DEGs or DEPs were further found to be directly or indirectly regulated by calcium sensor proteins. This study enriched our knowledge of the molecular mechanism of high net photosynthesis rate and lower transpiration of L. confusa that cultivated in the calcareous soil in some degree.

  13. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery.

    Gallé, Alexander; Feller, Urs

    2007-11-01

    In the context of an increased risk of extreme drought events across Europe during the next decades, the capacity of trees to recover and survive drought periods awaits further attention. In summer 2005, 4-year-old beech (Fagus sylvatica L.) saplings were watered regularly or were kept for 4 weeks without irrigation in the field and then re-watered again. Changes of plant water status, leaf gas exchange and Chl a fluorescence parameters, as well as alterations in leaf pigment composition were followed. During the drought period, stomatal conductance (g(s)) and net photosynthesis (P(n)) decreased in parallel with increased water deficit. After 14 days without irrigation, stomata remained closed and P(n) was almost completely inhibited. Reversible downregulation of PSII photochemistry [the maximum quantum efficiency of PSII (F(v)/F(m))], enhanced thermal dissipation of excess excitation energy and an increased ratio of xanthophyll cycle pigments to chlorophylls (because of a loss of chlorophylls) contributed to an enhanced photo-protection in severely stressed plants. Leaf water potential was restored immediately after re-watering, while g(s), P(n) and F(v)/F(m) recovered only partially during the initial phase, even when high external CO(2) concentrations were applied during the measurements, indicating lasting non-stomatal limitations. Thereafter, P(n) recovered completely within 4 weeks, meanwhile g(s) remained permanently lower in stressed than in control plants, leading to an increased 'intrinsic water use efficiency' (P(n)/g(s)). In conclusion, although severe drought stress adversely affected photosynthetic performance of F. sylvatica (a rather drought-sensitive species), P(n) was completely restored after re-watering, presumably because of physiological and morphological adjustments (e.g. stomatal occlusions). PMID:18251880

  14. Photosynthetic traits of Siebold's beech and oak saplings grown under free air ozone exposure in northern Japan

    We set up a free-air ozone (O3) exposure system for determining the photosynthetic responses of Siebold's beech (Fagus crenata) and oak (Quercus mongolica var. crispula) to O3 under field conditions. Ten-year-old saplings of beech and oak were exposed to an elevated O3 concentration (60 nmol mol−1) during daytime from 6 August to 11 November 2011. Ozone significantly reduced the net photosynthetic rate in leaves of both species in October, by 46% for beech and 15% for oak. In beech there were significant decreases in maximum rate of carboxylation, maximum rate of electron transport in photosynthesis, nitrogen content and photosynthetic nitrogen use efficiency, but not in oak. Stomatal limitation of photosynthesis was unaffected by O3. We therefore concluded photosynthesis in beech is more sensitive to O3 than that in oak, and the O3-induced reduction of photosynthetic activity in beech was due not to stomatal closure, but to biochemical limitation. -- Highlights: ► A free air ozone exposure system was set up in northern Japan. ► Beech is more sensitive to ozone than oak. ► Decrease of photosynthesis in beech was mainly due to biochemical limitation. -- Photosynthesis of beech is more sensitive to free air ozone exposure than that of oak

  15. Photosynthetic traits of five neotropical rainforest tree species: interactions between light response curves and leaf-to-air vapour pressure deficit

    Marcelo Schramm Mielke

    2005-09-01

    Full Text Available Measurements of leaf gas exchange at different photosynthetic photon flux density (PPFD levels were conducted in order to compare the photosynthetic traits of five neotropical rainforest tree species, with a special emphasis on empirical mathematical models to estimate the light response curve parameters incorporating the effects of leaf-to-air vapour pressure deficit (D on the saturated photosynthetic rate (Amax. All empirical mathematical models seemed to provide a good estimation of the light response parameters. Comparisons of the leaf photosynthetic traits between different species needed to select an appropriate model and indicated the microenvironmental conditions when the data were collected. When the vapour pressure deficit inside the chamber was not controlled, the incorporation of linear or exponencial functions that explained the effects of D on leaf gas exchange, was a very good method to enhance the performance of the models.Medições das trocas gasosas foliares em diferentes níveis do densidade de fluxo de fótons fotossintéticamente ativos (PPFD foram realizadas com o objetivo de comparar as características fotossintéticas de cinco espécies arbóreas de florestas úmidas neotropicais, com especial ênfase em modelos matemáticos empíricos para estimativa de parâmetros derivados das curvas de resposta à radiação luminosa e dos efeitos da diferença de pressão de vapor entre a folha e o ar (D na taxa fotossintética em saturação luminosa (Amax. Os modelos analisados proporcionaram boas estimativas para os parâmetros derivados das curvas de resposta à radiação luminosa. Comparações entre as características fotossintéticas de diferentes espécies devem sempre considerar os modelos utilizados, seguidas de indicações pormenorizadas das condições microambientais no momento em que os dados foram coletados. Quando a diferença de pressão de vapor não for controlada artificialmente durante as medições, a

  16. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees

    J. Lloyd

    2010-06-01

    higher Mg per unit leaf area.

    Significant differences in within-tree gradients between individuals were observed only for MA, δ13C and [P] A. This was best associated with the overall average [P]A for each tree, this also being considered to be a surrogate for a tree's average leaf area based photosynthetic capacity, Amax. A new model is presented which is in agreement with the above observations. The model predicts that trees characterised by a low upper canopy Amax should have shallow, or even non-existent, within-canopy gradients in Amax, with optimal intra-canopy gradients becoming sharper as a tree's upper canopy Amax increases. Nevertheless, in all cases it is predicted that the optimal within-canopy gradient in Amax should be substantially less than for photon irradiance. Although this is also shown to be consistent with numerous observations as illustrated by a literature survey of gradients in photosynthetic capacity for broadleaf trees, it is also in contrast to previously held notions of optimality. A new equation relating gradients in photosynthetic capacity within broadleaf tree canopies to the photosynthetic capacity of their upper canopy leaves is presented.

  17. The relationship of leaf photosynthetic traits - V cmax and J max - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study.

    Walker, Anthony P; Beckerman, Andrew P; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A; Domingues, Tomas F; Scales, Joanna C; Wohlfahrt, Georg; Wullschleger, Stan D; Woodward, F Ian

    2014-08-01

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (V cmax) and the maximum rate of electron transport (J max). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between V cmax and J max and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between V cmax and J max and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of V cmax and J max with leaf N, P, and SLA. V cmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of V cmax to leaf N. J max was strongly related to V cmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm(-2)), increasing leaf P from 0.05 to 0.22 gm(-2) nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of J max to V cmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting. PMID:25473475

  18. Correlation and QTL Analyses for Photosynthetic Traits in Maize%玉米光合性状的相关性及 QTL 分析

    余婷婷; 刘朝显; 梅秀鹏; 王久光; 王国强; 蔡一林

    2015-01-01

    In order to explore the correlation and genetic mechanism of maize photosynthetic traits ,two F2 populations (Y and R) with different genetic backgrounds were used to identify correlation and QTLs for 10 photosynthetic traits ,which included chlorophyll‐a content ,chlorophyll‐b content ,total chlorophyll content ,net photosynthetic rate ,stomata conductance ,intercellular CO2 concentration ,transpiration rate and some others .The correlation between two of chlorophyll‐a content ,chlorophyll‐b content and total chlorophyll content in different periods was non‐significant in population Y ,and was highly significant in population R .The correlation between other traits of the two populations was highly consistent .In the same growth period of the plants ,total chlorophyll content was in highly significant correlation with chlo‐rophyll‐a content and chlorophyll‐b content ,highly significant correlation was also detected between net photosynthetic rate and stomata conductance ,between net photosynthetic rate and transpiration rate ,and between stomata conductance and transpiration rate ,stomata conductance was moderately correlated with intercellular CO2 concentration ,and chlorophyll content was weakly correlated with net photosynthetic rate ,stomata conductance ,intercellular CO2 concentration and transpiration rate .In population Y ,1 QTL was detected for chlorophyll‐a content (FCa) ,chlorophyll‐b content (FCb) and total chlorophyll content (FCt) each ,at the five‐leaf stage .All these QTLs were located in umc2391‐mmc0371 on chromosome 4 and each explained 8.65% to 9.87% of the phenotypic variance .And other three QTLs were detected at the milk stage ,one for chlorophyll‐a content ,one for chlorophyll‐b content and one for total chlorophyll content .They were located in mmc0501‐bnlg1451 on chromosome 10 and explained 6.77 to 6.93% of the phenotypic variance each .Six QTLs were detected at the pollination stage ,one for net photosynthetic

  19. Functional traits and structural controls on the relationship between photosynthetic CO2 uptake and sun-induced fluorescence in a Mediterranean grassland under different nutrient availability

    Migliavacca, Mirco

    2016-04-01

    Recent studies have shown how human induced nitrogen (N) and phosphorous (P) imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induced variation in structural and functional changes of vegetation under different nutrient availability. However, several uncertainties still hamper the direct link between photosynthetic CO2 uptake (gross primary productivity, GPP) and hyperspectral reflectance. Sun-induced fluorescence (SIF) provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light use efficiency and photosynthetic CO2 uptake. In this contribution we will present an experiment conducted in a Mediterranean grassland, where 16 plots of 8x8 meters were manipulated by adding nutrient (N, P, and NP). Almost simultaneous estimates of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and high resolution spectrometers, respectively. We investigated the response of GPP and SIF to different nutrient availability and plant stoichiometry. The second objective was to identify how structural (LAI, leaf angle distribution, and biodiversity) and canopy biochemical properties (e.g. N and chlorophyll content - Chl) control the functional relationship between GPP and SIF. To test the different hypotheses the SCOPE radiative transfer model was used. We ran a factorial experiment with SCOPE to disentangle the main drivers (structure vs biochemistry) of the relationship GPP-SIF. The results showed significant differences in GPP values between N and without N addition plots. We also found that vegetation indices sensitive to pigment variations and physiology (such as photochemical reflectance index PRI) and SIF showed differences between different treatments. SCOPE showed very good agreement with the observed data (R2=0.71). The observed variability in SIF was mainly related

  20. Evolving a photosynthetic organelle

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  1. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响%Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding

    张仁和; 郑友军; 马国胜; 张兴华; 路海东; 史俊通; 薛吉全

    2011-01-01

    Drought is a major limiting factor affecting maize growth, development and yield mainly in arid and semiarid regions of China. But the physiological mechanism related to simultaneous comparison of photosynthetic response and protective enzyme activity , which could be useful for identifying differences in maize cultivars under drought stress , remains unclear. The objective of this study was to investigate the effects of drought stress on the photosynthetic characteristics of the different maize cultivars at the seedling stage and to offer a theoretical basis and technical parameters for saving-water and high yield cultivation of maize. Two maize cultivars, zhengdan958 ( drought tolerance) and shandan 902 ( drought sensitive) grown in pots experiment in greenhouse were subjected to three different drought treatments ( mild drought,moderate drought, severe drought) and compared to normal irrigation. The gas exchange, chlorophyll fluorescence, and protective enzyme activity were tested. The results showed that: (1) the onset of drought stress caused an increase of leaf's net photosynthetic rate ( Pn ) and stomatal conductance ( Gs ) , furthermore, intercellular CO2 concentration ( Ci) decreased and then increased , but reversible , stomatal limits ( Ls ) increased and then decreased under drought stress in two cultivars.This suggested that reductions in Pn resulted from stomatal limitations under mild and moderate drought stress; and from non-stomatal limitations under the severe drought stress in both cultivars. (2) In the chlorophyll fluorescence parameters,leaf's the quantum yield ( φPS Ⅱ ) , electron transport rate ( ETR ) , photochemical quenching ( qP) decreased with increasing drought stress, however, non-photochemical quenching ( qN) of photosystem Ⅱ ( PS Ⅱ ) activity increased significantly with the developing of drought stress, indicating that photoprotection was effective, whereas severly drought stress caused the inhibition of photosynthetic

  2. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles.

    Takahashi, Fumio

    2016-03-01

    During the course of evolution through various endosymbiotic processes, diverse photosynthetic eukaryotes acquired blue light (BL) responses that do not use photosynthetic pathways. Photosynthetic stramenopiles, which have red algae-derived chloroplasts through secondary symbiosis, are principal primary producers in aquatic environments, and play important roles in ecosystems and aquaculture. Through secondary symbiosis, these taxa acquired BL responses, such as phototropism, chloroplast photo-relocation movement, and photomorphogenesis similar to those which green plants acquired through primary symbiosis. Photosynthetic stramenopile BL receptors were undefined until the discovery in 2007, of a new type of BL receptor, the aureochrome (AUREO), from the photosynthetic stramenopile alga, Vaucheria. AUREO has a bZIP domain and a LOV domain, and thus BL-responsive transcription factor. AUREO orthologs are only conserved in photosynthetic stramenopiles, such as brown algae, diatoms, and red tide algae. Here, a brief review is presented of the role of AUREOs as photoreceptors for these diverse BL responses and their biochemical properties in photosynthetic stramenopiles. PMID:26781435

  3. Acquired Techniques

    Lunde Nielsen, Espen; Halse, Karianne

    2013-01-01

    Acquired Techniques - a Leap into the Archive, at Aarhus School of Architecture. In collaboration with Karianne Halse, James Martin and Mika K. Friis. Following the footsteps of past travelers this is a journey into tools and techniques of the architectural process. The workshop will focus upon...

  4. Acquired blepharoptosis

    Oosterhuis, HJGH

    1996-01-01

    A review is given of the aetiology and possible treatment of acquired (non-congenital) blepharoptosis, which is a common but not specific sign of neurological disease: The diagnostic categories of upper eyelid drooping are scheduled as (a) pseudo-ptosis due to a local process or overactivity of eye

  5. Effect of space mutation of photosynthetic characteristics of soybean varieties

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photo synthetic rate (Pn), stomatal conductance (Cond), intercellular CO2 concentration (Ci) and stomatal resistance (Rs) from SP1 to SP4 generation were determined. The results showed that space mutation affected photosynthesis traits of soy bean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP2 >SP3 >SP4 >CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  6. Photosynthetic Diurnal Variation of Soybean Cultivars with High Photosynthetic Efficiency

    MAN Wei-qun; DU Wei-guang; ZHANG Gui-ru; LUAN Xiao-yan; GE Qiao-ying; HAO Nai-bin; CHEN Yi

    2002-01-01

    The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Ph) and dark respiration rate (DR) under saturation light intensity and appropriate temperature.2) There were a little difference in light compensation point among them. Photo flux density (PFD) were mong the cultivars. Diurnal variation of Pn was shown a curve with two peaks. 4) The cultivars with high photosynthetic efficiency were subjected less to photoinhibition than that with high yield. Critical temperatures of photoinhibition in high photosynthetic efficiency cultivars were higher than that of high yield.

  7. Hydraulic basis for the evolution of photosynthetic productivity.

    Scoffoni, Christine; Chatelet, David S; Pasquet-Kok, Jessica; Rawls, Michael; Donoghue, Michael J; Edwards, Erika J; Sack, Lawren

    2016-01-01

    Clarifying the evolution and mechanisms for photosynthetic productivity is a key to both improving crops and understanding plant evolution and habitat distributions. Current theory recognizes a role for the hydraulics of water transport as a potential determinant of photosynthetic productivity based on comparative data across disparate species. However, there has never been rigorous support for the maintenance of this relationship during an evolutionary radiation. We tested this theory for 30 species of Viburnum, diverse in leaf shape and photosynthetic anatomy, grown in a common garden. We found strong support for a fundamental requirement for leaf hydraulic capacity (Kleaf) in determining photosynthetic capacity (Amax), as these traits diversified across this lineage in tight coordination, with their proportionality modulated by the climate experienced in the species' range. Variation in Kleaf arose from differences in venation architecture that influenced xylem and especially outside-xylem flow pathways. These findings substantiate an evolutionary basis for the coordination of hydraulic and photosynthetic physiology across species, and their co-dependence on climate, establishing a fundamental role for water transport in the evolution of the photosynthetic rate. PMID:27255836

  8. Photosynthetic Pigments in Diatoms.

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  9. Plastic traits of an exotic grass contribute to its abundance but are not always favourable.

    Jennifer Firn

    Full Text Available In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C(4 perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA, leaf dry matter content (LDMC, leaf nutrient concentrations (N, C:N, P, assimilation rates (Amax and photosynthetic nitrogen use efficiency (PNUE. In the control treatment (grazed only, trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to

  10. Plastic traits of an exotic grass contribute to its abundance but are not always favourable.

    Firn, Jennifer; Prober, Suzanne M; Buckley, Yvonne M

    2012-01-01

    In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C(4) perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C:N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage

  11. Multiscale photosynthetic exciton transfer

    Ringsmuth, A K; Stace, T M; 10.1038/nphys2332

    2012-01-01

    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest s...

  12. Horizontal gene transfer in the evolution of photosynthetic eukaryotes

    Jinling HUANG; Jipei YUE

    2013-01-01

    Horizontal gene transfer (HGT) may not only create genome mosaicism,but also introduce evolutionary novelties to recipient organisms.HGT in plastid genomes,though relatively rare,still exists.HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants.In particular,ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent.There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments.Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes,reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.

  13. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis

    Minagawa, Jun

    2013-01-01

    Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic...

  14. Thermal responses of Symbiodinium photosynthetic carbon assimilation

    Oakley, Clinton A.; Schmidt, Gregory W.; Hopkinson, Brian M.

    2014-06-01

    The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration ( K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.

  15. Hospital-acquired pneumonia

    ... this page: //medlineplus.gov/ency/article/000146.htm Hospital-acquired pneumonia To use the sharing features on this page, please enable JavaScript. Hospital-acquired pneumonia is an infection of the lungs ...

  16. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals.

    Stephen J Levas

    Full Text Available Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ(13C of the skeletal, δ(13C, and δ(15N of the animal host and endosymbiont fractions. Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via (13C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic

  17. Effects of Mulching and Nitrogen Application on Photosynthetic Characteris-tics and Yield Traits in Broomcorn Millet%不同覆盖方式和施氮量对糜子光合特性及产量性状的影响

    周瑜; 苏旺; 王舰; 屈洋; 高小丽; 杨璞; 冯佰利

    2016-01-01

    To reveal the mechanism of effects of mulching and nitrogen fertilizer on yield of broomcorn millet, we employed a split-plot design in variety Yumi 2 with mulching as main plot and nitrogen rates as subplot. In a three-year field experiment from 2011 to 2013, we investigated and related the variation of photosynthetic characteristics and yield traits indices under different mulching patterns and nitrogen rates. The results showed that compared with traditional planting (no mulching and no nitrogen), all mulching patterns and nitrogen fertilizer treatments could significantly increase chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr), and decrease intercellular CO2 concentration (Ci) of flag leaves from flowering to maturity in broomcorn millet, among which“W”ridge covered with common plastic film+intredune covered with straw (M4) and 180 kg ha–1 of nitrogen rate (N4) caused the most significant improvement on photosynthesis. All mulching pat-terns and nitrogen fertilizer treatments could significantly improve dry matter accumulation and allocation amount at flowering and maturity stages. In addition, the mulching and nitrogen fertilizer treatments significantly reduced pre-flowering reserves translocation and contribution to grain, but increased post-flowering assimilates allocation and contribution to grain. Mulching could significantly improve the grain yield, thousand grain weight, panicle grain number and panicle length of broomcorn millet, and M4 treatment showed the greatest improvement. With the increasing of nitrogen fertilizer rates, broomcorn millet grain yield and thousand grain weight increased at first and declined then, but panicle grain number and panicle length constantly increased. The best rate of nitrogen fertilizer applied in Loess Plateau was between 135 and 145 kg ha–1. Therefore, the combination of“W”ridge covered with common plastic film+intredune covered with straw and

  18. Clonal traits

    Klimeš, Leoš; Klimešová, Jitka

    Groningen : LEDA Traitbase project, University of Groningen, Community and Conservation Ecology group, 2005 - (Knevel, I.C., Bekker, R.M., Kunzmann, D., Stadler, M., Thompson, K.), s. 66-88 Institutional research plan: CEZ:AV0Z6005908 Keywords : plant functional traits * clonality * vegetative regeneration Subject RIV: EF - Botanics

  19. Cancer resistance as an acquired and inheritable trait

    Koch, Janne; Hau, Jann; Jensen, Henrik Elvang;

    2014-01-01

    AIM: To induce cancer resistance in wild-type mice and detect if the resistance could be inherited to the progeny of the induced resistant mice. Furthermore to investigate the spectrum and immunology of this inherited cancer resistance. MATERIALS AND METHODS: Resistance to with live S180 cancer...... cells in BALB/c mice was induced by immunization with inactivated S180 cancer cells. The immunization was performed by either frozen/thawed or irradiated cancer cells or cell-free ascitic fluid (CFAF). RESULTS: In all instances the induced resistance was demonstrated to be inheritable. The phenotype was...... named HICR (heritable induced cancer resistance) and was defined as primary resistant progeny from mice immunized with frozen/thawed or irradiated S180 cells or CFAF obtained from mice with S180 induced ascites. Notably, this resistance was transferred from both male and female mice to the offspring of...

  20. Laboratory-acquired brucellosis

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  1. Photosynthetically active sunlight at high southern latitudes.

    Frederick, John E; Liao, Yixiang

    2005-01-01

    A network of scanning spectroradiometers has acquired a multiyear database of visible solar irradiance, covering wavelengths from 400 to 600 nm, at four sites in the high-latitude Southern Hemisphere, from 55 degrees S to 90 degrees S. Monthly irradiations computed from the hourly measurements reveal the character of the seasonal cycle and illustrate the role of cloudiness as functions of latitude. Near summer solstice, the combined influences of solar elevation and the duration of daylight would produce a monthly irradiation with little latitude dependence under clear skies. However, the attenuation associated with local cloudiness varies geographically, with the greatest effect at the most northern locations, Ushuaia, Argentina and Palmer Station on the Antarctic Peninsula. Near summer solstice, the South Pole experiences the largest monthly irradiation of the sites studied, where relatively clear skies contribute to this result. Scaling factors derived from radiative-transfer calculations combined with the measured 400-600 nm irradiances allow estimating irradiances integrated over the wavelength band 400-700 nm. This produces a climatology of photosynthetically active radiation for each month of the year at each site. PMID:15689179

  2. The Acquired Preparedness Model of Risk for Bulimic Symptom Development

    Combs, Jessica L.; Smith, Gregory T.; Flory, Kate; Simmons, Jean R.; Hill, Kelly K.

    2010-01-01

    The authors applied person-environment transaction theory to test the acquired preparedness model of eating disorder risk. The model holds that (a) middle school girls high in the trait of ineffectiveness are differentially prepared to acquire high risk expectancies for reinforcement from dieting/thinness; (b) those expectancies predict subsequent binge eating and purging; and (c) the influence of the disposition of ineffectiveness on binge eating and purging is mediated by dieting/thinness e...

  3. Sickle Cell Trait

    ... About Us Information For... Media Policy Makers Sickle Cell Trait Language: English Español (Spanish) Recommend on Facebook ... the trait on to their children. How Sickle Cell Trait is Inherited If both parents have SCT, ...

  4. Pneumonia - adults (community acquired)

    ... breathing (respiratory) condition in which there is an infection of the lung. This article covers community-acquired pneumonia (CAP). This type of pneumonia is found in persons who have not recently been in the hospital or another health care facility such as a ...

  5. Etiopathology of acquired cholesteatoma

    Prabodh Karnik

    2011-01-01

    Full Text Available The etiopathology of acquired cholesteatoma has undergone numerous changes over the past 150 years. However, certain facts stand out with clarity. The presence of cytokeratins in acquired cholesteatoma, which are akin to those found in the tympanic membrane and external auditory canal, shows that these are probably the site of origin of acquired cholesteatoma. The cholesteatoma sac also shows its greatest growth at its tympanic membrane attachment into the middle ear. Implantations of squamous epithelium due to trauma or surgery could be another originating factor. The basic pathology is the formation of papillary cones from the tympanic membrane or external auditory canal, which progress from microcholesteatoma to frank cholesteatoma with keratin collections. There is an altered matrix metalloproteinase pathway. Tumor necrosis factor activation with altered wound healing process contributes to the collateral destruction of bone. Trisomy and aneuploidy of chromosome 8 predispose to cholesteatoma formation in affected individuals. In this article, we present the etiopathology of acquired cholesteatoma as it stands today.

  6. Acquired cystic kidney disease

    Choyke, P.L. [National Institutes of Health, Bethesda, MD (United States). Dept. of Diagnostic Radiology

    2000-11-01

    Acquired cystic kidney disease (ACKD), also known as acquired renal cystic disease (ARCD,) occurs in patients who are on dialysis for end-stage renal disease. It is generally accepted that ACKD develops as a consequence of sustained uremia and can first manifest even before dialysis is initiated while the patient is still in chronic renal failure. The role of immune suppression, particularly in transplant recipients, in the development of ACKD, is still under investigation. The prevalence of ACKD is directly related to the duration of dialysis and the risk of cancer is directly related to the presence of cysts. Herein we review the current understanding of the pathophysiology and imaging implications of ACKD. (orig.)

  7. Acquired cystic kidney disease

    Acquired cystic kidney disease (ACKD), also known as acquired renal cystic disease (ARCD,) occurs in patients who are on dialysis for end-stage renal disease. It is generally accepted that ACKD develops as a consequence of sustained uremia and can first manifest even before dialysis is initiated while the patient is still in chronic renal failure. The role of immune suppression, particularly in transplant recipients, in the development of ACKD, is still under investigation. The prevalence of ACKD is directly related to the duration of dialysis and the risk of cancer is directly related to the presence of cysts. Herein we review the current understanding of the pathophysiology and imaging implications of ACKD. (orig.)

  8. Acquired epidermolysis bullosa

    Maricel Sucar Batista; Yanier Serrano García; Taimí Miranda Vergara

    2015-01-01

    Epidermolysis bullosa is a group of diseases or skin disorders genetically transmitted and it is characterized by the appearance of bullae, ulcers and skin wounds. It usually appears at birth or in the first months of life. This is a case of a 72-year-old female patient who comes to the dermatology department with skin lesions of 6 months of evolution. A skin biopsy was performed, taking a sample for direct and indirect immunofluorescence. Acquired epidermolysis bullosa of unknown etiology wa...

  9. Acquired hypertrichosis lanuginosa

    Kumar Pramod

    1993-01-01

    Full Text Available Acquired hypertirichosis lanuginose developed rapidly in a patient with no detectable malignancy. Soft, fine, downy hair growth was noticed on the face, ears, limbs and trunk. Bilaterally symmetrical vitiliginous macules were present on the ear and preauricular region. This case is reported because of its rarity, absence of any detectable malignancy and development of vitiligo, which to our knowledge has not been reported earlier.

  10. AIDS: acquired immunodeficiency syndrome

    Gilmore, N. J.; Beaulieu, R.; Steben, M.; Laverdière, M.

    2002-01-01

    Acquired immunodeficiency syndrome, or AIDS, is a new illness that occurs in previously healthy individuals. It is characterized by immunodeficiency, opportunistic infections and unusual malignant diseases. Life-threatening single or multiple infections with viruses, mycobacteria, fungi or protozoa are common. A rare neoplasm, Kaposi's sarcoma, has developed in approximately one third of patients with AIDS. More than 800 cases of AIDS have been reported in North America, over 24 of them in Ca...

  11. Do alien plant species profit more from high resource supply than natives?: A trait-based analysis

    Ordonez, Alejandro; Olff, Han

    2013-01-01

    Aim Previous studies comparing conditions of high- versus low-resource environments have pointed at differences in key traits that would allow aliens to perform better than natives under high-resource conditions. We generalize and test the robustness of this idea by exploring how trait differentiation between aliens and natives changes along continuous resource gradients. Location Global. Methods We constructed a database of three leaf traits (specific leaf area, SLA; photosynthetic capacity,...

  12. Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: Bayesian parameterization of photosynthesis models.

    Feng, Xiaohui; Dietze, Michael

    2013-12-01

    Relationships between leaf traits and carbon assimilation rates are commonly used to predict primary productivity at scales from the leaf to the globe. We addressed how the shape and magnitude of these relationships vary across temporal, spatial and taxonomic scales to improve estimates of carbon dynamics. Photosynthetic CO2 and light response curves, leaf nitrogen (N), chlorophyll (Chl) concentration and specific leaf area (SLA) of 25 grassland species were measured. In addition, C3 and C4 photosynthesis models were parameterized using a novel hierarchical Bayesian approach to quantify the effects of leaf traits on photosynthetic capacity and parameters at different scales. The effects of plant physiological traits on photosynthetic capacity and parameters varied among species, plant functional types and taxonomic scales. Relationships in the grassland biome were significantly different from the global average. Within-species variability in photosynthetic parameters through the growing season could be attributed to the seasonal changes of leaf traits, especially leaf N and Chl, but these responses followed qualitatively different relationships from the across-species relationship. The results suggest that one broad-scale relationship is not sufficient to characterize ecosystem condition and change at multiple scales. Applying trait relationships without articulating the scales may cause substantial carbon flux estimation errors. PMID:23952643

  13. Learning-By-Being-Acquired

    Colombo, Massimo G.; Moreira, Solon; Rabbiosi, Larissa

    -categorization theories, we argue that R&D team reorganization increases the acquired inventors’ use of the prior stock of technological knowledge of the acquiring firm after the acquisition. Furthermore, this effect is enhanced if acquired inventors have higher innovation ability relative to their acquiring peers but is...

  14. Traits in Java

    2007-01-01

    A trait is a programming language feature which contains a collection of methods that can be reused across class hierarchies. Traits is a relatively new language feature that is beginning to be a part of some of the newest object-oriented programming languages. Traits have been implemented in some languages but it has not become a part of the Java language yet. In this thesis we apply traits to the Java 5 language by designing and implementing a traits aware preprocessor....

  15. Acquired von Willebrand Syndrome

    郭涛

    2005-01-01

    @@ Acquired von Willebrand syndrome (AvWS) is kind of bleeding disorder with laboratory findings similar to those in congenital yon Willebrand disease (vWD).AvWS doesn's have any personal or family history of bleeding, but is associated with certain diseases or abnormal conditions or drugs. Although AvWS is being stated as a rare disease, it has gained more and more attention during the past years. Not because of the severity of the disease, but it is more common than we thought and most patients don' t have a proper diagnosis.

  16. Acquired epidermolysis bullosa

    Maricel Sucar Batista

    2015-12-01

    Full Text Available Epidermolysis bullosa is a group of diseases or skin disorders genetically transmitted and it is characterized by the appearance of bullae, ulcers and skin wounds. It usually appears at birth or in the first months of life. This is a case of a 72-year-old female patient who comes to the dermatology department with skin lesions of 6 months of evolution. A skin biopsy was performed, taking a sample for direct and indirect immunofluorescence. Acquired epidermolysis bullosa of unknown etiology was diagnosed. Treatment was started with low-dose colchicine to increase it later, according to the patient’s tolerance and disease progression.

  17. Photosynthetic system as a biological functional element

    Photosynthetic apparatus of high plants and photosynthetic bacteria is essentially autonomic system in terms of genetics and structural -functional properties located in specific medium, a bio-membrane. Processes of light absorption and exciton migration in light harvesting antenna, separation and further transfer of charges in reaction centers have specific features, which may be used for application of these objects as key elements in construction of future biological functional elements. Progress in study and genetic modification of photosynthetic membranes achieved during the last decade opens great prospects in development biological functional elements and systems. The main characteristics of photosynthetic system for these purposes are: (i) energy conversion processes in the first light phase of the photosynthesis have very short periods, up to picoseconds, which indicates possibility of creation of ultrafast functional elements on their basis; (ii) characteristics sizes of photosynthetic units, 10-100 nm, and possibility to arrange regularly disposed elements in relevant membranes could be prospective point for creation of nano structures and on their basis relevant biologic functional elements; (iii) elements based on modified photosynthetic apparatus and bio-membranes might be efficiently created by methods of gene engineering and manipulation, that open huge opportunities for development of read biological functional systems. In the paper structural-functional properties and characteristics of high plants and purple photosynthetic bacteria, which may be useful for creation of future biological functional elements are considered. (author)

  18. Photosynthetic responses of subtidal seagrasses to a daily light cycle in Torres Strait: A comparative study

    Campbell, Stuart J.; Kerville, Simon P.; Coles, Robert G.; Short, Fred

    2008-09-01

    In this study, we examined the photosynthetic responses of five common seagrass species from a typical mixed meadow in Torres Strait at a depth of 5-7 m using pulse amplitude modulated (PAM) fluorometry. The photosynthetic response of each species was measured every 2 h throughout a single daily light cycle from dawn (6 am) to dusk (6 pm). PAM fluorometry was used to generate rapid light curves from which measures of electron transport rate (ETR max), photosynthetic efficiency ( α), saturating irradiance ( E k) and light-adapted quantum yield (Δ F/ F' m) were derived for each species. The amount of light absorbed by leaves (absorption factor) was also determined for each species. Similar diurnal patterns were recorded among species with 3-4 fold increases in maximal electron rate from dawn to midday and a maintenance of ETR max in the afternoon that would allow an optimal use of low light by all species. Differences in photosynthetic responses to changes in the daily light regime were also evident with Syringodium isoetifolium showing the highest photosynthetic rates and saturating irradiances suggesting a competitive advantage over other species under conditions of high light. In contrast Halophila ovalis, Halophila decipiens and Halophila spinulosa were characterised by comparatively low photosynthetic rates and minimum light requirements (i.e. low E k) typical of shade adaptation. The structural makeup of each species may explain the observed differences with large, structurally complex species such as Syringodium isoetifolium and Cymodocea serrulata showing high photosynthetic effciciencies ( α) and therefore high-light-adapted traits (e.g. high ETR max and E k) compared with the smaller Halophila species positioned lower in the canopy. For the smaller Halophila species these shade-adapted traits are features that optimise their survival during low-light conditions. Knowledge of these characteristics and responses improves our understanding of the underlying

  19. Acquired Blaschkoid dermatitis

    Mercy P

    2007-01-01

    Full Text Available Acquired Blaschkoid dermatitis characterised by unilateral relapsing inflammatory disease along the lines of Blaschko. A 40-year-old Indian male presented with unilateral erythematous, itchy grouped papules on the left side of the chest, abdomen, back and left arm of 15 days duration. The eruption stopped abruptly at the midline of the torso, completely sparing the right side of the body. The lesions were arranged in whorls and streaks corresponding to the lines of Blaschko. Skin biopsy showed hyperkeratosis and features suggestive of sub-acute spongiotic dermatitis with lymphocytic infiltrate around the blood vessels in the dermis. Patient was diagnosed as a case of Blaschkoid dermatitis. To the best of our knowledge, this is the first case of this condition being reported from India.

  20. Hybrid system of semiconductor and photosynthetic protein

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  1. Hybrid system of semiconductor and photosynthetic protein.

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. PMID:25091409

  2. Regulation of Carotenoid Biosynthesis in Photosynthetic Organs.

    Llorente, Briardo

    2016-01-01

    A substantial proportion of the dazzling diversity of colors displayed by living organisms throughout the tree of life is determined by the presence of carotenoids, which most often provide distinctive yellow, orange and red hues. These metabolites play fundamental roles in nature that extend far beyond their importance as pigments. In photosynthetic lineages, carotenoids are essential to sustain life, since they have been exploited to maximize light harvesting and protect the photosynthetic machinery from photooxidative stress. Consequently, photosynthetic organisms have evolved several mechanisms that adjust the carotenoid metabolism to efficiently cope with constantly fluctuating light environments. This chapter will focus on the current knowledge concerning the regulation of the carotenoid biosynthetic pathway in leaves, which are the primary photosynthetic organs of most land plants. PMID:27485221

  3. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. PMID:25318596

  4. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation

    Jun eMinagawa

    2013-12-01

    Full Text Available Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic supercomplexes undergo supramolecular reorganization within a short timeframe during acclimation to an environmental change. This reorganization includes state transitions that balance the excitation of photosystem I and II by shuttling peripheral antenna proteins between the two, thermal energy dissipation that occurs at energy-quenching sites within the light-harvesting antenna generated for negative feedback when excess light is absorbed, and cyclic electron flow that is facilitated between photosystem I and the cytochrome bf complex when cells demand more ATP and/or need to activate energy dissipation. This review will highlight the recent findings regarding these environmental acclimation events in model organisms with particular attention to the unicellular green alga C. reinhardtii and with reference to the vascular plant A. thaliana, which offers a glimpse into the dynamic behavior of photosynthetic machineries in nature.

  5. Acquired phototrophy stabilises coexistence and shapes intrinsic dynamics of an intraguild predator and its prey.

    Moeller, Holly V; Peltomaa, Elina; Johnson, Matthew D; Neubert, Michael G

    2016-04-01

    In marine ecosystems, acquired phototrophs - organisms that obtain their photosynthetic ability by hosting endosymbionts or stealing plastids from their prey - are omnipresent. Such taxa function as intraguild predators yet depend on their prey to periodically obtain chloroplasts. We present a new theory for the effects of acquired phototrophy on community dynamics by analysing a mathematical model of this predator-prey interaction and experimentally verifying its predictions with a laboratory model system. We show that acquired phototrophy stabilises coexistence, but that the nature of this coexistence exhibits a 'paradox of enrichment': as light increases, the coexistence between the acquired phototroph and its prey transitions from a stable equilibrium to boom-bust cycles whose amplitude increases with light availability. In contrast, heterotrophs and mixotrophic acquired phototrophs (that obtain   95% of carbon from photosynthesis) acquired phototrophs form blooms. PMID:26833622

  6. Intercontrole acquiring by Framatome

    The Framatome group, as the worldwide leader in nuclear power plant construction, has reinforced his competences in nuclear services thanks to the acquiring of the Intercontrole company, specialized in non-destructive testing in nuclear and industrial environments. After a presentation of the functioning principle and of the safety aspects of a PWR reactor, this press dossier presents in a first part the role of nuclear services and in particular of non-destructive testing in nuclear power plants (in-service inspection, regulatory aspects, testing processes). This part is illustrated with some examples of inspection performed on some components of the primary coolant loop (steam generators, reactor vessel, pressurizer, pipes, primary pumps). A second part presents the technical centres and units of Framatome in charge of performing non-destructive inspections, while a third part describes the industrial policy and strategy of the group in this domain (market of nuclear park maintenance in France, in the USA and worldwide, creation of the 'inspection and control' centre of Framatome). A last part presents the activities of the Intercontrole company and of its daughter companies with some examples of actions realized in the nuclear and natural gas domains. (J.S.)

  7. Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland, Australia)

    Bloomfield, K. J.; Domingues, T. F.; Saiz, G.; Bird, M. I.; Crayn, D. M.; Ford, A.; Metcalfe, D. J.; Farquhar, G. D.; Lloyd, J.

    2014-12-01

    Forest and savanna are the two dominant vegetation types of the tropical regions with very few tree species common to both. At a broad scale, it has long been recognised that the distributions of these two biomes are principally governed by precipitation and its seasonality, but with soil physical and chemical properties also potentially important. For tree species drawn from a range of forest and savanna sites in tropical Far North Queensland, Australia, we compared leaf traits of photosynthetic capacity, structure and nutrient concentrations. Area-based photosynthetic capacity was higher for the savanna species with a steeper slope to the photosynthesis ↔ nitrogen (N) relationship compared with the forest group. Higher leaf mass per unit leaf area for the savanna trees derived from denser rather than thicker leaves and did not appear to restrict rates of light-saturated photosynthesis when expressed on either an area or mass basis. Median ratios of foliar N to phosphorus (P) were relatively high (>20) at all sites, but we found no evidence for a dominant P limitation of photosynthesis for either forest or savanna trees. A parsimonious mixed-effects model of area-based photosynthetic capacity retained vegetation type and both N and P as explanatory terms. Resulting model-fitted predictions suggested a good fit to the observed data (R2 = 0.82). The model's random component found variation in area-based photosynthetic response to be much greater among species (71% of response variance) than across sites (9%). These results suggest that, on a leaf-area basis, savanna trees of Far North Queensland, Australia, are capable of photosynthetically outperforming forest species at their common boundaries.

  8. Contrasting photosynthetic characteristics of forest vs. savanna species (far North Queensland, Australia

    K. J. Bloomfield

    2014-06-01

    Full Text Available Forest and savanna are the two dominant vegetation types of the tropical regions with very few tree species common to both. Aside from precipitation patterns, boundaries between these two vegetation types are strongly determined by soil characteristics and nutrient availability. For tree species drawn from a range of forest and savanna sites in tropical far north Queensland, Australia, we compared leaf traits of photosynthetic capacity, structure and nutrient concentrations. Area-based photosynthetic capacity was higher for the savanna species with a steeper slope to the photosynthesis ↔ Nitrogen relationship compared with the forest group. Higher leaf mass per unit leaf area for the savanna trees derived from denser rather than thicker leaves and did not appear to restrict rates of light-saturated photosynthesis when expressed on either an area- or mass-basis. Median ratios of foliar N to phosphorus were above 20 at all sites, but we found no evidence for a dominant P-limitation of photosynthesis for the forest group. A parsimonious mixed-effects model of area-based photosynthetic capacity retained vegetation type and both N and P as explanatory terms. Resulting model-fitted predictions suggested a good fit to the observed data (R2 = 0.82. The model's random component found variation in area-based photosynthetic response to be much greater among species (71% of response variance than across sites (9%. These results suggest that in leaf area-based photosynthetic terms, savanna trees of far north Queensland, Australia are capable of out-performing forest species at their common boundaries1. 1 Adopted symbols and abbreviations are defined in Table 5.

  9. Photosynthetic carbon assimilation in C3- and C4-plants

    The photosynthetic mechanisms of plants have become to be well understood by the use of radioactive and stable isotopes. This review included the distribution of 14C in photosynthetic intermediates by assimilation with 14CO2, resultant CO2 receptors, Calvin cycle, C4 photosynthetic pathway, differences between the photosynthetic pathway for C3-plants and that for C4-plants, photorespiration, glycolate pathway, the yield of photosynthetic quanta and the relationship between assimilation with 14CO2 and 13C values. Reference was made to the photosynthetic mechanism in 13C-NMR follow-up with 13CO2. (Chiba, N.)

  10. Land race as a source for improving photosynthetic rate and productivity in cowpea (Vigna unguiculata W.)

    Suma Biradar, P.M. Salimath and B.C.Patil

    2010-01-01

    Cowpea is an important grain legume of arid and semiarid regions of Asia and Africa. Productivity of cowpea is low and stagnant.Conventional breeding approaches aimed at improvement of yield per se have not been successful so far in breaking the yieldbarrier. Manipulation of physiological processes such as photosynthesis is expected to yield positive results. A land race ‘Goalocal’ with a very high photosynthetic rate was used to improve this trait in selected cultivars, C-152, KM-1 and V-118...

  11. THE C2 OXIDATIVE PHOTOSYNTHETIC CARBON CYCLE.

    Tolbert, N. E.

    1997-06-01

    The C2 oxidative photosynthetic carbon cycle plus the C3 reductive photosynthetic carbon cycle coexist. Both are initiated by Rubisco, use about equal amounts of energy, must regenerate RuBP, and result in exchanges of CO2 and O2 to establish rates of net photosynthesis, CO2 and O2 compensation points, and the ratio of CO2 and O2 in the atmosphere. These concepts evolved from research on O2 inhibition, glycolate metabolism, leaf peroxisomes, photorespiration, 18O2/16O2 exchange, CO2 concentrating processes, and a requirement for the oxygenase activity of Rubisco. Nearly 80 years of research on these topics are unified under the one process of photosynthetic carbon metabolism and its self-regulation. PMID:15012254

  12. Clinicopathological correlation of acquired hyperpigmentary disorders

    Anisha B Patel

    2013-01-01

    Full Text Available Acquired pigmentary disorders are group of heterogenous entities that share single, most significant, clinical feature, that is, dyspigmentation. Asians and Indians, in particular, are mostly affected. Although the classic morphologies and common treatment options of these conditions have been reviewed in the global dermatology literature, the value of histpathological evaluation has not been thoroughly explored. The importance of accurate diagnosis is emphasized here as the underlying diseases have varying etiologies that need to be addressed in order to effectively treat the dyspigmentation. In this review, we describe and discuss the utility of histology in the diagnostic work of hyperpigmentary disorders, and how, in many cases, it can lead to targeted and more effective therapy. We focus on the most common acquired pigmentary disorders seen in Indian patients as well as a few uncommon diseases with distinctive histological traits. Facial melanoses, including mimickers of melasma, are thoroughly explored. These diseases include lichen planus pigmentosus, discoid lupus erythematosus, drug-induced melanoses, hyperpigmentation due to exogenous substances, acanthosis nigricans, and macular amyloidosis.

