WorldWideScience

Sample records for acoustical measurements

  1. Wireless Acoustic Measurement System

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  2. Acoustic Measurements of Small Solid Rocket Motor

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  3. USE OF SCALE MODELING FOR ARCHITECTURAL ACOUSTIC MEASUREMENTS

    ERÖZ, Ferhat

    2013-01-01

    In recent years, acoustic science and hearing has become important. Acoustic design used in tests of acoustic devices is crucial. Sound propagation is a complex subject, especially inside enclosed spaces. From the 19th century on, the acoustic measurements and tests were carried out using modeling techniques that are based on room acoustic measurement parameters.In this study, the effects of architectural acoustic design of modeling techniques and acoustic parameters were studied. In this con...

  4. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    Nakamura, Satoshi; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  5. Simultaneous measurements of room acoustic parameters using different measuring equipment

    Halmrast, Tor; Gade, Anders Christian; Winsvold, Bjørn

    1996-01-01

    In a cooperation between Stattsbyg, Norway, Norsonic, Norway, and Department of Acoustic Technology, a number of room acoustic parameters have been determined in Oslo Concert Hall. All measurements were carried out on the same day, using the same amplifier, microphone and loudspeaker, and the sam...

  6. Acoustic Emission Stethoscope - Measurements with Acoustic Emission on Wind Turbines

    Krystof Kryniski [AaF Infrastructure, Stockholm (Sweden)

    2013-02-15

    A remote ultrasonic stethoscope, designed on mobile devices to help a maintenance team in diagnosing drive train problems, has been demonstrated. By implementing an acoustic emission technology, the operating conditions of wind turbines have been assessed by trending techniques and ultrasonic acoustic emission converted into audible sound. The new approach has been developed and tested and compared to other monitoring techniques. Acoustic emission has generally been shown to provide a number of advantages over vibration and shock pulse methods because the system is operating in a substantially higher frequency range (100 kHz) and therefore it is more immune to operation of surrounding machines and components. Quick attenuation of ultrasonic propagation waves in the drive-train structure helps to pin-point the origin of any fault as the signals are sharper and more pronounced. Further, with the intensity measurements a direction of the source of ultrasonic energy can be identified. Using a high frequency thus makes the method suitable for measuring local effects and to determine local defects since the disturbing signals from other parts are damped. Recently developed programmable sensors capable of processing signals onboard, producing quality outputs with extremely low noise-to-signal ratio, have been used. It is discussed how the new approach can lower the cost of a wind-turbine monitoring system, while at the same time making it simple and more reliable, see Appendix A. The method has been tested on rotating parts of wind-turbines, including traditionally difficult areas such as low speed main bearings and planetary gearboxes. The method developed in the project was designed to see physical processes such as friction, impacts and metal removal, occurring when machinery degrades, can be detected and notified with the developed notification system. Apart from reporting the status and displaying the changes of the pre-defined parameters or symptoms, the system has

  7. Acoustic Measurement of Potato Cannon Velocity

    Courtney, Michael; Courtney, Amy

    2007-01-01

    Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato…

  8. Acoustical measurements in ancient Roman theatres

    Farnetani, Andrea; Fausti, Patrizio; Pompoli, Roberto; Prodi, Nicola

    2001-05-01

    The Greek and Roman theatres are among the most precious and spectacular items of cultural heritage in the Mediterranean countries. The theatres are famous not only for their impressive architecture, but also for the acoustic qualities. For this reason it is important to consider these theatres as an acoustical heritage and to study their sound field. Within the activities of the ERATO (identification Evaluation and Revival of the Acoustical heritage of ancient Theatres and Odea) project, acoustical measurements were taken in well-preserved ancient Roman theatres at Aspendos (Turkey) and Jerash (Jordan). Roman theatres have an impressive stage building that forms a back wall in the orchestra area, and it was found that, from the analysis of the acoustical parameters, the reverberation time (e.g., 1.7 s at middle frequencies in the theatre of Aspendos) is quite long compared not only with other open-space theatres but also with closed spaces. Contrary to modern halls the clarity is high and this fact, together with a low sound level in most of the seats, gives the sound field a unique character.

  9. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  10. Acoustic measurement of potato cannon velocity

    Courtney, M; Courtney, Amy; Courtney, Michael

    2006-01-01

    This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.

  11. New methods of measuring normal acoustic impedance

    Wayman, James L.

    1984-01-01

    In recent years new methods based on signal processing technical have been developed to measure the normal acoustic impedance of materials. These methods proved to be considerably faster easier to implement than the SRW method rhey replace. Mathematical, hardware and software aspects of these techniques are discussed and results obtained over a frequency range of 200-4000 Hz for several architectural materials are presented. NPS Foundation Research Program http://archive....

  12. Outdoor synthetic aperture acoustic ground target measurements

    Bishop, Steven; Ngaya, Therese-Ann; Vignola, Joe; Judge, John; Marble, Jay; Gugino, Peter; Soumekh, Mehrdad; Rosen, Erik

    2010-04-01

    A novel outdoor synthetic aperture acoustic (SAA) system consists of a microphone and loudspeaker traveling along a 6.3-meter rail system. This is an extension from a prior indoor laboratory measurement system in which selected targets were insonified while suspended in air. Here, the loudspeaker and microphone are aimed perpendicular to their direction of travel along the rail. The area next to the rail is insonified and the microphone records the reflected acoustic signal, while the travel of the transceiver along the rail creates a synthetic aperture allowing imaging of the scene. Ground surfaces consisted of weathered asphalt and short grass. Several surface-laid objects were arranged on the ground for SAA imaging. These included rocks, concrete masonry blocks, grout covered foam blocks; foliage obscured objects and several spherical canonical targets such as a bowling ball, and plastic and metal spheres. The measured data are processed and ground targets are further analyzed for characteristics and features amenable for discrimination. This paper includes a description of the measurement system, target descriptions, synthetic aperture processing approach and preliminary findings with respect to ground surface and target characteristics.

  13. Measurement of acoustical characteristics of mosques in Saudi Arabia

    Abdou, Adel A.

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  14. Stroboscopic and acoustic measures of inspiratory phonation.

    Kelly, C L; Fisher, K V

    1999-09-01

    Inspiratory phonation (IP) is the production of voice as air is taken into the lungs. Although IP is promoted as a laryngeal assessment and voice treatment technique, it has been described quantitatively in very few speakers. This study quantified changes in laryngeal adduction, fundamental frequency, and intensity during IP relative to expiratory phonation (EP). We hypothesized that IP would increase laryngeal abduction and fundamental frequency. The experiment was a within-subjects, repeated measures design with each subject serving as her own control. Participants were 10 females (ages 19-50 years) who underwent simultaneous transoral videostrobolaryngoscopy and acoustic voice recording. We found that membranous vocal fold contact decreased significantly during IP relative to EP, while the trends for change of ventricular fold squeeze during IP varied across individuals. Vocal fundamental frequency increased significantly during IP relative to EP, but intensity did not vary consistently across conditions. Without teaching or coaching, changes that occurred during IP did not carry over to EP produced immediately following IP within the same respiratory cycle. PMID:10498055

  15. Relationships between subjective and objective acoustical measures in churches

    António P. Carvalho; António E. Morgado; Luís Henrique

    1997-01-01

    This study reports on subjective and objective acoustical field measurements made in a survey of 36 Catholic churches in Portugal built in the last 14 centuries. Monaural acoustical measurements (RT, EDT, C80, D50, TS and L) were taken at several source/receiver locations in each church and a group of college students was asked to judge the subjective quality of music. The listeners in each church evaluated live music performances at similar locations in each room. Evaluation sheets were used...

  16. Signal processing and field measurements for underwater acoustic communications

    Zhang, Guosong

    2013-01-01

    The present dissertation presents new developments in the signal processing of receiver structures for high-rate underwater acoustic communications, and describes the field measurements that test the structures in real oceanic environments. The signalling methods of spectrally efficient spread spectrum are also investigated to achieve long range underwater acoustic communications. The digital signal processing is of significance in recovering distorted information, and compensating waveform d...

  17. Effect of contralateral stimulation on acoustic reflectance measurements

    Tathiany Silva Pichelli

    2015-10-01

    Full Text Available ABSTRACT INTRODUCTION: Acoustic reflectance is an important tool in the assessment of middle ear afflictions, and the method is considered advantageous in relation to tympanometry. There has been a growing interest in the study of contralateral acoustic stimulation and its effect on the activation of the efferent auditory pathway. Studies have shown that the introduction of simultaneous stimulation in the contralateral ear generates alterations in auditory response patterns. OBJECTIVE: To investigate the influence of contralateral stimulation on acoustic reflectance measurements. METHODS: Case study of 30 subjects with normal hearing, of both genders, aged 18-30 years. The test and retest acoustic reflectance was conducted in the frequency range 200-6000 Hz. The procedure was repeated with the simultaneous presence of contralateral white noise at 30 dBNS. RESULTS: The analysis of the conditions of test, retest, and test with contralateral noise showed statistical difference at the frequency of 2 kHz (p = 0.011 and p = 0.002 in test and retest, respectively in the right ear. CONCLUSION: The activation of the auditory efferent pathways through contralateral acoustic stimulation produces alterations in response patterns of acoustic reflectance, increasing sound reflection and modifying middle ear acoustical energy transfer.

  18. Acoustic levitator for containerless measurements on low temperature liquids

    Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Rey, Charles A A [Charles Ray, Inc.

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  19. Measurement of vibration, flow and acoustic characteristics

    Horáček, Jaromír; Bula, Vítězslav; Veselý, Jan

    Plzeň : University of West Bohemia, 2012 - (Adámek, V.; Zajíček, M.; Jonášová, A.). s. 1-2 ISBN 978-80-261-0157-4. [Computational mechanics 2012 /28./. 12.11.2012-14.11.2012, Špičák] R&D Projects: GA ČR GAP101/12/1306 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of voice * impact stress * voice production modelling Subject RIV: BI - Acoustics

  20. Acoustic sensor for remote measuring of pressure

    Kataev V. F.

    2008-04-01

    Full Text Available The paper deals with sensors based on delay lines on surface acoustic waves (SAW, having a receiving-emitting and a reflective interdigital transducers (IDT. The dependence of the reflection coefficient of SAW on type and intensity of the load was studied. The authors propose a composite delay line in which the phase of the reflection coefficient depends on the pressure. Pressure leads to a shift of the reflective IDT relative to the transceiver, because they are located on different substrates. The paper also presents functional diagrams of the interrogator.

  1. Hydrothermal vent flow and turbulence measurements with acoustic scintillation instrumentation

    di Iorio, D.; Xu, G.

    2009-12-01

    Acoustically derived measurements of hydrothermal vent flow and turbulence were obtained from the active black smoker Dante in the Main Endeavour vent field, using scintillation analysis from one-way transmissions. The scintillation transmitter and receiver array formed a 93 m acoustic path through the buoyant plume 20 m above the structure. The acoustic path was parallel to the valley sidewall where the M2 tidal currents are approximately aligned along ridge due to topographic steering by the valley walls and hence most of the plume displacement is expected to occur along the acoustic path. On one deployment, data were collected for 6.5 weeks and vertical velocities range from 0.1 to 0.2 m/s showing a strong dependence on the spring/neap tidal cycle. The refractive index fluctuations which can be paramaterized in terms of the root-mean-square temperature fluctuations also shows a strong tidal modulation during spring tide.

  2. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  3. Acoustic measurements of models of military style supersonic nozzle jets

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and t

  4. Acoustic field measurements in austenitic welds and dissimilar welds

    Acoustic field measurements were performed in identical specimen geometries of NPP components, in order to contribute the results to the interpretation of US testing results and evaluation of the testing reliability. With an electrodynamic probe of type T, the sonic fields were scanned by scanning heads at 45 T, 45 L, 60 L, and 70 L. The following selected groups of measured data are discussed in the paper: (a) acoustic fields in a narrow-gap weld and a dissimilar weld; (b) longitudinal sound impact testing of welds for detection of transverse defects; (c) variation of transmissibility of acoustic waves along a welded seam; (d) strength and range of the secondary creep wave; (e) multiply reflected sonic modes. (orig./CB)

  5. Velocity and rotation measurements in acoustically levitated droplets

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters.

  6. A new method to measure the acoustic surface impedance outdoors

    In the European countries noise pollution is considered to be one of the most important environmental problems. With respect to traffic noise, different researchers are working on the reduction of noise at the source, on the modelling of the acoustic absorption of the road structure and on the effects of the pavement on the propagation. The aim of this paper is to propose a new method to measure the acoustic impedance of surfaces located outdoors, which allows us to further noise propagation models, in order to evaluate exactly the noise exposure. (authors)

  7. Acoustic measuring of partial discharge in power transformers

    Power transformers' reliability can be seriously affected by partial discharges. For this reason, it is necessary to implement technical methods to identify endangered equipment before catastrophic failures occur. A well-known method that can be applied either in the laboratory or in the field is the detection and localization of partial discharges, by means of the analysis of the acoustic signals they produced. An innovative partial discharge detector was developed based on the analysis of an acoustic or electrical PD signal envelope. This paper describes the architecture of the developed acoustic detector, which is composed of a set of ultrasonic sensors, signal conditioning and control modules, a graphical interface and the required software for the location of the affected area within the transformer. The conditioning and control modules perform analog to digital conversion, arrival time measurement, communication and control operations. Finally, some power transformer diagnostic testing is presented and discussed

  8. Acoustic impedances of ear canals measured by impedance tube

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between...... two microphone locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the...

  9. Measurement of acoustic attenuation in workrooms

    Rindel, Jens Holger

    1997-01-01

    Experimental work has been done in nine halls with volumes ranging from 693 to 123.978 cubic metres. The equivalent absorption area has been determined from absorption coefficients of the surfaces, calculated from reverberation time measurements and estimated from sound pressure level measurement...

  10. Energy Based Acoustic Measurement Senors Project

    National Aeronautics and Space Administration — This research focuses on fully developing energy density sensors that will yield a significant benefit both for measurements of interest to NASA, as well as for...

  11. A System for Acoustic Field Measurement Employing Cartesian Robot

    Szczodrak Maciej

    2016-09-01

    Full Text Available A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar and particle velocity(vector quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

  12. Acoustic transmission in SGUs: Plant and laboratory measurements

    As part of the UK development work an experimental programme is in progress to measure the acoustic transmission through an actual reactor SGU and also through a model tube bundle in the laboratory. This paper gives an outline of the experimental arrangements and examples of the preliminary results. The data from the laboratory measurements in particular is being used for comparison with theoretical studies carried out at the University of Keele which are reported in a separate paper to this Specialist's Meeting. The plant measurements are being carried out on a Superheater unit of the Prototype Fast Reactor (PFR) at Dounreay. These measurements are primarily aimed at providing information for a loose parts condition monitoring system which is operated on the PFR SGU, but results obtained will make a significant contribution to the acoustic leak detection programme. The Superheater used for the experiment has six blank steam tubes for experimental purposes. An impacting device has been inserted into one of the blank tubes and acoustic signals recorded on waveguides which are attached to the SGU shell. Recordings were made during a reactor shutdown with static sodium in the superheater and with the impacting device at five axial positions in both the inner and outer legs of the 'U' tube. Results are given for signal attenuation and location of the acoustic noise source. The laboratory measurements are being made using a 721-tube model tube bundle in a water tank. The tube bundle which is approximately 0.75m diameter x 3 metres long is not modelled to a specific design but is of realistic size and construction. A piezo-electric acoustic source is mounted centrally in the tube bundle and the transmitted signal is received by underwater microphones on the periphery of the bundle. Results from the first experiments with water filled tubes are given covering a frequency range of 6KHz to 80KHz. The preliminary results of the experimental programme are encouraging and

  13. The information content of anisotropic Baryon Acoustic Oscillation scale measurements

    Ross, Ashley J.; Percival, Will J.; Manera, Marc

    2015-01-01

    Anisotropic measurements of the Baryon Acoustic Oscillation (BAO) feature within a galaxy survey enable joint inference about the Hubble parameter $H(z)$ and angular diameter distance $D_A(z)$. These measurements are typically obtained from moments of the measured 2-point clustering statistics, with respect to the cosine of the angle to the line of sight $\\mu$. The position of the BAO features in each moment depends on a combination of $D_A(z)$ and $H(z)$, and measuring the positions in two o...

  14. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  15. Measurements of acoustic pressure at high amplitudes and intensities

    Crum, L A [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States); Bailey, M R [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States); Kaczkowski, P [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States); McAteer, J A [Department of Anatomy and Cell Biology, Indiana University, 635 Barnhill Drive, Indianapolis, IN 46202 (United States); Pishchalnikov, Y A [Department of Acoustics, Faculty of Physics, M V Lomosov Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Sapozhnikov, O A [Department of Acoustics, Faculty of Physics, M V Lomosov Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation)

    2004-01-01

    In our research group, we desire measurements of the large pressure amplitudes generated by the shock waves used in shock wave lithotripsy (SWL) and the large acoustic intensities used in High Intensity Focused Ultrasound (HIFU). Conventional piezoelectric or PVDF hydrophones can not be used for such measurements as they are damaged either by cavitation, in SWL applications, or heat, in HIFU applications. In order to circumvent these difficulties, we have utilized optical fiber hydrophones in SWL that do not cavitate, and small glass probes and a scattering technique for measurements of large HIFU intensities. Descriptions of these techniques will be given as well as some typical data.

  16. Measurement of incident sound power using near field acoustic holography

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse and the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit area; and it...... has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH). The...

  17. Flow velocity measurement with the nonlinear acoustic wave scattering

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution

  18. Flow velocity measurement with the nonlinear acoustic wave scattering

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  19. Flow velocity measurement with the nonlinear acoustic wave scattering

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  20. Acoustic doppler methods for remote measurements of ocean flows - a review

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  1. Three-dimensional broadband intensity probe for measuring acoustical parameters

    Miah, Khalid Hossain

    Measuring different acoustical properties have been the key in reducing noise and improving the sound quality from various sources. In this report, a broadband (200 Hz -- 6.5 kHz) three-dimensional seven-microphone intensity probe system is developed to measure the sound intensity, and total energy density in different acoustical environments. Limitations of most commercial intensity probes in measuring the three-dimensional intensity for a broadband sound field was the main motivation in developing this probe. The finite-difference error and the phase mismatch error which are the two main errors associated with the intensity measurements are addressed in this report. As for the physical design, seven microphones were arranged in a two-concentric arrays with one microphone located at the center of the probe. The outer array is for low-frequencies (200 Hz -- 1.0 kHz), and the inner one is for high-frequencies (1.0 kHz -- 6.5 kHz). The screw adjustable center microphone is used for the microphone calibration, and as the reference microphone of the probe. The simultaneous calibrations of all the microphones in the probe were done in the anechoic room. Theories for the intensity and the energy densities calculations for the probe were derived from the existing four-microphone probe configuration. Reflection and diffraction effects on the intensity measurements due to the presence of the microphones, and the supporting structures were also investigated in this report. Directivity patterns of the calculated intensity showed the omnidirectional nature of the probe. The intensity, and total energy density were calculated and compared with the ideal values in the anechoic room environment. Characterization of sound fields in a reverberant enclosed space, and sound source identification are some applications that were investigated using this probe. Results of different measurements showed effectiveness of the probe as a tool to measure key acoustical properties in many

  2. Acoustic wave measurements in reactor-grade concretes

    In this paper, five reactor grade concretes were investigated during their initial cure period to gather information which is a suitable data base for interpreting the results of confirmatory reactor safety research programs. In particular, the concretes studied were the concrete proposed for the Clinch River Breeder Reactor (CRBR), which is a limestone mix with flyash, and two other limestone aggregate mixes and two basaltic-aggregate mixes. The curing process in these concretes was followed with strength tests and with acoustic-wave velocity measurements. The choice of the latter technique was based on the successful programs of several investigators who used acoustic waves to follow the curing process in concrete and this information was also required for instrumentation techniques that are proposed for accident simulation studies. (Auth.)

  3. Nonintrusive Monitoring and Control of Metallurgical Processes by Acoustic Measurements

    Yu, Hao-Ling; Khajavi, Leili Tafaghodi; Barati, Mansoor

    2011-06-01

    The feasibility of developing a new online monitoring technique based on the characteristic acoustic response of gas bubbles in a liquid has been investigated. The method is intended to monitor the chemistry of the liquid through its relation to the bubble sound frequency. A low-temperature model consisting of water and alcohol mixtures was established, and the frequency of bubbles rising under varying concentrations of methanol was measured. It was shown that the frequency of the sound created by bubble pulsation varies with the percentage of alcohol in water. The frequency drops sharply with the increase in methanol content up to 20 wt pct, after which the decreases is gradual. Surface tension seems to be a critical liquid property affecting the sound frequency through its two-fold effects on the bubble size and the pulsation domain. The dependence between the frequency and the liquid composition suggests the feasibility of developing an acoustic-based technique for process control purposes.

  4. Determination of the elastic modulus of snow via acoustic measurements

    Gerling, Bastian; van Herwijnen, Alec; Löwe, Henning

    2016-04-01

    The elastic modulus of snow is a key quantity from the viewpoint of avalanche research and forecasting, snow engineering or materials science in general. Since it is a fundamental property, many measurements have been reported in the literature. Due to differences in measurement methods, there is a lot of variation in the reported values. Especially values derived via computer tomography (CT) based numerical calculations using finite element methods are not corresponding to the results of other methods. The central issue is that CT based moduli are purely elastic whereas other methods may include viscoelastic deformation. In order to avoid this discrepancy we derived the elastic modulus of snow via wave propagation measurements and compared our results with CT based calculations. We measured the arrival times of acoustic pulses propagating through the snow samples to determine the P-wave velocity and in turn derive the elastic modulus along the direction of wave propagation. We performed a series of laboratory experiments to derive the P-wave modulus of snow in relation to density. The P-wave modulus ranged from 10 to 280 MPa for a snow density between 150 and 370 kg/m³. The moduli derived from the acoustic measurements correlated well with the CT-based values and both exhibited a power law trend over the entire density range. Encouraged by these results we used the acoustic method to investigate the temporal evolution of the elastic modulus. The rate of increase was very close to values mentioned in literature on the sintering rate of snow. Overall, our results are a first but important step towards a new measurement method to attain the elastic properties of snow.

  5. Simultaneous measurements of room-acoustic parameters using different measuring equipment?

    Halmrast, Tor; Gade, Anders Christian; Winsvold, Bjorn

    1998-01-01

    Often the results from different room-acoustic measurements in the same hall disagree, and the disagreement is just said to be due to different measuring equipment, or different rigging/temperature, etc. The room acoustic of the Oslo Concert Hall was measured simultaneously, using the following...... different measuring equipment: (1) MLS/MLSSA (Statsbygg), (2) Sweep-Tone (Tech. Univ. Denmark), and (3) Norsonic 840 with MLS+MatLab. For some of the measurements (4) Pistol and (5) Electrical Impulse were also used. The paper will compare the results from the different measuring equipment, for the most...... known room-acoustic parameters. For the reverberation time parameters RT and EDT, very good agreement was found between the three main measuring equipments. For Ts and C80 the agreement between these three is good/fair for the higher frequencies, but less good for the bass, especially C80. The...

  6. Acoustical measurements on stages of nine U.S. concert halls

    Gade, Anders Christian; Bradley, J S

    1993-01-01

    A measurement tour of nine U.S. concert halls included acoustical measurements on the stage of each hall. Two teams (from the National Research Council of Canada, and the Technical University of Denmark) made measurements of the acoustical quantities suggested by Gade: the ``support'' family of...... measures describing the acoustical conditions for the musicians on stage. This paper compares the results from the two measurement teams and discusses the influence of hall designs....

  7. Cosmological implications of baryon acoustic oscillation (BAO) measurements

    Aubourg, Éric; Bautista, Julian E; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Busca, Nicolás G; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Delubac, Timothée; Eisenstein, Daniel J; Font-Ribera, Andreu; Ge, Jian; Goff, J -M Le; Gontcho, Satya Gontcho A; Gott, J Richard; Gunn, James E; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Nuza, Sebastián E; Olmstead, Matthew D; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Pieri, Matthew M; Prada, Francisco; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A; Slosar, Anže; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A; Weaver, Benjamin A; Weinberg, David H; Wood-Vasey, W M; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo

    2014-01-01

    We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high-precision BAO measurements from galaxy clustering and the Ly-alpha forest (LyaF) in the BOSS survey of SDSS-III. BAO data alone yield a high confidence detection of dark energy, and in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Combining BAO and SN data into an "inverse distance ladder" yields a 1.7% measurement of $H_0=67.3 \\pm1.1$ km/s/Mpc. This measurement assumes standard pre-recombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat LCDM cosmology is an important corroboration of this minimal cosmological model. For open LCDM, our BAO+SN+CMB combination yields $\\Omega_m=0.301 \\pm 0.008$ and curvature $\\Omega_k=-0.003 \\pm ...

  8. Patch near field acoustic holography based on particle velocity measurements

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing; Chen, Xin-Zhao

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies......, PNAH based on particle velocity measurements can give better results than the pressure-based PNAH with a reduced number of iterations. A simulation study, as well as an experiment carried out with a pressure-velocity sound intensity probe, demonstrates these findings....

  9. Fundamental developments in acoustic emission measurements: The NBS program

    Recent NBS progress in the development of standards and improved measurement methods for quantitative acoustic emission measurements are reviewed. Results on generalizing the NBS AE transducer calibration service and on its relation to other methods are presented. Recent improvements in the design of a new piezoelectric AE transducer are presented. The new transducer measures normal surface displacement nearly as faithfully as the NBS standard capacitive transducer but with much greater sensitivity. It holds promise for use as a secondary calibration device and for application relying on causal signal processing. AE system calibration is also briefly discussed. Recent results on the determination of AE sources from remote measurement are mentioned. An indentation method for generating AE has been used to produce repeatable signals in temper and hydrogen embrittled A533B steel. A multichannel AE system for characterizing AE events in A533B steel and multichannel operation has been tested with a Nd-YAG laser thermoelastic source

  10. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  11. Classification of heart valve condition using acoustic measurements

    Clark, G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Prosthetic heart valves and the many great strides in valve design have been responsible for extending the life spans of many people with serious heart conditions. Even though the prosthetic valves are extremely reliable, they are eventually susceptible to long-term fatigue and structural failure effects expected from mechanical devices operating over long periods of time. The purpose of our work is to classify the condition of in vivo Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements of heart valve sounds. The structural failures of interest for Bscc valves is called single leg separation (SLS). SLS can occur if the outlet strut cracks and separates from the main structure of the valve. We measure acoustic opening and closing sounds (waveforms) using high sensitivity contact microphones on the patient`s thorax. For our analysis, we focus our processing and classification efforts on the opening sounds because they yield direct information about outlet strut condition with minimal distortion caused by energy radiated from the valve disc.

  12. Measuring the Acoustic Impedance of Pipes and Musical Instruments

    Jaeger, Herbert

    2007-05-01

    Using a small electret microphone and a piezo-buzzer we have constructed a simple impedance transducer to measure the input impedance of air columns, such as cylindrical pipes, as well as musical instruments. The input impedance of an air column is given as the ratio of the pressure to the volume flow of air at the input of the air column. The microphone serves as the pressure transducer, while the piezo-buzzer is controlled to provide a constant velocity amplitude. Therefore the microphone signal is proportional to the acoustical impedance and, if required, can be calibrated using a simple air column for which the impedance can be calculated. This impedance transducer is currently in use as demonstration equipment for a physical acoustics class. It is simple to use and robust, so that it is well-suited for an undergraduate introductory laboratory environment. This talk will discuss the function of the impedance transducer and show examples of the type of measurements that can be performed. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C1.1

  13. Acoustic measurements of models of military style supersonic nozzle jets

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  14. Acoustic measurements of models of military style supersonic nozzle jets

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  15. Influence of architectural features and styles on various acoustical measures in churches

    António Pedro Oliveira de Carvalho

    1994-01-01

    This work reports on acoustical field measurements made in a major survey of 41 Catholic churches in Portugal that were built in the last 14 centuries. A series of monaural and binaural acoustical measurements was taken at multiple source/receiver positions in each church using the impulse response with noise burst method. The acoustical measures were Reverberation Time (RT), Early Decay Time (EDT), Clarity (C80), Definition (D), Center Time (TS), Loudness (L), Bass Ratios based on the Reverb...

  16. A mixed method for measuring low-frequency acoustic properties of macromolecular materials

    LIU; Hongwei; YAO; Lei; ZHAO; Hong; ZHANG; Jichuan; XUE; Zhaohong

    2006-01-01

    A mixed method for measuring low-frequency acoustic properties of macromolecular materials is presented.The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus(DMTA) at low frequencies,usually less than 100 Hz; then based on the Principles of Time-Temperature Super position (TTS),these parameters are extended to the frequency range that acousticians are concerned about,usually from hundreds to thousands of hertz; finally the extended dynamic mechanical parameters are transformed into acoustic parameters with the help of acoustic measurement and inverse analysis.To test the feasibility and accuracy,we measure a kind of rubber sample in DMTA and acquire the basic acoustic parameters of the sample by using this method.While applying the basic parameters to calculating characteristics of the sample in acoustic pipe,a reasonable agreement of sound absorption coefficients is obtained between the calculations and measurements in the acoustic pipe.

  17. Instrumentation Suite for Acoustic Propagation Measurements in Complex Shallow Water Environments

    Federal Laboratory Consortium — FUNCTION: Obtain at-sea measurements to test theoretical and modeling predictions of acoustic propagation in dynamic, inhomogeneous, and nonisotropic shallow water...

  18. Aero-acoustic Measurement and Monitoring of Dynamic Pressure Fields Project

    National Aeronautics and Space Administration — This innovative and practical measurement and monitoring system optimally defines dynamic pressure fields, including sound fields. It is based on passive acoustic...

  19. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  20. Acoustic measurements above a plate carrying Lamb waves

    Talberg, Andreas Sørbrøden

    2016-01-01

    This article presents a set of acoustic measurements conducted on the Statoil funded Behind Casing Logging Set-Up, designed by SINTEF Petroleum Research to resemble an oil well casing. A set of simple simulations using COMSOL Multiphysics were also conducted and the results compared with the measurements. The experiments consists of measuring the pressure wave radiated of a set of Lamb waves propagating in a 3 mm thick steel plate, using the so called pitch-catch method. The Lamb waves were excited by a broadband piezoelectric immersion transducer with center frequency of 1 MHz. Through measurements and analysis the group velocity of the fastest mode in the plate was found to be 3138.5 m/s. Measuring the wave radiated into the water in a grid consisting of 8x33 measuring points, the spreading of the plate wave normal to the direction of propagation was investigated. Comparing the point where the amplitude had decreased 50 % relative to the amplitude measured at the axis pointing straight forward from the tran...

  1. Precise measurement technique for the stable acoustic cavitation bubble

    HUANG Wei; CHEN Weizhong; LIU Yanan; GAO Xianxian; JIANG Lian; XU Junfeng; ZHU Yifei

    2005-01-01

    Based on the periodic oscillation of the stable acoustic cavitation bubble, we present a precise measurement technique for the bubble evolution. This technique comprises the lighting engineering of pulsing laser beam whose phase can be digitally shifted, and the long distance microphotographics. We used a laser, an acousto-optic modulator, a pulse generator, and a long distance microscope. The evolution of a levitated bubble can be directly shown by a series of bubble's images at different phases. Numerical simulation in the framework of the Rayleigh-Plesset bubble dynamics well supported the experimental result, and the ambient radius of the bubble, an important parameter related to the mass of the gas inside the bubble, was obtained at the same time.

