WorldWideScience

Sample records for acoustical response

  1. Responsive acoustic surfaces

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design for the...... acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design was...... simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  2. Cardiorespiratory Responses to Acoustic Noise in Belugas.

    Lyamin, Oleg I; Korneva, Svetlana M; Rozhnov, Viatcheslav V; Mukhametov, Lev M

    2016-01-01

    To date, most research on the adverse effects of anthropogenic noise on marine mammals has focused on auditory and behavioral responses. Other responses have received little attention and are often ignored. In this study, the effect of acoustic noise on heart rate was examined in captive belugas. The data suggest that (1) heart rate can be used as a measure of physiological response (including stress) to noise in belugas and other cetaceans, (2) cardiac response is influenced by parameters of noise and adaptation to repeated exposure, and (3) cetacean calves are more vulnerable to the adverse effect of noise than adults. PMID:26611017

  3. Numerical analysis on acoustic impulse response for watermelon

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  4. Acoustic Response of a Sinusoidally Perturbed Hard-Walled Duct

    Silvio Del Giudice; Giancarlo Bernasconi

    2013-01-01

    Acoustic wave propagation in hard-walled ducts is of interest in many fields including vehicle design, musical instruments acoustics, and architectural and environmental noise-control. For the case of small sinusoidal perturbation of the cross-section, it is possible to derive simple though approximate analytical formulas of its plane wave acoustic reflection and transmission spectral response that resembles the optical situation of uniform Bragg gratings. The proof is given here, starting fr...

  5. Acoustic response variability in automotive vehicles

    Hills, E.; Mace, B. R.; Ferguson, N. S.

    2009-03-01

    A statistical analysis of a series of measurements of the audio-frequency response of a large set of automotive vehicles is presented: a small hatchback model with both a three-door (411 vehicles) and five-door (403 vehicles) derivative and a mid-sized family five-door car (316 vehicles). The sets included vehicles of various specifications, engines, gearboxes, interior trim, wheels and tyres. The tests were performed in a hemianechoic chamber with the temperature and humidity recorded. Two tests were performed on each vehicle and the interior cabin noise measured. In the first, the excitation was acoustically induced by sets of external loudspeakers. In the second test, predominantly structure-borne noise was induced by running the vehicle at a steady speed on a rough roller. For both types of excitation, it is seen that the effects of temperature are small, indicating that manufacturing variability is larger than that due to temperature for the tests conducted. It is also observed that there are no significant outlying vehicles, i.e. there are at most only a few vehicles that consistently have the lowest or highest noise levels over the whole spectrum. For the acoustically excited tests, measured 1/3-octave noise reduction levels typically have a spread of 5 dB or so and the normalised standard deviation of the linear data is typically 0.1 or higher. Regarding the statistical distribution of the linear data, a lognormal distribution is a somewhat better fit than a Gaussian distribution for lower 1/3-octave bands, while the reverse is true at higher frequencies. For the distribution of the overall linear levels, a Gaussian distribution is generally the most representative. As a simple description of the response variability, it is sufficient for this series of measurements to assume that the acoustically induced airborne cabin noise is best described by a Gaussian distribution with a normalised standard deviation between 0.09 and 0.145. There is generally

  6. Coupled vibro-acoustic model updating using frequency response functions

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  7. Acoustic Response of a Sinusoidally Perturbed Hard-Walled Duct

    Silvio Del Giudice

    2013-01-01

    Full Text Available Acoustic wave propagation in hard-walled ducts is of interest in many fields including vehicle design, musical instruments acoustics, and architectural and environmental noise-control. For the case of small sinusoidal perturbation of the cross-section, it is possible to derive simple though approximate analytical formulas of its plane wave acoustic reflection and transmission spectral response that resembles the optical situation of uniform Bragg gratings. The proof is given here, starting from the “horn equation” and then exploiting the coupled-modes theory. Examples of the results obtained with these analytical formulas are shown for some sinusoidally perturbed ducts and compared to results obtained through a numerical method, revealing a very good agreement.

  8. Impact of Acoustic Standing Waves on Structural Responses

    Kolaini, Ali R.

    2014-01-01

    For several decades large reverberant chambers and most recently direct field acoustic testing have been used in the aerospace industry to test larger structures with low surface densities such as solar arrays and reflectors to qualify them and to detect faults in the design and fabrication. It has been reported that in reverberant chamber and direct acoustic testing, standing acoustic modes may strongly couple with the fundamental structural modes of the test hardware (Reference 1). In this paper results from a recent reverberant chamber acoustic test of a composite reflector are discussed. These results provide further convincing evidence of the acoustic standing wave and structural modes coupling phenomenon. The purpose of this paper is to alert test organizations to this phenomenon so that they can account for the potential increase in structural responses and ensure that flight hardware undergoes safe testing. An understanding of the coupling phenomenon may also help minimize the over and/or under testing that could pose un-anticipated structural and flight qualification issues.

  9. Response of Launch Pad Structures to Random Acoustic Excitation

    Ravi N. Margasahayam

    1994-01-01

    Full Text Available The design of launch pad structures, particularly those having a large area-to-mass ratio, is governed by launch-induced acoustics, a relatively short transient with random pressure amplitudes having a non-Gaussian distribution. The factors influencing the acoustic excitation and resulting structural responses are numerous and cannot be predicted precisely. Two solutions (probabilistic and deterministic for the random vibration problem are presented in this article from the standpoint of their applicability to predict the response of ground structures exposed to rocket noise. Deficiencies of the probabilistic method, especially to predict response in the low-frequency range of launch transients (below 20 Hz, prompted the development of the deterministic analysis. The relationship between the two solutions is clarified for future implementation in a finite element method (FEM code.

  10. Nonlinear acoustic response in thin oxide layers on fused silica

    Nonlinear mechanical properties of layered systems of Ta2O5 and TiO2 films deposited on fused silica by reactive evaporation (RE), reactive ion plating (IP) and spin coating (SC) are investigated by means of an ultrasonic technique. The coatings with thickness of 100 nm possess differences in density and crystal structure, due to the different deposition conditions. The nonlinear acoustic response of the film/substrate systems depends on film material. Differences are observed in respect to film density as obtained by the alternate deposition methods. The origin of the differences in nonlinear acoustic response of the samples is discussed. The results are correlated to adhesion properties of the films determined by a scratch-test method

  11. Acoustic response of superheated droplet detectors to neutrons

    Gao Size [China Institute of Atomic Energy, Beijing, Fangshan 102413 (China); School of Physics, Guangxi University, Nanning 530004 (China); Zhang Guiying [China Institute of Atomic Energy, Beijing, Fangshan 102413 (China); Ni Bangfa, E-mail: bfni@ciae.ac.cn [China Institute of Atomic Energy, Beijing, Fangshan 102413 (China); Zhao Changjun; Zhang Huanqiao [China Institute of Atomic Energy, Beijing, Fangshan 102413 (China); Guan Yongjing [School of Physics, Guangxi University, Nanning 530004 (China); Chen Zhe [China Institute of Atomic Energy, Beijing, Fangshan 102413 (China); School of Physics, Guangxi University, Nanning 530004 (China); Xiao Caijin [China Institute of Atomic Energy, Beijing, Fangshan 102413 (China); Liu Chao [China Institute of Atomic Energy, Beijing, Fangshan 102413 (China); School of Physics, Guangxi University, Nanning 530004 (China); Liu Cunxiong [China Institute of Atomic Energy, Beijing, Fangshan 102413 (China)

    2012-03-11

    The search for dark matter (DM) is a hot field nowadays, a number of innovative techniques have emerged. The superheated droplet technique is relatively mature; however, it is recently revitalized in a number of frontier fields including the search for DM. In this work, the acoustic response of Superheated Droplet Detectors (SDDs) to neutrons was studied by using a {sup 252}Cf neutron source, SDDs developed by the China Institute of Atomic Energy, a sound sensor, a sound card and a PC. Sound signals were filtered. The characteristics of FFT spectra, power spectra and time constants were used to determine the authenticity of the bubbles analyzed.

  12. ACOUSTIC STARTLE RESPONSE AFFECTED BY AGING AND CHOLINERGIC NEUROTRANSMITTERS

    Anna Hansen; SUN Wei

    2014-01-01

    The acoustic startle response has been used to evaluate tinnitus and hyperacusis in animal models. Gap induced prepulse in-hibition of the acoustic startle reflex (gap-PPI) is affected by tinnitus and loudness changes. Since tinnitus and reduced sound tolerance are commonly seen in elderly, we measured gap-PPI in Fischer 344 rats, an aging related hearing loss model, at dif-ferent ages: 3-5 months, 9-12 months, and 15-17 months. The startle response was induced by three different intensity of sound:105, 95 and 85 dB SPL. Gap-PPI was induced by different duration of silent gaps from 1 to 100 ms. When the startle was induced by 105 dB SPL sound intensity, the gap-PPI induced by 50 ms silent gap was significantly lower than those in-duced by 25 or 100 ms duration, showing a“notch”in the gap-PPI function. The“notch”disappeared with the reduction of startle sound, suggesting the“notch”may be related with hyper-sensitivity to loud sound. As the intensity of the stimulus de-creased, the appearance of the hyperacusis-like effect decreased more quickly for the youngest group of rats. We also tested scopolamine, a muscarinic acetylcholine receptor antagonist, and mecamylamine, a nicotinic acetylcholine receptor antago-nist, on the effect of gap-PPI. When scopolamine was administered, the results indicated no addition effect on the hyperacu-sis-like phenomenon in the two older groups. Mecamylamine, the nicotinic antagonist also showed effects on the appearance of hyperacusis on rats in different ages. The information derived from the study will be fundamental for the further research in determining the cause and treatment for hyperacusis.

  13. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  14. Response to acoustic forcing of laminar coflow jet diffusion flames

    Chrystie, Robin

    2014-04-23

    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar coflow diffusion flames were acoustically forced, whose frequency responses were recorded as a function of excitation frequency and amplitude. The evolving structure of such flames was also examined through the use of video analysis and particle imaging velocimetry (PIV). For specific combinations of excitation frequency and amplitude, the frequency response of the flames was found to couple to that of the forcing, where the contribution of natural puffing frequency disappears. Such instances of coupling exhibited many harmonics of the excitation frequency, related indirectly to the natural puffing frequency. We showed how such harmonics form, through application of PIV, and furthermore unveiled insight into the physics of how the flame couples to the forcing under certain conditions. Our frequency response characterization provides quantitative results, which are of utility for both modeling studies and active-control strategies. Copyright © Taylor & Francis Group, LLC.

  15. Articulatory-to-Acoustic Relations in Response to Speaking Rate and Loudness Manipulations

    Mefferd, Antje S.; Green, Jordan R.

    2010-01-01

    Purpose: In this investigation, the authors determined the strength of association between tongue kinematic and speech acoustics changes in response to speaking rate and loudness manipulations. Performance changes in the kinematic and acoustic domains were measured using two aspects of speech production presumably affecting speech clarity:…

  16. Development of the acoustic startle response in rats and its change after early acoustic trauma

    Rybalko, Natalia; Chumak, Tetyana; Bureš, Zbyněk; Popelář, Jiří; Šuta, Daniel; Syka, Josef

    2015-01-01

    Roč. 286, jul 1 (2015), s. 212-221. ISSN 0166-4328 R&D Projects: GA ČR(CZ) GAP303/12/1347; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378041 Keywords : auditory system * rat * acoustic startle reflex * development * critical period * noise exposure Subject RIV: FH - Neurology Impact factor: 3.028, year: 2014

  17. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code[1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package[2] to study the effects of in-plane modes and to evaluate

  18. Nonlinear response - A time domain approach. [with applications to acoustic fatigue, spacecraft and composite materials

    Vaicaitis, R.

    1986-01-01

    The present paper reviews the basic concepts of nonlinear response of panels to surface flow and acoustic pressures, simulation of random processes, time domain solutions and the Monte Carlo Method. Applications of this procedure to the orbit-on-demand space vehicles, acoustic fatigue and composite materials are discussed. Numerical examples are included for a variety of nonlinear problems to illustrate the applicability of this method.

  19. Acoustic gain in piezoelectric semiconductors at ε-near-zero response

    Willatzen, Morten; Christensen, Johan

    2014-01-01

    We demonstrate strong acoustic gain in electric-field biased piezoelectric semiconductors at frequencies near the plasmon frequency in the terahertz range. When the electron drift velocity produced by an external electric field is higher than the speed of sound, Cherenkov radiation of phonons generates amplification of sound. It is demonstrated that this effect is particularly effective at ε-near-zero response, leading to giant levels of acoustic gain. Operating at conditions with strong acou...

  20. Hair cell and organ of corti responses to normal and intense acoustic stimulation

    Fridberger, Anders

    1997-01-01

    The principal aims of the studies described in this thesis were to develop an in vitro model for studying acoustic overstimulation at the cellular level, to define the electrical and mechanical response characteristics of the perfused temporal bone preparation, and to investigate the effects of intense sound stimulation on the calcium levels of the hair cells in the intact hearing organ. In the in vitro model for acoustic overstimulation, isolated cochlear outer hair cells ...

  1. Shallow water acoustic response and platform motion modeling via a hierarchical Gaussian mixture model.

    Gendron, Paul J

    2016-04-01

    A hierarchical Gaussian mixture model is proposed to characterize shallow water acoustic response functions that are time-varying and sparse. The mixture model is based on the assumption that acoustic paths can be partitioned into two sets. The first is a relatively coherent set of arrivals that on average exhibit Doppler spreading about a mean Doppler and the remaining set is of multiple surface scattered paths that exhibit a spectrally flat Doppler. The hierarchy establishes constraints on the parameters of each of these Gaussian models such that coherent components of the response are both sparse and in the ensemble obey the Doppler spread profile. This is accomplished with a Bernoulli model that indicates the ensonification state of each element in the bi-frequency representation of the acoustic response function. Estimators of the time-varying acoustic response for the full duration of a broadband transmission are developed and employed to compensate for the shared time-varying dilation process among the coherent arrivals. The approach ameliorates response coherence degradation and can be employed to enhance coherent multi-path combining and is a useful alternative to time recursive estimation. The model is tested with acoustic communication recordings taken in shallow water at low signal-to-noise ratios. PMID:27106339

  2. Dose response severity functions for acoustic disturbance in cetaceans using recurrent event survival analysis

    Harris, C. M.; Sadykova, D.; DeRuiter, S.L.; Tyack, P. L.; Miller, P.J.O.; Kvadsheim, P. H.; Lam, F.P.A.; L. Thomas

    2015-01-01

    Behavioral response studies (BRSs) aim to enhance our understanding of the behavior changes made by animals in response to specific exposure levels of different stimuli, often presented in an increasing dosage. Here, we focus on BRSs that aim to understand behavioral responses of free-ranging whales and dolphins to manmade acoustic signals (although the methods are applicable more generally). One desired outcome of these studies is dose-response functions relevant to different species, signal...