  13. Clinicopathological correlation of acquired hyperpigmentary disorders.

    Patel, Anisha B; Kubba, Raj; Kubba, Asha

    2013-01-01

    Acquired pigmentary disorders are group of heterogenous entities that share single, most significant, clinical feature, that is, dyspigmentation. Asians and Indians, in particular, are mostly affected. Although the classic morphologies and common treatment options of these conditions have been reviewed in the global dermatology literature, the value of histpathological evaluation has not been thoroughly explored. The importance of accurate diagnosis is emphasized here as the underlying diseases have varying etiologies that need to be addressed in order to effectively treat the dyspigmentation. In this review, we describe and discuss the utility of histology in the diagnostic work of hyperpigmentary disorders, and how, in many cases, it can lead to targeted and more effective therapy. We focus on the most common acquired pigmentary disorders seen in Indian patients as well as a few uncommon diseases with distinctive histological traits. Facial melanoses, including mimickers of melasma, are thoroughly explored. These diseases include lichen planus pigmentosus, discoid lupus erythematosus, drug-induced melanoses, hyperpigmentation due to exogenous substances, acanthosis nigricans, and macular amyloidosis. PMID:23619441

  14. Influence of professional drivers' personality traits on road traffic safety

    Živković, Snežana B.; MARKIČ, Mirko; Nikolić, Vesna

    2015-01-01

    The purpose of this paper is to present basic elements of the research directed at identifying and determining the personality traits of professional drivers that affect safe, secure and enjoyable ride on the public roads. A quantitative method has been used here, whereas data were acquired from a questionnaire based on a sample of 59 professional drivers. Determining personality traits of professional drivers that are in correlation with safe and pleasant ride on the roads has been enabled b...

  15. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these prote

  16. Molecular characterization of novel photosynthetic protozoan phylum from corals

    Cihlář, Jaromír

    2010-01-01

    Novel photosynthetic protozoan phylum from caorals eas investigated using molecular biology tools to infer phylogenetic position. According to the data, isolates RM11-26 are also photosynthetic relatives of apicomplexan parasites representing an independent lineage from Chromera velia

  17. Photosynthetic production of hydrogen by algae

    Chang, H.

    1978-09-01

    Because hydrogen as a fuel is very attractive both in energy and ecological terms, the photosynthetic production of hydrogen by some algae is attracting considerable attention. In addition to the ordinary photosynthetic mechanisms, many algae have enzymes which can produce hydrogen: hydrogenation enzymes and nitrogen-fixation enzymes. Certain enzymes with the former begin to produce hydrogen after several hours in an anaerobic envirionment; the reason for the delay is that the hydrogen-producing enzymes must adjust to the anaerobic conditions. Eventually the production of hydrogen ceases because production of oxygen by the ordinary photosynthetic mechanism suppresses activity of the hydrogen-producing enzymes. Any use of these algae to produce hydrogen must involve alternating hydrogen production and rest. Nitrogen-fixing enzymes are found especially in the blue-green algae. These seem to produce hydrogen from organic compounds produced by the ordinary photosynthetic process. The nitrogen-fixation type of hydrogen-producing photosynthesis seems the more promising type for future exploitation.

  18. Enhanced Practical Photosynthetic CO2 Mitigation

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-07-15

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 06/30/2004. The major accomplishment was the modification of the header and harvesting work, with a system designed to distribute algae at startup, sustain operations and harvest in one unit.

  19. A New Mechanism for Photosynthetic Energy Transfer

    Jonas D. M.

    2013-03-01

    Full Text Available Calculations reveal a new kind of non-adiabatic funnel that electronically enhances anti-correlated vibrational wavepackets on the ground state. These wavepackets replicate all observed 2D signatures of photosynthetic energy transfer, including one not previously explained.

  20. Comparative Mechanisms of Photosynthetic Carbon Acquisitionin Hizikiafusiforme Under Submersed and Emersed Conditions

    ZOUDing-Hui; GAOKun-Shan

    2004-01-01

    The economic seaweed Hizikia fusiforme (Harv.) Okamura (Sargassaceae, Phaeophyta) usually experiences periodical exposures to air at low tide. Photosynthetic carbon acquisition mechanisms were comparatively studied under submersed and emersed conditions in order to establish a general understanding of its photosynthetic characteristics associated with tidal cycles. When submersed in seawater, H.fusiforme was capable of acquiring HCO3- as a source of inorganic carbon (Ci) to drive photosynthesis, while emersed and exposed to air, it used atmospheric 002 for photosynthesis. The pH changes surroundingthe H.fusiforme fronds had less influence on the photosynthetic rates under emersed condition than under submersed condition. When the pH was as high as 10.0, emersed H.fusiforme could photosynthesize efficiently, but the submersed alga exhibited very poor photosynthesis. Extracellular carbonic anhydrase (CA) played an important role in the photosynthetic acquisitions of exogenous Ci in water as well as in air. Both the concentrations of dissolved inorganic carbon in general seawater and CO2 in air were demonstrated to limit the photosynthesis of H.fusiforme, which was sensitive to O2. It appeared that the exogenous carbon acquisition system, being dependent of external CA activity, operates in a way not enough to raise intracellular CO2 level to prevent photorespiration. The inability of H.fusiforme to achieve its maximum photosynthetic rate at the current ambient Ci levels under both submersed and emersed conditions suggested that the yield of aquaculture for this economic species would respond profitably to future increases in CO2 concentration in the sea and air.

  1. And the Winner is - Acquired

    Henkel, Joachim; Rønde, Thomas; Wagner, Marcus

    2015-01-01

    New entrants to a market tend to be superior to incumbents in originating radical innovations. We provide a new explanation for this phenomenon, based on markets for technology. It applies in industries where successful entrepreneurial firms, or their technologies, are acquired by incumbents that...... lower probability accompanies higher value in case of success—that is, a more radical innovation. In the second stage, successful entrants bid to be acquired by the incumbent. We assume that entrants cannot survive on their own, so being acquired amounts to a prize in a contest. We identify an...

  2. The acquired preparedness risk model applied to smoking in 5th grade children

    Combs, Jessica L.; Spillane, Nichea S.; Caudill, Leann; Stark, Brittany; Smith, Gregory T.

    2011-01-01

    The very early onset of smoking predicts numerous health problems. The authors conducted the first test of one risk model for elementary school age smoking, known as the acquired preparedness (AP) model of risk, in a cross-sectional sample of 309 5th grade children. The model posits that (a) impulsivity-related personality traits contribute to risk for a variety of risky, maladaptive behaviors; (b) smoking expectancies confer risk only for smoking; and (c) the personality traits contribute to...

  3. Generality of leaf trait relationships: A test across six biomes

    Reich, P.B. [Univ. of Minnesota, Saint Paul, MN (United States). Dept. of Forest Resources; Ellsworth, D.S. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Walters, M.B. [Michigan State Univ., East Lansing, MI (United States). Dept. of Forestry; Vose, J.M. [Forest Service, Otto, NC (United States). Coweeta Hydrological Lab.; Gresham, C. [Clemson Univ., Georgetown, SC (United States). Baruch Forest Inst.; Volin, J.C. [Florida Atlantic Univ., Davie, FL (United States). Div. of Science; Bowman, W.D. [Inst. of Arctic and Alpine Research, Boulder, CO (United States). Mountain Research Station]|[Univ. of Colorado, Boulder, CO (United States). Dept. of Evolutionary, Population, and Organismic Biology

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  4. QTL analysis of leaf photosynthesis rate and related physiological traits in Brassica napus

    YAN Xing-ying; QU Cun-min; LI Jia-na; CHEN Li; LIU Lie-zhao

    2015-01-01

    Rapeseed (Brassica napus L.) oil is the crucial source of edible oil in China. In addition, it can become a major renewable and sustainable feedstock for biodiesel production in the future. It is known that photosynthesis products are the primary sources for dry matter accumulation in rapeseed. Therefore, increasing the photosynthetic efifciency is desirable for the raise of rapeseed yield. The objective of the present study was to identify the genetic mechanism of photosynthesis based on the description of relationships between different photosynthetic traits and their quantitative trait loci (QTL) by using a recombinant inbred line (RIL) population with 172 lines. Speciifcal y, correlation analysis in this study showed that internal CO2 concentration has negative correlations with other three physiological traits under two different stages. Total y, 11 and 12 QTLs of the four physiological traits measured at the stages 1 and 2 were detected by using a high-density single nu-cleotidepolymorphism (SNP) markers linkage map with composite interval mapping (CIM), respectively. Three co-localized QTLs on A03 were detected at stage 1 with 5, 5, and 10%of the phenotypic variation, respectively. Other two co-localized QTLs were located on A05 at stage 2, which explained up to 12 and 5%of the phenotypic variation, respectively. The results are beneifcial for our understanding of genetic control of photosynthetic physiological characterizations and improvement of rapeseed yield in the future.

  5. Predicting microbial traits with phylogenies.

    Goberna, Marta; Verdú, Miguel

    2016-04-01

    Phylogeny reflects genetic and phenotypic traits in Bacteria and Archaea. The phylogenetic conservatism of microbial traits has prompted the application of phylogeny-based algorithms to predict unknown trait values of extant taxa based on the traits of their evolutionary relatives to estimate, for instance, rRNA gene copy numbers, gene contents or tolerance to abiotic conditions. Unlike the 'macrobial' world, microbial ecologists face scenarios potentially compromising the accuracy of trait reconstruction methods, as, for example, extremely large phylogenies and limited information on the traits of interest. We review 990 bacterial and archaeal traits from the literature and support that phylogenetic trait conservatism is widespread through the tree of life, while revealing that it is generally weak for ecologically relevant phenotypic traits and high for genetically complex traits. We then perform a simulation exercise to assess the accuracy of phylogeny-based trait predictions in common scenarios faced by microbial ecologists. Our simulations show that ca. 60% of the variation in phylogeny-based trait predictions depends on the magnitude of the trait conservatism, the number of species in the tree, the proportion of species with unknown trait values and the mean distance in the tree to the nearest neighbour with a known trait value. Results are similar for both binary and continuous traits. We discuss these results under the light of the reviewed traits and provide recommendations for the use of phylogeny-based trait predictions for microbial ecologists. PMID:26371406

  6. Variability of photosynthetic parameters of Pinus sibirica Du Tour needles under changing climatic factors

    A.P. Zotikova

    2013-12-01

    Full Text Available The air temperature and relative humidity and the intensity of photosynthetically active radiation are the basic ecological factors determining geographical distribution of a species. Wood plant adaptation depends on the intensity of physiological and biochemicalprocesses of plants as a response to changing environmental factors. Investigations to reveal (detect the variability of modification andgenetic components of the photosynthetic parameters in needles of the Siberian cedar (Pinus sibirica Du Tour mountain ecotypes, distributed in central part of the Altai Mountains, were carried out. Also, the survey was extended to some experiments with these ecotypes introduced to mild climate and flat regions from south-western of Siberia. The length and thickness of needles, the size of chloroplasts, content of the photosynthetic pigments, and the functional activity of chloroplastsat the level of photo system II were the evaluated traits. Growing under mountainous conditions (at about 2000m elevation, the two-year-old needles were shorter and thicker and contained very large in size chloroplasts while the content of chlorophylls and carotinoids was twice lower than that in the local ecotype growing in the lowlands. On the other hand, more green and yellow pigments were found in needles of mountain ecotypes planted in the lowlands compared to the local lowland ectype trees. A decrease in pool of the photosynthetic pigments in the highlands ecotypes is probably due to decreased biosynthesis andincreased photo-destruction caused by severe light and temperature conditions. These parameters are likely to be associated withmodifications due to intense insolation, low temperature, ozone concentration, UV radiation, and other negative factors that are morepronounced at high elevation. Despite the large pool of accumulated photosynthetic pigments, the functional activity of chloroplasts in themountain ecotype at the level

  7. Correlated interaction fluctuations in photosynthetic complexes

    Vlaming, Sebastiaan M

    2011-01-01

    The functioning and efficiency of natural photosynthetic complexes is strongly influenced by their embedding in a noisy protein environment, which can even serve to enhance the transport efficiency. Interactions with the environment induce fluctuations of the transition energies of and interactions between the chlorophyll molecules, and due to the fact that different fluctuations will partially be caused by the same environmental factors, correlations between the various fluctuations will occur. We argue that fluctuations of the interactions should in general not be neglected, as these have a considerable impact on population transfer rates, decoherence rates and the efficiency of photosynthetic complexes. Furthermore, while correlations between transition energy fluctuations have been studied, we provide the first quantitative study of the effect of correlations between interaction fluctuations and transition energy fluctuations, and of correlations between the various interaction fluctuations. It is shown t...

  8. Enhanced Practical Photosynthetic CO2 Mitigation

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-10-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 09/30/2004. The primary effort of this quarter was focused on mass transfer of carbon dioxide into the water film to study the potential effects on the photosynthetic organisms that depend on the carbon. Testing of the carbon dioxide scrubbing capability (mass transfer capability) of flowing water film appears to be relatively high and largely unaffected by transport of the gas through the bioreactor. The implications are that the transfer of carbon dioxide into the film is nearly at maximum and that it is sufficient to sustain photosynthesis at whatever rate the organisms can sustain. This finding is key to assuming that the process is an energy (photon) limited reaction and not a nutrient limited reaction.

  9. Photosynthetic hydrogen and oxygen production - Kinetic studies

    Greenbaum, E.

    1982-01-01

    The simultaneous photoproduction of hydrogen and oxygen was measured in a study of the steady-state turnover times of two biological systems, by driving them into the steady state with repetitive, single-turnover flash illumination. The systems were: (1) in vitro, isolated chloroplasts, ferredoxin and hydrogenase; and (2) the anaerobically-adapted green alga Chlamydomonas reinhardtii. It is found that the turnover times for production of both oxygen and hydrogen in photosynthetic water splitting are in milliseconds, and either equal to, or less than, the turnover time for carbon dioxide reduction in intact algal cells. There is therefore mutual compatibility between hydrogen and oxygen turnover times, and partial compatibility with the excitation rate of the photosynthetic reaction centers under solar irradiation conditions.

  10. The prestigious maize inbred lines with erect top leaves: The priority performance of the efficient photosynthetic model in breeding

    Radenović Čedomir

    2009-01-01

    Full Text Available This study conforms the hypothesis that there are elite maize inbred lines with erect top leaves that have a property of an efficient photosynthetic model and that as such are successfully used in the processes of breeding in which the number of plants is increased per area unit (plant density. This proof was established by the application of non- invasive photosynthetic-fluorescence method suitable for the evaluation of the efficiency of the photosynthetic model. The obtained photosynthetic and fluorescence properties of observed prestigious maize inbred lines with the erect top leaves are based on the effects and the nature of changes in chlorophyll fluorescence occurring in their thylakoid membranes. Their principal parameters are temperature dependence of the chlorophyll delayed fluorescence intensity, the Arrhenius plot for the determination of the phase transition in thylakoid membranes and the estimated activation energies. The displayed results on the size of an angle between the direction of the propagation of the above-ear leaf and the direction of the stalk propagation, as well as, results on the dynamics of grain dry-down during the maturation period, additionally indicate that traits of observed maize inbred lines with erect top leaves are the prominent base for more exact, rational and faster proceeding of current processes of breeding.

  11. Photosynthetic acclimation to high temperatures in wheat

    Sayed, O. H.

    1992-01-01

    Growth and photosynthetic performance were assessed for the Finnish wheat Triticum aestivum L. var. APU under a cool (13/10�C day/night) and a warm (30/25�C day/night) regime. Plants exhibited a certain degree of acclimation to warm growth conditions. This acclimation appeared to involve enhanced performance of both photosystem II and whole-chain electron transport. Enhanced thermal stability of photophosphorylation was also observed in warm-grown plants.

  12. Nonclassical energy transfer in photosynthetic FMO complex

    Abramavicius Vytautas

    2013-03-01

    Full Text Available Excitation energy transfer in a photosynthetic FMO complex has been simulated using the stochastic Schrödinger equation. Fluctuating chromophore transition energies are simulated from the quantum correlation function which allows to properly include the finite temperature. The resulting excitation dynamics shows fast thermalization of chromophore occupations into proper thermal equilibrium. The relaxation process is characterized by entropy dynamics, which shows nonclassical behavior.

  13. Ionizing radiation and photosynthetic ability of cyanobacteria

    Unicellular photoautotrophic cyanobacteria, Anacystis nidulans when exposed to lethal dose of 1.5 kGy of 60Co γ- radiation (D10= 257.32 Gy) were as effective photosynthetical as unirradiated controls immediately after irradiation although level of ROS was higher by several magnitudes in these irradiated cells. The results suggested the preservation of the functional integrity of thylakoids even after exposure to lethal dose of ionizing radiation. (author)

  14. Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta)

    Beer, S.; Shragge, B.

    1987-12-01

    The intertidal macroalga Enteromorpha compressa showed the ability to use HCO/sub 3//sup -/, as an exogenous inorganic carbon (Ci) source for photosynthesis. However, although the natural sea water concentration of this carbon form was saturating, additional CO/sub 2/ above ambient Ci levels doubled net photosynthetic rates. Therefore, the productivity of this alga, when submerged, is likely to be limited by Ci. When plants were exposed to air, photosynthetic rates saturated at air-levels of CO/sub 2/ during mild desiccation. Based on carbon fixing enzyme activities and Ci pulse-chase incorporation patterns, it was found that Enteromorpha is a C/sub 3/ plant. However, this alga did not show O/sub 2/ inhibited photosynthetic rates at natural sea water Ci conditions. It is suggested that such a C/sub 4/-like gas exchange response is due to the HCO/sub 3//sup -/ utilization system concentrating CO/sub 2/ intracellularly, thus alleviating apparent photorespiration.

  15. Acquiring taste in home economics?

    Stenbak Larsen, Christian

    2015-01-01

    that the pupils were encouraged to use their senses: listen to things frying, touch the meat to check if it was done and taste the food in the process of seasoning it. But while some children learned what the teachers expected: to produce well tasting food, others learned to cook very salty and hot food...... appreciated by the group of boys, and others again learned to stick with their idiosyncrasies when pressured by the teacher. Conclusions: Children were acquiring taste in the home economic lessons, but not only the kind of tastes that the teacher had planned for. This leads to reflections on the very complex...... process of taste acquiring and to a call for further research into taste acquiring in complex real life contexts as home economics lessons....

  16. The Trait Psychology Controversy.

    Morgan, William P.

    1980-01-01

    Arguments associated with trait psychology are reviewed with an application in the field of sport psychology. The role of cognition and perception in sport and physical activities is also discussed. (CJ)

  17. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-09-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.

  18. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs

  19. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S., E-mail: gsengel@uchicago.edu [Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-09-14

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850{sup ∗} states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.

  20. Protein translocons in photosynthetic organelles of Paulinella chromatophora

    Przemysław Gagat

    2014-12-01

    Full Text Available The rhizarian amoeba Paulinella chromatophora harbors two photosynthetic cyanobacterial endosymbionts (chromatophores, acquired independently of primary plastids of glaucophytes, red algae and green plants. These endosymbionts have lost many essential genes, and transferred substantial number of genes to the host nuclear genome via endosymbiotic gene transfer (EGT, including those involved in photosynthesis. This indicates that, similar to primary plastids, Paulinella endosymbionts must have evolved a transport system to import their EGT-derived proteins. This system involves vesicular trafficking to the outer chromatophore membrane and presumably a simplified Tic-like complex at the inner chromatophore membrane. Since both sequenced Paulinella strains have been shown to undergo differential plastid gene losses, they do not have to possess the same set of Toc and Tic homologs. We searched the genome of Paulinella FK01 strain for potential Toc and Tic homologs, and compared the results with the data obtained for Paulinella CCAC 0185 strain, and 72 cyanobacteria, eight Archaeplastida as well as some other bacteria. Our studies revealed that chromatophore genomes from both Paulinella strains encode the same set of translocons that could potentially create a simplified but fully-functional Tic-like complex at the inner chromatophore membranes. The common maintenance of the same set of translocon proteins in two Paulinella strains suggests a similar import mechanism and/or supports the proposed model of protein import. Moreover, we have discovered a new putative Tic component, Tic62, a redox sensor protein not identified in previous comparative studies of Paulinella translocons.

  1. Multivariate Analysis of Grain Yield and Its Attributing Traits in Different Maize Hybrids Grown under Heat and Drought Stress

    Fawad Ali

    2015-01-01

    Full Text Available This study was carried out to evaluate F1 single cross-maize hybrids in four crop growing seasons (2010–2012. Morphological traits and physiological parameters of twelve maize hybrids were evaluated (i to construct seed yield equation and (ii to determine grain yield attributing traits of well-performing maize genotype using a previously unexplored method of two-way hierarchical clustering. In seed yield predicting equation photosynthetic rate contributed the highest variation (46%. Principal component analysis data showed that investigated traits contributed up to 90.55% variation in dependent structure. From factor analysis, we found that factor 1 contributed 49.6% variation (P<0.05 with primary important traits (i.e., number of leaves per plant, plant height, stem diameter, fresh leaves weight, leaf area, stomata conductance, substomata CO2 absorption rate, and photosynthetic rate. The results of two-way hierarchical clustering demonstrated that Cluster III had outperforming genotype H12 (Sultan × Soneri along with its most closely related traits (photosynthetic rate, stomata conductance, substomata CO2 absorption rate, chlorophyll contents, leaf area, and fresh stem weight. Our data shows that H12 (Sultan × Soneri possessed the highest grain yield per plant under environmentally stress conditions, which are most likely to exist in arid and semiarid climatic conditions, such as in Pakistan.

  2. Acquired Aplastic Anemia in Children

    Hartung, Helge D.; Olson, Timothy S.; Bessler, Monica

    2013-01-01

    This article provides a practice-based and concise review of the etiology, diagnosis, and management of acquired aplastic anemia in children. Bone marrow transplantation, immunosuppressive therapy, and supportive care are discussed in detail. The aim is to provide the clinician with a better understanding of the disease and to offer guidelines for the management of children with this uncommon yet serious disorder.

  3. Acquired anhidrosis a case report

    Nair Laxmi

    1992-01-01

    Full Text Available A 30-year -old man was seen for acquired anhidrosis. There was no systemic disease. Vasomotor functions were normal. Biopsy showed normal sweat glands and ducts. Intravenous injection of neostigmine could produce profuse sweating on the face, trunk and arms. The disorder is likely to be due to a peripheral dysautonomia selectively affecting the sudomotor function.

  4. Acquired anhidrosis a case report

    Nair Laxmi; Beena D; Manohar S

    1992-01-01

    A 30-year -old man was seen for acquired anhidrosis. There was no systemic disease. Vasomotor functions were normal. Biopsy showed normal sweat glands and ducts. Intravenous injection of neostigmine could produce profuse sweating on the face, trunk and arms. The disorder is likely to be due to a peripheral dysautonomia selectively affecting the sudomotor function.

  5. Power and Autistic Traits

    Overskeid, Geir

    2016-01-01

    Autistic traits can help people gain and sustain power, and has probably done so throughout history, says the present paper. A number of testable claims follow from this assumption. First, the powerful should have more autistic traits than others – which they do appear to have. Among other things, powerful people, and those with many autistic traits, tend to prefer solitary activities and are often aloof. Moreover, they are often rigid and socially insensitive, low on empathy and with low scores on the trait of agreeableness – and as a rule they do not have many friends. Both groups are also more self-centered than others, more honest, less submissive, more sensitive to slights, and with a stronger tendency to engage in abstract thinking. They tend to behave in bossy or dominant ways, and their moral judgment is more based on rules than on feelings. In addition to experimental evidence, I cite biographies showing that a surprising number of presidents, prime ministers and other powerful people seem to have had traits like those in question – and interestingly, in animals, leaders are often rigid and insensitive to group members’ needs and feelings, mostly acting the way they are themselves inclined to, not responding much to others. Problem solving is important in leadership, and people with many autistic traits appear often to be better thinkers than typical subjects with similar IQs. However, these and other congruities could be coincidences. Hence the question of whether traits the two groups have in common also have a common cause constitutes a strong test of the paper’s thesis – and a common cause does appear to exist, in the form of testosterone’s effects on the central nervous system. Finally, there is evidence that, other things equal, powerful men have more reproductive success than others. If men wielding power do indeed have more autistic traits than those less powerful, this will lead to, other things equal, such traits becoming more

  6. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ].

    Ruiz-Vera, Ursula M; Siebers, Matthew H; Drag, David W; Ort, Donald R; Bernacchi, Carl J

    2015-11-01

    Rising atmospheric CO2 concentration ([CO2 ]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2 ] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2 ] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free-air CO2 enrichment (FACE) technology was used to target atmospheric [CO2 ] to 200 μmol mol(-1) above ambient [CO2 ] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas-exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2 ] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season-long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down-regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2 ] unless appropriate adaptation traits can be introduced

  7. Comparative Analysis of Growth and Photosynthetic Characteristics of (Populus simonii × P. nigra) × (P. nigra × P. simonii) Hybrid Clones of Different Ploidides

    Zhao, Xiyang; Li, Ying; Zheng, Mi; Bian, Xiuyan; Liu, Mengran; Sun, Yanshuang; Jiang, Jing; Wang, Fuwei; LI, SHUCHUN; Cui, Yonghong; Liu, Guifeng; Yang, Chuanping

    2015-01-01

    To evaluate differences among poplar clones of various ploidies, 12 hybrid poplar clones (P. simonii × P. nigra) × (P. nigra × P. simonii) with different ploidies were used to study phenotypic variation in growth traits and photosynthetic characteristics. Analysis of variance showed remarkable differences for each of the investigated traits among these clones (P < 0.01). Coefficients of phenotypic variation (PCV) ranged from 2.38% to 56.71%, and repeatability ranged from 0.656 to 0.987. The P...

  8. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  9. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  10. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  11. Multiscale Analysis and Optimisation of Photosynthetic Solar Energy Systems

    Ringsmuth, Andrew K

    2014-01-01

    This work asks how light harvesting in photosynthetic systems can be optimised for economically scalable, sustainable energy production. Hierarchy theory is introduced as a system-analysis and optimisation tool better able to handle multiscale, multiprocess complexities in photosynthetic energetics compared with standard linear-process analysis. Within this framework, new insights are given into relationships between composition, structure and energetics at the scale of the thylakoid membrane, and also into how components at different scales cooperate under functional objectives of the whole photosynthetic system. Combining these reductionistic and holistic analyses creates a platform for modelling multiscale-optimal, idealised photosynthetic systems in silico.

  12. Magnetic irone oxide nanoparticles in photosynthetic systems

    Full text : It was found and studied the effect of biogenic formation of magnetic inclusions in photosynthetic systems - in various higher plants under the influence of some external stress factors (radiation impact, moisture deficit) and in a model system - a suspension of chloroplasts. For registration and characterization of magnetic nanoparticles in the samples used EPR spectrometer because superparamagnetic and ferromagnetic nanoparticles have a chcracteristic signals of electron magnetic resonance. For direct visualization of magnetic nanoparticles it was used the method of transmission electron microscopy

  13. Occupationally Acquired American Cutaneous Leishmaniasis

    Maria Edileuza Felinto de Brito

    2012-01-01

    Full Text Available We report two occupationally acquired cases of American cutaneous leishmaniasis (ACL: one accidental laboratory autoinoculation by contaminated needlestick while handling an ACL lesion sample, and one acquired during field studies on bird biology. Polymerase chain reaction (PCR assays of patient lesions were positive for Leishmania, subgenus Viannia. One isolate was obtained by culture (from patient 2 biopsy samples and characterized as Leishmania (Viannia naiffi through an indirect immunofluorescence assay (IFA with species-specific monoclonal antibodies (mAbs and by multilocus enzyme electrophoresis (MLEE. Patients were successfully treated with N-methyl-glucamine. These two cases highlight the potential risks of laboratory and field work and the need to comply with strict biosafety procedures in daily routines. The swab collection method, coupled with PCR detection, has greatly improved ACL laboratory diagnosis.

  14. CNOOC Acquires Oversea Assets Successfully

    Hu Senlin

    2006-01-01

    @@ After last year CNOOC's bidding for buy the US energy company Unocal Corp lost out to the Chevron Corporation, it conducted the crossing-border asset-acquirement again in the beginning of this year. On Jan. 9, 2006,CNOOC Ltd signed a definitive agreement with Nigeria South Atlantic Petroleum Limited (SAPETRO) to acquire a 45 % working interest in an offshore oil developing license OML 130 in Nigeria for US$2.268 billion cash. The purchase will be funded by the internal capital resources of CNOOC Ltd. In which, US$1.75 billion will pay for buying SAPETRO, and the remaining cash will be used to pay for the early operation cost.

  15. Cogema acquires TOTAL's uranium assets

    On April 28, France's nuclear fuel cycle conglomerate Cogema and petroleum group TOTAL announced a plan in which Cogema will assume ownership of TOTAL's uranium assets worldwide, and as part of the deal, each firm will acquire shares of the other. On June 2, the agreement will be submitted to shareholders and, assuming it is approved, will go into effect this year. The agreement calls for TOTAL to acquire a 10.8-percent share in Cogema, thus becoming its first private sector shareholder, by underwriting a reserve capital increase of FF1.5 billion (approximately US$283 million). In return, Cogema will pay FF2.52 billion for approximately 4.3 percent of TOTAL, as part of a reserve capital increase totalling FF4.07 billion

  16. Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation

    Sánchez Gómez, David; Robson, T. Matthew; Gascó, Antonio; Gil Pelegrín, Eustaquio; Aranda, Ismael

    2013-01-01

    Patterns of intraspecific variation in functional traits have been widely studied across plant species to find out what general suites of traits provide functional advantage under specific environmental conditions. Much less is known about this variation within tree species and, in particular, about its relationship with performance variables such as photosynthetic rates under water deficit. Nevertheless, this knowledge is fundamental to understand the adaptive potential of drought sensitive ...

  17. Acquired causes of intestinal malabsorption.

    van der Heide, F

    2016-04-01

    This review focuses on the acquired causes, diagnosis, and treatment of intestinal malabsorption. Intestinal absorption is a complex process that depends on many variables, including the digestion of nutrients within the intestinal lumen, the absorptive surface of the small intestine, the membrane transport systems, and the epithelial absorptive enzymes. Acquired causes of malabsorption are classified by focussing on the three phases of digestion and absorption: 1) luminal/digestive phase, 2) mucosal/absorptive phase, and 3) transport phase. Most acquired diseases affect the luminal/digestive phase. These include short bowel syndrome, extensive small bowel inflammation, motility disorders, and deficiencies of digestive enzymes or bile salts. Diagnosis depends on symptoms, physical examination, and blood and stool tests. There is no gold standard for the diagnosis of malabsorption. Further testing should be based on the specific clinical context and the suspected underlying disease. Therapy is directed at nutritional support by enteral or parenteral feeding and screening for and supplementation of deficiencies in vitamins and minerals. Early enteral feeding is important for intestinal adaptation in short bowel syndrome. Medicinal treatment options for diarrhoea in malabsorption include loperamide, codeine, cholestyramine, or antibiotics. PMID:27086886

  18. Characterization and Molecular Interpretation of the Photosynthetic Traits of Lonicera confusa in Karst Environment

    Geng Wu; Haibo Jia; Yongwei Huang; Lu Gan; Chunhua Fu; Libin Zhang; Longjiang Yu; Maoteng Li

    2014-01-01

    Lonicera confusa was a medical plant which could adapt to the Ca-rich environment in the karst area of China. The photosynthesis, relative chlorophyll content,differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) of L. confusa that cultivated in calcareous and sandstone soils were investigated. The results showed that the relative chlorophyll content and net photosynthesis rate of L. confusa in calcareous soil are much higher than that planted in sandstone soil, t...

  19. Inhibitors against the coagulation factors spontaneously acquired: Acquired B Hemophilia

    Claudia Lucía Sossa Melo; Sara Inés Jiménez Sanguino; Pilar Rodríguez

    2003-01-01

    Spontaneously acquired inhibitors to factor IX, are extremely rare. A 70-year-old male, presented with major continuous post-orthopedic surgery bleeding. His initial APTT was 77.4 s (normal range, 25-36) and normal PT. Expanded APTT corrects, results in favor of deficit of factor IX, confirming the level of dose of IX factor: 52% (NR 70–125%) with normal factor VIII. It was realized with fresh frozen plasma, and by the fifth day of treatment, he presents a bruise in the surgery bed with radic...

  20. Photosynthetic isotope fractionation: oxygen and carbon

    Isotopic carbon analyses of plant tissue and carbon dioxide from air samples and plant and soil respiration were made. Soil respiratory CO2 is about 150/00 lighter than atmospheric CO2. Plant isotopic ratios were found to be influenced by (1) plant photosynthetic efficiency, (2) source CO2, (3) airflow, and (4) CO2 concentrations. Etiolated bean plants have nearly the same delta13C value as seed carbon and seed dark respiratory CO2. Mature leaves from greenhouse grown beans, however, are some 5 0/00 lighter than seed carbon. This is a result of CO2 source, i.e., plant or soil respiratory CO2. Leaves which are generally lighter than other plant organs becomes still lighter during the growing season. As a consequence of increasingly light leaf carbon, photorespired CO2 also becomes lighter during the growing season. Oxygen isotopic values were measured for (1) photorespiratory CO2, which reflects equilibration with leaf water, and (2) photosynthetic O2, which is enriched in 18O, perhaps due to respiratory or photorespiratory 16O preference

  1. Determination of photosynthetic parameters in two seawater-tolerant vegetables

    Qiu, Nianwei; Zhou, Feng; Liu, Qian; Zhao, Wenqian

    2016-03-01

    It is difficult to determine the photosynthetic parameters of non-flat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bigelovii as two seawater-tolerant vegetables. To solve the problem, we developed a simple, practical, and effective method to measure and calculate the photosynthetic parameters (such as P N, g s, E) based on unit fresh mass, instead of leaf area. The light/CO2/temperature response curves of the plants can also be measured by this method. This new method is more effective, stable, and reliable than conventional methods for plants with non-flat leaves. In addition, the relative notes on measurements and calculation of photosynthetic parameters were discussed in this paper. This method solves technical difficulties in photosynthetic parameter determination of the two seawater-tolerant vegetables and similar plants.

  2. Knowledge transfer - Acquiring implicit knowledge

    Many organisations have recognised the problem of experts taking home a huge amount of specific knowledge, which they have gathered in their department, when they leave. The successor is capable only of acquiring explicit expertise because implicit experiences are not documented and therefore no more available. That is why we have started this pilot study in order to try to conserve the above mentioned tacit and implicit knowledge and to make it available to other colleagues. Using a semi-standardised interview we elicit tacit knowledge from the expert and summarise it in a report. This interview-guideline forms the basis of in-depth investigation for implicit knowledge. (author)

  3. Ear of durum wheat under water stress: water relations and photosynthetic metabolism.

    Tambussi, Eduardo A; Nogués, Salvador; Araus, José Luis

    2005-06-01

    The photosynthetic characteristics of the ear and flag leaf of well-watered (WW) and water-stressed (WS) durum wheat (Triticum turgidum L. var. durum) were studied in plants grown under greenhouse and Mediterranean field conditions. Gas exchange measurements simultaneously with modulated chlorophyll fluorescence were used to study the response of the ear and flag leaf to CO2 and O2 during photosynthesis. C4 metabolism was identified by assessing the sensitivity of photosynthetic rate and electron transport to oxygen. The presence of CAM metabolism was assessed by measuring daily patterns of stomatal conductance and net CO2 assimilation. In addition, the histological distribution of Rubisco protein in the ear parts was studied by immunocytochemical localisation. Relative water content (RWC) and osmotic adjustment (osmotic potential at full turgor) were also measured in these organs. Oxygen sensitivity of the assimilation rate and electron transport, the lack of Rubisco compartmentalisation in the mesophyll tissues and the gas-exchange pattern at night indicated that neither C4 nor CAM metabolism occurs in the ear of WW or WS plants. Nevertheless, photosynthetic activity of the flag leaf was more affected by WS conditions than that of the ear, under both growing conditions. The lower sensitivity under water stress of the ear than of the flag leaf was linked to higher RWC and osmotic adjustment in the ear bracts and awns. We demonstrate that the better performance of the ear under water stress (compared to the flag leaf) is not related to C4 or CAM photosynthesis. Rather, drought tolerance of the ear is explained by its higher RWC in drought. Osmotic adjustment and xeromorphic traits of ear parts may be responsible. PMID:15645303

  4. Photosynthetic acclimation to enriched CO{sub 2} concentrations in Pinus Ponderosa

    Torres, M.P. [California State Univ., Humbolt, CA (United States)

    1995-11-01

    By the middle of the 21st century earth`s ambient CO{sub 2} level is expected to increase two-fold ({approximately}350 umol/L). Higher levels of CO{sub 2} are expected to cause major changes in the morphological, physiological, and biochemical traits of the world`s vegetation. Therefore, we constructed an experiment designed to measure the long-term acclimation processes of Pinus Ponderosa. As a prominent forest conifer, Pinus Ponderosa is useful when assessing a large scale global carbon budget. Eighteen genetically variable families were exposed to 3 different levels of CO{sub 2} (350 umol/L, 525 umol/L, 700 umol/L), for three years. Acclimation responses were quantified by assays of photosynthetic rate, chlorophyll fluorescence, and chlorophyll pigment concentrations.

  5. Multivariate Analysis of Grain Yield and Its Attributing Traits in Different Maize Hybrids Grown under Heat and Drought Stress.

    Ali, Fawad; Kanwal, Naila; Ahsan, Muhammmad; Ali, Qurban; Bibi, Irshad; Niazi, Nabeel Khan

    2015-01-01

    This study was carried out to evaluate F1 single cross-maize hybrids in four crop growing seasons (2010-2012). Morphological traits and physiological parameters of twelve maize hybrids were evaluated (i) to construct seed yield equation and (ii) to determine grain yield attributing traits of well-performing maize genotype using a previously unexplored method of two-way hierarchical clustering. In seed yield predicting equation photosynthetic rate contributed the highest variation (46%). Principal component analysis data showed that investigated traits contributed up to 90.55% variation in dependent structure. From factor analysis, we found that factor 1 contributed 49.6% variation (P stomata conductance, substomata CO2 absorption rate, and photosynthetic rate). The results of two-way hierarchical clustering demonstrated that Cluster III had outperforming genotype H12 (Sultan × Soneri) along with its most closely related traits (photosynthetic rate, stomata conductance, substomata CO2 absorption rate, chlorophyll contents, leaf area, and fresh stem weight). Our data shows that H12 (Sultan × Soneri) possessed the highest grain yield per plant under environmentally stress conditions, which are most likely to exist in arid and semiarid climatic conditions, such as in Pakistan. PMID:26798554

  6. Regulatory Traits in Cultural Evolution

    Acerbi, Alberto; Ghirlanda, Stefano; Enquist, Magnus

    2012-01-01

    We call \\regulatory traits" those cultural traits that aretransmitted through cultural interactions and, at the same time, changeindividual behaviors directly inuencing the outcome of future culturalinteractions. The cultural dynamics of some of those traits are studiedthrough simple simulations. In particular, we consider the cultural evolu-tion of traits determining the propensity to copy, the number of potentialdemonstrators from whom one individual may copy, and conformist ver-sus anti{co...

  7. Trait Emotional Intelligence and Personality

    Alexander B Siegling; Furnham, Adrian; Petrides, K V

    2015-01-01

    This study investigated if the linkages between trait emotional intelligence (trait EI) and the Five-Factor Model of personality were invariant between men and women. Five English-speaking samples (N = 307-685) of mostly undergraduate students each completed a different measure of the Big Five personality traits and either the full form or short form of the Trait Emotional Intelligence Questionnaire (TEIQue). Across samples, models predicting global TEIQue scores from the Big Five were invari...

  8. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  9. Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China

    Zhou, Lei; Wang, Shaoqiang; Chi, Yonggang; Li, Qingkang; Huang, Kun; Yu, Quanzhou

    2015-12-01

    The mechanism underlying the effect of drought on the photosynthetic traits of leaves in forest ecosystems in subtropical regions is unclear. In this study, three limiting processes (stomatal, mesophyll and biochemical limitations) that control the photosynthetic capacity and three resource use efficiencies (intrinsic water use efficiency (iWUE), nitrogen use efficiency (NUE) and light use efficiency (LUE)), which were characterized as the interactions between photosynthesis and environmental resources, were estimated in two species (Schima superba and Pinus massoniana) under drought conditions. A quantitative limitation analysis demonstrated that the drought-induced limitation of photosynthesis in Schima superba was primarily due to stomatal limitation, whereas for Pinus massoniana, both stomatal and non-stomatal limitations generally exhibited similar magnitudes. Although the mesophyll limitation represented only 1% of the total limitation in Schima superba, it accounted for 24% of the total limitations for Pinus massoniana. Furthermore, a positive relationship between the LUE and NUE and a marginally negative relationship or trade-off between the NUE and iWUE were observed in the control plots. However, drought disrupted the relationships between the resource use efficiencies. Our findings may have important implications for reducing the uncertainties in model simulations and advancing the understanding of the interactions between ecosystem functions and climate change.

  10. Herbivores modify selection on plant functional traits in a temperate rainforest understory.

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2012-08-01

    There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores. PMID:22766937

  11. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes.

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J

    2015-11-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. PMID:26536265

  12. Optimal number of pigments in photosynthetic complexes

    Jesenko, Simon

    2012-01-01

    We study excitation energy transfer in a simple model of photosynthetic complex. The model, described by Lindblad equation, consists of pigments interacting via dipole-dipole interaction. Overlapping of pigments induces an on-site energy disorder, providing a mechanism for blocking the excitation transfer. Based on the average efficiency as well as robustness of random configurations of pigments, we calculate the optimal number of pigments that should be enclosed in a pigment-protein complex of a given size. The results suggest that a large fraction of pigment configurations are efficient as well as robust if the number of pigments is properly chosen. We compare optimal results of the model to the structure of pigment-protein complexes as found in nature, finding good agreement.

  13. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. PMID:26286697

  14. The Influence of Different Interstock Lengths of Minneola Tanjelo on Photosynthetic Parameters and Fruit Yield of Star Ruby Grapefruit

    Bilge Yılmaz

    2014-04-01

    Full Text Available In this study, Minneola Tangelo hybrid, a cross of grapefruit and mandarin (Duncan grapefruit x Dancy mandarin, used as interstock to Star Ruby grapefruit with different lengths. Effects of different interstock lengths on fruit yield and quality, plant development and photosynthetic parameters were investigated. According to the results, different interstock lengths significantly affected fruit yield and size. The highest fruit yield was determined in T-M20-S whereas the lowest was on T-M5-S. The highest fruit size were determined in Star Ruby fruits on T-M5-S and T-M40-S whereas the lowest on T-M20-S and T-S (control. T-M40-S and T-M20-S treatments markedly reduced stem diameter and tree canopy in comparison to other treatments and control. Usage of different interstock lengths did not significantly affected some of fruit quality traits, net photosynthetic rate, stomatal conductance, leaf transpiration rate, leaf water usage efficiency and leaf chlorophyll concentration. In regards to seasonal changes, net photosynthetic rate were higher in spring and summer seasons then winter and fall seasons.

  15. Pseudomona pseudomallei community acquired pneumonia

    This is the first published case report en Colombia about pseudomona pseudomallei community acquired pneumonia. This uncommon pathogen is from the epidemiological standpoint a very important one and medical community should be aware to look after it in those patients where no other etiological pathogen is recovered. A brief summary about epidemiology is showed, emphasizing those regions where it can be found. Likewise, comments about the differential diagnosis are important since it should be considered in those patients where tuberculosis is suspected. This is particularly representative for countries with high tuberculosis rates. Furthermore, a microbiological review is shown, emphasizing on isolation techniques, descriptions about therapeutics and other regarding treatment issues according international standards. Finally; a description about the clinical picture, laboratory findings, treatment and evolution of the case reported are shown for discussion

  16. Complement's participation in acquired immunity

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    B cell receptor for antigen (BCR), a complex composed of the iC3b/C3d fragment-binding complement type 2 receptor (CR2, CD21) and its signaling element CD19 and the IgG-binding receptor FcgammaRIIb (CD32). The positive or negative outcome of signaling through this triad is determined by the context...... in which antigen is seen, be it alone or in association with natural or induced antibodies and/or C3-complement fragments. The aim of this review is to describe the present status of our understanding of complement's participation in acquired immunity and the regulation of autoimmune responses.......The preliminary evidence for the involvement of complement in promoting primary humoral responses dates back over a quarter of a century. However, it is only in the course of the past decade or so that the detailed mechanisms underlying complement's influence have been characterized in depth. It is...

  17. Personality Traits and Administrators

    Anitha V

    2008-01-01

    Administration is the art of getting tasks done by utilizing the resources and coordinating the people. Administrators give trigger to the administration by coordinating, and directing all parts of an organization by managing the tangible and intangible resources of the organization. The qualities of leadership are therefore a critical determinant of organizational success. The theories of leadership (Trait to Transformational leadership theory) have strived to look into the aspects that make...

