Shear Alfven waves in tokamaks
Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma
Magnetized stratified rotating shear waves.
Salhi, A; Lehner, T; Godeferd, F; Cambon, C
2012-02-01
We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k(1) = 0, axisymmetric disturbances) and a finite one (k(1) ≠ 0, nonaxisymmetric disturbances). In the former case (k(1) = 0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k(1) ≠ 0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
A new method for shear wave speed estimation in shear wave elastography.
Engel, Aaron J; Bashford, Gregory R
2015-12-01
Visualization of mechanical properties of tissue can aid in noninvasive pathology diagnosis. Shear wave elastography (SWE) measures the elastic properties of soft tissues by estimation of local shear wave propagation speed. In this paper, a new robust method for estimation of shear wave speed is introduced which has the potential for simplifying continuous filtering and real-time elasticity processing. Shear waves were generated by external mechanical excitation and imaged at a high frame rate. Three homogeneous phantoms of varying elastic moduli and one inclusion phantom were imaged. Waves propagating in separate directions were filtered and shear wave speed was estimated by inversion of the 1-D first-order wave equation. Final 2-D shear wave speed maps were constructed by weighted averaging of estimates from opposite traveling directions. Shear wave speed results for phantoms with gelatin concentrations of 5%, 7%, and 9% were 1.52 ± 0.10 m/s, 1.86 ± 0.10 m/s, and 2.37 ± 0.15 m/s, respectively, which were consistent with estimates computed from three other conventional methods, as well as compression tests done with a commercial texture analyzer. The method was shown to be able to reconstruct a 2-D speed map of an inclusion phantom with good image quality and variance comparable to conventional methods. Suggestions for further work are given. PMID:26670851
Shear wave speed and dispersion measurements using crawling wave chirps.
Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J
2014-10-01
This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. PMID:24658144
Propagation of waves in shear flows
Fabrikant, A L
1998-01-01
The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside
Surface Shear, Persistent Wave Groups and Rogue Waves
Chafin, Clifford
2014-01-01
We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.
Horizontal Shear Wave Imaging of Large Optics
Quarry, M J
2007-09-05
When complete the National Ignition Facility (NIF) will be the world's largest and most energetic laser and will be capable of achieving for the first time fusion ignition in the laboratory. Detecting optics features within the laser beamlines and sizing them at diameters of 0.1 mm to 10 mm allows timely decisions concerning refurbishment and will help with the routine operation of the system. Horizontally polarized shear waves at 10 MHz were shown to accurately detect, locate, and size features created by laser operations from 0.5 mm to 8 mm by placing sensors at the edge of the optic. The shear wave technique utilizes highly directed beams. The outer edge of an optic can be covered with shear wave transducers on four sides. Each transducer sends a pulse into the optic and any damage reflects the pulse back to the transmitter. The transducers are multiplexed, and the collected time waveforms are enveloped and replicated across the width of the element. Multiplying the data sets from four directions produces a map of reflected amplitude to the fourth power, which images the surface of the optic. Surface area can be measured directly from the image, and maximum depth was shown to be correlated to maximum amplitude of the reflected waveform.
The stability of Rossby waves in a stratified shear fluid
Tan, Benkui
1990-11-01
An investigation is undertaken of the stability of linear Rossby waves in a stratified shear fluid by means of a qualitative theory employing ordinary differential equations. It is noted that, while the basic current has no detectable shear, the Rossby waves are always stable. If the basic current possesses only horizontal shear, the unstable criterion for waves takes one form, but it takes entirely another in the case where the basic current possesses only vertical shear.
Surface gravity waves in deep fluid at vertical shear flows
Gogoberidze, G.; Samushia, L.; Chagelishvili, G. D.; Lominadze, J. G.; Horton, W
2005-01-01
Special features of surface gravity waves in deep fluid flow with constant vertical shear of velocity is studied. It is found that the mean flow velocity shear leads to non-trivial modification of surface gravity wave modes dispersive characteristics. Moreover, the shear induces generation of surface gravity waves by internal vortex mode perturbations. The performed analytical and numerical study provides, that surface gravity waves are effectively generated by the internal perturbations at h...
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere. PMID:24606251
Wave-front recovery from two orthogonal sheared interferograms
Servin, M.; Malacara, Daniel; Marroquin, J. L.