  3. A Study on Multi-Path Channel Response of Acoustic Propagation in Northwestern Arabian Sea

    Gang Qiao

    2013-05-01

    Full Text Available Multi-path interference due to boundary reflection and variation of sound speed profile in underwater water acoustic communication pose the major barrier to reliable high-speed underwater communication system. Based on the sound speed profiles and the bathymetry data of northwestern Arabian Sea, Multipath impulse response profiles of the area have been obtained using Bellhop. The derived parameters like delay structure, effective transmit and receive angles suitable depths etc. from the obtained impulse responses have also been discussed. The impulse responses have been obtained for different scenarios of transmitter and receiver geometry to arrive at optimal configuration of wireless Acoustic communication/telemetry system for that area. This work can be used as a guide for the practical design of underwater acoustic wireless communication/telemetry system to be operated in this area which is critical to world oil exports.

  4. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier

  5. Mesospheric, Thermospheric, and Ionospheric Responses to Acoustic and Gravity Waves Generated by Transient Forcing

    Snively, J. B.; Zettergren, M. D.

    2014-12-01

    Strong acoustic waves with periods ~1-4 minutes have been confirmed to perturb the ionosphere following their generation by earthquakes [e.g., Garcia et al., GRL, 40(5), 2013] and volcanic eruption events [e.g., Heki, GRL, 33, L14303, 2006]. Clear acoustic and gravity wave signatures have also been reported in ionospheric data above strong tropospheric convection [Nishioka, GRL, 40(21), 2013], and prior modeling results suggest that convectively-generated acoustic waves with ~3-4 minute periods are readily detectable above their sources in TEC [Zettergren and Snively, GRL, 40(20), 2013]. These observations have provided quantitative insight into the coupling of processes occurring near Earth's surface with the upper atmosphere and ionosphere over short time-scales. Here, we investigate acoustic waves and short-period gravity waves generated by sources near ground level, and the observable responses of the mesosphere, lower-thermosphere, and ionosphere (MLTI) systems. Numerical simulations are performed using a nonlinear, compressible, atmospheric dynamics model, in cylindrically-axisymmetric coordinates, to investigate wave generation, upward propagation, steepening, and dissipation. Acoustic waves may produce observable signatures in the mesospheric hydroxyl airglow layer [e.g., Snively, GRL, 40(17), 2013], and can strongly perturb the lower-thermosphere and E- and F-region ionosphere, prior to the arrival of simultaneously-generated gravity waves. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for mid and low latitudes using a 2D dipole magnetic field coordinate system [Zettergren and Snively, GRL, 40(20), 2013], we investigate its response to realistic acoustic wave perturbations. In particular, we demonstrate that the MLT and ionospheric responses are significantly and nonlinearly determined by the acoustic wave source geometry, spectrum, and amplitude, in addition to the local ambient state of the

  6. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    This article describes an experimental investigation of the forced response of a swirl-stabilized partially premixed flame when it is subjected to acoustic velocity and equivalence ratio fluctuations. The flame's response is analyzed using phase-resolved CH{sup *} chemiluminescence images and flame transfer function (FTF) measurements, and compared with the response of a perfectly premixed flame under acoustic perturbations. The nonlinear response of the partially premixed flame is manifested by a partial extinction of the reaction zone, leading to rapid reduction of flame surface area. This nonlinearity, however, is observed only when the phase difference between the acoustic velocity and the equivalence ratio at the combustor inlet is close to zero. The condition, {delta}{phi}{sub {phi}}'-V'{approx}0 , indicates that reactant mixtures with high equivalence ratio impinge on the flame front with high velocity, inducing large fluctuations of the rate of heat release. It is found that the phase difference between the acoustic velocity and equivalence ratio nonuniformities is a key parameter governing the linear/nonlinear response of a partially premixed flame, and it is a function of modulation frequency, inlet velocity, fuel injection location, and fuel injector impedance. The results presented in this article will provide insight into the response of a partially premixed flame, which has not been well explored to date. (author)

  7. Acoustic impulse response method as a source of undergraduate research projects and advanced laboratory experiments.

    Robertson, W M; Parker, J M

    2012-03-01

    A straightforward and inexpensive implementation of acoustic impulse response measurement is described utilizing the signal processing technique of coherent averaging. The technique is capable of high signal-to-noise measurements with personal computer data acquisition equipment, an amplifier/speaker, and a high quality microphone. When coupled with simple waveguide test systems fabricated from commercial PVC plumbing pipe, impulse response measurement has proven to be ideal for undergraduate research projects-often of publishable quality-or for advanced laboratory experiments. The technique provides important learning objectives for science or engineering students in areas such as interfacing and computer control of experiments; analog-to-digital conversion and sampling; time and frequency analysis using Fourier transforms; signal processing; and insight into a variety of current research areas such as acoustic bandgap materials, acoustic metamaterials, and fast and slow wave manipulation. PMID:22423798

  8. High Frequency Acoustic Response Characterization and Analysis of the Deep Throttling Common Extensible Cryogenic Engine

    Casiano, M. J.

    2011-01-01

    The Common Extensive Cryogenic Engine program demonstrated the operation of a deep throttling engine design. The program, spanning five years from August 2005 to July 2010, funded testing through four separate engine demonstration test series. Along with successful completion of multiple objectives, a discrete response of approximately 4000 Hz was discovered and explored throughout the program. The typical low-amplitude acoustic response was evident in the chamber measurement through almost every operating condition; however, at certain off-nominal operating conditions, the response became discrete with higher amplitude. This paper summarizes the data reduction, characterization, and analysis of the 4,000 Hz response for the entire program duration, using the large amount of data collected. Upon first encountering the response, new objectives and instrumentation were incorporated in future test series to specifically collect 4,000 Hz data. The 4,000 Hz response was identified as being related to the first tangential acoustic mode by means of frequency estimation and spatial decomposition. The latter approach showed that the effective node line of the mode was aligned with the manifold propellant inlets with standing waves and quasi-standing waves present at various times. Contour maps that contain instantaneous frequency and amplitude trackings of the response were generated as a significant improvement to historical manual approaches of data reduction presentation. Signal analysis and dynamic data reduction also uncovered several other features of the response including a stable limit cycle, the progressive engagement of subsequent harmonics, the U-shaped time history, an intermittent response near the test-based neutral stability region, other acoustic modes, and indications of modulation with a separate subsynchronous response. Although no engine damage related to the acoustic mode was noted, the peak-to-peak fluctuating pressure amplitude achieved 12.1% of the

  9. Chronic morphine treatment decreases acoustic startle response and prepulse inhibition in rats

    2010-01-01

    The reward-related effects of addictive drugs primarily act via the dopamine system, which also plays an important role in sensorimotor gating. The mesolimbic dopamine system is the common pathway of drug addiction and sensorimotor gating. However, the way in which addictive drugs affect sensorimotor gating is currently unclear. In previous studies, we examined the effects of morphine treatment on sensory gating in the hippocampus. The present study investigated the effects of morphine on sensorimotor gating in rats during chronic morphine treatment and withdrawal. Rats were examined during treatment with morphine for 10 successive days, followed by a withdrawal period. Acoustic startle responses to a single startle stimulus (115 dB SPL) and prepulse inhibition responses were recorded. The results showed that acoustic startle responses were attenuated during morphine treatment, but not during withdrawal. PPI was impaired in the last 2 morphine treatment days, but returned to a normal level during withdrawal.

  10. Acoustic wave absorption as a probe of dynamical geometrical response of fractional quantum Hall liquids

    Yang, Kun

    2016-04-01

    We show that an acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wavelength limit. To study such response we generalize Haldane's geometrical description of fractional quantum Hall states to situations where the external metric is time dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrapolar mode at long wavelength, and magnetoroton at finite wavelength. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.

  11. Forced acoustical response of an open cavity coupled with a semi-infinite space

    Tong, Yuhui; Pan, Jie

    2016-01-01

    This paper presents a study of the forced acoustical response of an open cavity from the perspective of modal expansion. Based on the coupled mode theory, it is shown that the sound pressure distribution of an open cavity excited by a point source placed within the cavity can be expanded by a set of frequency-dependent eigenmodes, which are derived from the coupling between the cavity and a semi-infinite space. The calculation of the acoustical responses for baffled and unbaffled open cavities indicates that the proposed modal expansion converges with only a few frequency-dependent eigenmodes in the frequency range of interest. The results of this study eliminate the ambiguity involving the selection of appropriate basis functions, in modal expansion for the forced response problem in open cavities.

  12. Angular oscillation of solid scatterers in response to progressive planar acoustic waves: do fish otoliths rock?

    Krysl, Petr; Hawkins, Anthony D; Schilt, Carl; Cranford, Ted W

    2012-01-01

    Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves. A simple mechanical model, which predicts both translational and angular oscillation, is formulated. The responses of simple shapes (sphere and hemisphere) are analyzed with an acoustic finite element model. The hemispherical scatterer is found to oscillate both in the direction of the propagation of the progressive waves and also in the plane of the wavefront as a result of angular motion. The models predict that this characteristic will be shared by other irregularly-shaped scatterers, including fish otoliths, which could provide the fish hearing mechanisms with an additional component of oscillation and therefore one more source of acoustical cues. PMID:22912710

  13. Loudness Change in Response to Dynamic Acoustic Intensity

    Olsen, Kirk N.; Stevens, Catherine J.; Tardieu, Julien

    2010-01-01

    Three experiments investigate psychological, methodological, and domain-specific characteristics of loudness change in response to sounds that continuously increase in intensity (up-ramps), relative to sounds that decrease (down-ramps). Timbre (vowel, violin), layer (monotone, chord), and duration (1.8 s, 3.6 s) were manipulated in Experiment 1.…

  14. Transient acoustic response in car cabins with localization of reflections

    Cebrián Lindström, Víctor

    2013-01-01

    Due to its small size and the restrictions on source and listener positions, the design of sound reproduction systems for car cabins is particularly cumbersome. In the present project the measurement of the impulse response between a single loudspeaker and a listener position, with special emphasis on the directional characteristics, will be examined. The propagation paths inside a car are very short, meaning that it is very difficult for the existing commercial measurement systems to reso...

  15. A Pilot Study of Phase-Evoked Acoustic Responses From the Ears of Human Subjects

    Christensen, Anders Tornvig; Dewey, James; Dhar, Sumitrajit; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2014-01-01

    Temporal properties of otoacoustic emissions (OAEs) are of interest as they help understand the dynamic behavior and spatial distribution of the generating mechanisms. In particular, the ringing behavior of responses to clicks and tone bursts have been investigated, and times of arrival and...... cochlear excitation revealing properties of the nonlinearity responsible for OAE generation. To explore the temporal properties of OAEs further, we studied acoustic responses from the ears of nine young, normal-hearing human subjects to abrupt changes in the phase of pure tones. The measurement paradigm...

  16. Structural and Acoustic Responses of a Submerged Stiffened Conical Shell

    Meixia Chen

    2014-01-01

    Full Text Available This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.

  17. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  18. Air gap influence on the vibro-acoustic response of Solar Arrays during launch

    López Díez, Jesús; Chimeno Manguan, Marcos; F. Simon; Santiago Prowald, Julián B.; Wijker, J.J.; García Echebarria, J.; Fernandez, M.J.

    2010-01-01

    One of the primary elements on the space missions is the electrical power subsystem, for which the critical component is the solar array. The behaviour of these elements during the ascent phase of the launch is critical for avoiding damages on the solar panels, which are the primary source of energy for the satellite in its final configuration. The vibro-acoustic response to the sound pressure depends on the solar array size, mass, stiffness and gap thickness. The stowed configuration of ...

  19. Detection of internal quality in seedless watermelon by acoustic impulse response

    Diezma Iglesias, Belen; Ruiz-Altisent, Margarita; Barreiro Elorza, Pilar

    2004-01-01

    Recent commercialisation of seedless watermelon varieties relies on the guarantee of a high quality product. Several internal defects may deteriorate greatly this fruit: (a) creases and/or large voids in the flesh, (b) overripeness and (c) bruises due to impact. The objective of this research was to develop a feasible non-destructive procedure for detecting these defects in individual fruits, based on acoustic impulse response. A device consisting of a microphone, structural elements and a...

  20. Acoustic playback experiments to study behavioral responses of free-ranging marine animals to anthropogenic sound

    Tyack, Peter Lloyd

    2009-01-01

    Growing concern about the effects of anthropogenic sound on marine life has highlighted the need for empirical methods to study behavioral responses of marine animals to specific acoustic exposures. Some effects have been discovered by observing coincidence of effects with sound exposure, e.g. beaked whales such as Ziphius cavirostris and Mesoplodon densirostris may mass strand during sonar exercises. Sometimes new activities trigger precautionary concern, such as the potential effects of dee...

  1. Acoustic analysis by spherical microphone array processing of room impulse responses.

    Khaykin, Dima; Rafaely, Boaz

    2012-07-01

    Spherical microphone arrays have been recently used for room acoustics analysis, to detect the direction-of-arrival of early room reflections, and compute directional room impulse responses and other spatial room acoustics parameters. Previous works presented methods for room acoustics analysis using spherical arrays that are based on beamforming, e.g., delay-and-sum, regular beamforming, and Dolph-Chebyshev beamforming. Although beamforming methods provide useful directional selectivity, optimal array processing methods can provide enhanced performance. However, these algorithms require an array cross-spectrum matrix with a full rank, while array data based on room impulse responses may not satisfy this condition due to the single frame data. This paper presents a smoothing technique for the cross-spectrum matrix in the frequency domain, designed for spherical microphone arrays, that can solve the problem of low rank when using room impulse response data, therefore facilitating the use of optimal array processing methods. Frequency smoothing is shown to be performed effectively using spherical arrays, due to the decoupling of frequency and angular components in the spherical harmonics domain. Experimental study with data measured in a real auditorium illustrates the performance of optimal array processing methods such as MUSIC and MVDR compared to beamforming. PMID:22779475

  2. The Harmonic Response Analysis with Acoustic-vibration Coupling of the Combustion Chamber under Different Combustion Conditions

    Zheng Min

    2016-01-01

    Full Text Available In this paper, numerical calculations of harmonic response with acoustic-vibration coupling of the combustion chamber under different combustion conditions has been performed by combining CFD and FEM methods. Temperature and sound pressure fields created by the flame in the combustion chamber are calculated first. And then the results of the CFD are exported to the FEM analysis for the interaction between acoustic waves and wall vibrations. The possible acoustic-vibration coupled eigenfrequencies at given combustion conditions are predicted by the harmonic response analysis.