  18. Thalassaemia trait and pregnancy.

    White, J. M.; Richards, R; Byrne, M; T. Buchanan; White, Y S; Jelenski, G

    1985-01-01

    The haematological variables, haematinic state, and placental function of more than 2000 pregnant women, heterozygous for either alpha- or beta-thalassaemia genes, were examined during pregnancy. Four features emerged. Firstly, it was possible by discriminant function analysis of haematological variables to distinguish in pregnant patients between the anaemia caused by thalassaemia trait and that caused by iron deficiency. Secondly, patients with thalassaemia become significantly more anaemic...

  19. Acquired vulval lymphangiectases mimicking genital warts

    Sharma Rajeev; Tomar Sudarshan; Chandra Mithilesh

    2002-01-01

    Acquired lymphangiectasia can sometimes occur on the vulva and cause diagnostic difficulties especially if they have a warty appearance. We report a case of acquired vulva I lymphangiectasia which mimicked genital warts.

  20. Acquired vulval lymphangiectases mimicking genital warts

    Sharma Rajeev

    2002-01-01

    Full Text Available Acquired lymphangiectasia can sometimes occur on the vulva and cause diagnostic difficulties especially if they have a warty appearance. We report a case of acquired vulva I lymphangiectasia which mimicked genital warts.

  1. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  2. Differential trophic traits between invasive and native anuran tadpoles

    San Sebastian, Olatz; Pujol-Buxo, Eudald; Garriga, Nuria; Richter-Boix, Alex; Gustavo A. Llorente

    2015-01-01

    How trophic resources are managed is a key factor in our understanding of the success of invasive species. In amphibians that usually occupy ephemeral ponds, the capacity to acquire resources and food selection are especially important because as a pond dries, the larval density increases and food resources are limited. Abundant and high-quality food can increase the final size and reduce the duration of development of amphibians. The aim of this work was to assess the trophic traits of tadpo...

  3. Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci

    Jiang, C.; Zeng, Z B

    1995-01-01

    We present in this paper models and statistical methods for performing multiple trait analysis on mapping quantitative trait loci (QTL) based on the composite interval mapping method. By taking into account the correlated structure of multiple traits, this joint analysis has several advantages, compared with separate analyses, for mapping QTL, including the expected improvement on the statistical power of the test for QTL and on the precision of parameter estimation. Also this joint analysis ...

  4. Infections Acquired in the Garden.

    Cunha, Cheston B; Cunha, Burke A

    2015-10-01

    Gardening is a wonderful pastime, and the garden is a very peaceful place to enjoy one's vacation. However, the garden may be a treacherous place for very young or compromised hosts when one takes into account the infectious potential residing in the soil, as well as the insect vectors on plants and animals. Even normal hosts may acquire a variety of infections from the soil, animals, or animal-related insect bites. The location of the garden, its natural animal and insect inhabitants, and the characteristics of the soil play a part in determining its infectious potential. The most important factor making the garden an infectious and dangerous place is the number and interaction of animals, whether they are pets or wild, that temporarily use the garden for part of their daily activities. The clinician should always ask about garden exposure, which will help in eliminating the diagnostic possibilities for the patient. The diagnostic approach is to use epidemiological principles in concert with clinical clues, which together should suggest a reasonable list of diagnostic possibilities. Organ involvement and specific laboratory tests help further narrow the differential diagnosis and determine the specific tests necessary to make a definitive diagnosis. PMID:26542044

  5. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    culture studies. Our recent work has extended the study of hydrogen to cyanobacterial mat communities. The large amounts of reducing power generated during photosynthetic activity carry the potential to contribute a swamping term to the H2 economy of the anaerobic microbial populations within the mat - and thereby to alter the population structure and biogeochemical function of the mat as a whole. In hypersaline microbial mats, we observe a distinct diel cycle in H2 production and a substantial corresponding flux. On an early Earth dominated by microbial mats, this transmission of photosynthetic reducing power may have carried important implications for both biospheric and atmospheric evolution.

  6. Full quantum dynamics of the electronic coupling between photosynthetic pigments

    Oviedo, María Belén

    2015-01-01

    From studying the time evolution of the single electron density matrix within a density functional tight-binding formalism we study in a fully atomistic picture the electronic excitation transfer between two photosynthetic pigments in real time. This time-dependent quantum dynamics is based on fully atomistic structural models of the photosynthetic pigment. We analyze the dependence of the electronic excitation transfer with distance and orientation between photosynthetic pigments. We compare the results obtained from full quantum dynamics with analytical ones, based on a two level system model were the interaction between the pigments is dipolar. We observed that even when the distance of the photosynthetic pigment is about $30$ \\AA\\ the deviation of the dipolarity is of about $15$ percent.

  7. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic efficienc

  8. Effects of UVC254 nm on the photosynthetic activity of photobionts from the astrobiologically relevant lichens Buellia frigida and Circinaria gyrosa

    Meeßen, J.; Backhaus, T.; Sadowsky, A.; Mrkalj, M.; Sánchez, F. J.; de la Torre, R.; Ott, S.

    2014-10-01

    In the past decade, various astrobiological studies on different lichen species investigated the impairment of viability and photosynthetic activity by exposure to simulated or real space parameters (as vacuum, polychromatic ultraviolet (UV)-radiation and monochromatic UVC) and consistently found high post-exposure viability as well as low rates of photosynthetic impairment (de Vera et al. 2003, 2004a; 2004b; de la Torre et al. 2010; Onofri et al. 2012; Sánchez et al. 2012, 2014; Brandt et al. 2014). To achieve a better understanding of the basic mechanisms of resistance, the present study subdued isolated and metabolically active photobionts of two astrobiologically relevant lichens to UVC254 nm, examined its effect on photosynthetic activity by chlorophyll a fluorescence and characterized the UVC-induced damages by quantum yield reduction and measurements of non-photochemical quenching. The results indicate a strong impairment of photosynthetic activity, photoprotective mechanisms and overall photobiont vitality when being irradiated in the isolated and metabolically active state. In conclusion, the present study stresses the higher susceptibility of photobionts towards extreme environmental conditions as UVC-exposure, a stressor that does not occur on the Earth. By comparison with previous studies, the present results highlight the importance of protective mechanisms in lichens, such as morphological-anatomical traits (Meeßen et al. 2013), secondary lichen compounds (Meeßen et al. 2014) and the symbiont's pivotal ability to pass into anhydrobiosis when desiccating.

  9. Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis.

    Samuel C V Martins

    Full Text Available It has long been held that the low photosynthetic rates (A of coffee leaves are largely associated with diffusive constraints to photosynthesis. However, the relative limitations of the stomata and mesophyll to the overall diffusional constraints to photosynthesis, as well as the coordination of leaf hydraulics with photosynthetic limitations, remain to be fully elucidated in coffee. Whether the low actual A under ambient CO2 concentrations is associated with the kinetic properties of Rubisco and high (photorespiration rates also remains elusive. Here, we provide a holistic analysis to understand the causes associated with low A by measuring a variety of key anatomical/hydraulic and photosynthetic traits in sun- and shade-grown coffee plants. We demonstrate that leaf hydraulic architecture imposes a major constraint on the maximisation of the photosynthetic gas exchange of coffee leaves. Regardless of the light treatments, A was mainly limited by stomatal factors followed by similar limitations associated with the mesophyll and biochemical constraints. No evidence of an inefficient Rubisco was found; rather, we propose that coffee Rubisco is well tuned for operating at low chloroplastic CO2 concentrations. Finally, we contend that large diffusive resistance should lead to large CO2 drawdown from the intercellular airspaces to the sites of carboxylation, thus favouring the occurrence of relatively high photorespiration rates, which ultimately leads to further limitations to A.

  10. Photoelectrochemical cells based on photosynthetic systems: a review

    Voloshin, Roman A.; Kreslavski, Vladimir D.; Zharmukhamedov, Sergey K.; Vladimir S. Bedbenov; Seeram Ramakrishna; Allakhverdiev, Suleyman I.

    2015-01-01

    Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f) or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy...

  11. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    Oort, van, W.J.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  12. Towards a universal trait-based model of terrestrial primary production

    Wang, H.; Prentice, I. C.; Cornwell, W.; Keenan, T. F.; Davis, T.; Wright, I. J.; Evans, B. J.; Peng, C.

    2015-12-01

    Systematic variations of plant traits along environmental gradients have been observed for decades. For example, the tendencies of leaf nitrogen per unit area to increase, and of the leaf-internal to ambient CO2 concentration ratio (ci:ca) to decrease, with aridity are well established. But ecosystem models typically represent trait variation based purely on empirical relationships, or on untested conjectures, or not at all. Neglect of quantitative trait variation and its adapative significance probably contributes to the persistent large uncertainties among models in predicting the response of the carbon cycle to environmental change. However, advances in ecological theory and the accumulation of extensive data sets during recent decades suggest that theoretically based and testable predictions of trait variation could be achieved. Based on well-established ecophysiological principles and consideration of the adaptive significance of traits, we propose universal relationships between photosynthetic traits (ci:ca, carbon fixation capacity, and the ratio of electron transport capacity to carbon fixation capacity) and primary environmental variables, which capture observed trait variations both within and between plant functional types. Moreover, incorporating these traits into the standard model of C3photosynthesis allows gross primary production (GPP) of natural vegetation to be predicted by a single equation with just two free parameters, which can be estimated from independent observations. The resulting model performs as well as much more complex models. Our results provide a fresh perspective with potentially high reward: the possibility of a deeper understanding of the relationships between plant traits and environment, simpler and more robust and reliable representation of land processes in Earth system models, and thus improved predictability for biosphere-atmosphere interactions and climate feedbacks.

  13. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest

    Montti, Lía; Villagra, Mariana; Campanello, Paula I.; Gatti, M. Genoveva; Goldstein, Guillermo

    2014-01-01

    Many woody bamboo species are forest understory plants that become invasive after disturbance. They can grow rapidly forming a dense, nearly monospecific understory that inhibits tree regeneration. The principal aim of this study was to understand what functional traits of bamboos allow them to outcompete tree seedlings and saplings and become successful species in the semideciduous Atlantic Forests of northeastern Argentina. We studied leaf and whole-plant functional traits of two bamboo species of the genus Chusquea and five co-occurring saplings of common tree species growing under similar solar radiation and soil nutrient availabilities. Nutrient addition had no effect on bamboo or tree sapling survival and growth after two years. Tree species with high-light requirements had higher growth rates and developed relatively thin leaves with high photosynthetic capacity per unit leaf area and short leaf life-span when growing in gaps, but had lower survival rates in the understory. The opposite pattern was observed in shade-tolerant species that were able to survive in the understory but had lower photosynthetic capacity and growth than light-requiring species in gaps. Bamboos exhibited a high plasticity in functional traits and leaf characteristics that enabled them to grow rapidly in gaps (e.g., higher photosynthetic capacity per unit dry mass and clonal reproduction in gaps than in the understory) but at the same time to tolerate closed-canopy conditions (they had thinner leaves and a relatively longer leaf life-span in the understory compared to gaps). Photosynthetic capacity per unit dry mass was higher in bamboos than in trees. Bamboo plasticity in key functional traits, such as clonal reproduction at the plant level and leaves with a relatively low C cost and high photosynthesis rates, allows them to colonize disturbed forests with consequences at the community and ecosystem levels. Increasing disturbance in some forests worldwide will likely enhance bamboo

  14. A novel potassium channel in photosynthetic cyanobacteria.

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  15. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  16. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  17. Electrochemical and optical studies of model photosynthetic systems

    1992-01-15

    The objective of this research is to obtain a better understanding of the relationship between the structural organization of photosynthetic pigments and their spectroscopic and electrochemical properties. Defined model systems were studied first. These included the least ordered (solutions) through the most highly ordered (Langmuir-Blodgett (LB) monolayers and self-assembled monolayers) systems containing BChl, BPheo, and UQ. Molecules other than the photosynthetic pigments and quinones were also examined, including chromophores (i.e. surface active cyanine dyes and phtahlocyanines) an redox active compounds (methyl viologen (MV) and surfactant ferrocenes), in order to develop the techniques needed to study the photosynthetic components. Because the chlorophylls are photosensitive and labile, it was easier first to develop procedures using stable species. Three different techniques were used to characterize these model systems. These included electrochemical techniques for determining the standard oxidation and reduction potentials of the photosynthetic components as well as methods for determining the heterogeneous electron transfer rate constants for BChl and BPheo at metal electrodes (Pt and Au). Resonance Raman (RR) and surface enhanced resonance Raman (SERR) spectroscopy were used to determine the spectra of the photosynthetic pigments and model compounds. SERRS was also used to study several types of photosynthetic preparations.

  18. Surface Sampler Arm Acquiring Sample

    1976-01-01

    Operation of the surface sampler in obtaining Martian soil for Viking 2's molecular analysis experiment last Saturday (September 25) was closely monitored by one of the Lander cameras because of the precision required in trenching the small area--8 by 9 inches-surrounded by rocks. Dubbed 'Bonneville Salt Flats,' the exposure of thin crust appeared unique in contrast with surrounding materials and became a prime target for organic analysis in spite of potential hazards. Large rock in foreground is 8 inches high. At left, the sampler scoop has touched the surface, missing the rock at upper left by a comfortable 6 inches, and the backhoe has penetrated the surface about one-half inch. The scoop was then pulled back to sample the desired point and (second photo) the backhoe furrowed the surface pulling a piece of thin crust toward the spacecraft. The initial touchdown and retraction sequence was used to avoid a collision between a rock in the shadow of the arm and a plate joining the arm and scoop. The rock was cleared by 2 to 3 inches. The third picture was taken 8 minutes after the scoop touched the surface and shows that the collector head has acquired a quantity of soil. With surface sampler withdrawn (right), the foot-long trench is seen between the rocks. The trench is three inches wide and about 1 1/2 to 2 inches deep. The scoop reached to within 3 inches of the rock at far end of trench. Penetration appears to have left a cavernous opening roofed by the crust and only about one inch of undisturbed crust separates the deformed surface and the rock.

  19. Personality Traits and Social Inequality

    Guijarro Usobiaga, Jan

    2015-01-01

    During many decades, sociologists have downplayed the role that personality traits play in shaping individual’s lives. However, recent studies, mostly in economics, have shown the influence of these traits on a several educational and occupational outcomes. This thesis is an attempt to shed more light on this topic. By using longitudinal data from the German Socio-Economic Panel, it first investigates how the Big Five personality traits affect two important labor market outcomes: unemployment...

  20. Unemployment duration and personality traits

    Uysal, Selver; Pohlmeier, Winfried

    2010-01-01

    This paper focuses on the role personality traits play in determining individual unemployment duration. We argue that a worker's job search intensity is decisively driven by her personality traits, reflected in her propensity to motivate and control herself while searching for a job. Moreover, personality traits, in as far as they can be signaled to a potential employer, may also enhance the probability of receiving and accepting a job offer. For our econometric duration analysis, we use the ...

  1. Social Status and Personality Traits

    Alessandro Bucciol; Barbara Cavasso; Luca Zarri

    2014-01-01

    In this study we provide direct evidence on the relationship between social status and personality traits. Using survey data from the 2006-2012 waves of the HRS, we show that individuals’ self-perceived social status is associated with all the “Big Five” personality traits, after controlling for observable characteristics that arguably reflect one’s actual status. We also construct an objective status measure that in turn is influenced by personality traits. Objectively measured status is pos...

  2. 17 CFR 210.8-06 - Real estate operations acquired or to be acquired.

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Real estate operations acquired or to be acquired. 210.8-06 Section 210.8-06 Commodity and Securities Exchanges SECURITIES AND... Statements of Smaller Reporting Companies § 210.8-06 Real estate operations acquired or to be acquired....

  3. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. PMID:25923517

  4. A single origin of the photosynthetic organelle in different Paulinella lineages

    Ishida Ken-ichiro

    2009-05-01

    Full Text Available Abstract Background Gaining the ability to photosynthesize was a key event in eukaryotic evolution because algae and plants form the base of the food chain on our planet. The eukaryotic machines of photosynthesis are plastids (e.g., chloroplast in plants that evolved from cyanobacteria through primary endosymbiosis. Our knowledge of plastid evolution, however, remains limited because the primary endosymbiosis occurred more than a billion years ago. In this context, the thecate "green amoeba" Paulinella chromatophora is remarkable because it very recently (i.e., minimum age of ≈ 60 million years ago acquired a photosynthetic organelle (termed a "chromatophore"; i.e., plastid via an independent primary endosymbiosis involving a Prochlorococcus or Synechococcus-like cyanobacterium. All data regarding P. chromatophora stem from a single isolate from Germany (strain M0880/a. Here we brought into culture a novel photosynthetic Paulinella strain (FK01 and generated molecular sequence data from these cells and from four different cell samples, all isolated from freshwater habitats in Japan. Our study had two aims. The first was to compare and contrast cell ultrastructure of the M0880/a and FK01 strains using scanning electron microscopy. The second was to assess the phylogenetic diversity of photosynthetic Paulinella to test the hypothesis they share a vertically inherited plastid that originated in their common ancestor. Results Comparative morphological analyses show that Paulinella FK01 cells are smaller than M0880/a and differ with respect to the number of scales per column. There are more distinctive, multiple fine pores on the external surface of FK01 than in M0880/a. Molecular phylogenetic analyses using multiple gene markers demonstrate these strains are genetically distinct and likely comprise separate species. The well-supported monophyly of the Paulinella chromatophora strains analyzed here using plastid-encoded 16S rRNA suggests strongly

  5. Stoicism and Sensation Seeking: Male Vulnerabilities for the Acquired Capability for Suicide

    Witte, Tracy K.; Gordon, Kathryn H.; Smith, Phillip N.; Van Orden, Kimberly A.

    2012-01-01

    Our aim was to investigate two personality traits (i.e., stoicism and sensation seeking) that may account for well-established gender differences in suicide, within the framework of the interpersonal theory of suicide. This theory proposes that acquired capability for suicide, a construct comprised of pain insensitivity and fearlessness about death, explains gender differences in suicide. Across two samples of undergraduates (N = 185 and N = 363), men demonstrated significantly greater levels...

  6. Photosynthetic and Molecular Markers of CO2-mediated Photosynthetic Downregulation in Nodulated Alfalfa

    (A)lvaro Sanz-Sáez; Gorka Erice; Iker Aranjuelo; Ricardo Aroca; Juan Manuel Ruíz-Lozano; Jone Aguirreolea; Juan José Irigoyen

    2013-01-01

    Elevated CO2 leads to a decrease in potential net photosynthesis in long-term experiments and thus to a reduction in potential growth.This process is known as photosynthetic downregulation.There is no agreement on the definition of which parameters are the most sensitive for detecting CO2 acclimation.In order to investigate the most sensitive photosynthetic and molecular markers of CO2 acclimation,the effects of elevated CO2,and associated elevated temperature were analyzed in alfalfa plants inoculated with different Sinorhizobium meliloti strains.Plants (Medicago sativa L.cv.Aragón) were grown in summer or autumn in temperature gradient greenhouses (TGG).At the end of the experiment,all plants showed acclimation in both seasons,especially under elevated summer temperatures.This was probably due to the lower nitrogen (N) availability caused by decreased N2-fixation under higher temperatures.Photosynthesis measured at growth CO2 concentration,rubisco in vitro activity and maximum rate of carboxylation were the most sensitive parameters for detecting downregulation.Severe acclimation was also related with decreases in leaf nitrogen content associated with declines in rubisco content (large and small subunits) and activity that resulted in a drop in photosynthesis.Despite the sensitivity of rubisco content as a marker of acclimation,it was not coordinated with gene expression,possibly due to a lag between gene transcription and protein translation.

  7. Variability of anatomical-physiological traits in black locust clones - Robinia pseudoacacia L

    Orlović Saša S.

    2004-01-01

    Full Text Available Variability within R. pseudoacacia species represents an important factor in selection of fast-growing genotypes. Therefore, it is important to identify superior individuals according to their anatomical and physiological traits. This paper presents the results of a study of genotype variability of the main leaf anatomical (frequency, length and width of stomata, leaflet thickness among veins, leaflet thickness on the main vein, mesophyll thickness, length and width of vascular bundle of main vein and physiological (leaf area, photosynthetic pigments content and content of N P, K, Ca, Na parameters among five clones of Robinia pseudoacacia L. Significant interclonal variations were observed in the investigated parameters. Clone R-56 had the highest N, P, and K concentrations, the largest mesophyll volume and the highest pigment concentration. We concluded that the clone R-56, although without a remarkable leaf area, possesses the ability for high photosynthetic production. The results are going to be used in further work on selection.

  8. Estimating plant traits of grasslands from UAV-acquired hyperspectral images

    Capolupo, Alessandra; Kooistra, Lammert; Berendonk, Clara; Boccia, Lorenzo; Suomalainen, Juha

    2015-01-01

    Grassland ecosystems cover around 40% of the entire Earth's surface. Therefore, it is necessary to guarantee good grassland management at field scale in order to improve its conservation and to achieve optimal growth. This study identified the most appropriate statistical strategy, between partia

  9. How trait anxiety, interpretation bias and memory affect acquired fear in children learning about new animals

    Field, Zoë C; Field, Andy P.

    2013-01-01

    Cognitive models of vulnerability to anxiety propose that information processing biases such as interpretation bias play a part in the etiology and maintenance of anxiety disorders. However, at present little is known about the role of memory in information processing accounts of child anxiety. The current study investigates the relationships between interpretation biases, memory and fear responses when learning about new stimuli. Children (aged 8-11 years) were presented with ambiguous infor...

  10. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 10/01/2002. This report marks the end of year 2 of a three-year project as well as the milestone date for completion of Phase I activities. This report includes our current status and defines the steps being taken to ensure that we meet the project goals by the end of year 3. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the third quarter of 2002 include: Organisms and Growth Surfaces: (1) Test results continue to indicate that thermophilic cyanobacteria have significant advantages as agents for practical photosynthetic CO{sub 2} mitigation before mesophilic forms. (2) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in YNP. (3) Back to back tests show that there is no detectable difference in the growth of isolate 1.2 s.c. (2) in standard and Ca-modified BG-11 medium. The doubling time for both cases was about 12 hours. (4) The cultivation of cyanobacteria in Ca-BG medium should proceed in the pH range between 7 and 7.4, but this suggestion requires additional experiments. (5) Cyanobacteria can be grown in media where sodium is present at trace levels. (6) Ca{sup 2+} enriched medium can be used as a sink for CO{sub 2} under alkaline conditions. (7) Cyanobacteria are able to generate cones of filaments on travertine surfaces. [Travertine is a mixture of CaCO{sub 3} and CaSO{sub 4}]. We hypothesize that SO{sub 4}{sup 2-} stimulates the generation of such cones, because they are not almost generated on CaCO3 surface. On the other hand, we know that plant gas contains elevated

  11. Giraffe browsing in response to plant traits

    Mahenya, Obeid; Ndjamba, Johannes Kambinda; Mathisen, Karen Marie; Skarpe, Christina

    2016-08-01

    Intake rates by large herbivores are governed by among other things plant traits. We used Masai giraffe (Giraffa camelopardalis tippelskirchi Matschie) as study animals, testing whether they as very large browsers would follow the Jarman-Bell principle and maximize intake rate while tolerating low forage quality. We worked in Arusha National Park, Tanzania. We investigated how intake rate was determined by bite mass and bite rate, and show that bite mass and bite rate were determined by plant characteristics, governed by inherent plant traits, plant traits acquired from previous years' browsing, and season. We predicted that; (1) bite mass would be larger in trees without spines than with (2) bite mass would be larger in the wet season than in the dry, (3) bite rate would be higher in spinescent trees than in non-spinescent, (4) bite rate and/or bite mass would increase with previous years' browsing, (5) bite mass, bite rate or browsing time per tree would be highest for high trees with large, although still available canopies. Visual observations were used to collect data on tree attributes, number of bites taken and time of browsing. Sample size was 132 observed giraffe. We found that bite mass was larger in spineless than in spinescent trees and was larger in the wet season than in the dry. Bite rate, but not bite mass, increased with increasing browsing in previous years and was highest on two to three meter high trees and in spinescent trees. Intake rate followed bite mass more than bite rate and was higher in spineless than in spinescent trees, higher in the wet season than in the dry, and tended to increase with tree height. Giraffe did not prioritize the highest intake rate, but browsed much on Acacias giving a high quality diet but a low intake rate.

  12. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-04-16

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/03/2001 through 4/02/2001. Many of the activities and accomplishments are continuations of work initiated and reported in last quarter's status report. Major activities and accomplishments for this quarter include: Three sites in Yellowstone National Park have been identified that may contain suitable organisms for use in a bioreactor; Full-scale culturing of one thermophilic organism from Yellowstone has progressed to the point that there is a sufficient quantity to test this organism in the model-scale bioreactor; The effects of the additive monoethanolamine on the growth of one thermophilic organism from Yellowstone has been tested; Testing of growth surface adhesion and properties is continuing; Construction of a larger model-scale bioreactor to improve and expand testing capabilities is completed and the facility is undergoing proof tests; Model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on organism growth rates are continuing; Alternative fiber optic based deep-penetration light delivery systems for use in the pilot-scale bioreactor have been designed, constructed and tested; An existing slug flow reactor system has been modified for use in this project, and a proof-of-concept test plan has been developed for the slug flow reactor; Research and testing of water-jet harvesting techniques is continuing, and a harvesting system has been designed for use in the model-scale bioreactor; and The investigation of comparative digital image analysis as a means for determining the ''density'' of algae on a growth surface is continuing Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  13. Mapping Quantitative Trait Loci Controlling Endosperm Traits with Molecular Marker

    XU Chen-wu; LI Tao; SUN Chang-sen; GU Shi-liang

    2002-01-01

    Based on the genetic models for triploid endosperm traits and on the methods for mapping diploid quantitative traits loci (QTLs), the genetic constitutions, components of means and genetic variances of QTL controlling endosperm traits under flanking marker genotypes of different generations were presented. From these results, a multiple linear regression method for mapping QTL underlying endosperm traits in cereals was proposed, which used the means of endosperm traits under flanking marker genotypes as a dependent variable, the coefficient of additive effect ( d ) and dominance effect ( h 1 and/or h2 ) of a putative QTL in a given interval as independent variables. This method can work at any position in a genome covered by markers and increase the estimation precision of QTL location and their effects by eliminating the interference of other relative QTLs. This method can also be easily used in other uneven data such as markers and quantitative traits detected or measured in plants and tissues different either in generations or at chromosomal ploidy levels, and in endosperm traits controlled by complicated genetic models considering the effects produced by genotypes of both maternal plants and seeds on them.

  14. [Effects of soil phosphorus level on morphological and photosynthetic characteristics of Ageratina adenophora and chromolaena odorata].

    Wang, Manlia; Feng, Yulong; Li, Xin

    2006-04-01

    In this paper, a comparative study was made on the growth, morphology, biomass allocation, and photosynthesis of two invasive plant species Ageratina adenophora and Chromolaena odorata under five soil phosphorus levels, aimed to know how the test plant species acclimate to the changes of soil phosphorus level, evaluate which plant traits were associated with the invasiveness of the two species, and know whether the increased level of soil phosphorus could facilitate their invasion. The results showed that the two species had considerable phenotypic plasticity and ? phosphorus acclimation ability. At low phosphorus levels, their root mass ratio increased, which could enhance the nutrient capture ability, while at high phosphorus levels, their specific leaf area, maximum net photosynthetic rate, light saturation point, and chlorophyll and carotenoid contents per unit area were high, and the assimilative capacity and area increased, which could facilitate their carbon gain. A. adenophora had higher phosphorus acclimation ability than C. odorata. With the increase of phosphorous level, the relative growth rate, total biomass, branch number, leaf area index, and maximum net photosynthetic rate of the two species increased significantly, and most of the parameters were not decreased significantly under over-optimal phosphorus level. The two species could grow better under high phosphorus levels which were usually excessive and/or harmful for most native species, and enhanced soil phosphorus level might promote their invasion. At high phosphorus levels, the two invasive plant species might shade out native species through increasing their plant height, branch number, and leaf area index. The two species could maintain relatively high growth rate under high phosphorus levels in dry season when native plant species almost stopped growing. The ability that the invasive plant species could temporally use natural resources which native plant species could not use was also

  15. Principles of light harvesting from single photosynthetic complexes.

    Schlau-Cohen, G S

    2015-06-01

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate. PMID:26052423

  16. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  17. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  18. Quantitative Trait Loci for Fertility Traits in Finnish Ayrshire Cattle

    Schulman, Nina F; Sahana, Goutam; Lund, Mogens S;

    2008-01-01

    A whole genome scan was carried out to detect quantitative trait loci (QTL) for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate...... effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments...

  19. Acquired Zinc Deficiency in an Adult Female

    Mohanan Saritha; Divya Gupta; Laxmisha Chandrashekar; Devinder M Thappa; Nachiappa G Rajesh

    2012-01-01

    Acrodermatitis enteropathica is an autosomal recessive inherited disorder of zinc absorption. Acquired cases are reported occasionally in patients with eating disorders or Crohn′s disease. We report a 24-year-old housewife with acquired isolated severe zinc deficiency with no other comorbidities to highlight the rare occurrence of isolated nutritional zinc deficiency in an otherwise normal patient.

  20. And the Winner is – Acquired

    Henkel, Joachim; Rønde, Thomas; Wagner, Marcus

    value in case of success—that is, a more radical innovation. In the second stage, successful entrants bid to be acquired by the incumbent. We assume that entrants cannot survive on their own, so being acquired amounts to a ‘prize’ in a contest. We identify an equilibrium in which the incumbent chooses...

  1. Acquired intrathoracic kidney in thoracic kyphosis

    Two cases of acquired intrathoracic kidney associated with thoracic kyphosis are reported, with emphasis on the radiographic manifestations. A search of the scientific literature disclosed that the acquired type of this abnormality is rare. The importance of recognizing this entity from a differential diagnostic standpoint is underscored. (author)

  2. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    Kloz, Miroslav [VU Univ., Amsterdam (Netherlands); Pillai, Smitha [Arizona State Univ., Tempe, AZ (United States); Kodis, Gerdenis [Arizona State Univ., Tempe, AZ (United States); Gust, Devens [Arizona State Univ., Tempe, AZ (United States); Moore, Thomas A. [Arizona State Univ., Tempe, AZ (United States); Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States); van Grondelle, Rienk [VU Univ., Amsterdam (Netherlands); Kennis, John T. M. [VU Univ., Amsterdam (Netherlands)

    2011-04-14

    . These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.

  3. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  4. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  5. Ecophysiological Traits May Explain the Abundance of Climbing Plant Species across the Light Gradient in a Temperate Rainforest

    Gianoli, Ernesto; Saldaña, Alfredo; Jiménez-Castillo, Mylthon

    2012-01-01

    Climbing plants are a key component of rainforests, but mechanistic approaches to their distribution and abundance are scarce. In a southern temperate rainforest, we addressed whether the dominance of climbing plants across light environments is associated with the expression of ecophysiological traits. In mature forest and canopy gaps, we measured leaf size, specific leaf area, photosynthetic rate, and dark respiration in six of the most abundant woody vines. Mean values of traits and their phenotypic change (%) between mature forest and canopy gaps were predictor variables. Leaf size and specific leaf area were not significantly associated with climbing plant dominance. Variation in gas-exchange traits between mature forest and canopy gaps explained, at least partly, the dominance of climbers in this forest. A greater increase in photosynthetic rate and a lower increase in dark respiration rate when canopy openings occur were related to the success of climbing plant species. Dominant climbers showed a strategy of maximizing exploitation of resource availability but minimizing metabolic costs. Results may reflect phenotypic plasticity or genetic differentiation in ecophysiological traits between light environments. It is suggested that the dominant climbers in this temperate rainforest would be able to cope with forest clearings due to human activities. PMID:22685611

  6. Energy transfer in real and artificial photosynthetic systems

    Hindman, J.C.; Hunt, J.E.; Katz, J.J.

    1995-02-01

    Fluorescence emission from the photosynthetic organisms Tribonema aequale, Anacystis nidulau, and Chlorelia vulgais and from some chlorophyll model systems have been recorded as a function of excitation wavelength and temperature. Considerable similarity was observed in the effects of excitation wavelength and temperature on the fluorescence from intact photosynthetic organisms and the model systems. The parallelism in behavior suggest that self-assembly processes may occur in both the in vivo and in vitro systems that give rise to chlorophyll species at low temperature that may differ significantly from those present at ambient temperatures.

  7. Photosynthetic bacteria as alternative energy sources: overview on hydrogen production research

    Mitsui, A.; Ohta, Y.; Frank, J.

    1979-01-01

    Hydrogen production research towards the application of marine and non-marine species of photosynthetic bacteria is reviewed. Potential use of photosynthetic bacteria as renewable energy resources is discussed.

  8. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature

  9. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-07-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2001 through 7/01/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, our efforts are focused on improving the design of the bioreactor test system, evaluating candidate organisms and growth surfaces, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the second quarter of 2002 include: Organisms and Growth Surfaces: (1) Our collection of cyanobacteria, isolated in YNP was increased to 15 unialgal cultures. (2) Illumination rate about 50 {micro}E/m{sup 2}/sec is not saturated for the growth of 1.2 s.c. (2) isolate. The decrease of illumination rate led to the decrease of doubling time of this isolate. (3) The positive effect of Ca{sup 2+} on the growth of isolate 1.2 s.c. (2) without Omnisil was revealed, though Ca{sup 2+} addition was indifferent for the growth of this isolate at the presence of Omnisil. (4) Calcium addition had a positive effect on the generation of cyanobacterial biofilm on Omnisil surface. (5) The survivability problems with the Tr9.4 organism on Omnisil screens in the CRF2 model-scale bioreactor have been solved. The problems were related to the method used to populate the growth surfaces. When pre-populated screens were placed in the bioreactor the microalgae died within 72 hours, but when the microalgae were cultured while in place in the bioreactor using a continuous-population method they grew well inside of the CRF2 test system and survived for the full 7-day test duration. CRF2 tests will continue as soon as the new combined drip system/harvesting system header pipe

  10. Enhanced Practical Photosynthetic CO2 Mitigation

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2003-07-22

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2003 through 7/01/2003. As indicated in the list of accomplishments below we have completed some long-term model scale bioreactor tests and are prepared to begin pilot scale bioreactor testing. Specific results and accomplishments for the second quarter of 2003 include: (1) Bioreactor support systems and test facilities: (a) Qualitative long-term survivability tests for S.C.1.2(2) on Omnisil have been successfully completed and results demonstrate a growth rate that appears to be acceptable. (b) Quantitative tests of long-term growth productivity for S.C.1.2(2) on Omnisil have been completed and initial results are promising. Initial results show that the mass of organisms doubled (from 54.9 grams to 109.8 grams) in about 5 weeks. Full results will be available as soon as all membranes and filters are completely dried. The growth rate should increase significantly with the initiation of weekly harvesting during the long term tests. (c) The phase 1 construction of the pilot scale bioreactor has been completed, including the solar collector and light distribution system. We are now in the phase of system improvement as we wait for CRF-2 results in order to be able to finalize the design and construction of the pilot scale system. (d) A mass transfer experimental setup was constructed in order to measure the mass transfer rate from the gas to the liquid film flowing over a membrane and to study the hydrodynamics of the liquid film flowing over a membrane in the bioreactor. Results were reported for mass transfer coefficient, film thickness, and fluid velocity over an Omnisil membrane with a ''drilled hole'' header pipe design. (2) Organisms and Growth Surfaces: (a) A selectivity approach was used to obtain a cyanobacterial culture with elevated resistance to acid pH. Microlonies of ''3

  11. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many

  12. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/3/2001 through 4/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, we are continuing to evaluate candidate organisms and growth surfaces, and we are expanding the test facilities in preparation for scaled up system-level testing. Specific results and accomplishments for the first quarter of 2002 include: Organisms and Growth Surfaces: (1) Isolate 1.2 s.c. (2) has been selected for further investigations because of its favorable growth properties. (2) Research on optimal conditions for the growth of cyanobacterial isolates from YNP should be carried out using distilled water which has more stable chemical parameters, although tap water use may be permissible during full scale operations (at the cost of longer organism doubling times). (3) Tr. 9.4 WF is able to generate a biofilm on an Omnisil surface. Over the long term Omnisil does not inhibit the growth of TR 9.4 isolate, though it does elongate the lag phase of growth of this isolate. (4) Initial survivability tests for the TR 9.4 organism on Omnisil screens in the CRF2 modelscale bioreactor are underway. We have experienced problems keeping the organisms alive for more than three days, but we are currently investigating several possible causes for this unexpected result. (5) Accelerated materials testing have shown that Omnisil fabric has acceptable strength properties for use in a practical bioreactor system. Bioreactor support systems and test facilities: (1) Several CO{sub 2} scrubbing experiments have been completed in the translating slug flow test system, however the error introduced by the

  13. Growth and photosynthetic responses of Scaevola sericea, a Hawaiian coastal shrub, to substrate salinity and salt spray

    Growth patterns, water relations, and photosynthetic traits in Scaevola sericea plants grown under different levels of substrate salinity and salt spray were studied. Scaevola sericea is a dominant shrub species in coastal strand ecosystems throughout the tropical and subtropical Pacific and Indian Oceans. Seventy-two cuttings from two coastal sites on the island of Oahu (Hawaii) were grown in a greenhouse under six treatments that resulted from the combination of three levels of substrate salinity (0, 100, and 335 mOsm kg-1) and two levels of simulated salt spray (0 and 1200 mg salt m-2 d-1). Several characteristics of S. sericea were strongly affected by substrate salinity but only weakly affected by salt spray. New stem and leaf biomass per plant decreased by ca. 65% as substrate salinity increased from 0 to 335 mOsm kg-1; photosynthetic rates decreased by only 20% over the same salinity range. Leaf sap osmolarity increased 300 mOsm kg-1 as substrate salinity changed from 0 to 335 mOsm kg-1, allowing the maintenance of a constant soil-to-leaf osmotic potential gradient favorable for water uptake even at higher salinity levels. Carboxylation capacity, determined by the initial slope of net CO2 assimilation—intercellular CO2 concentration relationships, remained constant for plants grown under different levels of salinities. The δ13C of leaves increased from -29.2% to -26.3% with increasing salinity and was associated with lower stomatal conductances but nearly unchanged photosynthetic rates. Scaevola sericea is capable of substantial growth and physiological responses, which apparently are required to maintain a positive carbon balance in coastal habitats characterized by large temporal and spatial variations in substrate salinity and salt spray levels. (author)

  14. Pregnancy outcomes amongst thalassemia traits

    Hanprasertpong, Tharangrut; Kor-anantakul, Ounjai; Leetanaporn, Roengsak; Suntharasaj, Thitima; Suwanrath, Chitkasaem; Pruksanusak, Ninlapa; Pranpanus, Savitree

    2013-01-01

    Objective To compare the pregnancy outcome between pregnancies affected and not affected by thalassemia trait. Methods A retrospective case–control cohort study was conducted on singleton pregnant women who attended antenatal care and delivered at Songklanagarind Hospital. All of the participating thalassemia trait pregnant women were diagnosed based on hemoglobin typing and/or DNA analysis. A ratio of around 1–1 was used to compare their pregnancy outcomes with normal pregnant women. Results...

  15. Personality Trait Change in Adulthood

    Roberts, Brent W.; Mroczek, Daniel

    2008-01-01

    Recent longitudinal and cross-sectional aging research has shown that personality traits continue to change in adulthood. In this article, we review the evidence for mean-level change in personality traits, as well as for individual differences in change across the life span. In terms of mean-level change, people show increased selfconfidence, warmth, self-control, and emotional stability with age. These changes predominate in young adulthood (age 20–40). Moreover, mean-level change in person...

  16. UV radiation, elevated CO2 and water stress effect on growth and photosynthetic characteristics in durum wheat

    The objective of this research was to investigate the changes in photosynthetic pigments and other physiological and biochemical traits of durum wheat exposed to ultraviolet A, B and C radiation, elevated CO2 and water stress. The results showed that carotenoids, anthocyanins, flavonoids and proline content increased significantly by decreasing ultraviolet wavelength. Elevated CO2 increased only height and specific leaf area. Water stress induced a significant increase in carotenoids, anthocyanins, flavonoids, proline and protein content. Interaction of UV-C and water stress in ambient CO2 increased UV screen pigments and proline content, while under elevated CO2 these increments were alleviated. Interaction among UV-C radiation, elevated CO2 and water stress demonstrated a significant decrease in Fv/Fm, chlorophyll, protein, carbohydrates and specific leaf area compared to control. The results of this experiment illustrate that increased UV radiation and water stress induces an increase of screen pigments and elevated CO2 prevents accumulation of these pigments

  17. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers

    Blankenship, R. E.

    1994-01-01

    Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.

  18. Enhancing Medicares Hospital Acquired Conditions Policy

    U.S. Department of Health & Human Services — The current Medicare policy of non-payment to hospitals for Hospital Acquired Conditions (HAC) seeks to avoid payment for preventable complications identified...

  19. Hospital-Acquired Condition Reduction Program

    U.S. Department of Health & Human Services — In October 2014, CMS began reducing Medicare payments for subsection (d) hospitals that rank in the worst performing quartile with respect to hospital-acquired...

  20. Acquired Inventors’ Productivity after Horizontal Acquisition

    Colombo, Massimo G.; Moreira, Solon; Rabbiosi, Larissa

    Effective integration of the R&D functions of the acquired and acquiring firms is essential for knowledge recombination after acquisition. However, prior research suggests that the post-acquisition integration process often damages the inventive labor force. We argue that an examination of the mu......Effective integration of the R&D functions of the acquired and acquiring firms is essential for knowledge recombination after acquisition. However, prior research suggests that the post-acquisition integration process often damages the inventive labor force. We argue that an examination...... of the multifaceted nature of the integration process further enhances our understanding of which conditions will be more or less detrimental for corporate inventors. We focus on R&D teams which are the immediate organizational context in which inventors operate and drawing on insights from learning theory...

  1. Infections acquired in clinical laboratories in Utah.

    Jacobson, J.T.; Orlob, R B; Clayton, J L

    1985-01-01

    We reviewed laboratory-acquired infections occurring in Utah from 1978 through 1982. Written and telephone interviews of supervisors of 1,191 laboratorians revealed an estimated annual incidence of 3 laboratory-acquired infections per 1,000 employees. Infections, in order of frequency, included hepatitis B (clinical cases), shigellosis, pharyngitis, cellulitis, tuberculosis (skin test conversion), conjunctivitis, and non-A, non-B hepatitis. One-half of large laboratories (over 25 employees), ...

  2. The Acquired Immunodeficiency Syndrome: current status.

    Quagliarello, V.

    1982-01-01

    A recently recognized syndrome of acquired immunodeficiency (Acquired Immunodeficiency Syndrome-AIDS) has arisen since June 1981. It has received international attention. The clinical spectrum consists of repeated opportunistic infections, rare malignancies, and autoimmune phenomena, occurring in previously healthy adults with no history of an immunologic disorder. The population subset at risk for this syndrome appears to be predominantly homosexual American males and intravenous drug abuser...

  3. Shotgun Genome Sequence of the Large Purple Photosynthetic Bacterium Rhodospirillum photometricum DSM122

    Duquesne, K.; Sturgis, James N.

    2012-01-01

    Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.

  4. Heat shock response in photosynthetic organisms: membrane and lipid connections.

    I. Horvath; A. Glatz; H. Nakamoto; M.L. Mishkind; T. Munnik; Y. Saidi; P. Goloubinoff; J.L. Harwood; L. Vigh

    2012-01-01

    The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as

  5. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to extracting pigments by a…

  6. Gene expression responses in photosynthetic tissues to herbicides and pathogens

    When plants are attacked by pathogens, the photosynthetic tissue is often dramatically affected. The chloroplasts within this tissue can participate in defense by being a source of many plant secondary metabolites that serve as defense signaling compounds, antioxidants, and phytoalexins. The chlorop...

  7. Photosynthetic incorporation of 14C by Stevia rebaudiana

    The photosynthetic incorporation of 14 by Stevia rebaudiana specimens was investigated. The 14C incorporation, when the isotope was furnished to the plant in form of 14CO2, was rapid. After 24 hours, the radioactivity has been incorporated into a great number of compounds including pigments, terpenes, glucose, cellulose and also stevioside and its derivatives. (M.A.C.)