  2. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  3. Thermodynamic properties of liquid gallium from picosecond acoustic velocity measurements

    Due to discrepancies in the literature data the thermodynamic properties of liquid gallium are still in debate. Accurate measurements of adiabatic sound velocities as a function of pressure and temperature have been obtained by the combination of laser picosecond acoustics and surface imaging on sample loaded in diamond anvil cell. From these results the thermodynamic parameters of gallium have been extracted by a numerical procedure up to 10 GPa and 570 K. It is demonstrated that a Murnaghan equation of state accounts well for the whole data set since the isothermal bulk modulus BT has been shown to vary linearly with pressure in the whole temperature range. No evidence for a previously reported liquid–liquid transition has been found in the whole pressure and temperature range explored. (paper)

  4. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  5. Ultrasonic flow measurement and wall acoustic impedance effects.

    Willatzen, M

    2004-03-01

    An examination of the influence of wall acoustic impedance effects on sound propagation in flowing liquids confined by cylindrical walls is presented. Special focus is given to the importance of the wall acoustic impedance value for ultrasonic flow meter performance. The mathematical model presented allows any radially-dependent axial flow profile to be examined in the linear flow acoustics regime where fluid flow speed is much smaller than the fluid sound speed everywhere in the fluid medium. PMID:14996531

  6. Glacier studies on the basis of acoustic measurements

    V. P. Epifanov

    2015-04-01

    Full Text Available The possibility of glacier ice flow studies using the method of acoustic emission (AE in frequency range from 15 Hz to 20 kHz has been considered. A portable acoustic line system has been developed and a number of methodological issues (mounting of acoustic sensors into glacial ice, their location, reliability of acoustic coupling, etc. have been solved. Acoustic studies of glacial ice have been performed; rock fall effect, ice cracking and ice movement on bedrock have been simulated. Correspondences of AE parameters to specific sources have been identified. The results of acoustic studies on Aldegondabreen (Spitsbergen, Central Tuyuksu and Molodezhny glaciers (northern Tien Shan have been summarized. The dependence of the adhesive strength of ice with smooth substrate (serpentenite on the shear rate has been considered; the effect of tor-shaped obstacle on shear force has been estimated. It is shown that the acoustic effects at cohesive ice failure on obstacles are similar to the observed natural acoustic vibrations generated in glaciers from distant sources. The results might be applied in development of the mobile ice lab and system for remote acoustic monitoring the processes in the bottom layers of glaciers.

  7. Outcomes Measurement in Voice Disorders: Application of an Acoustic Index of Dysphonia Severity

    Awan, Shaheen N.; Roy, Nelson

    2009-01-01

    Purpose: The purpose of this experiment was to assess the ability of an acoustic model composed of both time-based and spectral-based measures to track change following voice disorder treatment and to serve as a possible treatment outcomes measure. Method: A weighted, four-factor acoustic algorithm consisting of shimmer, pitch sigma, the ratio of…

  8. Acoustic emission measurements in petroleum-related rock mechanics

    Unander, Tor Erling

    2002-07-01

    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  9. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be

  10. The Belt voice: Acoustical measurements and esthetic correlates

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  11. Design of an Acoustic Probe to Measure Otoacoustic Emissions Below 0.5 kHz

    Christensen, Anders Tornvig; Ordoñez, Rodrigo; Hammershøi, Dorte

    2015-01-01

    Our ability to hear is reflected in low-level acoustic signals emitted from the ear. These otoacoustic emissions (OAEs) can be measured with an acoustic probe assembly coupling one or more small loudspeakers and microphones into the sealed ear canal. The electroacoustic instrumentation of...

  12. Deriving content-specific measures of room acoustic perception using a binaural, nonlinear auditory model

    Van Dorp Schuitman, J.; De Vries, D.; Lindau, A.

    2013-01-01

    Acousticians generally assess the acoustic qualities of a concert hall or any other room using impulse response-based measures such as the reverberation time, clarity index, and others. These parameters are used to predict perceptual attributes related to the acoustic qualities of the room. Various

  13. Precision evaluation for intensive GPS acoustic measurements along Japan trench

    Kido, M.; Fujimoto, H.; Osada, Y.; Ohta, Y.; Tadokoro, K.; Watanabe, T.; Nagai, S.; Yasuda, K.; Okuda, T.; Yamamoto, J.

    2013-12-01

    After the Tohoku-oki earthquake in 2011, researchers recognized the importance of the state of inter-plate coupling close to the trench for giant earthquakes, in where seafloor geodetic surveys were few or not available. To overcome this limitation, we have developed GPS/acoustic instrument for greater depth up to 6000m, which can cover the region close to the trench for most subduction zones. MEXT, Japan promotes to construct a network of GPS/acoustic survey sites along the Japan trench to elucidate post-seismic behavior after the giant earthquake. In 2012, research group in Tohoku and Nagoya Universities constructed 20 new survey sites along the Japan trench and started their initial positioning. Three to six transponders were installed for each site, which were 86 transponders in total. The network covers large portion of the Japan trench, mainly along the deep land-side of the trench, covering the region of expected significant afterslip as well as of the large coseismic slip. In this year second phase surveys are planned to detect displacement of roughly 1-yesr since the last survey. These are the first intensive surveys that we have never been experienced, and with new survey style. Therefore, in advance to the second phase survey, we summarize the first phase survey in 2012 in the presentation. As one of the most important key to obtain precise positioning of seafloor transponders is how to estimate horizontal variation of sound speed in ocean, which are neglected in the past analysis. For this purpose, some of the sites consist of six transponders, with which such variation can be potentially estimated. For this context, in the second phase surveys, we are going to introduce automatic surface vehicle to enable simultaneous measurement from two points from sea surface, which will provide information of the horizontal variation in sound speed even for three or four transponders. In addition we have made both moving and stationary surveys, in which we can

  14. Measuring Baryon Acoustic Oscillations from the clustering of voids

    Liang, Yu; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2015-01-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal, from voids based on galaxy redshift catalogues. To this end, we study the dependency of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the meth...

  15. Influence of Architectural Features and Styles on Various Acoustical Measures in Churches

    Carvalho, Antonio Pedro Oliveira De.

    This work reports on acoustical field measurements made in a major survey of 41 Catholic churches in Portugal that were built in the last 14 centuries. A series of monaural and binaural acoustical measurements was taken at multiple source/receiver positions in each church using the impulse response with noise burst method. The acoustical measures were Reverberation Time (RT), Early Decay Time (EDT), Clarity (C80), Definition (D), Center Time (TS), Loudness (L), Bass Ratios based on the Reverberation Time and Loudness rm (BR_-RT and rm BR_-L), Rapid Speech Transmission Index (RASTI), and the binaural Coherence (COH). The scope of this research is to investigate how the acoustical performance of Catholic churches relates to their architectural features and to determine simple formulas to predict acoustical measures by the use of elementary architectural parameters. Prediction equations were defined among the acoustical measures to estimate values at individual locations within each room as well as the mean values in each church. Best fits with rm R^2~0.9 were not uncommon among many of the measures. Within and interchurch differences in the data for the acoustical measures were also analyzed. The variations of RT and EDT were identified as much smaller than the variations of the other measures. The churches tested were grouped in eight architectural styles, and the effect of their evolution through time on these acoustical measures was investigated. Statistically significant differences were found regarding some architectural styles that can be traced to historical changes in Church history, especially to the Reformation period. Prediction equations were defined to estimate mean acoustical measures by the use of fifteen simple architectural parameters. The use of the Sabine and Eyring reverberation time equations was tested. The effect of coupled spaces was analyzed, and a new algorithm for the application of the Sabine equation was developed, achieving an average of

  16. Thickness measurement of Ni thin film using dispersion characteristics of a surface acoustic wave

    In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.

  17. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  18. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  19. ATK Launch Vehicle (ALV-X1) Liftoff Acoustic Environments: Prediction vs. Measurement

    Houston, J.; Counter, Douglas; Kenny, Jeremy; Murphy, John

    2010-01-01

    Launched from the Mid-Atlantic Regional Spaceport (MARS) Pad 01B on August 22, 2008, the ATK Launch Vehicle (ALV-X1) provided an opportunity to measure liftoff acoustic noise data. Predicted lift-off acoustic environments were developed by both NASA MSFC and ATK engineers. ATK engineers developed predictions for use in determining vibro-acoustic loads using the method described in the monograph NASA SP-8072. The MSFC ALV-X1 lift-off acoustic prediction was made with the Vehicle Acoustic Environment Prediction Program (VAEPP). The VAEPP and SP-8072 methods predict acoustic pressures of rocket systems generally scaled to existing rocket motor data based upon designed motor or engine characteristics. The predicted acoustic pressures are sound-pressure spectra at specific positions on the vehicle. This paper presents the measured liftoff acoustics on the vehicle and tower. This data is useful for the ALV-X1 in validating the pre-launch environments and loads predictions.

  20. Measuring baryon acoustic oscillations from the clustering of voids

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-07-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  1. Comparison of acoustic and strain gauge techniques for crack closure measurements

    Buck, O.; Inman, R. V.; Frandsen, J. D.

    1976-01-01

    A quantitative study on the systems performances of the COD gauge and the acoustic transmission techniques to elastic deformation of part-through crack and compact tension specimens has been conducted. It is shown that the two instruments measure two completely different quantities: The COD gauge yields information on the length change of the specimen whereas the acoustic technique is sensitive directly to the amount of contract area between two surfaces, interfering with the acoustic signal. In another series of experiments, compression tests on parts with specifically prepared surfaces were performed so that the surface contact area could be correlated with the transmitted acoustic signal, as well as the acoustic with the COD gauge signal. A linear relation between contact area and COD gauge signal was obtained until full contact had been established.

  2. Identification of vibration excitations from acoustic measurements using near field acoustic holography and the force analysis technique

    Pézerat, C.; Leclère, Q.; Totaro, N.; Pachebat, M.

    2009-10-01

    This study presents a method of using acoustic holography and the force analysis technique to identify vibration sources from radiated noise measurements. The structure studied is a plate excited by a shaker on which three measurements were performed: the first is a reference measurement of plate velocity obtained by scanning laser vibrometry, the second is based on sound pressure measurements in the near field of the structure, and the third is the measurement of normal acoustic velocities by using a p-U probe recently developed by Microflown Technologies. This was followed by the application of classical NAH, known as pressure-to-velocity holography and velocity-to-velocity holography to predict the plate velocity field from acoustic measurements at distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF technique, is applied with these five data sets. The principle is to inject the displacement field of the structure into its equation of motion and extract the resulting force distribution. This technique requires regularization done by a low-pass filter in the wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the reconstructed force distribution allows localizing the excitation point in the measurement area. FAT regularization is also shown to improve results as its cutoff wavenumber is optimized with the natural wavenumber of the plate. Lastly, quantitative force values are extracted from force distributions at all frequencies of the band 0-4 kHz studied and compared with the force spectrum measured directly by a piezoelectric sensor.

  3. A Low-Cost System for Measurement and Spectral Analysis of Motor Acoustic Noise

    Kumar, Binoj; Narayanan, G.

    2001-01-01

    Workplace noise has become one of the major issues in industry not only because of workers’ health but also due to safety. Electric motors, particularly, inverter fed induction motors emit objectionably high levels of noise. This has led to the emergence of a research area, concerned with measurement and mitigation of the acoustic noise. This paper presents a lowcost option for measurement and spectral analysis of acoustic noise emitted by electric motors. The system consists of an electre...

  4. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    2010-01-01

    Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.

  5. Ellipsoidal reflector for measuring oto-acoustic emissions

    Epp, Bastian; Pulkki, Ville; Heiskanen, Vesa

    2014-01-01

    A truncated prolate ellipsoidal reflector having the ear canal of a listener at one focal point and large- diaphragm low-noise microphone at the other focal point is proposed for free-field recordings of oto-acoustic emissions. A prototype reflector consisting of three pieces is presented, which...

  6. Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Salomon, K; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C

    2005-01-01

    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.

  7. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  8. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    Mueller, D.S.

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  9. Towards Measuring Continuous Acoustic Feature Convergence in Unconstrained Spoken Dialogues

    Kousidis, Spyros; Dorran, David; Wang, Yi; Vaughan, Brian; Cullen, Charlie; Campbell, Dermot; McDonnell, Ciaran; Coyle, Eugene

    2008-01-01

    Acoustic/prosodic feature (a/p) convergence has been known to occur both in dialogues between humans, as well as in human-computer interactions. Understanding the form and function of convergence is desirable for developing next generation conversational agents, as this will help increase speech recognition performance and naturalness of synthesized speech. Currently, the underlying mechanisms by which continuous and bi-directional convergence occurs are not well understood. In this study, a ...

  10. Accuracy of measurement of acoustic rhinometry applied to small experimental animals

    Kaise, Toshihiko; Ukai, Kotara; Pedersen, Ole Finn;

    1999-01-01

    -sectional areas as a function of the distance from the nostril. We modified the equipment used on humans to assess dimensions of nasal airway geometry of small experimental animals. The purpose of this study was to investigate the accuracy of measurement of the modified acoustic rhinometry applied to small...... experimental animals using nasal cavity models and guinea pigs. Measurement of the nasal cavity models (made of cylindrical silicone tubes) showed that the acoustic rhinometry estimated 85.5% of actual area and 79.0% of actual volume. In guinea pigs, nasal cavity volume determined by the acoustic rhinometry......Nasal obstruction is one of the major symptoms of allergic rhinitis. In the study of the mechanism of nasal obstruction, experiments on animal are useful. In adult humans, acoustic rhinometry has been used to evaluate nasal obstruction by determining nasal cavity dimensions in terms of cross...

  11. Comparison between psycho-acoustics and physio-acoustic measurement to determine optimum reverberation time of pentatonic angklung music concert hall

    Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto

    2015-09-01

    This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement

  12. The acoustical cues to sound location in the rat: Measurements of directional transfer functions

    Koka, Kanthaiah; Read, Heather L.; Tollin, Daniel J.

    2008-01-01

    The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to locatio...

  13. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  14. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  15. Acoustic sensor for in-pile fuel rod fission gas release measurement

    We have developed a specific acoustic sensor to improve the knowledge of fission gas release in Pressurized Water Reactor (PWR) fuel rods when irradiated in materials testing reactors. In order to perform experimental programs related to the study of the fission gas release kinetics, the CEA (French Nuclear Energy Commission) acquired the ability to equip a pre-irradiated PWR fuel rod with three sensors, allowing the simultaneous on-line measurements of the following parameters: - fuel temperature with a centre-line thermocouple type C, - internal pressure with a specific counter-pressure sensor, - fraction of fission gas released in the fuel rod with an innovative acoustic sensor. The third detector is the subject of this paper. This original acoustic sensor has been designed to measure the molar mass and pressure of the gas contained in the fuel rod plenum. For in-pile instrumentation, the fraction of fission gas, such as Krypton and Xenon, in Helium, can be deduced online from this measurement. The principle of this acoustical sensor is the following: a piezoelectric transducer generates acoustic waves in a cavity connected to the fuel rod plenum. The acoustic waves are propagated and reflected in this cavity and then detected by the transducer. The data processing of the signal gives the velocity of the acoustic waves and their amplitude, which can be related respectively to the molar mass and to the pressure of the gas. The piezoelectric material of this sensor has been qualified in nuclear conditions (gamma and neutron radiations). The complete sensor has also been specifically designed to be implemented in materials testing reactors conditions. For this purpose some technical points have been studied in details: - fixing of the piezoelectric sample in a reliable way with a suitable signal transmission, - size of the gas cavity to avoid any perturbation of the acoustic waves, - miniaturization of the sensor because of narrow in-pile experimental devices

  16. Analyzing excitation forces acting on a plate based on measured acoustic pressure.

    Wu, Sean F; Zhou, Pan

    2016-07-01

    This paper presents a theoretical study on "seeing" through an elastic structure to uncover the root cause of sound and vibration by using nearfield acoustical holography (NAH) and normal modes expansion. This approach is of generality because vibro-acoustic responses on the surface of a vibrating structure can always be reconstructed, exactly or approximately. With these vibro-acoustic responses, excitation forces acting on the structure can always be determined, analytically or numerically, given any set of boundary conditions. As an example, the explicit formulations for reconstructing time-harmonic excitation forces, including point, line and surface forces, and their arbitrary combinations acting on a rectangular thin plate in vacuum mounted on an infinite baffle are presented. The reason for choosing this example is that the analytic solutions to vibro-acoustic responses are available, and in-depth analyses of results are possible. Results demonstrate that this approach allows one to identify excitation forces based on measured acoustic pressures and reveal their characteristics such as locations, types and amplitudes, as if one could "see" excitation forces acting behind the plate based on acoustic pressure measured on the opposite side. This approach is extendable to general elastic structures, except that in such circumstance numerical results must be sought. PMID:27475174

  17. Results of acoustic measurements during leak simulation experiments on a sodium-heated modular steam generator

    After a short description of the experimental arrangement at the micro-modular steam generator of the BOR-60 LMFBR Power Plant the acoustic measuring chains and their main properties are introduced. Acoustic signals of the background as well as the leak-induced noise have been analysed in frequency and time domain, respectively. One essential result is that frequency analysis of acoustic signals cannot be recommended as leak detection method. On the other hand, certain signal characteristics derived from signal analysis in time domain have been shown to meet the expectation of a considerable change in magnitude, even if a small water-to-sodium leak is occurring. Besides direct sound emitted in the leak region a secondary sound initiated in the vicinity of the acoustic transducer by reaction products of the sodium-water-reaction has been measured. Both of them have been used for acoustic detection of small leaks. The acoustic response of the modular steam generator to a large leak is characterized by a sudden considerable increase in sound level. Finally, some conclusions drawn from experimental results are presented. (author)

  18. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Topping, David J.; Wright, Scott A.

    2016-01-01

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  19. Acoustic P-wave velocity measurements of cataclastic effects in rock salt

    Model tests are carried out, in order to investigate the cataclastic thermo-mechanical behaviour of rock salt around a simulated repository borehole. The measurements are performed during a transient period of heating and subsequent cooling. Acoustic crosshole measurements are carried out under conditions of compression, scale 1: 41/2. The relationship between cataclastic effects and the acoustic velocity differences is described. Macrofracturing only occurred under circumstances of cooling, when a heater was switched off. One of the model tests was used in the CEC benchmark exercise ''COSA''. Acoustic measuring tubes have been developed for the in situ research on structural changes in rock salt. The tests involved the performance of so-called hole measurements in two parallel boreholes, containing the measuring tubes. The most important observations of a test in an old room in the Asse Mine are the following. A bifurcating open fissure, about 6 to 8 mm wide, prevented the propagation of the acoustic wave; this demonstrates that such cracks and fissures are easily detectable by the applied method. The microcataclasis, particularly that near the roomside wall, causes a reduction of the acoustic velocities, the more so as the angle between the measuring direction and the roomside wall increases. During the injection of a gallery wall with epoxy resins (by GSF) acoustic crosshole measurements were carried out as well. A detailed picture was obtained of the process of the closing of the fractures. By core drilling after this test confirmation was obtained that the fractures were closed. The information that has been gathered, will be used for the interpretation of the crosshole measurements in the near future; these measurements will be carried out around a heater borehole in the HAW field, a large underground test (GSF-ECN)

  20. Pseudo working-point control measurement scheme for acoustic sensitivity of interferometric fiber-optic hydrophones

    Zefeng Wang; Yongming Hu; Zhou Meng; Ming Ni

    2008-01-01

    A novel pseudo working-point control measurement scheme for the acoustic sensitivity of interferometric fiber-optic hydrophones is described and demonstrated.The measurement principle is introduced in detail.An experimental system,which interrogates an interferometric fiber-optic hydrophone with this method,is designed.The acoustic pressure phase sensitivity of the fiber-optic hydrophone is measured over the frequency range of 20-2500Hz.The measured acoustic sensitivity is about-156.5dB re 1rad/μPa with a fluctuation lower than ±1.2dB,which is in good agreement with the results obtained by the method of phase generated carrier.The experimental results testify the validity of this new method which has the advantages of no electric elements in the sensing head,the simplicity of signal processing,and wide working bandwidth.

  1. Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry

    Berson, Arganthael; Michard, Marc; Blanc-Benon, Philippe [Ecole Centrale de Lyon, LMFA - UMR CNRS 5509, Ecully Cedex (France)

    2008-06-15

    Thermoacoustic refrigeration systems generate cooling power from a high-amplitude acoustic standing wave. There has recently been a growing interest in this technology because of its simple and robust architecture and its use of environmentally safe gases. With the prospect of commercialization, it is necessary to enhance the efficiency of thermoacoustic cooling systems and more particularly of some of their components such as the heat exchangers. The characterization of the flow field at the end of the stack plates is a crucial step for the understanding and optimization of heat transfer between the stack and the heat exchangers. In this study, a specific particle image velocimetry measurement is performed inside a thermoacoustic refrigerator. Acoustic velocity is measured using synchronization and phase-averaging. The measurement method is validated inside a void resonator by successfully comparing experimental data with an acoustic plane wave model. Velocity is measured inside the oscillating boundary layers, between the plates of the stack, and compared to a linear model. The flow behind the stack is characterized, and it shows the generation of symmetric pairs of counter-rotating vortices at the end of the stack plates at low acoustic pressure level. As the acoustic pressure level increases, detachment of the vortices and symmetry breaking are observed. (orig.)

  2. Theory and signal processing of acoustic correlation techniques for current velocity measurement

    ZHU Weiqing; FENG Lei; WANG Changhong; WANG Yuling; QIU Wei

    2008-01-01

    A theoretical model and signal processing of acoustic correlation measurements to estimate current velocity are discussed. The sonar space-time correlation function of vol-ume reverberations within Fraunhofer zone is derived. The function, which is in exponential forms, is the theoretical model of acoustic correlation measurements. The characteristics of the correlation values around the maximum of the amplitude of the correlation function, where most information about current velocity is contained, are primarily analyzed. Localized Least Mean Squares (LLMS) criterion is put forward for velocity estimation. Sequential Quadratic Programming (SQP) method is adopted as the optimization method. So the systematic sig-nal processing method of acoustic correlation techniques for current velocity measurement is established. A prototype acoustic correlation current profiler (ACCP) underwent several sea trials, the results show that theoretical model approximately coincides with experimental re-sults. Current profiles including the speed and direction from ACCP are compared with those from acoustic Doppler current profiler (ADCP). The current profiles by both instruments agree reasonably well. Also, the standard deviation of velocity measurement by ACCP is statistically calculated and it is a little larger than predicted value.

  3. Acoustic measurement of boiling instabilities in a solar receiver

    Beattie, A. G.

    1980-11-01

    An acoustic technique was developed and used to search for boiling instabilities in the prototype receiver for the Barstow 10 MW Solar Thermal Pilot Plant. Instabilities, consisting of movements of the transition zone between regions of nucleate and film boiling, were observed. The periods of these fluctuations ranged between three and fifteen seconds with no indications of preferred frequencies. The peak to peak amplitudes of the fluctuations averaged 0.4 meters under steady state conditions at absorbed power levels between 2.0 and 3.2 MW. Transient fluctuations with amplitudes up to 2.0 meters were also seen. These transients usually lasted between 30 and 300 seconds. It was not possible to pinpoint the causes of these transients.

  4. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  5. Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    Normann, Randy A.

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  6. Final Report. Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    Normann, Randy A [Perma Works LLC, Pattonville, TX (United States)

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  7. Comparisons of auditorium acoustics measurements as a function of location in halls (A)

    Bradley, J. S.; Gade, Anders Christian; Siebein, G W

    1993-01-01

    In a measurement tour of nine U.S. concert halls measurements were made at 30 or more combinations of source and receiver position in each hall. Each of the three measurement teams (the University of Florida, the Danish Technical University, and the National Research Council of Canada) made...... parallel measurements of a number of modern room acoustics quantities using different equipment and measurement procedures. These results are compared on a seat-by-seat basis and the differences are explained in terms of earlier systematic studies of the effects of measurement procedure details. The...... measurement results were also used to examine the influence of different measurement equipment and measurement procedures on the within hall variations of the various acoustical quantities. [Work partially supported by the Concert Hall Research Group.]...

  8. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials

    2007-01-01

    A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed. Water temperature and pressure environments of the ocean can be simulated in a water-filled tube, and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency. A tested sample is located at central position of the tube. A pair of projectors is separately located at both ends of the tube. Using an active anechoic technique, the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer. So the traveling sound field is built up in the tube. By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample, its reflection coefficients and transmission coefficients are obtained. In the measurement system, the inside diameter of the tube is Φ208 mm, the working frequency range is from 100 to 4000 Hz, the maximum pressure is 5 MPa. The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically. The results show that the measured values are in good agreement with the values calculated, and the measurement uncertainty is not greater than 1.5 dB.

  9. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  10. Use of Acoustic Doppler Instruments for Measuring Discharge in Streams with Appreciable Sediment Transport

    Mueller, D.S.

    2002-01-01

    The use of Acoustic Doppler current profilers (ADCP) for measuring discharge in streams with sediment transport was discussed. The studies show that the acoustic frequency of an ADCP in combination with the sediment transport characteristics in a river causes the ADCP bottom-tracking algorithms to detect a moving bottom. A moving bottom causes bottom-tracking-referenced water velocities and discharges to be biased low. The results also show that the use of differential global positioning system (DGPS) data allows accurate measurement of water velocities and discharges in such cases.

  11. Measurement system for experimental determination of acoustic properties of gels at INRIM

    Due to the large diffusion of ultrasonic technique in medicine, use of tissue mimicking materials to understand physical interaction of ultrasound has grown in importance. From this view measuring acoustic properties of such materials is crucial. This work shows the settlement at INRIM laboratory of a simple system for acoustic properties measurements with particular interest in attenuation of ultrasound. The system is based on substitution method and Fourier analysis and allow the evaluation of speed of sound, impedance and attenuation in the frequency range between 3 MHz and 12 MHz.

  12. Measurement system for experimental determination of acoustic properties of gels at INRIM

    Musacchio, C; Durando, G; Bernardi, A; Troia, A, E-mail: c.musacchio@inrim.it [INRIM - Istituto Nazionale di Ricerca Metrologica-, Strada delle Cacce 91, 10135 - Torino (Italy)

    2011-02-01

    Due to the large diffusion of ultrasonic technique in medicine, use of tissue mimicking materials to understand physical interaction of ultrasound has grown in importance. From this view measuring acoustic properties of such materials is crucial. This work shows the settlement at INRIM laboratory of a simple system for acoustic properties measurements with particular interest in attenuation of ultrasound. The system is based on substitution method and Fourier analysis and allow the evaluation of speed of sound, impedance and attenuation in the frequency range between 3 MHz and 12 MHz.

  13. Applications of digital holography in visualized measurement of acoustic and flow fields

    Zhao, Jianlin; Li, Enpu; Sun, Weiwei; Di, Jianglei

    2010-03-01

    Digital holography allows recording the hologram using digitally imaging devices such as CCD, and reconstructing the holographic image by numerically simulating the diffraction of the hologram. Its main advantages are by which one can directly obtain the complex amplitude distribution of the object field, so that more impersonally measure the detail information of the object field, such as the distribution of the refractive index changing in crystals induced by light irradiation, deformation of the object surface, particle distribution, as well as acoustic field, flow field and temperature distribution in air. In this paper, we summarize the principle and some of our experimental results on the applications of digital holography in visualized measurement of acoustic standing wave (acoustic levitation field), plasma plume and water flow (Karman vortex street) fields.

  14. The influence of the group delay of digital filters on acoustic decay measurements

    Sobreira-Seoane, Manuel A.; Cabo, David Pérez; Jacobsen, Finn

    2012-01-01

    In this paper the error due to the phase response of digital filters on acoustic decay measurements is analyzed. There are two main sources of errors when an acoustic decay is filtered: the error due to the bandwidth of the filters related to their magnitude response, and the error due...... to their phase response. In this investigation the two components are separated and the phase error analyzed in terms of the group delay of the filters. Linear phase FIR filters and minimum phase IIR filters fulfilling the class 1 requirements of the IEC 61260 standard have been designed, and their errors...... compared. This makes it possible to explain the behavior of the phase error and develop recommendations for the use of each filtering technique. The paper is focused on the filtering techniques covered by current versions of the standards for measurement of acoustic decays and in the evaluation...

  15. Picosecond acoustics in vegetal cells: non invasive in vitro measurements at a sub-cell scale

    Audoin, Bertrand; Rossignol, Clément; Chigarev, Nikolay; Ducousso, Mathieu; Forget, Guillaume; Guillemot, Fabien; Durrieu, Marie-Christine

    2010-01-01

    A 100 fs laser pulse passes through a single transparent cell and is absorbed at the surface of a metallic substrate. Picosecond acoustic waves are generated and propagate through the cell in contact with the metal. Interaction of the high frequency acoustic pulse with a probe laser light gives rise to stimulated Brillouin oscillations. The measurements are thus made with lasers for both the opto-acoustic generation and the acousto-optic detection. The technique offers perspectives for single cell imaging. The in plane resolution is limited by the pump and probe spot sizes, i.e ˜1 μm, and the in depth resolution is provided by the acoustic frequencies, typically in the GHz range. The effect of the technique on cell safety is discussed. Experiments achieved in vegetal cells illustrate reproducibility and sensitivity of the measurements. The acoustic responses of cell organelles are significantly different. The results support the potentialities of the hypersonic non invasive technique in the fields of bio-engineering and medicine.

  16. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices

    Su, J.; Rupp, J.; Garmory, A.; Carrotte, J. F.

    2015-09-01

    The response of orifices to incident acoustic waves, which is important for many engineering applications, is investigated with an approach combining both experimental measurements and numerical simulations. This paper presents experimental data on acoustic impedance of orifices, which is subsequently used for validation of a numerical technique developed for the purpose of predicting the acoustic response of a range of geometries with moderate computational cost. Measurements are conducted for orifices with length to diameter ratios, L/D, of 0.5, 5 and 10. The experimental data is obtained for a range of frequencies using a configuration in which a mean (or bias) flow passes from a duct through the test orifices before issuing into a plenum. Acoustic waves are provided by a sound generator on the upstream side of the orifices. Computational fluid dynamics (CFD) calculations of the same configuration have also been performed. These have been undertaken using an unsteady Reynolds averaged Navier-Stokes (URANS) approach with a pressure based compressible formulation with appropriate characteristic based boundary conditions to simulate the correct acoustic behaviour at the boundaries. The CFD predictions are in very good agreement with the experimental data, predicting the correct trend with both frequency and orifice L/D in a way not seen with analytical models. The CFD was also able to successfully predict a negative resistance, and hence a reflection coefficient greater than unity for the L / D = 0.5 case.

  17. OASIS in the sea: Measurement of the acoustic reflectivity of zooplankton with concurrent optical imaging

    Jaffe, J. S.; Ohman, M. D.; De Robertis, A.

    A new instrument Optical-Acoustic Submersible Imaging System (OASIS) has been developed for three-dimensional acoustic tracking of zooplankton with concurrent optical imaging to verify the identity of the insonified organisms. OASIS also measures in situ target strengths (TS) of freely swimming zooplankton and nekton of known identity and 3-D orientation. The system consists of a three-dimensional acoustic imaging system (FishTV), a sensitive optical CCD camera with red-filtered strobe illumination, and ancillary oceanographic sensors. The sonar triggers the acquisition of an optical image when it detects the presence of a significant target in the precise location where the camera, strobe and sonar are co-registered. Acoustic TS can then be related to the optical image, which permits identification of the animal and its 3-D aspect. The system was recently deployed (August 1996) in Saanich Inlet, B.C., Canada. Motile zooplankton and nekton were imaged with no evidence of reaction to or avoidance of the OASIS instrument package. Target strengths of many acoustic reflectors were recorded in parallel with the optical images, triggered by the presence of an animal in the correct location of the sonar system. Inspection of the optical images, corroborated with zooplankton sampling with a MOCNESS net, revealed that the joint optically and acoustically sensed taxa at the site were the euphausiid Euphausia pacifica, the gammarid amphipod Orchomene obtusa, and a gadid fish. The simultaneous optical and acoustic images permitted an exact correlation of TS and taxa. Computer simulations from a model of the backscattered strength from euphausiids are in good agreement with the observed data.