  3. Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis

    Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis

    2003-02-01

    The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the buried sources are formulated and compared with numerical finite element simulations and experimental studies on finite dimension phantom models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium model agree well with numerically obtained ``exact'' half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.

  4. Acoustically determined linear piezoelectric response of lithium niobate up to 1100 V

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2014-04-01

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128-1100 V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  5. Acoustically determined linear piezoelectric response of lithium niobate up to 1100 V

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128–1100 V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness

  6. Response of the ionosphere to natural and man-made acoustic sources

    O. A. Pokhotelov

    Full Text Available A review is presented of the effects influencing the ionosphere which are caused by acoustic emission from different sources (chemical and nuclear explosions, bolides, meteorites, earthquakes, volcanic eruptions, hurricanes, launches of spacecrafts and flights of supersonic jets. A terse statement is given of the basic theoretical principles and simplified theoretical models underlying the physics of propagation of infrasonic pulses and gravity waves in the upper atmosphere. The observations of "quick" response by the ionosphere are pointed out. The problem of magnetic disturbances and magnetohydrodynamic (MHD wave generation in the ionosphere is investigated. In particular, the supersonic propagation of ionospheric disturbances, and the conversion of the acoustic energy into the so-called gyrotropic waves in the ionospheric E-layer are considered.

  7. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses

  8. A Comparative Study of Acoustic Echo Cancellation Algorithms in Sparse Impulse Response.

    Meenal Mahajan

    2015-01-01

    Full Text Available This paper aims at studying and comparing the performance of typical sparse algorithms for acoustic echo cancellation. When the echo path is sparse, the conventional Normalized Least Mean Square (NLMS algorithm suffers from slow convergence. Thus, sparse adaptive filtering algorithms were introduced to overcome the convergence problem of adaptive filters in sparse impulse response. To determine the algorithm with best performance in echo cancellers, the comparison between these algorithms based on Echo Return Loss Enhancement (ERLE and Mean Square Error (MSE is carried out using MATLAB.

  9. Investigating the emotional response to room acoustics: A functional magnetic resonance imaging study.

    Lawless, M S; Vigeant, M C

    2015-10-01

    While previous research has demonstrated the powerful influence of pleasant and unpleasant music on emotions, the present study utilizes functional magnetic resonance imaging (fMRI) to assess the positive and negative emotional responses as demonstrated in the brain when listening to music convolved with varying room acoustic conditions. During fMRI scans, subjects rated auralizations created in a simulated concert hall with varying reverberation times. The analysis detected activations in the dorsal striatum, a region associated with anticipation of reward, for two individuals for the highest rated stimulus, though no activations were found for regions associated with negative emotions in any subject. PMID:26520354

  10. An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses

    Bruce, Ian C.; Sachs, Murray B.; Young, Eric D.

    2003-01-01

    Acoustic trauma degrades the auditory nerve's tonotopic representation of acoustic stimuli. Recent physiological studies have quantified the degradation in responses to the vowel eh and have investigated amplification schemes designed to restore a more correct tonotopic representation than is achieved with conventional hearing aids. However, it is difficult from the data to quantify how much different aspects of the cochlear pathology contribute to the impaired responses. Furthermore, extensive experimental testing of potential hearing aids is infeasible. Here, both of these concerns are addressed by developing models of the normal and impaired auditory peripheries that are tested against a wide range of physiological data. The effects of both outer and inner hair cell status on model predictions of the vowel data were investigated. The modeling results indicate that impairment of both outer and inner hair cells contribute to degradation in the tonotopic representation of the formant frequencies in the auditory nerve. Additionally, the model is able to predict the effects of frequency-shaping amplification on auditory nerve responses, indicating the model's potential suitability for more rapid development and testing of hearing aid schemes.

  11. Spectral and Temporal Acoustic Features Modulate Response Irregularities within Primary Auditory Cortex Columns.

    Andres Carrasco

    Full Text Available Assemblies of vertically connected neurons in the cerebral cortex form information processing units (columns that participate in the distribution and segregation of sensory signals. Despite well-accepted models of columnar architecture, functional mechanisms of inter-laminar communication remain poorly understood. Hence, the purpose of the present investigation was to examine the effects of sensory information features on columnar response properties. Using acute recording techniques, extracellular response activity was collected from the right hemisphere of eight mature cats (felis catus. Recordings were conducted with multichannel electrodes that permitted the simultaneous acquisition of neuronal activity within primary auditory cortex columns. Neuronal responses to simple (pure tones, complex (noise burst and frequency modulated sweeps, and ecologically relevant (con-specific vocalizations acoustic signals were measured. Collectively, the present investigation demonstrates that despite consistencies in neuronal tuning (characteristic frequency, irregularities in discharge activity between neurons of individual A1 columns increase as a function of spectral (signal complexity and temporal (duration acoustic variations.

  12. Test method of frequency response based on diamond surface acoustic wave devices

    CHEN Xi-ming; YANG Bao-he; WU Xiao-guo; WU Yi-zhuo

    2011-01-01

    In order to reduce the noises affixed to the signals when testing high frequency devices, a single-port test mode (S11) is used to test frequency response of high frequency (GHz) and dual-port surface acoustic wave devices (SAWDs) in this paper.The feasibility of the test is proved by simulating the Fabry-Perot model. The frequency response of the high-frequency dual-port resonant-type diamond SAWD is measured by S11 and the dual-port test mode (S21), respectively. The results show that the quality factor of the device is 51.29 and the 3 dB bandwidth is 27.8 MHz by S11 -mode measurement, which is better than the S21 mode, and is consistent with the frequency response curve by simulation.

  13. Acoustic response of a rectangular fluid region by the method of images

    Cheng, W.H.; Karim-Panahi, K.; Fitch, J.R.

    1982-01-01

    An abrupt excitation to a fluid contained in a system with flexible boundaries creates a coupling effect between the pressure response in the fluid and the flexible structure. Measurement of pressures within such a system may be contaminated by this coupling effect. A method to study acoustic wave propagation inside a rigid container is developed in this paper to address such a problem. With this method, the predicted pressure response for the fluid within a rigid container can be compared to test data from a flexible system. The results of this comparison can lead to a determination of the extent of contamination of the measured pressure response by the interaction of the fluid with the flexible structure. 6 refs.

  14. Acoustic response of a rectangular fluid region by the method of images

    An abrupt excitation to a fluid contained in a system with flexible boundaries creates a coupling effect between the pressure response in the fluid and the flexible structure. Measurement of pressures within such a system may be contaminated by this coupling effect. A method to study acoustic wave propagation inside a rigid container is developed in this paper to address such a problem. With this method, the predicted pressure response for the fluid within a rigid container can be compared to test data from a flexible system. The results of this comparison can lead to a determination of the extent of contamination of the measured pressure response by the interaction of the fluid with the flexible structure. 6 refs

  15. Response of a Pt-polyyne membrane in surface acoustic wave sensors: Experimental and theoretical approach

    Caliendo, Cinzia; Fratoddi, Ilaria; Russo, Maria Vittoria; Lo Sterzo, Claudio

    2003-06-01

    A surface acoustic wave (SAW) sensor, based on a polymeric sensitive membrane, has been realized for sensor applications and materials characterization. A platinum-containing rigid-rod organometallic polymer [-Pt(PPh3)2(-C≡C-pC6H2(2,5-OC16H33)2-C≡C-)]n (Pt-P-HDOB), obtained by the reaction of cis-[Pt(PPh3)2Cl2] with 1,4-diethynyl-2,5-dihexadeciloxybenzene (HDOB) by means of the recently assessed "Extended one pot" polymerization route, was here studied. The chemical structure and chain length of Pt-P-HDOB polymer were defined by spectroscopic techniques and gel permeation chromatography measurements. The acoustic characterization of the Pt-P-HDOB film was developed with the aid of the perturbation theory applied to different polymer-coated-piezoelectric substrates and the shear modulus of Pt-P-HDOB film have been estimated. A SAW delay line has been implemented on ZnO/Si substrate and a thin polymeric film has been spin deposited on the device surface to realize a chemical sensor. The sensor has been exposed to different chemicals and its response has been measured for different chemical concentrations. High sensitivity and reproducibility of the sensor response to relative humidity and methanol vapors were found.

  16. The Effect of Objective Room Acoustic Parameters on Auditory Steady-State Responses

    Zapata Rodriguez, Valentina; M. Harte, James; Jeong, Cheol-Ho; Brunskog, Jonas

    2016-01-01

    Verification that Hearing Aids (HA) have been fitted correctly in pre-lingual infants and hard-to-test adults is an important emerging application in technical audiology. These test subjects are unable to undergo reliable behavioral testing, so an objective method is required. Auditory steady-state...... responses (ASSR), recorded in a sound field is a promising technology to verify the hearing aid fitting. The test involves the presentation of the auditory stimuli via a loudspeaker, unlike the usual procedure of delivering via insert earphones. Room reverberation clearly may significantly affect the...... features of the stimulus important for eliciting a strong electrophysiological response, and thus complicate its detection. This study investigates the effect of different room acoustic conditions on recorded ASSRs via an auralisation approach using insert earphones. Fifteen normal-hearing listeners were...

  17. Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection

    Lizhi Yi[1; Weihong Jiao[1; Ke Wu[1; Lihua Qian[1; Xunxing Yu[2; Qi Xia[2; Kuanmin Mao[2; Songliu Yuan[1; Shuai Wang[3; Yingtao Jiang[4

    2015-01-01

    The relatively poor dynamic response of current flexible strain gauges has prevented their wide adoption in portable electronics. In this work, we present a greatly improved flexible strain gauge, where one strip of Au nanoparticle (NP) monolayer assembled on a polyethylene terephthalate film is utilized as the active unit. The proposed flexible gauge is capable of responding to applied stimuli without detectable hysteresis via electron tunneling between adjacent nanoparticles within the Au NP monolayer. Based on experimental quantification of the time and frequency domain dependence of the electrical resistance of the proposed strain gauge, acoustic vibrations in the frequency range of 1 to 20,000 Hz could be reliably detected. In addition to being used to measure musical tone, audible speech, and creature vocalization, as demonstrated in this study, the ultrafast dynamic response of this flexible strain gauge can be used in a wide range of applications, including miniaturized vibratory sensors, safe entrance guard management systems, and ultrasensitive pressure sensors.

  18. Vessel noise affects beaked whale behavior: results of a dedicated acoustic response study.

    Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville's beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022

  19. Habituation of Auditory Steady State Responses Evoked by Amplitude-Modulated Acoustic Signals in Rats

    Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo

    2015-01-01

    Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360

  20. Habituation of auditory steady state responses evoked by amplitudemodulated acoustic signals in rats

    Pavel Prado-Gutierrez

    2015-01-01

    Full Text Available Generation of the auditory steady state responses (ASSR is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials.

  1. Acoustic Beam Forming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response

    Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)

    2014-01-01

    A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.

  2. Real-Time Nearfield Acoustic Holography: Implementation of the Direct and Inverse Impulse Responses in the Time-Wavenumber Domain

    Thomas, Jean-Hugh; Paillasseur, Sébastien; Pascal, Jean-Claude

    2008-01-01

    The aim of the study is to demonstrate that some methods are more relevant for implementing the Real-Time Nearfield Acoustic Holography than others. First by focusing on the forward propagation problem, different approaches are compared to build the impulse response to be used. One of them in particular is computed by an inverse Fourier transform applied to the theoretical transfer function for propagation in the frequency-wavenumber domain. Others are obtained by directly sampling an analytical impulse response in the time-wavenumber domain or by additional low-pass filtering. To estimate the performance of each impulse response, a simulation test involving several monopoles excited by non stationary signals is presented and some features are proposed to assess the accuracy of the temporal signals resulting from reconstruction processing on a forward plane. Then several inverse impulse responses used to solve the inverse problem, which consists in back propagating the acoustic signals acquired by the microph...

  3. Structural & Internal Acoustic Response of Cylinders with Applications to Rocket Payload Fairings

    Niezrecki, Christopher

    1999-01-01

    Future launch vehicle payload fairings will be manufactured from advanced lightweight composite materials. The loss of distributed mass causes a significant increase in the internal acoustic environment, causing a severe threat to the payload. Using piezoelectric actuators to control the fairing vibration and the internal acoustic environment has been proposed. The control authority of these actuators for this problem has not yet been determined. To help determine the acoustic control aut...

  4. Flat acoustic sources with frequency response correction based on feedback and feed-forward distributed control

    Ho, Jen-Hsuan; Berkhoff, A.P.

    2015-01-01

    This paper presents an acoustic source with a small thickness and high bending stiffness. The high bending stiffness is obtained with a sandwich structure in which the face of the sandwich structure internal to the source is perforated to increase the acoustic compliance, thereby leading to increase

  5. A numerical method for the calculation of dynamic response and acoustic radiation from an underwater structure

    Zhou, Q.; Joseph, P. F.

    2005-05-01

    An approach combining finite element with boundary element methods is proposed to calculate the elastic vibration and acoustic field radiated from an underwater structure. The FEM software NASTRAN is employed for computation of the structural vibration. An uncoupled boundary element method, based on the potential decomposition technique, is described to determine the acoustic added mass and damping coefficients that result due to fluid loading effects. The acoustic matrices of added mass and damping coefficients are then added to the structural mass and damping matrices, respectively, by the DMAP modules of NASTRAN. Numerical results are shown to be in good agreement with experimental data. The complex eigenvalue analyses of underwater structure are obtained by NASTRAN solution sequence SOL107. Results obtained from this study suggest that the natural frequencies of underwater structures are only weakly dependent on the acoustic frequency if the acoustic wavelength is roughly twice as large as the maximum structural dimension.

  6. Two color probing of the ultrafast photo-acoustic response in a single biological cell

    The measurement of the mechanical properties of single biological cells with a nanometer depth resolution using only coherent light is proposed. A pump-probe set-up based on an ultrafast laser (100 fs pulses) is used to excite and detect acoustic frequencies in the GHz range. Experiments are performed on single fixed mouse MC3T3 cells adhering on titanium alloy substrate. Using two different probe wavelengths, the contributions to the optical detection resulting from the cell interface displacements and from interactions between acoustic waves and the laser light are identified. Semi-analytical calculations allow the determination of acoustic celerities and thicknesses in cells thinner than 150 nm.

  7. Continuous loudness response to acoustic intensity dynamics in melodies: effects of melodic contour, tempo, and tonality.