  8. Coherent memory functions for finite systems: hexagonal photosynthetic unit

    Coherent memory functions entering the Generalized Master Equation are presented for an hexagonal model of a photosynthetic unit. Influence of an energy heterogeneity on an exciton transfer is an antenna system as well as to a reaction center is investigated. (author). 9 refs, 3 figs

  9. Effect of maize seed laser irradiation on plant photosynthetic activity

    Investigations were made with the two hybrids, H-708 and Px-20. The seeds were irradiated by a helium-neon quantum generator (L'vov-1 Electronica) with output power of 24 MW and 632.8 nm wave length. Once and twice irradiated seeds were sown on the 2nd, 5th and 10th day post irradiation. Changes in leaf area, chlorophyll content in the leaves, photosynthetic rate and its dependence on temperature and light, transpiration, stomatal resistance to CO2 and total dry matter of the overground plant part were traced. Seed irradiation with laser rays did not affect the chlorophyll content of the leaves. The photosynthetic rate did not depend on the cultivar characteristics of the crop. Single and repeated irradiation of the hybrid H-708 in most case enhanced photosynthetic rate, but a similar effect was not observed in Px-20. Transpiration and CO2 stomatal resistance were not equally affected by radiation. Laser rays enhanced the ability of the photosynthetic apparatus of the entire plants to use more efficiently high light intensities. The leaf area and the total plant dry matter increased in case of sowing on the 2nd and 5th day and a single irradiation and in case of sowing on the 5th and 10th day and twice repeated irradiations

  10. Changes in foliar carbon isotope composition and seasonal stomatal conductance reveal adaptive traits in Mediterranean coppices affected by drought

    Giovanni Di Matteo; Luigi Perini; Paolo Atzori; Paolo De Angelis; Tiziano Mei; Giada Bertini; Gianfranco Fabbio; Giuseppe Scarascia Mugnozza

    2014-01-01

    We estimated water-use efficiency and potential photosyn-thetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in two Mediterranean coppice forests. We used standard tech-niques for quantifying gas exchange and carbon isotopes in leaves and analyzed total chlorophyll, carotenoids and nitrogen in leaves collected from Mediterranean forests managed under the coppice system. We pos-tulated that responses to drought of coppiced trees would lead to differ-ential responses in physiological traits and that these traits could be used by foresters to adapt to predicted warming and drying in the Mediterra-nean area. We observed physiological responses of the coppiced trees that suggested acclimation in photosynthetic potential and water-use effi-ciency:(1) a significant reduction in stomatal conductance (p<0.01) was recorded as the drought increased at the SW site;(2) foliarδ13C increased as drought increased at the SW site (p<0.01);(3) variations in levels of carotenoids and foliar nitrogen, and differences in foliar morphology were recorded, and were tentatively attributed to variation in photosyn-thetic assimilation between sites. These findings increase knowledge of the capacity for acclimation of managed forests in the Mediterranean region of Europe.

  11. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand. PMID:17721788

  12. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 1/01/2003. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the first quarter of 2003 include: Organisms and Growth Surfaces: (1) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in the West Thumb area of YNP. New samples were isolated and are being cultured in glass tubes. (2) We checked the motile ability of 8.2.1 Synechococcus s.c. (10) and 3.2.2 Synechococcus s.c. 6. It was found that unicellular isolates 8.2.1 Synechococcus s.c. (10) and 3.2.2 Synechococcus s.c. 1 are phototaxic. Isolate 3.2.2 Synechococcus s.c. 1 currently consists of two populations: one population appears to be positive phototaxic, and second population appears negative phototaxis to the same level of light. This means that the character of screen illumination should be uniform and reasonable for cyanobacterial cells. (3) The aeration of growth media with 5% CO{sub 2} in air stimulates cyanobacterial growth 10-20 times over that with air alone. It is possible the rate of the stimulation of cyanobacterial growth in CRF will be higher because cyanobacteria will be grown as a biofilm. We plan to increase the concentration to 15% CO{sub 2} in air. (4) We are continuing the organizing of our collection of the thermophilic cyanobacteria isolated from Yellowstone National Park. During this reporting period we transferred about 160 samples and discarded about 80 samples with weak growth in standard media as BG-11, D or DH. As result of this work we currently have 13 unialgal cultures of thermophilic

  13. Enhanced Practical Photosynthetic CO2 Mitigation

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2006-01-15

    This final report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the period from 10/1/2001 through 01/02/2006. As indicated in the list of accomplishments below, our efforts during this project were focused on the selection of candidate organisms and growth surfaces and initiating long-term tests in the bench-scale and pilot-scale bioreactor test systems. Specific results and accomplishments for the program include: (1) CRF-2 test system: (a) Sampling test results have shown that the initial mass of algae loaded into the Carbon Recycling Facility Version 2 (CRF-2) system can be estimated with about 3% uncertainty using a statistical sampling procedure. (b) The pressure shim header pipe insert design was shown to have better flow for harvesting than the drilled-hole design. (c) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units, with increased flow capacity and a modified pipe-end-sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. Qualitative system tests showed that the harvesting system performed wonderfully, cleaning the growth surfaces within a matter of seconds. (d) Qualitative tests have shown that organisms can be repopulated on a harvested section of a bioreactor screen, demonstrating that continuous bioreactor operation is feasible, with continuous cycles of harvesting and repopulating screens. (e) Final preparations are underway for quantitative, long-term tests in the CRF-2 with weekly harvesting. (2) Pilot-scale test system: (a) The construction of the pilot-scale bioreactor was completed, including the solar collector and light distribution system. Over the course of the project, the solar collector used in the light delivery system showed some degradation, but

  14. Interindividual Variation in Functionally Adapted Trait Sets Is Established During Postnatal Growth and Predictable Based on Bone Robustness

    Pandey, Nirnimesh; Bhola, Siddharth; Goldstone, Andrew; Chen, Fred; Chrzanowski, Jessica; Terranova, Carl J.; Ghillani, Richard; Jepsen, Karl J.

    2009-01-01

    Adults acquire unique sets of morphological and tissue-quality bone traits that are predictable based on robustness and deterministic of strength and fragility. How and when individual trait sets arise during growth has not been established. Longitudinal structural changes of the metacarpal diaphysis were measured for boys and girls from 3 mo to 8 yr of age using hand radiographs obtained from the Bolton-Brush collection. Robustness varied ∼2-fold among boys and girls, and individual values w...

  15. Changes in photosynthetic carbon metabolism in senescent leaves of chickpea, Cicer arietinum L.

    Chandrashekhar V. Murumkar

    2014-02-01

    Full Text Available Photosynthetic processes in mature and senescent leaves of chickpea (Cicer arietinum L. have been compared. With age, leaf photosynthetic pigments viz. chlorophyll a, chlorophyll b and carotenoids, and rate of 14°C fixation were considerably affected. Analysis of δ13C, and short term photosynthetic products showed no major change in the path of photosynthetic carbon fixation. Study of long term photosynthetic 14C assimilation revealed that in old senescent leaves, 14C incorporation into organic acid and sugar fractions was enhanced.

  16. Do Acquirer Capabilities Affect Acquisition Performance? Examining Strategic and Effectiveness Capabilities in Acquirers

    Mudde, Paul A.; Brush, Thomas

    2006-01-01

    This paper examines acquisition performance from the perspective of acquirer capabilities. It argues that the strategic capabilities underpinning a firm’s competitive strategy can be utilized to create economic value in acquisitions. Acquirers with strong cost leadership capabilities are expected to leverage these capabilities to reduce post-acquisition costs as they integrate acquisition targets. Acquirers with strong differentiation capabilities are expected to utilize their strategic capab...

  17. Expectancies and Self-Efficacy Mediate the Effects of Impulsivity on Marijuana Use Outcomes: An Application of the Acquired Preparedness Model

    Hayaki, Jumi; Herman, Debra S.; Hagerty, Claire E.; de Dios, Marcel A.; Anderson, Bradley J.; Stein, Michael D.

    2010-01-01

    This study tests the acquired preparedness model (APM) to explain associations among trait impulsivity, social learning principles, and marijuana use outcomes in a community sample of female marijuana users. The APM states that individuals with high-risk dispositions are more likely to acquire certain types of learning that, in turn, instigate problematic substance use behaviors. In this study, three domains of psychosocial learning were tested: positive and negative marijuana use expectancie...

  18. Anatomical variation in Cactaceae and relatives: Trait lability and evolutionary innovation.

    Ogburn, R Matthew; Edwards, Erika J

    2009-02-01

    The cacti have undergone extensive specialization in their evolutionary history, providing an excellent system in which to address large-scale questions of morphological and physiological adaptation. Recent molecular phylogenetic studies suggest that (1) Pereskia, the leafy genus long interpreted as the sister group of all other cacti, is likely paraphyletic, and (2) Cactaceae are nested within a paraphyletic Portulacaceae as a member of the "ACPT" clade (Anacampseroteae, Cactaceae, Portulaca, and Talinum). We collected new data on the vegetative anatomy of the ACPT clade and relatives to evaluate whether patterns in the distributions of traits may provide insight into early events in the evolutionary transition to the cactus life form. Many traits had high levels of homoplasy and were mostly equivocal with regard to infraclade relationships of ACPT, although several characters do lend further support to a paraphyletic Pereskia. These include a thick stem cuticle, prominent stem mucilage cells, and hypodermal calcium oxalate druses, all of which are likely to be important traits for stem water storage and photosynthesis. We hypothesize that high lability of many putative "precursor" traits may have been critical in generating the organismal context necessary for the evolution of an efficient and integrated photosynthetic stem. PMID:21628195

  19. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  20. Acquired angioedema secondary to hormone replacement therapy

    Malani Kumar

    2005-10-01

    Full Text Available Angioedema is a potentially life threatening condition and may be either inherited or acquired. The latter is rare with only a handful of cases reported in the world literature. Presenting complaints are often vague. Those most commonly described include swelling in the subcutaneous and submucosal tissues. Patients presenting with laryngeal edema have high mortality, and high clinical suspicion is necessary to avoid instrumentation, which can precipitate laryngeal spasm. We present a review of reported cases of hormonally induced hereditary angioedema, along with a report of a patient with acquired angioedema secondary to hormone replacement therapy. To the best of our knowledge, this case probably represents the first reported case of acquired angioedema secondary to hormone replacement therapy.

  1. Personal traits, cohabitation, and marriage.

    French, Michael T; Popovici, Ioana; Robins, Philip K; Homer, Jenny F

    2014-05-01

    This study examines how personal traits affect the likelihood of entering into a cohabitating or marital relationship using a competing risk survival model with cohabitation and marriage as competing outcomes. The data are from Waves 1, 3, and 4 of the National Longitudinal Study of Adolescent Health, a rich dataset with a large sample of young adults (N=9835). A personal traits index is constructed from interviewer-assessed scores on the respondents' physical attractiveness, personality, and grooming. Having a higher score on the personal traits index is associated with a greater hazard of entering into a marital relationship for men and women, but the score does not have a significant influence on entering into a cohabitating relationship. Numerous sensitivity tests support the core findings. PMID:24576635

  2. Flow of light energy in benthic photosynthetic microbial mats

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  3. Genetics of reproductive traits: Antagonisms with production traits

    Animal breeding and reproductive physiology have been closely related throughout the history of animal production science, because artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. The addition of genetic techn...

  4. Quantitative trait loci for male reproductive traits in beef cattle.

    Casas, E; Lunstra, D D; Stone, R T

    2004-12-01

    The objective of the present study was to detect quantitative trait loci (QTL) for male reproductive traits in a half-sib family from a Bos indicus (Brahman) x Bos taurus (Hereford) sire. The sire was mated with MARC III (1/4 Hereford, 1/4 Angus, 1/4 Red Poll and 1/4 Pinzgauer) cows. Testicular traits were measured from 126 male offspring born in 1996 and castrated at 8.5 months. Traits analysed were concentration of follicle stimulating hormone in peripheral blood at castration (FSH), paired testicular weight (PTW) and paired testicular volume (PTV) adjusted for age of dam, calculated age at puberty (AGE), and body weight at castration (BYW). A putative QTL was observed for FSH on chromosome 5. The maximum F-statistic was detected at 70 cM from the beginning of the linkage group. Animals inheriting the Hereford allele had a 2.47-ng/ml higher concentration of FSH than those inheriting the Brahman allele. Evidence also suggests the existence of a putative QTL on chromosome 29 for PTW, PTV, AGE and BYW. The maximum F-statistic was detected at cM 44 from the beginning of the linkage group for PTW, PTV and AGE, and at cM 52 for BYW. Animals that inherited the Brahman allele at this chromosomal region had a 45-g heavier PTW, a 42-cm(3) greater PTV, a 39-day younger AGE and a 22.8-kg heavier BYW, compared with those inheriting the Hereford allele. This is the first report of QTL for male reproductive traits in cattle. PMID:15566467

  5. A novel multipoint measuring system of photosynthetically active radiation

    A novel multipoint measuring system of photosynthetically active radiation (PAR) has been designed. It is used as a component of a field measurement system of photosynthesis. The system consists of a multichannel fiberoptic sensor, Intel 486-based microcomputer (PC) with software for control and analysis and interface electronics. The fiberoptic sensor comprises 800 measuring points which are arranged in a regular grid on a plane. This grid is attached to a cuvette to observe the spatial and temporal distribution of PAR falling on the needles along with simultaneous measurements of CO2 exchange. PAR is registered through a fiberoptic bundle using a charge coupled device (CCD) sensor. The system has been in operation between July and October 1996 within a Scots pine canopy. The results demonstrate that the obtained regression between the photosynthetic rate estimated with the multipoint PAR measuring system and the measured CO2 exchange rate is as tight within a canopy as in unshaded conditions. (author)

  6. Challenges and Perspectives in Designing Artificial Photosynthetic Systems.

    Zhou, Han; Yan, Runyu; Zhang, Di; Fan, Tongxiang

    2016-07-11

    The development of artificial photosynthetic systems for water splitting and CO2 reduction on a large scale for practical applications is the ultimate goal towards worldwide sustainability. This Concept highlights the state-of-the-art research trends of artificial photosynthesis concepts and designs from some new perspectives. Particularly, it is focused on five important aspects for the design of promising artificial photosynthetic systems: 1) catalyst development, 2) architecture design, 3) device buildup 4) mechanism exploration, and 5) theoretical investigations. Some typical progress and challenges, the most significant milestones achieved to date, as well as possible future directions are illustrated and discussed. This Concept article presents a selection of new developments to highlight new trends and possibilities, main barriers, or challenges; with this, we hope to inspire more advances in the field of artificial photosynthesis. PMID:27138858

  7. Detection of circular polarization in light scattered from photosynthetic microbes

    Sparks, William B; Germer, Thomas A; Chen, Feng; DasSarma, Shiladitya; DasSarma, Priya; Robb, Frank T; Manset, Nadine; Kolokolova, Ludmilla; Reid, Neill; Macchetto, F Duccio; Martin, William; 10.1073/pnas.0810215106

    2009-01-01

    The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Due to the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches.

  8. Spatial coherence of thermal photons favors photosynthetic life

    Manrique, Pedro; Caycedo-Soler, Felipe; Rodríguez, Ferney; Quiroga, Luis; Johnson, Neil

    2015-01-01

    Harvesting of sunlight underpins Life on Earth as well as driving novel energy device design. Though several experiments suggest that excitation energy transport and charge separation within a photosynthetic membrane may benefit from the quantum nature of their dynamics, the effects of spatial coherences in the incident light have been largely ignored. Here we show that spatial correlations in the incident light likely play an important role in trapping light and adding robustness, as well as providing a driving mechanism for an organism's adaptation toward more ordered structures. Our theory is grounded by empirical inputs, while its output is validated against testable predictions. Our results suggest that spatiotemporal correlations between photons, a fundamental property of the quantum world, should play a key role in our understanding of early Life and in improving the design of artificial photosynthetic systems.

  9. Electron transfer pathway analysis in bacterial photosynthetic reaction center

    Kitoh-Nishioka, Hirotaka

    2016-01-01

    A new computational scheme to analyze electron transfer (ET) pathways in large biomolecules is presented with applications to ETs in bacterial photosynthetic reaction center. It consists of a linear combination of fragment molecular orbitals and an electron tunneling current analysis, which enables an efficient first-principles analysis of ET pathways in large biomolecules. The scheme has been applied to the ET from menaquinone to ubiquinone via nonheme iron complex in bacterial photosynthetic reaction center. It has revealed that not only the central Fe$^{2+}$ ion but also particular histidine ligands are involved in the ET pathways in such a way to mitigate perturbations that can be caused by metal ion substitution and depletion, which elucidates the experimentally observed insensitivity of the ET rate to these perturbations.

  10. Anatomical structure of moss leaves and their photosynthetic activity

    Jan Krupa

    2014-02-01

    Full Text Available The photosynthetic activity of the leaf area unit increases depending on the degree of differentiation of the anatomical structure of the leaves of six chosen moss species. There is a correlation between the leaf area and the degree of differentiation of the anatomical structure resulting in enlargement of the area of contact of the assimilating cells with air. The leaves of Catharinea undulata having a one-layer blade and provided with several lamellae show a higher photosynthesis per 1 cm2 of their surface than the one-layer leaves of Mniurnm or Funaria. Aloina leaves are the smallest in area among those of the moss species discussed, however, their photosynthetic rate is almost 4.5 times higher than in Funaria leaves. By analogy to the structure of leaves and their function in vascular, plants, these changes and correlations may be considered as attempts of primeval adaptation of mosses to terrestrial conditions of living.

  11. VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress1[OPEN

    Zhang, Lingang; Kondo, Hideki

    2016-01-01

    Integrity of biomembranes is vital to living organisms. In bacteria, PspA is considered to act as repairing damaged membrane by forming large supercomplexes in Arabidopsis (Arabidopsis thaliana). Vulnerable to oxidative stress, photosynthetic organisms also contain a PspA ortholog called VIPP1, which has an additional C-terminal tail (Vc). In this study, Vc was shown to coincide with an intrinsically disordered region, and the role of VIPP1 in membrane protection against stress was investigated. We visualized VIPP1 by fusing it to GFP (VIPP1-GFP that fully complemented lethal vipp1 mutations), and investigated its behavior in vivo with live imaging. The intrinsically disordered nature of Vc enabled VIPP1 to form what appeared to be functional particles along envelopes, whereas the deletion of Vc caused excessive association of the VIPP1 particles, preventing their active movement for membrane protection. Expression of VIPP1 lacking Vc complemented vipp1 mutation, but exhibited sensitivity to heat shock stress. Conversely, transgenic plants over-expressing VIPP1 showed enhanced tolerance against heat shock, suggesting that Vc negatively regulates VIPP1 particle association and acts in maintaining membrane integrity. Our data thus indicate that VIPP1 is involved in the maintenance of photosynthetic membranes. During evolution, chloroplasts have acquired enhanced tolerance against membrane stress by incorporating a disordered C-terminal tail into VIPP1. PMID:27208228

  12. Antagonistic coevolution between quantitative and Mendelian traits.

    Yamamichi, Masato; Ellner, Stephen P

    2016-03-30

    Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator-prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species. PMID:27009218

  13. Group Treatment in Acquired Brain Injury Rehabilitation

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  14. Immunomodulation in community-acquired pneumonia

    Remmelts, H.H.F.

    2013-01-01

    Community-acquired pneumonia (CAP) is a common disease with considerable morbidity and mortality, despite effective antibiotic treatment. In this thesis, we showed that the major causative microorganisms in CAP trigger distinct inflammatory response profiles in the host. While an inflammatory respon

  15. Sexually acquired Salmonella Typhi urinary tract infection.

    Wielding, Sally; Scott, Gordon

    2016-05-01

    We report a case of isolated urinarySalmonella entericaserotype Typhi in an HIV-positive man who has sex with men. He was clinically well and blood and stool cultures were negative, indicating that this may have been a sexually acquired urinary tract infection. PMID:25953964

  16. Acquired secondary Grynfeltt's hernia: a case report

    Lumbar hernia is a rare condition whose diagnosis is hardly achieved. The prevalence is higher in elderly men. The present case report describes the case of a male, 78-year-old patient who underwent pleural effusion drainage 17 years before presenting with clinical manifestations and tomographic findings compatible with acquired secondary Grynfeltt's hernia. (author)

  17. Prevention of hospital-acquired hyponatraemia

    Lunøe, Mathilde; Overgaard-Steensen, C

    2015-01-01

    prevention of hospital-acquired hyponatraemia is an understanding of what determines plasma sodium concentration (P-[Na(+) ]) in the individual patient. P-[Na(+) ] is determined by balances of water and cations according to Edelman. This paper discusses the mechanisms influencing water and cation balances...

  18. Support Network Responses to Acquired Brain Injury

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  19. Interviewing Children with Acquired Brain Injury (ABI)

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  20. Monitoring Agitated Behavior After acquired Brain Injury

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek

    2015-01-01

    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...

  1. Photosynthetic activity in rice seedlings infected with Piricularia oryzae Cavara

    Changes in photosynthetic activity in the rice seedlings infected with piricularia oryzae Cavara (blast disease) were examined comparing with the non-infected seedlings. The assimilated 14C radioactivity was about 50% lower in the infected rice seedlings than in the non-infected seedlings. A little difference in the distribution of 14C radioactivity was observed. The 14C activity in the cationic fraction of ethanol soluble fractions was a little higher in the infected seedling. (auth.)

  2. Enhanced Practical Photosynthetic CO2 Mitigation. Quarterly Technical Report

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO2 Mitigation Project during the ending 12/31/2004. Specific results and accomplishments for the program include review of pilot scale testing and design of a new bioreactor. Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing

  3. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.

    Shabnam, Nisha; Pardha-Saradhi, P

    2013-01-01

    In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au³⁺ solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³⁺ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³⁺ to Au⁰ which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³⁺ to Au⁰ to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles. PMID:23976990

  4. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.

    Nisha Shabnam

    Full Text Available In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant and Spinacia oleracea (a terrestrial plant turned Au³⁺ solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³⁺ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³⁺ to Au⁰ which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³⁺ to Au⁰ to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles.

  5. RNA function and phosphorus use by photosynthetic organisms

    Raven, John A.

    2013-01-01

    Phosphorus (P) in RNA accounts for half or more of the total non-storage P in oxygenic photolithotrophs grown in either P-replete or P-limiting growth conditions. Since many natural environments are P-limited for photosynthetic primary productivity, and peak phosphorus fertilizer production is inevitable, the paper analyses what economies in P allocation to RNA could, in principle, increase P-use efficiency of growth (rate of dry matter production per unit organism P). The possibilities of de...

  6. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana...

  7. Effect of clinostating on photosynthetic apparatus of pea plants

    Kochubey, S. M.; Volovik, O. I.; Porubleva, L. V.; Shevchenko, V. V.

    The photosynthetic membrane composition and low temperature fluorescence spectra were analyzed for pea chloroplasts from control and clinostated plants. Clinorotation induces a decrease in the amount of the oligomeric form of the light-harvesting chlorophyll a/b complex (LHCII) and an increase of its monomeric form. Some changes in organization of photosystem 1 (PS1) complex were revealed as well. These changes are in accordance with the variations of fluorescence characteristics and photochemical activity.

  8. Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae)

    Kim, Jong Im; Linton, Eric W.; Shin, Woongghi

    2015-01-01

    To establish taxonomy and understand phylogenetic relationships among strains and species of the photosynthetic euglenoids, we performed phylogenetic analyses based on a four gene sequence dataset (nr SSU and LSU rDNA, and pt SSU and LSU rDNA) from 343 taxa (including three outgroup). The phylogenetic tree based on the combined dataset was split into two major clades: Euglenaceae and Phacaceae. The family Euglenaceae was a well-supported monophyletic group containing eight genera (Colacium, C...

  9. Variation potential influence on photosynthetic cyclic electron flow in pea

    Sukhov, Vladimir; Surova, Lyubov; Sherstneva, Oksana; Katicheva, Lyubov; Vodeneev, Vladimir

    2015-01-01

    Cyclic electron flow is an important component of the total photosynthetic electron flow and participates in adaptation to the action of stressors. Local leaf stimulation induces electrical signals, including variation potential (VP), which inactivate photosynthesis; however, their influence on cyclic electron flow has not been investigated. The aim of this study was to investigate VP's influence on cyclic electron flow in pea (Pisum sativum L.). VP was induced in pea seedling leaves by local...

  10. Inheritance of photosynthetic rate and its selection for crop improvement

    Photosynthesis is the fundamental process of using solar energy as the basis for life. Although there is disagreement about whether photosynthesis under prevailing environmental conditions limits plant growth, it is worth examining if the efficiency of the process can be improved by genetic manipulation. Mutants appear to be most suitable for such studies. The paper reviews research concerning genetic control of C3/C4 pathways, photorespiration, photosynthetic rate, light intensity reaction, and CO2 concentration response. (author)

  11. Spatial coherence of thermal photons favors photosynthetic life

    Manrique, Pedro, Arquebisbe de Saragossa, altres; De Mendoza, Adriana; Caycedo-Soler, Felipe; Rodríguez, Ferney; Quiroga, Luis; Johnson, Neil

    2015-01-01

    Harvesting of sunlight underpins Life on Earth as well as driving novel energy device design. Though several experiments suggest that excitation energy transport and charge separation within a photosynthetic membrane may benefit from the quantum nature of their dynamics, the effects of spatial coherences in the incident light have been largely ignored. Here we show that spatial correlations in the incident light likely play an important role in trapping light and adding robustness, as well as...

  12. Quantum Coherent Dynamics at Ambient Temperature in Photosynthetic Molecules

    Walters, Zachary B.

    2011-01-01

    Photosynthetic antenna complexes are responsible for absorbing energy from sunlight and transmitting it to remote locations where it can be stored. Recent experiments have found that this process involves long-lived quantum coherence between pigment molecules, called chromophores, which make up these complexes. Expected to decay within 100 fs at room temperature, these coherences were instead found to persist for picosecond time scales, despite having no apparent isolation from the thermal en...

  13. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed. PMID:25777495

  14. Photosynthetic Reaction Centres – from Basic Research to Application Possibilities

    Krisztina NAGY

    2010-06-01

    Full Text Available There is no doubt that studying the photosynthetic conversion of light into chemical energy is extremely important in many points of view: 1 technical-in order to improve the utilization of the solar energy; 2 food production – to improve the photosynthetic production of plants in agriculture; 3 ecology – keeping the primer production in ecosystems in the biosphere balanced, etc. In the photosynthetic reaction centre protein, RC, light energy is converted by a quantum yield of almost unity. There is no such a system designed by human which is able to do that. The RC purified from purple bacteria provides an extremely unique system for studying the requirements for high efficiency conversion of light into electrochemical energy. Thanks to the recent structural (e.g. crystallography (Nobel prize to Michel, Deisenhofer, Huber and functional (Nobel prize to Marcus results together with the works of molecular biology, computer- and electro-techniques, a wealth of information made a relatively clear picture about the kinetics, energetics and stabilization of electron transport within this protein that opens possibilities for new generation practical applications. In this paper we provide a short summary of fields in which the reaction centre protein can be important from practical points of view.

  15. γ- Irradiation Effect: Variation of Photosynthetic Activity of Euglena

    2002-01-01

    Objective To study the effects of gamma-ray irradiation on carbon fixation (Specific production rate: SPR), CO2 utilization efficiency (CUE) and electron transfer rate (ETR) in the photosynthetic flagellate Euglena gracilis strain Z in a dose-response dependent manner. Methods Euglena cells were cultured in an inorganic nutrient medium containing ammonium chloride or proteose peptone. Cells were exposed to gamma-ray at 5 doses (0, 100, 250, 350, 500 Gy for water). Five days after irradiation, three photosynthetic activities were measured. SPR, which is a carbon uptake rate per unit carbon mass, was determined by 13C tracer methodology. CUE was evaluated using a relation of carbon isotope fractionation in Calvin cycle. ETR in photosystem II (PS II) was measured by a chlorophyll fluorescence analysis. Results Even at a dose of 500 Gy, 80 % of ETR of the non-irradiated control (0 Gy) was sustained, while SPR and CUE were about half the level in the non-irradiated control at 500 Gy. Furthermore, the dose response of ETR was considerably different from the others. Conclusion Our findings suggest that not only PS II but also the Calvin cycle in the photosynthetic system is affected by gamma ray irradiation.

  16. The Evolution of Light Stress Proteins in Photosynthetic Organisms

    Iwona Adamska

    2006-04-01

    Full Text Available The Elip (early light-inducible protein family in pro- and eukaryotic photosynthetic organisms consists of more than 100 different stress proteins. These proteins accumulate in photosynthetic membranes in response to light stress and have photoprotective functions. At the amino acid level, members of the Elip family are closely related to light-harvesting chlorophyll a/b-binding (Cab antenna proteins of photosystem I and II, present in higher plants and some algae. Based on their predicted secondary structure, members of the Elip family are divided into three groups: (a one-helix Hlips (high light-induced proteins, also called Scps (small Cab-like proteins or Ohps (one-helix proteins; (b two-helix Seps (stress-enhanced proteins; and (c three-helix Elips and related proteins. Despite having different physiological functions it is believed that eukaryotic three-helix Cab proteins evolved from the prokaryotic Hlips through a series of duplications and fusions. In this review we analyse the occurrence of Elip family members in various photosynthetic prokaryotic and eukaryotic organisms and discuss their evolutionary relationship with Cab proteins.

  17. A global scale mechanistic model of the photosynthetic capacity

    Ali, A. A.; Xu, C.; Rogers, A.; Fisher, R. A.; Wullschleger, S. D.; McDowell, N. G.; Massoud, E. C.; Vrugt, J. A.; Muss, J. D.; Fisher, J. B.; Reich, P. B.; Wilson, C. J.

    2015-08-01

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc, max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25 °C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed Vc, max25 and 65 % of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc, max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.

  18. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes.

    Tóth, Tünde N; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Győző; Kovács, László; Gombos, Zoltán; van Amerongen, Herbert

    2015-10-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of photosynthetic complexes in wild-type and various mutant strains of the cyanobacterium Synechocystis sp. PCC 6803. Although it is generally accepted that xanthophylls do not play a role in cyanobacterial photosynthesis in low-light conditions, we have found that the absence of xanthophylls leads to reduced oligomerization of photosystems I and II. This is remarkable because these complexes do not bind xanthophylls. Oligomerization is even more disturbed in crtH mutant cells, which show limited carotenoid synthesis; in these cells also the phycobilisomes are distorted despite the fact that these extramembranous light-harvesting complexes do not contain carotenoids. The number of phycocyanin rods connected to the phycobilisome core is strongly reduced leading to high amounts of unattached phycocyanin units. In the absence of carotenoids the overall organization of the thylakoid membranes is disturbed: Photosystem II is not formed, photosystem I hardly oligomerizes and the assembly of phycobilisomes remains incomplete. These data underline the importance of carotenoids in the structural and functional organization of the cyanobacterial photosynthetic machinery. PMID:26045333

  19. Improved hydrogen photoproduction from photosynthetic bacteria and green algae

    Weaver, P.F.; Lien, S.; Seibert, M.

    1979-01-01

    Photosynthetic bacteria evolve hydrogen at much higher rates than do other classes of photosynthetic microorganisms. In addition, they tolerate harsh environments, grow rapidly, and utilize both visible and near infrared light in photosynthesis. They do not split water, but this does not necessarily eliminate their potential use in future applied systems. They are easily manipulated genetically, and thus might be modified to metabolize common biomass waste materials in place of expensive defined organic substrates. Furthermore, the potential for increasing hydrogen photoproduction via genetic techniques is promising. Strains that partially degrade cellulose, have high photoproduction rates, or contain very large amounts of the enzymes associated with hydrogen metabolism have been isolated. Green algae also produce hydrogen but are capable of using water as a substrate. For example, C. reinhardi can evolve hydrogen and oxygen at a molar ratio approaching 2:1. Based upon effect of dichlorophenyl dimethylurea (a specific inhibitor of photosystem II, PSII) on hydrogen photoproduction in the wild type strain and upon results obtained with PSII mutants, one can demonstrate that water is the major source of electrons for hydrogen production. The potential efficiency of in vivo coupling between hydrogenase and the photosynthetic electron transport system is high. Up to 76% of the reductants generated by the electron transport system can be channeled directly to the enzyme for in vivo hydrogen production. Rates exceeding 170 ..mu..moles of H/sub 2/ mg Chl/sup -1/ hr/sup -1/ have been observed.

  20. Photosynthetic Reaction Centres-from Basic Research to Application

    László NAGY

    2010-06-01

    Full Text Available There is no doubt that studying the photosynthetic conversion of light into chemical energy is extremely important in many points of view; e.g., 1 technical-in order to improve the utilization of the solar energy; 2 food production-to improve the photosynthetic production of plants in agriculture; 3 ecology-keeping the primer production in ecosystems in the biosphere balanced, etc. In the photosynthetic reaction centre protein, RC, light energy is converted by a quantum yield of almost unity. There is no such a system designed by human which is able to do that. The RC purified from purple bacteria provides an extremely unique system for studying the requirements for high efficiency conversion of light into electrochemical energy. Thanks to the recent structural (e.g. crystallography (Nobel prize to Michel, Deisenhofer, Huber and functional (Nobel prize to Marcus results together with the works of molecular biology, computer- and electro-techniques, a wealth of information made a relatively clear picture about the kinetics, energetics and stabilization of electron transport within this protein that opens possibilities for new generation practical applications. In this paper we provide a short summary of fields in which the reaction centre protein can be important from practical points of view.

  1. A global scale mechanistic model of the photosynthetic capacity

    Xu, C.; Ali, A. A.; Fisher, R.; Wullschleger, S. D.; Rogers, A.; McDowell, N. G.; Wilson, C. J.

    2015-12-01

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc,max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25oC) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55% of the variation in observed Vc,max25 and 65% of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc,max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc,max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.

  2. A global scale mechanistic model of the photosynthetic capacity

    A. A. Ali

    2015-08-01

    Full Text Available Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc, max25 and the maximum electron transport rate (i.e., Jmax25 at a reference temperature (generally 25 °C is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0 to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed Vc, max25 and 65 % of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc, max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.

  3. The origin of cytosolic ATP in photosynthetic cells.

    Gardeström, Per; Igamberdiev, Abir U

    2016-07-01

    In photosynthetically active cells, both chloroplasts and mitochondria have the capacity to produce ATP via photophosphorylation and oxidative phosphorylation, respectively. Thus, theoretically, both organelles could provide ATP for the cytosol, but the extent, to which they actually do this, and how the process is regulated, both remain unclear. Most of the evidence discussed comes from experiments with rapid fractionation of isolated protoplasts subjected to different treatments in combination with application of specific inhibitors. The results obtained indicate that, under conditions where ATP demand for photosynthetic CO2 fixation is sufficiently high, the mitochondria supply the bulk of ATP for the cytosol. In contrast, under stress conditions where CO2 fixation is severely limited, ATP will build up in chloroplasts and it can then be exported to the cytosol, by metabolite shuttle mechanisms. Thus, depending on the conditions, either mitochondria or chloroplasts can supply the bulk of ATP for the cytosol. This supply of ATP is discussed in relation to the idea that mitochondrial functions may be tuned to provide an optimal environment for the chloroplast. By balancing cellular redox states, mitochondria can contribute to an optimal photosynthetic capacity. PMID:27087668

  4. Photosynthetic efficiency of Pedunculate oak seedlings under simulated water stress

    Popović Zorica

    2010-01-01

    Full Text Available Photosynthetic performance of seedlings of Quercus robur exposed to short-term water stress in the laboratory conditions was assessed through the method of induced fluorometry. The substrate for seedlings was clayey loam, with the dominant texture fraction made of silt, followed by clay and fine sand, with total porosity 68.2%. Seedlings were separated in two groups: control (C (soil water regime in pots was maintained at the level of field water capacity and treated (water-stressed, WS (soil water regime was maintained in the range of wilting point and lentocapillary capacity. The photosynthetic efficiency was 0.642±0.25 and 0.522±0.024 (WS and C, respectively, which was mostly due to transplantation disturbances and sporadic leaf chlorosis. During the experiment Fv/Fm decreased in both groups (0.551±0.0100 and 0.427±0.018 in C and WS, respectively. Our results showed significant differences between stressed and control group, in regard to both observed parameters (Fv/Fm and T½. Photosynthetic efficiency of pedunculate oak seedlings was significantly affected by short-term water stress, but to a lesser extent than by sufficient watering.

  5. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis.

    Niinemets, Ülo

    2016-05-01

    Within-canopy variation in leaf structural and photosynthetic characteristics is a major means by which whole canopy photosynthesis is maximized at given total canopy nitrogen. As key acclimatory modifications, leaf nitrogen content (N A) and photosynthetic capacity (A A) per unit area increase with increasing light availability in the canopy and these increases are associated with increases in leaf dry mass per unit area (M A) and/or nitrogen content per dry mass and/or allocation. However, leaf functional characteristics change with increasing leaf age during leaf development and aging, but the importance of these alterations for within-canopy trait gradients is unknown. I conducted a meta-analysis based on 71 canopies that were sampled at different time periods or, in evergreens, included measurements for different-aged leaves to understand how within-canopy variations in leaf traits (trait plasticity) depend on leaf age. The analysis demonstrated that in evergreen woody species, M A and N A plasticity decreased with increasing leaf age, but the change in A A plasticity was less suggesting a certain re-acclimation of A A to altered light. In deciduous woody species, M A and N A gradients in flush-type species increased during leaf development and were almost invariable through the rest of the season, while in continuously leaf-forming species, the trait gradients increased constantly with increasing leaf age. In forbs, N A plasticity increased, while in grasses, N A plasticity decreased with increasing leaf age, reflecting life form differences in age-dependent changes in light availability and in nitrogen resorption for growth of generative organs. Although more work is needed to improve the coverage of age-dependent plasticity changes in some plant life forms, I argue that the age-dependent variation in trait plasticity uncovered in this study is large enough to warrant incorporation in simulations of canopy photosynthesis through the growing period. PMID

  6. BIOLOGIAL TRAITS IN WALNUT BREEDING

    Balapanov I. M.

    2014-09-01

    Full Text Available The article provides a review of biological traits that could be useful for selection of the walnut in diverse conditions of its growth. The most important aspects of species biology are described as they are of primary importance for breeding programs in the countries with walnut crops

  7. Plant traits determine forest flammability

    Zylstra, Philip; Bradstock, Ross

    2016-04-01

    Carbon and nutrient cycles in forest ecosystems are influenced by their inherent flammability - a property determined by the traits of the component plant species that form the fuel and influence the micro climate of a fire. In the absence of a model capable of explaining the complexity of such a system however, flammability is frequently represented by simple metrics such as surface fuel load. The implications of modelling fire - flammability feedbacks using surface fuel load were examined and compared to a biophysical, mechanistic model (Forest Flammability Model) that incorporates the influence of structural plant traits (e.g. crown shape and spacing) and leaf traits (e.g. thickness, dimensions and moisture). Fuels burn with values of combustibility modelled from leaf traits, transferring convective heat along vectors defined by flame angle and with plume temperatures that decrease with distance from the flame. Flames are re-calculated in one-second time-steps, with new leaves within the plant, neighbouring plants or higher strata ignited when the modelled time to ignition is reached, and other leaves extinguishing when their modelled flame duration is exceeded. The relative influence of surface fuels, vegetation structure and plant leaf traits were examined by comparing flame heights modelled using three treatments that successively added these components within the FFM. Validation was performed across a diverse range of eucalypt forests burnt under widely varying conditions during a forest fire in the Brindabella Ranges west of Canberra (ACT) in 2003. Flame heights ranged from 10 cm to more than 20 m, with an average of 4 m. When modelled from surface fuels alone, flame heights were on average 1.5m smaller than observed values, and were predicted within the error range 28% of the time. The addition of plant structure produced predicted flame heights that were on average 1.5m larger than observed, but were correct 53% of the time. The over-prediction in this

  8. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms.

    Hori, Koichi; Nobusawa, Takashi; Watanabe, Tei; Madoka, Yuka; Suzuki, Hideyuki; Shibata, Daisuke; Shimojima, Mie; Ohta, Hiroyuki

    2016-09-01

    In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27108062

  9. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination

  10. Fear Inhibition in High Trait Anxiety

    Merel Kindt; Marieke Soeter

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear [1]. Sixty undergraduate students participated in the study - High Trait Anxious: n = 28 and Low Trait Anxious: n =...

  11. Stability of personality traits in adulthood

    Allemand, Mathias; Gruenenfelder-Steiger, Andrea E; Patrick L. Hill

    2013-01-01

    Stability represents a fundamental concept in developmental theory and research. In this article we give an overview of recent work on personality traits and their stability in adulthood. First, we define personality traits and stability. Second, we present empirical evidence supporting change and stability of personality traits across the adult years with respect to conceptually and statistically different forms of stability. Third, we describe mechanisms and processes that enable trait stab...

  12. Calculation of the radiative properties of photosynthetic microorganisms

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  13. Calculation of the radiative properties of photosynthetic microorganisms

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers–Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  14. Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance.

    Maria Cristina Thaller

    Full Text Available BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i the abiotic conditions ensure to microbes good survival possibilities in the environment; ii the animal density and their habits favour microbial circulation between individuals; and iii there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  15. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus.

    Borghese, Roberto; Brucale, Marco; Fortunato, Gianuario; Lanzi, Massimiliano; Mezzi, Alessio; Valle, Francesco; Cavallini, Massimiliano; Zannoni, Davide

    2016-05-15

    The toxic oxyanion tellurite (TeO3(2-)) is acquired by cells of Rhodobacter capsulatus grown anaerobically in the light, via acetate permease ActP2 and then reduced to Te(0) in the cytoplasm as needle-like black precipitates. Interestingly, photosynthetic cultures of R. capsulatus can also generate Te(0) nanoprecipitates (TeNPs) outside the cells upon addition of the redox mediator lawsone (2-hydroxy-1,4-naphtoquinone). TeNPs generation kinetics were monitored to define the optimal conditions to produce TeNPs as a function of various carbon sources and lawsone concentration. We report that growing cultures over a 10 days period with daily additions of 1mM tellurite led to the accumulation in the growth medium of TeNPs with dimensions from 200 up to 600-700nm in length as determined by atomic force microscopy (AFM). This result suggests that nucleation of TeNPs takes place over the entire cell growth period although the addition of new tellurium Te(0) to pre-formed TeNPs is the main strategy used by R. capsulatus to generate TeNPs outside the cells. Finally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analysis of TeNPs indicate they are coated with an organic material which keeps the particles in solution in aqueous solvents. PMID:26894294

  16. Spectral Bio-indicator Simulations for Tracking Photosynthetic Activities in a Corn Field

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Huemmrich, K. Fred; Zhang, Qingyuan; Corp, Lawrence; Campbell, Petya; Kustas, William

    2011-01-01

    Accurate assessment of vegetation canopy optical properties plays a critical role in monitoring natural and managed ecosystems under environmental changes. In this context, radiative transfer (RT) models simulating vegetation canopy reflectance have been demonstrated to be a powerful tool for understanding and estimating spectral bio-indicators. In this study, two narrow band spectroradiometers were utilized to acquire observations over corn canopies for two summers. These in situ spectral data were then used to validate a two-layer Markov chain-based canopy reflectance model for simulating the Photochemical Reflectance Index (PRI), which has been widely used in recent vegetation photosynthetic light use efficiency (LUE) studies. The in situ PRI derived from narrow band hyperspectral reflectance exhibited clear responses to: 1) viewing geometry which affects the asset of light environment; and 2) seasonal variation corresponding to the growth stage. The RT model (ACRM) successfully simulated the responses to the variable viewing geometry. The best simulations were obtained when the model was set to run in the two layer mode using the sunlit leaves as the upper layer and shaded leaves as the lower layer. Simulated PRI values yielded much better correlations to in situ observations when the cornfield was dominated by green foliage during the early growth, vegetative and reproductive stages (r = 0.78 to 0.86) than in the later senescent stage (r = 0.65). Further sensitivity analyses were conducted to show the important influences of leaf area index (LAI) and the sunlit/shaded ratio on PRI observations.

  17. Traits Programming with AspectJ

    Denier, Simon

    2005-01-01

    Traits as defined by Schärli, Ducasse et al. allow for the explicit handling of a mean- ingful set of methods. This article presents an attempt to map the trait model from Smalltalk to the Java language. We use AspectJ introduction mechanism to do this. Thus we enlighten purposes of locality and reusability shared by traits and structural AOP.

  18. Which trait dissimilarity for functional diversity: trait means or trait overlap?

    de Bello, Francesco; Carmona, C. P.; Mason, N. W. H.; Sebastia, M.-T.; Lepš, Jan

    2013-01-01

    Roč. 24, č. 5 (2013), s. 807-819. ISSN 1100-9233 R&D Projects: GA ČR GAP505/12/1296 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : Biodiversity * Environmental filtering * Functional traits Subject RIV: EH - Ecology, Behaviour Impact factor: 3.372, year: 2013

  19. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits.