  18. Statistical relations among architectural features and objective acoustical measurements of concert halls

    Gade, Anders Christian; Siebein, G. W.; Chiang, W.;

    1993-01-01

    A statistical analysis of architectural features and detailed objective acoustical measurements made in eight concert halls and several multi-use rooms in their concert configuration will be presented. A method for evaluating the architectural features of rooms that affect their acoustical...... properties was developed. Architectural features of interest include both room average values and more-detailed subdivisions of surfaces including shape, volume, height, width, and sound absorption properties of materials. Regression modeling was performed for individual source–receiver paths as well as for...

  19. Functions of diffraction correction and analytical solutions in nonlinear acoustic measurement

    Alliès, Laurent; Nadi, M

    2008-01-01

    This paper presents an analytical formulation for correcting the diffraction associated to the second harmonic of an acoustic wave, more compact than that usually used. This new formulation, resulting from an approximation of the correction applied to fundamental, makes it possible to obtain simple solutions for the second harmonic of the average acoustic pressure, but sufficiently precise for measuring the parameter of nonlinearity B/A in a finite amplitude method. Comparison with other expressions requiring numerical integration, show the solutions are precise in the nearfield.

  20. Remote sensing of temperature and wind using acoustic travel-time measurements

    Manuela Barth

    2013-04-01

    Full Text Available A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre.

  1. Design and development of a synthetic acoustic antenna for highly directional sound measurements

    Boone, M.M.

    1987-01-01

    Design and development of an acoustic microphone array for sound measurements outdoors, with applications in industrial noise and traffic noise. The microphone array has a flexible length of 10 to 76 m and covers the octave band from 125 to 1000 Hz (later extended to 2000 Hz). The angular resolution is 1.5 degrees.

  2. Effect of Foreshortening on Center-to-Limb Variations of Measured Acoustic Travel Times

    Zhao, Junwei; Stejko, Andrey; Chen, Ruizhu

    2016-03-01

    We use data observed near the solar disk center by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) to mimic observations at high-latitude areas after applying geometric transform and projection. These data are then used to study how foreshortening affects the time-distance measurements of acoustic travel times. We find that foreshortening reduces the measured mean travel-times through altering the acoustic-power weighting in different harmonic degrees, but the level of reduction and the latitude dependence are not as strong as those measured from the observation data at the same latitude. Foreshortening is not found to be accountable for the systematic center-to-limb effect in the measured acoustic travel-time differences, which is an essential factor for a reliable inference of the Sun's meridional-circulation profile. The differences in the acoustic power spectrum between the mimicked data and the observation data in high-latitude areas suggest that the optical spectrum-line formation height or convection cells in these areas may be the primary cause of the center-to-limb effect in helioseismic analyses.

  3. Experimental investigation of air pressure and acoustic characteristics of human voice. Part 1: Measurement in vivo

    Horáček, Jaromír; Radolf, Vojtěch; Bula, Vítězslav; Veselý, Jan; Laukkanen, A. M.

    Prague : ITAM AS CR, v. v. i., 2012 - (Náprstek, J.; Fischer, C.). s. 104-105 ISBN 978-80-86246-39-0. [Engineering Mechanics 2012 /18./. 14.05.2012-17.05.2012, Svratka] Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of voice * measurement of oral pressure * voice exercises * phonation into tubes Subject RIV: BI - Acoustics

  4. High accuracy acoustic relative humidity measurement in duct flow with air

    Cees van der Geld; Twan Wernaart; Mart Grooten; Wilhelm van Schaik

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temp...

  5. Acoustic Reflex Measurements in Normal, Cochlear, and Retrocochlear Lesions -Part1

    Navid Shahnaz

    1992-04-01

    Full Text Available The cut off points of 90th percentile of acoustic reflex thresholds were determined in the normal and sensory hearing loss.All subjects had measurable hearing(ANSI-1969≤110 dBHL in three frequencies of 500,1000 and 2000Hz.While hearing loss was more than 55dB, The cut off point was higher in studies that NR responses was included.In cases that hearing loss was less than 75dB, 90th percentile can be used in diganosis of retrochochlear lesions.Since Acoustic reflexes are absent in both mentioned pathologies in greater amount of hearing loss,It would be less efficient in diffrential diganisis of cochlear and retrochochlear lesions to use acoustic reflex thresholds under the mentioned circumstances.

  6. Acoustic Sensor for In-Pile Fuel Rod Fission Gas Release Measurement

    Innovative in-pile instrumentation is crucial for advanced experimental programs in research reactors. In this field, we developed a specific acoustic sensor to improve the knowledge of fission gas release in Pressurized Water Reactor (PWR) fuel rods when irradiated in Material Testing Reactors (MTR). In order to perform experimental programs related to the study of the fission gas release kinetics, the CEA (French Nuclear Energy Commission) acquired the ability to equip a pre-irradiated PWR fuel rod with three sensors, allowing the simultaneous on-line measurements of the following parameters: -fuel temperature with a centreline thermocouple type C -internal pressure with a specific counter-pressure sensor, -fraction of fission gas released in the fuel rod with an innovative acoustic sensor. The third detector, which has been developed and is patent pending by CEA, SCK.CEN (Belgian Nuclear Research Center) and IES (French research laboratory of Montpellier II University and French National Research Center), is the subject of this paper. This original acoustic sensor has been designed to measure the molar mass and pressure of the gas contained in the fuel rod plenum. For in-pile instrumentation, the fraction of fission gas, such as Krypton and Xenon, in Helium, can be deduced on-line from this measurement. The principle of this non destructive and on-line acoustical sensor is the following: a piezoelectric transducer generates acoustic waves in a cavity connected to the fuel rod plenum. The acoustic waves are propagated and reflected in this cavity and then detected by the transducer. The data processing of the signal gives the velocity of the acoustic waves and their amplitude, which can be related respectively to the molar mass and to the pressure of the gas. The piezoelectric material of this sensor has been qualified in nuclear conditions (gamma and neutron radiations). The complete sensor has also been specifically designed to be implemented in MTR conditions

  7. Measurement and mathematical simulation of acoustic characteristics of an artificially lengthened vocal tract

    Radolf, Vojtěch; Horáček, Jaromír; Dlask, Pavel; Otčenášek, Zdeněk; Geneid, Ahmed; Laukkanen, Anne-Maria

    2016-03-01

    Phonation into tubes is used for voice training and therapy. In the present study, the formant frequencies were estimated from measurements of the acoustic pressure and the acoustic input impedance for a plexiglass model of the vocal tract (VT) prolonged by a glass tube. Similar transfer function measurements were performed with a human VT in vivo. The experimental results matched the mathematical modelling and confirmed the legitimacy of assuming rigid walls in mathematical simulations of the acoustic characteristics of an artificial VT model prolonged by a tube. However, this study also proved a considerable influence from soft tissues in the yielding walls of human VT cavities on the first formant frequency, F1. The measured F1 for the VT model corresponded to the computed value of 78 Hz. The experiments in a human instead resulted in a much higher value of F1: about 200 Hz. The results confirm that a VT model with yielding walls must be considered for mathematical modelling of the occluded or semi-occluded human vocal tract, e.g. prolonged by tubes or straws. This is explained by an acoustic-structural interaction of the vocal tract cavities with a mechanical low-frequency resonance of the soft tissue in the larynx.

  8. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500–2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  9. Pressure transducer for measuring acoustic radiation force based on a magnetic sensor

    This work presents a pressure transducer based on a magnetic sensor to measure acoustic radiation force (ARF) and small displacements. The methodology presented in this paper allowed this transducer to be calibrated for use as an acoustic pressure and intensity meter. It can control the acoustic intensity emitted by ultrasound used, for example, in ARF impulse imaging, vibro-acoustography and high-intensity focused ultrasound techniques. The device comprises a magnet, a membrane, a magnetoresistive sensor and a coil to cancel the external magnetic field. When ARF is applied to the membrane, the magnetic field on the sensor changes due to the magnetic target displacement. The variation of the output signal from the magnetic transducer is proportional to the acoustic pressure applied to the membrane. A focused ultrasound transducer with a central frequency of 3 MHz was used to apply a continuous ARF. The sensitivities of the magnetic transducer as an acoustic pressure and intensity meter, evaluated in water, were respectively 0.597 µV MPa−1 and 0.073 µV (W cm−2)−1/2, while those of the needle hydrophone (Onda model HNP-0400) used in the magnetic transducer calibration were respectively, 0.5024 mV MPa−1 and 6.153 mV (W cm−2)−1/2. The transducer resolution to displacement is 5 nm and 6 dB of signal attenuation occurs for 7° of misalignment. The transducer responded well to acoustic pressure in water above 200 kPa

  10. Measurements of Broadband Negative Index in Space-Coiling Acoustic Metamaterials

    Xie, Yangbo; Popa, Bogdan-Ioan; Zigoneanu, Lucian; Cummer, Steven A.

    2012-01-01

    We report the experimental demonstration of broadband negative refractive index obtained in a labyrinthine acoustic metamaterial structure. Two different approaches were employed to prove the metamaterial negative index nature: one-dimensional extractions of effective parameters from reflection and transmission measurements, and two-dimensional prism-based measurements that convincingly show the transmission angle corresponding to negative refraction. The transmission angles observed in the l...

  11. Acoustic measurement of overall voice quality in sustained vowels and continuous speech

    Maryn, Youri

    2010-01-01

    Measurement of dysphonia severity involves auditory-perceptual evaluations and acoustic analyses of sound waves. Meta-analysis of proportional associations between these two methods showed that many popular perturbation metrics and noise-to-harmonics and others ratios do not yield reasonable results. However, this meta-analysis demonstrated that the validity of specific autocorrelation- and cepstrum-based measures was much more convincing, and appointed ‘smoothed cepstral peak prominence’ as ...

  12. Coherent Combination of Baryon Acoustic Oscillation Statistics and Peculiar Velocity Measurements from Redshift Survey

    Song, Yong-Seon

    2010-01-01

    New statistical method is proposed to coherently combine Baryon Acoustic Oscillation statistics (BAO) and peculiar velocity measurements exploiting decomposed density-density and velocity-velocity spectra in real space from the observed redshift distortions in redshift space, 1) to achieve stronger dark energy constraints, \\sigma(w)=0.06 and \\sigma(w_a)=0.20, which are enhanced from BAO or velocity measurements alone, and 2) to cross-check consistency of dark energy constraints from two diffe...

  13. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  14. Non-contact liquid level measurement with electromagnetic–acoustic resonator sensors

    Electromagnetic–acoustic transduction represents an alternative to piezoelectric transduction with unique properties and advantages for resonator sensors. We have shown that such devices are suitable as mass microbalances similar to quartz crystal resonators, and as liquid density and viscosity sensors by exciting a suitable in-plane mode featuring dominant shear vibration. Generating out-of-plane vibrations we have applied these devices also as liquid level sensors. In contrast to classic time-of-flight ultrasonic liquid level sensors, the resolution is not limited by the wavelength, since small frequency changes due to interference effects with a standing acoustic wave are evaluated. For this contribution we have extensively evaluated this liquid level sensing and will present and compare new measurement and modeling results. The model comprises electromagnetic–acoustic interaction with a lossy transmission line representing the acoustic wave in the liquid. In impedance measurements with standard lab equipment a resolution as low as 3 µm at a liquid level of 10 mm and an operating frequency of 275 kHz has been achieved

  15. Acoustic Measurement of Surface Wave Damping by a Meniscus.

    Michel, Guillaume; Pétrélis, François; Fauve, Stéphan

    2016-04-29

    We investigate the reflection of gravity-capillary surface waves by a plane vertical barrier. The size of the meniscus is found to strongly affect reflection: the energy of the reflected wave with a pinned contact line is around twice the one corresponding to a fully developed meniscus. To perform these measurements, a new experimental setup similar to an acousto-optic modulator is developed and offers a simple way to measure the amplitude, frequency and direction of propagation of surface waves. PMID:27176523

  16. Flow acoustics modelling and implications for ultrasonic flow measurement based on the transit-time method.

    Willatzen, M

    2004-05-01

    A comparison between three mathematical models frequently used in flow acoustics is presented and discussed with respect to ultrasonic flow-meter performance based on the transit-time method. The flow-meter spoolpiece geometry is assumed to be a cylindrical pipe. Semi-analytical calculations employing the Frobenius power series expansion method are shown for the cases of a constant-, linear-, parabolic-, and cubic-flow profiles although the Frobenius method presented can be applied to any smooth flow profile. It is shown that the so-called deviation of measurement, often used as a measure of the flow-meter accuracy, is strongly dependent on the acoustic mode excited and the flow profile. Furthermore, differences with respect to deviation of measurement results exist among the three mathematical models analyzed. PMID:15110538

  17. Measurement of a broadband negative index with space-coiling acoustic metamaterials.

    Xie, Yangbo; Popa, Bogdan-Ioan; Zigoneanu, Lucian; Cummer, Steven A

    2013-04-26

    We report the experimental demonstration of a broadband negative refractive index obtained in a labyrinthine acoustic metamaterial structure. Two different approaches were employed to prove the metamaterial negative index nature: one-dimensional extractions of effective parameters from reflection and transmission measurements and two-dimensional prism-based measurements that convincingly show the transmission angle corresponding to negative refraction. The transmission angles observed in the latter case also agree very well with the refractive index obtained in the one-dimensional measurements and numerical simulations. We expect this labyrinthine metamaterial to become the unit cell of choice for practical acoustic metamaterial devices that require broadband and significantly negative indices of refraction. PMID:23679743

  18. Calculus of the uncertainty in acoustic field measurements: comparative study between the uncertainty propagation method and the distribution propagation method

    Navacerrada Saturio, Maria Angeles; Díaz Sanchidrián, César; Pedrero González, Antonio; Iglesias Martínez, Luis

    2008-01-01

    The new Spanish Regulation in Building Acoustic establishes values and limits for the different acoustic magnitudes whose fulfillment can be verify by means field measurements. In this sense, an essential aspect of a field measurement is to give the measured magnitude and the uncertainty associated to such a magnitude. In the calculus of the uncertainty it is very usual to follow the uncertainty propagation method as described in the Guide to the expression of Uncertainty in Measurements (GUM...

  19. Acoustic containerless experiment system: A non-contact surface tension measurement

    Elleman, D. D.; Wang, T. G.; Barmatz, M.

    1988-01-01

    The Acoustic Containerless Experiment System (ACES) was flown on STS 41-B in February 1984 and was scheduled to be reflown in 1986. The primary experiment that was to be conducted with the ACES module was the containerless melting and processing of a fluoride glass sample. A second experiment that was to be conducted was the verification of a non-contact surface tension measurement technique using the molten glass sample. The ACES module consisted of a three-axis acoustic positioning module that was inside an electric furnace capable of heating the system above the melting temperature of the sample. The acoustic module is able to hold the sample with acoustic forces in the center of the chamber and, in addition, has the capability of applying a modulating force on the sample along one axis of the chamber so that the molten sample or liquid drop could be driven into one of its normal oscillation modes. The acoustic module could also be adjusted so that it could place a torque on the molten drop and cause the drop to rotate. In the ACES, a modulating frequency was applied to the drop and swept through a range of frequencies that would include the n = 2 mode. A maximum amplitude of the drop oscillation would indicate when resonance was reached and from that data the surface tension could be calculated. For large viscosity samples, a second technique for measuring surface tension was developed. The results of the ACES experiment and some of the problems encountered during the actual flight of the experiment will be discussed.

  20. Near-field acoustic holography with sound pressure and particle velocity measurements

    Fernandez Grande, Efren

    . Measurement of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle......, and studied under the light of different measurement principles. A direct formulation in space domain has been proposed, and the experimental validity of the quantity has been demonstrated. Additionally, the use of rigid spherical microphone arrays in near-field acoustic holography has been examined...

  1. Sub-Microsecond Temperature Measurement in Liquid Water Using Laser Induced Thermal Acoustics

    Alderfer, David W.; Herring, G. C.; Danehy, Paul M.; Mizukaki, Toshiharu; Takayama, Kazuyoshi

    2005-01-01

    Using laser-induced thermal acoustics, we demonstrate non-intrusive and remote sound speed and temperature measurements over the range 10 - 45 C in liquid water. Averaged accuracy of sound speed and temperature measurements (10 s) are 0.64 m/s and 0.45 C respectively. Single-shot precisions based on one standard deviation of 100 or greater samples range from 1 m/s to 16.5 m/s and 0.3 C to 9.5 C for sound speed and temperature measurements respectively. The time resolution of each single-shot measurement was 300 nsec.

  2. Reliability of Phase Velocity Measurements of Flexural Acoustic Waves in the Human Tibia In-Vivo

    2016-01-01

    Purpose Axial-transmission acoustics have shown to be a promising technique to measure individual bone properties and detect bone pathologies. With the ultimate goal being the in-vivo application of such systems, quantification of the key aspects governing the reliability is crucial to bring this method towards clinical use. Materials and Methods This work presents a systematic reliability study quantifying the sources of variability and their magnitudes of in-vivo measurements using axial-transmission acoustics. 42 healthy subjects were measured by an experienced operator twice per week, over a four-month period, resulting in over 150000 wave measurements. In a complementary study to assess the influence of different operators performing the measurements, 10 novice operators were trained, and each measured 5 subjects on a single occasion, using the same measurement protocol as in the first part of the study. Results The estimated standard error for the measurement protocol used to collect the study data was ∼ 17 m/s (∼ 4% of the grand mean) and the index of dependability, as a measure of reliability, was Φ = 0.81. It was shown that the method is suitable for multi-operator use and that the reliability can be improved efficiently by additional measurements with device repositioning, while additional measurements without repositioning cannot improve the reliability substantially. Phase velocity values were found to be significantly higher in males than in females (p bone pathologies, as well as for monitoring programmes without any radiation exposure for the patient. PMID:27015093

  3. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  4. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  5. Self-oscillation acoustic system destined to measurement of stresses in mass rocks

    Kwasniewski, Janusz; Dominik, Ireneusz; Dorobczynski, Lech

    2011-01-01

    The paper presents an electronic self-oscillation acoustic system (SAS) destined to measure of stresses variations in the elastic media. The system consists of piezoelectric detector, amplifier-limiter, pass-band filter, piezoelectric exciter and the frequency meter. The mass rock plays a role of delaying element, in which variations in stresses causing the variations of acoustic wave velocity of propagation, and successive variation in frequency of oscillations generated by system. The laboratory test permitted to estimate variations in frequency caused by variations in stresses of elastic medium. The principles of selection of frequency and other parameters of the electronic system in application to stresses measurement in condition of the mine were presented.

  6. Acoustic emission measurement in a 20MJ superconducting magnet system of the cluster test coil

    This paper describes acoustic emission (AE) results which were measured during the second major experiment on the Cluster Test Coil at JAERI. This is the largest superconducting magnet system to date on which acoustic emission measurement has been carried out. The amplitudes and the counting rates of AE are shown as functions of coil operating current on three full current excursions. The amplitude results show the on-going process of emission and reduction during successive runs. A strong tendency of the AE counting rate to increase was observed at high currents after successive runs. The phenomenon of amplitude reduction and counting rate increase is attributed to an energy release change from larger single events to numerous smaller events. (author)

  7. Study on the High Precision Acoustic Measurement Techniques for Determining Temperature Field Around Seafloor Hydrothermal Vent

    CAI Yong; FAN Wei; ZHOU Yan; FU Xian-qiao; FANG Hui; JIN Tao

    2012-01-01

    This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths of acoustic signal are introduced.Experimental research is performed to exactly rebuild the temperature field around hot springs on the floor of Qiezishan Lake,Yunnan,China.The accuracy of the travel time estimation has been improved based on the aforementioned technique and method.At the same time,by comparison of the results of temperature field with different means,the max absolute error,the maximum relative error and the root mean square error are given.It shows that the technique and the method presented in the paper can be applied to the temperature field measurement detector around the seafloor hydrothermal vent.It also has a good accuracy.

  8. Local Measurement of Electron Density and Temperature in High Temperature Laser Plasma Using the Ion-Acoustic Dispersion

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas

  9. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    A. J. F. Hoitink; F. A. Buschman; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP (HADCP) data in a tidal river. In the deterministic part, single-depth velocity data are converted to specific discharge by applying the law of the wall, which requires knowledge of local values o...

  10. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  11. Forecasting the Dark Energy Measurement with Baryon Acoustic Oscillations: Prospects for the LAMOST surveys

    Wang, Xin; Chen, Xuelei; Zheng, Zheng; Wu, Fengquan; Zhang, Pengjie; Zhao, Yongheng

    2008-01-01

    The Large Area Multi-Object Spectroscopic Telescope (LAMOST) is a dedicated spectroscopic survey telescope being built in China, with an effective aperture of 4 meters and equiped with 4000 fibers. Using the LAMOST telescope, one could make redshift survey of the large scale structure (LSS). The baryon acoustic oscillation (BAO) features in the LSS power spectrum provide standard rulers for measuring dark energy and other cosmological parameters. In this paper we investigate the meaurement pr...

  12. Experimental investigation of air pressure and acoustic characteristics of human voice. Part 1: Measurement in vivo

    Horáček, Jaromír; Radolf, Vojtěch; Bula, Vítězslav; Veselý, Jan; Laukkanen, A. M.

    Prague : ITAM AS CR, v. v. i., 2012 - (Náprstek, J.; Fischer, C.), s. 403-417 ISBN 978-80-86246-40-6. [Engineering Mechanics 2012 /18./. Svratka (CZ), 14.05.2012-17.05.2012] R&D Projects: GA ČR GAP101/12/1306 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of voice * measurement of oral pressure * voice exercises * phonation into tubes Subject RIV: BI - Acoustics

  13. Constraints on dark energy models from radial baryon acoustic scale measurements

    Samushia, Lado; Ratra, Bharat

    2008-01-01

    We use the radial baryon acoustic oscillation (BAO) measurements of Gaztanaga et al. (2008) to constrain parameters of dark energy models. These constraints are comparable with constraints from other "non-radial" BAO data. The radial BAO data are consistent with the time-independent cosmological constant model but do not rule out time-varying dark energy. When we combine radial BAO and the Kowalski et al. (2008) Union type Ia supernova data we get very tight constraints on dark energy.

  14. Application of Wavelet Packet Analysis to the Measurement of the Baryon Acoustic Oscillation

    Kadowaki, Kevin; Garcia, Noel; Ford, Taurean; Pando, Jesus; SDSS-FAST Collaboration

    2016-03-01

    We develop a method of wavelet packet analysis to measure the Baryon Acoustic Oscillation (BAO) peak and apply this method to the CMASS galaxy catalog from the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We compare our results to a fiducial ?CDM flat cosmological model and detect a BAO signature in the power spectrum comparable to the previous consensus results of the BOSS collaboration. We find DA = 1365rd /rd , fid at z = . 54 . Member ID Forthcoming.

  15. The Application of Acoustic Measurements and Audio Recordings for Diagnosis of In-Flight Hardware Anomalies

    Welsh, David; Denham, Samuel; Allen, Christopher

    2011-01-01

    In many cases, an initial symptom of hardware malfunction is unusual or unexpected acoustic noise. Many industries such as automotive, heating and air conditioning, and petro-chemical processing use noise and vibration data along with rotating machinery analysis techniques to identify noise sources and correct hardware defects. The NASA/Johnson Space Center Acoustics Office monitors the acoustic environment of the International Space Station (ISS) through periodic sound level measurement surveys. Trending of the sound level measurement survey results can identify in-flight hardware anomalies. The crew of the ISS also serves as a "detection tool" in identifying unusual hardware noises; in these cases the spectral analysis of audio recordings made on orbit can be used to identify hardware defects that are related to rotating components such as fans, pumps, and compressors. In this paper, three examples of the use of sound level measurements and audio recordings for the diagnosis of in-flight hardware anomalies are discussed: identification of blocked inter-module ventilation (IMV) ducts, diagnosis of abnormal ISS Crew Quarters rack exhaust fan noise, and the identification and replacement of a defective flywheel assembly in the Treadmill with Vibration Isolation (TVIS) hardware. In each of these examples, crew time was saved by identifying the off nominal component or condition that existed and in directing in-flight maintenance activities to address and correct each of these problems.

  16. Optimizing stepwise rotation of dodecahedron sound source to improve the accuracy of room acoustic measures.

    Martellotta, Francesco

    2013-09-01

    Dodecahedron sound sources are widely used for acoustical measurement purposes as they produce a good approximation of omnidirectional radiation. Evidence shows that such an assumption is acceptable only in the low-frequency range (namely below 1 kHz), while at higher frequencies sound radiation is far from being uniform. In order to improve the accuracy of acoustical measurements obtained from dodecahedron sources, international standard ISO 3382 suggests an averaging of results after a source rotation. This paper investigates the effects of such rotations, both in terms of variations in acoustical parameters and spatial distribution of sound reflections. Taking advantage of a spherical microphone array, the different reflection patterns were mapped as a function of source rotation, showing that some reflections may be considerably attenuated for different aiming directions. This paper investigates the concept of averaging results while changing rotation angles and the minimum number of rotations required to improve the accuracy of the average value. Results show that averages of three measurements carried out at 30° angular steps are closer to actual values and show much less fluctuation. In addition, an averaging of the directional intensity components of the selected responses stabilizes the spatial distribution of the reflections. PMID:23967936

  17. The measurement of rain kinetic energy and rain intensity using an acoustic disdrometer

    Microwave engineers and geomorphologists require rainfall data with a much greater temporal resolution and a better representation of the numbers of large raindrops than is available from current commercial instruments. This paper describes an acoustic instrument that determines rain parameters from the sound of raindrops falling into a tank of water. There is a direct relationship between the kinetic energy (KE) of a raindrop and the acoustic energy that it creates upon impact. Rain KE flux density is estimated from measurements of the sound field in the tank, and these have been compared to measurements from a co-sited commercial disdrometer. Eight months of data have been collected in the eastern UK. Comparisons of rain KE estimated by the two instruments are presented and links between the KE and rainfall intensity are discussed. The sampling errors of the two instruments are analysed to show that the acoustic instrument can produce rain KE measurements with a 1 s integration time with sampling uncertainty of the same size as commercial instruments using a 1 min integration time

  18. Complete velocity distribution in river cross-sections measured by acoustic instruments

    Cheng, R.T.; Gartner, J.W.

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  19. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a

  20. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    Zhiqun Deng

    2010-03-01

    Full Text Available The Juvenile Salmon Acoustic Telemetry System (JSATS is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  1. Design and instrumentation of a measurement and calibration system for an acoustic telemetry system.

    Deng, Zhiqun; Weiland, Mark; Carlson, Thomas; Eppard, M Brad

    2010-01-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more "fish-friendly" hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS) for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS. PMID:22319288

  2. A method of estimating inspiratory flow rate and volume from an inhaler using acoustic measurements

    Inhalers are devices employed to deliver medication to the airways in the treatment of respiratory diseases such as asthma and chronic obstructive pulmonary disease. A dry powder inhaler (DPI) is a breath actuated inhaler that delivers medication in dry powder form. When used correctly, DPIs improve patients' clinical outcomes. However, some patients are unable to reach the peak inspiratory flow rate (PIFR) necessary to fully extract the medication. Presently clinicians have no reliable method of objectively measuring PIFR in inhalers. In this study, we propose a novel method of estimating PIFR and also the inspiratory capacity (IC) of patients' inhalations from a commonly used DPI, using acoustic measurements. With a recording device, the acoustic signal of 15 healthy subjects using a DPI over a range of varying PIFR and IC values was obtained. Temporal and spectral signal analysis revealed that the inhalation signal contains sufficient information that can be employed to estimate PIFR and IC. It was found that the average power (Pave) in the frequency band 300–600 Hz had the strongest correlation with PIFR (R2 = 0.9079), while the power in the same frequency band was also highly correlated with IC (R2 = 0.9245). This study has several clinical implications as it demonstrates the feasibility of using acoustics to objectively monitor inhaler use. (paper)

  3. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  4. Linear and Nonlinear Acoustic Measurements of Buried Landmines: Detection Schemes Near Resonance

    Sabatier, James M.

    2003-03-01

    Measurements of the acoustic impedance of an anti-personnel and anti-tank plastic, blast-hardened landmines reveal resonances in the frequency range between 100 and 1000 Hz. The top surface resonances are due to its complicated mechanical structure vibrating in air. The lowest mode results from the blast hardened design of the landmine. Typically, a portion or cavity of the landmine is designed to absorb the shock from an explosion that is intended to detonate the landmine but still allow the landmine to trigger its explosive device when a slow steady pressure is applied. The mechanical design of the blast hardened aspects results in a high Q simple harmonic oscillator resonance of the top surface. At higher frequencies the top surface behaves like thin circular plate acoustic modes. When these landmines are buried in soils, the modes are mass loaded. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity are used for detection schemes. Since the interface between the top plate and the soil responds to pressure fluctuations nonlinearly, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for new methods of landmine detection not previously exploited.

  5. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation. (paper)

  6. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layers

    Friedt, J M; Francis, L; Zhou, C; Campitelli, A; Friedt, Jean-Michel; Denis, Frederic; Francis, Laurent; Zhou, Cheng; Campitelli, Andrew

    2003-01-01

    We use an instrument combining optical (surface plasmon resonance) and acoustic (Love mode acoustic wave device) real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition, the bound mass and its physical properties -- density and optical index -- are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70+/-20 % water and are 16+/-3 to 19+/-3 nm thick for bulk concentrations ranging from 30 to 300 ug/ml. Fibrinogen layers include 50+/-10 % water for layer thicknesses in the 6+/-1.5 to 13+/-2 nm range when the bulk concentration is in the 46 to 460 ug/ml range.

  7. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  8. Fish species identification based on its acoustic target strength using in situ measurement

    Raja-Bidin Raja-Hassan

    2010-11-01

    Full Text Available The purpose of this study is fish species identification using acoustic target strength (TS. Insitu measurement has been deployed at the South China Sea of Terengganu Malaysia using Furuno FQ-80 Scientific Echo Sounder which included in the research vessel of KK Senangin II. The transducer isplaced 2.8 meter under sea surface while fish put in the net cage under the vessel. TS data have beencollected independently for commercial fish in Malaysia, there are Selar boops (Oxeye scad, Alepesdjedaba (Shrimp scad, Megalaspis cordyla (Torpedo scad, and Decapterus maruadsi/b> (Japanese scad.TS value, depth, and position of specific target have been observed using echogram. TS of every speciesis different although similar size and at the similar range from transducer. Thus, the specific fish specieshas been identified based on its acoustic target strength.

  9. Impact of acoustic velocity structure to measurement of ocean bottom crustal deformation

    Ikuta, R.; Tadokoro, K.; Okuda, T.; Sugimoto, S.; Watanabe, T.; Eto, S.; Ando, M.