    Olsen, Kirk N; Stevens, Catherine J; Dean, Roger T; Bailes, Freya

    2014-06-01

    The aim of this work was to investigate perceived loudness change in response to melodies that increase (up-ramp) or decrease (down-ramp) in acoustic intensity, and the interaction with other musical factors such as melodic contour, tempo, and tonality (tonal/atonal). A within-subjects design manipulated direction of linear intensity change (up-ramp, down-ramp), melodic contour (ascending, descending), tempo, and tonality, using single ramp trials and paired ramp trials, where single up-ramps and down-ramps were assembled to create continuous up-ramp/down-ramp or down-ramp/up-ramp pairs. Twenty-nine (Exp 1) and thirty-six (Exp 2) participants rated loudness continuously in response to trials with monophonic 13-note piano melodies lasting either 6.4s or 12s. Linear correlation coefficients >.89 between loudness and time show that time-series loudness responses to dynamic up-ramp and down-ramp melodies are essentially linear across all melodies. Therefore, 'indirect' loudness change derived from the difference in loudness at the beginning and end points of the continuous response was calculated. Down-ramps were perceived to change significantly more in loudness than up-ramps in both tonalities and at a relatively slow tempo. Loudness change was also greater for down-ramps presented with a congruent descending melodic contour, relative to an incongruent pairing (down-ramp and ascending melodic contour). No differential effect of intensity ramp/melodic contour congruency was observed for up-ramps. In paired ramp trials assessing the possible impact of ramp context, loudness change in response to up-ramps was significantly greater when preceded by down-ramps, than when not preceded by another ramp. Ramp context did not affect down-ramp perception. The contribution to the fields of music perception and psychoacoustics are discussed in the context of real-time perception of music, principles of music composition, and performance of musical dynamics. PMID:24809252

  8. NUMERICAL PREDICTION OF PROPELLER EXCITED ACOUSTIC RESPONSE OF SUBMARINE STRUCTURE BASED ON CFD, FEM AND BEM

    WEI Ying-san; WANG Yong-sheng; CHANG Shu-ping; FU Jian

    2012-01-01

    A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method are validated.Computational Fluid Dynamics (CFD),Finite Element Method (FEM) and RIA are used to predict the propeller excited underwater noise of the submarine hull structure.Firstly the propeller and submarine's flows are independently validated,then the self propulsion of the “submarine+propeller” system is simulated via CFD and the balanced point of the system is determined as well as the self propulsion factors.Secondly,the transient response of the “submarine + propeller” system is analyzed at the balanced point,and the propeller thrust and torque excitations are calculated.Thirdly the thrust and the torque excitations of the propeller are loaded on the submarine,respectively,to calculate the acoustic response,and the sound pover and the main peak frequencies are obtained.Results show that:(1) the thrust mainly excites the submarine axial mode and the high frequency area appears at the two conical-type ends,while the torque mainly excites the circumferential mode and the high frequency area appears at the broadside of the cylindrical section,but with rather smaller sound power and radiation efficiency than the former,(2) the main sound source appears at BPF and 2BPF and comes from the harmonic propeller excitations.So,the main attention should be paid on the thrust excitation control for the sound reduction of the propeller excited submarine structure.

  9. Sex Differences in Acoustic Startle Responses and Seizure Thresholds between Ethanol-Withdrawn Male and Female Rats

    Reilly, William; Koirala, Bikul; Devaud, Leslie L.

    2009-01-01

    Aims: We have found consistent and significant sex differences in recovery from the increased seizure susceptibility observed during ethanol withdrawal (EW) in our rat model system. The main objective of the present study was to determine if sex differences in EW generalized to an additional behavioral measure startle reactivity. Methods: Acoustic startle or seizure threshold responses were measured in separate groups of rats at 1 day or 3 days of EW. Results: Both pair-fed control and EW mal...

  10. Acoustic gain in piezoelectric semiconductors at ε-near-zero response

    Willatzen, Morten; Christensen, Johan

    2014-01-01

    We demonstrate strong acoustic gain in electric-field biased piezoelectric semiconductors at frequencies near the plasmon frequency in the terahertz range. When the electron drift velocity produced by an external electric field is higher than the speed of sound, Cherenkov radiation of phonons...... an electrically controlled piezoelectric slab waveguide. This extreme sound field enhancement in an active piezo material shows potential for acoustic sensing and loss compensation in metamaterials and nonlinear devices....

  11. Dynamic Response of X-37 Hot Structure Control Surfaces Exposed to Controlled Reverberant Acoustic Excitation

    Grosveld, Ferdinand W.; Rizzi, Stephen A.; Rice, Chad E.

    2004-01-01

    This document represents a compilation of three informal reports from reverberant acoustic tests performed on X-37 hot structure control surfaces in the NASA Langley Research Center Structural Acoustics Loads and Transmission (SALT) facility. The first test was performed on a carbon-silicone carbide flaperon subcomponent on February 24, 2004. The second test was performed on a carbon-carbon ruddervator subcomponent on May 27, 2004. The third test was performed on a carbon-carbon flaperon subcomponent on June 30, 2004.

  12. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  13. Acoustic startle responses of rats with cerebral developmental abnormalities : implications for schizophrenia

    Talamini, LM; Ellenbroek, B; Koch, T; Korf, J

    1999-01-01

    Mounting evidence suggests involvement of prenatal factors in the pathogenesis of schizophrenia. The objective of the present study was to provide evidence for the hypothesis on schizophrenia that abnormal fetal brain development leads to impaired sensorimotor gating of acoustic startle stimuli. To

  14. Use of Fixed and Mobile Acoustic Telemetry Systems to Understand Fish Responses to Habitat Variability in a Large River (Rhône, France)

    Capra, Hervé; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Bergé, Julien; Oriol, Eric

    2011-01-01

    The presentation would summarize the advantages and limitations of both fixed and mobile acoustic telemetry equipment deployed in a fast flowing large river : the Rhône river (France). The objectives were to describe fish behavior in term of fish movements as responses to habitat variability due to the production of peaking electricity and temperature heterogeneity (natural or due to a nuclear power plant release). At a local scale we used a fixed automatic acoustic telemetry system to rec...

  15. The electron-phonon coupling constant λ (acoustic) of YBaCuO deduced from the photoresistive response

    Laser pulses were applied to granular, and c-axis oriented, YBa2Cu3Ox films current-biased in a resistive state, and the decay of the transient voltage was monitored as a function of time. At low enough temperatures and fluences (∼1 nJ per cm2 per pulse), the decay rate follows a T3-dependence characteristic of electron energy loss to acoustic phonons. Above about 7 K, the response time of 300 angstrom films stays constant at 2.4 nsec, in agreement with the bolometric response observed by others. In the range of dominant electron-phonon interaction, the response time contains direct information about the coupling constant λ, via a formula derived by P.B. Allen. However, as in ultrasonic attenuation, the limitation of the electron mean free path must be taken into account. A support for this procedure is the approximate proportionality of the relaxation time upon the room temperature resistivity, i.e. the electron mean free path. The authors thus obtain a value of λ appropriate to the acoustic mode interaction

  16. Vessel Noise Affects Beaked Whale Behavior: Results of a Dedicated Acoustic Response Study

    Pirotta, Enrico; Milor, Rachel; Quick, Nicola Jane; Moretti, David; DiMarzio, Nancy; Tyack, Peter Lloyd; Boyd, Ian; Hastie, Gordon Drummond

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville’s beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A milit...

  17. The effect of parvalbumin deficiency on the acoustic startle response and prepulse inhibition in mice

    Popelář, Jiří; Rybalko, Natalia; Burianová, Jana; Schwaller, B.; Syka, Josef

    2013-01-01

    Roč. 553, October (2013), s. 216-220. ISSN 0304-3940 R&D Projects: GA ČR(CZ) GAP304/12/1342; GA MŠk(CZ) EE2.3.30.0018 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378041 Keywords : parvalbumin-deficient mice * acoustic startle reflex * prepulse inhibition Subject RIV: FH - Neurology Impact factor: 2.055, year: 2013

  18. Response of acoustic signals generated in water by energetic xenon ions

    Miyachi, T.; Nakamura, Y.; Kuraza, G.; Fujii, M.; Nagashima, A.; Hasebe, N.; Kobayashi, M. N.; Kobayashi, S.; Miyajima, M.; Okudaira, O.; Yamashita, N.; Shibata, H.; Murakami, T.; Uchihori, Y.; Okada, N.; Tou, T.

    2006-05-01

    The acoustic signals generated by bombarding 400 MeV/n xenon ions in water were studied using an array of piezoelectric lead-zirconate-titanate elements. The observed signal was reduced to a bipolar form through Fourier analysis. The output voltage corresponded to the amount of energy deposit in water, and it tailed off beyond the range of 400 MeV/n xenon in water. This magnitude was explained qualitatively as cumulative processes. Its behavior was consistent with the calculations based on the Bethe-Bloch formula. Possible applications of this detector to radiology and heavily doped radiation detectors are described.

  19. On the resolution of phonological constraints in spoken production: Acoustic and response time evidence.

    Bürki, Audrey; Frauenfelder, Ulrich H; Alario, F-Xavier

    2015-10-01

    This study examines the production of words the pronunciation of which depends on the phonological context. Participants produced adjective-noun phrases starting with the French determiner un. The pronunciation of this determiner requires a liaison consonant before vowels. Naming latencies and determiner acoustic durations were shorter when the adjective and the noun both started with vowels or both with consonants, than when they had different onsets. These results suggest that the liaison process is not governed by the application of a local contextual phonological rule; they rather favor the hypothesis that pronunciation variants with and without the liaison consonant are stored in memory. PMID:26520356

  20. AST Launch Vehicle Acoustics

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  1. Spectral response and acoustic emission of reinforced concrete members under fatigue bending

    Durability of concrete structures is an important problem in concrete engineering. Nondestructive testing to estimate defects in concrete structures is desired to maintain their durability. The reinforced concrete (RC) structures subjected to fatigue bending is known to gradually deteriorate for a long term. Several nondestructive testings are applied to estimate the defects in concrete structures. Only one method, however, could not evaluate readily the deterioration degree, because the phenomenon is very complicated. Thus, the combined method seems to be promising to estimate the deterioration degree of RC structures subjected to fatigue. In this paper, the method to estimate the deterioration degree of RC members under fatigue bending is studied experimentally, by using ultrasonic spectroscopy and acoustic emission (AE) method. The results show that both methods are useful and the combined method is promising to estimate the deterioration degree of RC members under fatigue bending.

  2. Relationship of the Acoustic Startle Response and Its Modulation to Emotional and Behavioral Problems in Typical Development Children and Those with Autism Spectrum Disorders

    Takahashi, Hidetoshi; Komatsu, Sahoko; Nakahachi, Takayuki; Ogino, Kazuo; Kamio, Yoko

    2016-01-01

    Auditory hyper-reactivity is a common sensory-perceptual abnormality in autism spectrum disorders (ASD), which interrupts behavioral adaptation. We investigated acoustic startle response (ASR) modulations in 17 children with ASD and 27 with typical development (TD). Compared to TD, children with ASD had larger ASR magnitude to weak stimuli and…

  3. A method for achieving monotonic frequency-temperature response for langasite surface-acoustic-wave high-temperature sensor

    Shaoming, Bao; Yabing, Ke; Yanqing, Zheng; Lina, Cheng; Honglang, Li

    2016-02-01

    To achieve the monotonic frequency-temperature response for a high-temperature langasite (LGS) surface-acoustic-wave (SAW) sensor in a wide temperature range, a method utilizing two substrate cuts with different propagation angles on the same substrate plane was proposed. In this method, the theory of effective permittivity is adopted to calculate the temperature coefficients of frequency (TCF), electromechanical coupling coefficients (k2), and power flow angle (PFA) for different propagation angles on the same substrate plane, and then the two substrate cuts were chosen to have large k2 and small PFA, as well as the difference in their TCFs (ΔTCF) to always have the same sign of their values. The Z-cut LGS substrate plane was taken as an example, and the two suitable substrate cuts with propagation angles of 74 and 80° were chosen to derive a monotonic frequency-temperature response for LGS SAW sensors at -50 to 540 °C. Experiments on a LGS SAW sensor using the above two substrate cuts were designed, and its measured frequency-temperature response at -50 to 540 °C agreed well with the theory, demonstrating the high accuracy of the proposed method.

  4. Temperature response of an acoustically forced turbulent lean premixed flame: A quantitative experimental determination

    Chrystie, Robin

    2013-01-02

    Temperature measurements have been taken on an acoustically forced lean premixed turbulent bluff-body stabilized flame. The burner used in this study is a test-bed to investigate thermoacoustic instability in gas-turbine engines at the University of Cambridge. Numerous experiments have been performed on the burner, one of which used two-line OH planar laser induced fluorescence to measure temperature. Here, we employ vibrational coherent anti-Stokes Raman scattering (CARS) of nitrogen as an alternative to measure temperature, circumventing the limitations of the former method. The use of nitrogen CARS avoids the problem of probing regions of the flame with low OH concentrations that resulted in erroneous temperature. Such an application of CARS showed that the results from previous efforts were systematically biased up to 47% close to the bluff-body. We also critically review the limitations of CARS used in our experiments, pertaining to spatial resolution and associated biasing further downstream from the bluff-body. Using the more accurate results from this work, more up-to-date computational fluid dynamical (CFD) models of the burner can be validated, with the aim of improved understanding and prediction of thermoacoustic instability in gas turbines. © 2013 Copyright Taylor and Francis Group, LLC.

  5. Habituation of parasympathetic-mediated heart rate responses to recurring acoustic startle

    Chen, Kuan-Hua; Aksan, Nazan; Anderson, Steven W.; Grafft, Amanda; Chapleau, Mark W.

    2014-01-01

    Startle habituation is a type of implicit and automatic emotion regulation. Diminished startle habituation is linked to several psychiatric or neurological disorders. Most previous studies quantified startle habituation by assessing skin conductance response (SCR; reflecting sympathetic-mediated sweating), eye-blink reflex, or motor response. The habituation of parasympathetic-mediated heart rate responses to recurrent startle stimuli is not well understood. A variety of methods and metrics h...

  6. Thermal Acoustic Fatigue Apparatus

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  7. Combined Environment Acoustic Chamber (CEAC)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  8. Elevated Acoustic Startle Responses in Humans: Relationship to Reduced Loudness Discomfort Level, but not Self-Report of Hyperacusis.