    Tuhina-Khatun, Mst; Hanafi, Mohamed M; Rafii Yusop, Mohd; Wong, M Y; Salleh, Faezah M; Ferdous, Jannatul

    2015-01-01

    Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g). The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO₂, and number of filled grains/panicle and yields/plant (g). Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g), which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future. PMID:26258135

  20. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L. Genotypes Based on Quantitative Traits

    Mst. Tuhina-Khatun

    2015-01-01

    Full Text Available Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g. The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2, and number of filled grains/panicle and yields/plant (g. Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g, which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future.

  1. Traits of Heracleum sosnowskyi Plants in Monostand on Invaded Area.

    Igor V Dalke

    Full Text Available The ability of giant hogweeds to form monodominant communities and even pure monostands in invaded areas has been well documented. Understanding of the mechanisms leading to monostand formation can aid in determining the limitations of existing community ecology models and establishing an effective management plan for invasive species elimination. The aim of this observational study was to investigate traits of Heracleum sosnowskyi plants (demography, canopy structure, morphology and physiology of the plants in a pure stand in an invaded area useful for understanding potential monostand formation mechanisms. All measurements were performed in one typical Heracleum sosnowskyi monostand located in an abandoned agriculture field located in Syktyvkar city suburb (North-east Russia. This monostand consisted of five main plant growth stages: seed, seedling, juvenile, vegetative adult, and generative adult. Plants of all stages began to grow simultaneously shortly after the snowmelt, at the same time as spring ephemeral plant species grew. The density of generative plants did not change during the vegetation period, but the density of the other plant stages rapidly decreased after the formation of a tall (up to 2-2.5 m and dense (Leaf area index up to 6.5 canopy. The canopy captured approximately 97% of the light. H. sosnowskyi showed high (several orders of magnitude higher than average taiga zone grasses photosynthetic water use efficiency (6-7 μM CO2/μM H2O. Formation of H. sosnowskyi monostands occurs primarily in disturbed areas with relatively rich and well-moistened soils. Early commencement of growth, rapid formation of a dense canopy, high efficiency of light and water use during photosynthesis, ability of young plants to survive in low light conditions, rapid recovery of above-ground plant parts after damage, and the high density of the soil seed bank are the most important traits of H. sosnowskyi plants for monostand formation in invaded

  2. Quantitative trait loci pyramiding for fruit quality traits in tomato

    Sacco, Adriana; Di Matteo, Antonio; Lombardi, Nadia; Trotta, Nikita; Punzo, Biancavaleria; Mari, Angela; Barone, Amalia

    2012-01-01

    Fruit quality is a major focus for most conventional and innovative tomato breeding strategies, with particular attention being paid to fruit antioxidant compounds. Tomatoes represent a major contribution to dietary nutrition worldwide and a reservoir of diverse antioxidant molecules. In a previous study, we identified two Solanum pennellii introgression lines (IL7-3 and IL12-4) harbouring quantitative trait loci (QTL) that increase the content of ascorbic acid (AsA), phenols and soluble soli...

  3. Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests

    Kangas, L.; Maanavilja, L.; Hájek, Tomáš; Juurola, E.; Chimner, R. A.; Mehtätalo, L.; Tuittila, E. S.

    2014-01-01

    Roč. 4, č. 4 (2014), s. 381-396. ISSN 2045-7758 Institutional support: RVO:67985939 Keywords : bryophyte * ecophysiology * peatland Subject RIV: EH - Ecology, Behaviour Impact factor: 2.320, year: 2014

  4. Processed pseudogenes acquired somatically during cancer development

    Cooke, Susanna L.; Shlien, Adam; Marshall, John; Pipinikas, Christodoulos P; Martincorena, Inigo; Tubio, Jose M. C.; Li, Yilong; Menzies, Andrew; Mudie, Laura; Ramakrishna, Manasa; Yates, Lucy; Davies, Helen; Bolli, Niccolo; Bignell, Graham R; Tarpey, Patrick S.

    2014-01-01

    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotransp...

  5. Earth Knowledge Acquired by Middle School Students

    Ride, Sally

    2008-01-01

    Earth Knowledge Acquired by Middle School Students (EarthKAM), an education activity, allows middle school students to program a digital camera on board the International Space Station to photograph a variety of geographical targets for study in the classroom. Photos are made available on the web for viewing and study by participating schools around the world. Educators use the images for projects involving Earth Science, geography, physics, and social science.

  6. Brucella abortus Infection Acquired in Microbiology Laboratories

    Fiori, Pier Luigi; Mastrandrea, Scilla; Rappelli, Paola; Cappuccinelli, Piero

    2000-01-01

    We report an outbreak of laboratory-acquired Brucella abortus infection originating in the accidental breakage of a centrifuge tube. A total of 12 laboratory workers were infected (attack rate of 31%), with an incubation time ranging from 6 weeks to 5 months. Antibody titers were evaluated weekly in all personnel exposed, allowing the diagnosis of the infection in most cases before the onset of clinical symptoms, so that specific therapy could be administrated.

  7. Acquired resistance to immunotherapy and future challenges.

    Restifo, Nicholas P; Smyth, Mark J; Snyder, Alexandra

    2016-02-01

    Advances in immunotherapy have resulted in remarkable clinical responses in some patients. However, one of the biggest challenges in cancer therapeutics is the development of resistant disease and disease progression on or after therapy. Given that many patients have now received various types of immunotherapy, we asked three scientists to give their views on the current evidence for whether acquired resistance to immunotherapy exists in patients and the future challenges posed by immunotherapy. PMID:26822578

  8. Molecular biological aspects of acquired bullous diseases

    Dabelsteen, Erik

    1998-01-01

    genes have been cloned. The antigens which react with autoantibodies from patients with bullous pemphigoid, cicatricial pemphigoid, acquired epidermolysis bullosa, and linear IgA disease are all proteins of the hemidesmosome basement membrane complex. Interestingly, most of the antigens also appear to...... be the target for mutations seen in patients with the inherited type of epidermolysis bullosa in which bullous lesions are a prominent clinical feature....

  9. Economics and Preventing Hospital-acquired Infection

    Graves, Nicholas

    2004-01-01

    The economics of preventing hospital-acquired infections is most often described in general terms. The underlying concepts and mechanisms are rarely made explicit but should be understood for research and policy-making. We define the key economic concepts and specify an illustrative model that uses hypothetical data to identify how two related questions might be addressed: 1) how much should be invested for infection control, and 2) what are the most appropriate infection-control programs? We...

  10. Immunological memory and acquired immunodeficiency syndrome pathogenesis.

    Kaur, A; Rosenzweig, M; Johnson, R. P.

    2000-01-01

    Infection with the human immunodeficiency virus results in profound perturbations in immunological memory, ultimately resulting in increased susceptibility to opportunistic infections and acquired immunodeficiency syndrome (AIDS). We have used rhesus macaques infected with the simian immunodeficiency virus (SIV) as a model to understand better the effects of AIDS virus infection on immunological memory. Acute infection with SIV resulted in significant deficits in CD4+ helper responses to cyto...

  11. A CMA position. Acquired immunodeficiency syndrome.

    1989-01-01

    The following general principles serve as guidelines for various bodies, health care professionals and the general public. Specific aspects of infection with human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) that relate to physicians' ethical responsibilities as well as society's moral obligations are discussed. Such matters include the need for education, research and treatment resources; the patient's right to investigation and treatment and to refusal of eith...

  12. Clinicopathological correlation of acquired hyperpigmentary disorders

    Anisha B Patel; Raj Kubba; Asha Kubba

    2013-01-01

    Acquired pigmentary disorders are group of heterogenous entities that share single, most significant, clinical feature, that is, dyspigmentation. Asians and Indians, in particular, are mostly affected. Although the classic morphologies and common treatment options of these conditions have been reviewed in the global dermatology literature, the value of histpathological evaluation has not been thoroughly explored. The importance of accurate diagnosis is emphasized here as the underlying diseas...

  13. Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system.

    Ryu, WonHyoung; Bai, Seoung-Jai; Park, Joong Sun; Huang, Zubin; Moseley, Jeffrey; Fabian, Tibor; Fasching, Rainer J; Grossman, Arthur R; Prinz, Fritz B

    2010-04-14

    There are numerous sources of bioenergy that are generated by photosynthetic processes, for example, lipids, alcohols, hydrogen, and polysaccharides. However, generally only a small fraction of solar energy absorbed by photosynthetic organisms is converted to a form of energy that can be readily exploited. To more efficiently use the solar energy harvested by photosynthetic organisms, we evaluated the feasibility of generating bioelectricity by directly extracting electrons from the photosynthetic electron transport chain before they are used to fix CO(2) into sugars and polysaccharides. From a living algal cell, Chlamydomonas reinhardtii, photosynthetic electrons (1.2 pA at 6000 mA/m(2)) were directly extracted without a mediator electron carrier by inserting a nanoelectrode into the algal chloroplast and applying an overvoltage. This result may represent an initial step in generating "high efficiency" bioelectricity by directly harvesting high energy photosynthetic electrons. PMID:20201533

  14. Photosynthetic performance of restored and natural mangroves under different environmental constraints.

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan

    2013-10-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. PMID:23872046

  15. MRI of fetal acquired brain lesions

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images

  16. MRI of fetal acquired brain lesions

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  17. Acquired Factor VIII Inhibitors: Three Cases

    Tay Za Kyaw

    2013-03-01

    Full Text Available Acquired hemophilia A is a rare, but devastating bleeding disorder caused by spontaneous development of autoantibodies directed against coagulation factor VIII. In 40%-50% of patients it is associated with such conditions as the postpartum period, malignancy, use of medications, and autoimmune diseases; however, its cause is unknown in most cases. Acquired hemophilia A should be suspected in patients that present with a coagulation abnormality, and a negative personal and family history of bleeding. Herein we report 3 patients with acquired hemophilia A that had different underlying pathologies, clinical presentations, and therapeutic responses. Factor VIII inhibitor formation in case 1 occurred 6 months after giving birth; underlying disorders were not identified in cases 2 or 3. The bleeding phenotype in these patients’ ranged from no bleeding tendency with isolated prolongation of APTT (activated partial thromboplastin time to severe intramuscular hematoma and hemarthrosis necessitating recombinant activated factor VII infusion and blood components transfusion. Variable responses to immunosuppressive treatment were also observed.

  18. Effect of gamma radiation on photosynthetic metabolism of Chlorella Pyrenoidosa studied by 14CO2

    The effect of five doses of gamma radiation (10, 100, 500, 1000 and 5000 Gy) on photosynthetic activity and metabolism of the primary products of photosynthesis has been studied on Chlorella pyrenoidosa cultures, by 14CO2 assimilation. The photosynthetic assimilation rate is remarkably depressed after irradiation at 500, 1000 and 5000 Gy doses, which also produce a significant change in radioactivity distribution pattern of primary compounds from photosynthetic metabolism after irradiation at 10 and 100 Gy. (author)

  19. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus

    Moseley, Jeffrey L.; Allinger, Tanja; Herzog, Sebastian; Hoerth, Patric; Wehinger, Elke; Merchant, Sabeeha; Hippler, Michael

    2002-01-01

    The molecular mechanisms underlying the onset of Fe-deficiency chlorosis and the maintenance of photosynthetic function in chlorotic chloroplasts are relevant to global photosynthetic productivity. We describe a series of graded responses of the photosynthetic apparatus to Fe-deficiency, including a novel response that occurs prior to the onset of chlorosis, namely the disconnection of the LHCI antenna from photosystem I (PSI). We propose that disconnection is mediated by a change in the phys...

  20. Photosynthetic response of soybean to twospotted spider mite (Acari: Tetranychydae) injury

    Adeney de Freitas Bueno; Regiane Cristina Oliveira de Freitas Bueno; Paul David Nabity; Leon George Higley; Odair Aparecido Fernandes

    2009-01-01

    The twospotted spider mite Tetranychus urticae Koch is a common pest on soybean plants. To clarify plant-arthropod interaction on mite-soybean system, leaf fluorescence, photosynthetic responses to variable carbon dioxide levels, and chlorophyll content were evaluated. Significant photosynthetic rate reduction was observed due to stomatal limitation. Stomatal closure was the major plant physiological response. As a consequence, there was reduction in photosynthetic rates. Surprisingly, plants...

  1. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    Oka, Hisaki

    2016-01-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on...

  2. Group-level traits emerge.

    Smaldino, Paul E

    2014-06-01

    Most commentators supported the thesis of the target article, though there were also those who were less fully persuaded. I will begin with a response to the most critical commentaries. First, I will justify an evolutionary perspective that includes group organization and nongenetic inheritance. Next, I will discuss the concept of emergence. Following that, I will transition to an exploration of ideas and concerns brought up by some of the more supportive commentators. This will include a discussion of different types of groups; the psychology of group-level traits; the uses and limitations of an institutional perspective; the link between transmission, adaptation, and selection; current and future methodologies; and the variety of fields that may benefit from a group-level traits perspective. PMID:25101360

  3. FRIENDSHIP FUNCTIONS AND PERSONALITY TRAITS

    Ivana Pedovic

    2009-09-01

    Full Text Available The goal of our study was exploration of the factor structure of the MFQ-FF inventory on a sample from Serbian population, and the relations of measures from this inventory (friendship functions with personality traits, as operationalized by the seven factor model proposed by Tellegen and Waller. For this purpose 154 University of Nis students completed the Serbian version of the MFQ-FF inventory and Lexi-70. The results show that factor structures of certain MFQ-FF scales devia-te somewhat from theoretical expectations. Confirmatory factor analysis produced relatively poor levels of fit, while exploratory factor analysis showed that loadings of five items differ substantially from theoretical expectations. As for correlations with personality traits, evaluative dimensions and negative emotionality were found to correlate with the MFQ-FF general factor, and correlations of specific functions with Openness to experience, Positive emotionality and Consciousness were also found. All obtained correlations were low.

  4. The stability of psychopathic traits in adolescent offenders

    Lee, Zina

    2006-01-01

    Psychopathy is a personality disorder characterized by a constellation of interpersonal, affective, and behavioural traits. The growing literature on adolescent psychopathic traits suggests psychopathic traits can be assessed reliably and the traits demonstrate construct validity. Psychopathic traits in adolescents are associated with a variety of negative outcomes, including violence and criminality. However, there is considerable debate about the assessment of psychopathic traits in adolesc...

  5. Bacteriocin Production: a Probiotic Trait?

    Dobson, Alleson; Cotter, Paul D.; Ross, R. Paul; Hill, Colin

    2012-01-01

    Bacteriocins are an abundant and diverse group of ribosomally synthesized antimicrobial peptides produced by bacteria and archaea. Traditionally, bacteriocin production has been considered an important trait in the selection of probiotic strains, but until recently, few studies have definitively demonstrated the impact of bacteriocin production on the ability of a strain to compete within complex microbial communities and/or positively influence the health of the host. Although research in th...

  6. Effect of temperature and light intensity on growth and photosynthetic activity of Chlamydomonas Reinhardtii

    The effect of five temperatures (15, 20, 25, 30 and 350C) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhardtii has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of CO2 labelled with C 14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 250C for the lower lavel of illumination (2400 lux) and at 350C for the higher one (13200 lux). These results suggest an interacton of temperature and illumination on photosynthetic activity. (author)

  7. Structure and function of pigment-protein complexes of photosynthetic microorganisms

    Herbstová, Miroslava

    2010-01-01

    Biochemical and biophysical methods in combination with electron microscopy were used to investigate structure and function of pigment-protein complexes in thylakoid membranes of various photosynthetic organisms.

  8. The relationships between photosynthetic rate and yield of densely planting corn

    The relationships between photosynthetic rate and yield of densely planting corn was studied by using 14C tracer technique. The results indicated that the photosynthetic rates of corn were not different between varied types. The photosynthetic rate was higher at 8:00 ∼ 16:00 of a day (50 ∼ 70 mg CO2/dm2·h). 80% of the photosynthetic assimilate in leaf of ear was transported to other organs, the amount of distribution in ear was 50% ∼ 60%. As densely planting increased the amount of ear per unit area, higher yield of corn was obtained

  9. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. PMID:24893751

  10. Evergreen shrub traits and peatland carbon cycling under high nutrient load

    Larmola, Tuula; Bui, Vi; Bubier, Jill L.; Wang, Meng; Murphy, Meaghan; Moore, Tim R.

    2016-04-01

    The reactive nitrogen (N) assimilated by plants is usually invested in chlorophyll to improve light harvesting capacity and in soluble proteins such as Rubisco to enhance carbon (C) assimilation. We studied the effects of simulated atmospheric N deposition on different traits of two evergreen shrubs Chamaedaphne calyculata and Rhododendron groenlandicum in a nutrient-poor Mer Bleue Bog, Canada that has been fertilized with N as NO3 and NH4 (2-8 times ambient annual wet deposition) with or without phosphorus (P) and potassium (K) for 7-12 years. We examined how nutrient addition influences the plant performance at leaf and canopy level and linked the trait responses with ecosystem C cycling. At the leaf level, we measured physiological and biochemical traits: CO2 exchange and chlorophyll fluorescence, an indicator of plant stress in terms of light harvesting capacity; and to study changes in photosynthetic nutrient use efficiency, we also determined the foliar chlorophyll, N, and P contents. At the canopy level, we examined morphological and phenological traits: growth responses and leaf longevity during two growing seasons. Regardless of treatment, the majority of leaves showed no signs of stress in terms of light harvesting capacity. The plants were N saturated: with increasing foliar N content, the higher proportion of N was not used in photosynthesis. Foliar net CO2 assimilation rates did not differ significantly among treatments, but the additions of N, P, and K together resulted in higher respiration rates. The analysis of the leaf and canopy traits showed that the two shrubs had different strategies: C. calyculata was more responsive to nutrient additions, more deciduous-like, whereas R. groenlandicum maintained evergreen features under nutrient load, shedding its leaves even later in the season. In all, simulated atmospheric N deposition did not benefit the photosynthetic apparatus of the dominant shrubs, but resulted in higher foliar respiration

  11. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees

  12. Carbon dioxide utilization and hydrogen production by photosynthetic microorganisms

    Aoyama, Katsuhiro [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan); Takasaki, Koichi [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan)]|[RITE, Project Center for CO2 Fixation and Utilization, Minato, Tokyo (Japan); Miyake, Jun; Asada, Yasuo [National Institute of Bioscience and Human-Technology, AIST/MITI, Tsukuba, Ibaraki (Japan)

    1999-07-01

    The solar energy is the largest energy source in the world. Using the photosynthesis, we will be able utilise the huge amount of carbon dioxide. Microalgae, cyanobacteria, photosynthetic bacteria belong to photosynthetic microorganisms, which assimilate carbon dioxide during the photosynthesis. One of the cyanobacteria, Spirulina platensis accumulates carbohydrate photoautotrophically up to 50% of the dry cell weight in the nitrogen-deficient condition. Under an anaerobic condition in the dark, it is degraded into organic compounds such as organic acids, alcohol and sugar. As the hydrogen gas is also evolved in this process, the participation of hydrogenase (Hydrogen producing enzyme) has been suggested in this metabolism. We have investigated several conditions of evolution of hydrogen and production of organic compounds. The bacterial concentration initial pH and temperature had significant effects on hydrogen evolution as well as production of organic compounds. When the bacterial cell concentration was high, the pH of fermentation products was reduced to acidic and the evolution of hydrogen tended to be inhibited. The profiles of fermentation products varied according to the culture condition. The increase of organic acids were remarkable in the inhibitory condition for hydrogen production, such as acidic pH and high temperature. Furthermore these fermentation products were converted into hydrogen gas by using photosynthetic bacterium Rhodobacter sphaeroides RV with light energy. The composition of evolved gas was mainly hydrogen and carbon dioxide, and their contents were 78% and 10%, respectively. The total amount of evolved hydrogen was nearly equal to the estimated, value which was calculated by the degradation of each organic acid. Combining this system with the photosynthesis of cyanobacteria, we could accomplish the production of hydrogen by solar energy, carbon dioxide and water. And we demonstrated that the evolved gas could be directly supplied to the

  13. Photoelectrochemical cells based on photosynthetic systems: a review

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  14. Photosynthetic contribution of the ear to grain filling in wheat: a comparison of different methodologies for evaluation.

    Sanchez-Bragado, Rut; Molero, Gemma; Reynolds, Matthew P; Araus, Jose Luis

    2016-04-01

    The culm (particularly the flag leaf) and the ear are believed to play a major role in providing assimilates for grain filling in wheat. However, the results obtained in the past varied depending on the methodology applied. Three different methodologies were compared that aimed to assess the relative contribution of the culm (photosynthetic organs below the ear) and the ear to grain filling. The first two consisted of applications of photosynthesis inhibition treatments, including the use of the herbicide DCMU and organ shading. The third was a non-intrusive method that compared the carbon isotope composition (δ(13)C) of mature kernels with the δ(13)C of the water-soluble fraction of the peduncle, awns and glumes. Several advanced CIMMYT lines were tested under good agronomic conditions. The δ(13)C approach assigned a higher photosynthetic contribution to the ear than to the culm. However, some methodological considerations should be taken into account when applying the δ(13)C approach, particularly the sampling method used, in order to prevent post-harvest respiration. The shading approach assigned a similar contribution to the ear as to the culm. The DCMU approach assigned a greater role to the culm but herbicide application to the culm affected the ear, thus biasing the final grain weight. Moreover DCMU and shading approaches may cause compensatory effects which overestimated the contribution of unaffected organs. This study may help to develop precise phenotyping tools to identify physiological traits such as ear photosynthesis that could contribute towards increasing grain yield. PMID:27012283

  15. Photosynthetic flexibility in maize exposed to salinity and shade

    Sharwood, Robert E.; Sonawane, Balasaheb V.; Ghannoum, Oula

    2014-01-01

    C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with carbon isotope discrimination and assaying the key carboxylases [ribulose-1,5-bisphosphate carboxyl...

  16. Evaluation of Serratia and Pseudomonas in hospital acquired infection

    Etemadi H; Zahedani Sh

    1996-01-01

    Hospital acquired infection have 2 origins: 1) Infections acquired from the hospitalization. 2) Infections that transmit from hospital personnel and those who referred to a hospital. According to the studies approximately half of hospital acquired infection is under the first group. Gram-negative bacilli is of prime importance from all bacteries that caused hospital acquired infection. There are 3 main ways spreading hospital acquired infections include: 1) Auto infections 2) Transmit infecti...

  17. Genetic algorithm based approach to optimize phenotypical traits of virtual rice.

    Ding, Weilong; Xu, Lifeng; Wei, Yang; Wu, Fuli; Zhu, Defeng; Zhang, Yuping; Max, Nelson

    2016-08-21

    How to select and combine good traits of rice to get high-production individuals is one of the key points in developing crop ideotype cultivation technologies. Existing cultivation methods for producing ideal plants, such as field trials and crop modeling, have some limits. In this paper, we propose a method based on a genetic algorithm (GA) and a functional-structural plant model (FSPM) to optimize plant types of virtual rice by dynamically adjusting phenotypical traits. In this algorithm, phenotypical traits such as leaf angles, plant heights, the maximum number of tiller, and the angle of tiller are considered as input parameters of our virtual rice model. We evaluate the photosynthetic output as a function of these parameters, and optimized them using a GA. This method has been implemented on GroIMP using the modeling language XL (eXtended L-System) and RGG (Relational Growth Grammar). A double haploid population of rice is adopted as test material in a case study. Our experimental results show that our method can not only optimize the parameters of rice plant type and increase the amount of light absorption, but can also significantly increase crop yield. PMID:27179460

  18. Sigmoid plate dehiscence: Congenital or acquired condition?

    Liu, Zhaohui, E-mail: lzhtrhos@163.com [Capital Medical University, Beijing Tongren Hospital, No 1 Dong Jiao Min Street, Dongcheng District, Beijing 100730 (China); Li, Jing, E-mail: lijingxbh@yahoo.com.cn [Capital Medical University, Beijing Tongren Hospital, No 1 Dong Jiao Min Street, Dongcheng District, Beijing 100730 (China); Zhao, Pengfei, E-mail: zhaopengf05@163.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Lv, Han, E-mail: chrislvhan@126.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Dong, Cheng, E-mail: derc007@sina.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Liu, Wenjuan, E-mail: wenjuanliu@163.com [Jining No. 1 People' s Hospital, No. 6 Health Street, Jining 272100 (China); Wang, Zhenchang, E-mail: cjr.wzhch@vip.163.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China)

    2015-05-15

    Highlights: • CT with multiplanar reformations can accurately display the sigmoid platet dehiscence. • The prevalence of sigmoid plate dehiscence was no significant difference among different age groups. • The size of sigmoid plate bony defects were not statistically different among different age groups. • The sigmoid plate dehiscence is more commonly a congenital than an acquired condition. - Abstract: Background and purpose: The imaging features of sigmoid plate dehiscence-induced pulsatile tinnitus have been presented. The origin of the sigmoid plate dehiscence, however, remains unclear. Our aim was to assess the prevalence and extent of sigmoid plate dehiscence on computed tomography (CT) images in multiple age groups to determine whether this condition is more likely to be congenital or acquired. Materials and methods: We retrospectively reviewed contrast-enhanced CT images of sigmoid plates of temporal bones in 504 patients. Each temporal bone was characterized as normal or dehiscent. Patients were then subcategorized into four age groups, and the prevalence and extent of dehiscent sigmoid plates in each group were calculated and compared. Results: Overall, 80 patients had sigmoid plate dehiscence, nine of whom had it bilaterally. In successively older age groups, the prevalences of sigmoid plate dehiscence were 18.9%, 20.1%, 14.5%, and 12.7%, respectively. Respective average anteroposterior bony defect diameters were 3.7 ± 1.7, 3.0 ± 1.3, 3.1 ± 1.5, and 3.0 ± 1.1 mm. Respective average vertical bony defect diameters were 3.6 ± 2.3, 2.6 ± 1.2, 3.2 ± 1.5, and 3.0 ± 1.7 mm. The prevalence and extent of sigmoid plate dehiscence were not statistically different among the four age groups. Conclusions: The similar radiologic prevalence and extent of dehiscent sigmoid plates among the age groups suggest that the dehiscence is more commonly a congenital than an acquired condition.

  19. Sigmoid plate dehiscence: Congenital or acquired condition?

    Highlights: • CT with multiplanar reformations can accurately display the sigmoid platet dehiscence. • The prevalence of sigmoid plate dehiscence was no significant difference among different age groups. • The size of sigmoid plate bony defects were not statistically different among different age groups. • The sigmoid plate dehiscence is more commonly a congenital than an acquired condition. - Abstract: Background and purpose: The imaging features of sigmoid plate dehiscence-induced pulsatile tinnitus have been presented. The origin of the sigmoid plate dehiscence, however, remains unclear. Our aim was to assess the prevalence and extent of sigmoid plate dehiscence on computed tomography (CT) images in multiple age groups to determine whether this condition is more likely to be congenital or acquired. Materials and methods: We retrospectively reviewed contrast-enhanced CT images of sigmoid plates of temporal bones in 504 patients. Each temporal bone was characterized as normal or dehiscent. Patients were then subcategorized into four age groups, and the prevalence and extent of dehiscent sigmoid plates in each group were calculated and compared. Results: Overall, 80 patients had sigmoid plate dehiscence, nine of whom had it bilaterally. In successively older age groups, the prevalences of sigmoid plate dehiscence were 18.9%, 20.1%, 14.5%, and 12.7%, respectively. Respective average anteroposterior bony defect diameters were 3.7 ± 1.7, 3.0 ± 1.3, 3.1 ± 1.5, and 3.0 ± 1.1 mm. Respective average vertical bony defect diameters were 3.6 ± 2.3, 2.6 ± 1.2, 3.2 ± 1.5, and 3.0 ± 1.7 mm. The prevalence and extent of sigmoid plate dehiscence were not statistically different among the four age groups. Conclusions: The similar radiologic prevalence and extent of dehiscent sigmoid plates among the age groups suggest that the dehiscence is more commonly a congenital than an acquired condition

  20. Acquired prosopagnosia without word recognition deficits.

    Susilo, Tirta; Wright, Victoria; Tree, Jeremy J; Duchaine, Bradley

    2015-01-01

    It has long been suggested that face recognition relies on specialized mechanisms that are not involved in visual recognition of other object categories, including those that require expert, fine-grained discrimination at the exemplar level such as written words. But according to the recently proposed many-to-many theory of object recognition (MTMT), visual recognition of faces and words are carried out by common mechanisms [Behrmann, M., & Plaut, D. C. ( 2013 ). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17, 210-219]. MTMT acknowledges that face and word recognition are lateralized, but posits that the mechanisms that predominantly carry out face recognition still contribute to word recognition and vice versa. MTMT makes a key prediction, namely that acquired prosopagnosics should exhibit some measure of word recognition deficits. We tested this prediction by assessing written word recognition in five acquired prosopagnosic patients. Four patients had lesions limited to the right hemisphere while one had bilateral lesions with more pronounced lesions in the right hemisphere. The patients completed a total of seven word recognition tasks: two lexical decision tasks and five reading aloud tasks totalling more than 1200 trials. The performances of the four older patients (3 female, age range 50-64 years) were compared to those of 12 older controls (8 female, age range 56-66 years), while the performances of the younger prosopagnosic (male, 31 years) were compared to those of 14 younger controls (9 female, age range 20-33 years). We analysed all results at the single-patient level using Crawford's t-test. Across seven tasks, four prosopagnosics performed as quickly and accurately as controls. Our results demonstrate that acquired prosopagnosia can exist without word recognition deficits. These findings are inconsistent with a key prediction of MTMT. They instead support the hypothesis that face

  1. Darwin's Difficulties and Students' Struggles with Trait Loss: Cognitive-Historical Parallelisms in Evolutionary Explanation

    Ha, Minsu; Nehm, Ross H.

    2014-05-01

    Although historical changes in scientific ideas sometimes display striking similarities with students' conceptual progressions, some scholars have cautioned that such similarities lack meaningful commonalities. In the history of evolution, while Darwin and his contemporaries often used natural selection to explain evolutionary trait gain or increase, they struggled to use it to convincingly account for cases of trait loss or decrease. This study examines Darwin's evolutionary writings about trait gain and loss in the Origin of Species (On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. D. Appleton, New York, 1859) and compares them to written evolutionary explanations for trait gain and loss in a large (n > 500), cross-cultural and cross-sectional sample (novices and experts from the USA and Korea). Findings indicate that significantly more students and experts applied natural selection to cases of trait gain, but like Darwin and his contemporaries, they more often applied `use and disuse' and `inheritance of acquired characteristics' to episodes of trait loss. Although the parallelism between Darwin's difficulties and students' struggles with trait loss are striking, significant differences also characterize explanatory model structure. Overall, however, students and scientists struggles to explain trait loss—which is a very common phenomenon in the history of life—appear to transcend time, place, and level of biological expertise. The significance of these findings for evolution education are discussed; in particular, the situated nature of biological reasoning, and the important role that the history of science can play in understanding cognitive constraints on science learning.

  2. [Acquired immunodeficiency syndrome in pediatric patients].

    Molina Moguel, J L; Ruiz Illezcas, R; Forsbach Sánchez, S; Carreño Alvarez, S; Picco Díaz, I

    1990-12-01

    The object of this study was to determine how many of the patients treated at the Pediatric Odontology Clinic, a branch of the Maxillo-Facial Surgery Service at the Veinte de Noviembre Regional Hospital, ISSSTE, are VIH-positive of show serious manifestations of Acquired Immuno-Deficiency Syndrome (AIDS). For such purpose, 100 pediatric patients suffering from different systemic or local diseases were evaluated, the most common being hematological alterations. Results evidenced the presence of VIH in the blood of five of the pediatric subjects, all suffering from Hemophilia. PMID:2132469

  3. Acquired CNS lesions in fetal MRI

    Acquired central nervous system (CNS) lesions are often subtle; therefore, the prenatal diagnosis of these lesions is extremely important. The fetal ultrasound examination and magnetic resonance imaging (MRI) are two important imaging methods that give an insight into these types lesions. The method of choice during pregnancy is still fetal ultrasound; however, fetal MRI is important when there are certain pathologies, e.g. periventricular leukomalacia (PVL) or malformations of the vein of Galen. In this manner clinicians can plan further therapy after childbirth in advance (e.g. cerebral angiography or embolization). (orig.)

  4. Cerebral involvement in acquired immunodeficiency syndrome (AIDS)

    Involvement of the central nervous system in acquired immune deficiency syndrome (AIDS) is usually due to opportunistic infections; these frequently offer a difficult differential diagnostic problem. Imaging methods play an important part in the elucidation of symptoms. CT and MR findings were analysed in 13 patients with AIDS and neurological symptoms. Some infections of the central nervous system (encephalitis of unknown aetiology, cytomegalic encephalitis, meningitis) may show cerebral atrophy or even no morphological changes. Toxoplasmosis and PML are the most common opportunistic infections typical changes on CT and MR may lead to diagnosis. MR offers advantages compared with CT in its higher sensitivity for the demonstration even of small lesions. (orig.)

  5. Expert games: means to acquire expert knowledge

    G. Ginkul

    1993-06-01

    Full Text Available This article describes the idea and use of non-traditional technique designed to acquire Expert's knowledge for Expert Systems. The procedures, called "Expert Games", look outwardly as well-known computer "playthings" and at the same time are strong means for Knowledge Acquisition. If Expert wants to succeed, he must to use his professional knowledge. After analyzing game operations of an Expert it is possible to resolve reverse problem - to define which what kind of knowledge have been used for making Expert's decision during the game.

  6. Psychological issues in acquired facial trauma

    De Sousa Avinash

    2010-01-01

    Full Text Available The face is a vital component of one′s personality and body image. There are a vast number of variables that influence recovery and rehabilitation from acquired facial trauma many of which are psychological in nature. The present paper presents the various psychological issues one comes across in facial trauma patients. These may range from body image issues to post-traumatic stress disorder symptoms accompanied by anxiety and depression. Issues related to facial and body image affecting social life and general quality of life are vital and the plastic surgeon should be aware of such issues and competent to deal with them in patients and families.

  7. Acquired Congenital Malalignment of the Great Toenails

    Decker, Ashley; Scher, Richard K.; Avarbock, Andrew

    2016-01-01

    Congenital malalignment is the lateral deviation of the nail plate along the longitudinal axis due to the lateral rotation of the nail matrix. The nail plate grows out in ridges caused by repeated microtrauma to the nail. Common complications include onychomycosis, Pseudomonas infection and acute or chronic paronychia. Treatment options range from conservative management to surgical options including realignment and nail matrixectomy. Congenital malalignment usually presents in infancy or childhood, but we present two cases of acquired malalignment occurring in the teenage years. PMID:27171597

  8. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings

    Zhang, S. [Lakehead Univ., Thunder Bay, ON (Canada). Faculty of Forestry and the Forest Environment; Dang, Q.L. [Lakehead Univ., Thunder Bay, ON (Canada). Faculty of Forest and the Forest Environment; Chinese Academy of Sciences, Beijing (China). Inst. of Botany, Laboratory of Quantitative Vegetation Ecology

    2006-11-15

    Increases in atmospheric carbon dioxide (CO{sub 2}) can impact photosynthesis and dry mass production of plants. This study investigated the physiological responses of white birch seedlings to elevated carbon dioxide (CO{sub 2}) at low and high supplies of nitrogen (N), phosphorus (P) and potassium (K). A 2-way factorial experiment was carried out with birch seedlings grown for 4 months in environment-controlled greenhouses. Elevated CO{sub 2} enhanced maximal carboxylation rate and photosynthetically active radiation-saturated electron transport rates were measured after 2.5 and 3.5 months of treatment, as well as actual photochemical efficiency and photosynthetic linear electron transport to carboxylation. Net photosynthetic rate increases were observed as well as increases in photosynthetic water use efficiency (WUE); photosynthetic N efficiency and P efficiency. Stomatal conductance, transpiration rate and the fraction of total photosynthetic linear electron transport partitioned to oxygenation were reduced. Low nutrient availability decreased net photosynthetic rates, WUE, and triose phosphate utilization. However, photosynthetic linear electron transport and N use efficiency increased. There were significant interactive effects of CO{sub 2} and nutrition over time, with evidence of photosynthetic up-regulation in response to elevated CO{sub 2} in seedlings receiving high nutrition. Photosynthetic depression in response to low nutrient availability was attributed to biochemical limitation rather than stomatal limitation. Elevated CO{sub 2} reduced leaf N concentration in seedlings receiving low nutrition, but had no significant effect on leaf P or K concentrations. High nutrient availability generally increased area-based leaf N, P and K concentrations but had negligible effects on K after 2.5 months of treatment. Results suggested that increases in electron partitioning to photorespiration in response to low nutrient availability may be related to

  9. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings

    Increases in atmospheric carbon dioxide (CO2) can impact photosynthesis and dry mass production of plants. This study investigated the physiological responses of white birch seedlings to elevated carbon dioxide (CO2) at low and high supplies of nitrogen (N), phosphorus (P) and potassium (K). A 2-way factorial experiment was carried out with birch seedlings grown for 4 months in environment-controlled greenhouses. Elevated CO2 enhanced maximal carboxylation rate and photosynthetically active radiation-saturated electron transport rates were measured after 2.5 and 3.5 months of treatment, as well as actual photochemical efficiency and photosynthetic linear electron transport to carboxylation. Net photosynthetic rate increases were observed as well as increases in photosynthetic water use efficiency (WUE); photosynthetic N efficiency and P efficiency. Stomatal conductance, transpiration rate and the fraction of total photosynthetic linear electron transport partitioned to oxygenation were reduced. Low nutrient availability decreased net photosynthetic rates, WUE, and triose phosphate utilization. However, photosynthetic linear electron transport and N use efficiency increased. There were significant interactive effects of CO2 and nutrition over time, with evidence of photosynthetic up-regulation in response to elevated CO2 in seedlings receiving high nutrition. Photosynthetic depression in response to low nutrient availability was attributed to biochemical limitation rather than stomatal limitation. Elevated CO2 reduced leaf N concentration in seedlings receiving low nutrition, but had no significant effect on leaf P or K concentrations. High nutrient availability generally increased area-based leaf N, P and K concentrations but had negligible effects on K after 2.5 months of treatment. Results suggested that increases in electron partitioning to photorespiration in response to low nutrient availability may be related to photoprotective mechanisms. Low carboxylation

  10. Fear-Conditioning Mechanisms Associated with Trait Vulnerability to Anxiety in Humans

    Indovina, Iole; Robbins, Trevor W.; Núñez-Elizalde, Anwar O.; Dunn, Barnaby D.; Bishop, Sonia J.

    2011-01-01

    Summary Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms underlying cued and contextual fear. A critical question is how personality dimensions such as trait anxiety act through these mechanisms to confer vulnerability to anxiety disorders, and whether humans' ability to overcome acquired fears depends on regulatory skills not characterized in animal models. In a neuroimaging study of fear conditioning in humans, we found evidence for two indepe...

  11. Trait-based tests of coexistence mechanisms.

    Adler, Peter B; Fajardo, Alex; Kleinhesselink, Andrew R; Kraft, Nathan J B

    2013-10-01

    Recent functional trait studies have shown that trait differences may favour certain species (environmental filtering) while simultaneously preventing competitive exclusion (niche partitioning). However, phenomenological trait-dispersion analyses do not identify the mechanisms that generate niche partitioning, preventing trait-based prediction of future changes in biodiversity. We argue that such predictions require linking functional traits with recognised coexistence mechanisms involving spatial or temporal environmental heterogeneity, resource partitioning and natural enemies. We first demonstrate the limitations of phenomenological approaches using simulations, and then (1) propose trait-based tests of coexistence, (2) generate hypotheses about which plant functional traits are likely to interact with particular mechanisms and (3) review the literature for evidence for these hypotheses. Theory and data suggest that all four classes of coexistence mechanisms could act on functional trait variation, but some mechanisms will be stronger and more widespread than others. The highest priority for future research is studies of interactions between environmental heterogeneity and trait variation that measure environmental variables at within-community scales and quantify species' responses to the environment in the absence of competition. Evidence that similar trait-based coexistence mechanisms operate in many ecosystems would simplify biodiversity forecasting and represent a rare victory for generality over contingency in community ecology. PMID:23910482

  12. Asian elephants acquire inaccessible food by blowing.

    Mizuno, Kaori; Irie, Naoko; Hiraiwa-Hasegawa, Mariko; Kutsukake, Nobuyuki

    2016-01-01

    Many animals acquire otherwise inaccessible food with the aid of sticks and occasionally water. As an exception, some reports suggest that elephants manipulate breathing through their trunks to acquire inaccessible food. Here, we report on two female Asian elephants (Elephas maximus) in Kamine Zoo, Japan, who regularly blew to drive food within their reach. We experimentally investigated this behaviour by placing foods in inaccessible places. The elephants blew the food until it came within accessible range. Once the food was within range, the elephants were increasingly less likely to blow as the distance to the food became shorter. One subject manipulated her blowing duration based on food distance: longer when the food was distant. These results suggest that the elephants used their breath to achieve goals: that is, they used it not only to retrieve the food but also to fine-tune the food position for easy grasping. We also observed individual differences in the elephants' aptitude for this technique, which altered the efficiency of food acquisition. Thus, we added a new example of spontaneous behaviour for achieving a goal in animals. The use of breath to drive food is probably unique to elephants, with their dexterous trunks and familiarity with manipulating the act of blowing, which is commonly employed for self-comfort and acoustic communication. PMID:26541597

  13. Tetracycline resistance genes acquired at birth.

    Alicea-Serrano, Angela M; Contreras, Mónica; Magris, Magda; Hidalgo, Glida; Dominguez-Bello, Maria G

    2013-06-01

    Newborns acquire their first microbiota at birth. Maternal vaginal or skin bacteria colonize newborns delivered vaginally or by C-section, respectively (Dominguez-Bello et al. 2010 #884). We aimed to determine differences in the presence of four tetracycline (tet) resistance genes, in the microbes of ten newborns and in the mouth and vagina of their mothers, at the time of birth. DNA was amplified by PCR with primers specific for [tet(M), tet(O), tet(Q), and tet(W)]. Maternal vaginas harbored all four tet resistance genes, but most commonly tet(M) and tet(O) (63 and 38 %, respectively). Genes coding for tet resistance differed by birth mode, with 50 % of vaginally delivered babies had tet(M) and tet(O) and 16 and 13 % of infants born by C-section had tet(O) and tet(W), respectively. Newborns acquire antibiotic resistance genes at birth, and the resistance gene profile varies by mode of delivery. PMID:23483141

  14. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A.; Mahmoud A. ElSohly

    2008-01-01

    Effect of different photosynthetic photon flux densities (0, 500, 1000, 1500 and 2000 μmol m−2s−1), temperatures (20, 25, 30, 35 and 40 °C) and CO2 concentrations (250, 350, 450, 550, 650 and 750 μmol mol−1) on gas and water vapour exchange characteristics of Cannabis sativa L. were studied to determine the suitable and efficient environmental conditions for its indoor mass cultivation for pharmaceutical uses. The rate of photosynthesis (PN) and water use efficiency (WUE) of Cannabis sativa i...

  15. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  16. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Dahlberg, P. D. [Graduate Program in the Biophysical Sciences, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Gardiner, A. T.; Cogdell, R. J. [Department of Botany, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  17. Photosynthetic diversity meets biodiversity: the C4 plant example.

    Sage, Rowan F; Stata, Matt

    2015-01-01

    Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere. PMID:25264020

  18. An Inexpensive Apparatus for Growing Photosynthetic Microorganisms in Exotic Atmospheres

    Thomas, David J.; Herbert, Stephen K.

    2005-02-01

    Given the need for a light source, cyanobacteria and other photosynthetic microorganisms can be difficult and expensive to grow in large quantities. Lighted growth chambers and incubators typically cost 50-100% more than standard microbiological incubators. Self-shading of cells in liquid cultures prevents the growth of dense suspensions. Growing liquid cultures on a shaker table or lighted shaker incubator achieves greater cell densities, but adds considerably to the cost. For experiments in which gases other than air are required, the cost for conventional incubators increases even more. We describe an apparatus for growing photosynthetic organisms in exotic atmospheres that can be built relatively inexpensively (approximately $100 U.S.) using parts available from typical hardware or department stores (e.g., Wal-mart or K-mart). The apparatus uses microfiltered air (or other gases) to aerate, agitate, and mix liquid cultures, thus achieving very high cell densities (A750 > 3). Because gases are delivered to individual culture tubes, a variety of gas mixes can be used without the need for enclosed chambers. The apparatus works with liquid cultures of unicellular and filamentous species, and also works with agar slants.