    2010-12-01

    We are developing a geodetic method of monitoring crustal deformation under the ocean using kinematic GPS and acoustic ranging. The goal of our research is to achieve sub-centimeter accuracy in measuring oceanic crustal deformation by a very short-time measurement like 10 hours. In this study, we focused on lateral variation of acoustic velocity structure in seawater and introduced an inclined acoustic velocity structure model to improve accuracy of the measurement. We have a few measurement sites along Nankai trough, Japan. In each sites, we deployed a trio of transponders on ocean floor (seafloor benchmark units) within distance comparable with the depth. An ultrasonic signal is generated from a surface vessel drifting over the benchmark unit, which is received and replied by the benchmark unit. In this system, both acoustic velocity structure and the benchmark unit positions were determined simultaneously for the each measurement using a tomographic technique. This tomographic technique was adopted on an assumption that the acoustic velocity structure is horizontally layered and changes only in time, not in space. Ikuta et al., (AGU fall meeting 2009) reported an approach to improve accuracy of benchmark positioning using a new additional assumption. The additional assumption was that the configuration of the transponders trio constituting one benchmark unit does not change. They determined the time evolution of weight center for the fixed transponder triangle between different measurements using all repetitively obtained data sets at once. This is contrasting to the previous method in which each data set for different measurement was solved independently. This assumption worked well in reducing number of unknown parameters. As a result, repeatability of benchmark positioning improved from 5 cm to 3 cm. We conducted numerical experiments synthesizing acoustic travel-time data to evaluate the robustness of this new approach. When acoustic travel-time data is

  10. Measurement of Vertical Temperature Distribution Using a Single Pair of Loudspeaker and Microphone with Acoustic Reflection

    Saito, Ikumi; Mizutani, Koichi; Wakatsuki, Naoto; Kawabe, Satoshi

    2009-07-01

    It is important to maintain an adequate indoor temperature for comfortable working conditions, improvement of the rate of production of farm goods grown in greenhouses, and for saving energy. Thus, it is necessary to measure the temperature distribution to realize efficient air-conditioning systems. However, we have to use many conventional instruments to measure the temperature distribution. We proposed a measurement system for vertical temperature distribution using a single pair of loudspeaker (SP) and microphone (MIC), and acoustic reflectors. This system consists of SP, MIC, and multiple acoustic reflectors, and it can be used to determine the temperature distribution from the mean temperature of the area bounded by two reflectors. In experiments, the vertical temperature distribution was measured using five sound probes in a large facility every 20 s for 24 h. From the results of this experiment, it was verified that this system can be used to measure the vertical temperature distribution from the mean temperature of each area bounded by two reflectors. This system could be used to measure the change in the temperature distribution over time. We constructed a simple system to measure the vertical temperature distribution.

  11. Twin-tube practical acoustic thermometry: theory and measurements up to 1000 °C

    Sutton, G.; Edwards, G.; Veltcheva, R.; de Podesta, M.

    2015-08-01

    We present details of a Practical Acoustic Thermometer (PAT), in which temperature is inferred from measurements of the speed of sound along acoustic waveguides. We describe both the theory of operation, and measurements on three devices at temperatures up to 1000 °C. Because the relationship between the speed of sound in a simple gas and absolute temperature is well understood, the mean temperature along a tube may be estimated from measurements of the frequency-dependent propagation constant. A PAT device made from two tubes of different lengths allows the temperature measurement region to be localised, creating an instrument functionally similar to conventional contact thermometers. Three twin-tube PAT devices were constructed and tested. PAT-A, made of silica, served to validate the technique with differences between the acoustic thermometer and a reference thermocouple of less than 2 °C at temperatures in the range from 100 °C to 1000 °C. PAT-B and PAT-C were made of Inconel-600, potentially more suitable for use in harsh environments. The Inconel devices deviated from expected behaviour in a reproducible manner, which after calibration allowed measurements with errors of less than  ±1 °C in the range to 700 °C. No drift was observed up to 700 °C. The drift observed during prolonged exposure to higher temperatures is described and its likely causes discussed. In the longer term, similar technology may provide a means for the measurement of temperature in harsh environments such as those found in the nuclear industry.

  12. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method

    Barnkob, Rune; Iranmanesh, Ida; Wiklund, Martin;

    2012-01-01

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis. It...... is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments...

  13. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    William J Murphy

    2015-01-01

    Full Text Available Impulse peak insertion loss (IPIL was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF. Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB, 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs ® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL.

  14. The influence of phonetic context and formant measurement location on acoustic vowel space

    Turner, Greg S.; Hutchings, David T.; Sylvester, Betsy; Weismer, Gary

    2003-04-01

    One way of depicting vowel production is by describing vowels within an F1/F2 acoustic vowel space. This acoustic measure illustrates the dispersion of F1 and F2 values at a specific moment in time (e.g., the temporal midpoint of a vowel) for the vowels of a given language. This measure has recently been used to portray vowel production in individuals with communication disorders such as dysarthria and is moderately related to the severity of the speech disorder. Studies aimed at identifying influential factors effecting measurement stability of vowel space have yet to be completed. The focus of the present study is to evaluate the influence of phonetic context and spectral measurement location on vowel space in a group of neurologically normal American English speakers. For this study, vowel space was defined in terms of the dispersion of the four corner vowels produced within a CVC syllable frame, where C includes six stop consonants in all possible combinations with each vowel. Spectral measures were made at the midpoint and formant extremes of the vowels. A discussion will focus on individual and group variation in vowel space as a function of phonetic context and temporal measurement location.

  15. System and method for sonic wave measurements using an acoustic beam source

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  16. Measurement of pipe wall thinning by ultra acoustic resonance technique using optical fiber

    This is the novel system for Pipe Wall Thickness measurement which is combined EAMT(Electro Magnetic Acoustic Transducer) and Optical Fiber Sensor. The conventional ultrasonic thickness meter is using in pipe wall thickness measurement. However, it is necessary to remove a heat insulator from pipe line. A characteristic of this novel system is that it is possible to measure without removing a heat insulator and on-line monitoring, because of measurement probe is attached between pipe surface and heat insulator. As a result of measured with this system, we could measure 30 mm thickness of carbon and stainless steel at the maximum and pipe specimen of elbow shape. Heat-resistant characteristic confirmed at 200 degrees C until about 7000 hours. (author)

  17. Angular measurement of acoustic reflection coefficients by the inversion of V(z, t) data with high frequency time-resolved acoustic microscopy

    Chen, Jian; Bai, Xiaolong; Yang, Keji; Ju, Bing-Feng

    2012-01-01

    For inspection of mechanical properties and integrity of critical components such as integrated circuits or composite materials by acoustic methodology, it is imperative to evaluate their acoustic reflection coefficients, which are in close correlation with the elastic properties, thickness, density, and attenuation and interface adhesion of these layered structures. An experimental method based on angular spectrum to evaluate the acoustic coefficient as a function of the incident angle, θ, and frequency, ω, is presented with high frequency time-resolved acoustic microscopy. In order to achieve a high spatial resolution for evaluation of thin plates with thicknesses about one or two wavelengths, a point focusing transducer with a nominal center frequency of 25 MHz is adopted. By measuring the V(z, t) data in pulse mode, the reflection coefficient, R(θ, ω), can be reconstructed from its two-dimensional spectrum. It brings simplicity to experimental setup and measurement procedure since only single translation of the transducer in the vertical direction is competent for incident angle and frequency acquisition. It overcomes the disadvantages of the conventional methods requiring the spectroscopy for frequency scanning and/or ultrasonic goniometer for angular scanning. Two substrates of aluminum and Plexiglas and four stainless plates with various thicknesses of 100 μm, 150 μm, 200 μm, and 250 μm were applied. The acoustic reflection coefficients are consistent with the corresponding theoretical calculations. It opened the way of non-destructive methodology to evaluate the elastic and geometrical properties of very thin multi-layers structures simultaneously.

  18. Indirect calibration of a large microphone array for in-duct acoustic measurements

    Leclère, Q.; Pereira, A.; Finez, A.; Souchotte, P.

    2016-08-01

    This paper addresses the problem of in situ calibration of a pin hole-mounted microphone array for in-duct acoustic measurements. One approach is to individually measure the frequency response of each microphone, by submitting the probe to be calibrated and a reference microphone to the same pressure field. Although simple, this task may be very time consuming for large microphone arrays and eventually suffer from lack of access to microphones once they are installed on the test bench. An alternative global calibration procedure is thus proposed in this paper. The approach is based on the fact that the acoustic pressure can be expanded onto an analytically known spatial basis. A projection operator is defined allowing the projection of measurements onto the duct modal basis. The main assumption of the method is that the residual resulting from the difference between actual and projected measurements is mainly dominated by calibration errors. An iterative procedure to estimate the calibration factors of each microphone is proposed and validated through an experimental set-up. In addition, it is shown that the proposed scheme allows an optimization of physical parameters such as the sound speed and parameters associated to the test bench itself, such as the duct radius or the termination reflection coefficient.

  19. Design and implementation of an efficient acoustically levitated drop reactor for in stillo measurements.

    Field, Christopher R; Scheeline, Alexander

    2007-12-01

    We present the details necessary for building an efficient acoustic drop levitator with reduced electrical power consumption and greater drop stability compared to previous designs. The system is optimized so that the levitated drop may be used as a chemical reactor. By introducing a temperature, pressure, and relative humidity sensor for feedback control of a linear actuator for adjusting resonator length, we have built a completely automated system capable of continuous levitation for extended periods of time. The result is a system capable of portable operation and interfacing with a variety of detection instrumentation for in stillo (in drop) measurements. PMID:18163744

  20. Southeast Alaska Acoustic Measurement Facility (SEAFAC) environmental data base review, evaluation, and upgrade

    Strand, J.A.; Skalski, J.R.; Faulkner, L.L.; Rodman, C.W.; Carlile, D.W.; Ecker, R.M.; Nicholls, A.K.; Ramsdell, J.V.; Scott, M.J.

    1986-04-01

    This report summarizes the principal issues of public concern, the adequacy of the environmental data base to answer the issues of concern, and the additional data collection required to support a National Environmental Policy Act (NEPA) review of the proposed Southeast Alaska Acoustic Measurement Facility (SEAFAC). The report is based on a review of the readily available environmental literature and a site visit. Representatives of local, state, and federal agencies were also interviewed for their personal insights and concerns not discovered during the literature review.

  1. Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters

    Veropalumbo, A.; Marulli, F.; Moscardini, L.; Moresco, M.; Cimatti, A.

    2016-05-01

    We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, z = 0.2, 0.3 and 0.5. The number of objects is 12 910, 42 215 and 11 816, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are rs/DV(z = 0.2) = 0.18 ± 0.01, rs/DV(z = 0.3) = 0.124 ± 0.004 and rs/DV(z = 0.5) = 0.080 ± 0.002. Combining these measurements with the sound horizon scale measured from the cosmic microwave background, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard Λ cold dark matter (ΛCDM) model. Specifically, we constrain the Hubble constant in a ΛCDM model, H_0 = 64_{-8}^{+17} km s^{-1} Mpc^{-1} , the density of curvature energy, in the oΛCDM context, Ω _K = -0.01_{-0.33}^{+0.34}, and finally the parameter of the dark energy equation of state in the wCDM case, w = -1.06_{-0.52}^{+0.49}. This is the first time the distance-redshift relation has been constrained using only the peak of baryon acoustic oscillations of galaxy clusters.

  2. High accuracy acoustic relative humidity measurement in duct flow with air.

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  3. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  4. Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature Measurement

    Mohammad A.K. Alia

    2007-01-01

    Full Text Available Recent developments in temperature measurement have encouraged researchers to develop low-cost, simple structure, computerized generic transducers for environmental monitoring and industrial process control. The research presents a computerized technique which allows to measure temperature according to the variation of acoustic velocity (frequency in a closed waveguide. Signal conditioning and processing was carried out using labVIEW (G Language VIs. In order to evaluate the time characteristic of the transducer its response was compared with that of a reference detector (PT 100 for the same step input. Static characteristics of the transducer show a quasi-linear relationship between the measured temperature and the resonance frequency. Results of practical experiments show that in order to improve the response curve of the transducer and decrease the rising time interval it is advisable to implement thin-wall glass tubes or another material with lower thermal impedance.

  5. Noninvasive Measurement of Acoustic Properties of Fluids Using Ultrasonic Interferometry Technique

    Han, W.; Sinha, D.N.; Springer, K.N.; Lizon, D.C.

    1997-06-15

    A swept-frequency ultrasonic interferometry technique is used for noninvasively determining acoustic properties of fluids inside containers. Measurements over a frequency range 1-15 MHz on six liquid chemicals are presented. Measurements were made with the liquid inside standard rectangular optical glass cells and stainless steel cylindrical shells. A theoretical model based on one-dimensional planar acoustic wave propagation through multi-layered media is employed for the interpretation of the observed resonance (interference) spectrum. Two analytical methods, derived from the transmission model are used for determination of sound speed, sound attenuation coefficient, and density of liquids from the relative amplitude and half-power peak width of the observed resonance peaks. Effects of the container material and geometrical properties, path-length, wall thickness are also studied. This study shows that the interferometry technique and the experimental method developed are capable of accurate determination of sound speed, sound attenuation, and density in fluids completely noninvasively. It is a capable and versatile fluid characterization technique and has many potential NDE applications.

  6. Direct and indirect measurement of rain drop size distributions using an acoustic water tank disdrometer

    Several rain drop size distribution (DSD) point measurement technologies exist, but all are unable to sample either short timescales or the large drop tail of the DSD due to inherent instrumental limitations. The development of an acoustic water tank disdrometer (AWTD) is described, which improves the sampling statistics by increasing the catchment area. This is achieved by distinguishing individual drops, locating them on the surface of the tank then converting the impact pressure into a drop size. Wavelet decomposition is used to distinguish the broadband, short duration impact events and a fast multilateration method is used to position the drop. Issues relating to the different types of noise are also investigated and mitigated. Also, further work on inverting the measured acoustic intensity into a DSD, by fitting sampling distributions, is presented. Six months of data were collected in the Eastern UK. The AWTD then converted the data into DSDs and the results were compared to a commercially available co-located laser precipitation monitor. The sampling errors are far lower due to the increased catchment size, and hence the large drop sized tail of the DSD is greatly improved. DSD results compare favourably to other disdrometers for drop diameters greater than 1.8 mm. Below this size individual drops become increasingly difficult to detect and are underestimated. (paper)

  7. Acoustic and geophysical measurement of infrasound from turbines at wind farms

    Hepburn, H.G. [Hepburn Exploration Inc., Canmore, AB (Canada)

    2005-07-01

    An experiment was conducted at the Castle River Wind Farm in southern Alberta to measure and characterize infrasound from the turbines. The wind farm contains one 600 MW turbine and fifty-nine 660 MW wind turbines. Three types of sensors were used to measure both the low and high frequency acoustic energy and geophysical sound levels. These included low frequency geophones, acoustic microphones and a precision sound analyzer. Data was recorded for low, medium and high wind states, with the entire wind turbine array operating, and with the entire wind farm stopped. Downwind telemetry measurements were recorded for 30 continuous 50 metre offsets, up to a distance of 1450 metres from the wind farm. The objective of the project was to characterize the ambient noise levels and sound emitted by the turbines. Measurements were taken for wind speed and direction, atmospheric pressure, atmospheric temperature and turbine related data. Visual observations included atmospheric conditions, extraneous sources of noise such as aircraft, trains, motor vehicle traffic, highway noise, bird song, crickets and the rotational state of the turbines. It was concluded that for studying low frequency sound, the linear dB scale should be used instead of the dBA scale. Measurements of frequencies down to 6.3 Hz, showed that infrasound emission from the Castle River Wind Farm is not a significant concern. Lower frequencies down to about 2.5 Hz also confirmed that infrasound emissions are not significantly above the ambient noise levels. Any infrasound emissions were strongly coupled to the ground and were attenuated quickly. Time domain measurements showed that at all wind speeds and for frequencies up to 270 Hz, wind noise was actually attenuated when the wind farm is in operation. The noise levels were higher when the turbines were not turning. This finding was confirmed through spectral analysis. 12 refs., 2 tabs., 46 figs.

  8. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote

  9. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement

    2010-01-01

    A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.

  10. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  11. Measurement of the acoustic-to-optical phonon coupling in multicomponent systems

    Caretta, Antonio; Donker, Michiel C.; Perdok, Diederik W.; Abbaszadeh, Davood; Polyakov, Alexey O.; Havenith, Remco W. A.; Palstra, Thomas T. M.; van Loosdrecht, Paul H. M.

    2015-02-01

    In this paper we investigate the acoustic-to-optical up-conversion phonon processes in a multicomponent system. These processes take place during heat transport and limit the efficiency of heat flow. By combining time-resolved optical and heat capacity experiments we quantify the thermal coupling constant to be g ˜0.4 1017 W/Km3 . The method is based on selective excitation of a part of a multicomponent system, and the measurement of the thermalization dynamics by probing the linear birefringence of the sample with femtosecond resolution. In particular, we study a layered multiferroic organic-inorganic hybrid, in the vicinity of the ferroelectric phase transition. A diverging term of the heat capacity is associated to soft-mode dynamics, in agreement with previous spectroscopy measurements.

  12. An innovative acoustic sensor for in-pile fission gas composition measurements

    In this article we propose a new method able to determine the fission gas composition using in situ ultrasonic waves measurements. To do so an acoustic resonator was connected to a fuel rodlet, in order to perform speed of sound measurements of gas mixture (Helium and fission gases) inside the plenum. By using a dedicated signal processing the peaks due to resonant frequencies inside the gas mixture were successfully extracted from the output signal. From these data, the variations of helium and fission gas molar fraction were calculated using an adapted virial state equation. It will be proved that these data provide important information about the kinetics of gas release and about the effects of high neutron and gamma irradiation on piezo-ceramic sensors. (authors)

  13. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method.

    Barnkob, Rune; Iranmanesh, Ida; Wiklund, Martin; Bruus, Henrik

    2012-07-01

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis. It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels. PMID:22522812

  14. Laboratory acoustic measurements of the attenuation factor Q in petroleum reservoirs during simulated pore pressure reduction

    Donald, A.; Frempong, P.; Butt, S. [Dalhousie Univ., Halifax, NS (Canada); Nouri, A. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Civil Engineering

    2003-07-01

    The relationship between seismic attenuation and mechanical changes in rock structure caused by pressure depletion encountered during the producing life of a hydrocarbon reservoir has not been the focus of many research efforts to date. This paper describes a series of time lapsed acoustic measurements that were conducted on saturated synthetic and reservoir rock under in-situ stress and pore pressure conditions. A weakly consolidated synthetic sandstone specimen and a stronger natural Cheverie sandstone were placed in a triaxial loading cell where axial and confining pressures were maintained constant and pore pressure reductions were applied to induce volumetric pore collapse. During the entire test, acoustic sensors, which had been placed on the apparatus, were subjected to high frequency compressional waves pulsed through the structure and sample. Throughout the test, the authors examined the seismic quality attenuation factor Q, and calculated over a broad frequency range. The proportional relationship between Q and effective stress from past studies was verified by the experimental results obtained. At the point of accelerated mechanical deformation, Q values decreased suddenly. They were proportional to the rate of change in pore volume within the specimen during pore pressure reduction. 13 refs., 8 figs.

  15. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  16. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  17. Acoustic-seismic monitoring of an underground final repository - a measurement project

    When spent fuel from nuclear power plants is deposited without reprocessing, the produced plutonium - which could be used for nuclear weapons - is still contained in it. Thus, safeguards of the International Atomic Energy Agency (IAEA) are needed for final repositories to detect potential access, during and after the emplacement phase. To find out if acoustic and seismic methods can be used to detect undeclared activities in an underground repository in salt, the German Support Programme for the IAEA has tasked us to do measurements in the exploratory mine in Gorleben, a potential site. To gain the source properties we record sound and vibration at several positions underground and at the surface while various mining activities are carried out singly and in parallel. The evaluations will investigate source detection, localisation and recognition.

  18. The effect of two different rooms on acoustical and perceptual measures of SATB choir sound

    Hom, Kathryn S.

    The purpose of this study was to explore the effect of two different rooms (choir rehearsal room, performance hall) on acoustical (LTAS, one-third octave bands) and perceptual (singer [N = 11] survey, listener [N = 33] survey, Pitch Analyzer 2.1) measures of soprano, alto, tenor, and bass (SATB) choir sound. Primary findings of this investigation indicated: (a) significant differences in spectral energy comparisons of choir sound between rooms, (b) choristers' perceptions of hearing and monitoring their own voices differed significantly depending on room, (c) most choristers (82%) perceived that the choir performed best within the Performance Hall, (d) perceived pitch of selected sung vowels within recordings differed significantly based on room conditions, (e) 97% of listeners perceived a difference in choir sound between room recordings, and (f) most listeners (91%) indicated preference for the Rehearsal Room recording.

  19. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Parra, Jorge O.; Hackert, Chris L.; Ni, Qingwen; Collier, Hughbert A.

    2000-09-22

    This report contains eight sections. Some individual subsections contain lists of references as well as figures and conclusions when appropriate. The first section includes the introduction and summary of the first-year project efforts. The next section describes the results of the project tasks: (1) implementation of theoretical relations between effect dispersion and the stochastic medium, (2) imaging analyses using core and well log data, (3) construction of dispersion and attenuation models at the core and borehole scales in poroelastic media, (4) petrophysics and a catalog of core and well log data from Siberia Ridge field, (5) acoustic/geotechnical measurements and CT imaging of core samples from Florida carbonates, and (6) development of an algorithm to predict pore size distribution from NMR core data. The last section includes a summary of accomplishments, technology transfer activities and follow-on work for Phase II.

  20. Measurement of the open porosity of agricultural soils with acoustic waves

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    soil, since there are more voids filled with air and water, increasing the viscous losses. Fellah et al. (2003) showed that porosity can be determined from phase speed and reflection coefficient. The propagation of acoustic waves in soil is investigated to develop a rapid method for the quantification of the porosity level of agricultural soils. In the present contribution, correlations are determined between the acoustic signatures of agricultural soil in function of its structural properties. In laboratory, compression tests are performed on unsaturated soil samples to reproduce different porosity levels. Ultrasonic pulses are sent through the considered samples. The propagated signals are treated in both time and frequency domains in order to determine the speed of the phase velocity and the reflection. Porosity is then determined and compared with water content measured by gravimetric method. Alaoui, A., Lipiec, J. & Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116, pp.1-15. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Aristegui C., Chapelon J.Y., 2003. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America 113 (5), pp 2424-2433 Hamza, M.A. & Anderson, W.K., 2005. Soil compaction in cropping systems. Soil and Tillage Research, 82(2), pp.121-145. Lu, Z., 2005. Role of hysteresis in propagating acousitcs waves in soils. Geophysical Research Letter, pp.32:1-4. Lu, Z., Hickey, C.J. & Sabatier, J.M., 2004. Effects of compaction on the acoustic velocity in soils. Soil Science Society of America Journal, 68(1), pp.7-16. Lu, Z. & Sabatier, J.M., 2009. Effects of soil water potential and moisture content on sound speed. Soil Science Society of America Journal, 73(5), pp.1614-1625. Le Maitre, D.C., Kotzee, I.M. & O'Farrell, P.J., 2014. Impacts of land-cover change on

  1. Temperature compensation of ball surface acoustic wave sensor by two-frequency measurement using undersampling

    Tsuji, Toshihiro; Oizumi, Toru; Takeda, Nobuo; Akao, Shingo; Tsukahara, Yusuke; Yamanaka, Kazushi

    2015-07-01

    To realize a practical two-frequency measurement (TFM) system for precise temperature compensation in a ball surface acoustic wave (SAW) sensor, the application of undersampling (US) was investigated. The subtraction coefficient for the temperature compensation in US was theoretically explained. The principle of the TFM system using US was simulated by the decimation of the oversampling (OS) waveform after applying a narrow band-pass filter, and the delay time was measured using a wavelet transform. In the application of the method to trace moisture measurement, the delay time response due to US matched that due to OS with a correlation coefficient higher than 0.9999. Although rms noise was increased by US, the response to the concentration change of 4-17 nmol/mol was measured with a signal-to-noise ratio higher than 20. From these results, it was shown that the precise output of the ball SAW sensor could be obtained even when using US, which was equivalent to that using OS.

  2. Measurements of high-frequency acoustic scattering from glacially-eroded rock outcrops

    Olson, Derek R; Sæbo, Torstein

    2016-01-01

    Measurements of acoustic backscattering from glacially-eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20$^\\circ$ grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20$^\\circ$ grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supportin...

  3. Correcting acoustic Doppler current profiler discharge measurements biased by sediment transport

    Mueller, D.S.; Wagner, C.R.

    2007-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment on or near the streambed, and is an issue widely acknowledged by the scientific community. The integration of a differentially corrected global positioning system (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias, based on the closure error resulting from a two-way crossing of the river, is presented. The uncertainty in the mean moving-bed velocity measured by the loop method is shown to be approximately 0.6cm/s. For the 13 field measurements presented, the loop method resulted in corrected discharges that were within 5% of discharges measured utilizing DGPS to compensate for moving-bed conditions. ?? 2007 ASCE.

  4. Acoustical environment measurement at a very shallow port: Trial case in Hashirimizu Port

    Ogasawara, Hanako; Mori, Kazuyoshi

    2016-07-01

    Recently, the needs for coastal environment measurement has been increasing for many purposes, such as fishing, weather forecasting, ocean noise measurement for power plants, and coastal security. Acoustical measurement is one of the solutions because it can cover a wide area with few sensors, and it is possible to monitor long term or in real time. In this study, a small-scale reciprocal sound travel experiment was carried out in Hashirimizu Port for coastal environment measurement, such as current speed and water temperature. Since the distance between the surface and the transducer becomes short according to the tidal effect, the direct signal is canceled by the surface-reflected signal under a specific condition. However, even under such a condition, mean water temperature could be estimated from the reciprocal travel time using bottom-reflected signals. The current along the travel path was a reasonable value. It is possible to obtain a special current speed with another reciprocal path, which is in a direction perpendicular to the current travel path.

  5. Measurements of high-frequency acoustic scattering from glacially eroded rock outcrops.

    Olson, Derek R; Lyons, Anthony P; Sæbø, Torstein O

    2016-04-01

    Measurements of acoustic backscattering from glacially eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20° grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20° grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supporting characterization of the environment was performed in the form of geoacoustic and roughness parameter estimates. PMID:27106331

  6. Effects of measurement procedure and equipment on average room acoustic measurements

    Gade, Anders Christian; Bradley, J S; Siebein, G W

    1993-01-01

    . In some of the halls measurements were repeated using the procedures of the other teams to make it possible to separate the effects of different equipment and different procedures. The paper will present position-averaged results from the three teams and will discuss reasons for the differences......This paper reports the results of a measurement tour of nine U.S. concert halls. Three measurements teams, from the University of Florida, the National Research Council of Canada, and the Technical University of Denmark, made parallel sets of measurements using their own equipment and procedures...

  7. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied p...

  8. Acoustic and Perceptual Measurement of Expressive Prosody in High-Functioning Autism: Increased Pitch Range and What it Means to Listeners

    Nadig, Aparna; Shaw, Holly

    2012-01-01

    Are there consistent markers of atypical prosody in speakers with high functioning autism (HFA) compared to typically-developing speakers? We examined: (1) acoustic measurements of pitch range, mean pitch and speech rate in conversation, (2) perceptual ratings of conversation for these features and overall prosody, and (3) acoustic measurements of…

  9. The application of acoustic emission measurements on laboratory testpieces to large scale pressure vessel monitoring

    A test pressure vessel containing 4 artificial defects was monitored for emission whilst pressure cycling to failure. Testpieces cut from both the failed vessel and from as-rolled plate material were tested in the laboratory. A marked difference in emission characteristics was observed between plate and vessel testpieces. Activity from vessel material was virtually constant after general yield and emission amplitudes were low. Plate testpieces showed maximum activity at general yield and more frequent high amplitude emissions. An attempt has been made to compare the system sensitivities between the pressure vessel test and laboratory tests. In the absence of an absolute calibration device, system sensitivities were estimated using dummy signals generated by the excitation of an emission sensor. The measurements have shown an overall difference in sensitivity between vessel and laboratory tests of approximately 25db. The reduced sensitivity in the vessel test is attributed to a combination of differences in sensors, acoustic couplant, attenuation, and dispersion relative to laboratory tests and the relative significance of these factors is discussed. Signal amplitude analysis of the emissions monitored from laboratory testpieces showed that, whith losses of the order of 25 to 30db, few emissions would be detected from the pressure vessel test. It is concluded that no reliable prediction of acoustic behaviour of a structure may be made from laboratory test unless testpieces of the actual structural material are used. A considerable improvement in detection sensitivity, is also required for reliable detection of defects in low strength ductile materials and an absolute method of system calibration is required between tests

  10. Numerical simulation and measurements of acoustic transmissions from Heard Island to the equatorial Indian Ocean

    PrasannaKumar, S.; Navelkar, G.S.; Murty, T.V.R.; Somayajulu, Y.K.; Saran, A.K.; Murty, C.S.

    Simulated acoustic propagation showed a gradual deepening of the ray paths from the southern ocean towards tropics. Also the axis of the sound channel deepens from 150 m to 1600 m. Sudden jumps were noticed in the acoustic ray paths in the vicinity...

  11. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  12. Temperature Measurements on Hot Spots of Power Substations Utilizing Surface Acoustic Wave Sensors

    Cavaco, M. A. M.; Benedet, M. E.; Neto, L. R.

    2011-12-01

    In several applications in the field of metrology, the direct connection of the sensor element with the respective signal-processing unit of the measurement system is not trivial. It can be mentioned, as an example, the measurement of hot points in electric power substations because of the high electrical potential. To solve that problem, two alternatives were studied, one using active surface acoustic wave (SAW) sensors and other using passive SAW tags. For the passive sensor, a SAW radio-frequency identification (RFID) temperature detector was used. That technology is widely applied for typical transport identification (grain transportation, road traffic control), but its application in the field of metrology is innovative. The variation in temperature makes an alteration in the characteristics of the piezoelectric material of the SAW matrix, changing mostly the resonance frequency. Using SAW-RFID, the problem of measuring temperature basically is directed to the identification of the frequency of resonance of the SAW. The use of active SAW sensors has been demonstrated to be much more satisfactory for the solution of such a problem because of the limitation in the range of the passive sensors.

  13. Measurement of the acoustic reflectivity of sirenia (Florida manatees) at 171 kHz.

    Jaffe, Jules S; Simonet, Fernando; Roberts, Paul L D; Bowles, Ann E

    2007-01-01

    The Florida manatee (Trichechus manatus latirostris) is an endangered sirenian. At present, its adult population (approximately 2200) seems stable, but tenuous. Manatee-boat collisions are a significant proportion (approximately 25%) of mortalities. Here, the potential use of active sonar for detecting manatees by quantifying sonic reflectivity is explored. In order to estimate reflectivity two methods were used. One method measured live reflections from captive animals using a carefully calibrated acoustic and co-registered optical system. The other method consisted of the analysis of animal tissue in order to obtain estimates of the sound speed and density and to predict reflectivity. The impedance measurement predicts that for a lateral view, the tissue reflectivity is close to 0.13, with a critical grazing angle of 28 degrees. Data measured from live animals indicate that substantial reflections can be recorded, however in many instances observed "empirical target strengths" were less than an experimentally dependent -48-dB threshold. Conclusions favor the hypothesis that the animals reflect substantial amounts of sound; however, the reflections can often be specular, and therefore impractical for observation by a manatee detection sonar operating at 171 kHz. PMID:17297771

  14. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  15. A Novel Device for Total Acoustic Output Measurement of High Power Transducers

    Howard, S.; Twomey, R.; Morris, H.; Zanelli, C. I.

    2010-03-01

    The objective of this work was to develop a device for ultrasound power measurement applicable over a broad range of medical transducer types, orientations and powers, and which supports automatic measurements to simplify use and minimize errors. Considering all the recommendations from standards such as IEC 61161, an accurate electromagnetic null-balance has been designed for ultrasound power measurements. The sensing element is placed in the water to eliminate errors due to surface tension and water evaporation, and the motion and detection of force is constrained to one axis, to increase immunity to vibration from the floor, water sloshing and water surface waves. A transparent tank was designed so it could easily be submerged in a larger tank to accommodate large transducers or side-firing geometries, and can also be turned upside-down for upward-firing transducers. A vacuum lid allows degassing the water and target in situ. An external control module was designed to operate the sensing/driving loop and to communicate to a local computer for data logging. The sensing algorithm, which incorporates temperature compensation, compares the feedback force needed to cancel the motion for sources in the "on" and "off" states. These two states can be controlled by the control unit or manually by the user, under guidance by a graphical user interface (the system presents measured power live during collection). Software allows calibration to standard weights, or to independently calibrated acoustic sources. The design accommodates a variety of targets, including cone, rubber, brush targets and an oil-filled target for power measurement via buoyancy changes. Measurement examples are presented, including HIFU sources operating at powers from 1 to 100.