1996-08-01
We present a new technique for using the information of two orthogonal lateral-shear interferograms to estimate an aspheric wave front. The wave-front estimation from sheared inteferometric data may be considered an ill-posed problem in the sense of Hadamard. We apply Thikonov regularization theory to estimate the wave front that has produced the lateral sheared interferograms as the minimizer of a positive definite-quadratic cost functional. The introduction of the regularization term permits one to find a well-defined and stable solution to the inverse shearing problem over the wave-front aperture as well as to reduce wave-front noise as desired.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
Coupling of sound and internal waves in shear flows
Gravity waves in the parallel shear flow of a continuously stratified compressible fluid are considered. It is demonstrated that the shear induces a coupling between the sound waves and the internal gravity waves. The conditions for the effectiveness of the coupling are defined and a corresponding linear mechanism of wave transformation and energy transfer between the modes is described. It is also shown that, under suitable conditions, beat waves can be generated. (author). 28 refs, 5 figs
Shear Wave Splitting Beneath the Galapagos Archipelago
Fontaine, F. R.; Burkett, P. G.; Hooft, E. E.; Toomey, D. R.; Solomon, S. C.; Silver, P. G.
2004-12-01
We report measurements of teleseismic shear wave splitting in the Galápagos Archipelago. The inferred lateral variations in azimuthal anisotropy allow us to examine the dynamics of an evolving hotspot-ridge system. The data are from SKS and SKKS phases, as well as S waves from deep sources, recorded by a relatively dense network of 10 portable broadband seismometers deployed from 1999 to 2003 for the IGUANA (Imaging Galápagos Upwelling and Neotectonics of the Archipelago) experiment and from the GSN broadband station in Santa Cruz (PAYG). We find a delay time between fast and slow shear waves of 0.4 to 0.9 s and fast polarization directions of N85-90° E beneath five stations at the leading and southern edge of the archipelago. Despite clear seismic signals, we did not find any anisotropy at the six stations located in the interior of the archipelago. For those stations that show shear wave splitting, there is an increase in the delay time toward the expected location of the Galápagos hotspot at the western edge of the archipelago. With the exception of Española, fast polarization directions (N85-90° E) are close to the current direction of absolute plate motion of the overlying Nazca plate (N91° E). The lack of azimuthal anisotropy in the interior of the archipelago is interpreted as an absence of strongly oriented mantle fabric beneath these stations. The apparent isotropy in this dynamic region, where we expect considerable mantle strain, is surprising. It is not likely that the olivine a-axis is oriented vertically beneath the interior of the archipelago as the Galápagos plume is thought to lie at the western edge. It is also unlikely that there are two layers of perpendicularly-oriented anisotropy which are solely confined to the center of the archipelago. However, there appears to be some correlation between the region of apparent isotropy and a zone of anomalously low upper mantle velocities imaged beneath Santiago and Marchena from surface waves by
Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile
T.A. Sanny; Yoes Avianto
2003-01-01
Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of ...
Triad resonance between gravity and vorticity waves in vertical shear
Drivas, Theodore D.; Wunsch, Scott
2016-07-01
Weakly nonlinear theory is used to explore the effect of vertical shear on surface gravity waves in three dimensions. An idealized piecewise-linear shear profile motivated by wind-driven profiles and ambient currents in the ocean is used. It is shown that shear may mediate weakly nonlinear resonant triad interactions between gravity and vorticity waves. The triad results in energy exchange between gravity waves of comparable wavelengths propagating in different directions. For realistic ocean shears, shear-mediated energy exchange may occur on timescales of minutes for shorter wavelengths, but slows as the wavelength increases. Hence this triad mechanism may contribute to the larger angular spreading (relative to wind direction) for shorter wind-waves observed in the oceans.
BOTTOM SHEAR STRESS UNDER WAVE-CURRENT INTERACTION
LIANG Bing-chen; LI Hua-jun; LEE Dong-yong
2008-01-01
The present work adopts the COHERENS-SWAN model developed by the first author through coupling three-dimensional hydrodynamic model (COHERENS) and third-generation wave model (SWAN). Inside the COHERENS-SWAN, the SWAN is regarded as a subroutine and the time- and space-varying current velocity and surface elevation are obtained from the COHERENS. Wave-enhanced bottom shear stress, wave induced surface mixing length and wave dependent surface drag coefficient have been introduced into the COHERENS. Secondly, as wave-enhanced bottom shear stress ("bottom shear stress" described as BSS sometimes in this article) is concerned, a modified bottom shear stress Grant and Madsen model which introduces random wave field is given and introduced to COHERENS-SWAN. COHERENS-SWAN is also adopted to simulate three-dimensional flow in the Yellow River Delta with wave-current co-existing. Four numerical experiments were given to study the effects of wave-current interaction on enhancing bottom shear stress. The simulated current velocities, wave height and wave period match well with field measurement data. The simulated significant wave height and wave period for the case with considering the effects of current can give better agreement with measurement data than the case without involving the effects of current. The introduction of random wave generates lower the bottom shear stress than the case without introducing it. There are obvious differences between bottom shear stress of two way interaction and one way interaction. Velocity field obtained by the COHERENS-SWAN is reasonable according to previous studies and measurements.