    Knudson, Inge M; Melcher, Jennifer R

    2016-06-01

    Increases in the acoustic startle response (ASR) of animals have been reported following experimental manipulations to induce tinnitus, an auditory disorder defined by phantom perception of sound. The increases in ASR have been proposed to signify the development of hyperacusis, a clinical condition defined by intolerance of normally tolerable sound levels. To test this proposal, the present study compared ASR amplitude to measures of sound-level tolerance (SLT) in humans, the only species in which SLT can be directly assessed. Participants had clinically normal/near-normal hearing thresholds, were free of psychotropic medications, and comprised people with tinnitus and without. ASR was measured as eyeblink-related electromyographic activity in response to a noise pulse presented at a range of levels and in two background conditions (noise and quiet). SLT was measured as loudness discomfort level (LDL), the lowest level of sound deemed uncomfortable, and via a questionnaire on the loudness of sounds in everyday life. Regardless of tinnitus status, ASR amplitude at a given stimulus level increased with decreasing LDL, but showed no relationship to SLT self-reported via the questionnaire. These relationships (or lack thereof) could not be attributed to hearing threshold, age, anxiety, or depression. The results imply that increases in ASR in the animal work signify decreases in LDL specifically and may not correspond to the development of hyperacusis as would be self-reported by a clinic patient. PMID:26931342

  9. Differences in the response of a striped dolphin (Stenella coeruleoalba) and a harbour porpoise (Phocoena phocoena) to an acoustic alarm

    Kastelein, R.A.; Jennings, N.; Verboom, W.C.; Haan, D.de; Schooneman, N.M.

    2006-01-01

    Small cetacean bycatch in gillnet fisheries may be reduced by deterring odontocetes from nets acoustically. However, different odontocete species may respond differently to acoustic signals from alarms. Therefore, in this study a striped dolphin and a harbour porpoise were subjected simultaneously t

  10. Differences in the response of a striped dolphin (Stenella coeruleoalba) and a harbour popoise (Phocoena phocoena) to an acoustic alarm

    Kastelein, R.A.; Jennings, N.; Verboom, W.C.; Haan, de D.; Schooneman, N.M.

    2006-01-01

    Small cetacean bycatch in gillnet fisheries may be reduced by deterring odontocetes from nets acoustically. However, different odontocete species may respond differently to acoustic signals from alarms. Therefore, in this study a striped dolphin and a harbour porpoise were subjected simultaneously t

  11. Communication Acoustics

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  12. The Potential Overlapping Roles of the Ear and Lateral Line in Driving "Acoustic" Responses.

    Higgs, Dennis M; Radford, Craig A

    2016-01-01

    Examination of fish responses to sound stimuli has a rich and varied history but it is not always clear when responses are true measures of hearing or the lateral-line. The central innervation of auditory and lateral-line sensory afferents lie in close proximity in the brainstem and both sets of receptors are, at heart, hair cell-based particle motion detectors. While it is possible to separately measure physiological activity of these two receptor subtypes, many studies of fish "hearing" use whole brain potentials or behavioural assays in complex sound fields where it is not possible to distinguish inputs. We argue here that, as often measured, what is thought of as fish "hearing" is often a multisensory response of both auditory and lateral line receptors. We also argue that in many situations where fish use sound stimuli, the behaviour is also an integrative response of both systems, due to the often close proximity of fish during sound communication. We end with a set of recommendations for better understanding the separate and combined roles of ear and lateral-line hair cells as well as an acknowledgment of the seminal and continuing contributions of Arthur N. Popper and Richard R. Fay to this field. PMID:26515318

  13. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  14. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  15. Effects of d-Amphetamine and Haloperidol on Modulation of the Human Acoustic Startle Response

    Hossein Kaviani

    2006-04-01

    Full Text Available "nObjective:This study aimed to examine the effects of haloperidol and amphetamine on human startle response modulated by emotionally-toned film clips. "n "n Method:Sixty participants, in two groups (one receiving haloperidol and the other receiving amphetamine were tested using electromyography (EMG to measure eye-blink muscle (orbicular oculi while different emotions were induced by six 2-minute film clips. Results:An affective rating shows the negative and positive effects of the two drugs on emotional reactivity, neither amphetamine nor haloperidol had any impact on the modulation of the startle response. Conclusion: The methodological and theoretical aspects of the study and findings will be discussed.

  16. Effects of d-Amphetamine and Haloperidol on Modulation of the Human Acoustic Startle Response

    Hossein Kaviani

    2006-01-01

    "nObjective:This study aimed to examine the effects of haloperidol and amphetamine on human startle response modulated by emotionally-toned film clips. "n "n Method:Sixty participants, in two groups (one receiving haloperidol and the other receiving amphetamine) were tested using electromyography (EMG) to measure eye-blink muscle (orbicular oculi) while different emotions were induced by six 2-minute film clips. Results:An affective rating shows the negative and positive effects of the two dr...

  17. Examining the plankton acoustic response with a vessel mounted ADCP across oceanic fronts located in the Drake Passage

    Silvia Blanc

    2008-12-01

    Full Text Available On December 2001 and January 2006, during the LMG01-9 and LMG06-1 cruises to Antarctic Peninsula, at-sea oceanographic and acoustic measurements were conducted onboard the R/V L. M. Gould icebreaker along two transects located between (55.15 °S, 65 ºW and (64.65 °S, 65 ºW and between (55.15 ºS, 64.91 ºW and (62.7 ºS, 62.21 ºW, respectively. The scientific crew consisted of researchers from two US institutes, and a scientific observer from the Argentinean Naval Service of Research & Development under the frame of the US National Science Foundation Antarctic Program. The present work accomplishes an alternative application for a vesselmounted Acoustic Doppler Current Profiler (ADCP with an operating frequency of 153.6 kHz. Volume Acoustic Backscattering Strengths, S V, were computed from the recorded ADCP's voltages. The obtained values fell in a range of -92 dB to -62 dB, for the layer of the water column comprised between 26 m - 300 m on 2001 and in the range of -93 dB to -58 dB for the water column between 22 m - 300 m on 2006. Depth-averaged, S V, for the upper water column (about the first 150 m on experiment transects were computed as well as S V values averaged in depth and latitude. Data processing revealed interesting features about the upper ocean acoustic behaviour. On December 2001, a significant non-uniform scattering response in the ensonified water column with quite high values of S V, associated with the diel vertical migration, was obtained. Additionally, a remarkable increment in the scattering response was observed at the estimated location of the Antarctic Divergence (AD. This feature was also observed on January 2006 in addition to remarkable high values of S V, in coastal waters of the Antarctic Peninsula. Plotting and exhaustive analyses of S V (z profiles enabled the visualisation of three distinct types of qualitative patterns, namely, curves with: (I two observable maxima, (II only one maximum, (III a depth

  18. Short-term selective breeding for High and Low prepulse inhibition of the acoustic startle response; pharmacological characterization and QTL mapping in the selected lines

    Hitzemann, Robert; Malmanger, Barry; Belknap, John; Darakjian, Priscila; McWeeney, Shannon

    2008-01-01

    Selective breeding offers several important advantages over using inbred strain panels in detecting genetically correlated traits to the selection phenotype. The purpose of the current study was to selectively breed for prepulse inhibition (PPI) of the acoustic startle response (ASR), to pharmacologically and behaviorally characterize the selected lines and to use the lines for quantitative trait loci (QTL) mapping. Starting with heterogeneous stock mice formed by crossing the C57BL/6J, DBA/2...

  19. Fluid structure interaction studies on acoustic load response of light water nuclear reactor core internals under blowdown condition

    Acoustic load evaluation within two phase medium and the related fluid-structure interaction analysis in case of Loss of Coolant Accidents (LOCA) for light water reactor systems is an important inter-disciplinary area. The present work highlights the development of a three-dimensional finite element code FLUSHEL to analyse LOCA induced depressurization problems for Pressurised Water Reactor (PWR) core barrel and Boiling Water Reactor (BWR) core shroud. With good comparison obtained between prediction made by the present code and the experimental results of HDR-PWR test problem, coupled fluid-structure interaction analysis of core shroud of Tarapur Atomic Power Station (TAPS) is presented for recirculation line break. It is shown that the acoustic load induced stresses in the core shroud are small and downcomer acoustic cavity modes are decoupled with the shell multi-lobe modes. Thus the structural integrity of TAPS core shroud for recirculation line break induced acoustic load is demonstrated. (author)

  20. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns.

    Barascud, Nicolas; Pearce, Marcus T; Griffiths, Timothy D; Friston, Karl J; Chait, Maria

    2016-02-01

    We use behavioral methods, magnetoencephalography, and functional MRI to investigate how human listeners discover temporal patterns and statistical regularities in complex sound sequences. Sensitivity to patterns is fundamental to sensory processing, in particular in the auditory system, because most auditory signals only have meaning as successions over time. Previous evidence suggests that the brain is tuned to the statistics of sensory stimulation. However, the process through which this arises has been elusive. We demonstrate that listeners are remarkably sensitive to the emergence of complex patterns within rapidly evolving sound sequences, performing on par with an ideal observer model. Brain responses reveal online processes of evidence accumulation--dynamic changes in tonic activity precisely correlate with the expected precision or predictability of ongoing auditory input--both in terms of deterministic (first-order) structure and the entropy of random sequences. Source analysis demonstrates an interaction between primary auditory cortex, hippocampus, and inferior frontal gyrus in the process of discovering the regularity within the ongoing sound sequence. The results are consistent with precision based predictive coding accounts of perceptual inference and provide compelling neurophysiological evidence of the brain's capacity to encode high-order temporal structure in sensory signals. PMID:26787854

  1. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  2. Acoustic cloaking and transformation acoustics

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  3. Acoustic cloaking and transformation acoustics

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  4. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors.

    Grate, J W; Kaganove, S N; Bhethanabotla, V R

    1998-01-01

    Apparent partition coefficients, K, for the sorption of toluene by four different polymer thin films on thickness shear mode (TSM) and surface acoustic wave (SAW) devices are compared. The polymers examined were poly(isobutylene) (PIB), poly(epichlorohydrin) (PECH), poly(butadiene) (PBD), and poly(dimethylsiloxane) (PDMS). Independent data on partition coefficients for toluene in these polymers were compiled for comparison, and TSM sensor measurements were made using both oscillator and impedance analysis methods. K values from SAW sensor measurements were about twice those calculated from TSM sensor measurements when the polymers were PIB and PECH, and they were also at least twice the values of the independent partition coefficient data, which is interpreted as indicating that the SAW sensor responds to polymer modulus changes as well as to mass changes. K values from SAW and TSM measurements were in agreement with each other and with independent data when the polymer was PBD. Similarly, K values from the PDMS-coated SAW sensor were not much larger than values from independent measurements. These results indicate that modulus effects were not contributing to the SAW sensor responses in the cases of PBD and PDMS. However, K values from the PDMS-coated TSM device were larger than the values from the SAW device or independent measurements, and the impedance analyzer results indicated that this sensor using our sample of PDMS at the applied thickness did not behave as a simple mass sensor. Differences in behavior among the test polymers on SAW devices are interpreted in terms of their differing viscoelastic properties. PMID:21644612

  5. Acoustical Imaging

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  6. Radiation acoustics

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  7. Design of acoustic devices by topology optimization

    Sigmund, Ole; Jensen, Jakob Søndergaard

    The goal of this study is to design and optimize structures and devices that are subjected to acoustic waves. Examples are acoustic lenses, sound walls, waveguides and loud speakers. We formulate the design problem as a topology optimization problem, i.e. distribute material in a design domain such...... that the acoustic response is optimized....

  8. Inferior-Colliculus Responses to Amplitude-Modulated and Unmodulated Acoustic Tones and Cochlear-Implant Pulse Trains

    Schoenecker, Matthew Charles

    2010-01-01

    Cochlear implants (CIs) are neural prostheses that currently provide acoustic sensation to more than 120,000 profoundly hearing-impaired people throughout the world. The majority of these CI users are able to understand speech without lip reading and to converse over the telephone. The most fortunate among them can even perform and appreciate music. Unfortunately, however, many CI recipients receive much less benefit from their devices. In order to examine the neuronal bases for these dispara...

  9. Acoustical Imaging

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  10. Acoustic telemetry

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive...

  11. Acoustics Research

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  12. Battlefield acoustics

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  13. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (pyield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published. PMID:24548543

  14. Relationship of the Acoustic Startle Response and Its Modulation to Emotional and Behavioral Problems in Typical Development Children and Those with Autism Spectrum Disorders.

    Takahashi, Hidetoshi; Komatsu, Sahoko; Nakahachi, Takayuki; Ogino, Kazuo; Kamio, Yoko

    2016-02-01

    Auditory hyper-reactivity is a common sensory-perceptual abnormality in autism spectrum disorders (ASD), which interrupts behavioral adaptation. We investigated acoustic startle response (ASR) modulations in 17 children with ASD and 27 with typical development (TD). Compared to TD, children with ASD had larger ASR magnitude to weak stimuli and more prolonged peak startle-latency. We could not find significant difference of prepulse inhibition (PPI) or habituation in ASD children compared to TD. However, habituation and PPI at 70-dB prepulses were negatively related to several subscales of Social Responsiveness Scale and the Strengths and Difficulties Questionnaire, when considering all children. Comprehensive investigation of ASR and its modulation might increase understanding of the neurophysiological impairments underlying ASD and other mental health problems in children. PMID:26362152

  15. Investigation into the response of the auditory and acoustic communications systems in the Beluga whale (Delphinapterus leucas) of the St. Lawrence River Estuary to noise, using vocal classification

    Scheifele, Peter Martin

    2003-06-01

    Noise pollution has only recently become recognized as a potential danger to marine mammals in general, and to the Beluga Whale (Delphinapterus leucas) in particular. These small gregarious Odontocetes make extensive use of sound for social communication and pod cohesion. The St. Lawrence River Estuary is habitat to a small, critically endangered population of about 700 Beluga whales who congregate in four different sites in its upper estuary. The population is believed to be threatened by the stress of high-intensity, low frequency noise. One way to determine whether noise is having an effect on an animal's auditory ability might be to observe a natural and repeatable response of the auditory and vocal systems to varying noise levels. This can be accomplished by observing changes in animal vocalizations in response to auditory feedback. A response such as this observed in humans and some animals is known as the Lombard Vocal Response, which represents a reaction of the auditory system directly manifested by changes in vocalization level. In this research this population of Beluga Whales was tested to determine whether a vocalization-as-a-function-of-noise phenomenon existed by using Hidden Markhov "classified" vocalizations as targets for acoustical analyses. Correlation and regression analyses indicated that the phenomenon does exist and results of a human subjects experiment along with results from other animal species known to exhibit the response strongly implicate the Lombard Vocal Response in the Beluga.

  16. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2001-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  17. Design and simulation study of high frequency response for surface acoustic wave device by using CST software

    Zakaria, M. R.; Hashim, U.; Amin, Mohd Hasrul I. M.; Ayub, R. Mat; Hashim, M. N.; Adam, T.