  16. Interpretation of acoustic parameters obtained by EMAR measurement for non-destructive hydrogen concentration measurement in Zr alloy

    An obvious quantitative relation between hydrogen concentrations in zirconium alloy and acoustic anisotropy parameters obtained by the electromagnetic acoustic resonance (EMAR) method was reported. To elucidate the mechanism, the acoustic parameters were calculated based on the elastic theory and the equation of motion. The acoustic parameters of obtained by the EMAR method were interpreted quantitatively using the anisotropic elastic constants of the specimen, and value calculated from texture data for non-hydrogen charged specimens showed good agreement with those obtained by the EMAR method. Calculated temperature dependence of the acoustic anisotropy for the non-hydrogen charged specimen also agreed well with that by the EMAR method. The consistencies demonstrated that the absolute values of the acoustic parameters for non-hydrogen charged specimen can be calculated from both the texture data of (0002) pole figure and the elastic constants of the specimen. Hydrogen addition up to approximately 650ppm was found not to change the original (0002) pole figure and, correspondingly, no hydrogen concentration dependence of the acoustic parameters was obtained from the calculation. These results implied that the zirconium hydride itself played an important role for the change in the acoustic parameters of the hydrogen charged specimens, and the importance of obtaining the information on the elastic constants of the zirconium hydride was pointed out. (author)

  17. Vibro-acoustic model of a piezoelectric-based stethoscope for chest sound measurements

    Nelson, G.; Rajamani, R.; Erdman, A.

    2015-09-01

    This article focuses on the influence of noise and vibration on chest sound measurements with a piezoelectric stethoscope. Two types of vibrations, namely inputs through the patient chest and disturbances from the physician, influence the acoustic measurement. The goal of this work is to develop a model to understand the propagation of these vibrational noises through the stethoscope and to the piezoelectric sensing element. Using the model, methods to reduce the influence of disturbances acting on the stethoscope from the physician handling the device are explored. A multi-DOF rigid body vibration model consisting of discrete connected components is developed for the piezoelectric stethoscope. Using a two-port lumped parameter model, the mechanical vibrations are related to the resulting electrical signal. The parameterized state space model is experimentally validated and its parameters are identified by using a thorax simulator and vibration shaker. Based on predictions from the model, the introduction of vibration isolation to reduce the influence of physician noise on the transducer is then pursued. It is shown that direct vibration isolation between the transducer and the rest of the stethoscope structure leads to a reduction in coupling with the patient’s chest. However, if isolation is instead introduced between the transducer housing and the rest of the stethoscope, then vibration isolation from the physician is achieved with far less reduction in patient coupling. Experimental results are presented to study the influence of the proposed design changes and confirm the predicted model behavior.

  18. An assessment of the FlowCapt acoustic sensor for measuring snowdrift in the Indian Himalayas

    R K Das; P Datt; A Acharya

    2012-12-01

    Wind caused snow drifting plays a dominant role in the redistribution of snow mass that restructures a snowpack. Strong wind activity at the mountain tops results in uneven distribution of snow with erosion on windward side and deposition on leeward areas. Such snowdrift events are responsible for the formation of cornices, increase in the loading of avalanche release zones on the leeward side and consequent increase in the level of avalanche hazard. In this paper, we present the results of snowdrift measurement using an acoustic snow-drift meter, the FlowCapt, built by IAV Engineering, which was used during winter seasons of 2007–2010 at a field research station of Snow and Avalanche Study Establishment (SASE) in the western Himalayas. The aim of the study was to evaluate the suitability of the instrument in measuring snowdrift in the Himalayan weather conditions. Results proved the utility of the instrument as a useful tool to study drifting snow in remote areas. However, in the absence of conventional snow gauges for validation, the quality of the absolute snow flux data could not be ascertained.

  19. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  20. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations

  1. Cell Deformation by Single-beam Acoustic Trapping: A Promising Tool for Measurements of Cell Mechanics

    Hwang, Jae Youn; Kim, Jihun; Park, Jin Man; Lee, Changyang; Jung, Hayong; Lee, Jungwoo; Shung, K. Kirk

    2016-06-01

    We demonstrate a noncontact single-beam acoustic trapping method for the quantification of the mechanical properties of a single suspended cell with label-free. Experimentally results show that the single-beam acoustic trapping force results in morphological deformation of a trapped cell. While a cancer cell was trapped in an acoustic beam focus, the morphological changes of the immobilized cell were monitored using bright-field imaging. The cell deformability was then compared with that of a trapped polystyrene microbead as a function of the applied acoustic pressure for a better understanding of the relationship between the pressure and degree of cell deformation. Cell deformation was found to become more pronounced as higher pressure levels were applied. Furthermore, to determine if this acoustic trapping method can be exploited in quantifying the cell mechanics in a suspension and in a non-contact manner, the deformability levels of breast cancer cells with different degrees of invasiveness due to acoustic trapping were compared. It was found that highly-invasive breast cancer cells exhibited greater deformability than weakly-invasive breast cancer cells. These results clearly demonstrate that the single-beam acoustic trapping technique is a promising tool for non-contact quantitative assessments of the mechanical properties of single cells in suspensions with label-free.

  2. Uncertainties in acoustical transfer functions : modeling, measurement and derivation of parameters for airborne and structure-borne sound

    Dietrich, Pascal

    2013-01-01

    Measured transfer functions of acoustic systems are often used to derive single-number parameters. The uncertainty analysis is commonly focused on the derived parameters but not on the transfer function as the primary quantity. This thesis presents an approach to assess the uncertainty contri- butions in these transfer functions by using analytic models. Uncertainties caused by the measurement method are analyzed with a focus on the un- derlying signal processing. In particular, the influence...

  3. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  4. Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening.

    Uloza, Virgilijus; Padervinskis, Evaldas; Vegiene, Aurelija; Pribuisiene, Ruta; Saferis, Viktoras; Vaiciukynas, Evaldas; Gelzinis, Adas; Verikas, Antanas

    2015-11-01

    The objective of this study is to evaluate the reliability of acoustic voice parameters obtained using smart phone (SP) microphones and investigate the utility of use of SP voice recordings for voice screening. Voice samples of sustained vowel/a/obtained from 118 subjects (34 normal and 84 pathological voices) were recorded simultaneously through two microphones: oral AKG Perception 220 microphone and SP Samsung Galaxy Note3 microphone. Acoustic voice signal data were measured for fundamental frequency, jitter and shimmer, normalized noise energy (NNE), signal to noise ratio and harmonic to noise ratio using Dr. Speech software. Discriminant analysis-based Correct Classification Rate (CCR) and Random Forest Classifier (RFC) based Equal Error Rate (EER) were used to evaluate the feasibility of acoustic voice parameters classifying normal and pathological voice classes. Lithuanian version of Glottal Function Index (LT_GFI) questionnaire was utilized for self-assessment of the severity of voice disorder. The correlations of acoustic voice parameters obtained with two types of microphones were statistically significant and strong (r = 0.73-1.0) for the entire measurements. When classifying into normal/pathological voice classes, the Oral-NNE revealed the CCR of 73.7% and the pair of SP-NNE and SP-shimmer parameters revealed CCR of 79.5%. However, fusion of the results obtained from SP voice recordings and GFI data provided the CCR of 84.60% and RFC revealed the EER of 7.9%, respectively. In conclusion, measurements of acoustic voice parameters using SP microphone were shown to be reliable in clinical settings demonstrating high CCR and low EER when distinguishing normal and pathological voice classes, and validated the suitability of the SP microphone signal for the task of automatic voice analysis and screening. PMID:26162450

  5. Measurement of surface acoustic wave velocity using phase shift mask and application on thin film of thermoelectric material

    Li, Dongyao; Zhao, Peng; Gunning, Noel; Johnson, David; Zhao, Ji-Cheng; Cahill, David

    2014-03-01

    We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements and apply this method, in combination with conventional picosecond acoustics, to determine a subset of the elastic constants of thin films of semiconducting misfit layered compounds. SAWs with a wavelength of 700 nm are generated and detected using an elastomeric polydimethylsiloxane (PDMS) phase-shift mask which is fabricated using a commercially-available Si grating as a mold. The velocity of SAWs of [(SnSe)1.04]m[MoSe2]n synthesized by elemental reactants show subtle variations in their elastic constants as a function of m and n. Precise measurements of elastic constants will enable a better understanding of interfacial stiffness in nanoscale multilayers and the effects of phonon focusing on thermal conductivity.

  6. A comparison of airway dimensions, measured by acoustic reflectometry and ultrasound before and after general anaesthesia.

    Ushiroda, J; Inoue, S; Kirita, T; Kawaguchi, M

    2014-12-01

    Changes in airway dimensions can occur during general anaesthesia and surgery for a variety of reasons. This study explored factors associated with postoperative changes in airway dimensions. Patient airway volume was measured by acoustic reflectometory and neck muscle diameter by ultrasound echography in the pre- and post-anaesthetic periods in a total of 281 patients. Neck circumference was also assessed during these periods. A significant decrease in median (IQR [range]) total airway volume (from 63.8 (51.8-75.7 [14.7-103]) ml to 45.9 (33.5-57.2 [6.4-96.3]) ml, p muscle diameter (from 4.3 (3.3-5.6 [2.2-9.0]) mm to 5.8 (4.7-7.3 [2.8-1.3]) mm, p intra-oral space can significantly decrease and neck thickness increase after general anaesthesia, and might increase the risk of difficult laryngoscopy and intubation if airway management is required after extubation following general anaesthesia. PMID:25123382

  7. Using infrared cameras, fuzzy logic and acoustic temperature measurement to improve combustion in MWCs

    Daimer, P.; Schaefers, W.; Hartenstein, H.U.; Licata, A.

    1998-07-01

    A significant step for the improvement of firing rate and combustion control is the use of infrared thermography. Such a system has been successfully applied by L. and C. Steinmuller GmbH (Steinmuller) a long period of time at the Stapelfele municipal waste combustor (MWC) located in Germany. A camera installed on the boiler top casing supplies instantaneous information on the combustion conditions on the grate. In the event of undesired changes in firing position or firing length, countermeasures may be instituted immediately. A control system based on fuzzy logic, divided into several stage each of which includes a short-term and a long-term strategy, has been developed for this purpose. This system reduces fluctuations during combustion to an unavoidable minimum. The acoustic temperature measurement system installed in the first pass of the boiler provides valuable information about the temperature distribution in the zone. This allows the control room operator to adjust the distribution of secondary air to the front and rear row of nozzles so that uniform temperature and flow distribution are maintained at all times. Both installations allow the firing system to operate at more optimized conditions which results in such positive effects as reduced emissions and increased steam production.

  8. Detection of atmospheric acoustic-gravity waves through ionospheric measurements using dense GPS arrays

    Calais, E.; Haase, J. S.; Minster, B.

    2003-12-01

    The Global Positioning System (GPS) is now widely used to measure ionospheric electron content at both global and regional scales. It is also capable of detecting small-scale high-frequency ionospheric disturbances caused by atmospheric acoustic-gravity waves. We show examples of ionospheric perturbations caused by earthquakes, rocket launches, and large surface explosions. The neutral atmospheric waves triggered by these events couple with the motion of free electrons and ionized plasma at ionospheric heights and induce coherent fluctuations of electron densities and ionization layer boundaries that are detectable with GPS. In all cases, the ionospheric perturbations match fairly well observations made through other techniques as well as numerical models. The development of permanent networks of densely spaced and continuously recording GPS stations open up new opportunities for the study of infrasonic waves in the atmosphere and their coupling with small scale processes in the ionosphere. We show examples of infrasonic waves detected using the 250-station GPS network that covers the Los Angeles area (SCIGN). Although the signal-to-noise ratio of these perturbations is relatively small, we show that it can be considerably improved by multi-station array processing techniques derived from seismic array analysis. These techniques can also be used to determine the perturbation propagation azimuth and velocity and, eventually, to recover information about the sources of these perturbations.

  9. Three dimensional measurements of Geodesic Acoustic Mode with correlation Doppler reflectometers

    Correlation Doppler reflectometers have been newly developed in the HL-2A Tokamak. Owing to the flexibility of the diagnostic arrangements, the multi-channel systems allow us to study, simultaneously, the radial properties of edge turbulence and its long-range correlation in both the poloidal and toroidal direction. With these reflectometers, three-dimensional spatial structure of Geodesic Acoustic Mode (GAM) is surveyed, including the symmetric feature of Er fluctuations in both poloidal and toroidal directions, and the radial propagation of GAMs. The bi-coherence analysis for the Er fluctuations suggests that the three-wave nonlinear interaction could be the mechanism for the generation of GAM. The temporal evolution of GAM during the plasma density modulation experiments has been studied. The results show that the collisional damping plays a role in suppressing the GAM magnitudes, and hence, weakening the regulating effects of GAM on ambient turbulence. Three dimensional correlation Doppler measurements of GAM activity demonstrate that the newly developed correlation Doppler reflectometers in HL-2A are powerful tools for edge turbulence studies with high reliability. A shorter version of this contribution is due to be published in PoS at: ''1st EPS conference on Plasma Diagnostics''

  10. Method for Estimating the Acoustic Pressure in Tissues Using Low-Amplitude Measurements in Water.

    Keravnou, Christina P; Izamis, Maria-Louisa; Averkiou, Michalakis A

    2015-11-01

    The aim of this study was to evaluate a simple, reliable and reproducible method for accuracy in estimating the acoustic pressure delivered in tissue exposed to ultrasound. Such a method would be useful for therapeutic applications of ultrasound with microbubbles, for example, sonoporation. The method is based on (i) low-amplitude water measurements that are easily made and do not suffer from non-linear propagation effects, and (ii) the attenuation coefficient of the tissue of interest. The range of validity of the extrapolation method for different attenuation and pressure values was evaluated with a non-linear propagation theoretical model. Depending on the specific tissue attenuation, the method produces good estimates of pressures in excess of 10 MPa. Ex vivo machine-perfused pig liver tissue was used to validate the method for source pressures up to 3.5 MPa. The method can be used to estimate the delivered pressure in vivo in diagnostic and therapeutic applications of ultrasound. PMID:26320668

  11. Measuring the parameters of sea-surface roughness by underwater acoustic systems: discussion of the device concept

    Karaev, V. Yu.; Kanevsky, M. B.; Meshkov, E. M.

    2011-02-01

    We consider the concept of an underwater acoustic wave gauge designed to measure statistical characteristics of sea-surface roughness. It is proposed to be based on a centimeter-wave underwater sonar sending probing signals vertically upwards. It is shown that the use of three antennas in such a system is sufficient to measure all statistical second-order moments of sea roughness which is large-scale compared with the acoustic-radiation wavelength. This method can be used for the first time to measure the sea wave parameters which determine the characteristics of the reflected radar signals. The proposed acoustic wave gauge can be used as an independent measuring device, as well as an additional underwater unit of a conventional sea buoy. This will allow one to increase the amount of information about surface waves, which is received from the buoy, at a minimal cost and will make it possible to calibrate new remote sounding systems capable of measuring the variance of sea-surface slopes.

  12. Measurement of acoustic and anatomic changes in oral and maxillofacial surgery patients

    Aalto, Daniel; Aaltonen, Olli; Happonen, Risto-Pekka; Jääsaari, Päivi; Kivelä, Atle; Kuortti, Juha; Luukinen, Jean-Marc; Malinen, Jarmo; Murtola, Tiina; Parkkola, Riitta; Saunavaara, Jani; Soukka, Tero; Vainio, Martti

    2013-01-01

    We describe an arrangement for simultaneous recording of speech and geometry of vocal tract in patients undergoing surgery involving this area. Experimental design is considered from an articulatory phonetic point of view. The speech and noise signals are recorded with an acoustic-electrical arrangement. The vocal tract is simultaneously imaged with MRI. A MATLAB-based system controls the timing of speech recording and MR image acquisition. The speech signals are cleaned from acoustic MRI noi...

  13. Measurement of acoustic input impedance of the human vocal tract models

    Radolf, Vojtěch; Dlask, P.; Otčenášek, Z.

    Prague : Institute of Thermomechanics ASCR, v. v. i., 2013 - (Zolotarev, I.), s. 51-58 ISBN 978-80-87012-49-9. [Interaction and Feedbacks 2013 /20./. Prague (CZ), 26.11.2013-27.11.2013] R&D Projects: GA ČR GPP101/12/P579 Institutional support: RVO:61388998 Keywords : biomechanics of voice * human vocal tract * acoustic impedance Subject RIV: BI - Acoustics

  14. Comparison of Computed and Measured Acoustic Input Impedance of the Human Vocal Tract Models

    Radolf, Vojtěch; Horáček, Jaromír

    Salt Lake City : National Center for Voice and Speech, University of Utah, 2014. s. 68-68. [International Conference on Voice Physiology and Biomechanics /9./. 10.04.2014-12.04.2014, Salt Lake City] R&D Projects: GA ČR GPP101/12/P579 Institutional support: RVO:61388998 Keywords : biomechanics of voice * human vocal tract * acoustic input impedance * phonation into tubes Subject RIV: BI - Acoustics

  15. Logopenic and nonfluent variants of primary progressive aphasia are differentiated by acoustic measures of speech production.

    Ballard, Kirrie J; Savage, Sharon; Leyton, Cristian E; Vogel, Adam P; Hornberger, Michael; Hodges, John R

    2014-01-01

    Differentiation of logopenic (lvPPA) and nonfluent/agrammatic (nfvPPA) variants of Primary Progressive Aphasia is important yet remains challenging since it hinges on expert based evaluation of speech and language production. In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis of apraxia of speech in nfvPPA. Forty-one patients (21 lvPPA, 20 nfvPPA) were recruited from a consecutive sample with suspected frontotemporal dementia. Patients were diagnosed using the current gold-standard of expert perceptual judgment, based on presence/absence of particular speech features during speaking tasks. Seventeen healthy age-matched adults served as controls. MRI scans were available for 11 control and 37 PPA cases; 23 of the PPA cases underwent amyloid ligand PET imaging. Measures, corresponding to perceptual features of apraxia of speech, were periods of silence during reading and relative vowel duration and intensity in polysyllable word repetition. Discriminant function analyses revealed that a measure of relative vowel duration differentiated nfvPPA cases from both control and lvPPA cases (r(2) = 0.47) with 88% agreement with expert judgment of presence of apraxia of speech in nfvPPA cases. VBM analysis showed that relative vowel duration covaried with grey matter intensity in areas critical for speech motor planning and programming: precentral gyrus, supplementary motor area and inferior frontal gyrus bilaterally, only affected in the nfvPPA group. This bilateral involvement of frontal speech networks in nfvPPA potentially affects access to compensatory mechanisms involving right hemisphere homologues. Measures of silences during reading also discriminated the PPA and control groups, but did not increase predictive accuracy. Findings suggest that a measure of relative vowel duration from of a polysyllable word repetition task

  16. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  17. Measured sound speeds and acoustic nonlinearity parameter in liquid water up to 523 K and 14 MPa

    Sturtevant, Blake T.; Pantea, Cristian; Sinha, Dipen N.

    2016-07-01

    Sound speed in liquid water at temperatures between 275 and 523 K and pressures up to 14 MPa were experimentally determined using a high temperature/high pressure capable acoustic resonance cell. The measurements enabled the determination of the temperature and pressure dependence of sound speed and thus the parameter of acoustic nonlinearly, B/A, over this entire P-T space. Most of the sound speeds measured in this work were found to be within 0.4% of the IAPWS-IF97 formulation, an international standard for calculating sound speed in water as a function of temperature and pressure. The values for B/A determined at laboratory ambient pressure and at temperatures up to 356 K, were found to be in general agreement with values calculated from the IAPWS-IF97 formulation. Additionally, B/A at 293 K was found to be 4.6, in agreement with established literature values.

  18. Measurement of the Dispersion of Thermal Ion-Acoustic Fluctuations in High-Temperature Laser Plasmas Using Multiple-Wavelength Thomson Scattering

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas

  19. Measurement of the dispersion of thermal ion-acoustic fluctuations in high-temperature laser plasmas using multiple wavelength Thomson-scattering

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employed multiple color Thomson scattering to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. They demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas

  20. Measurement of the dispersion of thermal ion-acoustic fluctuations in high-temperature laser plasmas using multiple-wavelength Thomson scattering.

    Froula, D H; Davis, P; Divol, L; Ross, J S; Meezan, N; Price, D; Glenzer, S H; Rousseaux, C

    2005-11-01

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas. PMID:16383991

  1. Applicability of acoustic Doppler devices for flow velocity measurements and discharge estimation in flows with sediment transport

    Nord, Guillaume; F. Gallart; Gratiot, N.; Soler, M.; Reid, Ian; Vachtman, Dina; Latron, Jerome; Martín-Vide, J. P.; Laronne, J. B.

    2014-01-01

    Acoustic Doppler devices (Unidata Starflow) have been deployed for velocity measurements and discharge estimates in five contrasted open-channel flow environments, with particular attention given to the influence of sediment transport on instrument performance. The analysis is based on both field observations and flume experiments. These confirm the ability of the Starflow to provide reliable discharge time-series, but point out its limitations when sediment is being transported. (i) After ca...

  2. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  3. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  4. Acoustic measurements of the boiling stability tests on THORS sodium loop

    Acoustic data of boiling stability tests on the THORS (Thermal-Hydraulic Out-of-Reactor Safety) facility were obtained using three sodium-immersible high temperature microphones. The data was analyzed in both the time and frequency domains and provides the following information: (1) the acoustic signal due to sodium boiling was clearly observed; (2) the signal level and the repetition rate of boiling pulses are directly proportional to the applied heat flux; (3) a typical boiling pulse consists of a high frequency signal due mainly to the bubble collapses and a low frequency void oscillation; (4) the frequency spectra of the boiling and background pulses can be mostly assigned to various acoustic resonance frequencies of the THORS loop

  5. Acoustic Doppler Current Profiler Measurements in the Tailrace at John Day Dam

    Cook, Chris B.; Dibrani, Berhon; Serkowski, John A.; Richmond, Marshall C.; Titzler, P. Scott; Dennis, Gary W.

    2006-01-30

    Acoustic Doppler current profilers (ADCPs) were used to measure water velocities in the tailrace at John Day Dam over a two-week period in February 2005. Data were collected by the Pacific Northwest National Laboratory for the Hydraulic Design Section, Portland District, U.S. Army Corps of Engineers (USACE). The objective of this project was therefore to collect field measurements of water velocities in the near-field draft tube exit zone as well as the far-field tailrace to be used for improving these models. Field data were collected during the project using five separate ADCPs. Mobile ADCP data were collected using two ADCPs mounted on two separate boats. Data were collected by either holding the boat on-station at pre-defined locations for approximately 10 minutes or in moving transect mode when the boat would move over large distances during the data collection. Results from the mobile ADCP survey indicated a complex hydrodynamic flow field in the tailrace downstream of John Day Dam. A large gyre was noted between the skeleton section of the powerhouse and non-spilling portion of the spillway. Downstream of the spillway, the spillway flow is constrained against the navigation lock guide wall, and large velocities were noted in this region. Downstream of the guide wall, velocities decreased as the spillway jet dispersed. Near the tailrace island, the flow split was measured to be approximately equal on Day 2 (25.4 kcfs spillway/123 kcfs total). However, approximately 60% of the flow passed along the south shore of the island on Day 1 (15.0 kcfs spillway/150 kcfs total). At a distance of 9000 ft downstream of the dam, flows had equalized laterally and were generally uniform over the cross section. The collection of water velocities near the draft tube exit of an operating turbine unit is not routine, and equipment capable of measuring 3D water velocities in these zones are at the forefront of hydraulic measurement technology. Although the feasibility of

  6. Acoustic velocity measurement by means of Laser Doppler Velocimetry: Development of an Extended Kalman Filter and validation in free-field measurement

    Le Duff, Alain; Plantier, Guy; Valière, Jean C.; Gazengel, Bruno

    2016-03-01

    A signal processing technique, based on the use of an Extended Kalman Filter, has been developed to measure sound fields by means of Laser Doppler Velocimetry in weak flow. This method allows for the parametric estimation of both the acoustic particle and flow velocity for a forced sine-wave excitation where the acoustic frequency is known. The measurements are performed from the in-phase and the quadrature components of the Doppler downshifted signal thanks to an analog quadrature demodulation technique. Then, the estimated performance is illustrated by means of Monte-Carlo simulations obtained from synthesized signals and compared with asymptotic and analytical forms for the Cramer-Rao Bounds. Results allow the validity domain of the method to be defined and show the availability for free-field measurements in a large range. Finally, an application based on real data obtained in free field is presented.

  7. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings

    Wisniewska, Danuta Maria; Teilmann, Jonas; Hermannsen, Line;

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic fi eld experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal’s orientation in the sound fi eld affect the reliability of on-animal rec......In recent years, several sound and movement recording tags have been developed to sample the acoustic fi eld experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal’s orientation in the sound fi eld affect the reliability of on...

  8. Measurement of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials

    Chao, G; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the excitation of the surface modes. A fast Fourier transform-Prony-spectral ratio method is implemented to transform the data from the time-space domain to the frequency-wave-number domain. Frequency-de...

  9. Measurement of acoustic and anatomic changes in oral and maxillofacial surgery patients

    Aalto, Daniel; Happonen, Risto-Pekka; Jääsaari, Päivi; Kivelä, Atle; Kuortti, Juha; Luukinen, Jean-Marc; Malinen, Jarmo; Murtola, Tiina; Parkkola, Riitta; Saunavaara, Jani; Soukka, Tero; Vainio, Martti

    2013-01-01

    We describe an arrangement for simultaneous recording of speech and geometry of vocal tract in patients undergoing surgery involving this area. Experimental design is considered from an articulatory phonetic point of view. The speech and noise signals are recorded with an acoustic-electrical arrangement. The vocal tract is simultaneously imaged with MRI. A MATLAB-based system controls the timing of speech recording and MR image acquisition. The speech signals are cleaned from acoustic MRI noise by a non-linear signal processing algorithm. Finally, a vowel data set from pilot experiments is compared with validation data from anechoic chamber as well as with Helmholtz resonances of the vocal tract volume.

  10. Acoustic emission measurements of PWR weld material with inserted defects using advanced instrumentation

    Twenty-one steel tensile specimens containing realistic welding defects have been monitored for acoustic emission during loading to failure. A new design of broad frequency bandwidth point contact transducer was used and the resulting signal captured using a high speed transient recording system. The data was analysed using the techniques of statistical pattern recognition to separate different types of signals. The results show that it is possible to separate true acoustic emission from background noise and to distinguish between certain types of defect. (author)

  11. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings.

    Wisniewska, Danuta M; Teilmann, Jonas; Hermannsen, Line; Johnson, Mark; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz. PMID:26611092

  12. Measurement of Baryon Acoustic Oscillations in the Lyman-alpha Forest Fluctuations in BOSS Data Release 9

    Slosar, Anže; Kirkby, David; Bailey, Stephen; Busca, Nicolás G; Delubac, Timothée; Rich, James; Bhardwaj, Vaishali; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brownstein, Joel; Carithers, Bill; Croft, Rupert A C; Dawson, Kyle S; Font-Ribera, Andreu; Goff, J -M Le; Ho, Shirley; Honscheid, Klaus; Lee, Khee-Gan; Margala, Daniel; McDonald, Patrick; Medolin, Bumbarija; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M; Roe, Yodovina Piškur N A; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Sheldon, Erin S; Seljak, Uroš; Viel, Matteo; Weinberg, David H; Yèche, Christophe

    2013-01-01

    We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-alpha forest flux fluctuations at a redshift z=2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard LCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100x(alpha_iso-1) = -1.6 ^{+2.0+4.3+7.4}_{-2.0-4.1-6.8} (stat.) +/- 1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat LCDM with Omega_m=0.27, h=0...

  13. Subjective evaluation of a concert hall's acoustics using a free-format-type questionnaire and comparison with objective measurements

    Okano, Toshiyuki; Beranek, Leo L.

    2002-11-01

    A free-format type of audiences' judgment of the acoustical properties of a hall and music critics' writings were used as the basis for this study. These subjective responses are related to the Dai-Ichi Seimei Hall in Tokyo. This hall is an oval-shaped, one-balcony space, seating 767 persons. Its primary use is for various types of chamber music and solo-instrument performances. Eight acoustical attributes were investigated, ''reverberation,'' ''clarity,'' ''loudness,'' ''intimacy,'' ''spaciousness,'' ''balance,'' ''localization,'' and ''timbre,'' plus ''general impression.'' Subjective comments about these attributes were obtained. Objective measurements were made in the hall and are compared with those made in several similar-sized halls of two shapes. In the rear seats of two oval-shaped halls the strength factor GE (determined in the first 80 ms of the impulse response) was greater than the GE found in the rear seats of similar-sized rectangular halls. The subjective results and the objective measurements were closely correlated, especially for reverberation, clarity, and warmth (a subcomponent of timbre). It was suggested that the greater strength GE in the rear seats made the hall seem smaller and thus more intimate. The subjective comments also confirmed the hall's wide applicability, indicating that the acoustical characteristics used for its design were well chosen.

  14. Shallow Water Acoustic Laboratory

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  15. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  16. Digital stroboscopic holographic interferometry for power flow measurements in acoustically driven membranes

    Keustermans, William; Pires, Felipe; De Greef, Daniël; Vanlanduit, Steve J. A.; Dirckx, Joris J. J.

    2016-06-01

    Despite the importance of the eardrum and the ossicles in the hearing chain, it remains an open question how acoustical energy is transmitted between them. Identifying the transmission path at different frequencies could lead to valuable information for the domain of middle ear surgery. In this work a setup for stroboscopic holography is combined with an algorithm for power flow calculations. With our method we were able to accurately locate the power sources and sinks in a membrane. The setup enabled us to make amplitude maps of the out-of-plane displacement of a vibrating rubber membrane at subsequent instances of time within the vibration period. From these, the amplitude maps of the moments of force and velocities are calculated. The magnitude and phase maps are extracted from this amplitude data, and form the input for the power flow calculations. We present the algorithm used for the measurements and for the power flow calculations. Finite element models of a circular plate with a local energy source and sink allowed us to test and optimize this algorithm in a controlled way and without the present of noise, but will not be discussed below. At the setup an earphone was connected with a thin tube which was placed very close to the membrane so that sound impinges locally on the membrane, hereby acting as a local energy source. The energy sink was a little piece of foam carefully placed against the membrane. The laser pulses are fired at selected instants within the vibration period using a 30 mW HeNe continuous wave laser (red light, 632.8 nm) in combination with an acousto-optic modulator. A function generator controls the phase of these illumination pulses and the holograms are recorded using a CCD camera. We present the magnitude and phase maps as well as the power flow measurements on the rubber membrane. Calculation of the divergence of this power flow map provides a simple and fast way of identifying and locating an energy source or sink. In conclusion

  17. Analysis of acoustic reflectors for SAW temperature sensor and wireless measurement of temperature

    In this study, a wireless and non power SAW (surface acoustic wave) temperature sensor was developed. The single inter digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on 128.deg rot-X LiNbO3 piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to 80.deg.C and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99

  18. Non destructive inner pressure measurement for industrial irradiated nuclear fuel rods using focused acoustic sensors

    The objective of this work was to develop a non destructive acoustic method giving an easy access to two important pieces of information in the irradiated fuel rods: the pressure and the composition of the internal gas mixture in the upper plenum of a standard LWR fuel rod. A first attempt started in 1993 made possible the development of a focused sensor, able to inject acoustic power from a piezoelectric transducer, through the fuel rod cladding and to excite the internal gas mixture. However, the initial problem was not totally solved because of the presence of the upper spring in the LWR fuel rod. This spring mainly induced a large decrease in the acoustic amplitude response and this solution was not applicable. The method has been revised recently for several aspects: the design of the sensor to optimize the acoustic power injection through the cladding rod, and the entire experimental protocol, including the signal processing in the time and frequency spaces. A single λ/2 layer (instead of the standard solution in λ/4) of low impedance material (compared to the transducer and tube wall impedance) as water, was found to be a better matching layer

  19. Multi-point measurement of the acoustic particle velocity using a novel laser measurement method; Mehrpunktmessungen der Schallschnelle mittels neuartigem Lasermessverfahren

    Haufe, Daniel; Schluessler, Raimund; Fischer, Andreas; Buettner, Lars; Czarske, Juergen [Technische Univ. Dresden (Germany). Professur fuer Mess- und Prueftechnik

    2012-07-01

    Reducing aircraft noise requires the analysis of the complex interaction between flow and sound phenomena in jet engine dampers. Therefore a Doppler global velocimeter with laser frequency modulation is used for the first time for the multi-point measurement of the acoustic particle velocity in a Kundt's tube. As a result, particle velocity amplitudes within the hearing range have been resolved, the minimal measurement uncertainty amounts to 3 mm/s at a measurement period of 1 s. The measurement technique has high potential in respect of analyzing and optimizing jet engine dampers. (orig.)