Shear waves in a ﬂuid saturated elastic plate
A Pradhan; S K Samal; N C Mahanti
2002-12-01
In the present context, we consider the propagation of shear waves in the transverse isotropic ﬂuid saturated porous plate. The frequency spectrum for SH-modes in the plate has been studied. It is observed that the frequency of the propagation is damped due to the two-phase character of the porous medium. The dimensionless phase velocities of the shear waves have also been calculated and presented graphically. It is interesting to note that the frequency and phase velocity of shear waves in porous media differ signiﬁcantly in comparison to that in isotropic elastic media.
Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics
Miao, Hongchen; Dong, Shuxiang; Li, Faxin
2016-05-01
The fundamental shear horizontal (SH0) wave in plate-like structures is extremely useful for non-destructive testing (NDT) and structural health monitoring (SHM) as it is non-dispersive. However, currently, the SH0 wave is usually excited by electromagnetic acoustic transducers (EMAT) whose energy conversion efficiency is fairly low. The face-shear ( d 36 ) mode piezoelectrics is more promising for SH0 wave excitation, but this mode cannot appear in conventional piezoelectric ceramics. Recently, by modifying the symmetry of poled PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering, we realized the face-shear d 36 mode in both soft and hard PZT ceramics. In this work, we further improved the face-shear properties of PZT-4 and PZT-5H ceramics via lateral compression under elevated temperature. It was found that when bonded on a 1 mm-thick aluminum plate, the d 36 type PZT-4 exhibited better face-shear performance than PZT-5H. We then successfully excite SH0 wave in the aluminum plate using a face-shear PZT-4 square patch and receive the wave using a face-shear 0.72[Pb(Mg1/3Nb2/3)O3]-0.28[PbTiO3] (PMN-PT) patch. The frequency response and directionality of the excited SH0 wave were also investigated. The SH0 wave can be dominated over the Lamb waves (S0 and A0 waves) from 160 kHz to 280 kHz. The wave amplitude reaches its maxima along the two main directions (0° and 90°). The amplitude can keep over 80% of the maxima when the deviate angle is less than 30°, while it vanishes quickly at the 45° direction. The excited SH0 wave using piezoelectric ceramics could be very promising in the fields of NDT and SHM.
Effect of shear on failure waves in soda lime glass
By means of in-material stress gauges, failure waves in shock-compressed soda lime glass have been shown to be distinguished by a marked reduction in shear stress. To explore further the relation between failure waves and shearing resistance, a series of pressure-shear impact experiments have been performed involving the impact of a glass plate by a steel flyer plate and vice versa. The latter configuration is designed to allow direct measurements of the shearing resistance of the failed material. In both configurations, the normal and transverse motion of the free surface of the target is monitored using laser interferometry. The transverse velocity-time profiles show a pronounced loss in shearing resistance of the glass at impact velocities above the threshold for failure waves to occur
On acoustic wave generation in uniform shear flow
Gogoberidze, G.
2016-07-01
The linear dynamics of acoustic waves and vortices in uniform shear flow is studied. For flows with very low shear rates, the dynamics of perturbations is adiabatic and can be described by the WKB approximation. However, for flows with moderate and high shear rates the WKB approximation is not appropriate, and alternative analysis shows that two important phenomena occur: acoustic wave over-reflection and wave generation by vortices. The later phenomenon is a known linear mechanisms for sound generation in shear flows, a mechanism that is related to the continuous spectrum that arises in linear shear flow dynamics. A detailed analytical study of these phenomena is performed and the main quantitative and qualitative characteristics of the radiated acoustic field are obtained and analyzed.
Convertion Shear Wave Velocity to Standard Penetration Resistance
Madun, A.; Tajuddin, S. A. A.; Abdullah, M. E.; Abidin, M. H. Z.; Sani, S.; Siang, A. J. L. M.; Yusof, M. F.