    2015-05-01

    This paper focuses on the enhancement and improvement of the Surface Acoustic Wave (SAW) device performance. Due to increased demand in the international market for biosensor product, the product must be emphasized in terms of quality. However, within the technological advances, demand for device with low cost, high efficiency and friendly-user preferred. Surface Acoustic Wave (SAW) device with the combination of pair electrode know as Interdigital Transducer (IDT) was fabricated on a piezoelectric substrate. The design of Interdigital Transducer (IDT) parameter is changes in several sizes and values for which it is able to provide greater efficiency in sensing sensitivity by using process simulation with CST STUDIO Suite software. In addition, Interdigital Transducer (IDT) parameters also changed to be created the products with a smaller size and easy to handle where it also reduces the cost of this product. Parameter values of an Interdigital Transducer (IDT) will be changed in the design is the total number of fingers pair, finger length, finger width and spacing, aperture and also the thickness of the Interdigital Transducer (IDT). From the result, the performance of the sensor is improved significantly after modification is done.

  18. Authors' response to the letter to the editor: "Effects of acoustic feedback training in elite-standard Para-Rowing" by Schaffert and Mattes (2015).

    Schaffert, Nina; Mattes, Klaus

    2015-01-01

    Our article in the Journal of Sports Sciences was designed to examine effects of auditory feedback on mean boat speed during on-water training of visually impaired athletes in elite-standard Para-Rowing. This aim is stated explicitly in the title, abstract, introduction and discussion section. The effects were analysed on the basis of a conservative approach to using inferential statistics by emphasising measures that communicate meaningful differences and effect sizes to help interpret the data's practical importance for sport competition. Biomechanical measurements have been combined with standardised questionnaires to assess the athletes' perceived experience during rowing with acoustic feedback. An application for high-performance rowing has already been used to successfully investigate the effects of acoustic feedback on the time structure of the rowing cycle during the recovery phase. In this response, we provide our comments to the concerns presented in the 'Letter to the Editor' along with a brief description of the issues that relate to research in high-performance sport. PMID:25599408

  19. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  20. Aerosol behaviour in an acoustic field

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...)

  1. Ultrasound contrast agents : optical and acoustical characterization

    Sijl, Jeroen

    2009-01-01

    This thesis describes the characterization of the dynamics and the acoustic responses of single BR14 (Bracco Research S.A., Geneva, Switzerland) ultra- sound contrast agent microbubbles under the in°uence of ultrasound. In Ch. 2 of this thesis we investigate the small amplitude behavior of isolated microbubbles acoustically. To ensure that the measured acoustic response orig- inates from one bubble only, it requires the isolation of a single microbubble within an ultrasound beam. Furthermore ...

  2. Acoustic emission

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  3. Acoustic vibration induced high electromagnetic responses of Fe3O4 nano-hollow spheres in the THz regime

    Herein, we investigate the origin of enhanced absorption and complex conductivity of magnetite (Fe3O4) nano-hollow spheres (NHSs) in contrast to its nanoparticles (NPs) configuration in the frequency range 0.4–2.0 THz. The maximum absorption for NHSs and NPs of the same average diameter (∼100 nm) are found to be 246.27 and 48.35 cm−1 at 1.8 THz, respectively. A detailed study suggests that the multiple resonance peaks in the absorption spectra are due to low frequency acoustic vibrational phonon modes of Fe3O4 nanostructures. Moreover, we demonstrate that the magnitude of total absorption can be tailored by varying the shell thickness of NHSs. It is found to increase with increasing shell thickness, and attain a maximum value of 498.5 cm−1 for the NHSs of average diameter 350 nm at 1.8 THz. The invariance of frequency dependent magnetic permeability points out that the absorption is basically due to dielectric loss instead of magnetic loss. The enhanced THz conductivity of Fe3O4 NHSs, as compared to NPs is described in light of thermally activated polaronic hopping which is found to increase with increasing THz absorption. Finally, the size dependent THz conductivity of NHSs confirms its sole dependence on the magnitude of THz absorptivity. (paper)

  4. Coupling between plate vibration and acoustic radiation

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  5. Acoustic lenses

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  6. Response of Empty and Fluid-Filled, Submerged Spherical Shells to Plane and Spherical, Step-Exponential Acoustic Waves

    Michael A. Sprague

    1999-01-01

    Full Text Available The title problem is solved through extension of a method previously formulated for plane step-wave excitation, which employs generalized Fourier series augmented by partial closure of those series at early time. The extension encompasses both plane and spherical incident waves with step-exponential pressure profiles. The effects of incident-wave curvature and profile decay rate on response behavior are examined. A method previously developed for assessing the discrepancy between calculated and measured response histories is employed to evaluate the convergence of the truncated series solutions. Also studied is the performance of doubly-asymptotic approximations. Finally, the efficacy of modified Cesàro summation for improving the convergence of series solutions is examined. The documented computer program that produced the numerical results appearing in this paper, SPHSHK/MODSUM, may be down-loaded from the Web site http://saviac.xservices.com.

  7. In situ calibration of acoustic emission sensors

    Kober, Jan; Převorovský, Zdeněk

    Brno: University of Technology, Brno, 2015 - (Mazal, P.), s. 93-97 ISBN 978-80-214-5262-6. [International Workshop NDT in Progress /8./. Praha (CZ), 12.10.2015-14.10.2015] Institutional support: RVO:61388998 Keywords : standardisation * Acoustic Emission (AE) * time reversal * calibration * requency response Subject RIV: BI - Acoustics

  8. Response of Empty and Fluid-Filled, Submerged Spherical Shells to Plane and Spherical, Step-Exponential Acoustic Waves

    Sprague, Michael A.; Thomas L. Geers

    1999-01-01

    The title problem is solved through extension of a method previously formulated for plane step-wave excitation, which employs generalized Fourier series augmented by partial closure of those series at early time. The extension encompasses both plane and spherical incident waves with step-exponential pressure profiles. The effects of incident-wave curvature and profile decay rate on response behavior are examined. A method previously developed for assessing the discrepancy between calculated a...

  9. Acoustic Measurements of Small Solid Rocket Motor

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  10. Acoustics reveals the presence of a macrozooplankton biocline in the Bay of Biscay in response to hydrological conditions and predator-prey relationships.

    Lezama-Ochoa, Ainhoa

    2014-02-04

    Bifrequency acoustic data, hydrological measurements and satellite data were used to study the vertical distribution of macrozooplankton in the Bay of Biscay in relation to the hydrological conditions and fish distribution during spring 2009. The most noticeable result was the observation of a \\'biocline\\' during the day i.e., the interface where zooplankton biomass changes more rapidly with depth than it does in the layers above or below. The biocline separated the surface layer, almost devoid of macrozooplankton, from the macrozooplankton-rich deeper layers. It is a specific vertical feature which ties in with the classic diel vertical migration pattern. Spatiotemporal correlations between macrozooplankton and environmental variables (photic depth, thermohaline vertical structure, stratification index and chlorophyll-a) indicate that no single factor explains the macrozooplankton vertical distribution. Rather a set of factors, the respective influence of which varies from region to region depending on the habitat characteristics and the progress of the spring stratification, jointly influence the distribution. In this context, the macrozooplankton biocline is potentially a biophysical response to the search for a particular depth range where light attenuation, thermohaline vertical structure and stratification conditions together provide a suitable alternative to the need for expending energy in reaching deeper water without the risk of being eaten.

  11. Calculating room acoustic parameters from pseudo-impulsive acoustic sources

    San Martin, Maria L.; Vela, Antonio; San Martin, Ricardo; Arana, Miguel A.

    2002-11-01

    The impulse response function provides complete information to predict the acoustic response of a room to an acoustic input of arbitrary characteristics. At this job study, small explosions of firecrackers are proposed to be used as pseudo-impulsive acoustics sources to determine some acoustic parameters of a room such as reverberation time, definition, and clarity, comparing these results to those obtained with other techniques. A previous characterization of these sources allows us to state that they can be used for this purpose because they are, in practice, omnidirectional, their temporary pattern is highly repetitive and their spectral power is, as well, repetitive and with enough power in octave bands from 125 Hz to 8 kHz. If the linear time-invariant system impulse response h(t) is known, output signal s(t) regarding any arbitrary signal s(t) can be obtained. For our pseudo-impulsive sources, the output signal s(t) has been taken as impulse response h(t). Using the integrated impulse response method suggested by Schroeder, it has been stated that both the mean values and standard deviations for some parameters are practically identical to results obtained with other usual techniques. (To be presented in Spanish.)

  12. Acoustic resonance for nonmetallic mine detection

    Kercel, S.W.

    1998-04-01

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  13. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  14. Acoustic response of piezoelectric lead-zirconate-titanate to a 400MeV/n xenon beam

    Miyachi, T; Ito, H

    2003-01-01

    Characteristics of lead-zirconate-titanate (PZT) elements were studied by directly irradiating them with a 400 MeV/n Xe beam. The elements were sensitive to 10 sup 4 Xe ions and their output amplitudes were proportional to the beam intensity. An ensemble of those output amplitudes displayed a Bragg-curve-like response towards the range of 400 MeV/n Xe ion. We discuss the potential of PZT elements as a radiation detector and their application to high-intensity and high-energy detectors. (author)

  15. Estimation of acoustic resonances for room transfer function equalization

    Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc; Jensen, Søren Holdt

    2010-01-01

    Strong acoustic resonances create long room impulse responses (RIRs) which may harm the speech transmission in an acoustic space and hence reduce speech intelligibility. Equalization is performed by cancelling the main acoustic resonances common to multiple room transfer functions (RTFs), i...

  16. Acoustic hemostasis

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  17. Acoustic telemetry.

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  18. Acoustic Neuroma Educational Video

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  19. Use of acoustic vortices in acoustic levitation

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...

  20. Acoustic dispersive prism

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  1. Acoustically-Induced Electrical Signals

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  2. Acoustic Neurinomas

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  3. Acoustic Spatiality

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  4. Springer Handbook of Acoustics

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  5. MEMS Based Acoustic Array

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  6. Subscale Acoustic Testing: Comparison of ALAT and ASMAT

    Houston, Janice D.; Counter, Douglas

    2014-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option. This paper compares the acoustic measurements of two different subscale tests: the 2% Ares Liftoff Acoustic Test conducted at Stennis Space Center and the 5% Ares I Scale Model Acoustic Test conducted at Marshall Space Flight Center.

  7. Theory and modeling of cylindrical thermo-acoustic transduction

    Tong, Lihong; Lim, C. W.; Zhao, Xiushao; Geng, Daxing

    2016-06-01

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media.

  8. Acoustic source for generating an acoustic beam

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  9. Evoked acoustic emission

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar to...... the emission evoked by click stimuli. It is concluded that significant information is obtained by the click rather than by the tonal stimuli. The click-evoked emissions were also recorded from both ears in a consecutive series of 100 full-term and otherwise normal babies 2-4 days after birth. The...

  10. Pattern recognition methods for acoustic emission analysis

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  11. Acoustic Neuroma Educational Video

    Full Text Available ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ...

  12. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA. ...

  13. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  14. Cystic acoustic neuromas

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  15. Atlantic Herring Acoustic Surveys

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  16. Acoustic Neuroma Educational Video

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  17. Acoustic Neuroma Educational Video

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  18. Acoustic Neuroma Educational Video

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  19. Design and Experimental Applications of Acoustic Metamaterials

    Zigoneanu, Lucian

    Acoustic metamaterials are engineered materials that were extensively investigated over the last years mainly because they promise properties otherwise hard or impossible to find in nature. Consequently, they open the door for improved or completely new applications (e.g. acoustic superlens that can exceed the diffraction limit in imaging or acoustic absorbing panels with higher transmission loss and smaller thickness than regular absorbers). Our objective is to surpass the limited frequency operating range imposed by the resonant mechanism that s1ome of these materials have. In addition, we want acoustic metamaterials that could be experimentally demonstrated and used to build devices with overall performances better than the previous ones reported in the literature. Here, we start by focusing on the need of engineered metamaterials in general and acoustic metamaterials in particular. Also, the similarities between electromagnetic metamaterials and acoustic metamaterials and possible ways to realize broadband acoustic metamaterials are briefly discussed. Then, we present the experimental realization and characterization of a two-dimensional (2D) broadband acoustic metamaterial with strongly anisotropic effective mass density. We use this metamaterial to realize a 2D broadband gradient index acoustic lens in air. Furthermore, we optimize the lens design by improving each unit cell's performance and we also realize a 2D acoustic ground cloak in air. In addition, we explore the performance of some novel applications (a 2D acoustic black hole and a three-dimensional acoustic cloak) using the currently available acoustic metamaterials. In order to overcome the limitations of our designs, we approach the active acoustic metamaterials path, which offers a broader range for the material parameters values and a better control over them. We propose two structures which contain a sensing element (microphone) and an acoustic driver (piezoelectric membrane or speaker). The

  20. ACOUSTICAL STANDARDS NEWS.

    Blaeser, Susan B; Struck, Christopher J

    2016-03-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Susan B. Blaeser.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27036268

  1. Deep-Diving Cetaceans of the Gulf of Mexico : : Acoustic Ecology and Response to Natural and Anthropogenic Forces Including the Deepwater Horizon Oil Spill

    Merkens, Karlina Paul

    2013-01-01

    Characterization of the spatiotemporal patterns of marine mammal populations is challenging yet critical for understanding their role in the ecosystem and how they are affected by ecological disturbance, such as anthropogenic activity. Gathering information about deep-diving cetaceans is particularly difficult because they spend so much of their lives well below the ocean's surface, however they can be detected using passive acoustic monitoring. The Gulf of Mexico is home to at least six spec...

  2. Influence of temperature, needle gauge and injection rate on the size distribution, concentration and acoustic responses of ultrasound contrast agents at high frequency.