  20. A Century of Acoustic Metrology

    Rasmussen, Knud

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  1. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  2. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  3. Simulation and measurement of different hydrophone components for acoustic particle detection; Simulation und Messung verschiedener Hydrophonkomponenten zur akustischen Teilchendetektion

    Salomon, K.S.

    2007-01-26

    A study of piezoceramics as sensitive elements for the use in acoustical astroparticle physics is presented in this work. This study aims to develop underwater microphones (hydrophones) in order to detect thermoacoustic sound pulses, which are produced in neutrino interactions. The sensitive elements of the acoustical detectors, the piezo ceramics, are under investigation in this work. Therefore the equations of a piezo are solved in simulations to derive its macroscopic properties. Especially the impedance and the displacement of the piezo as response to applied voltage are of interest. This is correlated with the electrical and mechanical answer of a piezo when sending. For receiving the resulting voltage or the electrical charge due to applied stress are of interest. In the present studies cylinder and hollow cylinder were analyzed. Insight of the interrelationship between the displacement and the impedance is given. The impedance is fitted with an equivalent circuit, to derive the mechanical analog properties. Furthermore the effect of the piezo geometry to the resonance frequencies is explored. Further calculations were made to reveal the sound field produced by a piezo. Measurements of the impedance with a phase-gain-analyser are made. On the other side the displacement is measured using optical interferometry. Beside the simulation and measurements of the piezosensitive elements a study for a trigger-algorithm using the crosscorrelation is introduced. In this study in situ measurements with low signal amplitudes are used to describe noise. To this noise data signals were added and it was examined how well the signals can be reconstructed. Based on the result of this work and taking commercial available piezoceramic materials into account, the optimal sensitive element of an acoustic neutrino detector is a PZT-5A disc with a diameter of 5 mm and a height of 10 mm. A single detector of this kind is able to detect neutrinos with energies more then one PeV as it

  4. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    Zhiqun Deng; Mark Weiland; Thomas Carlson; M. Brad Eppard

    2010-01-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was ...

  5. Comparison of computed and measured acoustic characteristics of an artificially lengthened vocal tract

    Radolf, Vojtěch; Horáček, Jaromír; Laukkanen, A. M.

    Firenze : Firenze University, 2013 - (Manfredi, C.), s. 51-53 ISBN 978-88-6655-469-1. [Models and Analysis of Vocal Emissions for Biomedical Applications /8./. Firenze (IT), 16.12.2013-18.12.2013] R&D Projects: GA ČR GPP101/12/P579 Institutional support: RVO:61388998 Keywords : biomechanics of voice * phonation into tubes * formant frequency Subject RIV: BI - Acoustics

  6. Measurement of vibration, flow and acoustic characteristics of a human larynx replica

    Horáček, Jaromír; Bula, Vítězslav; Radolf, Vojtěch; Vampola, T.; Dušková, Miroslava

    Brno : Brno University of Technology, 2014 - (Fuis, V.), s. 224-227 ISBN 978-80-214-4871-1. ISSN 1805-8248. [Engineering Mechanics 2014 /20./. Svratka (CZ), 12.05.2014-15.05.2014] R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61388998 ; RVO:61389013 Keywords : fluid-structure interaction * flutter * biomechanics of voice modeling * phonation Subject RIV: BI - Acoustics; CD - Macromolecular Chemistry (UMCH-V)

  7. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study

    Poortinga, A.; Minnen, van, P.; Riksen, M.J.P.M.; Seeger, M.

    2010-01-01

    Research objective In this study, we test two passive traps (BEST sampler and MWAC sampler) and one acoustic device (saltiphone) in an aeolian sand wind tunnel to investigate how the experimental setup and the subsequent data processing affect the quantification of the aeolian sand flux. Type of research: Empirical research Method of data collection: Wind tunnel experiments Data comprises: - Wind velocity - Mass transport per height for different samplers - Analogue output of Saltiphone - Mas...

  8. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Мaryna O. Golofeyeva

    2015-12-01

    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  9. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264+52-37 m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample of simulated

  10. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    Schunck, Matthias

    2011-10-07

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264{sup +52} {sub -37} m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample

  11. Relationships between preference ratings, sensory profiles, and acoustical measurements in concert halls.

    Kuusinen, Antti; Pätynen, Jukka; Tervo, Sakari; Lokki, Tapio

    2014-01-01

    Preferences of concert hall acoustics are explored with preference mapping. The investigation is performed on previously gathered data from individual vocabulary profiling of nine concert halls and three pieces of symphonic music, namely, excerpts of compositions by Beethoven, Bruckner, and Mozart. Individual preferences are regressed onto a latent three-dimensional sensory space obtained by multiple factor analysis of descriptive sensory data. Overlaying individually estimated preference surfaces onto one another produces preference maps which illustrates both the overall preference of the stimuli as well as differences between individual listeners. A comparison of the maps between music motifs illustrates how each music signal affects the weighting of different acoustical qualities in preference judgments. Differences in preferences between individuals are pronounced in the excerpts of Beethoven and Bruckner, while the responses are more homogeneous for Mozart music motif. Overall, proximity is identified as the main aspect associated with preference, but also loudness, envelopment, and bass are important. A correlation analysis of objective parameters and subjective perceptions substantiates the importance of lateral sound energy for good concert hall acoustics. Particularly, the lateral early energy fraction at high frequencies is found to be associated with the perception of proximity, and hence, also with preference. PMID:24437764

  12. Ion acoustic wave velocity measurement of the concentration of two ion species in a multi-dipole plasma

    The concentration of two species in a multi-dipole plasma was determined by measuring the ion acoustic wave group velocity and the electron temperature. The wave was launched from a grid immersed in the plasma and was detected by a Langmuir probe. Electron temperature was found separately from an I--V characteristic trace. The measurements were performed in helium/xenon and argon/xenon plasmas. Typical parameters of the plasma were Te∼0.5--3eV, density 1010cm-3, plasma potential of 3--5 V, and pressure range from 1 to 20 mTorr. The accuracy of the measurement was from 2% to 4% depending on the mass difference between the two species and how accurately the group velocity and electron temperature are measured

  13. Simultaneous measurement of acoustic pressure and temperature in the HIFU fields using all-silica fiber optic Fabry-Perot hydorophone

    Wang, Dai-Hua; Zeng, Lu-Yu; Jia, Ping-Gang; Liu, Lei; Jiang, Xin-Yin

    2014-11-01

    Accurately measuring the acoustic pressure distributions and the size of the focal regions of high-intensity focused ultrasound (HIFU) fields, as well as the temperature induced by the HIFUs, are significant for ensuring the efficiency and safety of treatments. In our previous work, a tip-sensitive all-silica fiber-optic Fabry-Perot (TAFOFP) ultrasonic hydrophone for measuring HIFU fields is developed. In this paper, we explore the possibility that utilizing the TAFOFP ultrasonic hydrophone to simultaneously measure the acoustic pressure of HIFU fields and the induced temperature. The TAFOFP ultrasonic hydrophone for simultaneously measuring the acoustic pressure and temperature is developed and the experiment setup for measuring the HIFU fields based on the developed TAFOFP ultrasonic hydrophone is established. The developed TAFOFP ultrasonic hydrophone is experimentally tested in the degassed water and tissue phantom to verify the possibility of simultaneously measuring the acoustic pressure and temperature. Experimental results show that the sensing system can simultaneously measure the acoustic pressure and temperature.

  14. Development of the velocity and the temperature measurement of fluid by using electromagnetic acoustic transducers without contact. Final report

    The purpose of the investigation is to measure the velocity and the temperature of fluid from the outside of piping by using electromagnetic acoustic transducers without contact i.e. dry condition. We developed these transducers such as transmitters and detectors for this purpose. The distribution of the static magnetic flux and the eddy current was also calculated. The calculation results were shown that a self-exciter type detector had high measurement resolution and low output voltage with increasing the distance between the surface of piping and the detector, compared with a external exciter type detector. The performance of the transducers was investigated from the propagation characteristics such as the sonic speed and the amplitude of the output voltage. All of detectors received the ultrasonic waves, when the piezoresonator was used as a transmitter. However, the detectors of the external exciter type and the self-external type could not receive the ultrasonic waves transmitted by the electromagnetic transmitter due to the low output voltage obtained by smaller size of the detectors. The acoustic velocity for water from the temperature between 10degC and 70degC was investigated by using the electromagnetic transmitter and detectors. The result was good agreement with the reference. On the other hands, the measurement of the fluid velocity could not achieved due to the low output voltage. (author)

  15. Acoustic vector sensor signal processing

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  16. Perceptual identification and acoustic measures of the resonant voice based on "Lessac's Y-Buzz"--a preliminary study with actors.

    Barrichelo, Viviane M O; Behlau, Mara

    2007-01-01

    This study aimed to verify whether the resonant voice based on Lessac's Y-Buzz can be perceived by listeners as resonant and different from habitual voice and to compare them to determine whether this sound exploration improves the vocal production. Nine newly graduated actors, six men and three women without voice complaints, were the subjects. They received a session of Lessac's Y-Buzz training from the primary investigator. Before training, they were asked to sustain the vowel /i/ at comfortable frequency and habitual loudness. After training, they were requested to sustain the Y-Buzz they had learned at a comfortable frequency and habitual loudness. Three speech-language pathologists (SLP) trained in voice developed an auditory-perceptive analysis. The pre- and posttraining voice samples were randomly spliced together, edited, and presented in pairs to perceptual judges who were asked to identify the most resonant of the pair. The voice samples were also acoustically compared through the Hoarseness Diagram and acoustic measures using the VoxMetria Software (CTS, version 2.0s, Brazil). The Y-Buzz trials were identified as resonant voice in 74% of the comparisons. The acoustic measures showed a statistically significant decrease of irregularity (P = 0.002) and shimmer (P = 0.38). The Hoarseness Diagram demonstrated how the resonant voice moved toward the normality for irregularity and noise components. The results showed that the resonant voice based on the Y-Buzz can be identified as resonant and different from normal voicing in the same subject, and it apparently implies a better vocal production demonstrating a significant decrease of shimmer and irregularity through the Hoarseness Diagram evaluation. PMID:16458480

  17. Elastic properties of boron carbide films via surface acoustic waves measured by Brillouin light scattering

    Salas, E.; Jimenez-Villacorta, F.; Jimenez Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Sanchez-Marcos, J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Munoz-Martin, A.; Prieto, J.E.; Joco, V. [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2013-03-15

    Surface acoustic wave (SAW) velocity has been determined by high resolution Brillouin light scattering to study the mechano-elastic properties of boron carbide films prepared by radio frequency (RF) sputtering. The comparison of experimentally observed elastic behaviour with simulations made by considering film composition obtained from elastic recoil detection analysis-time of flight (ERDA-ToF) spectroscopy allows establishing that elastic properties are determined by that of crystalline boron carbide with a lessening of the SAW velocity values due to surface oxidation. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. A METHODOLOGY TO INTEGRATE MAGNETIC RESONANCE AND ACOUSTIC MEASUREMENTS FOR RESERVOIR CHARACTERIZATION

    Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson

    2002-09-20

    The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the

  19. Measurements of the Absorption and Scattering Cross Sections for the Interaction of Solar Acoustic Waves with Sunspots

    Zhao, Hui; Chou, Dean-Yi

    2016-05-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0-5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n. The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n, while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n. This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.

  20. Long-term measurements of acoustic background noise in very deep sea

    Riccobene, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy)], E-mail: riccobene@lns.infn.it

    2009-06-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km{sup 3}-scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.

  1. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    Friedt, J.-M [SENSeOR, 32 Avenue de l' Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l' Observatoire, 25044 Besancon (France)

    2010-01-15

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  2. AST Launch Vehicle Acoustics

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  3. Vibro-acoustics

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  4. Handbook of Engineering Acoustics

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  5. Acoustic lenses

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  6. Comparison of acoustic doppler current profiler and Price AA mechanical current meter measurements made during the 2011 Mississippi River Flood

    O'Brien, Patrick; Mueller, David; Pratt, Thad

    2012-01-01

    The Mississippi River and Tributaries project performed as designed during the historic 2011 Mississippi River flood, with many of the operational decisions based on discharge targets as opposed to stage. Measurement of discharge at the Tarbert Landing, Mississippi range provides critical information used in operational decisions for the floodways located in Louisiana. Historically, discharge measurements have been made using a Price AA current meter and the mid-section method, and a long record exists based on these types of measurements, including historical peak discharges. Discharge measurements made using an acoustic Doppler current profiler from a moving boat have been incorporated into the record since the mid 1990's, and are used along with the Price AA mid-section measurements. During the 2011 flood event, both methods were used and appeared to provide different results at times. The apparent differences between the measurement techniques are due to complex hydrodynamics at this location that created large spatial and temporal fluctuations in the flow. The data and analysis presented herein show the difference between the two methods to be within the expected accuracy of the measurements when the measurements are made concurrently. The observed fluctuations prevent valid comparisons of data collected sequentially or even with different observation durations.

  7. Validation of HF radar probing of the vertical shear of surface currents by acoustic Doppler current profiler measurements

    Ivonin, Dmitry V.; Broche, Pierre; Devenon, Jean-Luc; Shrira, Victor I.

    2004-04-01

    There exists no practical way of measuring vertical shear in the water just below the air/sea interface that contains information on air/water momentum fluxes. The paper is concerned with the validation of a recently proposed method of remote sensing of sea subsurface shear by means of a commonly used single-frequency HF radar based on the use of the second-order Bragg echo. To this end a dedicated field experiment was carried out off the French Mediterranean coast. In parallel with the HF radar probing, the independent simultaneous measurements of the subsurface shear profile were obtained by means of acoustic Doppler current profiler mounted on a floating platform, whose position was monitored by GPS. The comparison shows a fairly good agreement of the results (the discrepancy does not exceed 15%) and suggests a higher accuracy of the HF probing.

  8. Study of baryon acoustic oscillations with SDSS DR12 data and measurement of $\\Omega_\\textrm{DE}(a)$

    Hoeneisen, B

    2016-01-01

    We define Baryon Acoustic Oscillation (BAO) distances $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on cosmological parameters. These BAO distances are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From these BAO distances alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the cosmological parameters in several scenarios. We find $4.3 \\sigma$ tension between the BAO plus $\\theta_\\textrm{MC}$ data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$. Releasing one and/or the other of these constraints obtains agreement with the data. We measure $\\Omega_\\textrm{DE}(a)$ as a function of $a$.

  9. Measurement of baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9

    Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton NY 11375 (United States); Iršič, Vid [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Kirkby, David; Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bailey, Stephen; Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Busca, Nicolás G.; Aubourg, Éric; Bautista, Julian E. [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Delubac, Timothée; Rich, James; Goff, J.-M. Le [CEA, Centre de Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Bhardwaj, Vaishali [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 09195 (United States); Bolton, Adam S.; Brownstein, Joel; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Croft, Rupert A.C.; Ho, Shirley [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Font-Ribera, Andreu, E-mail: anze@bnl.gov [Institute of Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); and others

    2013-04-01

    We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-α flux fluctuations at a redshift z{sub eff} = 2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard ΛCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100 × (α{sub iso} − 1) = −1.6{sup +2.0+4.3+7.4}{sub −2.0−4.1−6.8} (stat.) ±1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat ΛCDM with Ω{sub m} = 0.27, h = 0.7). When fitting separately for the radial and transversal dilation factors we find marginalised constraints 100 × (α{sub ||} − 1) = −1.3{sup +3.5+7.6+12.3}{sub −3.3−6.7−10.2} (stat.) ±2.0 (syst.) and 100 × (α{sub p}erpendicular − 1) = −2.2{sup +7.4+17}{sub −7.1−15} (stat.) ±3.0 (syst.). The dilation factor measurements are significantly correlated with cross-correlation coefficient of ∼ −0.55. Errors become significantly non-Gaussian for deviations over 3 standard deviations from best fit value. Because of the data cuts and analysis method, these measurements give tighter constraints than a previous BAO analysis of the BOSS DR9 Lyman-α sample, providing an important consistency test of the standard cosmological model in a new redshift regime.

  10. Measurement of baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9

    We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-α flux fluctuations at a redshift zeff = 2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard ΛCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100 × (αiso − 1) = −1.6+2.0+4.3+7.4−2.0−4.1−6.8 (stat.) ±1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat ΛCDM with Ωm = 0.27, h = 0.7). When fitting separately for the radial and transversal dilation factors we find marginalised constraints 100 × (α|| − 1) = −1.3+3.5+7.6+12.3−3.3−6.7−10.2 (stat.) ±2.0 (syst.) and 100 × (αperpendicular − 1) = −2.2+7.4+17−7.1−15 (stat.) ±3.0 (syst.). The dilation factor measurements are significantly correlated with cross-correlation coefficient of ∼ −0.55. Errors become significantly non-Gaussian for deviations over 3 standard deviations from best fit value. Because of the data cuts and analysis method, these measurements give tighter constraints than a previous BAO analysis of the BOSS DR9 Lyman-α sample, providing an important consistency test of the standard cosmological model in a new redshift regime

  11. Measurement and mathematical simulation of acoustic characteristics of an artificially lengthened vocal tract

    Radolf, Vojtěch; Horáček, Jaromír; Dlask, P.; Otčenášek, Z.; Geneid, A.; Laukkanen, A. M.

    2016-01-01

    Roč. 366, March (2016), s. 556-570. ISSN 0022-460X R&D Projects: GA ČR GAP101/12/P579 Institutional support: RVO:61388998 Keywords : phonation into tube * formant frequency * vocal tract soft tissues Subject RIV: BI - Acoustics Impact factor: 1.813, year: 2014 http://ac.els-cdn.com/S0022460X15010044/1-s2.0-S0022460X15010044-main.pdf?_tid=1d2a1018-fb12-11e5-929f-00000aacb362&acdnat=1459849272_9b0eeba9c5bf00711fff044c537e50e1

  12. Acoustic and Perceptual Measurements of Prosody Production on the Profiling Elements of Prosodic Systems in Children by Children with Autism Spectrum Disorders

    Diehl, Joshua John; Paul, Rhea

    2013-01-01

    Prosody production atypicalities are a feature of autism spectrum disorders (ASDs), but behavioral measures of performance have failed to provide detail on the properties of these deficits. We used acoustic measures of prosody to compare children with ASDs to age-matched groups with learning disabilities and typically developing peers. Overall,…

  13. Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod

    A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried out successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a non-destructive technique to easily carry out the measurement of the internal gas pressure and gas composition (mainly Helium-Xenon mixture, with a small amount of Krypton) of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now 5 bars on the pressure measurement result and 0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results (destructive sampling). Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. The sensor-operating characteristics have not been altered by a two-year exposure in the hot cell conditions. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)

  14. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  15. Non-contact acoustic emission measurement for condition monitoring of bearings in rotating machines using laser interferometry

    For advanced maintenance and safety in nuclear power plants, it is necessary to combine various technologies that are used to monitor the status of different equipment. Non-contact measurement methods offer technical advantages over contact measurement methods, such as the ability to perform spot measurements, adapt to high-temperature environments, and inspect dynamic parts. The acoustic emission (AE) method can detect earlier abnormal signs in bearings than vibration analysis, which is commonly used in power plants. The AE method is also able to detect various other events such as wear and leakage of materials. However, currently, non-contact AE measurement is not used for condition monitoring in power plants. To verify the feasibility of a non-contact AE measurement method using laser interferometry for condition monitoring technology, laboratory tests were conducted using a rotating machine fitted with bearings that had deliberately been made defective. The AE signals propagating from these defects were measured using a Michelson interferometer on the rotating polished shaft, and a piezoelectric sensor positioned on the bearing housing. This paper demonstrates that the non-contact AE method can detect various stages of deterioration in bearings, and therefore, the method can be considered as a useful future tool for condition monitoring of bearings in rotating machines. (author)

  16. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    P. Mokrý

    2015-02-01

    Full Text Available The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH. The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV. The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  17. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling

    Hoffmann, F.; Nguyen-Manh, D.; Gilbert, M. R.; Beck, C. E.; Eliason, J. K.; Maznev, A. A.; Liu, W.; Armstrong, D. E.J.; Nelson, K. A.; Dudarev, S. L.

    2015-02-26

    Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in aW-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.

  18. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling

    Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations

  19. Communication Acoustics

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  20. Ocean acoustic hurricane classification.

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  1. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  2. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  3. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  4. Observations of near-inertial waves in acoustic Doppler current profiler measurements made during the Mixed Layer Dynamics Experiment

    Chereskin, T. K.; Levine, M. D.; Harding, A. J.; Regier, L. A.

    1989-06-01

    Measurements of upper ocean shear made during the Mixed Layer Dynamics Experiment (MILDEX) provide evidence of large horizontal scale motion at near-inertial frequency. The measurements consist of shipboard acoustic Doppler current profiles. Four large-scale spatial surveys of 2-4 days duration were made by the R/V Wecoma as a set of boxes approximately 60 km per side around a drifting current meter buoy. Velocity time series from the drifting buoy and from sonar measurements made from FLIP also indicated the presence of motions at near-inertial frequency. Horizontal length and time scales of the motion are estimated from the phase of the shear vector measured during the spatial surveys. Estimates of the length scale of the waves range from 500 to 1000 km, and the frequency is approximately 1.1f. The behavior of the phase is found to be consistent with a model of narrow-band inertial waves with vertical structure such that there is a zero crossing in velocity at the base of the mixed layer (40-60 m).

  5. Relationship Between Distortion Product – Otoacoustic Emissions (DPOAEs) and High-Frequency Acoustic Immittance Measures

    De Paula Campos, Ualace; Hatzopoulos, Stavros; Śliwa, Lech K.; Skarżyński, Piotr H.; Jędrzejczak, Wiesław W.; Skarżyński, Henryk; Carvallo, Renata Mota Mamede

    2016-01-01

    Background Pathologies that alter the impedance of the middle ear may consequently modify the DPOAE amplitude. The aim of this study was to correlate information from 2 different clinical procedures assessing middle ear status. Data from DPOAE responses (both DP-Gram and DP I/O functions) were correlated with data from multi-component tympanometry at 1000 Hz. Material/Methods The subjects were divided into a double-peak group (DPG) and a single-peak group (SPG) depending on 1000 Hz tympanogram pattern. Exclusion criteria (described in the Methods section) were applied to both groups and finally only 31 ears were assigned to each group. The subjects were also assessed with traditional tympanometry and behavioral audiometry. Results Compared to the single-peak group, in terms of the 226 Hz tympanometry data, subjects in the DPG group presented: (i) higher values of ear canal volume; (ii) higher peak pressure, and (iii) significantly higher values of acoustic admittance. DPOAE amplitudes were lower in the DPG group only at 6006 Hz, but the difference in amplitude between the DPG and SPG groups decreased as the frequency increased. Statistical differences were observed only at 1001 Hz and a borderline difference at 1501 Hz. In terms of DPOAE I/O functions, significant differences were observed only in 4 of the 50 tested points. Conclusions The 1000-Hz tympanometric pattern significantly affects the structure of DPOAE responses only at 1001 Hz. In this context, changes in the properties of the middle ear (as detected by the 1000 Hz tympanometry) can be considered as prime candidates for the observed variability in the DP-grams and the DP I/O functions. PMID:27299792

  6. Neutral temperature and electron-density measurements in the lower E region by vertical HF sounding in the presence of an acoustic wave

    An acoustic wave generated at ground level and propagating vertically through the lower ionosphere produces partial reflections of radio waves transmitted by a vertical sounder. The Doppler effect of the radio wave, produced by the acoustic wave motion, depends on the properties of the ionosphere and of the atmosphere. We show that this permits the determination of both the neutral-temperature and the electron-density profiles of the lower E region. The accuracy and the advantages of this method are discussed, and some experimental results are compared with those of other measurement techniques

  7. Relation of Structural and Vibratory Kinematics of the Vocal Folds to Two Acoustic Measures of Breathy Voice Based on Computational Modeling

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…

  8. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  9. Prediction of acoustic comfort and acoustic silence in Goan Catholic churches

    Menino A. S. M. P. Tavares; S. Rajagopalan; Satish J. Sharma; António P. O. Carvalho

    2009-01-01

    Acoustic Comfort and Acoustic Silence are determinants of tranquility in a worship space. The results presented here are part of a study that investigates the behaviour of acoustically constituted worship parameters in six Catholic churches (Goa, India). Acoustic comfort is quantified through an Acoustic Comfort Impression Index which measures the net comfort induced through the optimization of the desired subjective acoustic impressions for different types of music and different music source...

  10. Anal acoustic reflectometry

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  11. Room acoustic auralization with Ambisonics

    Polack, Jean-Dominique; Leão Figueiredo, Fábio

    2012-01-01

    International audience During the year of 2009, the room acoustics group of the LAM (Équipe Lutheries, Acoustique, Musique de l’Institut Jean Le Rond d’Alembert - Université Pierre et Marie Curie, Paris) performed a series of acoustical measurements in music halls in Paris. The halls were chosen in regarding their importance to the historic, architectural or acoustic domains. The measured ensemble of fourteen rooms includes quite different architectural designs. The measurements were carri...

  12. A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy

    2010-01-01

    In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.

  13. Acoustic and combined methods for measuring the levels of two-layer liquids

    Bardyshev, V. I.

    2002-09-01

    Methods for the simultaneous measurement of the levels of light and heavy liquid phases in a tank by using electroacoustic transducers, temperature sensors, and hydrostatic pressure gauges are considered. According to the calculations, the measurement of the levels of, e.g., oil, petroleum products, and underlying water is possible with relative standard errors of the order of 0.1 1%.

  14. Combined Environment Acoustic Chamber (CEAC)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  15. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    Vinogradov, A. [Laboratory for the Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation); Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490 (Russian Federation); Yasnikov, I. S. [Laboratory for the Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation); Estrin, Y. [Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490 (Russian Federation); Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

  16. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

  17. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  18. Acoustic remote sensing of ocean flows

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  19. High Performance Acousto-Optic Arrays based on Fiber Bragg Gratings for Measuring Launch Acoustics Project

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations in acousto-optic sensor development for measurement of launch...

  20. Acoustic velocity measurement across the diameter of a liquid metal column

    Calder, C.A.; Wilcox, W.W.

    1978-05-15

    Present techniques for measuring sound velocity in liquid metals have been limited by the use of transducers which cannot survive in extreme temperature conditions. These methods also require relatively long measurement times. An optical noncontacting method has been developed which may be used for extremely short experimental times and very high temperatures and pressures. This technique is being incorporated into an isobaric expansion apparatus in which a 1 mm diam wire sample in a high pressure argon gas environment is resistively heated to melt within a time period of only a few microseconds. Before instability of the liquid column occurs, thermal expansion, enthalpy, and temperature are measured. The addition of the sound velocity measurement permits a more complete determination of the thermophysical properties of the liquid metal.

  1. Acoustic measurement of lubricant-film thickness distribution in ball bearings

    Zhang, J.; Drinkwater, B. W.; Dwyer-Joyce, R.S.

    2006-01-01

    An oil-film thickness monitoring system capable of providing an early warning of lubrication failure in rolling element bearings has been developed. The system is used to measure the lubricant-film thickness in a conventional deep groove ball bearing (shaft diameter 80 mm, ball diameter 12.7 mm). The measurement system comprises a 50 MHz broadband ultrasonic focused transducer mounted on the static outer raceway of the bearing. Typically the lubricant-films in rolling element bearings are bet...

  2. Acoustic cloaking and transformation acoustics

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  3. Acoustic cloaking and transformation acoustics

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  4. The acoustics of public squares/places: A comparison between results from a computer simulation program and measurements in situ

    Paini, Dario; Rindel, Jens Holger; Gade, Anders;

    2004-01-01

    not completely closed and not completely open, with highly reflecting and partially diffusing vertical surfaces (the facades) and with one totally absorbing surface (the sky). A natural application of these results will be the possibility to detect the best position for a sound source (typically an...... orchestra or a band during, for instance, music summer festivals) and the best position for the audience. A further result could be to propose some acoustic adjustments to achieve better acoustic quality by considering the acoustic parameters which are typically used for concert halls and opera houses....

  5. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  6. Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging

    Objectives: To evaluate the feasibility and age-related changes of shear wave velocity (SWV) in normal livers, kidneys, and spleens of children using acoustic radiation force impulse (ARFI) imaging. Materials and methods: Healthy pediatric volunteers prospectively underwent abdominal ultrasonography and ARFI. The subjects were divided into three groups according to age: group 1: <5 years old; group 2: 5–10 years old; and group 3: >10 years old. The SWV was measured using a 4–9 MHz linear probe for group 1 and a 1–4 MHz convex probe for groups 2 and 3. Three valid SWV measurements were acquired for each organ. Results: Two hundred and two children (92 male, 110 female) with an average age of 8.1 years (±4.7) were included in this study and had a successful measurement rate of 97% (196/202). The mean SWVs were 1.12 m/s for the liver, 2.19 m/s for the right kidney, 2.33 m/s for the left kidney, and 2.25 m/s for the spleen. The SWVs for the right and left kidneys, and the spleen showed age-related changes in all children (p < 0.001). And the SWVs for the kidneys increased with age in group 1, and those for the liver changed with age in group 3. Conclusions: ARFI measurements are feasible for solid abdominal organs in children using high or low frequency probes. The mean ARFI SWV for the kidneys increased according to age in children less than 5 years of age and in the liver, it changed with age in children over 10

  7. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  8. Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    González, Manuel Á.; González, Miguel Á.

    2016-07-01

    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life.

  9. Numerical spatial marching techniques in duct acoustics. [noise source calculation from far field pressure measurements

    Baumeister, K. J.

    1979-01-01

    Direct calculation of the internal structure of a ducted noise source from farfield pressure measurements is regarded as an initial value problem, where the pressure and pressure gradient (farfield impedance) are assumed to be known along a line in the farfield. If pressure and impedance are known at the boundary of the farfield, the pressure can be uniquely determined in the vicinity of the inlet and inside the inlet ducting. A marching procedure is developed which, with this information obtained from measurements, enables a description of a ducted noise source. The technique uses a finite difference representation of the homogeneous Helmholtz equation.

  10. Device for acoustic measurement of food texture using a piezoelectric sensor

    Taniwaki, Mitsuru; Hanada, Takanori; Sakurai, Naoki

    2006-01-01

    We have developed a device that enables direct measurement of food texture. The device inserts a probe into a food sample and detects the vibration caused by the sample's fracture. A piezoelectric sensor was used to detect that vibration. The frequency response of the piezoelectric sensor was measured. Results showed that the sensor covered the full audio frequency range up to 20 kHz. The device probe was designed so that its resonance was not in the signal detection band. An octave multi-fil...

  11. Acoustical Imaging

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  12. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  13. Operating limits for acoustic measurement of rolling bearing oil film thickness

    Dwyer-Joyce, R.S.; Reddyhoff, T.; Drinkwater, B.