2016-07-01
Multichannel Analysis Surface Wave (MASW) measurement is one of the geophysics exploration techniques to determine the soil profile based on shear wave velocity. Meanwhile, borehole intrusive technique identifies the changes of soil layer based on soil penetration resistance, i.e. standard penetration test-number of blows (SPT-N). Researchers across the world introduced many empirical conversions of standard penetration test blow number of borehole data to shear wave velocity or vice versa. This is because geophysics test is a non-destructive and relatively fast assessment, and thus should be promoted to compliment the site investigation work. These empirical conversions of shear wave velocity to SPT-N blow can be utilised, and thus suitable geotechnical parameters for design purposes can be achieved. This study has demonstrated the conversion between MASW and SPT-N value. The study was conducted at the university campus and Sejagung Sri Medan. The MASW seismic profiles at the University campus test site and Sejagung were at a depth of 21 m and 13 m, respectively. The shear wave velocities were also calculated empirically using SPT-N value, and thus both calculated and measured shear wave velocities were compared. It is essential to note that the MASW test and empirical conversion always underestimate the actual shear wave velocity of hard layer or rock due to the effect of soil properties on the upper layer.
ORTHOGONALITY RELATIONSHIP FOR SHEAR WAVE MODES IN PIEZOELECTRIC WAVEGUIDE
Ghazaryan K.B.
2013-09-01
Full Text Available In the framework of the full set of Maxwell equations and dynamic equations of the elasticity theory an orthogonality relationship is derived for interconnected electro-magneto-elastic shear wave modes in piezoelectric waveguide.
Shear-wave splitting of Sichuan Regional Seismic Network
ZHANG Yong-jiu; GAO Yuan; SHI Yu-tao; CHENG Wan-zheng
2008-01-01
Using seismic data recorded by the Chengdu Digital Seismic Network from May 1, 2000 to December 31, 2006, we obtain the dominant polarization directions of fast shear-waves at eight digital seismic stations adopting the SAM technique. The results show that the dominant directions of polarizations of fast shear-waves at most of sta- tions are mainly in nearly NE,-SW or NW-SE direction in Sichuan. The dominant polarization directions of the fast shear-waves at stations located at the active faults or intersection of several active faults are consistent with the strikes of active faults which control the earthquakes used in the analysis, and are basically consistent with the directions of regional compression axis. However, several stations show that the fast shear-waves are not consis- tent with the strikes of active faults and the directions of regional compression axis, due to the influence of local complicated crustal structure.
Shear wave propagation in anisotropic soft tissues and gels
Namani, Ravi; Bayly, Philip V.
2009-01-01
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized...
Length and activation dependent variations in muscle shear wave speed
Muscle stiffness is known to vary as a result of a variety of disease states, yet current clinical methods for quantifying muscle stiffness have limitations including cost and availability. We investigated the capability of shear wave elastography (SWE) to measure variations in gastrocnemius shear wave speed induced via active contraction and passive stretch. Ten healthy young adults were tested. Shear wave speeds were measured using a SWE transducer positioned over the medial gastrocnemius at ankle angles ranging from maximum dorsiflexion to maximum plantarflexion. Shear wave speeds were also measured during voluntary plantarflexor contractions at a fixed ankle angle. Average shear wave speed increased significantly from 2.6 to 5.6 m s–1 with passive dorsiflexion and the knee in an extended posture, but did not vary with dorsiflexion when the gastrocnemius was shortened in a flexed knee posture. During active contractions, shear wave speed monotonically varied with the net ankle moment generated, reaching 8.3 m s–1 in the maximally contracted condition. There was a linear correlation between shear wave speed and net ankle moment in both the active and passive conditions; however, the slope of this linear relationship was significantly steeper for the data collected during passive loading conditions. The results show that SWE is a promising approach for quantitatively assessing changes in mechanical muscle loading. However, the differential effect of active and passive loading on shear wave speed makes it important to carefully consider the relevant loading conditions in which to use SWE to characterize in vivo muscle properties. (paper)
Shear-Wave Elastography of Segmental Infarction of the Testis
Kantarci, Fatih; Cebi Olgun, Deniz; Mihmanli, Ismail
2012-01-01
Segmental testicular infarction (STI) is a rare cause of acute scrotum. The spectrum of findings on gray-scale and color Doppler ultrasonography differ depending on the time between the onset of testicular pain and the ultrasonography examination. We are not aware of the usefulness of shear-wave elastography for the diagnosis of STI. We report the shear-wave elastography features in a case of STI and discuss the role of this diagnostic modality in the differential diagnosis.
Maximum likelihood estimation of shear wave speed in transient elastography.