    Sun, Chao; Panagakou, Ioanna; Sboros, Vassilis; Butler, Mairead B; Kenwright, David; Thomson, Adrian J W; Moran, Carmel M

    2016-08-01

    This paper investigated the influence of needle gauge (19G and 27G), injection rate (0.85ml·min(-1), 3ml·min(-1)) and temperature (room temperature (RT) and body temperature (BT)) on the mean diameter, concentration, acoustic attenuation, contrast to tissue ratio (CTR) and normalised subharmonic intensity (NSI) of three ultrasound contrast agents (UCAs): Definity, SonoVue and MicroMarker (untargeted). A broadband substitution technique was used to acquire the acoustic properties over the frequency range 17-31MHz with a preclinical ultrasound scanner Vevo770 (Visualsonics, Canada). Significant differences (P<0.001-P<0.05) between typical in vitro setting (19G needle, 3ml·min(-1) at RT) and typical in vivo setting (27G needle, 0.85ml·min(-1) at BT) were found for SonoVue and MicroMarker. Moreover we found that the mean volume-based diameter and concentration of both SonoVue and Definity reduced significantly when changing from typical in vitro to in vivo experimental set-ups, while those for MicroMarker did not significantly change. From our limited measurements of Definity, we found no significant change in attenuation, CTR and NSI with needle gauge. For SonoVue, all the measured acoustic properties (attenuation, CTR and NSI) reduced significantly when changing from typical in vitro to in vivo experimental conditions, while for MicroMarker, only the NSI reduced, with attenuation and CTR increasing significantly. These differences suggest that changes in physical compression and temperature are likely to alter the shell structure of the UCAs resulting in measureable and significant changes in the physical and high frequency acoustical properties of the contrast agents under typical in vitro and preclinical in vivo experimental conditions. PMID:27140502

  3. Active acoustic metamaterials reconfigurable in real time

    Popa, Bogdan-Ioan; Shinde, Durvesh; Konneker, Adam; Cummer, Steven A.

    2015-06-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or are only modestly tunable, tying them to the particular application for which they are designed. We present a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real time by configuring the digital electronics that control the metamaterial acoustic properties. We demonstrate this approach experimentally by designing a metamaterial slab configured to act as a very thin acoustic lens that manipulates differently three identical, consecutive pulses incident on the lens. Moreover, we show that the slab can be configured to simultaneously implement various roles, such as that of a lens and a beam steering device. Finally, we show that the metamaterial slab is suitable for efficient second harmonic acoustic imaging devices capable of overcoming the diffraction limit of linear lenses. These advantages demonstrate the versatility of this active metamaterial and highlight its broad applicability, in particular, to acoustic imaging.

  4. Measurement of acoustical characteristics of mosques in Saudi Arabia

    Abdou, Adel A.

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  5. Application of auditory brainstem response and pure tone audiometry in early diagnosis of acoustic neuroma%听性脑干反应和纯音听阈在听神经瘤早期诊断中的应用

    赵赋; 武丽; 王博; 杨智君; 王振民; 王兴朝; 李朋; 张晶; 刘丕楠

    2015-01-01

    目的 探讨采用听性脑干反应和纯音听阈对早期诊断听神经瘤的临床应用价值.方法 回顾性分析了111例听神经瘤患者的临床资料、纯音听阈、听性脑干反应及增强磁共振结果,采用线性回归分析纯音听阈均值与肿瘤体积、病程是否存在相关性,采用卡方检验分析不同肿瘤体积在听性脑干反应异常发生率上是否存在差异.结果 听神经瘤引起感音神经性耳聋,纯音听阈均值与病程存在显著地相关性(P=0.000);听性脑干反应诊断听神经瘤的敏感度和特异度分别为98.2%和93.6%,肿瘤最大径>3 cm与≤3 cm两组,在患侧和对侧Ⅲ~Ⅳ波间期异常发生率上,差异均具有统计学意义(P值分别为0.038和0.045).结论 听性脑干反应联合纯音测听是早期诊断听神经瘤的有效方法.%Objective To investigate the clinical application value of using auditory brainstem response and pure tone audiometry for early diagnosis of acoustic neuroma.Methods The clinical data,the results of pure tone audiometry,auditory brainstem response,and enhanced MRI in 111 patients with acoustic neuroma were analyzed retrospectively.Linear regression analysis was used to analyze the correlation between the nean value of pure tone audiometry and the neuroma volune or course of disease.Chi-squared test was used to analyze the whether there were differences in the different neuroma volumes on the incidence of abnormal auditory brainstem response.Results Acoustic neuroma caused sensorineural deafness.There was a significant correlation between the mean value of pure tone audiometry and the course of disease (P =0.000).The sensitivity and specificity of auditory brainstem response for the diagnosis of acoustic neuroma were 98.2% and 93.6% respectively.The maximum diameters of neuromas were divided into 2 groups:> 3 cm or ≤3 cm.There were significant differences on the abnormal incidence of the Ⅲ to Ⅴ wave intervals of the

  6. Vibro-acoustics

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  7. Springer handbook of acoustics

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  8. Acoustic streaming in microchannels

    Tribler, Peter Muller

    , and experimental results for the streaming-induced drag force dominated motion of particles suspended in a water-filled microchannel supporting a transverse half-wavelength resonance. The experimental and theoretical results agree within a mean relative dierence of approximately 20%, a low deviation given state......This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...

  9. Active acoustic metamaterials reconfigurable in real-time

    Popa, Bogdan-Ioan; Shinde, Durvesh; Konneker, Adam; Cummer, Steven A.

    2015-01-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or only modestly tunable, tying them to the particular application for which they are designed. We present in this paper a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real-time by configuring the digital electronics that control the metamaterial acou...

  10. Acoustic characterisation of ultrasound contrast agents at high frequency

    Sun, Chao

    2013-01-01

    This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound in the fields of preclinical, intravascular, ophthalmology and superficial tissue imaging. Although research studying the acoustic response of UCAs at low diagnostic ultrasonic frequencies has been well documented, quantitative information on the acoustical prop...

  11. Vibro-acoustics of lightweight sandwich structures

    Lu, Tianjian

    2014-01-01

    Vibro-Acoustics of Lightweight Sandwich Structures introduces the study of the coupled vibration and acoustic behavior of lightweight sandwich structures in response to harmonic force and sound pressure. This book focuses on the theoretical modeling and experimental investigation of lightweight sandwich structures in order to provide a predictive framework for vibro-acoustic characteristics of typical engineering structures. Furthermore, by developing solution tools, it concentrates on the influence of key systematic parameters leading to effective guidance for optimal structure design toward lightweight, high-stiffness and superior sound insulation capability. This book is intended for researchers, scientists, engineers and graduate students in mechanical engineering especially in structural mechanics, mechanics and acoustics. Fengxian Xin and Tianjian Lu both work at the School of Aerospace, Xi’an Jiaotong University.

  12. Acoustic energy transmission in cast iron pipelines

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  13. Shallow Water Acoustic Laboratory

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  14. Handbook of Engineering Acoustics

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  15. Acoustic dispersive prism

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  16. Localized Acoustic Surface Modes

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  17. What Is an Acoustic Neuroma

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  18. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    2010-01-01

    Roč. 4, č. 1 (2010), s. 25-36. ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  19. Acoustic Neuroma Educational Video

    Full Text Available ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ...

  20. Acoustic Signals and Systems

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will...... present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  1. Ocean acoustic hurricane classification.

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  2. Cochlear bionic acoustic metamaterials

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  3. Computational Ocean Acoustics

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  4. Active acoustic metamaterials reconfigurable in real-time

    Popa, Bogdan-Ioan; Konneker, Adam; Cummer, Steven A

    2015-01-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or only modestly tunable, tying them to the particular application for which they are designed. We present in this paper a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real-time by configuring the digital electronics that control the metamaterial acoustic properties. We demonstrate experimentally this approach by designing a metamaterial slab configured to act as a very thin acoustic lens that manipulates differently three identical, consecutive pulses incident on the lens. Moreover, we show that the slab can be configured to implement simultaneously various roles, such as that of a lens and beam steering device. Finally, we show that the metamaterial slab is suitable for efficient second harmonic acoustic imaging devices capable to overcome the diffraction limit of l...

  5. Acoustic lens for capacitive micromachined ultrasonic transducers

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with traditional piezoelectric transducers in therapeutic ultrasound applications. In this paper we have designed, fabricated and developed an acoustic lens formed on the CMUT to mechanically focus ultrasound. The acoustic lens was designed based on the paraxial theory and made of silicone rubber for acoustic impedance matching and encapsulation. The CMUT was fabricated based on the local oxidation of silicon (LOCOS) and fusion-bonding. The fabricated CMUT was verified to behave like an electromechanical resonator in air and exhibited wideband response with a center frequency of 2.2 MHz in immersion. The fabrication for the acoustic lens contained two consecutive mold castings and directly formed on the surface of the CMUT. Applied with ac burst input voltages at the center frequency, the CMUT with the acoustic lens generated an output pressure of 1.89 MPa (peak-to-peak) at the focal point with an effective focal gain of 3.43 in immersion. Compared to the same CMUT without a lens, the CMUT with the acoustic lens demonstrated the ability to successfully focus ultrasound and provided a viable solution to the miniaturization of the multi-modality forward-looking endoscopes without electrical focusing. (paper)

  6. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  7. Acoustic vs VHF Lightning Location Systems

    Arechiga, R. O.; Lapierre, J. L.; Stock, M.; Erives, H.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    A single acoustic array can determine the 3-D location of lightning sources by using time of arrival differences arriving at the microphones and ranging techniques. The range is obtained from the time difference between the electromagnetic emission (detected by the acoustic data logger) and the acoustic signal produced by lightning. Audio frequency acoustic location systems are sensitive to the gas dynamic expansion of portions of a rapidly heating lightning channel, and so acoustic signatures are produced by a wide variety of different lightning discharge processes including: return strokes, K changes, M components, leader stepping and more. Infrasonic frequency range acoustic sensors are also sensitive to gas dynamic expansion, and in addition are also sensitive to processes which are electro-static in nature. RF location systems such as the Lightning Mapping Array (LMA) and the Continuous Sampling Broadband VHF Digital Interferometer (DITF) from New Mexico Tech (NMT) produce high quality maps of lightning discharges; however, they are sensitive to breakdown processes only and can not locate sources originating in already well conducting channels. During the summer of 2013 an acoustic audio-range array and an infrasound array were co-located with the NMT DITF in the Magdalena mountains of central New Mexico, where an LMA is also operating. The audio-range acoustic array consists of custom-designed GPS-synced data loggers with a 50 kHz sampling rate and audio range omnidirectional dynamic microphones. The infrasound array uses GPS time-synced data logger and custom-designed broadband microphones with flat response in the band of 0.01 to 500 Hz. The DITF uses flat plate dE/dt antennas bandpass filtered to 20 to 80 MHz, providing 2D maps of lightning emissions with very high (sub-microsecond) timing resolution. Both acoustic and interferometric arrays of antennas determine location of sources by coherently comparing the signals arriving at the antennas (or

  8. Acoustical coupling of lizard eardrums.

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-12-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct and indirect sound components on the eardrum. The ensuing pressure-difference characteristics generate the highest directionality of any similar-sized terrestrial vertebrate ear. The aim of the present study was to measure the gain of the direct and indirect sound components in three lizard species: Anolis sagrei and Basiliscus vittatus (iguanids) and Hemidactylus frenatus (gekkonid) by laser vibrometry, using either free-field sound or a headphone and coupler for stimulation. The directivity of the ear of these lizards is pronounced in the frequency range from 2 to 5 kHz. The directivity is ovoidal, asymmetrical across the midline, but largely symmetrical across the interaural axis (i.e., front-back). Occlusion of the contralateral ear abolishes the directionality. We stimulated the two eardrums with a coupler close to the eardrum to measure the gain of the sound pathways. Within the frequency range of maximal directionality, the interaural transmission gain (compared to sound arriving directly) is close to or even exceeds unity, indicating a pronounced acoustical transparency of the lizard head and resonances in the interaural cavities. Our results show that the directionality of the lizard ear is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit. PMID:18648878

  9. Flat acoustic lens by acoustic grating with curled slits

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating

  10. Probing mechanical properties of liposomes using acoustic sensors.

    Melzak, Kathryn A; Bender, Florian; Tsortos, Achilleas; Gizeli, Electra

    2008-08-19

    Acoustic devices were employed to characterize variations in the mechanical properties (density and viscoelasticity) of liposomes composed of 1-oleoyl-2-palmitoyl- sn-glycero-3-phosphocholine (POPC) and cholesterol. Liposome properties were modified in three ways. In some experiments, the POPC/cholesterol ratio was varied prior to deposition on the device surface. Alternatively, the ratio was changed in situ via either insertion of cholesterol or removal of cholesterol with beta-cyclodextrin. This was done for liposomes adsorbed directly on the device surface and for liposomes attached via a biotin-terminated poly(ethylene glycol) linker. The acoustic measurements make use of two simultaneous time-resolved signals: one signal is related to the velocity of the acoustic wave, while the second is related to dissipation of acoustic energy. Together, they provide information not only about the mass (or density) of the probed medium but also about its viscoelastic properties. The cholesterol-induced increase in the surface density of the lipid bilayer was indeed observed in the acoustic data, but the resulting change in signal was larger than expected from the change in surface density. In addition, increasing the bilayer resistance to stretching was found to lead to a greater dissipation of the acoustic energy. The acoustic response is assessed in terms of the possible distortions of the liposomes and the known effects of cholesterol on the mechanical properties of the lipid bilayer that encloses the aqueous core of the liposome. To aid the interpretation of the acoustic response, it is discussed how the above changes in the lipid bilayer will affect the effective viscoelastic properties of the entire liposome/solvent film on the scale of the acoustic wavelength. It was found that the acoustic device is very sensitive to the mechanical properties of lipid vesicles; the response of the acoustic device is explained, and the basic underlying mechanisms of interaction are

  11. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  12. Predicting Acoustics in Class Rooms

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be...

  13. Underwater Applications of Acoustical Holography

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  14. Tunable acoustic metamaterials

    Babaee, Sahab; Viard, Nicolas; Fang, Nicholas; Bertoldi, Katia

    2015-03-01

    We report a new class of active and switchable acoustic metamaterials composed of three-dimensional stretchable chiral helices arranged on a two-dimensional square lattice. We investigate the propagation of sounds through the proposed structure both numerically and experimentally and find that the deformation of the helices can be exploited as a novel and effective approach to control the propagation of acoustic waves. The proposed concept expands the ability of existing acoustic metamaterials since we demonstrate that the deformation can be exploited to turn on or off the band gap, opening avenues for the design of adaptive noise-cancelling devices.

  15. Acoustic echoes reveal room shape.

    Dokmanic, Ivan; Parhizkar, Reza; Walther, Andreas; Lu, Yue M; Vetterli, Martin

    2013-07-23

    Imagine that you are blindfolded inside an unknown room. You snap your fingers and listen to the room's response. Can you hear the shape of the room? Some people can do it naturally, but can we design computer algorithms that hear rooms? We show how to compute the shape of a convex polyhedral room from its response to a known sound, recorded by a few microphones. Geometric relationships between the arrival times of echoes enable us to "blindfoldedly" estimate the room geometry. This is achieved by exploiting the properties of Euclidean distance matrices. Furthermore, we show that under mild conditions, first-order echoes provide a unique description of convex polyhedral rooms. Our algorithm starts from the recorded impulse responses and proceeds by learning the correct assignment of echoes to walls. In contrast to earlier methods, the proposed algorithm reconstructs the full 3D geometry of the room from a single sound emission, and with an arbitrary geometry of the microphone array. As long as the microphones can hear the echoes, we can position them as we want. Besides answering a basic question about the inverse problem of room acoustics, our results find applications in areas such as architectural acoustics, indoor localization, virtual reality, and audio forensics. PMID:23776236

  16. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu; Liang Feng; Yan-Feng Chen

    2009-01-01

    Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surf...