    2004-01-01

    An ultrasonic pulse striking a thin layer of liquid trapped between solid bodies will be partially reflected. The proportion reflected is a function of the layer stiffness, which in turn depends on the film thickness and its bulk modulus. In this work, measurements of reflection have been used to determine the thickness of oil films in elastohydrodynamic lubricated (EHL) contacts. A very thin liquid layer behaves like a spring when struck by an ultrasonic pulse. A simple quasi-static spring m...

  14. Operating Limits for Acoustic Measurement of Rolling Bearing Oil Film Thickness

    Dwyer-Joyce, R.S.; Reddyhoff, T.; Drinkwater, B.

    2004-01-01

    An ultrasonic pulse striking a thin layer of liquid trapped between solid bodies will be partially reflected. The proportion reflected is a function of the layer stiffness, which in turn depends on the film thickness and its bulk modulus. In this work, measurements of reflection have been used to determine the thickness of oil films in elastohydrodynamic lubricated (EHL) contacts. A very thin liquid layer behaves like a spring when struck by an ultrasonic pulse. A simple quasi-static spring m...

  15. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    Skliar, Mikhail [Univ. of Utah, Salt Lake City, UT (United States)

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmental temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested

  16. Thickness measurement of steel products with EMAT's (electromagnetic acoustic transducers) at temperatures up to 12000C

    In ferritic steel specimen the effect of phase transitions can be observed in the sound velocity and in the efficiency of ultrasonic generation in the temperature range up to 10000C. Especially above this temperature the decrease in sound velocity can be reliably compensated to measure the thickness of the specimen from the echo transit time. To reduce the lift-off effect of the EMAT, which deteriorates the signal to noise ratio especially in the region of high ultrasonic damping at temperatures above 10000C, it is proposed to guide the probes independently of the magnet close the surface of the specimen. (orig./HP)

  17. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units

  18. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben [Acoustics Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  19. Acoustic telemetry.

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  20. Acoustic Center or Time Origin?

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  1. Radiation acoustics

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  2. Monitoring the viscosity of diesel engine lubricating oil by using acoustic emission technique, the selection of measurement parameters

    Acoustic emission technique has been developed through years of monitoring and diagnosis of bearing, but it is still new in the diagnosis and monitoring of lubrication oil to bearings drive. The propagation of acoustic emission signal is generated when the signal piston on the cylinder liner lubricating oil which is a par. The signal is analyzed in time domain to obtain the parameters of root mean squared, amplitude, energy and courtesy. Lubricant viscosity will undergo changes due to temperature, pressure and useful. This study focuses on the appropriate parameters for the diagnosis and monitoring of lubricating oil viscosity. Studies were conducted at a constant rotational speed and temperature, but use a different age. The results showed that the energy parameter is the best parameter used in this monitoring. However, this parameter cannot be used directly and it should be analyzed using mathematical formulas. This mathematical formula is a relationship between acoustic emission energy with the viscosity of lubricating oil. (author)

  3. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  4. Bayesian three-dimensional reconstruction of toothed whale trajectories: passive acoustics assisted with visual and tagging measurements.

    Laplanche, Christophe

    2012-11-01

    The author describes and evaluates a Bayesian method to reconstruct three-dimensional toothed whale trajectories from a series of echolocation signals. Localization by using passive acoustic data (time of arrival of source signals at receptors) is assisted by using visual data (coordinates of the whale when diving and resurfacing) and tag information (movement statistics). The efficiency of the Bayesian method is compared to the standard minimum mean squared error statistical approach by comparing the reconstruction results of 48 simulated sperm whale (Physeter macrocephalus) trajectories. The use of the advanced Bayesian method reduces bias (standard deviation) with respect to the standard method up to a factor of 8.9 (13.6). The author provides open-source software which is functional with acoustic data which would be collected in the field from any three-dimensional receptor array design. This approach renews passive acoustics as a valuable tool to study the underwater behavior of toothed whales. PMID:23145606

  5. Densitometry By Acoustic Levitation

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  6. Practical acoustic emission testing

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  7. Truck acoustic data analyzer system

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  8. Quantitative measurements of acoustical beats by means of the 'improper' use of sound card software

    Ganci, S [Museo di Fisica e Meteo-sismologia ' G Sanguineti-G Leonardini' , Piazza N S dell' Orto, 8, 16043 Chiavari (Italy)

    2007-11-15

    Low-cost experiments on acoustical beats are carried out on a personal computer using standard software for a sound card in a non-canonical way, which provides a useful teaching method for a traditional classroom experiment. (letters and comments)

  9. Auto-inflammatory challenge of the endolymphatic sac - Cochlear damage measured by distortion product oto-acoustic emissions

    Larsen, Michael; Friis, Morten; Karlsen, Charlotte Vestrup;

    2015-01-01

    CONCLUSION: Twenty-five rats were challenged by an immunologic attack of the endolymphatic sac. After 6 months, distortion product oto-acoustic emissions (DPOAE) revealed a dysfunction of the outer hair cells and immunological active cells were observed in the endolymphatic sac. This information ...

  10. Air-pressure, vocal fold vibration and acoustic characteristics of phonation during vocal exercising. - Part 1: Measurement in vivo

    Radolf, Vojtěch; Laukkanen, A. M.; Horáček, Jaromír; Liu, D.

    2014-01-01

    Roč. 21, č. 1 (2014), s. 53-59. ISSN 1802-1484 R&D Projects: GA ČR GPP101/12/P579 Institutional support: RVO:61388998 Keywords : biomechanics of voice * subglottal * oral and transglottal pressure * electroglottography * phonation into tubes Subject RIV: BI - Acoustics

  11. Battlefield acoustics

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  12. Acoustical Imaging

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  13. Acoustic telemetry

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive...

  14. Acoustics Research

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  15. Acoustic detection of pneumothorax

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  16. The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering

    Erhard, Klaus; Potthast, Roland

    2003-10-01

    We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.

  17. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  18. Direct measurements of the ion acoustic decay instability in a laser-produced, large-scale, hot plasma

    The ion acoustic decay instability has been investigated using UV collective Thomson scattering (CTS) in a large scale (∼1 mm) and hot (∼1 keV) plasma relevant to laser fusion. The instability was found to be easily excited. The spectrum of the electron plasma wave is consistent with simple theory. Collective Thomson scattering is shown to be a good tool for diagnosing the local electron temperature

  19. Bayesian three-dimensional reconstruction of toothed whale trajectories: Passive acoustics assisted with visual and tagging measurements

    Laplanche, Christophe

    2012-01-01

    International audience The author describes and evaluates a Bayesian method to reconstruct three-dimensional toothed whale trajectories from a series of echolocation signals. Localization by using passive acoustic data (time of arrival of source signals at receptors) is assisted by using visual data (coordinates of the whale when diving and resurfacing) and tag information (movement statistics). The efficiency of the Bayesian method is compared to the standard minimum mean squared error st...

  20. 声悬浮及声速测定实验仪的设计%Acoustic levitation and design of sound velocity measurement instrument

    马国利

    2012-01-01

    《声速测定》是大学物理实验中比较普遍的一个综合性实验.在声速测定实验仪的基础上,改进了信号源,并制作了声悬浮配件,使其实现既可以用多种方式测量声速,又可演示声悬浮实验现象.声悬浮及声速测定实验仪悬浮稳定性强,声速测定准确,仪器造价低,使用方便,这样设计节省了实验室资源和空间.%The measurement of sound velocity is a commonly comprehensive experiment among university physics experiments. Our design idea is to, based on the original equipment, improve the signal source and make acoustic levitation parts so as to measure sound velocity in different ways; and demonstrate the experimental phenomena of acoustic levitation. The sound velocity measurement experiment instrument has strong levitation stability, accurate sound velocity measurement, low cost and convenient applications. This design saves laboratory resources and space.

  1. Acoustic emission

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  2. Calculation fundamentals for sensitive elements of acoustic transformers of deformation

    Acoustic method of deformation measurement is considered, and the foundations of the calculation of sensitive elements of acoustic transformers of deformations are given. Acoustic method gives the possibility to measure deformations in almost inaccessible places, for example, in a reactor core. A sensible element transforming deformation into acoustic signal is the constriction of waveguide. Working characteristics and shapes of sensitive elements of an acoustic transformer of linear and angular displacements are presented

  3. Development of Millimeter-Wave Velocimetry and Acoustic Time-of-Flight Tomography for Measurements in Densely Loaded Gas-Solid Riser Flow

    Fort, James A.; Pfund, David M.; Sheen, David M.; Pappas, Richard A.; Morgen, Gerald P.

    2007-04-01

    The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involved flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser

  4. Elastic properties of lotus-type porous iron: acoustic measurement and extended effective-mean-field theory

    We studied the elastic properties of lotus-type porous iron experimentally and theoretically. First we determined the elastic constants of lotus iron fabricated by the continuous zone-melting method by using the acoustic resonance techniques. All the elastic moduli are found to follow the well-known power-law formula. Next, we extended the effective-mean-field (EMF) theory so as to consider effects of the pore orientation on the effective elastic constants. The model calculations proved that the extended EMF theory is capable of calculating satisfactorily the elastic properties of lotus metals

  5. Acoustic Absorption in Porous Materials

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  6. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  7. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M.; Hurd, Randy C.; Truscott, Tadd T.; Guthrie, W. Spencer

    2014-02-01

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  8. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials

  9. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  10. Acoustic effects of single electrostatic discharges

    Orzech, Łukasz

    2015-10-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(pa) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details.

  11. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young’s moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  12. The noise environment of a school classroom due to the operation of utility helicopters. [acoustic measurements of helicopter noise during flight over building

    Hilton, D. A.; Pegg, R. J.

    1974-01-01

    Noise measurements under controlled conditions have been made inside and outside of a school building during flyover operations of four different helicopters. The helicopters were operated at a condition considered typical for a police patrol mission. Flyovers were made at an altitude of 500 ft and an airspeed of 45 miles per hour. During these operations acoustic measurements were made inside and outside of the school building with the windows closed and then open. The outside noise measurements during helicopter flyovers indicate that the outside db(A) levels were approximately the same for all test helicopters. For the windows closed case, significant reductions for the inside measured db(A) values were noted for all overflights. These reductions were approximately 20 db(A); similar reductions were noted in other subjective measuring units. The measured internal db(A) levels with the windows open exceeded published classroom noise criteria values; however, for the windows-closed case they are in general agreement with the criteria values.

  13. Factors associated with the impossibility to obtain reliable liver stiffness measurements by means of Acoustic Radiation Force Impulse (ARFI) elastography—Analysis of a cohort of 1031 subjects

    Bota, Simona, E-mail: bota_simona1982@yahoo.com; Sporea, Ioan, E-mail: isporea@umft.ro; Sirli, Roxana, E-mail: roxanasirli@gmail.com; Popescu, Alina, E-mail: alinamircea.popescu@gmail.com; Danila, Mirela, E-mail: mireladanila@gmail.com; Jurchis, Ana, E-mail: ana.jurchis@yahoo.com; Gradinaru-Tascau, Oana, E-mail: bluonmyown@yahoo.com

    2014-02-15

    Introduction: Acoustic Radiation Force Impulse (ARFI) elastography is a non-invasive technique for liver fibrosis assessment. Aim: To assess the feasibility of ARFI elastography in a large cohort of subjects and to identify factors associated with impossibility to obtain reliable liver stiffness (LS) measurements by means of this technique. Methods: Our retrospective study included 1031 adult subjects with or without chronic liver disease. In each subject LS was assessed by means of ARFI elastography. Failure of ARFI measurements was defined if no valid measurement was obtained after at least 10 shots and unreliable in the following situations: fewer than 10 valid shots; or median value of 10 valid measurements with a success rate (SR) < 60% and/or an interquartile range interval (IQR) ≥ 30%. Results: Failure of LS measurements by means of ARFI was observed in 4 subjects (0.3%), unreliable measurements in 66 subjects (6.4%), so reliable measurements were obtained in 961 subjects (93.3%). In univariant analysis, the following risk factors were associated with failed and unreliable measurements: age over 58 years (OR = 0.49; 95% CI 0.30–0.80, p = 0.005), male gender (OR = 0.58; 95% CI 0.34–0.94, p = 0.04), BMI > 27.7 kg/m{sup 2} (OR = 0.23, 95% CI 0.13–0.41, p < 0.0001). In multivariate analysis all the factors mentioned above were independently associated with the risk of failed and unreliable measurements. Conclusions: Reliable LS measurements by means of ARFI elastography were obtained in 93.3% of cases. Older age, higher BMI and male gender were associated with the risk of failed and unreliable measurements, but their influence is limited as compared with Transient Elastography.

  14. Factors associated with the impossibility to obtain reliable liver stiffness measurements by means of Acoustic Radiation Force Impulse (ARFI) elastography—Analysis of a cohort of 1031 subjects

    Introduction: Acoustic Radiation Force Impulse (ARFI) elastography is a non-invasive technique for liver fibrosis assessment. Aim: To assess the feasibility of ARFI elastography in a large cohort of subjects and to identify factors associated with impossibility to obtain reliable liver stiffness (LS) measurements by means of this technique. Methods: Our retrospective study included 1031 adult subjects with or without chronic liver disease. In each subject LS was assessed by means of ARFI elastography. Failure of ARFI measurements was defined if no valid measurement was obtained after at least 10 shots and unreliable in the following situations: fewer than 10 valid shots; or median value of 10 valid measurements with a success rate (SR) < 60% and/or an interquartile range interval (IQR) ≥ 30%. Results: Failure of LS measurements by means of ARFI was observed in 4 subjects (0.3%), unreliable measurements in 66 subjects (6.4%), so reliable measurements were obtained in 961 subjects (93.3%). In univariant analysis, the following risk factors were associated with failed and unreliable measurements: age over 58 years (OR = 0.49; 95% CI 0.30–0.80, p = 0.005), male gender (OR = 0.58; 95% CI 0.34–0.94, p = 0.04), BMI > 27.7 kg/m2 (OR = 0.23, 95% CI 0.13–0.41, p < 0.0001). In multivariate analysis all the factors mentioned above were independently associated with the risk of failed and unreliable measurements. Conclusions: Reliable LS measurements by means of ARFI elastography were obtained in 93.3% of cases. Older age, higher BMI and male gender were associated with the risk of failed and unreliable measurements, but their influence is limited as compared with Transient Elastography

  15. Profile measurements and data from the 2011 Optics, Acoustics, and Stress In Situ (OASIS) project at the Martha's Vineyard Coastal Observatory

    Sherwood, Christopher R.; Dickhudt, Patrick J.; Martini, Marinna A.; Montgomery, Ellyn T.; Boss, Emmanuel S.

    2012-01-01

    This report documents data collected by the U.S. Geological Survey (USGS) for the Coastal Model Applications and Field Measurements project under the auspices of the U.S. Navy Office of Naval Research Optics, Acoustics, and Stress In Situ (OASIS) Project. The objective of the measurements was to relate optical and acoustic properties of suspended particles to changes in particle size, concentration, and vertical distribution in the bottom boundary layer near the seafloor caused by wave- and current-induced stresses. This information on the physics of particle resuspension and aggregation and light penetration and water clarity will help improve models of sediment transport, benthic primary productivity, and underwater visibility. There is well-established technology for acoustic profiling, but optical profiles are more difficult to obtain because of the rapid attenuation of light in water. A specially modified tripod with a moving arm was designed to solve this problem by moving instruments vertically in the bottom boundary layer, between the bottom and about 2 meters above the seafloor. The profiling arm was designed, built, and tested during spring and summer 2011 by a team of USGS scientists, engineers, and technicians. To accommodate power requirements and the large data files recorded by some of the optical instruments, the tripod was connected via underwater cable to the Martha's Vineyard Coastal Observatory, operated by the Woods Hole Oceanographic Institution (WHOI). This afforded real-time Internet communication with the embedded computers aboard the tripod. Instruments were mounted on the profiling arm, and additional instruments were mounted elsewhere on the tripod and nearby on the seafloor. The tripod and a small mooring for a profiling current meter were deployed on September 17, 2011, at the Martha's Vineyard Coastal Observatory 12-meter-deep underwater node about 2 kilometers south of Martha's Vineyard, Massachusetts. Divers assisted in the

  16. Real-time measurement of protein adsorption on electrophoretically deposited hydroxyapatite coatings and magnetron sputtered metallic films using the surface acoustic wave technique.

    Meininger, M; Schmitz, T; Wagner, T; Ewald, A; Gbureck, U; Groll, J; Moseke, C

    2016-04-01

    Surface acoustic wave (SAW) biosensors are highly sensitive for mass binding and are therefore used to detect protein-protein and protein-antibody interactions. Whilst the standard surface of the chips is a thin gold film, measurements on implant- or bone-like surfaces could significantly enhance the range of possible applications for this technique. The aim of this study was to establish methods to coat biosensor chips with Ti, TiN, and silver-doped TiN using physical vapor deposition as well as with hydroxyapatite by electrophoresis. To demonstrate that protein adsorption can be detected on these surfaces, binding experiments with fibronectin and fibronectin-specific antibodies have been performed with the coatings, which successfully proved the applicability of PVD and EPD for SAW biosensor functionalization. PMID:26838860

  17. Whistle characteristics and daytime dive behavior in pantropical spotted dolphins (Stenella attenuata) in Hawai'i measured using digital acoustic recording tags (DTAGs).

    Silva, Tammy L; Mooney, T Aran; Sayigh, Laela S; Tyack, Peter L; Baird, Robin W; Oswald, Julie N

    2016-07-01

    This study characterizes daytime acoustic and dive behavior of pantropical spotted dolphins (Stenella attenuata) in Hawai'i using 14.58 h of data collected from five deployments of digital acoustic recording tags (DTAG3) in 2013. For each tagged animal, the number of whistles, foraging buzzes, dive profiles, and dive statistics were calculated. Start, end, minimum, and maximum frequencies, number of inflection points and duration were measured from 746 whistles. Whistles ranged in frequency from 9.7 ± 2.8 to 19.8 ± 4.2 kHz, had a mean duration of 0.7 ± 0.5 s and a mean of 1.2 ± 1.2 inflection points. Thirteen foraging buzzes were recorded across all tags. Mean dive depth and duration were 16 ± 9 m and 1.9 ± 1.0 min, respectively. Tagged animals spent the majority of time in the upper 10 m (76.9% ± 16.1%) of the water column. Both whistle frequency characteristics and dive statistics measured here were similar to previously reported values for spotted dolphins in Hawai'i. Shallow, short dive profiles combined with few foraging buzzes provide evidence that little spotted dolphin feeding behavior occurs during daytime hours. This work represents one of the first successful DTAG3 studies of small pelagic delphinids, providing rare insights into baseline bioacoustics and dive behavior. PMID:27475166

  18. Constraints on dark energy from the Ly α forest baryon acoustic oscillations measurement of the redshift 2.3 Hubble parameter

    We use the Busca et al. (2012) [11] measurement of the Hubble parameter at redshift z=2.3 in conjunction with 21 lower z measurements, from Simon, Verde, and Jimenez (2005) [81], Gaztañaga, Cabré, and Hui (2009) [33], Stern et al. (2010) [85], and Moresco et al. (2012) [52], to place constraints on model parameters of constant and time-evolving dark energy cosmological models. The inclusion of the new Busca et al. (2012) [11] measurement results in H(z) constraints significantly more restrictive than those derived by Farooq, Mania, and Ratra (2013) [31]. These H(z) constraints are now more restrictive than those that follow from current Type Ia supernova (SNIa) apparent magnitude measurements Suzuki et al. (2012) [86]. The H(z) constraints by themselves require an accelerating cosmological expansion at about 2 σ confidence level, depending on cosmological model and Hubble constant prior used in the analysis. A joint analysis of H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially-flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly-evolving dark energy density

  19. 美国东南阿拉斯加潜艇水声试验场测量设施分析及改进综述%Analysis of Southeast Alaska Acoustic Measurement Facility

    刘兴章; 陈涛

    2011-01-01

    The Southeast Alaska Acoustic Measurement Facility (SEAFAC) is currently the most advanced acoustic testing field for submarines. It is also the most important acoustic testing area of the United States in Pacific Ocean. It provides the capability to perform noise monitoring, measurement and evaluation for ships, to determine the sources of radiation noise, to assess vulnerability, and to develop quieting measures. SEAFAC is also capable of supporting submarine target strength measurements. In this paper, the history, main facility and ruction of SEAFAC are introduced and studied. It may be helpful for building acoustic testing field in China.%美国东南阿拉斯加潜艇水声试验场(SEAFAC)是目前世界上最先进的水声试验场,也是美国在太平洋最重要的水声检测机构,承担着对美国在役和新研各型舰艇实艇噪声监视及测量的任务.本文简要介绍该试验场的由来,组成及主要功能,并对我国水声试验场的建设提出建议.

  20. Ultrasound contrast agents : optical and acoustical characterization

    Sijl, Jeroen

    2009-01-01

    This thesis describes the characterization of the dynamics and the acoustic responses of single BR14 (Bracco Research S.A., Geneva, Switzerland) ultra- sound contrast agent microbubbles under the in°uence of ultrasound. In Ch. 2 of this thesis we investigate the small amplitude behavior of isolated microbubbles acoustically. To ensure that the measured acoustic response orig- inates from one bubble only, it requires the isolation of a single microbubble within an ultrasound beam. Furthermore ...

  1. Memory-Effect on Acoustic Cavitation

    Yavaṣ, Oğuz; Leiderer, Paul; Park, Hee K.; Grigoropoulos, Costas P.; Poon, Chie C.; Tam, Andrew C.

    1994-01-01

    The formation of bubbles at a liquid-solid interface due to acoustic cavitation depends particularly on the preconditions of the interface. Here, it wiIl be shown that following laser-induced bubble formation at the interface the acoustic cavitation efficiency is strongly enhanced. Optical reflectance measurements reveal that this observed enhancement of acoustic cavitation due to preceding laser-induced bubble formation, which could be termed as memory effect, decays in a few hundred microse...

  2. Acoustic methodology review

    Schlegel, R. G.

    1982-01-01

    It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.

  3. Comments on "Precise model measurements versus theoretical prediction of barrier insertion loss in presence of the ground" [J. Acoust. Soc. Am. 73, 44–54 (1983)

    Rasmussen, Karsten Bo

    1983-01-01

    Some of the theoretical curves in the article by J. Nicolas et al. [J. Acoust. soc. Am. 73, 44–54 (1983)] appear to be erroneous.......Some of the theoretical curves in the article by J. Nicolas et al. [J. Acoust. soc. Am. 73, 44–54 (1983)] appear to be erroneous....

  4. Study of baryon acoustic oscillations with SDSS DR12 data and measurements of $\\Omega_k$ and $\\Omega_\\textrm{DE}(a)$. Part II

    Hoeneisen, B

    2016-01-01

    We define Baryon Acoustic Oscillation (BAO) observables $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on any cosmological parameter. From each of these observables we recover the BAO correlation length $d_\\textrm{BAO}$ with its respective dependence on cosmological parameters. These BAO observables are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From the BAO measurements alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the curvature parameter $\\Omega_k$ and the dark energy density $\\Omega_\\textrm{DE}(a)$ as a function of the expansion parameter $a$ in several scenarios. These observables are further constrained with external measurements of $h$ and $\\Omega_\\textrm{b} h^2$. We find some tension between the data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$.

  5. Sensor development and calibration for acoustic neutrino detection in ice

    Karg, Timo; Bissok, Martin; Laihem, Karim; Semburg, Benjamin; Tosi, Delia; Collaboration, for the IceCube

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been ...

  6. Acoustic hemostasis

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  7. On the limits to miniaturization of fibre-optic transducers for precise and undesturbing measurement in electromagnetical and acoustical fields

    Romaniuk, Ryszard S.

    1980-01-01

    Paper presents a digest of issues associated with application of optical fiber sensors in inaccessible places, in such a way as not to disturb the measured value. Fully dielectric optical fiber does not disturb the EM field distribution in the measured environment. Warsaw University of Technology Ryszard Romaniuk

  8. Acoustic Neuroma Educational Video

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  9. Opto-acoustic cell permeation

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  10. Use of acoustic vortices in acoustic levitation

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...

  11. Through-container measurement of acoustic signatures for classification/discrimination of liquid explosives (LEs) and precursor threat liquids

    Diaz, Aaron A.; Samuel, Todd J.; Tucker, Brian J.; Cinson, Anthony D.; Valencia, Juan D.; Gervais, Kevin L.; Thompson, Jason S.

    2008-03-01

    Work at the Pacific Northwest National Laboratory has demonstrated that ultrasonic property measurements can be effectively employed for the rapid and accurate classification/discrimination of liquids in small, carry-on, standard "stream-of-commerce" containers. This paper focuses on a set of laboratory measurements acquired with the PNNL prototype device as applied to several types of liquids (including threat liquids and precursor chemicals) to the manufacture of LEs in small commercially available plastic containers.

  12. Acoustic dispersive prism

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  13. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring D_A and H at z=0.57 from the Baryon Acoustic Peak in the Data Release 9 Spectroscopic Galaxy Sample

    Anderson, Lauren; Mena Requejo, Olga

    2013-01-01

    We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 

  14. An acoustical model based monitoring network

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the noi

  15. Acoustics in rock and pop music halls

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues in...

  16. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse combined with the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit ...

  17. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys

    Beomseok Sohn

    2014-04-01

    Conclusion: Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.

  18. Prototype acoustic resonance spectroscopy monitor

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn

  19. Ocean currents measured by Shipboard Acoustic Doppler Current Profilers (SADCP) from global oceans accumulated at Joint Archive for SADCP from 2004 to 2013 (NODC Accession 0123302)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high-frequency sampling (nominally 5 minutes...

  20. Acoustic Neurinomas

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  1. Acoustic Spatiality

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  2. Liquid rocket combustion chamber acoustic characterization

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  3. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring D_A and H at z=0.57 from the Baryon Acoustic Peak in the Data Release 9 Spectroscopic Galaxy Sample

    Anderson, Lauren; Bailey, Stephen; Beutler, Florian; Bolton, Adam S; Brinkmann, J; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Honscheid, Klaus; Kazin, Eyal A; Kirkby, David; Manera, Marc; McBride, Cameron K; Mena, O; Nichol, Robert C; Olmstead, Matthew D; Padmanabhan, Nikhil; Palanque-Delabrouille, N; Percival, Will J; Prada, Francisco; Ross, Ashley J; Ross, Nicolas P; Sanchez, Ariel G; Samushia, Lado; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Verde, Licia; Weinberg, David H; Xu, Xiaoying; Yeche, Christophe

    2013-01-01

    We present measurements of the angular diameter distance to and Hubble parameter at z=0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264,283 galaxies over 3275 square degrees in the redshift range 0.43measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find D_A(0.57) = 1408 +/- 45 Mpc and H(0.57) = 92.9 +/- 7.8 km/s/Mpc for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al, 2012. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.

  4. Year-long measurements of flow-through the dover strait by HF radar and acoustic doppler current profilers (ADCP)

    Prandle, D.

    1993-01-01

    Contaminants from the Channel flow through the Dover Strait into the North Sea where they represent a significant fraction of the enhanced concentrations observed along the continental coast. Despite numerous previous investigations, the magnitude of this net flow and its dependency on various forcing factors remain uncertain. The new UK H.F. Radar system, OSCR (Ocean Surface Current Radar) developed for measuring nearshore surface currents offers a clear opportunity of establishing the magni...

  5. The design of a test procedure for the measurement of acoustic damping of materials at low stress.

    Heidgerken, Ricky A.

    1983-01-01

    Approved for public release; distribution is unlimited A procedure for measuring the viscous damping of relatively large plate material (up to 40 inches x 14 inches x 2 inches) was developed utilizing the Hewlett-Packard 5451C Fourier Analyzer and impulse hammer technique under very low stress conditions. Testing environment can be lab air or nondistilled water in the temperature range from 30° F to 90° F. The test procedure includes modal analysis that is expand...

  6. Springer Handbook of Acoustics

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  7. Responsive acoustic surfaces

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design for the...... acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design was...... simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  8. Assessing the performance of the photo-acoustic infrared gas monitor for measuring CO(2), N(2)O, and CH(4) fluxes in two major cereal rotations.

    Tirol-Padre, Agnes; Rai, Munmun; Gathala, Mahesh; Sharma, Sheetal; Kumar, Virender; Sharma, Parbodh C; Sharma, Dinesh K; Wassmann, Reiner; Ladha, Jagdish

    2014-01-01

    Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time-consuming. The photo-acoustic infrared gas monitoring system (PAS) with on-line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2 O, CO2 , and CH4 fluxes measured by GC and PAS from agricultural fields under the rice-wheat and maize-wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS-CH4 (PCH4 ) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm(-3) increase in water vapor. The daily CO2 , N2 O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93-98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2 O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC- and PAS-N2 O (PN2 O) fluxes in wheat and maize were not different but the PAS-CO2 (PCO2 ) flux in wheat was 14-39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2 O fluxes across N levels were higher than those of GC-CH4 and GC-N2 O fluxes by about 2- and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2 O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity. PMID:23929733

  9. Cryogenic acoustic loss of pure and alloyed titanium

    Matacz, A. L.; Veitch, P. J.; Blair, D. G.

    Low acoustic loss, high yield strength cryogenic materials are required for various high precision experiments, resonant-bar gravitational radiation antennae in particular. We report here acoustic loss measurements of commerically pure and alloyed titanium samples between 4.2 and 300 K. It is shown that machining damage of the surface significantly increased the acoustic loss of pure titanium, particularly below 100 K, and that the high strength alloy Ti-6AI-4V had significantly greater acoustic loss than pure titanium.

  10. Application of holography in jet acoustic studies

    G Pundarika; R Lakshminarayana; T S Sheshadri

    2004-08-01

    Source strength distribution on a jet boundary was obtained from measurements using the principle of acoustic holography. Measurements were conducted in an open field. Measurement of acoustic pressure on a cylindrical twodimensional contour located close to the vibrating jet boundary was used to obtain the acoustic source strength distribution at the jet boundary. Particular attention was focussed on back projection of the sound field on to a cylindrical surface. A jet emanating from 5 mm convergent nozzle was used for the holography experiments, assuming axisymmetry. Experimental results were compared with results obtained from holography

  11. Acoustic source for generating an acoustic beam

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  12. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were

  13. Measurement of the ultrasonic properties of human coronary arteries in vitro with a 50-MHz acoustic microscope

    J.C. Machado

    2002-08-01

    Full Text Available Ultrasonic attenuation coefficient, wave propagation speed and integrated backscatter coefficient (IBC of human coronary arteries were measured in vitro over the -6 dB frequency bandwidth (36 to 67 MHz of a focused ultrasound transducer (50 MHz, focal distance 5.7 mm, f/number 1.7. Corrections were made for diffraction effects. Normal and diseased coronary artery sub-samples (N = 38 were obtained from 10 individuals at autopsy. The measured mean ± SD of the wave speed (average over the entire vessel wall thickness was 1581.04 ± 53.88 m/s. At 50 MHz, the average attenuation coefficient was 4.99 ± 1.33 dB/mm with a frequency dependence term of 1.55 ± 0.18 determined over the 36- to 67-MHz frequency range. The IBC values were: 17.42 ± 13.02 (sr.m-1 for thickened intima, 11.35 ± 6.54 (sr.m-1 for fibrotic intima, 39.93 ± 50.95 (sr.m-1 for plaque, 4.26 ± 2.34 (sr.m-1 for foam cells, 5.12 ± 5.85 (sr.m-1 for media and 21.26 ± 31.77 (sr.m-1 for adventitia layers. The IBC results indicate the possibility for ultrasound characterization of human coronary artery wall tissue layer, including the situations of diseased arteries with the presence of thickened intima, fibrotic intima and plaque. The mean IBC normalized with respect to the mean IBC of the media layer seems promising for use as a parameter to differentiate a plaque or a thickened intima from a fibrotic intima.

  14. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  15. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2009-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce

  16. Method specificity of non-invasive blood pressure measurement: oscillometry and finger pulse pressure vs acoustic methods.