  19. Theory of Ultrafast Exciton Motion in Photosynthetic Antennae

    Renger, Thomas; May, Volkhard

    1998-03-01

    Ultrafast exciton motion and its coupling to protein vibrations in photosynthetic antennae are investigated by means of a density matrix approach (O. Kühn, Th. Renger, T. Pullerits, J. Voigt, V. May, Ann. Rev. Photochem. Photobiol. (in press).). First we consider the Fenna Matthews Olson (FMO) photosynthetic antenna complex of Chlorobium Tepidum. Using the same approach and the same parameters, linear absorption spectra and ultrafast pump--probe and transient anisotropy spectra have been succesfully simulated (Th. Renger, V. May, J. Phys. Chem. B (submitted).). The model allows to utilize exciton relaxation data as a probe for a global--shape estimation of the spectral density of low--frequency protein vibrations. In a second approach concentrating on a Chla/Chlb hetero--dimer of the Light--Harvesting--Complex of the Photosystem II of higher plants an unified microscopic description is offered for coherent vibrational dynamics, excited state absorption, and exciton-exciton annihilation processes. The theory explains the intensity dependent ultrafast nonlinear optical response recently measured in a pump--probe experiment. The presence of non--Markovian effects in the dissipative dynamics is demonstrated (Th. Renger, V. May, Phys. Rev. Lett. 78), 3406 (1996), Th. Renger, V. May, J. Phys. Chem. B 101, 7211 (1997).

  20. Evanescent cultivation of photosynthetic bacteria on thin waveguides

    Waveguides with thicknesses similar to biofilms (10–100 µm) provide an opportunity to improve the bioenergy density of biofilm photobioreactors, avoiding the fundamental light- and mass-transport productivity limitations of planktonic photobioreactors. This report investigates the biofilm growth of a mutant of Synechococcus elongatus (PCC 7942) in evanescent light fields that can be scaled over large planar areas. In this study, areas of 7.2 cm2 are illuminated via frustrated total internal reflections on planar waveguides. The resulting photosynthetic biofilm growth showed resilience to surface intensities exceeding photosynthetic limits and a more uniform cell density distribution (1.0 ± 0.3 × 109 mL−1) than predicted from surface light distribution profiles. These results indicate potential for larger area biofilms using the uniform lighting conditions identified. The combination of evanescent illumination with biofilms indicates a modular reactor cell density on the order of 108 mL−1, representing a two orders of magnitude improvement over current facility architectures, with significant potential for further improvement through denser biofilms. (paper)

  1. Fitting photosynthetic carbon dioxide response curves for C(3) leaves.

    Sharkey, Thomas D; Bernacchi, Carl J; Farquhar, Graham D; Singsaas, Eric L

    2007-09-01

    Photosynthetic responses to carbon dioxide concentration can provide data on a number of important parameters related to leaf physiology. Methods for fitting a model to such data are briefly described. The method will fit the following parameters: V(cmax), J, TPU, R(d) and g(m)[maximum carboxylation rate allowed by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), rate of photosynthetic electron transport (based on NADPH requirement), triose phosphate use, day respiration and mesophyll conductance, respectively]. The method requires at least five data pairs of net CO(2) assimilation (A) and [CO(2)] in the intercellular airspaces of the leaf (C(i)) and requires users to indicate the presumed limiting factor. The output is (1) calculated CO(2) partial pressure at the sites of carboxylation, C(c), (2) values for the five parameters at the measurement temperature and (3) values adjusted to 25 degrees C to facilitate comparisons. Fitting this model is a way of exploring leaf level photosynthesis. However, interpreting leaf level photosynthesis in terms of underlying biochemistry and biophysics is subject to assumptions that hold to a greater or lesser degree, a major assumption being that all parts of the leaf are behaving in the same way at each instant. PMID:17661745

  2. SANS Investigation of the Photosynthetic Machinery of Chloroflexus Aurantiacus

    Tang, Kuo-Hsiang [ORNL; Urban, Volker S [ORNL; Jianzhong, Wen [Washington University, St. Louis; Yueyong, Xin [Washington University, St. Louis; Blankenship, Robert E [ORNL

    2010-01-01

    Green photosynthetic bacteria harvest light and perform photosynthesis in low light environments, and contain specialized antenna complexes to adapt to this condition. In this report, we present studies using small-angle neutron scattering (SANS) to elucidate structural information about the photosynthetic apparatus, including the peripheral light harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contract variation in SANS measurments, our studies suggest that the B808-866 comples is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation for the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size for the isolated B808-866 complex is also suggested via dynamic light scattering measurements. Alos, a smaller size of the RC of Cfx. aurantiacus that the RC of the purple bacteria is observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements.

  3. Primary Photosynthetic Energy Conversion in Bacterial Reaction Centers

    Zinth, Wolfgang; Wachtveitl, J.

    The development of human societies is strongly influenced by the available energetic resources. In a period where the limitations of conventional fossil energy carriers become as evident as the often uncontrollable dangers of nuclear energy, one has to reconsider regenerative energy resources. Here photovoltaic or photochemical use of solar energy is an important approach. Since the early days of evolution some two billion years ago, the dominant energetic input into the life system on earth occurs via the conversion of solar energy performed in photosynthetic organisms. The fossil energy carriers that we use and waste today have been produced by photosynthesis over millions of years. In the race for an extended and versatile use of solar energy, semiconductorbased photovoltaic devices have been developed. However, even after decades of intense engineering they cannot serve as a competitive alternative to fossil energy. Under these circumstances new alternatives are required. One line of scientific development may use the operational principles of photosynthesis since photosynthesis is still our main energy source. In this respect, we will present results on the basic concepts of energy conversion in photosynthetic bacteria, which could be used as a guideline to alternative light energy conversion systems.

  4. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes

    Takashi eMoriyama

    2014-09-01

    Full Text Available Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  5. Role of interference in the photosynthetic heat engine.

    Xu, Y Y; Liu, J

    2014-11-01

    The observation of quantum coherence in pigment-protein complexes has attracted considerable interest. One such endeavor entails applying a quantum heat engine to model the photosynthetic reaction center, but the definition of work used is inconsistent with that defined in quantum thermodynamics. Using the definition of work proposed in Weimer et al. [Europhys. Lett. 83, 30008 (2008)EULEEJ0295-507510.1209/0295-5075/83/30008], we investigated two proposals for enhancing the performance of the photosynthetic reaction center. In proposal A, which is similar to that in Dorfman et al. [Proc. Natl. Acad. Sci. USA 110, 2746 (2013)PNASA60027-842410.1073/pnas.1212666110], we found that the power and current-voltage characteristic of the heat engine can be increased by Fano interference but the efficiency cannot. In proposal B, which is similar to that in Creatore et al. [Phys. Rev. Lett. 111, 253601 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.253601], we found that the mechanism of strengthening the performance of the heat engine is invalid; i.e., the dipole-dipole interaction between two electron donors could not increase the power, efficiency, or current-voltage characteristic. PMID:25493763

  6. Discovery of the photosynthetic relatives of the "Maltese mushroom" Cynomorium

    Der Joshua P

    2005-06-01

    Full Text Available Abstract Background Although recent molecular phylogenetic studies have identified the photosynthetic relatives of several enigmatic holoparasitic angiosperms, uncertainty remains for the last parasitic plant order, Balanophorales, often considered to include two families, Balanophoraceae and Cynomoriaceae. The nonphotosynthetic (holoparasitic flowering plant Cynomorium coccineum has long been known to the Muslim world as "tarthuth" and to Europeans as the "Maltese mushroom"; C. songaricum is known in Chinese medicine as "suo yang." Interest in these plants is increasing and they are being extensively collected from wild populations for use in herbal medicines. Results Here we report molecular phylogenetic analyses of nuclear ribosomal DNA and mitochondrial matR sequence data that strongly support the independent origin of Balanophoraceae and Cynomoriaceae. Analyses of single gene and combined gene data sets place Cynomorium in Saxifragales, possibly near Crassulaceae (stonecrop family. Balanophoraceae appear related to Santalales (sandalwood order, a position previously suggested from morphological characters that are often assumed to be convergent. Conclusion Our work shows that Cynomorium and Balanophoraceae are not closely related as indicated in all past and present classifications. Thus, morphological features, such as inflorescences bearing numerous highly reduced flowers, are convergent and were attained independently by these two holoparasite lineages. Given the widespread harvest of wild Cynomorium species for herbal medicines, we here raise conservation concerns and suggest that further molecular phylogenetic work is needed to identify its photosynthetic relatives. These relatives, which will be easier to cultivate, should then be examined for phytochemical activity purported to be present in the more sensitive Cynomorium.

  7. [Pigment composition and photosynthetic activity of pea chlorophyll mutants].

    Ladygin, V G

    2003-01-01

    Pea chlorophyll mutants chlorotica 2004 and 2014 have been studied. The mutants differ from the initial form (pea cultivar Torsdag) in stem and leaf color (light green in the mutant 2004 and yellow-green in the mutant 2014), relative chlorophyll content (approximately 80 and 50%, respectively), and the composition of carotenoids: the mutant 2004 contains a significantly smaller amount of carotene but accumulates more lutein and violaxanthine; in the mutant 2014, the contents of all carotenoids are decreased proportionally to the decrease in chlorophyll content. It is shown that the rates of CO2 assimilation and oxygen production in the mutant chlorotica 2004 and 2014 plants are reduced. The quantum efficiency of photosynthesis in the mutants is 29-30% lower than in the control plants; in their hybrids, however, it is 1.5-2 higher. It is proposed that both the greater role of dark respiration in gas exchange and the reduced photosynthetic activity in chlorotica mutants are responsible for the decreased phytomass increment in these plants. On the basis of these results, the conclusion is drawn that the mutations chlorotica 2004 and 2014 affect the genes controlling the formation and functioning of various components of the photosynthetic apparatus. PMID:12942751

  8. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Singh, V. P.; Westberg, M.; Wang, C.; Dahlberg, P. D.; Gellen, T.; Gardiner, A. T.; Cogdell, R. J.; Engel, G. S.

    2015-06-01

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  9. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime

  10. Quantitative trait loci pyramiding for fruit quality traits in tomato.

    Sacco, Adriana; Di Matteo, Antonio; Lombardi, Nadia; Trotta, Nikita; Punzo, Biancavaleria; Mari, Angela; Barone, Amalia

    2013-01-01

    Fruit quality is a major focus for most conventional and innovative tomato breeding strategies, with particular attention being paid to fruit antioxidant compounds. Tomatoes represent a major contribution to dietary nutrition worldwide and a reservoir of diverse antioxidant molecules. In a previous study, we identified two Solanum pennellii introgression lines (IL7-3 and IL12-4) harbouring quantitative trait loci (QTL) that increase the content of ascorbic acid (AsA), phenols and soluble solids (degrees Brix; °Bx) in tomato fruit. The purpose of the present work was to pyramid into cultivated varieties the selected QTL for enhanced antioxidant and °Bx content. To better understand the genetic architecture of each QTL, the two ILs were crossed to the recurrent parent M82 (ILH7-3 and ILH12-4) and between them (ILH7-3+12-4). F1 hybrids (ILH7-3+12-4) were then selfed up to obtain F3 progenies in order to stabilize the favourable traits at the homozygous condition. Species-specific molecular markers were identified for each introgressed region and allowed us to select four F2 genotypes carrying both introgressions at the homozygous condition. The F3 double homozygous plants displayed AsA, total phenols and °Bx content significantly higher than M82. Therefore, they may represent suitable genetic material for breeding schemes aiming to increase antioxidant content in tomato fruit. PMID:23316114

  11. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex.

    Niinemets, Ulo

    2015-01-01

    The leaf economics spectrum is a general concept describing coordinated variation in foliage structural, chemical and physiological traits across resource gradients. Yet, within this concept,the role of within-species variation, including ecotypic and plastic variation components, has been largely neglected. This study hypothesized that there is a within-species economics spectrum within the general spectrum in the evergreen sclerophyll Quercus ilex which dominates low resource ecosystems over an exceptionally wide range. An extensive database of foliage traits covering the full species range was constructed, and improved filtering algorithms were developed. Standardized data filtering was deemed absolutely essential as additional variation sources can result in trait variation of 10–300%,blurring the broad relationships. Strong trait variation, c. two-fold for most traits to up to almost an order of magnitude, was uncovered.Although the Q. ilex spectrum is part of the general spectrum, within-species trait and climatic relationships in this species partly differed from the overall spectrum. Contrary to world-wide trends, Q. ilex does not necessarily have a low nitrogen content per mass and can increase photosynthetic capacity with increasing foliage robustness. This study argues that the within-species economics spectrum needs to be considered in regional- to biome-level analyses. PMID:25580487

  12. Multi-trait mimicry and the relative salience of individual traits.

    Kazemi, Baharan; Gamberale-Stille, Gabriella; Leimar, Olof

    2015-11-01

    Mimicry occurs when one species gains protection from predators by resembling an unprofitable model species. The degree of mimic-model similarity is variable in nature and is closely related to the number of traits that the mimic shares with its model. Here, we experimentally test the hypothesis that the relative salience of traits, as perceived by a predator, is an important determinant of the degree of mimic-model similarity required for successful mimicry. We manipulated the relative salience of the traits of a two-trait artificial model prey, and subsequently tested the survival of mimics of the different traits. The unrewarded model prey had two colour traits, black and blue, and the rewarded prey had two combinations of green, brown and grey shades. Blue tits were used as predators. We found that the birds perceived the black and blue traits to be similarly salient in one treatment, and mimic-model similarity in both traits was then required for high mimic success. In a second treatment, the blue trait was the most salient trait, and mimic-model similarity in this trait alone achieved high success. Our results thus support the idea that similar salience of model traits can explain the occurrence of multi-trait mimicry. PMID:26511051

  13. Trait-based approaches to zooplankton communities

    Lichtman, E.; Ohman, M.D.; Kiørboe, Thomas

    2013-01-01

    Zooplankton are major primary consumers and predators in most aquatic ecosystems. They exhibit tremendous diversity of traits, ecological strategies and, consequently, impacts on other trophic levels and the cycling of materials and energy. An adequate representation of this diversity in community...... zooplankton in ecosystem models. Characterizing zooplankton traits and trade-offs will also be helpful in understanding the selection pressures and diversity patterns that emerge in different ecosystems along major environmental gradients. Zooplankton traits can be characterized according to their function...... and type. Some traits, such as body size and motility, transcend several functions and are major determinants of zooplankton ecological strategies. Future developments of trait-based approaches to zooplankton should assemble a comprehensive matrix of key traits for diverse groups and explore it for...

  14. Photoperiodic Regulation of the Seasonal Pattern of Photosynthetic Capacity and the Implications for Carbon Cycling

    Bauerle, William L. [Colorado State University, Fort Collins; Oren, Ram [Duke University; Way, Danielle A. [Duke University; Qian, Song S. [Duke University; Stoy, Paul C. [Montana State University; Thornton, Peter E [ORNL; Bowden, Joseph D. [Colorado State University, Fort Collins; Hoffman, Forrest M [ORNL; Reynolds, Robert F. [Clemson University

    2012-01-01

    Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO{sub 2} cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% ({approx}4 PgC y{sup -1}), resulting in a >3% ({approx}2 PgC y{sup -1}) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.

  15. Influence of stomatic aperture on photosynthetic activity of bean-seedlings leaves

    The present paper contains the data of photosynthetic activity and stomatic aperture of bean-seedlings Ieaves, and the relations obtained with both results. It has been observed that the product of photosynthetic activity by the resistance; to transpiration measured by a promoter ia a constant, between some limits. (Author) 45 refs

  16. Seasonal patterns of photosynthetic capacity: photoperiodic control and its carbon cycling implications

    Bauerle, W.; Oren, R.; Way, D.; Qian, S.; Stoy, P. C.; Thornton, P. E.; Bowden, J.; Hoffman, F. M.; Reynolds, R.

    2012-12-01

    While temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature, but exposed to an extended photoperiod maintained high photosynthetic capacity, while photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon cycle model significantly improves predictions of seasonal atmospheric CO2 cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production ~4 PgC y-1, resulting in a ~2 PgC y-1 decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely-sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence. Assessments of late season carbon sequestration under a changing climate should focus on potential adverse impacts of warming via increased ecosystem respiration.

  17. Changes in photosynthetic activity of microalgae under the influence of electromagnetic radiation

    We studied the effect of UHF radiation on photosynthetic activity in pro- and eukaryotic microalgae. A rise of photosynthetic activity is shown to occur, this rise being accompanied by increase of pigment content in the cells and depending on both exposure time and culture age

  18. Biological traits of European pond macroinvertebrates

    Céréghino, Régis; Oertli, Beat; Marcello BAZZANTI; Coccia, Cristina; Compin, Arthur; Biggs, Jeremy; Bressi, Nicolas; Grillas, Patrick; Hull, Andrew P.; Kalettka, Thomas; Scher, Olivier

    2012-01-01

    Whilst biological traits of river macroinvertebrates show unimodal responses to geographic changes in habitat conditions in Europe, we still do not know whether spatial turnover of species result in distinct combinations of biological traits for pond macroinvertebrates. Here, we used data on the occurrence of 204 macroinvertebrate taxa in 120 ponds from four biogeographic regions of Europe, to compare their biological traits. The Mediterranean, Atlantic, Alpine, and Continental regions have s...

  19. Phylogenetic conservatism of functional traits in microorganisms

    Martiny, Adam C.; Treseder, Kathleen; Pusch, Gordon

    2012-01-01

    A central question in biology is how biodiversity influences ecosystem functioning. Underlying this is the relationship between organismal phylogeny and the presence of specific functional traits. The relationship is complicated by gene loss and convergent evolution, resulting in the polyphyletic distribution of many traits. In microorganisms, lateral gene transfer can further distort the linkage between phylogeny and the presence of specific functional traits. To identify the phylogenetic co...

  20. Biological and ecological traits of marine species

    Costello, M.J.; Claus, S.; Dekeyzer, S; Vandepitte, L.; Ó Tuama, É.; Lear, D.; Tyler-Walters, H.

    2015-01-01

    This paper reviews the utility and availability of biological and ecological traits for marine species so as to prioritise the development of a world database on marine species traits. In addition, the ‘status’ of species for conservation, that is, whether they are introduced or invasive, of fishery or aquaculture interest, harmful, or used as an ecological indicator, were reviewed because these attributes are of particular interest to society. Whereas traits are an enduring characteristic of...

  1. The acquired hyperostosis syndrome. Pt. 2

    In the second part of this publication, we describe some additional findings in cases of sternocostoclavicular hyperostosis (SCCH). These include focal hyperostosis of the spine, in the pelvis and in the extremities and psoriatric skin lesions and severe forms of acne (acne conglobata, acne fulminans). An analysis of our 13 patients and of the relevant literature indicates that the hyperostosis is due to increased bone metabolism and heterotopic ossification of fibrous tissue and that these are the pathogenic bases of the changes in the axial skeleton, the pelvis and the bones of the extremities. We have suggested a scheme which would categorise the syndrom into complete, incomplete and possibly acquired forms. (orig./GDG)

  2. How to divest acquired physician practices.

    O'Hare, P K

    1999-02-01

    When an integrated delivery system (IDS) determines it must divest itself of a previously acquired physician practice, it must manage the transaction with care. The IDS most likely will want to maintain a positive ongoing relationship with the physician practice, while avoiding concessions to the practice that could be construed as violations of state and Federal laws. Before proceeding, the IDS should evaluate the reasons for divesting the practice, assess legal issues involved in terminating contracts with the practice, decide how to deal with the practice's assets and office facilities, consider whether covenants not to compete should be enforced, ensure continued access to essential medical records, consider whether to incorporate a "non-disparagement" clause in the termination agreement, and determine what mutual general releases may be necessary. PMID:10345614

  3. Human temporal bone findings in acquired hypothyroidism.

    Hald, J; Milroy, C M; Jensen, K D; Parving, A

    1991-11-01

    Histological studies of the auditory organ in patients with acquired hypothyroidism are scarce. Thus the aim of the present study was to examine the temporal bones and the brain in subjects with hypothyroidism. Four temporal bones and two brains from clinically and biochemically hypothyroid subjects were removed and evaluated by light microscopy determine to the morphological changes and deposition of neutral and acid glycosaminoglycans. An audiogram from one of the patients showed a sensorineural hearing loss, which could be ascribed to occupational noise exposure. The study revealed histological changes compatible with age and infectious disease. No accumulation of neutral or acid glycosaminoglycans could be demonstrated in the temporal bones, or in the brains. PMID:1761939

  4. Time dysperception perspective for acquired brain injury

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  5. Covalent targeting of acquired cysteines in cancer.

    Visscher, Marieke; Arkin, Michelle R; Dansen, Tobias B

    2016-02-01

    The thiolate side chain of cysteine has a unique functionality that drug hunters and chemical biologists have begun to exploit. For example, targeting cysteine residues in the ATP-binding pockets of kinases with thiol-reactive molecules has afforded increased selectivity and potency to drugs like imbrutinib, which inhibits the oncogene BTK, and CO-1686 and AZD9291 that target oncogenic mutant EGFR. Recently, disulfide libraries and targeted GDP-mimetics have been used to selectively label the G12C oncogenic mutation in KRAS. We reasoned that other oncogenes contain mutations to cysteine, and thus screened the Catalog of Somatic Mutations in Cancer for frequently acquired cysteines. Here, we describe the most common mutations and discuss how these mutations could be potential targets for cysteine-directed personalized therapeutics. PMID:26629855

  6. Acquired methaemoglobinaemia related to phenazopyridine ingestion.

    Shahani, Lokesh; Sattovia, Stacy

    2012-01-01

    Methaemoglobin is an altered state of haemoglobin in which the ferrous ions of haeme are oxidised to the ferric state. This results in increased affinity to the bound oxygen and decreasing its availability to tissues. Most cases of methaemoglobinaemia are acquired, resulting from an increased methaemoglobin formation by various exogenous agents. The authors report an elderly patient presenting to the emergency department with a 1-month history of shortness of breath. Around the same time she had started using over-the-counter (OTC) phenazopyridine tablets for urinary symptoms. The patient was hypoxic and cyanotic; however, lacked evidence of hypoxaemia on the arterial blood gas. The presence of abnormal haemoglobin was suspected and confirmed by elevated levels of methaemoglobin. Phenazopyridine was proposed to be the likely aetiology of the methaemoglobinaemia, which the patient was not aware of. This case highlights the importance of always inquiring the OTC drug use especially in geriatric population. PMID:22987905

  7. The acquired immunodeficiency syndrome in gay men.

    Jaffe, H W; Hardy, A M; Morgan, W M; Darrow, W W

    1985-11-01

    The acquired immunodeficiency syndrome (AIDS) is a major health problem for gay men in the United States. About three fourths of all reported cases have occurred in this population, and the number is projected to double in the next year. In Manhattan and San Francisco, AIDS is now the leading cause of premature mortality in men aged 25 to 44 years who have never married. In a sample of a cohort of gay men enrolled in a San Francisco clinic, 2.7% of the men had the syndrome and 26% had related conditions in 1984. Antibody to human T-lymphotropic virus, type III/lymphadenopathy-associated virus was found in sera from 67% of the men, including 58% of asymptomatic men. Behavioral factors associated with an increased risk of AIDS include large numbers of sexual partners, receptive anal intercourse, and "fisting." The adoption of safer lifestyles is currently the basis of attempts to control the syndrome in gay men. PMID:2996396

  8. In vivo mechanisms of acquired thymic tolerance

    Chen, W; Issazadeh-Navikas, Shohreh; Sayegh, M H; Khoury, S J

    1997-01-01

    Injection of antigen into the thymus of adult animals induces specific systemic tolerance, but the mechanisms of acquired thymic tolerance are not well understood. To investigate these mechanisms we used a model of intrathymic injection of ovalbumin (OVA) in BALB/c mice. We show an antigen......-specific decrease in proliferative responses to OVA, as well as a significant decrease in antigen-specific IL-2 secretion and IFN-gamma production by splenocytes and lymph node cells of tolerant mice. Addition of recombinant IL-2 in vitro reversed the defect in IFN-gamma production by cells from OVA-tolerized...... expansion of transferred CD4+ TCR transgenic cells in tolerant mice in vivo. There was an increase in clonotype-positive T cells in the thymus after immunization, confirming that activated T cells circulate through the thymus. Furthermore, thymectomy after intrathymic injection abrogates the effect of...

  9. [Merits of acquiring ISO15189 accreditation].

    Kitagawa, Masami

    2010-01-01

    In Japan, an ISO15189 accreditation system was started in 2005. To date, 47 hospitals have been accredited. In this session, I will present the merits of acquiring accreditation regarding ISO15189 based on our experience. Our hospital has 263 beds. The Clinical Examination Section consists of 12 staff (including 5 part-time workers): 7 in change of sample examination and 5 in charge of physiological examination. The annual number of samples is approximately 150,000. Samples collected on health checkups account for 90%. To improve the quality and service, assessment by third persons has been positively utilized in our hospital. Accreditation regarding ISO9001, ISO14001, ISO27001, privacy mark, hospital function assessment, the functional assessment of "ningen-dock"/health checkup hospitals, labor/hygiene service function assessment, and ISO15189 has been acquired. Patients may not recognize ISO. So, it must be utilized, considering that the acquisition of accreditation is not a goal but a starting point. Furthermore, cost-performance should be improved to achieve utilization-related merits. It is important to not only acquire accreditation but also help clinical staff and patients become aware of some changes/merits. Patients may consult a hospital for the following reasons: confidence in the hospital, and the staffs kind/polite attitudes. Long-term management strategies should be established without pursuing only short-term profits. I will introduce several merits of acquiring accreditation regarding ISO15189. Initially, incidental conditions for bids and appeal points include accreditation regarding ISO15189. Our corporation has participated in some competitive bids regarding health checkup business. In some companies, the bid conditions included ISO acquisition. In our hospital, clinical trials have been positively carried out. For participation in trials, hospitals must pass an institutional examination. However, ISO acquisition facilitates the preparation of

  10. Acquiring Correct Knowledge for Natural Language Generation

    Reiter, E; Sripada, S G; 10.1613/jair.1176

    2011-01-01

    Natural language generation (NLG) systems are computer software systems that produce texts in English and other human languages, often from non-linguistic input data. NLG systems, like most AI systems, need substantial amounts of knowledge. However, our experience in two NLG projects suggests that it is difficult to acquire correct knowledge for NLG systems; indeed, every knowledge acquisition (KA) technique we tried had significant problems. In general terms, these problems were due to the complexity, novelty, and poorly understood nature of the tasks our systems attempted, and were worsened by the fact that people write so differently. This meant in particular that corpus-based KA approaches suffered because it was impossible to assemble a sizable corpus of high-quality consistent manually written texts in our domains; and structured expert-oriented KA techniques suffered because experts disagreed and because we could not get enough information about special and unusual cases to build robust systems. We bel...

  11. Guidelines for prevention of hospital acquired infections

    Yatin Mehta

    2014-01-01

    Full Text Available These guidelines, written for clinicians, contains evidence-based recommendations for the prevention of hospital acquired infections Hospital acquired infections are a major cause of mortality and morbidity and provide challenge to clinicians. Measures of infection control include identifying patients at risk of nosocomial infections, observing hand hygiene, following standard precautions to reduce transmission and strategies to reduce VAP, CR-BSI, CAUTI. Environmental factors and architectural lay out also need to be emphasized upon. Infection prevention in special subsets of patients - burns patients, include identifying sources of organism, identification of organisms, isolation if required, antibiotic prophylaxis to be used selectively, early removal of necrotic tissue, prevention of tetanus, early nutrition and surveillance. Immunodeficient and Transplant recipients are at a higher risk of opportunistic infections. The post tranplant timetable is divided into three time periods for determining risk of infections. Room ventilation, cleaning and decontamination, protective clothing with care regarding food requires special consideration. Monitoring and Surveillance are prioritized depending upon the needs. Designated infection control teams should supervise the process and help in collection and compilation of data. Antibiotic Stewardship Recommendations include constituting a team, close coordination between teams, audit, formulary restriction, de-escalation, optimizing dosing, active use of information technology among other measure. The recommendations in these guidelines are intended to support, and not replace, good clinical judgment. The recommendations are rated by a letter that indicates the strength of the recommendation and a Roman numeral that indicates the quality of evidence supporting the recommendation, so that readers can ascertain how best to apply the recommendations in their practice environments.

  12. Does Acquired Hypothyroidism Affect the Hearing Functions?

    Ayşe Arduç

    2015-12-01

    Full Text Available Purpose: It is well known that congenital hypothyroidism can cause hearing loss. However, conflicting results were found in studies investigating hearing functions in acquired hypothyroidism. Therefore, we evaluated the audiometric findings in patients with acquired hypothyroidism. Material and Method: The study included 58 patients with hypothyroidism and age- and gender-matched 34 healthy controls. Twenty eight (48.27% patients had subclinical hypothyroidism, and 30 (51.73% had obvious hypothyroidism. All subjects had a normal otoscopic examination and tympanometry. Pure tone audiometry at 250, 500, 1000, 2000, 4000, 6000, and 8000 Hertz (Hz was performed in both groups. Blood pressure measurements and the levels of plasma electrolytes, lipids and vitamin B12 were available in all subjects. Results: Hypothyroidism group and control group were similar with respect to systolic and diastolic blood pressures and plasma glucose, lipid, vitamin B12, calcium, sodium, potassium, and chloride levels. Significantly higher audiometric thresholds (dB at 250 (10 (0-45 vs. 5 (0-15, p<0.001 and 500 Hz (10 (0-40 vs. 10 (-5-15, p=0.003 were recorded in hypothyroid patients compared to that in healthy controls. Hearing thresholds at 250 and 500 Hz correlated positively with thyroid-stimulating hormone (TSH, and negatively with free triiodothyronine and free thyroxine. Subclinical hypothyroid patients had a higher hearing threshold at 250 Hz than healthy controls (p=0.001. Discussion: Our study demonstrated that hearing ability decreases in hypothyroidism, even in subclinical hypothyroidism. The changes in TSH and thyroid hormone levels seem to be directly related to the hearing loss in this population of patients.

  13. Cytosolic glutamine synthetase is important for photosynthetic efficiency and water use efficiency in potato as revealed by high-throughput sequencing QTL analysis

    Kaminski, Kacper Piotr; Sørensen, Kirsten Kørup; Andersen, Mathias Neumann;

    2015-01-01

    isoforms of cytosolic glutamine synthase were located in the QTL at chromosome 1 suggesting a major contribution of this enzyme to photosynthetic efficiency and thus WUE in potato. Indeed, Glutamine synthetase enzyme activity of leaf extracts was measured and found to be correlated with contrasting WUE......Potato (Solanum tuberosum L.) closes its stomata at relatively low soil water deficits frequently encountered in normal field conditions resulting in unnecessary annual yield losses and extensive use of artificial irrigation. Therefore, unraveling the genetics underpinning variation in water use...... efficiency (WUE) of potato is important, but has been limited by technical difficulties in assessing the trait on individual plants and thus is poorly understood. In this study, a mapping population of potatoes has been robustly phenotyped, and considerable variation in WUE under well-watered conditions was...

  14. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  15. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.

    Yarkhunova, Yulia; Edwards, Christine E; Ewers, Brent E; Baker, Robert L; Aston, Timothy Llewellyn; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2016-04-01

    Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement. PMID:26618783

  16. Differential Effects of Lichens versus Liverworts Epiphylls on Host Leaf Traits in the Tropical Montane Rainforest, Hainan Island, China

    Lingyan Zhou

    2014-01-01

    Full Text Available Epiphylls widely colonize vascular leaves in moist tropical forests. Understanding the effects of epiphylls on leaf traits of host plants is critical for understanding ecological function of epiphylls. A study was conducted in a rain forest to investigate leaf traits of the host plants Photinia prunifolia colonized with epiphyllous liverworts and foliicolous lichens as well as those of uncolonized leaves. Our results found that the colonization of lichens significantly decreased leaf water content (LWC, chlorophyll (Chl a and a + b content, and Chl a/b of P. prunifolia but increased Chl b content, while that of liverworts did not affect them as a whole. The variations of net photosynthetic rates (Pn among host leaves colonized with different coverage of lichens before or after removal treatment (a treatment to remove epiphylls from leaf surface were greater than that colonized with liverworts. The full cover of lichens induced an increase of light compensation point (LCP by 21% and a decrease of light saturation point (LSP by 54% for their host leaves, whereas that of liverworts displayed contrary effects. Compared with the colonization of liverworts, lichens exhibited more negative effects on the leaf traits of P. prunifolia in different stages of colonization. The results suggest that the responses of host leaf traits to epiphylls are affected by the epiphyllous groups and coverage, which are also crucial factors in assessing ecofunctions of epiphylls in tropical forests.

  17. Understanding rice adaptation to varying agro-ecosystems: trait interactions and quantitative trait loci

    Dixit, Shalabh; Grondin, Alexandre; Lee, Cheng-Ruei; Henry, Amelia; Olds, Thomas-Mitchell; Kumar, Arvind

    2015-01-01

    Background Interaction and genetic control for traits influencing the adaptation of the rice crop to varying environments was studied in a mapping population derived from parents (Moroberekan and Swarna) contrasting for drought tolerance, yield potential, lodging resistance, and adaptation to dry direct seeding. A BC2F3-derived mapping population for traits related to these four trait groups was phenotyped to understand the interactions among traits and to map and align QTLs using composite i...

  18. Beware the angry leader: Trait anger and trait anxiety as predictors of petty tyranny

    Kant, Leo; SKOGSTAD, Anders; Torsheim, Torbjørn; Einarsen, Ståle

    2013-01-01

    Drawing on the general aggression model and theories of victimization and temperamental goodness-of-fit, we investigated trait anger and trait anxiety as antecedents of petty tyranny: employing a multilevel design with data from 84 sea captains and 177 crew members. Leader trait anger predicted subordinate-reported petty tyranny. Subordinate trait anxiety was associated with subordinate-reported petty tyranny. Theassociation between leader traitanger and subordinate-reported pe...

  19. Photosynthetic flexibility in maize exposed to salinity and shade.

    Sharwood, Robert E; Sonawane, Balasaheb V; Ghannoum, Oula

    2014-07-01

    C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with carbon isotope discrimination and assaying the key carboxylases [ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] operating in maize leaves. Generally, salinity inhibited plant growth and photosynthesis to a lesser extent than shade. Salinity reduced photosynthesis primarily by reducing stomatal conductance and secondarily by equally reducing Rubisco and PEPC activities; the decarboxylases were inhibited more than the carboxylases. Salinity increased photosynthetic carbon isotope discrimination (Δp) and reduced leaf dry-matter carbon isotope composition ((13)δ) due to changes in p i/p a (intercellular to ambient CO2 partial pressure), while CO2 leakiness out of the bundle sheath (ϕ) was similar to that in control plants. Acclimation to shade was underpinned by a greater downregulation of PEPC relative to Rubisco activity, and a lesser inhibition of NADP-ME (primary decarboxylase) relative to PEP-CK (secondary decarboxylase). Shade reduced Δp and ɸ without significantly affecting leaf (13)δ or p i/p a relative to control plants. Accordingly, shade perturbed the balance between the C3 and C4 cycles during photosynthesis in maize, and demonstrated the flexible partitioning of C4 acid decarboxylation activity between NADP-ME and PEP-CK in response to the environment. This study highlights the need to improve our understanding of the links between leaf (13)δ and photosynthetic Δp, and

  20. Quantitative trait loci analysis of osteocondrosis traits in the elbow joint of pigs

    Christensen, O F; Busch, M E; Gregersen, V R;

    2010-01-01

    Osteochondrosis is a growth disorder in the cartilage of young animals and is characterised by lesions found in the cartilage and bone. This study identified quantitative trait loci (QTLs) associated with six osteochondrosis lesion traits in the elbow joint of finishing pigs. The traits were...

  1. [Relationships of wheat leaf stomatal traits with wheat yield and drought-resistance].

    Wang, Shu-Guang; Li, Zhong-Qing; Jia, Shou-Shan; Sun, Dai-Zhen; Shi, Yu-Gang; Fan, Hua; Liang, Zeng-Hao; Jing, Rui-Lian

    2013-06-01

    Taking the DH population of wheat cultivar Hanxuan10/Lumai14 as test object, and by the methods of correlation analysis and path analysis, this paper studied the relationships of the flag leaf stomatal density (SD), stomatal length and width (SL and SW), stomatal conductance (g(s)), photosynthetic rate (P(n)), and transpiration rate (T(r)) on the 10th and 20th day after anthesis with the yield and the index of drought-resistance under the conditions of drought stress and normal irrigation. Under the two conditions, most of the test leaf traits on the 10th day after anthesis had less correlation with the yield and the index of drought-resistance, whereas the leaf traits on the 20th day after anthesis had significant positive correlations with thousand kernel weight but less correlation with grain number per ear, grain yield per plant, and index of drought-resistance. Path analysis showed that g(s), P(n), and T(r) were the main factors affecting the grain yield per plant (YPP) and the index of drought resistance (IDR), and the effects were stronger both in direct and in indirect ways. The direct and indirect effects of SD, SL, and SW on the YPP and IDR were lesser. Under both drought stress and normal irrigation, and on the 10th and 20th day after anthesis, there were significant correlations between SD and SL, and between SL and SW, g(s), P(n), and Tr, but the correlations of SD and SL with g(s), P(n), and T(r) changed with water condition or growth stage. Therefore, it would be not always a good means to select the leaf stomatal density and size as the targets for breeding to improve the leaf stomatal conductance, photosynthetic rate, and transpiration rate, and further, to promote the yield. PMID:24066547

  2. Acquiring Control in Emerging Markets: Evidence from the Stock Market

    Anusha Chari; Paige P. Ouimet; Tesar, Linda L.

    2004-01-01

    When firms from developed markets acquire firms in emerging markets, market-capitalization-weighted monthly joint returns show a statistically significant increase of 1.8%. Panel data estimations suggest that the value gains from cross-border M&A transactions stem from the transfer of majority control from emerging-market targets to developed market acquirers' joint returns range from 5.8% to 7.8% when majority control is acquired. Announcement returns for acquirer and target firms estimate t...

  3. Epicutaneous Model of Community-Acquired Staphylococcus aureus Skin Infections

    Prabhakara, Ranjani; Foreman, Oded; De Pascalis, Roberto; Lee, Gloria M.; Plaut, Roger D.; Kim, Stanley Y.; Stibitz, Scott; Elkins, Karen L.; Merkel, Tod J.

    2013-01-01

    Staphylococcus aureus is one of the most common etiological agents of community-acquired skin and soft tissue infection (SSTI). Although the majority of S. aureus community-acquired SSTIs are uncomplicated and self-clearing in nature, some percentage of these cases progress into life-threatening invasive infections. Current animal models of S. aureus SSTI suffer from two drawbacks: these models are a better representation of hospital-acquired SSTI than community-acquired SSTI, and they involv...

  4. Variance components and correlations of agronomic traits among cabbage (Brassica oleracea var. capitata L. maturity groups

    Cervenski Janko

    2012-01-01

    Full Text Available In this paper we studied the variability and correlation of cabbage traits in different maturity groups. The study included early spring cabbages (planted in early spring, harvested in early summer and autumn cabbages (planted in mid-summer, harvested in late autumn. Using coefficients of variation and correlation coefficients, we analyzed 17 cabbage traits in 35 commercially grown cultivars, F1 hybrids, and experimental F1 hybrids. The traits were analyzed separately for each maturity group. In the early cabbages, the coefficients of variation ranged from 4.8 to 44.2%. The calculated correlation coefficients differed between the two maturity groups. The early cabbages had 26 significant positive correlations. The positive correlations calculated among different traits of early cabbages defined this group fully and made it distinct from the late-maturing genotypes. Plant height and rosette diameter in the early genotypes were highly positively correlated with rosette weight, whole plant weight, head weight, usable portion of head, head height, and head diameter. Plant height and rosette diameter participate in the formation of active photosynthetic area in early cabbages. Rosette width in these genotypes provides a greater influx of light and heat, which results in greater head weight. Also, in early cabbages that have greater plant height, the leaf rosette will not lie on the cold surface of the ground in the spring. The activity of the cabbage plant is thus more focused towards the formation of larger head weight. Head volume in the late genotypes was highly positively correlated with rosette diameter, whole plant weight, head weight, usable portion of head, inner stem length, and head height. In late cabbages plant activity is directed towards the formation of head volume due to the longer duration of the growth period, larger leaves, and differences in climatic conditions.

  5. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  6. Limits of quantum speedup in photosynthetic light harvesting

    Hoyer, Stephan; Whaley, K Birgitta

    2009-01-01

    In the initial stages of photosynthesis, energy collected from light is transferred across a network of chlorophyll molecules to a reaction center. Recent experimental evidence showing long lived quantum coherences in this energy transport in several photosynthetic light-harvesting complexes has suggested that coherence may play an important role in the function of these systems. In particular, it has been hypothesized that excitation transport in such systems may feature speedups analogous to those found in quantum algorithms. The most direct analogy to such transport is found in quantum walks, which form the basis of a powerful class of quantum algorithms including quantum search. Unlike idealized quantum walks, however, real light harvesting complexes are characterized by disorder, energy funnels and decoherence. Whether any quantum speedup can be found in this situation is unclear. Here we characterize quantum speedup for excitation energy transfer in the Fenna-Matthews-Olson (FMO) complex of green sulfur...

  7. Annual cycle of photosynthetically active radiation in maritime pine forest

    In order to model the photosynthesis of an evergreen forest, knowledge of the seasonal variation in the photosynthetically active radiation (PAR) is indispensable. This paper studies the annual cycle of different components of the PAR above and within a maritime pine forest. From measurements of transmitted PAR made on days close to the solstices and the equinoxes, as well as continuous measurements of global and diffuse PAR throughout the year, the annual variation of PAR, within and above the forest was obtained. The relationship between the proportion of diffuse PAR to total PAR was also derived. The PAR reflectance above the canopy varied from 0.035 to 0.07 throughout the year. On clear sky days, roughly 65% of the incident PAR was absorbed by the needles, stems and branches and 20% was reflected; the remaining 15% was absorbed by the understorey. (author)

  8. Interplay between coherence and decoherence in LHCII photosynthetic complex

    Giorda, Paolo; Zanardi, Paolo; Lloyd, Seth

    2011-01-01

    This paper investigates the dynamics of excitonic transport in photocomplex LHCII, the primary component of the photosynthetic apparatus in green plants. The dynamics exhibits a strong interplay between coherent processes mediated by the excitonic Hamiltonian, and incoherent processes due to interactions with the environment. The spreading of the exciton over a single monomer is well described by a proper measure of delocalization that allows one to identify two relevant time scales. An exciton initially localized in one chromophore first spreads coherently to neighboring chromophores. During this initial coherent spreading, quantum effects such as entanglement play a role. As the effects of a decohering environment come into play, coherence and decoherence interact to give rise to efficient and robust excitonic transport, reaching a maximum efficiency at the levels of decoherence found in physiological conditions. We analyze the efficiency for different possible topologies (monomer, dimer, trimer, tetramer) ...

  9. Quantum entanglement in photosynthetic light-harvesting complexes

    Sarovar, Mohan; Ishizaki, Akihito; Fleming, Graham R.; Whaley, K. Birgitta

    2010-06-01

    Light-harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long timescales, despite the decohering effects of their environments. Here, we analyse entanglement in multichromophoric light-harvesting complexes, and establish methods for quantification of entanglement by describing necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson protein to extract the initial state and temperature dependencies of entanglement. We show that, although the Fenna-Matthews-Olson protein in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement should exist even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical use of entanglement in densely packed molecular aggregates such as light-harvesting complexes.

  10. Quantum entanglement phenomena in photosynthetic light harvesting complexes

    Whaley, K Birgitta; Ishizaki, Akihito

    2010-01-01

    We review recent theoretical calculations of quantum entanglement in photosynthetic light harvesting complexes. These works establish, for the first time, a manifestation of this characteristically quantum mechanical phenomenon in biologically functional structures. We begin by summarizing calculations on model biomolecular systems that aim to reveal non-trivial characteristics of quantum entanglement in non-equilibrium biological environments. We then discuss and compare several calculations performed recently of excitonic dynamics in the Fenna-Matthews-Olson light harvesting complex and of the entanglement present in this widely studied pigment-protein structure. We point out the commonalities between the derived results and also identify and explain the differences. We also discuss recent work that examines entanglement in the structurally more intricate light harvesting complex II (LHCII). During this overview, we take the opportunity to clarify several subtle issues relating to entanglement in such biomo...

  11. Artificial photosynthetic reaction centers coupled to light-harvesting antennas

    Ghosh, Pulak Kumar; Nori, Franco

    2010-01-01

    We analyze a theoretical model for energy and electron transfer in an artificial photosynthetic system. The photosystem consists of a molecular triad (i.e., with a donor, a photosensitive unit, and an acceptor) coupled to four accessory light-harvesting antennas pigments. The excitation energy transfer from the antennas to the artificial reaction center (the molecular triad) is here described by the F\\"{o}rster mechanism. We consider two different kinds of arrangements of the accessory light-harvesting pigments around the reaction center. The first arrangement allows direct excitation transfer to the reaction center from all the surrounding pigments. The second configuration transmits energy via a cascade mechanism along a chain of light-harvesting chromophores, where only one chromophore is connected to the reaction center. At first sight, it would appear that the star-shaped configuration, with all the antennas directly coupled to the photosensitive center, would be more efficient. However, we show that the...