  17. Acoustic integrated extinction

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  18. Acoustics Noise Test Cell

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  19. Principles of musical acoustics

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  20. Compact acoustic refrigerator

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  1. Acoustics lecturing in Mexico

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  2. Acoustic Igniter Project

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  3. Acoustic Neuroma Educational Video

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  4. Acoustic coherent perfect absorbers

    In this paper, we explore the possibility of achieving acoustic coherent perfect absorbers. Through numerical simulations in two dimensions, we demonstrate that the energy of coherent acoustic waves can be totally absorbed by a fluid absorber with specific complex mass density or bulk modulus. The robustness of such absorbing systems is investigated under small perturbations of the absorber parameters. We find that when the resonance order is the lowest and the size of the absorber is comparable to the wavelength in the background, the phenomenon of perfect absorption is most stable. When the wavelength inside both the background and the absorber is much larger than the size of the absorber, perfect absorption is possible when the mass density of the absorber approaches the negative value of the background mass density. Finally, we show that by using suitable dispersive acoustic metamaterials, broadband acoustic perfect absorption may be achieved. (papers)

  5. Ocean acoustic reverberation tomography.

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  6. Autonomous Acoustic Receiver System

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  7. Computational simulation of acoustic fatigue for hot composite structures

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  8. Anal acoustic reflectometry

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  9. The autonomous acoustic buoy

    Pellicer, Francisco; Reitsma, Robert; Agüera, Joaquín; Marinas, Alexandra

    2013-01-01

    The Acoustic Buoy is a project between the Laboratory of Applied Bioacoustics (LAB) and the Universitat Politècnica de Catalunya (UPC). In areas that the human activities produce high noise levels, such as oil exploration or construction, there is a need to monitor the environment for the presence of cetaceans. Another need is for fishing, to prevent endangered species from being killed. This can be done with an Autonomous Acoustic Buoy (AAB). Mooring or anchoring at to the seaflo...

  10. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    Plzeň : University of West Bohemia, 2009 - (Adámek, V.; Zajíček, M.). s. 1-2 ISBN 978-80-7043-824-4. [Výpočtová mechanika 2009. 09.11.2009-11.11.2009, Nečtiny] R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  11. Mechanical-Acoustic Multi-Objective Optimization of Honeycomb Plate

    Li, Wang-Ying; Yang, Xiong-Wei; Li, Yue-Ming

    At present, optimal design against noise caused by vibrating structures is often formulated with the objective of minimizing sound power or sound pressure. In this paper, a mechanical and acoustic multi-objective optimization method is proposed aimed at minimizing static, dynamic and acoustic response of a honeycomb sandwich panel under given mass constraint. The multi-objective is defined as a weighted sum of static deflection, vibration response and sound power from the norm method. The static and dynamic responses are calculated using FEM and sound power radiated by structures is calculated using discrete Rayleigh integral. The sensitivities of static, dynamic and acoustic response are formulated to improve efficiency by the adjoint method. Numerical examples on the honeycomb plate are considered, which indicate that the proposed method can improve acoustical property without weakening mechanical property.

  12. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  13. Nanowave devices for terahertz acoustic phonons

    Lanzillotti-Kimura, N. D.; Fainstein, A.; Lemaître, A.; Jusserand, B.

    2006-02-01

    The emergence of the area of nanophononics requires the development of terahertz (THz) acoustic devices with tailored properties. We describe nonperiodic planar nanostructures with specific THz phononic response and superior performance. We show that improved devices based on GaAs and AlAs layers can be designed using an optimization Nelder-Mead simplex method, and grown with state-of-the-art molecular beam epitaxy. We also demonstrate that high-resolution Raman scattering provides a powerful tool to characterize these devices. We illustrate the concept with results on acoustic THz edge and color filters.

  14. Acoustic Method of the Cheese Ripening Avaluation

    Severa, L.; Nedomová, Š.; Trnka, Jan; Dvořáková, Pavla; Buchar, J.

    Praha: ČVUT Praha, 2008 - (Daniel, M.; Holý, S.; Růžička, M.), s. 235-236. (1). ISBN 978-80-01-04162-8. [Symposium on Advances in Experimental Mechanics /25./. České Budějovice, Český Krumlov (CZ), 24.09.2008-27.09.2008] R&D Projects: GA AV ČR IAA201990701 Institutional research plan: CEZ:AV0Z20760514 Keywords : cheese ripening * Edam maturity * acoustic impulse-response technique Subject RIV: BI - Acoustics

  15. Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC.

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2012-08-01

    Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic acid (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues were unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, or latent inhibition deficits reported in Poly IC-treated rats but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction). PMID:22473973

  16. Estimating propagation velocity through a surface acoustic wave sensor

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  17. Localization and tracing of early acoustic reflections in enclosures

    Tervo, Sakari

    2011-01-01

    Objective room acoustic studies are conducted by measuring room impulse responses. The standard techniques include the use of an omni-directional source and, in most cases, one omni-directional microphone. This approach is well defined when measuring the standard room acoustic parameters. Recently, early reflections, the first arriving sound waves in the room impulse response after the direct sound, have gained attention in research. The spatial location of the early reflections, i.e., t...

  18. Acoustic vector sensor signal processing

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  19. A study of the effect of a boundary layer profile on the dynamic response and acoustic radiation of flat panels. Ph.D. Thesis - Virginia Univ.

    Mixson, J. S.

    1973-01-01

    The response of a thin, elastic plate to a harmonic force which drives the plate from below and a compressible air stream with a viscous boundary layer flowing parallel to the upper surface along the length was investigated. Equations governing the forced response of the coupled plate-aerodynamic system are derived along with appropriate boundary conditions. Calculations of basic solution parameters for a linear velocity profile and for a Blasius profile showed that the same system response could be obtained from each profile if appropriate values of boundary layer thickness were chosen for each profile.

  20. Mobile platform for acoustic mine detection applications

    Libbey, Brad; Fenneman, Douglas; Burns, Brian

    2005-06-01

    Researchers in academia have successfully demonstrated acoustic landmine detection techniques. These typically employ acoustic or seismic sources to induce vibration in the mine/soil system, and use vibration sensors such as laser vibrometers or geophones to measure the resultant surface motion. These techniques exploit the unique mechanical properties of landmines to discriminate the vibration response of a buried mine from an off-target measurement. The Army requires the ability to rapidly and reliably scan an area for landmines and is developing a mobile platform at NVESD to meet this requirement. The platform represents an initial step toward the implementation of acoustic mine detection technology on a representative field vehicle. The effort relies heavily on the acoustic mine detection cart system developed by researchers at the University of Mississippi and Planning Systems, Inc. The NVESD platform consists of a John Deere E-gator configured with a robotic control system to accurately position the vehicle. In its present design, the E-gator has been outfitted with an array of laser vibrometers and a bank of loudspeakers. Care has been taken to ensure that the vehicle"s mounting hardware and data acquisition algorithms are sufficiently robust to accommodate the implementation of other sensor modalities. A thorough discussion of the mobile platform from its inception to its present configuration will be provided. Specific topics to be addressed include the vehicle"s control and data acquisition systems. Preliminary results from acoustic mine detection experiments will also be presented.

  1. Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

    Mike eSkocik

    2013-01-01

    Full Text Available Studies of behavioral and neural responses to distorted auditory feedback can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds’ songs.

  2. Humanitarian mine detection by acoustic resonance

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  3. Dose and diameter relationships for facial, trigeminal, and acoustic neuropathies following acoustic neuroma radiosurgery

    Purpose and objective: To define the relationships between dose and tumor diameter for the risks of developing trigeminal, facial, and acoustic neuropathies after acoustic neuroma radiosurgery, a large single-institution experience was analyzed. Materials and methods: Two hundred and thirty-eight patients with unilateral acoustic neuromas who underwent Gamma knife radiosurgery between 1987-1994 with 6-91 months of follow-up (median 30 months) were studied. Minimum tumor doses were 12-20 Gy (median 15 Gy). Transverse tumor diameter varied from 0.3-5.5 cm (median 2.1 cm). The relationships of dose and diameter to the development of cranial neuropathies were delineated by multivariate logistic regression. Results: The development of post-radiosurgery neuropathies affecting cranial nerves V, VII, and VIII were correlated with minimum tumor dose and transverse tumor diameter (Pmin for VIII where P=0.10). A comparison of the dose-diameter response curves showed the acoustic nerve to be the most sensitive to doses of 12-16 Gy and the facial nerve to be the least sensitive. Conclusion: The risks of developing trigeminal, facial, and acoustic neuropathies following acoustic neuroma radiosurgery can be predicted from the transverse tumor diameter and the minimum tumor dose using models constructed from data presently available

  4. Acoustic comfort in eating establishments

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating...

  5. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu

    2009-12-01

    Full Text Available Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surface evanescent waves have also been recognized to play key roles to reach acoustic subwavelength imaging and enhanced transmission.

  6. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... the first phases in the architectural process and set out a reverse strategy for simulation programmes to do so - from developing acoustics from given spaces to developing spaces from given acoustics...

  7. Surface resonant states and superlensing in acoustic metamaterials

    Ambati, Muralidhar; Fang, Nicholas; Sun, Cheng; Zhang, Xiang

    2007-05-01

    We report that the negative material responses of acoustic metamaterials can lead to a plethora of surface resonant states. We determine that negative effective-mass density is the necessary condition for the existence of surface states on acoustic metamaterials. We offer the microscopic picture of these unique surface states; in addition, we find that these surface excitations enhance the transmission of evanescent pressure fields across the metamaterial. The evanescent pressure fields scattered from an object can be resonantly coupled and enhanced at the surface of the acoustic metamaterial, resulting in an image with resolution below the diffraction limit. This concept of acoustic superlens opens exciting opportunities to design acoustic metamaterials for ultrasonic imaging.

  8. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  9. An overview of acoustic telemetry

    Drumheller, D.S.

    1992-01-01

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.

  10. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  11. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  12. Acoustic detection of pneumothorax

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  13. Seamount acoustic scattering

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  14. Acoustics waves and oscillations

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  15. Practical acoustic emission testing

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  16. A Century of Acoustic Metrology

    Rasmussen, Knud

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  17. A New Wave of Acoustics.

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  18. Advanced Active Acoustics Lab (AAAL)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  19. Densitometry By Acoustic Levitation

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  20. Acoustic black holes

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  1. Strong acoustic wave action

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  2. Structural Acoustics and Vibrations

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  3. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    Cheng, Ying; Liu, XiaoJun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Chen; Wei, Qi; Wu, DaJian [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  4. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution

  5. Effect of contralateral stimulation on acoustic reflectance measurements

    Tathiany Silva Pichelli

    2015-10-01

    Full Text Available ABSTRACT INTRODUCTION: Acoustic reflectance is an important tool in the assessment of middle ear afflictions, and the method is considered advantageous in relation to tympanometry. There has been a growing interest in the study of contralateral acoustic stimulation and its effect on the activation of the efferent auditory pathway. Studies have shown that the introduction of simultaneous stimulation in the contralateral ear generates alterations in auditory response patterns. OBJECTIVE: To investigate the influence of contralateral stimulation on acoustic reflectance measurements. METHODS: Case study of 30 subjects with normal hearing, of both genders, aged 18-30 years. The test and retest acoustic reflectance was conducted in the frequency range 200-6000 Hz. The procedure was repeated with the simultaneous presence of contralateral white noise at 30 dBNS. RESULTS: The analysis of the conditions of test, retest, and test with contralateral noise showed statistical difference at the frequency of 2 kHz (p = 0.011 and p = 0.002 in test and retest, respectively in the right ear. CONCLUSION: The activation of the auditory efferent pathways through contralateral acoustic stimulation produces alterations in response patterns of acoustic reflectance, increasing sound reflection and modifying middle ear acoustical energy transfer.

  6. A membrane-type acoustic metamaterial with adjustable acoustic properties

    Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorff, O.

    2016-07-01

    A new realization of a membrane-type acoustic metamaterial (MAM) with adjustable sound transmission properties is presented. The proposed design distinguishes itself from other realizations by a stacked arrangement of two MAMs which is inflated using pressurized air. The static pressurization leads to large nonlinear deformations and, consequently, geometrical stiffening of the MAMs which is exploited to adjust the eigenmodes and sound transmission loss of the structure. A theoretical analysis of the proposed inflatable MAM design using numerical and analytical models is performed in order to identify two important mechanisms, namely the shifting of the eigenfrequencies and modal residuals due to the pressurization, responsible for the transmission loss adjustment. Analytical formulas are provided for predicting the eigenmode shifting and normal incidence sound transmission loss of inflated single and double MAMs using the concept of effective mass. The investigations are concluded with results from a test sample measurement inside an impedance tube, which confirm the theoretical predictions.

  7. Acoustically induced transparency using Fano resonant periodic arrays

    Amin, M.

    2015-10-22

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  8. Acoustically induced transparency using Fano resonant periodic arrays

    Amin, M.; Elayouch, A.; Farhat, M.; Addouche, M.; Khelif, A.; Baǧcı, H.

    2015-10-01

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  9. The Challenges of Analyzing Behavioral Response Study Data: An Overview of the MOCHA (Multi-study OCean Acoustics Human Effects Analysis) Project.

    Harris, Catriona M; Thomas, Len; Sadykova, Dina; DeRuiter, Stacy L; Tyack, Peter L; Southall, Brandon L; Read, Andrew J; Miller, Patrick J O

    2016-01-01

    This paper describes the MOCHA project which aims to develop novel approaches for the analysis of data collected during Behavioral Response Studies (BRSs). BRSs are experiments aimed at directly quantifying the effects of controlled dosages of natural or anthropogenic stimuli (typically sound) on marine mammal behavior. These experiments typically result in low sample size, relative to variability, and so we are looking at a number of studies in combination to maximize the gain from each one. We describe a suite of analytical tools applied to BRS data on beaked whales, including a simulation study aimed at informing future experimental design. PMID:26610984

  10. COMBUSTION ACOUSTICS DIAGNOSTICS

    This is an Exploratory Research Project that was awarded by APPCD for research on developing an acoustic flame condition monitor. It will involve a bench scale experiment of 4-6 weeks duration to record adjacent audible energy of a Bunsen burner. The experiment will require a d...