    De Mey, C; Schroeter, V; Butzer, R; Roll, S; Belz, G G

    1995-10-01

    1. The agreement of blood pressure measurements by stethoscope auscultation (SBPa, DBPa-IV and DBPa-V), oscillometry (Dinamap; SBPo, and DBPo) and digital photoplethysmography (Finapres; SBPf, and DBPf) with the graphical analysis of the analogue microphone signals of vascular wall motion sound (SBPg and DBPg) was evaluated in eight healthy subjects in the presence of responses to the intravenous infusion of 1 microgram min-1 isoprenaline. 2. In general, there was good agreement between the SBP/DBP-measurements based on auscultatory Korotkoff-I- and IV-criteria and the reference method; the average method difference in estimating the isoprenaline responses for SBPa-SBPg was: -1.1, 95% CI: -5.4 to 3.1 mm Hg with a within-subject between-method repeatability coefficient (REP) of 11.6 mm Hg and for DBPa-IV-DBPg: 3.5, 95% CI: -0.5 to 6.5 mm Hg, REP: 11.5 mm Hg. The ausculatation of Korotkoff-V substantially overestimated the isoprenaline induced reduction of DBP: method difference DBPa-V-DBPg: -11.3, 95% CI: -17.8 to -4.7 mm Hg, REP: 31.8 mm Hg. 3. Oscillometry yielded good approximations for the SBP response to isoprenaline (average method difference SBPo-SBPg: -2.9, 95% CI: -9.0 to 3.3 mm Hg, REP: 17.6 mm Hg) but was poorly sensitive with regard to the DBP responses: method difference DBPo-DBPg: 6.5, 95% CI: -1.3 to 14.3 mm Hg, REP: 25.7 mm Hg. 4. Whilst the finger pulse pressure agreed well with regard to DBP (method difference for the DBP responses to isoprenaline: DBPf-DBPg: 1.8, 95% CI: -5.1 to 8.6 mm Hg, REP: 18.5 mm Hg) it was rather unsatisfactory with regard to SBP (method difference SBPf-SBPg: -14.1, 95% CI: -28.2 to -0.1 mm Hg, REP: 49.9 mm Hg).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8554929

  17. Acoustic characterization of rehabilitated cloisters

    A. P. O. Carvalho; S. R. C. Vilela

    2008-01-01

    This paper presents the results of field measurements in eight rehabilitated cloisters of old monasteries in Portugal (length: 20 to 35 m and height: 3.3 to 6.3 m) regarding their acoustic behavior to two objective parameters: RT and RASTI. The goal is to characterize the acoustic effect of the rehabilitation done on theses spaces to adapt them to new uses. All these cloisters had recently their galleries#8217; openings to the central yard closed with glass panels. Simple formulas were obtain...

  18. My 65 years in acoustics

    Beranek, Leo L.

    2001-05-01

    My entry into acoustics began as research assistant to Professor F. V. Hunt at Harvard University. I received my doctorate in 1940 and directed the Electro-Acoustic Laboratory at Harvard from October 1940 until September 1945. In 1947, I became a tenured associate professor at MIT, and, with Richard H. Bolt, formed the consulting firm Bolt and Beranek, that later included Robert B. Newman, becoming BBN. My most significant contributions before 1970 were design of wedge-lined anechoic chambers, systemization of noise reduction in ventilation systems, design of the world's largest muffler for the testing of supersonic jet engines at NASA's Lewis Laboratory in Cleveland, speech interference level, NC noise criterion curves, heading New York Port Authority's noise study that resulted in mufflers on jet aircraft, and steep aircraft climb procedures, and publishing books titled, Acoustical Measurements, Acoustics, Noise Reduction, Noise and Vibration Control, and Music, Acoustics and Architecture. As President of BBN, I supervised the formation of the group that built and operated the ARPANET (1969), which, when split in two (using TCP/IP protocol) became the INTERNET (1984). Since then, I have written two books on Concert Halls and Opera Houses and have consulted on four concert halls and an opera house.

  19. Acoustic vocal measures in women without voice complaints and with normal larynxes Medidas vocais acústicas de mulheres sem queixas de voz e com laringe normal

    Leila Susana Finger

    2009-06-01

    Full Text Available It is important to establish normal voice standards in order to help guide voice professionals. AIM: to describe acoustic voice measures of adult young women with normal larynxes and without voice complaints. METHOD: 56 women underwent ENT evaluation and speech screening. The "A" vowel utterance was digitally recorded and analyzed by means of the Praat (Version 4.6.10 software. The data was analyzed by means of descriptive statistics and by the Shapiro-Wilk test with a 5% significance level. The study was cross-section and exploratory. RESULTS: normal distribution measures were: fundamental frequency; Jitter (local; Jitter (local, absolute; Jitter (ppq5; Jitter (ddp. The Jitter (rap, all the Shimmer, the noise/harmonic ratio (NHR and the harmonic/noise ratio (HNR values did not follow a normal distribution. CONCLUSION: It seems that the measures which followed the normal distribution can be used as base-normal values for the interpretation of acoustic voice analysis of those women with and without laryngeal disorders. All the values with and without normal distribution showed results similar to the ones present in the national and international literature.O estabelecimento de padrões de base da normalidade é importante para guiar os profissionais na área da voz. OBJETIVO: Descrever as medidas acústicas de vozes de mulheres adultas jovens, com laringe normal e sem queixas de voz. MÉTODO: 56 mulheres realizaram avaliação otorrinolaringológica e triagem fonoaudiológica. A emissão da vogal /a/ foi gravada digitalmente e analisada por meio do software Praat (versão 4.6.10. Os dados foram analisados por meio da estatística descritiva, e pelo teste Shapiro-Wilk, em nível de significância de 5%. O estudo foi transversal e exploratório. RESULTADOS: Medidas com distribuição normal foram: Frequência fundamental; Jitter (local; Jitter (local, absoluto; Jitter (ppq5; Jitter (ddp. As medidas de Jitter (rap; todas as de Shimmer; a Propor

  20. Acoustics of a broadcast center

    Beristain, Sergio

    2003-04-01

    A broadcast system in Mexico City had to change facilities in order to concentrate in a single site all related broadcast stations and production studios in order to facilitate its normal operation. This led to a design which included the acoustic noise isolation and the interior acoustics of every studio and control room, together with the audio interconection, the electricity layout, the air conditioning system, the office building, etc. This paper presents the acoustics profile of the center, including final results of the construction as they were measured on completion of the installation. The complex has seven AM and FM broadcast stations, plus seven production studios for news, commercials and radio-novels plus an audio master control room, and everything was completed within four months.

  1. Atlantic Herring Acoustic Surveys

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  2. Acoustic Neuroma Educational Video

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  3. Acoustic Neuroma Educational Video

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  4. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  5. Acoustic Neuroma Educational Video

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  6. Acoustic Neuroma Educational Video

    Full Text Available ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ...

  7. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA. ...

  8. Cystic acoustic neuromas

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  9. Subscale Acoustic Testing: Comparison of ALAT and ASMAT

    Houston, Janice D.; Counter, Douglas

    2014-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option. This paper compares the acoustic measurements of two different subscale tests: the 2% Ares Liftoff Acoustic Test conducted at Stennis Space Center and the 5% Ares I Scale Model Acoustic Test conducted at Marshall Space Flight Center.

  10. Acoustic Monitoring for Spaceflight Vehicle Applications Project

    National Aeronautics and Space Administration — This SBIR will develop and demonstrate acoustic sensor technology enabling real-time, remotely performed measuring and monitoring of sound pressure levels and noise...

  11. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  12. Acoustically-Induced Electrical Signals

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  13. ACOUSTICAL STANDARDS NEWS.

    Blaeser, Susan B; Struck, Christopher J

    2016-03-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Susan B. Blaeser.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27036268

  14. Acoustics and Hearing

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  15. ISAT: The mega-fauna acoustic tracking system

    De la Torre, Pedro

    2013-06-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic signal to each hydrophone in a triangular array. The characteristics of the hydrophones, the projector, and the target acoustic signal used for iSAT are described. Initially it is designed to study the movements of whale sharks (Rhincodon typus), but it could potentially be used to describe high resolution movements of other marine species. © 2013 IEEE.

  16. Air-pressure, vocal folds vibration and acoustic characteristics of phonation during vocal exercising. - Part 2: Measurement on a physical model

    Horáček, Jaromír; Radolf, Vojtěch; Bula, Vítězslav; Laukkanen, A. M.

    2014-01-01

    Roč. 21, č. 3 (2014), s. 193-200. ISSN 1802-1484 R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61388998 Keywords : biomechanics of voice * subglottal * oral and transglottal pressure * flow resistance Subject RIV: BI - Acoustics

  17. Properties of the Acoustic Vector Field in Underwater Waveguides

    Dall'Osto, David R.

    This thesis focuses on the description and measurement of the underwater acoustic field, based on vector properties of acoustic particle velocity. The specific goal is to interpret vector sensor measurements in underwater waveguides, in particular those measurements made in littoral (shallow) waters. To that end, theoretical models, which include the effects of reflections from the waveguide boundaries, are developed for the acoustic intensity, i.e. the product of acoustic pressure and acoustic particle velocity. Vector properties of acoustic intensity are shown to correspond to a non-dimensional vector property of acoustic particle velocity, its degree of circularity, which describes the trajectory of particle motion. Both experimental measurements and simulations of this non-dimensional vector property are used to analyze characteristics of sound propagation in underwater waveguides. Two measurement techniques are utilized in the experiments described in this thesis. In the first, particle velocity is obtained indirectly by time integration of the measured pressure gradient between two closely spaced (with respect to an acoustic wavelength) conventional pressure sensitive hydrophones. This method was used in ocean experiments conducted with vertical line arrays of hydrophones. In the second technique, particle velocity is measured directly by time integration of the signal generated by an accelerometer. An additional pressure measurement from a co-located hydrophone forms what is known as a "combined sensor" in the Russian literature, which allows for estimation of the vector acoustic intensity. This method was utilized mainly in laboratory experiments.

  18. Listening to the acoustics in concert halls

    Beranek, Leo L.; Griesinger, David

    2001-05-01

    How does acoustics affect the symphonic music performed in a concert hall? The lecture begins with an illustrated discussion of the architectural features that influence the acoustics. Boston Symphony Hall, which was built in 1900 when only one facet of architectural design was known, now rates as one of the world's great halls. How this occurred will be presented. Music is composed with some acoustical environment in mind and this varies with time from the Baroque to the Romantic to the Modern musical period. Conductors vary their interpretation according to the hall they are in. Well-traveled listeners and music critics have favorite halls. The lecture then presents a list of 58 halls rank ordered according to their acoustical quality based on interviews of music critics and conductors. Modern acoustical measurements made in these halls are compared with their rankings. Music recordings will be presented that demonstrate how halls sound that have different measured acoustical parameters. Photographs of a number of recently built halls are shown as examples of how these known acoustical factors have been incorporated into architectural design.

  19. The acoustic center of laboratory standard microphones

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2006-01-01

    center from the inverse distance law is analyzed. Experimental values of the acoustic center of laboratory standard microphones are presented, and numerical results obtained using the boundary element method supplement the experimental data. Estimated uncertainties are also presented. The results......An experimental procedure is described for obtaining the effective acoustic distance between pairs of microphones coupled by a free field, leading to the determination of the position of the acoustic center of the microphones. The procedure, which is based on measuring the modulus of the electrical...

  20. Acoustic Faraday rotation in Weyl semimetals

    Liu, Donghao; Shi, Junren

    We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.

  1. Envelope Solitons in Acoustically Dispersive Vitreous Silica

    Cantrell, John H.; Yost, William T.

    2012-01-01

    Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.

  2. First images of thunder: Acoustic imaging of triggered lightning

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  3. Acoustic streaming in microchannels

    Tribler, Peter Muller

    , and experimental results for the streaming-induced drag force dominated motion of particles suspended in a water-filled microchannel supporting a transverse half-wavelength resonance. The experimental and theoretical results agree within a mean relative dierence of approximately 20%, a low deviation given state......This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...

  4. Springer handbook of acoustics

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  5. In vivo measurements of air pressure, vocal folds vibration and acoustic characteristics of phonation into a straw and a resonance tube used in vocal exercising.

    Radolf, Vojtěch; Laukkanen, A. M.; Horáček, Jaromír; Veselý, Jan; Liu, D.

    Praha: Insitute of Thermomechanics ASCR, v. v. i., 2013 - (Zolotarev, I.). s. 127-128 ISBN 978-80-87012-46-8. ISSN 1805-8248. [Engineering Mechanics 2013 /19./. 13.05.2013-16.05.2013, Svratka] R&D Projects: GA ČR GPP101/12/P579 Institutional support: RVO:61388998 Keywords : biomechanics of voice * subglottal, oral and transglottal pressure * phonation into tubes Subject RIV: BI - Acoustics

  6. In vivo measurements of air pressure, vocal folds vibration and acoustic characteristics of phonation into a straw and a resonance tube used in vocal exercising.

    Radolf, Vojtěch; Laukkanen, A. M.; Horáček, Jaromír; Veselý, Jan; Liu, D.

    Prague: Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v. v. i., 2013 - (Zolotarev, I.), s. 478-483 ISBN 978-80-87012-47-5. ISSN 1805-8256. [Engineering Mechanics 2013 /19./. Svratka (CZ), 13.05.2013-16.05.2013] R&D Projects: GA ČR GPP101/12/P579 Institutional support: RVO:61388998 Keywords : biomechanics of voice * subglottal, oral and transglottal pressure * phonation into tubes Subject RIV: BI - Acoustics

  7. Linearity of fisheries acoustics, with addition theorems

    Foote, Kenneth G.

    1983-01-01

    An experiment to verify the basic linearity of fisheries acoustics is described. Herring (Clupea harengus L.) was the subject fish. Acoustic measurements consisted of the echo energy from aggregations of encaged but otherwise free-swimming fish, and the target strength functions of similar, anesthetized specimens. Periodic photographic observation of the encaged fish allowed characterization of their behavior through associated spatial and orientation distributions. The fish biology and hydro...

  8. International Space Station Acoustics - A Status Report

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  9. Acoustic Attraction

    Oviatt, Eric; Patsiaouris, Konstantinos; Denardo, Bruce

    2009-11-01

    A sound source of finite size produces a diverging traveling wave in an unbounded fluid. A rigid body that is small compared to the wavelength experiences an attractive radiation force (toward the source). An attractive force is also exerted on the fluid itself. The effect can be demonstrated with a styrofoam ball suspended near a loudspeaker that is producing sound of high amplitude and low frequency (for example, 100 Hz). The behavior can be understood and roughly calculated as a time-averaged Bernoulli effect. A rigorous scattering calculation yields a radiation force that is within a factor of two of the Bernoulli result. For a spherical wave, the force decreases as the inverse fifth power of the distance from the source. Applications of the phenomenon include ultrasonic filtration of liquids and the growth of supermassive black holes that emit sound waves in a surrounding plasma. An experiment is being conducted in an anechoic chamber with a 1-inch diameter aluminum ball that is suspended from an analytical balance. Directly below the ball is a baffled loudspeaker that exerts an attractive force that is measured by the balance.

  10. Localized Acoustic Surface Modes

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  11. Acoustic dispersive prism

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  12. Acoustic streaming in superfluid helium

    Quantitative measurements of acoustic streaming velocity in liquid helium as a function of sound intensity (up to the cavitation threshold), frequency (1, 3, and 10 MHz), and temperature (1.43 K< or =T< or =2.19 K) are reported. A transition to superfluid turbulence, several flow regions and flow fluctuations are observed. Comparison with the predictions of the second-order Khalatnikov two- fluid hydrodynamic equations indicates good functional and quantitative agreement

  13. What Is an Acoustic Neuroma

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  14. Habilidades auditivas e medidas da imitância acústica em crianças de 4 a 6 anos de idade Auditory abilities and acoustic immittance measures in children from 4 to 6 year old

    Rafaela Della Giacoma Prado Toscano

    2012-08-01

    Full Text Available OBJETIVO: avaliar o desempenho em habilidades auditivas e as condições de orelha média de crianças de 4 a 6 anos de idade. MÉTODO: foram aplicados os testes de detecção sonora (audiômetro pediátrico em 20dBNA, a Avaliação Simplificada do Processamento Auditivo (ASPA e as medidas de imitância acústica (handtymp com tom de 226Hz em 61 crianças com média de idade de 5,65 anos. Para comparar os resultados das provas de habilidades auditivas e das medidas da imitância acústica foi aplicado o teste exato de Fisher com nível de significância de pPURPOSE: to evaluate the performance of auditory abilities and conditions in the middle ear of children from 4 to 6 year old. METHOD: we applied the tests in order to detect sound (pediatric audiometer in 20dBHL, the Simplified Assessment of Auditory Processing (SAAP and the acoustic immittance measures (handtymp with a probe of 226Hz. In order to compare the results from the tests of auditory abilities and measures of acoustic impedance we applied Fisher's exact test with significance level of p <0.05. RESULTS: the study involved 61 children with a mean age of 5.65 years. There was some alteration in at least one of the investigated auditory skills in 24.6% of the children. Tympanometry was altered in 34.4% of the children and 64% were classified on the "fail" criterion for the measure of ipsilateral acoustic reflex. Younger children had higher incidence of middle ear disorders, but with no significant statistical difference between different ages as for the tests. CONCLUSION: younger children showed a higher occurrence of alterations in the tests of auditory abilities and measures of acoustic immittance. Research and monitoring programs for the conditions of the middle ear and auditory skills in preschool and school age can eliminate or minimize events that would alter the socio-linguistic development.

  15. Theoretical and experimental verification of acoustic focusing in metal cylinder structure

    Xia, Jian-ping; Sun, Hong-xiang; Cheng, Qian; Xu, Zheng; Chen, Hao; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong; Guan, Yi-jun

    2016-05-01

    We report the realization of a multifocal acoustic focusing lens using a simple metal cylinder structure immersed in water, as determined both experimentally and theoretically. The acoustic waves can be focused on one or more points, because the Mie-resonance modes are excited in the cylinder structure. The acoustic pressure fields measured in the Schlieren imaging system agree with the results calculated using the acoustic scattering theory. Interesting applications of multifocal focusing in the acoustic encryption communication are further discussed. Our work should be helpful in understanding the focusing mechanism and experimentally measuring the acoustic phenomena in cylinder structures.

  16. Visualizing underwater acoustic matched-field processing

    Rosenblum, Lawrence; Kamgar-Parsi, Behzad; Karahalios, Margarida; Heitmeyer, Richard

    1991-06-01

    Matched-field processing is a new technique for processing ocean acoustic data measured by an array of hydrophones. It produces estimates of the location of sources of acoustic energy. This method differs from source localization techniques in other disciplines in that it uses the complex underwater acoustic environment to improve the accuracy of the source localization. An unexplored problem in matched-field processing has been to separate multiple sources within a matched-field ambiguity function. Underwater acoustic processing is one of many disciplines where a synthesis of computer graphics and image processing is producing new insight. The benefits of different volume visualization algorithms for matched-field display are discussed. The authors show how this led to a template matching scheme for identifying a source within the matched-field ambiguity function that can help move toward an automated source localization process.

  17. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    2010-01-01

    Roč. 4, č. 1 (2010), s. 25-36. ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  18. Acoustic Neuroma Educational Video

    Full Text Available ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ...

  19. Acoustic estimation of suspended sediment concentration

    ZHU; Weiqing(

    2001-01-01

    [1]Morse, P. H. , Theoretical Acoustics, New York: McGraw-Hill Book Co. , 1968.[2]Skudrjuk, E., Die Grundlagen der Akustik, Wien: Springer-Verlag, 1954.[3]Olshevskii, V. V., Statistical Characteristics of Sea Reverberation, Moscow: Nauka Publisher, 1966.[4]Thorne, P. D., Hardcastl, P. J., Soulsby, R. L., Analysis of acoustic measurements of suspended sediments, J. Geop.Res. , 1993, 98: 899.[5]Guo Jijie, Ren Laifa, Li Yunwu, ln-situ calibration of acoustic measurement of suspended sedienmt, Acta Oceanologica Sini-ca, 1998, (20): 120-125.[6]Zhang Shuying, Li Yunwu, Development and application of an acoustic suspended sediemnt monitoring system, Acta Oceanologica Sinica, 1998, (20): 114-119.[7]Zhang Shuying, Li Yunwu, A theoretical analysis of acoustic suspended sediment obsvervation, Acta Acoustica, 1999, (24):267-274.[8]Zhu Weiqing, Pan Feng, Zhu Min et al. , IOA-1 Multi-function Acoustic Doppler Current Profiler (MADCP), OCEAN'2000,Rhode Island, USA.

  20. Cochlear bionic acoustic metamaterials

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  1. Computational Ocean Acoustics

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  2. Acoustic Signals and Systems

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will...... present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  3. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    Mokrý, P.; Psota, Pavel; Steiger, Kateřina; Václavík, J.; Doleček, Roman; Lédl, Vít; Šulc, Miroslav

    2015-01-01

    Roč. 5, č. 2 (2015), s. 27132-27132. ISSN 2158-3226 R&D Projects: GA MŠk(CZ) LO1206; GA ČR GA13-10365S Institutional support: RVO:61389021 Keywords : negative-capacitance circuits * piezoelectric polymer-films * double-glazed windows * elasticity control * active control * vibration analysis * feedback-control * system * transmission * membrane Subject RIV: BI - Acoustics Impact factor: 1.524, year: 2014 http://dx.doi.org/10.1063/1.4913624

  4. How Does Speaking Clearly Influence Acoustic Measures? A Speech Clarity Study Using Long-term Average Speech Spectra in Korean Language

    Noh, Heil; Lee, Dong-Hee

    2012-01-01

    Objectives To investigate acoustic differences between conversational and clear speech of Korean and to evaluate the influence of the gender on the speech clarity using the long-term average speech spectrum (LTASS). Methods Each subject's voice was recorded using a sound level meter connected to GoldWave program. Average long-term root mean square (RMS) of one-third octave bands speech spectrum was calculated from 100 to 10,000 Hz after normalizing to 70 dB overall level using the MATLAB prog...

  5. D2声学测量系统的测试功能%Testing Function of The D2 Acoustic Measurement System

    王延君

    2010-01-01

    @@ D2声学测量系统,是美国AcoustX公司专为影院的综合测试和测量而设计的一套声学测量工具,已经通过了卢卡斯的认证.其中包括如图1所示的4支话筒及支架、D2调制器、D2控制器、USBPre 数字音频接口及Win|RTA测试软件(在所附光盘上).

  6. An orientation calibration procedure for two acoustic vector sensor configurations

    Basten, T.G.H.; Bree, H.E. de; Yntema, D.R.

    2009-01-01

    Acoustic vector sensors can be used for far field sound source localization, offering an alternative to far field beamforming. These sensors are able to measure the 3D acoustic particle velocity vector and the scalar value sound pressure. Two sensor configurations exist. The USP probe is based upon three orthogonally placed acoustic particle velocity sensors (Microflowns) and a single sound pressure sensor. In early 2009, also a completely integrated monolithic sound chip became available, wh...

  7. Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature.

    Zhang, K; Feng, X J; Gillis, K; Moldover, M; Zhang, J T; Lin, H; Qu, J F; Duan, Y N

    2016-03-28

    Relative primary acoustic gas thermometry (AGT) determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T. Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for AGT at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 Kmeasured acoustic frequencies increased from 2×10(-6) at 295 K to 5×10(-6) at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R. The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10(-6) for T<600 K to 57 × 10(-6) at 1000 K. We observed similar inconsistencies in a previous study. PMID:26903106

  8. Acoustical coupling of lizard eardrums.

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-12-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct and indirect sound components on the eardrum. The ensuing pressure-difference characteristics generate the highest directionality of any similar-sized terrestrial vertebrate ear. The aim of the present study was to measure the gain of the direct and indirect sound components in three lizard species: Anolis sagrei and Basiliscus vittatus (iguanids) and Hemidactylus frenatus (gekkonid) by laser vibrometry, using either free-field sound or a headphone and coupler for stimulation. The directivity of the ear of these lizards is pronounced in the frequency range from 2 to 5 kHz. The directivity is ovoidal, asymmetrical across the midline, but largely symmetrical across the interaural axis (i.e., front-back). Occlusion of the contralateral ear abolishes the directionality. We stimulated the two eardrums with a coupler close to the eardrum to measure the gain of the sound pathways. Within the frequency range of maximal directionality, the interaural transmission gain (compared to sound arriving directly) is close to or even exceeds unity, indicating a pronounced acoustical transparency of the lizard head and resonances in the interaural cavities. Our results show that the directionality of the lizard ear is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit. PMID:18648878

  9. Flat acoustic lens by acoustic grating with curled slits

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating

  10. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  11. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  12. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  13. Underwater Applications of Acoustical Holography

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  14. Predicting Acoustics in Class Rooms

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be...

  15. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging.

    Thalhammer, Gregor; McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-04-12

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  16. Matrix method for acoustic levitation simulation.

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort. PMID:21859587

  17. Laser Acoustic Imaging of Film Bulk Acoustic Resonator (FBAR) Lateral Mode Dispersion

    Ken L. Telschow

    2004-07-01

    A laser acoustic imaging microscope has been developed that measures acoustic motion with high spatial resolution without scanning. Images are recorded at normal video frame rates and heterodyne principles are used to allow operation at any frequency from Hz to GHz. Fourier transformation of the acoustic amplitude and phase displacement images provides a direct quantitative determination of excited mode wavenumbers at any frequency. Results are presented at frequencies near the first longitudinal thickness mode (~ 900 MHz) demonstrating simultaneous excitation of lateral modes with nonzero wavenumbers in an electrically driven AlN thin film acoustic resonator. Images combined at several frequencies form a direct visualization of lateral mode dispersion relations for the device under test allowing mode identification and a direct measure of specific lateral mode properties. Discussion and analysis of the results are presented in comparison with plate wave modeling of these devices taking account for material anisotropy and multilayer films.

  18. Tunable acoustic metamaterials

    Babaee, Sahab; Viard, Nicolas; Fang, Nicholas; Bertoldi, Katia

    2015-03-01

    We report a new class of active and switchable acoustic metamaterials composed of three-dimensional stretchable chiral helices arranged on a two-dimensional square lattice. We investigate the propagation of sounds through the proposed structure both numerically and experimentally and find that the deformation of the helices can be exploited as a novel and effective approach to control the propagation of acoustic waves. The proposed concept expands the ability of existing acoustic metamaterials since we demonstrate that the deformation can be exploited to turn on or off the band gap, opening avenues for the design of adaptive noise-cancelling devices.

  19. Audio coding in wireless acoustic sensor networks

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt;

    2015-01-01

    In this paper, we consider the problem of source coding for a wireless acoustic sensor network where each node in the network makes its own noisy measurement of the sound field, and communicates with other nodes in the network by sending and receiving encoded versions of the measurements. To make...

  20. Potential of acoustic emissions from three point bending tests as rock failure precursors

    Agioutantis Z.; Kaklis K.; Mavrigiannakis S.; Verigakis M.; Vallianatos F.; Saltas V.

    2016-01-01

    Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. This paper presents results from acoustic emission mea-surements obtained during three point bending tests on Nestos marble under laboratory conditions. Acoustic emission activity was monitored using piezoelectric acoustic emission sensors, and the potential for accurate prediction of rock damage based on acoustic emission data was investigated. Damage local-ization was determined based on acoustic emissions generated from the critically stressed region as scat-tered events at stresses below and close to the strength of the material.

  1. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu; Liang Feng; Yan-Feng Chen

    2009-01-01

    Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surf...

  2. Interferometric and acoustic measurements in superfluid (3)He-B and wetting studies in (3)He/(4)He mixtures. Doctoral thesis

    Alles, H.

    1995-06-22

    In this thesis work superfluid (3)He was investigated by two methods. First, ultrasonic experiments on (3)He-B were carried out using two coincident zero sound pulses. The second technique is optics, a novel method for ultra low temperatures. The developed method, two-beam interferometry, was employed successfully for studies of wetting phenomena in liquid (3)He/(4)He mixtures as well. This publication contains the results of a acoustic spectroscopy on (3)He-B. Most importantly, the real squashing collective mode (rsq) was excited by two simultaneous sound pulses yielding two phonon absorption (TPA). This nonlinear phenomenon was applied to study the dispersion relation of the rsq-mode. Zeeman splitting of the nonlinearly excited rsq-mode was investigated in a magnetic field. By means of TPA, an anomalous behavior was found also near the pair-breaking edge.

  3. Acoustic integrated extinction

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  4. Acoustics Noise Test Cell

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  5. Principles of musical acoustics

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  6. Compact acoustic refrigerator

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  7. Acoustics lecturing in Mexico

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  8. Acoustic Igniter Project

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  9. Thermal Acoustic Fatigue Apparatus

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  10. Acoustic Neuroma Educational Video

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  11. Acoustic coherent perfect absorbers

    In this paper, we explore the possibility of achieving acoustic coherent perfect absorbers. Through numerical simulations in two dimensions, we demonstrate that the energy of coherent acoustic waves can be totally absorbed by a fluid absorber with specific complex mass density or bulk modulus. The robustness of such absorbing systems is investigated under small perturbations of the absorber parameters. We find that when the resonance order is the lowest and the size of the absorber is comparable to the wavelength in the background, the phenomenon of perfect absorption is most stable. When the wavelength inside both the background and the absorber is much larger than the size of the absorber, perfect absorption is possible when the mass density of the absorber approaches the negative value of the background mass density. Finally, we show that by using suitable dispersive acoustic metamaterials, broadband acoustic perfect absorption may be achieved. (papers)

  12. Ocean acoustic reverberation tomography.

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  13. Autonomous Acoustic Receiver System

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  14. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    Plzeň : University of West Bohemia, 2009 - (Adámek, V.; Zajíček, M.). s. 1-2 ISBN 978-80-7043-824-4. [Výpočtová mechanika 2009. 09.11.2009-11.11.2009, Nečtiny] R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  15. The autonomous acoustic buoy

    Pellicer, Francisco; Reitsma, Robert; Agüera, Joaquín; Marinas, Alexandra

    2013-01-01

    The Acoustic Buoy is a project between the Laboratory of Applied Bioacoustics (LAB) and the Universitat Politècnica de Catalunya (UPC). In areas that the human activities produce high noise levels, such as oil exploration or construction, there is a need to monitor the environment for the presence of cetaceans. Another need is for fishing, to prevent endangered species from being killed. This can be done with an Autonomous Acoustic Buoy (AAB). Mooring or anchoring at to the seaflo...

  16. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  17. Acoustic glitches in solar-type stars from Kepler

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Ballot, J; Antia, H. M.; Basu, S; Houdek, Günter; Mathur, S; Cunha, M. S.; Silva Aguirre, Victor; García, R. A.; Salabert, D; Verner, G. A.; Christensen-Dalsgaard, Jørgen; Metcalfe, T. S.; Chaplin, W. J.

    2012-01-01

    We report the measurement of the acoustic locations of layers of sharp variation in sound speed in the interiors of 19 solar-type stars observed by the Kepler mission. The oscillatory signal in the frequencies arising due to the acoustic glitches at the base of the convection zone and the second...

  18. An orientation calibration procedure for two acoustic vector sensor configurations

    Basten, T.G.H.; Bree, H.E. de; Yntema, D.R.

    2009-01-01

    Acoustic vector sensors can be used for far field sound source localization, offering an alternative to far field beamforming. These sensors are able to measure the 3D acoustic particle velocity vector and the scalar value sound pressure. Two sensor configurations exist. The USP probe is based upon

  19. Acoustic metamaterial design and applications

    Zhang, Shu

    make the experimental studies remain challenging. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Due to the non-resonant nature of the building elements, this low loss (˜6dB/m) cylindrical cloak exhibits excellent invisibility over a broad frequency range from 52 to 64 kHz in the measurements. The low visibility of the cloaked object for underwater ultrasound shed a light on the fundamental understanding of manipulation, storage and control of acoustic waves. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.

  20. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data. (paper)