  12. Vibration-assisted resonance in photosynthetic excitation energy transfer

    Irish, E K; Lovett, B W

    2013-01-01

    Coherent quantum energy transfer, as observed in photosynthetic pigment-protein complexes, is inhibited by energetic disorder. While this difficulty can be overcome to some extent by the addition of environmental noise, it has recently has begun to be appreciated that discrete intra- and/or intermolecular vibrational modes may play an important role in quantum dynamics. We present a microscopic mechanism by which intramolecular vibrational modes create resonant energy transfer pathways, enhancing the efficiency of both coherent and dephasing-assisted transfer. The principles of this vibration-assisted resonance are illustrated in a simple model based on one energy-transfer branch of the well-characterised Fenna-Matthews-Olson complex. Despite its simplicity, this model captures the interplay between strong electronic coupling that produces delocalised exciton states and resonance-enhanced weak coupling to local vibrational modes. Analytical and numerical results show that intramolecular vibrations can enhance...

  13. A Photovoltaic Device Using an Electrolyte Containing Photosynthetic Reaction Centers

    Takshi, Arash [Dept. of Electrical Engineering, Univ. of South Florida (USF), Tampa, FL (United States); Madden, John D.W. [Dept. of Electrical and Computer Engineering, Advanced Materials and Process Engineering Lab., and Dept. of Microbiology and Immunology, Univ. of British Columbia (UBC), Vancouver BC (Canada); Mahmoudzadeh, Ali [Dept. of Electrical and Computer Engineering, Advanced Materials and Process Engineering Lab., and Dept. of Microbiology and Immunology, Univ. of British Columbia (UBC), Vancouver BC (Canada); Saer, Rafael [Dept. of Electrical and Computer Engineering, Advanced Materials and Process Engineering Lab., and Dept. of Microbiology and Immunology, Univ. of British Columbia (UBC), Vancouver BC (Canada); Beatty, J. Thomas [Dept. of Microbiology and Immunology, Univ. of British Columbia (UBC), Vancouver BC (Canada)

    2010-10-15

    The performance of bio-photovoltaic devices with a monolayer of the immobilized photosynthetic reaction center (RC) is generally low because of weak light absorption and poor charge transfer between the RC and the electrode. In this paper, a new bio-photovoltaic device is described in which the RC is dissolved in the electrolyte of an electrochemical cell. The charges generated by the illuminated RC are transferred to electrodes via mediators. The difference between the reaction rates of two types of mediator at the electrode surfaces determines the direction of the photocurrent in the device. Experimental results show that the magnitude of the photocurrent is proportional to the incident light intensity, and the current increases nonlinearly with an increase in the RC concentration in the electrolyte. With further optimization this approach should lead to devices with improved light absorption.

  14. Photothermal microscopy: imaging of energy dissipation from photosynthetic complexes.

    Gruszecki, Wieslaw I; Luchowski, Rafal; Zubik, Monika; Grudzinski, Wojciech

    2015-10-01

    An idea of a photothermal imaging microscopy (PTIM) is proposed, along with its realization based on a dependence of fluorescence anisotropy of dye molecules on heat emission in their nearest vicinity. Erythrosine B was selected as a fluorophore convenient to report thermal deactivation of the excited pigment-protein complex isolated from the photosynthetic apparatus of plants (LHCII), owing to the relatively large spectral gap between the fluorescence emission bands of chlorophyll a and a probe. Comparison of the simultaneously recorded images based on fluorescence lifetime of LHCII and fluorescence anisotropy of erythrosine shows a high rate of thermal energy dissipation from the aggregated forms of the complex and, possibly, thermal energy transmission along the protein supramolecular structures. Relatively high resolution of this novel microscopic technique, comparable to the fluorescence lifetime microscopy, enables its application in a nanoscale imaging and in nanothermography. PMID:26393534

  15. Quantum delocalization directs antenna absorption to photosynthetic reaction centers

    Caycedo-Soler, Felipe; Autenrieth, Caroline; Ghosh, Robin; Huelga, Susana F; Plenio, Martin B

    2015-01-01

    Photosynthesis -- the conversion of sunlight to chemical energy -- is fundamental for supporting life on our planet. Despite its importance, the physical principles that underpin the primary steps of photosynthesis, from photon absorption to electronic charge separation, remain to be understood in full. Previously, electronic coherence within tightly-packed light-harvesting (LH) units or within individual reaction centers (RCs) has been recognized as an important ingredient for a complete understanding of the excitation energy transfer dynamics. However, the electronic coherence across RC and LH units has been consistently neglected as it does not play a significant role during these relatively slow transfer processes. Here, we turn our attention to the absorption process, which occurs on much shorter timescales. We demonstrate that the - often overlooked - spatially extended but short-lived excitonic delocalization across RC and LH units plays a relevant role in general photosynthetic systems, as it causes a...

  16. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides

  17. Factors influencing the purification efficiency of photosynthetic bacteria

    2000-01-01

    One strain of photosynthetic bacteria (PSB) was isolated from substrate sludge offresh-water fishpond. Influence of the use level of PSB culture solution, illumination condition,temperature, salinity, the use level of copper sulfate and dipterex on the purification efficiency was investigated. The results showed that the optimum use level of PSB culture solution was 10 mg/L,and the purification efficiency at illumination was higher than that at black, and if the temperature was lower than 15℃, or the use level of sodium chloride, copper sulfate and dipterex were higherthan 10 000 mg/L, 0.4 mg/L and 2.0 mg/L, respectively, the purification efficiency dropped distinctly.

  18. Quantum superpositions in photosynthetic light harvesting: delocalization and entanglement

    Ishizaki, Akihito; Fleming, Graham R, E-mail: GRFleming@lbl.go [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-05-15

    We explore quantum entanglement among the chlorophyll molecules in light-harvesting complex II, which is the most abundant photosynthetic antenna complex in plants containing over 50% of the world's chlorophyll molecules. Our results demonstrate that there exists robust quantum entanglement under physiological conditions for the case of a single elementary excitation. However, this nonvanishing entanglement is not unexpected because entanglement in the single-excitation manifold is conceptually the same as quantum delocalized states, which are the spectroscopically detectable energy eigenstates of the system. We discuss the impact of the surrounding environments and correlated fluctuations in electronic energies of different pigments upon quantum delocalization and quantum entanglement. It is demonstrated that investigations with tools quantifying the entanglement can provide us with more detailed information on the nature of quantum delocalization, in particular the so-called dynamic localization, which is difficult for a traditional treatment to capture.

  19. Increasing algal photosynthetic productivity by integrating ecophysiology with systems biology.

    Peers, Graham

    2014-11-01

    Oxygenic photosynthesis is the process by which plants, algae, and cyanobacteria convert sunlight and CO2 into chemical energy and biomass. Previously published estimates suggest that algal photosynthesis is, at best, able to convert approximately 5-7% of incident light energy to biomass and there is opportunity for improvement. Recent analyses of in situ photophysiology in mass cultures of algae and cyanobacteria show that cultivation methods can have detrimental effects on a cell's photophysiology - reinforcing the need to understand the complex responses of cell biology to a highly variable environment. A systems-based approach to understanding the stresses and efficiencies associated with light-energy harvesting, CO2 fixation, and carbon partitioning will be necessary to make major headway toward improving photosynthetic yields. PMID:25306192

  20. Proton and hydrogen currents in photosynthetic water oxidation.

    Tommos, C; Babcock, G T

    2000-05-12

    The photosynthetic processes that lead to water oxidation involve an evolution in time from photon dynamics to photochemically-driven electron transfer to coupled electron/proton chemistry. The redox-active tyrosine, Y(Z), is the component at which the proton currents necessary for water oxidation are switched on. The thermodynamic and kinetic implications of this function for Y(Z) are discussed. These considerations also provide insight into the related roles of Y(Z) in preserving the high photochemical quantum efficiency in Photosystem II (PSII) and of conserving the highly oxidizing conditions generated by the photochemistry in the PSII reaction center. The oxidation of Y(Z) by P(680)(+) can be described well by a treatment that invokes proton coupling within the context of non-adiabatic electron transfer. The reduction of Y(.)(Z), however, appears to proceed by an adiabatic process that may have hydrogen-atom transfer character. PMID:10812034

  1. Quantum Coherent Dynamics at Ambient Temperature in Photosynthetic Molecules

    Walters, Zachary B

    2011-01-01

    Photosynthetic antenna complexes are responsible for absorbing energy from sunlight and transmitting it to remote locations where it can be stored. Recent experiments have found that this process involves long-lived quantum coherence between pigment molecules, called chromophores, which make up these complexes. Expected to decay within 100 fs at room temperature, these coherences were instead found to persist for picosecond time scales, despite having no apparent isolation from the thermal environment of the cell. This paper derives a quantum master equation which describes the coherent evolution of a system in strong contact with a thermal environment. Conditions necessary for long coherence lifetimes are identified, and the role of coherence in efficient energy transport is illuminated. Static spectra and exciton transfer rates for the PE545 complex of the cryptophyte algae CS24 are calculated and shown to have good agreement with experiment.

  2. Electrolyte control of photosynthetic electron transport in cyanobacteria

    Ion-permeable cells (permeaplasts) of the cyanobacterium Anacystis nidulans were prepared enzymatically and were characterized with respect to several structural and functional indices. The permeaplasts contain intact, ion-impermeable thylakoids and are photosynthetically active. The authors discuss how, employing these cells, they investigated the effects of cations, acting either on the outer, or on the inner thylakoid membrane surface, on photoinduced electron exchanges with anionic donors (Cyt c-550, plastocyanin, innersurface), or anionic acceptors (FeCN3-; outer surface). Cations accelerate such exchanges by accumulating near the solution-membrane interfaces and screening the negative surface charge of membranes. Electrostatic screening, however, is not the only contributing factor, and other electrolyte-linked influences must be invoked in order to interpret the experimental observations

  3. [Post-photosynthetic use of labeled assimilates in fiber flax].

    Chikov, V I; Avvakumova, N Iu; Bakirova, G G

    2003-01-01

    The distribution of 14C in various tissues of fiber flax was assayed 1, 17, and 21 days after 30-min assimilation of 14CO@2 by the whole rapidly growing plant. Polymeric photosynthetic products were largely hydrolyzed in the 14C-donor part of the shoot and the hydrolysates were transported upward. The content of 14C in pigments and lipids of the donor leaves (that absorbed 14CO2) was significantly higher than that in the 14C-acceptor ones. An additional nitrogen feeding decreased the labeled sucrose: hexose ratio and inhibited transport of the assimilates from both 14C-donor and acceptor leaves. 14C transported to the shoot tip was largely used for synthesis of poorly soluble proteins (extractable with alkali and Triton X-100) in the acceptor tissues. In the donor part of the shoot, particularly in the bast, cellulose was mainly synthesized from the "new" assimilates. PMID:12942752

  4. Mucocutaneous manifestations of acquired hypoparathyroidism: An observational study

    Somenath Sarkar; Modhuchanda Mondal; Kapildev Das; Arpit Shrimal

    2012-01-01

    Hypoparathyroidism is a disorder of calcium and phosphorus metabolism due to decreased secretion of parathyroid hormone. Hypoparathyroidism can be hereditary and acquired. Acquired hypoparathyroidism usually occurs following neck surgery (thyroid surgery or parathyroid surgery). Along with systemic manifestations, hypoparathyroidism produces some skin manifestations. Lack of study regarding mucocutaneous manifestations of acquired hypoparathyroidism prompted us to undertake this study. To eva...

  5. 30 CFR 879.14 - Management of acquired land.

    2010-07-01

    ... ABANDONED MINE LAND RECLAMATION ACQUISITION, MANAGEMENT, AND DISPOSITION OF LANDS AND WATER § 879.14 Management of acquired land. Land acquired under this part may be used for any lawful purpose that is... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Management of acquired land. 879.14 Section...

  6. Preschoolers Acquire General Knowledge by Sharing in Pretense

    Sutherland, Shelbie L.; Friedman, Ori

    2012-01-01

    Children acquire general knowledge about many kinds of things, but there are few known means by which this knowledge is acquired. In this article, it is proposed that children acquire generic knowledge by sharing in pretend play. In Experiment 1, twenty-two 3- to 4-year-olds watched pretense in which a puppet represented a "nerp" (an unfamiliar…

  7. Biohybrid photosynthetic antenna complexes for enhanced light-harvesting.

    Springer, Joseph W; Parkes-Loach, Pamela S; Reddy, Kanumuri Ramesh; Krayer, Michael; Jiao, Jieying; Lee, Gregory M; Niedzwiedzki, Dariusz M; Harris, Michelle A; Kirmaier, Christine; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey; Loach, Paul A

    2012-03-14

    Biohybrid antenna systems have been constructed that contain synthetic chromophores attached to 31mer analogues of the bacterial photosynthetic core light-harvesting (LH1) β-polypeptide. The peptides are engineered with a Cys site for bioconjugation with maleimide-terminated chromophores, which include synthetic bacteriochlorins (BC1, BC2) with strong near-infrared absorption and commercial dyes Oregon green (OGR) and rhodamine red (RR) with strong absorption in the blue-green to yellow-orange regions. The peptides place the Cys 14 (or 6) residues before a native His site that binds bacteriochlorophyll a (BChl-a) and, like the native LH proteins, have high helical content as probed by single-reflection IR spectroscopy. The His residue associates with BChl-a as in the native LH1 β-polypeptide to form dimeric ββ-subunit complexes [31mer(-14Cys)X/BChl](2), where X is one of the synthetic chromophores. The native-like BChl-a dimer has Q(y) absorption at 820 nm and serves as the acceptor for energy from light absorbed by the appended synthetic chromophore. The energy-transfer characteristics of biohybrid complexes have been characterized by steady-state and time-resolved fluorescence and absorption measurements. The quantum yields of energy transfer from a synthetic chromophore located 14 residues from the BChl-coordinating His site are as follows: OGR (0.30) BChl](n) are accompanied by a bathochromic shift of the Q(y) absorption of the BChl-a oligomer as far as the 850-nm position found in cyclic native photosynthetic LH2 complexes. Room-temperature stabilized oligomeric biohybrids have energy-transfer quantum yields comparable to those of the dimeric subunit complexes as follows: OGR (0.20) self-assembly characteristics of the native antenna complexes, offer enhanced coverage of the solar spectrum, and illustrate a versatile paradigm for the construction of artificial LH systems. PMID:22375881

  8. Integrated physiological, biochemical and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature

    Boghireddy eSailaja

    2015-11-01

    Full Text Available In changing climate, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical and molecular level is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in eleven popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS, antioxidants, and photosynthesis were studied at vegetative and reproductive phases which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified which will be important resource to develop high temperature tolerant rice cultivars. Interestingly, Nagina22 emerged as best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activity, lesser reduction in net photosynthetic rate (PN, high transpiration rate (E and other photosynthetic/ fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Further, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant and Vandana (susceptible at flowering phase, strengthening the fact that N22 performs better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes which are needed to be characterized to address the challenges of future climate extreme conditions.

  9. Personal traits as predictor of job satisfaction

    Petrushikhina Elena Borisovna

    2013-01-01

    The article is devoted to problem of association between job satisfaction and personal traits. The Five-Factor model is well-founded for predicting job satisfaction. Correlation analysis indicates high influence of Neuroticism, Extraversion, Agreeableness, Conscientiousness on job satisfaction. NEO-PI-R is recommended for measuring of personal traits in human resource management.

  10. Improved performance of photosynthetic light response equations with unified parameters for rice leaves with different SPAD values

    The rectangular hyperbola (RH), Mitscherlich (M) and YE equation were applied to describe the photosynthetic light response (PLR) curves measured from rice leaves with different SPAD values, to reveal the relationship between SPAD values and parameters in different equations, and to establish the modified PLR equations. The parameters in PLR equations are largely varied. SPAD value, as an indicator of leaf N contents, was highly correlated to the parameter of Pnmax in RH, M and YE equations. Incorporating the factor SPAD into PLR equations, the modified equations (MRH, MM, and MYE) were established which were feasible to describing the PLR curves for leaves with different SPAD values using the identical parameters for the ten PLR curves as a whole, and perform much better than the general PLR equations (GRH, GM, and GYE). It indicated that incorporating easy available indicators of leaf physiological and morphological traits in the PLR equations, such as SPAD as an indicator of leaf N or Chlorophyll contents, is an easy way to overcome the shortcoming of parameters variation in PLR equations between individuals of the same specie growing in different environments. Further validation should be done for different crops with both SPAD and other possible factors. (author)

  11. Acquiring energy savings in manufactured housing

    In 1991, the Northwest utilities faced a complex situation. They needed new sources of electrical power to avoid future deficits. A significant block of energy savings was available in the manufactured housing sector in the form of energy savings from increased insulation to new manufactured homes. The manufacturers were interested in saving the electricity in the homes, but would only deal with the utility sector as a whole. Half of the homes targeted were sited in investor-owned utility (IOU) service territories, and half in the public sector made up of utilities that purchased some or all of their electricity from the Bonneville Power Administration. Utilities agreed to acquire energy from manufacturers In the form of thermal efficiency measures specified by the Bonneville Power Administration. The program that resulted from over one year of negotiations was called the Manufactured Housing Acquisition Program, or MAP. Manufacturers, the utilities, State Energy Offices, the Northwest Power Planning Council and Bonneville all worked closely and with tenacity to build the program that went into effect on April 1, 1992, and should save the region between 7 and 9 megawatts, enough energy to supply 11,000 homes in the Northwest

  12. Acquired Hemophilia A successfully treated with rituximab

    Giovanni D'Arena

    2015-02-01

    Full Text Available Acquired hemophilia A (AHA is a rare bleeding disorder due to the development of specific autoantibodies against factor VIII. The anti-CD20 monoclonal antibody Rituximab has been proven to be effective in  obtaining a long-term suppression of inhibitors of AHA,  besides other immunosuppressive standard treatments. Here we describe a case of idiopathic AHA in a 60-year old man successfully treated with rituximab. He showed a complete clinical response with  a normalization of clotting  parameters after 5 weekly courses of rituximab given at a dose of 375 mg/sqm. , but after stopping rituximab, an initial worsening of coagulation  parameters  induced the addition of 3 further courses. At present, the patient is in complete clinical and hematological remission after 200 days.  This case confirms that Rituximab may be a safe and useful tool to treat AHA and, a prolonged administration can overcome the initial resistance. However, the precise position of this drug in the therapeutic strategy (first or second-line, alone or in combination with other drugs remains to be established and warrants further investigation.

  13. Recent legal problems in acquiring nuclear fuel

    This paper surveys problems encountered by Southern California Edison Company in acquiring U concentrates to meet the needs of San Onofre Nuclear Generating Station Units 1, 2, and 3. References are made to San Onofre, Edison, and San Diego Gas and Electric Company in order to illustrate certain legal problems. The San Onofre Units are owned 80% by Edison and 20% by San Diego. Questions are posed about the traditional fuel procurement practices. A subsidiary of Edison, Mono Power Company, locates and delivers energy resources for Edison. Mono and Rocky Mountain Energy Company are jointing developing the Bear Creek urnaium mining and milling complex. The risk involved in converting a joint venture to a partnership is pointed out. The purchasing arrangement in the Palo Verde participants is discussed. Market value is used as a basis for pricing future U deliveries, but there is no really satisfactory method for determining future market value. It is concluded that the purchaser of nuclear fuel is faced with legal problems that transcend conventional problems of contracts and the commercial code

  14. Personality traits and energy conservation

    As a cost-effective solution to energy conservation, behavior based method focuses on changing people's behavior through normative feedback for energy efficiency. While the application of behavior-based method is promising, the challenge exists to achieve efficiently sustainable behavioral change. Based on multi-period observation of energy behavior at the Joint Base Andrews in Maryland, this paper presents a model-based approach aimed to improve the nationally popular and deep-seated benchmark setting strategy for normative feedback used in home energy reports. The improved approach has its merits of countering the undesirable boomerang effect and enhancing the effectiveness of normative feedback targeting different personalities. By introducing a modified opinion dynamics model, this paper simulates the process of energy behavior change and therefore identifies the driver and elementary rules of behavioral change. In particular, the paper defines various behavioral zones in accordance with people's personality and proposes a new customized energy reporting mechanism that maps normative benchmark to personality trait. The new energy reporting policy has strong industrial implication for promoting behavior-based method towards a sustained energy conservation movement. -- Highlights: •We explore the personality driving resident behavior change under peer pressure. •We map the distribution of behavior clusters driven by personality and benchmarks. •The model is tested using data from an experiment conducted in Maryland, U.S. •The population exposed to normative feedback can be divided into six categories. •A personality trait-based home energy reporting mechanism is proposed

  15. PHENOTYPIC TRAITS IN ZAGORJE TURKEY

    Z. Janječić

    2007-06-01

    Full Text Available Production of turkeys in the region of Hrvatsko zagorje began in second half of 16th century, when there was a little influence of other turkey breeds from other region. Recently, interest for protection and preservation of autochthonous poultry breeds in Croatia is growing and in that sense this investigation was set to determine the phenotypic traits of Zagorje turkey. One hundred 10-month old turkeys (5 males and 20 females of four strains (bronze, black, grey and pale were measured, while egg production data were collected by a poll among the breeders. Average body weight of bronze, black, grey and pale strain males were 7.08, 6.88, 6.10 and 6.09 kg, respectively, while in females the average values were 4.02, 4.07, 3.63, and 3.68 kg. Generally, according to body measures of male birds, other than body weight, of all of the strains of Zagorje turkey, the black one is the biggest, as it had the highest values for body length, length of sternum, length of drumstick, length of shank, depth of chest and head measures. At the same time, the bronze strain had the highest value for carcass width. Body measures mentioned previously were not so different in females. Number of reared chicks was lowest in the pale strain. From the body measures assessed it is possible to conclude that Zagorje turkeys are rather uniform within the strain but differences in most of the breed traits are present between the strains, especially in males of bronze and black strain, when compared to gray and pale strain.

  16. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David [Department of Mechanical and Industrial Engineering, and Institute for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2014-01-27

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m{sup 2} and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m{sup 2}, with individual biofilms producing as much as 12 μW/m{sup 2}.

  17. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m2 and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m2, with individual biofilms producing as much as 12 μW/m2

  18. Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants

    Minobu Kasai

    2012-01-01

    Full Text Available Despite the wide uses of potted plants, information on how pot size affects plant photosynthetic matter production is still considerably limited. This study investigated with soybean plants how transplantation into larger pots affects various characteristics related to photosynthetic matter production. The transplantation was analyzed to increase leaf photosynthetic rate, transpiration rate, and stomatal conductance without affecting significantly leaf intercellular CO2 concentration, implicating that the transplantation induced equal increases in the rate of CO2 diffusion via leaf stomata and the rate of CO2 fixation in leaf photosynthetic cells. Analyses of Rubisco activity and contents of a substrate (ribulose-1,5-bisphosphate (RuBP for Rubisco and total protein in leaf suggested that an increase in leaf Rubisco activity, which is likely to result from an increase in leaf Rubisco content, could contribute to the transplantation-induced increase in leaf photosynthetic rate. Analyses of leaf major photosynthetic carbohydrates and dry weights of source and sink organs revealed that transplantation increased plant sink capacity that uses leaf starch, inducing a decrease in leaf starch content and an increase in whole plant growth, particularly, growth of sink organs. Previously, in the same soybean species, it was demonstrated that negative correlation exists between leaf starch content and photosynthetic rate and that accumulation of starch in leaf decreases the rate of CO2 diffusion within leaf. Thus, it was suggested that the transplantation-induced increase in plant sink capacity decreasing leaf starch content could cause the transplantation-induced increase in leaf photosynthetic rate by inducing an increase in the rate of CO2 diffusion within leaf and thereby substantiating an increase in leaf Rubisco activity in vivo. It was therefore concluded that transplantation of soybean plants into larger pots attempted in this study increased the

  19. Effect of gamma radiation on photosynthetic metabolism of Chlorella pyrenoidosa studied by 14CO2 assimilation

    The effect of five dose of gamma radiation (10, 100, 500, 1000 and 5000 Gy) on photosynthetic activity and metabolism of the primary products of photosynthesis has been studied, on Chlorella pyrenoidoBa cultures, by 14CO2 assimilation. The photosynthetic assimilation rate is remarkably depressed after irradiation at 500, 1000 and 5000 Gy dose, which also produce a significant change in radioactivity distribution pattern of primary compounds from photosynthesis. No significant effects have been observed on photosynthetic metabolism after irradiation at 10 and 100 Gy. (Author) 19 refs

  20. Photosynthetic activity of dominant algal species in eutrophic shallow lake (Grosser Mueggelsee, Berlin) investigated by microautoradiography

    Photosynthetic activity of dominant phytoplankton in a eutrophic shallow lake was investigated by autoradiography in 1979 and 1980. It was shown by light and dark field microscopy that all species of cyanophyta (Oscillatoria redekei, Oscillatoria agardhii, Aphanizomenon flos-aquae) were characterized by a continuously high uptake of NaH14CO3. Similarly high photosynthetic activity was observed during the occurrence of Cryptomonas sp. and nanoplankton. Contrary to these observations, diatoms showed remarkably high portions of photosynthetically inactive biomass when their development was abundant. The reasons for this discrepancy between high biomass of diatoms and relatively low primary production (measured by 14C method and autoradiography) are discussed. (author)

  1. Application of photosynthetic N(2)-fixing cyanobacteria to the CELSS program

    Fry, Ian V.; Hrabeta, Jana; Dsouza, Joe; Packer, Lester

    1987-01-01

    The feasibility of using photosynthetic microalgae (cyanobacteria) as a subsystem component for the closed ecological life support system program, with particular emphasis on the manipulation of the biomass (protein/carbohydrate) was addressed. Using factors which retard growth rates, but not photosynthetic electron flux, the partitioning of photosynthetically derived reductant may be dictated towards CO2 fixation (carbohydrate formation) and away from N2 fixation (protein formation). Cold shock treatment of fairly dense cultures markedly increases the glycogen content from 1 to 35 percent (dry weight), and presents a useful technique to change the protein/carbohydrate ratio of these organisms to a more nutritionally acceptable form.

  2. Predictors of leadership: The usual suspects and the suspect traits

    Antonakis J.; Bryman A. (ed.); Collinson D. (ed.); Grint K. (ed.); Jackson B. (ed.); Uhl-Bien M. (ed.)

    2011-01-01

    In this chapter, I review literature on traits (i.e., individual differences) and their links to leader outcomes. I present an integrated model, the ascription-actuality trait theory, to explain two routes to leader outcomes that stem from traits: the route that objectively matters and the route that appears to matter but objectively may not. I discuss the history of trait research and provide criteria by which we should judge the validity of trait models. Finally, I review trait models that ...

  3. Diurnal changes of net photosynthetic rate (NPR) in leaves of Lonicera japonica Thunb. and the responding mathematical model of NPR to photosynthetic valid radiation

    [Objective] The study provided theoretical basis for production practice . [Method] With Lonicera japonica Thunb .as material, diurnal changes of net photosynthetic rate (NPR) in leaves of the plant and the responding mathematical model of NPR to photosynthetic valid radiation were studied using portable photosynthetic determinator system. [Result] Like most of C3 plants, the diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, but there were time difference in reaching the peak value between the study and previous ones . The responding mathematical model of NPR to photosynthetic valid radiation could be described by three mathematic functions, such as logarithm, linearity and binomial, but binomial function was more precise than the others. Light saturation point of Lonicera japonica Thunb. was figured out by binomial equation deduced in the study , and light saturation point was 1 086 .3 μmol/ (m2•s) . [Conclusion] The diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, and the responding mathematical model of NPR to photosynthetic valid radiation could be described by binomial functions

  4. Water use efficiency and functional traits of a semiarid shrubland

    Perez-Priego, Oscar; Lopez-Ballesteros, Ana; Sánchez-Cañete, Enrique P.; Serrano-Ortiz, Penélope; Carrara, Arnaud; Palomares-Palacio, Agustí; Oyonarte, Cecilio; Domingo, Francisco; Kowalski, Andrew S.

    2013-04-01

    In semiarid climates, water is the fundamental factor determining ecosystem productivity and thereby the capacity for carbon sequestration. Increased water use efficiency (WUE), the ratio of carbon dioxide assimilation (canopy photosynthesis, Pc) to water transpired (canopy evaporation, Ec), is assumed to be an adaptive strategy for sclerophyll shrublands to improve productivity and stress resistance in water-limited environments. However, the real complexity of WUE lies in its dependence on both plant physiological traits (e.g. stomatal resistance, photosynthetic capacity, leaf chemical composition, structure) and on environmental conditions (e.g. atmospheric CO2 concentration, vapour pressure deficit, temperature, light, soil water availability). We used a transient-state closed canopy-chamber to characterise CO2 and water vapour exchanges at the whole plant scale under different environmental conditions and phenological stages. Diurnal and seasonal variations in Pc, Ec and WUE were explained by both physiological and environmental variables. All species showed symmetric patterns in both Pc and Ec when not water limited, but asymmetry during summer drought when leaf water potential was low. During drought, grasses (Festuca sp.) showed a marked decline in functioning (Pc and Ec), whereas shrubs (Genista sp., Hormathophylla sp.) maintained spring-like assimilation rates all morning until stomatal controls shut down gas exchanges. While grasses showed the highest WUE when not water limited, their near senescence during summer drought yielded the lowest WUE. Shrubs showed reduced WUE under moderate drought stress, in contradiction to the assumptions made in global ecosystem models. The importance of the appropriate time-scale for calculating WUE (daily versus hourly), together with water use strategies and ecological functions of individual species, will be further discussed.

  5. Seeing the eyes in acquired prosopagnosia.

    Pancaroglu, Raika; Hills, Charlotte S; Sekunova, Alla; Viswanathan, Jayalakshmi; Duchaine, Brad; Barton, Jason J S

    2016-08-01

    Case reports have suggested that perception of the eye region may be impaired more than that of other facial regions in acquired prosopagnosia. However, it is unclear how frequently this occurs, whether such impairments are specific to a certain anatomic subtype of prosopagnosia, and whether these impairments are related to changes in the scanning of faces. We studied a large cohort of 11 subjects with this rare disorder, who had a variety of occipitotemporal or anterior temporal lesions, both unilateral and bilateral. Lesions were characterized by functional and structural imaging. Subjects performed a perceptual discrimination test in which they had to discriminate changes in feature position, shape, or external contour. Test conditions were manipulated to stress focused or divided attention across the whole face. In a second experiment we recorded eye movements while subjects performed a face memory task. We found that greater impairment for eye processing was more typical of subjects with occipitotemporal lesions than those with anterior temporal lesions. This eye selectivity was evident for both eye position and shape, with no evidence of an upper/lower difference for external contour. A greater impairment for eye processing was more apparent under attentionally more demanding conditions. Despite these perceptual deficits, most subjects showed a normal tendency to scan the eyes more than the mouth. We conclude that occipitotemporal lesions are associated with a partially selective processing loss for eye information and that this deficit may be linked to loss of the right fusiform face area, which has been shown to have activity patterns that emphasize the eye region. PMID:27288649

  6. Cytomegalovirus retinitis associated with acquired immunodeficiency syndrome

    GENG Shuang; YE Jun-jie; ZHAO Jia-liang; LI Tai-sheng; HAN Yang

    2011-01-01

    Background Cytomegalovirus (CMV) retinitis is the most severe intraocular complication that results in total retinal destruction and loss of visual acuity in patients with acquired immunodeficiency syndrome (AIDS). This study aimed to investigate the fundus characteristics, systemic manifestations and therapeutic outcomes of CMV retinitis associated with AIDS.Methods It was a retrospective case series. CMV retinitis was present in 39 eyes (25 patients). Best corrected visual acuities, anterior segment, fundus features, fundus fluorescence angiography (FFA) and CD4+ T-lymphocyte counts of the patients with CMV retinitis associated with AIDS were analyzed. Intravitreal injections of ganciclovir (400 μg) were performed in 4 eyes (2 patients).Results Retinal vasculitis, dense, full-thickness, yellow-white lesions along vascular distribution with irregular granules at the border, and hemorrhage on the retinal surface were present in 28 eyes. The vitreous was clear or mildly opaque.Late stage of the retinopathy was demonstrated in 8 eyes characterized as atrophic retina, sclerotic and attenuated vessels, retinal pigment epithelium (RPE) atrophy, and optic nerve atrophy. Retinal detachment was found in 3 eyes. The average CD4+ T-lymphocyte count in peripheral blood of the patients with CMV retinitis was (30.6±25.3) ×106/L (range,(0-85) × 106/L). After intravitreal injections of ganciclovir, visual acuity was improved and fundus lesions regressed.Conclusions CMV retinitis is the most severe and the most common intraocular complication in patients with AIDS. For the patients with yellow-white retinal lesions, hemorrhage and retinal vasculitis without clear cause, human immunodeficiency virus (HIV) serology should be performed. Routine eye examination is also indicated in HIV positive patients.

  7. Anatomical basis of LMA variations drive to different photosynthetic and water storage strategies in two Sesleria species from mountain dry grasslands

    Puglielli, Giacomo; Fiore Crescente, Maria; Frattaroli, Anna Rita; Gratani, Loretta

    2016-04-01

    Plant and leaf traits directly affect ecosystem processes ensuring carbon, nutrient and water exchanges between soil and atmosphere through the photosynthetic activity. Nevertheless, a great within sites variation in plant and leaf traits can be found resulting in different adaptive strategies in coexisting species. Leaf mass per unit of leaf area (LMA) is an important trait to understand plant functional ecology being the outcome of leaf anatomy and related to photosynthesis. We hypothesized that LMA was the main predictor of the adaptive strategies of Sesleria nitida (S1) and Sesleria juncifolia (S2), growing on the screes and on the crests of the summit area, respectively, on Mount Terminillo (Central Apennines, Loc. Sella di Leonessa, 1895 m a.s.l.). To test our hypothesis we broke LMA down into anatomical components, leaf tissue density (LTD) and thickness (LT) and then relating them to gas exchange parameters on twenty plants per species cultivated ex situ. LTD explained 69% of LMA variations in S1 while the relationship with LT was not significant. Moreover, LTD was negatively correlated with LT in S1 driving to a 17% higher volume of the intercellular air spaces, which increases the CO2 partial pressure at the carboxylation sites. This result was also attested by the significant relationship between LTD and both net photosynthesis per unit leaf area (Aa) and mass (Am) (R= 0.56 and -0.49, respectively), highlighting the role of LTD in determining the photosynthetic process in S1. LMA scaled with both LTD and LT explaining 82% and 70% of LMA variations in S2. Moreover, the positive relationship between LTD and LT (R2 = 0.52) highlighted a coordination between the variables in controlling the photosynthetic process. In particular, LTD and LT controlled the transactions of carbon and water through the leaf surface, being positively related to Aa (R= 0.93 and 0.79 for LTD and LT, respectively). Nevertheless, an increase in LT and LTD decreased Am (R = -0.9 and

  8. Photosynthetic water oxidation: insights from manganese model chemistry.

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(μ-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2″-terpyridine), a mixed-valent di-μ-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the μ-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for μ-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond

  9. Assessing the Utility of Compound Trait Estimates of Narrow Personality Traits.

    Credé, Marcus; Harms, Peter D; Blacksmith, Nikki; Wood, Dustin

    2016-01-01

    It has been argued that approximations of narrow traits can be made through linear combinations of broad traits such as the Big Five personality traits. Indeed, Hough and Ones ( 2001 ) used a qualitative analysis of scale content to arrive at a taxonomy of how Big Five traits might be combined to approximate various narrow traits. However, the utility of such compound trait approximations has yet to be established beyond specific cases such as integrity and customer service orientation. Using data from the Eugene-Springfield Community Sample (Goldberg, 2008 ), we explore the ability of linear composites of scores on Big Five traits to approximate scores on 127 narrow trait measures from 5 well-known non-Big-Five omnibus measures of personality. Our findings indicate that individuals' standing on more than 30 narrow traits can be well estimated from 3 different types of linear composites of scores on Big Five traits without a substantial sacrifice in criterion validity. We discuss theoretical accounts for why such relationships exist as well as the theoretical and practical implications of these findings for researchers and practitioners. PMID:27153207

  10. Genetic parameters of ascites-related traits in broilers: correlations with feed efficiency and carcase traits.

    Pakdel, A; van Arendonk, J A M; Vereijken, A L J; Bovenhuis, H

    2005-02-01

    (1) Pulmonary hypertension syndrome followed by ascites is a metabolic disorder in broilers that occurs more often in fast-growing birds and at cool temperatures. (2) Knowledge of the genetic relationships among ascites-related traits and performance traits like carcase traits or feed efficiency traits is required to design breeding programmes that aim to improve the degree of resistance to ascites syndrome as well as production traits. The objective of this study was to estimate these genetic correlations. (3) Three different experiments were set up to measure ascites-related traits (4202 birds), feed efficiency traits (2166 birds) and carcase traits (2036 birds). The birds in different experiments originated from the same group of parents, which enabled the estimation of genetic correlations among different traits. (4) The genetic correlation of body weight (BW) measured under normal conditions and in the carcase experiment with the ascites indicator trait of right ventricle to total ventricle ratio (RV:TV) measured under cold conditions was 0.30. The estimated genetic correlation indicated that single-trait selecting for BW leads to an increase in occurrence of the ascites syndrome but that there are realistic opportunities of multi-trait selection of birds for improved BW and resistance to ascites. (5) Weak but positive genetic relationships were found between feed efficiency and ascites-related traits suggesting that more efficient birds tend to be slightly more susceptible to ascites. (6) The relatively low genetic correlation between BW measured in the carcase or in the feed efficiency experiments and BW measured in the ascites experiment (0.49) showed considerable genotype by environment interaction. (7) These results indicate that birds with high genetic potential for growth rate under normal temperature conditions have lower growth rate under cold-stress conditions due to ascites. PMID:15835251

  11. Using a Microscale Approach to Rapidly Separate and Characterize Three Photosynthetic Pigment Species from Fern

    Ayudhya, Theppawut Israsena Na; Posey, Frederick T.; Tyus, Jessica C.; Dingra, Nin N.

    2015-01-01

    A rapid separation of three photosynthetic pigments (chlorophyll "a" and "b" and xanthophyll) from fern ("Polystichum acrostichoides") is described using microscale solvent extraction and traditional thin layer chromatography that minimizes use of harmful chemicals and lengthy procedures. The experiment introduces…

  12. Bio-saline research: the use of photosynthetic marine organisms in food and feed production

    Mitsui, A.

    1979-01-01

    Possibilities for new research development in the utilization of the oceans and coastal areas for food and feed production are discussed. The advantages of marine resource utilization are presented. The state-of-art in the cultivation and harvesting of marine photosynthetic organisms is described. Research in enhancing solar energy conversion is in the following areas: biochemical and physiological regulation of major pathways; finding ways to reduce photorespiration; achieving more efficient photosynthetic processes through genetic engineering; and creating cell-free technologies. In the use of marine photosynthetic products as food and feed, research into the chemical and nutrient values is continuing. Future directions in developing new technologies for food production are discussed. Marketability, environmental aspects, and economic aspects are considered. The possibilities of using photosynthetic organisms in hydrogen gas production, methane production, medicine, and chemistry are also discussed. (DC)

  13. Effect of Temperature and light intensity on growth and Photosynthetic Activity of Chlamydomonas reinhard II

    The effect of five temperatures (15,20,25,30 and 35 degree centigree) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhard II has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of C02 labelled with C-14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 degree centigree for the lower level of illumination (2400 lux) and at 35 degree centigree for the higher one (13200 lux) and at 35 degree centigree for the higher ono (13200 lux). These results suggest an interaction of temperature and illumination on photosynthetic activity. (Author) 37 refs

  14. Photosynthetic CO{sub 2} fixation and energy production - microalgae as a main subject

    Asada, Yasuo [National Inst. of Bioscience and Human-Technology, Tsukuba-shi, Ibaraki-ken (Japan)

    1993-12-31

    Research activities for application of microalgal photosynthesis to CO{sub 2} fixation in Japan are overviewed. Presenter`s studies on energy (hydrogen gas) production by cyanobacteria (blue-green algae) and photosynthetic bacteria are also introduced.

  15. Polyhouse cultivation of invitro raised elite Stevia rebaudiana Bertoni: An assessment of biochemical and photosynthetic characteristics

    Polyhouse cultivated Stevia rebaudiana Bertoni plants, initially raised from synthetic seeds, were assessed for biochemical and photosynthetic characteristics and compared with their mother plant. Synthetic seeds were produced using nodal segments containing single axillary buds excised from in vitr...

  16. Differentiation of water-related traits in terrestrial and epiphytic Cymbidium species

    Shi-Bao eZhang

    2015-04-01

    Full Text Available Epiphytes that grow in the canopies of tropical and subtropical forests experience different water regimes when compared with terrestrial plants. However, the differences in adaptive strategies between epiphytic and terrestrial plants with respect to plant water relations remain poorly understood. To understand how water-related traits contrast between epiphytic and terrestrial growth forms within the Cymbidium (Orchidaceae, we assessed leaf anatomy, hydraulics, and physiology of seven terrestrial and 13 epiphytic species using a common garden experiment. Compared with terrestrial species, epiphytic species had higher values for leaf mass per unit area (LMA, leaf thickness (LT, epidermal thickness, saturated water content (SWC and the time required to dry saturated leaves to 70% relative water content (T70. However, vein density (Dvein, stomatal density (SD, and photosynthetic capacity (Amax did not differ significantly between the two forms. T70 was positively correlated with LT, LMA, and SWC, and negatively correlated with stomatal index (SI. Amax showed positive correlations with SD and SI, but not with Dvein. Vein density was marginally correlated with SD, and significantly correlated with SI. Overall, epiphytic orchids exhibited substantial ecophysiological differentiations from terrestrial species, with the former type showing trait values indicative of greater drought tolerance and increased water storage capacity. The ability to retain water in the leaves plays a key role in maintaining a water balance in those epiphytes. Therefore, the process of transpiration depends less upon the current substrate water supply and enables epiphytic Cymbidium species to adapt more easily to canopy habitats.

  17. Variation in Ecophysiological Traits and Drought Tolerance of Beech (Fagus sylvatica L.) Seedlings from Different Populations.

    Cocozza, Claudia; de Miguel, Marina; Pšidová, Eva; Ditmarová, L'ubica; Marino, Stefano; Maiuro, Lucia; Alvino, Arturo; Czajkowski, Tomasz; Bolte, Andreas; Tognetti, Roberto

    2016-01-01

    Frequency and intensity of heat waves and drought events are expected to increase in Europe due to climate change. European beech (Fagus sylvatica L.) is one of the most important native tree species in Europe. Beech populations originating throughout its native range were selected for common-garden experiments with the aim to determine whether there are functional variations in drought stress responses among different populations. One-year old seedlings from four to seven beech populations were grown and drought-treated in a greenhouse, replicating the experiment at two contrasting sites, in Italy (Mediterranean mountains) and Germany (Central Europe). Experimental findings indicated that: (1) drought (water stress) mainly affected gas exchange describing a critical threshold of drought response between 30 and 26% SWA for photosynthetic rate and Ci/Ca, respectively; (2) the Ci to Ca ratio increased substantially with severe water stress suggesting a stable instantaneous water use efficiency and an efficient regulation capacity of water balance achieved by a tight stomatal control; (3) there was a different response to water stress among the considered beech populations, differently combining traits, although there was not a well-defined variability in drought tolerance. A combined analysis of functional and structural traits for detecting stress signals in beech seedlings is suggested to assess plant performance under limiting moisture conditions and, consequently, to estimate evolutionary potential of beech under a changing environmental scenario. PMID:27446118

  18. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies.