Audière, Stéphane; Angelini, Elsa D; Sandrin, Laurent; Charbit, Maurice
2014-06-01
Ultrasonic transient elastography (TE), enables to assess, under active mechanical constraints, the elasticity of the liver, which correlates with hepatic fibrosis stages. This technique is routinely used in clinical practice to assess noninvasively liver stiffness. The Fibroscan system used in this work generates a shear wave via an impulse stress applied on the surface of the skin and records a temporal series of radio-frequency (RF) lines using a single-element ultrasound probe. A shear wave propagation map (SWPM) is generated as a 2-D map of the displacements along depth and time, derived from the correlations of the sequential 1-D RF lines, assuming that the direction of propagation (DOP) of the shear wave coincides with the ultrasound beam axis (UBA). Under the assumption of pure elastic tissue, elasticity is proportional to the shear wave speed. This paper introduces a novel approach to the processing of the SWPM, deriving the maximum likelihood estimate of the shear wave speed when comparing the observed displacements and the estimates provided by the Green's functions. A simple parametric model is used to interface Green's theoretical values of noisy measures provided by the SWPM, taking into account depth-varying attenuation and time-delay. The proposed method was evaluated on numerical simulations using a finite element method simulator and on physical phantoms. Evaluation on this test database reported very high agreements of shear wave speed measures when DOP and UBA coincide. PMID:24835213
On Shear Wave Speed Estimation for Agar-Gelatine Phantom
Hassan M. Ahmed
2016-02-01
Full Text Available Conventional imaging of diagnostic ultrasound is widely used. Although it makes the differences in the soft tissues echogenicities’ apparent and clear, it fails in describing and estimating the soft tissue mechanical properties. It cannot portray their mechanical properties, such as the elasticity and stiffness. Estimating the mechanical properties increases chances of the identification of lesions or any pathological changes. Physicians are now characterizing the tissue’s mechanical properties as diagnostic metrics. Estimating the tissue’s mechanical properties is achieved by applying a force on the tissue and calculating the resulted shear wave speed. Due to the difficulty of calculating the shear wave speed precisely inside the tissue, it is estimated by analyzing ultrasound images of the tissue at a very high frame rate. In this paper, the shear wave speed is estimated using finite element analysis. A model is constructed to simulate the tissue’s mechanical properties. For a generalized soft tissue model, Agar-gelatine model is used because it has properties similar to that of the soft tissue. A point force is applied at the center of the proposed model. As a result of this force, a deformation is caused. Peak displacements are tracked along the lateral dimension of the model for estimating the shear wave speed of the propagating wave using the Time-To-Peak displacement (TTP method. Experimental results have shown that the estimated speed of the shear wave is 5.2 m/sec. The speed value is calculated according to shear wave speed equation equals about 5.7 m/sec; this means that our speed estimation system’s accuracy is about 91 %, which is reasonable shear wave speed estimation accuracy with a less computational power compared to other tracking methods.
Hong, T.-K.
2009-04-01
Understanding the shear-wave excitation mechanism is a key issue for effective seismic monitoring of underground nuclear explosions (UNEs). We often observe strong shear waves from UNEs, which causes difficulty in prompt discrimination of nuclear explosions from natural earthquakes. Various mechanisms have been proposed to explain the shear-wave excitation from the UNEs. Consensus on dominant mechanism of shear-wave excitation has not been made. To constrain the shear-wave excitation mechanism, we examine the consistency in shear-wave radiation pattern using a source-array slowness-wavenumber (F-K) analysis, which allows us to check the time-invariant feature in the shear waves. We examine regional and teleseismic waveforms for the UNEs of the Balapan test site and Nevada test site along with the Indian and North Korean UNEs. We observe consistent radiation pattern in both regional and teleseismic shear waves. The observed radiation pattern suggests that the shear waves were not excited azimuthally-isotropic. Shear waves observed in teleseismic distances are far weak compared to those in regional distances, which implies that shear waves are excited stronger at high takeoff angles. Also, spectra of shear waves display significantly low overshoot feature that is different from those of P phases. The time-invariant anisotropic radiation pattern, strong excitation in high takeoff angle and low overshoot feature allow us to constrain the shear-wave excitation mechanism.
Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-02-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r² = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts. PMID:21342822
This article discusses shear horizontal (SH) guided-waves that can be excited with shear type piezoelectric wafer active sensor (SH-PWAS). The paper starts with a review of state of the art SH waves modelling and their importance in non-destructive evaluation (NDE) and structural health monitoring (SHM). The basic piezoelectric sensing and actuation equations for the case of shear horizontal piezoelectric wafer active sensor (SH-PWAS) with electro-mechanical coupling coefficient d35 are reviewed. Multiphysics finite element modelling (MP-FEM) was performed on a free SH-PWAS to show its resonance modeshapes. The actuation mechanism of the SH-PWAS is predicted by MP-FEM, and modeshapes of excited structure are presented. The structural resonances are compared with experimental measurements and showed good agreement. Analytical prediction of SH waves was performed. SH wave propagation experimental study was conducted between different combinations of SH-PWAS and regular in-plane PWAS transducers. Experimental results were compared with analytical predictions for aluminium plates and showed good agreement. 2D wave propagation effects were studied by MP-FEM. An analytical model was developed for SH wave power and energy. The normal mode expansion (NME) method was used to account for superpositioning multimodal SH waves. Modal participation factors were presented to show the contribution of every mode. Power and energy transfer between SH-PWAS and the structure was analyzed. Finally, we present simulations of our developed wave power and energy analytical models. (paper)
Wave propagation in carbon nanotubes under shear deformation
This paper reports the results of an investigation on the effect of shear deformations on wave propagation in carbon nanotubes embedded in an elastic matrix. A multi-walled carbon nanotube is considered as a multiple shell coupled together through van der Waals forces between two adjacent tubes. The surrounding matrix is considered as a spring element defined by the Winkler model. Using the variational calculus of Hamilton's principle, dynamic governing equations considering the shear deformation and rotary inertia terms are derived. Numerical examples describe the effects of shear deformation, rotary inertia and elastic matrix on the velocity, the critical frequency, the cut-off frequency and the amplitude ratio of wave propagation in multi-walled carbon nanotubes embedded in an elastic matrix, respectively. The results obtained show that wave propagation in carbon nanotubes appears in a critical frequency or a cut-off frequency for different wave modes; the effect of shear deformation decreases the value of critical frequency; the critical frequency increases as the matrix stiffness increases; the inertia rotary has an obvious influence on the wave velocity for some wave modes in the higher frequency region
Probing the shear-band formation in granular media with sound waves
KHIDAS, Yacine; Jia, X.
2012-01-01
We investigate the mechanical responses of dense granular materials, using a direct shear box combined with simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band is formed. Subjected to cyclic shear, both shear stress and wave speed show the strong hysteretic dependence on the shear strain, likely associated with the geometry ...
A Hammer-Impact, Aluminum, Shear-Wave Seismic Source
Haines, Seth S.
2007-01-01
Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.
Near surface shear wave velocity in Bucharest, Romania
M. von Steht; B. Jaskolla; Ritter, J.R.R.
2010-01-01
Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp) s...
Advantages of Shear Wave Seismic in Morrow Sandstone Detection
Paritosh Singh
2011-01-01
Full Text Available The Upper Morrow sandstones in the western Anadarko Basin have been prolific oil producers for more than five decades. Detection of Morrow sandstones is a major problem in the exploration of new fields and the characterization of existing fields because they are often very thin and laterally discontinuous. Until recently compressional wave data have been the primary resource for mapping the lateral extent of Morrow sandstones. The success with compressional wave datasets is limited because the acoustic impedance contrast between the reservoir sandstones and the encasing shales is small. Here, we have performed full waveform modeling study to understand the Morrow sandstone signatures on compressional wave (P-wave, converted-wave (PS-wave and pure shear wave (S-wave gathers. The contrast in rigidity between the Morrow sandstone and surrounding shale causes a strong seismic expression on the S-wave data. Morrow sandstone shows a distinct high amplitude event in pure S-wave modeled gathers as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the adverse effect of interbed multiples (due to shallow high velocity anhydrite layers and side lobe interference effects at the Morrow level. Modeling tied with the field data demonstrates that S-waves are more robust than P-waves in detecting the Morrow sandstone reservoirs.
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
Shear-wave traveltimes in inhomogeneous weakly anisotropic media
Iversen, E.; Farra, V.; Pšenčík, Ivan
Tulsa : SEG, 2009, s. 3486-3490. [Annual Meeting of the Society of Exploration Geophysicists /79./. Houston (US), 25.10.2009-30.10.2009] R&D Projects: GA ČR GA205/08/0332 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic anisotropy * shear-wave coupling * traveltimes Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Measurement and modelling of bed shear induced by solitary waves
JayaKumar, S.
±20% accuracy, which is probably adequate for most practical engineering purposes. 168 Solitary wave induced shear stresses Chapter 10: Conclusions 10.3. Friction factors The wave friction factors derived from the classical drag law vary... Engineering, 56(5-6): 506-516. Baldock, T.E. and Holmes, P., 1998. Seepage effects on sediment transport by waves and currents. 26th International Conference Coastal Engineering, Orlando, p.^pp. 3601- 3614. Barends, F.B.J. and Spierenburg, S.E.J., 1991...