    Pinto, Francisco; Damm, Alexander; Schickling, Anke; Panigada, Cinzia; Cogliati, Sergio; Müller-Linow, Mark; Balvora, Agim; Rascher, Uwe

    2016-07-01

    Passive detection of sun-induced chlorophyll fluorescence (SIF) using spectroscopy has been proposed as a proxy to quantify changes in photochemical efficiency at canopy level under natural light conditions. In this study, we explored the use of imaging spectroscopy to quantify spatio-temporal dynamics of SIF within crop canopies and its sensitivity to track patterns of photosynthetic activity originating from the interaction between vegetation structure and incoming radiation as well as variations in plant function. SIF was retrieved using the Fraunhofer Line Depth (FLD) principle from imaging spectroscopy data acquired at different time scales a few metres above several crop canopies growing under natural illumination. We report the first maps of canopy SIF in high spatial resolution. Changes of SIF were monitored at different time scales ranging from quick variations under induced stress conditions to seasonal dynamics. Natural changes were primarily determined by varying levels and distribution of photosynthetic active radiation (PAR). However, this relationship changed throughout the day demonstrating an additional physiological component modulating spatio-temporal patterns of SIF emission. We successfully used detailed SIF maps to track changes in the canopy's photochemical activity under field conditions, providing a new tool to evaluate complex patterns of photosynthesis within the canopy. PMID:26763162

  19. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion

    Mussgnug, Jan H.; Thomas-Hall, Skye; Rupprecht, Jens; Foo, Alexander; Klassen, Viktor; McDowall, Alasdair; Schenk, Peer M.; Kruse, Olaf; Hankamer, Ben

    2007-01-01

    The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H-2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamydomonas reinhardtii) have evolved genetic strategies to assemble large light-harvesting antenna com...

  20. ENDOSULFAN INDUCED CHANGES IN GROWTH RATE, PIGMENT COMPOSITION AND PHOTOSYNTHETIC ACTIVITY OF MOSQUITO FERN AZOLLA MICROPHYLLA

    Raja W.; Rathaur P.; John S. A.; Ramteke P. W.

    2012-01-01

    This paper is the first in a series reporting a study on the effects of different concentrations of insecticide, Endosulfan (0-600ppm) was premeditated on 5th day after insecticide exposure with respect to growth rate, pigment composition and photosynthetic activity of Azolla microphylla under laboratory conditions which become non-target organism in the rice fields. Endosulfan inhibited the relative growth rate, pigment content and photosynthetic O2 evolution. Phycocyanin was main target fo...

  1. Effect of Light and Organic Acids on Oxygen Uptake by BTAi 1, a Photosynthetic Rhizobium

    Wettlaufer, S. H.; Hardy, R. W. F.

    1992-01-01

    A photosynthetic rhizobium, strain BTAi 1, was cultured ex planta to investigate its photosynthetic-respiratory system and the response of this interactive system to light quantity and quality and to the addition of organic acids. Oxygen uptake, as measured with an oxygen electrode, is diminished upon illumination, with the amount of decrease related to light intensity. This oxygen-sparing effect is correlated with the wavelengths of light that are associated with bacteriochlorophyll absorban...

  2. Does the size of the microphytobenthic biofilm on intertidal muflats depend on the available photosynthetic biomass?

    Herlory, Olivier; Blanchard, Gerard F.; Planche, S; Huet, V; Richard, Pierre

    2005-01-01

    Many scientists consider that the top centimetre of the sediment on intertidal mudflats contains the photosynthetic competent biomass (PCB). Part of this biomass migrates upward to the surface of the sediment during diurnal emersion periods to form a temporary biofilm: the photosynthetic active biomass (PAB). The present study tests the hypothesis that the size of the biofilm (PAB) is functionally dependent on PCB. Therefore, we have plotted PAB as a function of PCB for a range of different e...

  3. Estimating Photosynthetic Radiation Use Efficiency Using Incident Light and Photosynthesis of Individual Leaves

    A. Rosati; DeJong, T M

    2003-01-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, ‘daily’ photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthes...

  4. Assessing photosynthetic downregulation in sunflower stands with an optically-based model.

    Gamon, J A; Field, C B; Fredeen, A L; Thayer, S

    2001-01-01

    Using a simple light-use efficiency model based on optical measurements, we explored spatial patterns of photosynthetic activity in fertilized and unfertilized sunflower stands. The model had two components: (1) absorbed photosynthetically active radiation (APAR), and (2) radiation-use efficiency. APAR was the product of photosynthetic photon flux density (PPFD) and leaf absorptance, which was derived from leaf reflectance. Radiation-use efficiency was either assumed to be constant or allowed to vary linearly with the photochemical reflectance index (PRI), a measure of xanthophyll cycle pigment activity. When efficiency was assumed to be constant, the model overestimated photosynthetic rates in upper canopy layers exposed to direct PPFD, particularly in the unfertilized canopy due to the greater photosynthetic downregulation associated with higher levels of photoprotective (de-epoxidized) xanthophyll cycle pigments in these conditions. When efficiency was allowed to vary according to the PRI, modeled photosynthetic rates closely matched measured rates for all canopy layers in both treatments. These results illustrate the importance of considering reduced radiation-use efficiency due to photosynthetic downregulation when modeling photosynthesis from reflectance, and illustrate the potential for detecting radiation-use efficiency through leaf optical properties. At least under the conditions of this study, these results also suggest that xanthophyll cycle pigment activity and net carbon uptake are coordinately regulated, allowing assays of Photosystem II activity to reveal changing rates of net assimilation. Because the optical methods in this study are adaptable to multiple spatial scales (leaf to landscape), this approach may provide a scalable model for estimating photosynthetic rates independently from flux measurements. PMID:16228321

  5. REPEATED MEASURES ANALYSIS OF CHANGES IN PHOTOSYNTHETIC EFFICIENCY IN SOUR CHERRY DURING WATER DEFICIT

    Vera Cesar; Rezica Sudar; Zorica Jurković; Ines Mihaljević; Hrvoje Lepeduš; Krunoslav Dugalić; Marija Viljevac; Domagoj Šimić

    2012-01-01

    The objective of this study was to investigate changes in photosynthetic efficiency applying repeated measures ANOVA using the photosynthetic performance index (PIABS) of the JIP-test as a vitality parameter in seven genotypes of sour cherry (Prunus cerasus, L.) during 10 days of continuous water deficit. Both univariate and multivariate ANOVA repeated measures revealed highly significant time effect (Days) and its subsequent interactions with genotype and water deficit. However, the multivar...

  6. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  7. Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard

    Fatma, Mehar; Masood, Asim; Per, Tasir S.; Khan, Nafees A

    2016-01-01

    The role of nitric oxide (NO) and sulfur (S) on stomatal responses and photosynthetic performance was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 μM NO (as sodium nitroprusside) and 200 mg S kg−1 soil (S) more prominently influenced stomatal behavior, photosynthetic and growth performance both in the absence and presence of salt stress. The chloroplasts from salt-stressed plants had disorganized chloroplast thylakoids, but com...

  8. Oxygen regulation of development of the photosynthetic membrane system in Chloroflexus aurantiacus.

    Foster, J. M.; Redlinger, T E; Blankenship, R. E.; Fuller, R. C.

    1986-01-01

    Oxygen levels which control induction of the assembly of the pigment-protein photosynthetic polypeptides in dark-grown Chloroflexus aurantiacus were determined. The induction signal by low-oxygen tension is not directly related to the respiratory competence of these photosynthetic cells. Cytochrome c554, the primary electron donor to P865+ of the reaction center, is not present in dark-grown respiratory cells but is induced in parallel with bacteriochlorophylls a and c and at similar oxygen p...

  9. Photosynthetic response of pepper plants to wilt induced by Verticillium dahliae and soil water deficit.

    Pascual Elizalde, Inmaculada; Azcona, Iñaki; Morales Iribas, Fermín; Aguirreolea, Jone; Sánchez-Díaz, Manuel

    2010-01-01

    Greenhouse experiments were conducted to compare stress effects caused by Verticillium dahliae and drought on gas exchange, chlorophyll (Chl) fluorescence and photosynthetic pigments of pepper plants. Three treatments were compared: Verticillium inoculated plants (+V), non-inoculated well-watered plants (−V) and non-inoculated plants subjected to progressive drought (D). Gas exchange, fluorescence and photosynthetic pigments were measured and represented along a gradient of relative water con...

  10. Förster energy transfer theory as reflected in the structures of photosynthetic light harvesting systems

    Şener, Melih; Strümpfer, Johan; Hsin, Jen; Chandler, Danielle; Scheuring, Simon; Hunter, C. Neil; Schulten, Klaus

    2011-01-01

    Förster’s theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to so-called reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible effici...

  11. On the photosynthetic and devlopmental responses of leaves to the spectral composition of light

    Hogewoning, S.W.

    2010-01-01

    Key words: action spectrum, artificial solar spectrum, blue light, Cucumis sativus, gas-exchange, light-emitting diodes (LEDs), light interception, light quality, non-photosynthetic pigments, photo-synthetic capacity, photomorphogenesis, photosystem excitation balance, quantum yield, red light. A wide range of plant properties respond to the spectral composition of irradiance, such as photosynthesis, photomorphogenesis, phototropism and photonastic movements. These responses affect plant prod...

  12. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A

    2008-10-01

    Effect of different photosynthetic photon flux densities (0, 500, 1000, 1500 and 2000 μmol m(-2)s(-1)), temperatures (20, 25, 30, 35 and 40 °C) and CO2 concentrations (250, 350, 450, 550, 650 and 750 μmol mol(-1)) on gas and water vapour exchange characteristics of Cannabis sativa L. were studied to determine the suitable and efficient environmental conditions for its indoor mass cultivation for pharmaceutical uses. The rate of photosynthesis (PN) and water use efficiency (WUE) of Cannabis sativa increased with photosynthetic photon flux densities (PPFD) at the lower temperatures (20-25 °C). At 30 °C, PN and WUE increased only up to 1500 μmol m(-2)s(-1) PPFD and decreased at higher light levels. The maximum rate of photosynthesis (PN max) was observed at 30 °C and under 1500 μmol m(-2)s(-1) PPFD. The rate of transpiration (E) responded positively to increased PPFD and temperature up to the highest levels tested (2000 μmol m(-2)s(-1) and 40 °C). Similar to E, leaf stomatal conductance (gs) also increased with PPFD irrespective of temperature. However, gs increased with temperature up to 30 °C only. Temperature above 30 °C had an adverse effect on gs in this species. Overall, high temperature and high PPFD showed an adverse effect on PN and WUE. A continuous decrease in intercellular CO2 concentration (Ci) and therefore, in the ratio of intercellular CO2 to ambient CO2 concentration (Ci/Ca) was observed with the increase in temperature and PPFD. However, the decrease was less pronounced at light intensities above 1500 μmol m(-2)s(-1). In view of these results, temperature and light optima for photosynthesis was concluded to be at 25-30 °C and ∼1500 μmol m(-2)s(-1) respectively. Furthermore, plants were also exposed to different concentrations of CO2 (250, 350, 450, 550, 650 and 750 μmol mol(-1)) under optimum PPFD and temperature conditions to assess their photosynthetic response. Rate of photosynthesis, WUE and Ci decreased by 50 %, 53 % and 10

  13. Acquired pulmonary arteriovenous malformation secondary to hydatid cyst operation.

    Gezer, S; Turut, H; Oz, G; Demirag, F; Tastepe, I

    2007-10-01

    Pulmonary arteriovenous malformations are abnormal communications between pulmonary arteries and pulmonary veins. The majority of the cases are congenital in origin, and acquired pulmonary arteriovenous malformations are very rare. We present a case here, which - to the best of our knowledge - is the first acquired pulmonary arteriovenous malformation secondary to a hydatid cyst operation in the literature, and we discuss the etiology, clinical presentation, diagnostic modalities and treatment of acquired pulmonary arteriovenous malformations. PMID:17902072

  14. A multi-pathway model for Photosynthetic reaction center

    Qin, M; Yi, X X

    2015-01-01

    Charge separation in light-harvesting complexes occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine (QHE). Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem {\\rm II} reaction center (PS{\\rm II} RC) to describe the charge separation. Our model mainly considers two charge-separation pathways more than that in the published literature. The two pathways can interfere via cross-couplings and work together to enhance the charge-separation yields. We explore how these cross-couplings increase the current and voltage of the charge separation and discuss the advantages of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PS{\\rm II} RC and dephasing induced by environments is also explored, and extension ...

  15. Mimicking the Role of the Antenna in Photosynthetic Photoprotection

    Terazono, Yuichi; Kodis, Gerdenis; Bhushan, Kul; Zaks, Julia; Madden, Christopher; Moore, Ana L.; Moore, Thomas A.; Fleming, Graham R.; Gust, Devens

    2011-03-09

    One mechanism used by plants to protect against damage from excess sunlight is called nonphotochemical quenching (NPQ). Triggered by low pH in the thylakoid lumen, NPQ leads to conversion of excess excitation energy in the antenna system to heat before it can initiate production of harmful chemical species by photosynthetic reaction centers. Here we report a synthetic hexad molecule that functionally mimics the role of the antenna in NPQ. When the hexad is dissolved in an organic solvent, five zinc porphyrin antenna moieties absorb light, exchange excitation energy, and ultimately decay by normal photophysical processes. Their excited-state lifetimes are long enough to permit harvesting of the excitation energy for photoinduced charge separation or other work. However, when acid is added, a pH-sensitive dye moiety is converted to a form that rapidly quenches the first excited singlet states of all five porphyrins, converting the excitation energy to heat and rendering the porphyrins kinetically incompetent to readily perform useful photochemistry.

  16. A multi-pathway model for photosynthetic reaction center

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-03-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  17. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton

    Microheterotrophic uptake of algal extracellular products was studied in two eutrophic lakes in southern Sweden. Size fractionation was used in H14CO3 uptake experiments to measure 14C fixation in total particulate, small particulate and dissolved organic fractions. Carbon fixed in algal photosynthesis was recovered as dissolved and small particulate 14C, representing excretion and bacterial uptake of algal products. Estimated gross extracellular release was low in these eutrophic systems, 1 to 7% of total 14C uptake per m2 lake surface. From 28 to 80 % of 14C released was recovered in the small particulate fraction after ca. 4h incubation.This percentage was uniform within each depth profile, but varied directly with in situ water temperature. Laboratory time-series incubations indicated steady state for the pool of algal extracellular products on one occasion, while increasing pool size was indicated in the remaining two experiments. Uptake of photosynthetic carbon to small particles in situ was 32 to 95% of estimted heterotrophic bacterial production (as dark 14CO2 uptake) on four occasions. While excretion apparently was not an important loss of cabon for phytoplankton, it may have represented an important carbon source for planktonic bacteria. (author)

  18. Host control and nutrient trading in a photosynthetic symbiosis.

    Dean, Andrew D; Minter, Ewan J A; Sørensen, Megan E S; Lowe, Christopher D; Cameron, Duncan D; Brockhurst, Michael A; Jamie Wood, A

    2016-09-21

    Photosymbiosis is one of the most important evolutionary trajectories, resulting in the chloroplast and the subsequent development of all complex photosynthetic organisms. The ciliate Paramecium bursaria and the alga Chlorella have a well established and well studied light dependent endosymbiotic relationship. Despite its prominence, there remain many unanswered questions regarding the exact mechanisms of the photosymbiosis. Of particular interest is how a host maintains and manages its symbiont load in response to the allocation of nutrients between itself and its symbionts. Here we construct a detailed mathematical model, parameterised from the literature, that explicitly incorporates nutrient trading within a deterministic model of both partners. The model demonstrates how the symbiotic relationship can manifest as parasitism of the host by the symbionts, mutualism, wherein both partners benefit, or exploitation of the symbionts by the hosts. We show that the precise nature of the photosymbiosis is determined by both environmental conditions (how much light is available for photosynthesis) and the level of control a host has over its symbiont load. Our model provides a framework within which it is possible to pose detailed questions regarding the evolutionary behaviour of this important example of an established light dependent endosymbiosis; we focus on one question in particular, namely the evolution of host control, and show using an adaptive dynamics approach that a moderate level of host control may evolve provided the associated costs are not prohibitive. PMID:26925812

  19. Partitioning changes in photosynthetic rate into contributions from different variables.

    Buckley, Thomas N; Diaz-Espejo, Antonio

    2015-06-01

    Changes in net CO2 assimilation rate (A) are often partitioned into contributions from changes in different variables using an approach that is based on an expression from calculus: namely the definition of the exact differential of A, which states that an infinitesimal change in A (dA) is equal to the sum of infinitesimal changes in each of the underlying variables, each multiplied by the partial derivative of A with respect to the variable. Finite changes in A can thus be partitioned by integrating this sum across a finite interval. The most widely used method of estimating that integral is a coarse discrete approximation that uses partial derivatives of the natural logarithm of A rather than A itself. This yields biased and ambiguous estimates of partitioned changes in A. We present an alternative partitioning approach based on direct numerical integration of dA. The new approach does not require any partial derivatives to be computed, and it can be applied under any conditions to estimate the contributions from changes in any photosynthetic variable. We demonstrate this approach using field measurements of both seasonal and diurnal changes in assimilation rate, and we provide a spreadsheet implementing the new approach. PMID:25266511

  20. Theoretical study on primary reaction of photosynthetic bacteria

    张纯喜; 樊红军; 李良璧; 匡廷云

    1999-01-01

    Theoretical calculation was carried out on the primary electron donor P870 of photosynthetic bacteria. The results show that: (ⅰ) the bimolecular structure of the primary electron donor is more advantageous in energy than monomolecular structure; (ⅱ) the initial configuration of primary electron donor is no longer stable and changes to the configuration with lower energy and chemical reactivity after the charge separation. In the P870, such structural change is completed through the rotation of C3 acetyl, so the oxygen atom of acetyl interacts with the magnesium atom of another bacterio-chlorophyll molecule, and the total energy and chemical reactivity are reduced evidently. It is suggested that the structural change of the primary electron donor is important in preventing the occurrence of charge recombination during the primary reaction and maintaining the high efficiency of the conversion of sun-light to chemical energy. A new mechanism of primary reaction has been proposed, which can give r

  1. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  2. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz-Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW+ as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production.

  3. Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes

    Mahdian, M.; Kouhestani, H.

    2015-08-01

    Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.

  4. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae.

    Du, Zhi-Yan; Benning, Christoph

    2016-01-01

    Plant and algal oils are some of the most energy-dense renewable compounds provided by nature. Triacylglycerols (TAGs) are the major constituent of plant oils, which can be converted into fatty acid methyl esters commonly known as biodiesel. As one of the most efficient producers of TAGs, photosynthetic microalgae have attracted substantial interest for renewable fuel production. Currently, the big challenge of microalgae based TAGs for biofuels is their high cost compared to fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs only during stress conditions such as nutrient deprivation and temperature stress, which inevitably will inhibit growth. Thus, a better understanding of why and how microalgae induce TAG biosynthesis under stress conditions would allow the development of engineered microalgae with increased TAG production during conditions optimal for growth. Land plants also synthesize TAGs during stresses and we will compare new findings on environmental stress-induced TAG accumulation in plants and microalgae especially in the well-characterized model alga Chlamydomonas reinhardtii and a biotechnologically relevant genus Nannochloropsis. PMID:27023236

  5. Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    Giorgi, G.L., E-mail: g.giorgi@inrim.it [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy); Roncaglia, M. [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy); Raffa, F.A. [Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Genovese, M. [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy)

    2015-10-15

    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.

  6. Hydrogen Fluxes from Photosynthetic Communities: Implications for Early Earth Biogeochemistry

    Hoehler, Tori M.; Bebout, Brad M.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    More than half the history of life on Earth was dominated by photosynthetic microbial mats, which must have represented the preeminent biological influence on global geochemical cycling during that time. In modem analogs of then ancient communities, hypersaline microbial mats from Guerrero Negro, Mexico, we have observed a large flux of molecular hydrogen originating in the cyanobacteria-dominated surface layers. Hydrogen production follows a distinct diel pattern and is sensitive to both oxygen tension and microbial species composition within the mat. On an early Earth dominated by microbial mats, the observed H2 fluxes would scale to global levels far in excess of geothermal emissions. A hydrogen flux of this magnitude represents a profound transmission of reducing power from oxygenic photosynthesis, both to the anaerobic biosphere, where H2 is an almost universally-utilized substrate and regulator of microbial redox chemistry, and to the atmosphere, where subsequent escape to space could provide an important mechanism for the net oxidation of Earth's surface.

  7. Hyperspectral estimation of corn fraction of photosynthetically active radiation

    Fraction of absorbed photosynthetically active radiation (FPAR) is one of the important variables in many productivity and biomass estimation models, this analyzed the effect of FPAR estimation with hyperspectral information, which could provide the scientific support on the improvement of FPAR estimation, remote sensing data validation, and the other ecological models. Based on the field experiment of corn, this paper analyzed the correlations between FPAR and spectral reflectance or the differential coefficient, and discussed the mechanism of FPAR estimation, studied corn FPAR estimation with reflectance, first differential coefficient, NDVI and RVI. The reflectance of visible bands showed much better correlations with FPAR than near-infrared bands. The correlation curve between FPAR and differential coefficient varied more frequently and greatly than the curve of FPAR and reflectance. Reflectance and differential coefficient both had good regressions with FPAR of the typical single band, with the maximum R2 of 0.791 and 0.882. In a word, differential coefficient and vegetation index were much effective than reflectance for corn FPAR estimating, and the stepwised regression of multibands differential coefficient showed the best regression with R2 of 0.944. 375 nm purpled band and 950 nm near-infraed band absorbed by water showed prodigious potential for FPAR estimating precision. On the whole, vegetation index and differential coefficient have good relationships with FPAR, and could be used for FAPR estimation. It would be effective of choosing right bands and excavating the hyperspectral data to improve FPAR estimating precision

  8. How to harvest solar energy with the photosynthetic reaction center

    Balaeff, Alexander; Reyes, Justin

    Photosynthetic reaction center (PRC) is a protein complex that performs a key step in photosynthesis: the electron-hole separation driven by photon absorbtion. The PRC has a great promise for applications in solar energy harvesting and photosensing. Such applications, however, are hampered by the difficulty in extracting the photogenerated electric charge from the PRC. To that end, it was proposed to attach the PRC to a molecular wire through which the charge could be collected. In order to find the attachment point for the wire that would maximize the rate of charge outflow from the PRC, we performed a computational study of the PRC from the R. virdis bacterium. An ensemble of PRC structures generated by a molecular dynamics simulation was used to calculate the rate of charge transport from the site of initial charge separation to several trial sites on the protein surface. The Pathways model was used to calculate the charge transfer rate in each step of the network of heme co-factors through which the charge transport was presumed to proceed. A simple kinetic model was then used to determine the overall rate of the multistep charge transport. The calculations revealed several candidate sites for the molecular wire attachment, recommended for experimental verification.

  9. Physiological and photosynthetic response of quinoa to drought stress

    Rachid Fghire

    2015-06-01

    Full Text Available Water shortage is a critical problem touching plant growth and yield in semi-arid areas, for instance the Mediterranean región. For this reason was studied the physiological basis of drought tolerance of a new, drought tolerant crop quinoa (Chenopodium quinoa Willd. tested in Morocco in two successive seasons, subject to four irrigation treatments (100, 50, and 33%ETc, and rainfed. The chlorophyll a fluorescence transients were analyzed by the JIP-test to transíate stress-induced damage in these transients to changes in biophysical parameter's allowing quantification of the energy flow through the photosynthetic apparatus. Drought stress induced a significant decrease in the maximum quantum yield of primary photochemistry (Φpo = Fv/Fm, and the quantum yield of electron transport (Φeo. The amount of active Photosystem II (PSII reaction centers (RC per excited cross section (RC/CS also decreased when exposed to the highest drought stress. The effective antenna size of active RCs (ABS/RC increased and the effective dissipation per active reaction centers (DIo/RC increased by increasing drought stress during the growth season in comparison to the control. However the performance index (PI, was a very sensitive indicator of the physiological status of plants. Leaf area index, leaf water potential and stomatal conductance decreased as the drought increased. These results indicate that, in quinoa leaf, JIP-test can be used as a sensitive method for measuring drought stress effects.

  10. Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise

  11. Structure-function investigations of bacterial photosynthetic reaction centers.

    Leonova, M M; Fufina, T Yu; Vasilieva, L G; Shuvalov, V A

    2011-12-01

    During photosynthesis light energy is converted into energy of chemical bonds through a series of electron and proton transfer reactions. Over the first ultrafast steps of photosynthesis that take place in the reaction center (RC) the quantum efficiency of the light energy transduction is nearly 100%. Compared to the plant and cyanobacterial photosystems, bacterial RCs are well studied and have relatively simple structure. Therefore they represent a useful model system both for manipulating of the electron transfer parameters to study detailed mechanisms of its separate steps as well as to investigate the common principles of the photosynthetic RC structure, function, and evolution. This review is focused on the research papers devoted to chemical and genetic modifications of the RCs of purple bacteria in order to study principles and mechanisms of their functioning. Investigations of the last two decades show that the maximal rates of the electron transfer reactions in the RC depend on a number of parameters. Chemical structure of the cofactors, distances between them, their relative orientation, and interactions to each other are of great importance for this process. By means of genetic and spectral methods, it was demonstrated that RC protein is also an essential factor affecting the efficiency of the photochemical charge separation. Finally, some of conservative water molecules found in RC not only contribute to stability of the protein structure, but are directly involved in the functioning of the complex. PMID:22339599

  12. Effect of cerium on photosynthetic characteristics of soybean seedling exposed to supplementary ultraviolet-B radiation

    LIANG Chan-juan; HUANG Xiao-hua; ZHOU Qing

    2006-01-01

    Effects of cerium (Ce3+) on photosynthetic characteristics were investigated by hydroponics under laboratory conditions when soybean seedlings were exposed to two levels of supplementary UV-B radiation. UV-B radiation badly inhibited the photosynthesis in soybean seedling, leading to a reduction in net photosynthetic rate (Ph), Hill reaction activity, light saturated photosynthetic rate (Ps) and apparent quanta yield (AQY), as well as the CO2 and light saturated photosynthetic rate (Pm) and carboxulation efficiency (CE). On the contrary, Ce obviously promoted the photosynthesis of plants by increasing Hill reaction activity, accelerating electron transport and photophosphorylation, and enhancing carboxylation efficiency. For Ce+UV-B treatments,the values of photosynthetic parameters were still lower than those of the control, but obviously higher than those of UV-B treatment.The results indicated that Ce alleviated the inhibition of UV-B radiation on the photosynthesis in soybean seedling to a certain extent.In correlating of Pn with Hill activity, AQY and CE, we found that the changes of photosynthetic rate were mainly influenced by the regulating effect of Ce on Hill activity and AQY at low level (0.15 W/m2) of UV-B radiation, but were dominated by the regulating effect of Ce on CE at high level (0.45 W/m2). Thus, Ce could regulate many aspects in photosynthesis of soybean seedling under UV-B stress. The regulating mechanism was close related with the dosage of UV-B radiation.

  13. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    Zaisong Ding

    2014-02-01

    Full Text Available Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation analyses were performed on the resulting data. Five or six groups were defined by K-means clustering according to differences in net photosynthetic rates (Pn. According to differences in stomatal conductance (gs and carboxylation efficiency (CE, each group was clustered into three subgroups characterized by physiological patterns stomatal pattern, carboxylation pattern, and intermediate pattern. Pn was significantly correlated with gs (r = 0.810 and CE (r = 0.531. Pn was also significantly correlated with gs and CE in the three physiological patterns. The correlation coefficients were highest in the stomatal pattern (0.905 and 0.957 and lowest in the carboxylation pattern (0.825 and 0.859. Higher correlation coefficients between Pn and gs or CE in the three physiological patterns indicate that clustering is very important for understanding factors limiting rice photosynthesis.

  14. Hemofilia A adquirida Acquired hemophilia A

    Delfina Almagro Vázquez

    2010-12-01

    Full Text Available La hemofilia A adquirida (HAA es un trastorno hemorrágico poco frecuente caracterizado por la presencia de autoanticuerpos contra el factor VIII (FVIII circulante. Aproximadamente en la mitad de los casos se ha observado un grupo heterogéneo de procesos patológicos que incluyen, entre otros, enfermedades autoinmunes y malignas y durante el embarazo, parto y puerperio. Las manifestaciones hemorrágicas son variables y fundamentalmente de tipo cutáneo mucoso. El diagnóstico se basa en el hallazgo en un paciente con manifestaciones hemorrágicas, prolongación del tiempo parcial de tromboplastina activado (TPTA, disminución de la actividad del FVIII y presencia de inhibidores del FVIII. El tratamiento de HAA incluye el control de las manifestaciones hemorrágicas y la supresión de la producción del anticuerpo. El concentrado de factor VIIa recombinante (FVIIar y el concentrado de complejo protrombínico (CCPA se consideran el tratamiento antihemorrágico de primera línea. Como terapéutica alternativa, en algunos casos puede utilizarse el concentrado de FVIII, la plasmaféresis y la inmunoadsorción extracorpórea. La prednisona sola o asociada con la ciclofosfamida, constituye el tratamiento inmunosupresor de primera línea. En pacientes refractarios puede administrarse como terapéutica de segunda línea, el rituximab (anti-CD20. Con la azatiopina, la ciclosporina, la vincristina y el micofenolato de mofetil, se han obtenido resultados variables.Acquired hemophilia A (AHA is an uncommon hemorrhagic disorder characterized by presence of autoantibodies to circulating factor VIII. Approximately in half of cases it is noted a heterogeneous group of pathological processes including among others, autoimmune and malignant diseases and during pregnancy, labor and puerperium. Hemorrhagic manifestations are variable and mainly of mucous cutaneous type. Diagnosis is based on the finding of a patient presenting with hemorrhagic manifestations

  15. Heteroscedastic Latent Trait Models for Dichotomous Data.

    Molenaar, Dylan

    2015-09-01

    Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability. PMID:25080866

  16. Trait emotional intelligence and inflammatory diseases.

    Costa, Sebastiano; Petrides, K V; Tillmann, Taavi

    2014-01-01

    Researchers have become increasingly interested in the psychological aspects of inflammatory disorders. Within this line of research, the present study compares the trait emotional intelligence (trait EI) profiles of 827 individuals with various inflammatory conditions (rheumatoid arthritis [RA], ankylosing spondylitis, multiple sclerosis, and RA plus one comorbidity) against 496 healthy controls. Global trait EI scores did not show significant differences between these groups, although some differences were observed when comparisons were carried out against alternative control groups. Significant differences were found on the trait EI factors of Well-being (where the healthy group scored higher than the RA group) and Sociability (where the healthy group scored higher than both the RA group and the RA plus one comorbidity group). The discussion centers on the multifarious links and interplay between emotions and inflammatory conditions. PMID:23725416

  17. Flood adaptive traits and processes : An overview

    Voesenek, Laurentius A C J; Bailey-Serres, Julia

    2015-01-01

    Unanticipated flooding challenges plant growth and fitness in natural and agricultural ecosystems. Here we describe mechanisms of developmental plasticity and metabolic modulation that underpin adaptive traits and acclimation responses to waterlogging of root systems and submergence of aerial tissue

  18. A functional trait perspective on plant invasion

    Global environmental change affects exotic plant invasions, which profoundly impact native plant populations, communities and ecosystems. In this context, we review plant functional traits, including those that drive invader abundance (invasiveness), and impacts, as well as the integration of these...

  19. Multiple Quantitative Trait Analysis Using Bayesian Networks

    Scutari, Marco; Howell, Phil; Balding, David J.; Mackay, Ian

    2014-01-01

    Models for genome-wide prediction and association studies usually target a single phenotypic trait. However, in animal and plant genetics it is common to record information on multiple phenotypes for each individual that will be genotyped. Modeling traits individually disregards the fact that they are most likely associated due to pleiotropy and shared biological basis, thus providing only a partial, confounded view of genetic effects and phenotypic interactions. In this article we use data f...

  20. Traits Contributing to the Autistic Spectrum

    Steer, Colin D.; Golding, Jean; Bolton, Patrick F.

    2010-01-01

    Background It is increasingly recognised that traits associated with autism reflect a spectrum with no clear boundary between typical and atypical behaviour. Dimensional traits are needed to investigate the broader autism phenotype. Methods and Principal Findings Ninety-three individual measures reflecting components of social, communication and repetitive behaviours characterising autistic spectrum disorder (ASD) were identified between the ages of 6 months and 9 years from the ALSPAC databa...

  1. Is Adaptability of Personality a Trait?

    Cook, Clare Taube

    2016-01-01

    Due to the dominance of the trait approach, personality is widely reduced to a set of trait scores which represent ‘usual’ behaviour. However, individuals show substantial variation within their personality (e.g. Fleeson, 2001; 2004). Thus there is a need for research into the personality characteristics which underlie this variance so that personality can be more fully quantified. To this end, the current thesis investigated a previously unresearched personality characteristic: personalit...

  2. New methods for mapping quantitative trait loci

    Carlborg, Örjan

    2002-01-01

    This thesis presents and discusses the use of various genetic models, high performance computing, global optimization algorithms and statistical methods for mapping Quantitative Trait Loci (QTL). The aim of the work has been to develop statistically powerful and computationally efficient methods to detect genomic loci affecting multifactorial traits, and use the methods use to analyse experimental data. Imprinting is an epigenetic phenomena which causes differential expression of alleles base...

  3. Emotions shape memory suppression in trait anxiety

    Marzi, Tessa; Regina, Antonio; Righi, Stefania

    2014-01-01

    The question that motivated this study was to investigate the relation between trait anxiety, emotions and memory control. To this aim, memory suppression was explored in high and low trait anxiety individuals with the Think/No-think paradigm. After learning associations between neutral words and emotional scenes (negative, positive, and neutral), participants were shown a word and were requested either to think about the associated scene or to block it out from mind. Finally, in a test phase...

  4. Emotions shape memory suppression in trait anxiety

    Tessa eMarzi; Antonio eRegina; Stefania eRighi

    2014-01-01

    The question that motivated this study was to investigate the relation between trait anxiety, emotions and memory control. To this aim, memory suppression was explored in high and low trait anxiety individuals with the Think/No-think paradigm. After learning associations between neutral words and emotional scenes (negative, positive and neutral), participants were shown a word and were requested either to think about the associated scene or to block it out from mind. Finally, in a test phase,...

  5. Stereotypes about sex related personality traits

    Andreja Avsec

    2002-05-01

    Full Text Available In present research, stereotypes about sex differences in personality traits were examined. They were compared to traits, included in two masculinity and femininity questionnaires and to big five factors. Results indicate the presence of gender stereotypes and their similarity to stereotypes, discovered in other studies. The majority of attributes that comprise stereotypes about average man pertain to assertive and controlling tendency, but in stereotypes about average woman caring and nurturant qualities predominate.

  6. Trait evolution in two-sex populations

    Zwoleński, Paweł

    2014-01-01

    We present an individual-based model of phenotypic trait evolution in two-sex populations, which includes semi-random mating of individuals of the opposite sex, natural death and intra-specific competition. By passing the number of individuals to infinity, we derive the macroscopic system of nonlinear differential equations describing the evolution of trait distributions in male and female subpopulations. We study solutions, give criteria for persistence or extinction, and state theorem on as...

  7. Traits Contributing to the Autistic Spectrum

    Steer, Colin D; Jean Golding; Bolton, Patrick F

    2010-01-01

    BACKGROUND: It is increasingly recognised that traits associated with autism reflect a spectrum with no clear boundary between typical and atypical behaviour. Dimensional traits are needed to investigate the broader autism phenotype. METHODS AND PRINCIPAL FINDINGS: Ninety-three individual measures reflecting components of social, communication and repetitive behaviours characterising autistic spectrum disorder (ASD) were identified between the ages of 6 months and 9 years from the ALSPAC data...

  8. Verified Subtyping with Traits and Mixins

    Sharma, Asankhaya

    2014-01-01

    Traits allow decomposing programs into smaller parts and mixins are a form of composition that resemble multiple inheritance. Unfortunately, in the presence of traits, programming languages like Scala give up on subtyping relation between objects. In this paper, we present a method to check subtyping between objects based on entailment in separation logic. We implement our method as a domain specific language in Scala and apply it on the Scala standard library. We have verified that 67% of mi...

  9. Genetics of complex traits in psychiatry

    Gelernter, Joel

    2014-01-01

    Virtually all psychiatric traits are genetically complex. This article discusses the genetics of complex traits in psychiatry. The complexity is accounted for by numerous factors, including multiple risk alleles, epistasis, and epigenetic effects, such as methylation. Risk alleles can individually be common or rare, and can include, for example, single nucleotide polymorphisms (SNPs) and copy number variants (CNV) that are transmitted or are new mutations, and other kinds of variation. Many d...

  10. Trait and state authenticity across cultures

    Slabu, L; Lenton, A.; Sedikides, Constantine; Bruder, Martin

    2014-01-01

    We examined the role of culture in both trait and state authenticity, asking whether the search for and experience of the “true self” is a uniquely Western phenomenon or is relevant cross-culturally. We tested participants from the United States, China, India, and Singapore. U.S. participants reported higher average levels of trait authenticity than those from Eastern cultures (i.e., China, India, Singapore), but this effect was partially explained by cultural differences in self-construal an...

  11. Relating Stomatal Conductance to Leaf Functional Traits

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-01-01

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreas...

  12. Trait-oriented programming in Java 8

    Bono, Viviana; Mensa, Enrico; Naddeo, Marco

    2014-01-01

    Java 8 was released recently. Along with lambda expressions, a new language construct is introduced: default methods in interfaces. The intent of this feature is to allow interfaces to be extended over time preserving backward compatibility. In this paper, we show a possible, different use of interfaces with default methods: we introduce a trait-oriented programming style based on an interface-as- trait idea, with the aim of improving code modularity. Starting from the most common operators o...

  13. Committed Salesforce: An Investigation into Personality Traits

    Hisham Hamid Hawass

    2012-01-01

    This study aims to uncover the pre-dispositional roots of organizational commitment. More specifically, thepurpose of the study is to investigate whether affective and continuance dimensions of organizationalcommitment are delibrately influenced by a defined set of personality traits. The study applies well-establishedmeasurements of organizational commitment and personality traits on a sample of sales representatives in sixmajor Egyptian pharmaceuticals. The findings reveal that organization...

  14. Stereotypes about sex related personality traits

    Andreja Avsec

    2002-01-01

    In present research, stereotypes about sex differences in personality traits were examined. They were compared to traits, included in two masculinity and femininity questionnaires and to big five factors. Results indicate the presence of gender stereotypes and their similarity to stereotypes, discovered in other studies. The majority of attributes that comprise stereotypes about average man pertain to assertive and controlling tendency, but in stereotypes about average woman caring and nurtur...

  15. Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat

    Chunlian Li; Guihua Bai; Shiaoman Chao; Brett Carver; Zhonghua Wang

    2016-01-01

    Wheat (Triticum aestivum L.) grain quality traits that are controlled by quantitative traits loci (QTL) define suitable growing areas and potential end-use products of a wheat cultivar. To dissect QTL for these traits including protein content (GPC);test weight (TW);single kernel characterization system (SKCS)-estimated kernel weight (SKW); kernel diameter (KD);kernel hardness measured by near-infrared reflectance spectroscopy (NIRS) hardness index (NHI); and SKCS-hardness index (SHI), a high-density genetic map with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers was developed using recombinant inbred lines (RILs) derived from Ning7840 × Clark. The RILs were evaluated for these quality traits in seven Oklahoma environments from 2001 to 2003. A total of 41 QTL with additive effects on different traits were mapped on most wheat chromosomes, excluding 1A, 2A, 3D, 4D, 6D, and 7B. Seven chromosome regions showed either tightly linked QTL or QTL with pleiotropic effects on two to four traits. Ten pairs of QTL showed additive × additive effects (AA), four QTL were involved in additive × environment (AE) effects, and one was involved in AAE effects. Two to eleven QTL for each of the six traits and 139 tightly linked markers to these QTL were identified. The findings shed light on the inheritance of wheat grain quality traits and provide DNA markers for manipulating these important traits to improve quality of new wheat cultivars.

  16. Transdiagnostic cognitive processes in high trait anger.

    Owen, John M

    2011-03-01

    Trait anger is a personality construct that refers to stable individual differences in the propensity to experience anger as an emotional state. The objective of this paper is to review relevant empirical studies in order to determine whether the transdiagnostic cognitive processes that have been identified across the DSM-IV Axis I disorders (specifically, selective attention, memory biases, reasoning biases and recurrent negative thinking) are also an underlying characteristic of high trait anger. On the basis of the review it is concluded that, whilst the research base is limited, there is good evidence that high trait anger is associated with selective attention to hostile social cues, the tendency to interpret the behaviour of others as indicating potential hostility and the tendency to ruminate over past anger-provoking experiences. The range of cognitive processes identified in high trait anger is consistent with those identified in the Axis I disorders. It is concluded that these findings provide support for (i) the broad applicability of the transdiagnostic approach as a theoretical framework for understanding a range of psychological conditions, not limited to the Axis I disorders, and (ii) the validity of conceptualising high trait anger as an aspect of personality functioning that is maintained, at least in part, by cognitive processes. Cognitive and motivational factors (specifically, beliefs and goals) that may underlie the hostile information-processing biases and recurrent negative thinking associated with high trait anger are discussed, and consideration is given to the clinical relevance of the findings of the review. PMID:21094569

  17. Mapping complex traits as a dynamic system

    Sun, Lidan; Wu, Rongling

    2015-06-01

    Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a "system" in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states.

  18. Interindividual Variation in Functionally Adapted Trait Sets Is Established During Postnatal Growth and Predictable Based on Bone Robustness

    Pandey, Nirnimesh; Bhola, Siddharth; Goldstone, Andrew; Chen, Fred; Chrzanowski, Jessica; Terranova, Carl J.; Ghillani, Richard

    2009-01-01

    Adults acquire unique sets of morphological and tissue-quality bone traits that are predictable based on robustness and deterministic of strength and fragility. How and when individual trait sets arise during growth has not been established. Longitudinal structural changes of the metacarpal diaphysis were measured for boys and girls from 3 mo to 8 yr of age using hand radiographs obtained from the Bolton-Brush collection. Robustness varied ∼2-fold among boys and girls, and individual values were established by 2 yr of age, indicating that genetic and environmental factors controlling the relationship between growth in width and growth in length were established early during postnatal growth. Significant negative correlations between robustness and relative cortical area and a significant positive correlation between robustness and a novel measure capturing the efficiency of growth indicated that coordination of the subperiosteal and endocortical surfaces was responsible for this population acquiring a narrow range of trait sets that was predictable based on robustness. Boys and girls with robust diaphyses had proportionally thinner cortices to minimize mass, whereas children with slender diaphyses had proportionally thicker cortices to maximize stiffness. Girls had more slender metacarpals with proportionally thicker cortices compared with boys at all prepubertal ages. Although postnatal growth patterns varied in fundamentally different ways with sex and robustness, the dependence of trait sets on robustness indicated that children sustained variants affecting subperiosteal growth because they shared a common biological factor regulating functional adaptation. Considering the natural variation in acquired trait sets may help identify determinants of fracture risk, because age-related bone loss and gain will affect slender and robust structures differently. PMID:20001599

  19. The case of Geely acquiring Volvo Car : A study on low brand equity acquiring high brand equity

    Zheng, Xiaoshu; Shi, Yuan

    2013-01-01

    Much previous research has studied high brand equity acquiring high brand equity or high brand equity acquiring low brand equity. However, very little research has been conducted to understand how that low brand equity acquiring high brand equity changes the low brand equity especially in China. This paper is on the case of Geely Group acquiring Volvo Car which was a typical acquisition of a high brand equity company by a low brand equity company. The aim of the paper is to verify whether thi...

  20. PATHOGENETIC MECHANISMS OF CHRONIC ACQUIRED TOXOPLASMOSIS

    Kotsyna S.S.

    2015-05-01

    Full Text Available Introduction. Toxoplasma gondii is an intracellular protozoan that infects approximately one-third of the world’s population. Infection in human generally occurs through consuming food or drink contaminated with oocysts and tissue cysts from undercooked meat. Although latent infection with Toxoplasma gondii is among the most prevalent of human infections, it has been generally assumed that, except for congenital transmission, it is asymptomatic. Different conditions such as, number of parasite, virulence of the organism, genetic background, sex, and immunological status seem to affect the course of infection The demonstration that Toxoplasma infections can alter behavior, reproductive function in patients has led to a reconsideration of this assumption. During chronic acquired toxoplasmosis (САT identified the regularities of changes in the ratio of the immune system and the basal levels of sex hormones available informative methods, which made it possible to evaluate the severity of the flow chart and predict treatment outcome without resorting to complex research methods. Found that the host-parasite relationships and clinical manifestations of chronic toxoplasmosis depend largely on protective and adaptive responses and compensatory abilities of the human body. Material & methods. 112 patients attended in the 6 Department of Kharkiv Regional Infectious Diseases Hospital №22 (Department of Medical Parasitology and Tropical Diseases of Kharkiv Medical Academy of Postgraduate Education, in Kharkiv, Ukraine were enrolled in the study. Forty four patients (39,3±4,6% were male and sixty eight (60,7±4,6% were female. The age of the patients was 18 till 72 years. Results & discussion. All of 112 CAT patients had subjective clinical symptoms in various combinations: increased fatigue 99,1 ± 0,9%, headache and tiredness 95,5 ± 1,9%, pain in the liver 88,4 ± 3,1%, bitter taste in the mouth 93,8 ± 2,2%, muscle pain 81,3 ± 3,7% and joint pain