Cosmic Shear from Scalar-Induced Gravitational Waves
Sarkar, Devdeep; Cooray, Asantha; Ichiki, Kiyotomo; Baumann, Daniel
2008-01-01
Weak gravitational lensing by foreground density perturbations generates a gradient mode in the shear of background images. In contrast, cosmological tensor perturbations induce a non-zero curl mode associated with image rotations. In this note, we study the lensing signatures of both primordial gravitational waves from inflation and second-order gravitational waves generated from the observed spectrum of primordial density fluctuations. We derive the curl mode for galaxy lensing surveys at redshifts of 1 to 3 and for lensing of the cosmic microwave background (CMB) at a redshift of 1100. We find that the curl mode angular power spectrum associated with secondary tensor modes for galaxy lensing surveys dominates over the corresponding signal generated by primary gravitational waves from inflation. However, both tensor contributions to the shear curl mode spectrum are below the projected noise levels of upcoming galaxy and CMB lensing surveys and therefore are unlikely to be detectable.
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
SHEAR WAVE ELASTOGRAPHY OF THE ARTERIAL WALL – WHERE WE ARE TODAY
Widman, Erik; Maksuti, Elira; Larsson, Matilda; Bjällmark, Anna; Nordenfur, Tim; Caidahl, Kenneth; D’hooge, Jan
2013-01-01
1. Introduction Shear Wave Elastography (SWE) is a recently developed noninvasive method for elastography assessment using ultrasound. The technique consists of sending an acoustic radiation force (pushing sequence) into the tissue that in turn generates an orthogonal low frequency propagating shear wave. The shear wave propagation is measured real time by high speed B-mode imaging. From the B-mode images, the shear wave is tracked via normalized cross-correlation and the speed is calculate...
Instability of subharmonic resonances in magnetogravity shear waves
Salhi, A.; Nasraoui, S.
2013-12-01
We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N3. For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004), 10.1086/420972]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δm=(3√3 /16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N3/2, the instability of the subharmonic resonance vanishes.
Energetics of internal solitary waves in a background sheared current
K. G. Lamb
2010-10-01
Full Text Available The energetics of internal waves in the presence of a background sheared current is explored via numerical simulations for four different situations based on oceanographic conditions: the nonlinear interaction of two internal solitary waves; an internal solitary wave shoaling through a turning point; internal solitary wave reflection from a sloping boundary and a deep-water internal seiche trapped in a deep basin. In the simulations with variable water depth using the Boussinesq approximation the combination of a background sheared current, bathymetry and a rigid lid results in a change in the total energy of the system due to the work done by a pressure change that is established across the domain. A final simulation of the deep-water internal seiche in which the Boussinesq approximation is not invoked and a diffuse air-water interface is added to the system results in the energy remaining constant because the generation of surface waves prevents the establishment of a net pressure increase across the domain. The difference in the perturbation energy in the Boussinesq and non-Boussinesq simulations is accounted for by the surface waves.
Prediction of the Shear Wave Velocity from Compressional Wave Velocity for Gachsaran Formation
Parvizi Saeed
2015-10-01
Full Text Available Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.
SHEAR WAVES IN PERIODIC WAVEGUIDE WITH ALTERNATING BOUNDARY CONDITIONS
Piliposyan D.G.; Ghazaryan R.A.; Ghazaryan K.B.
2014-01-01
The propagation of shear waves in elastic waveguide of periodic structure consisting of three different materials with alternating along the guide walls boundary conditions is investigated. Using the transfer matrix approach the problem is reduced to the solution of a block transfer matrix eigenvalue problem. Bloth the dispersion and the band gap structure analysis have been carried out numerically. It is shown that for alternating boundary conditions along the waveguide walls, by modulating ...
Shear-wave splitting measurements – Problems and solutions
Vecsey, Luděk; Plomerová, Jaroslava; Babuška, Vladislav
2008-01-01
Roč. 462, č. 1-4 (2008), s. 178-196. ISSN 0040-1951 R&D Projects: GA AV ČR(CZ) KJB300120605; GA AV ČR IAA3012405; GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic anisotropy * shear-wave splitting * comparison of cross-correlation * eigenvalue * transverse minimization methods Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.677, year: 2008
Teleseismic shear-wave splitting and deformations in Central Europe
P. Bormann; P. T. Burghardt; L. I. Makeyeva; L. P. Vinnik;
1993-01-01
Abstract: We analyse the results of measurements of shear-wave splitting due to azimuthally anisotropy in the upper mantle of Central Europe, based on the SKS technique. The observations at seismograph stations in the eastern part of Germany are combined with the published estimates of the parameters of azimuthally anisotropy at neighbouring locations. These data are interpreted in terms of lattice preferred orientation of olivine which is caused by deformations in the upper mantle. Direction...
Triple point shear-layers in gaseous detonation waves
Massa, L.; Austin, J. M.; Jackson, T. L.
2006-01-01
Recent experiments have shown intriguing regions of intense luminescence or ‘hotspots’ in the vicinity of triple-point shear layers in propagating gaseous detonation waves. Localized explosions have also been observed to develop in these fronts. These features were observed in higher effective activation energy mixtures, but not in lower effective activation energy mixtures. The increased lead shock oscillation through a cell cycle in higher activation energy mixtures may result in a signific...
Driven transverse shear waves in a strongly coupled dusty plasma
Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: banerjee_pintu2002@yahoo.com; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2008-08-11
The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied in a DC discharge device by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1<{gamma}<<{gamma}{sub c}) where {gamma} is the Coulomb coupling parameter and {gamma}{sub c} is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.
Chaotic transport by Rossby waves in shear flow
Transport and mixing properties of Rossby waves in shear flow are studied using tools from Hamiltonian chaos theory. The destruction of barriers to transport is studied analytically, by using the resonance overlap criterion and the concept of separatrix reconnection, and numerically by using Poincare sections. Attention is restricted to the case of symmetric velocity profiles with a single maximum; the Bickley jet with velocity profile sech2 is considered in detail. Motivated by linear stability analysis and experimental results, a simple Hamiltonian model is proposed to study transport by waves in these shear flows. Chaotic transport, both for the general case and for the sech2 profile, is investigated. The resonance overlap criterion and the concept of separatrix reconnection are used to obtain an estimate for the destruction of barriers to transport and the notion of banded chaos is introduced to characterize the transport that typically occurs in symmetric shear flows. Comparison between the analytical estimates for barrier destruction and the numerical results is given. The role of potential vorticity conservation in chaotic transport is discussed. An area preserving map, termed standard nontwist map, is obtained from the Hamiltonian model. It is shown that the map reproduces the transport properties and the separatrix reconnection observed in the Hamiltonian model. The conclusions reached are used to explain experimental results on transport and mixing by Rossby waves in rotating fluids
Shear layer behavior resulting from shock wave diffraction
Skews, Beric; Law, Craig; Muritala, Adam; Bode, Sebastian [University of the Witwatersrand, School of Mechanical, Industrial, and Aeronautical Engineering, Johannesburg (South Africa)
2012-02-15
All previous studies on shock wave diffraction in shock tubes have spatial and temporal limitations due to the size of the test sections. These limitations result from either the reflection of the expansion wave, generated at the corner, from the top wall and/or of the reflection of the incident diffracted shock from the bottom wall of the test section passing back through the region of interest. This has limited the study of the evolution of the shear layer and its associated vortex, which forms a relatively small region of the flow behind the shock with an extent of only a few centimeters, and yet is a region of significant interest. A special shock tube is used in the current tests which allow evolution of the flow to be examined at a scale about an order of magnitude larger than in previously published results, with shear layer lengths of up to 250 mm being achieved without interference from adjacent walls. Tests are presented for incident shock wave Mach numbers of nominally 1.3-1.5. Studies have been undertaken with wall angles of 10, 20, 30 and 90 . Significant changes are noted as the spatial and temporal scale of the experiment increases. For a given wall angle, the flow behind the incident shock is not self-similar as is usually assumed. Both shear layer instability and the development of turbulent patches become evident, neither of which have been noted in previous tests. (orig.)
Shear wave velocity structure in West Java, Indonesia as inferred from surface wave dispersion
Anggono, Titi; Syuhada
2016-02-01
We investigated the crust and upper mantle of West Java, Indonesia by measuring the group velocity dispersion of surface waves. We analyzed waveform from four teleseismic earthquake recorded at three 3-component broadband seismometers. We analyzed fundamental mode of Rayleigh and Love waves from vertical, radial, and transverse components using multiple filter technique. We inverted the measured group velocity to obtain shear wave velocity profile down to 200 km depth. We observed low shear wave velocity zone at depth of about 20 km. Shear velocity reduction is estimated to be 18% compared to the upper and lower velocity layer. The low velocity zone might be associated with the subducting slab of Indo-Australian Plate as similar characteristics of low velocity zones also observed at other subducting regions.
Schmidt, J L; Tweten, D J; Benegal, A N; Walker, C H; Portnoi, T E; Okamoto, R J; Garbow, J R; Bayly, P V
2016-05-01
Mechanical anisotropy is an important property of fibrous tissues; for example, the anisotropic mechanical properties of brain white matter may play a key role in the mechanics of traumatic brain injury (TBI). The simplest anisotropic material model for small deformations of soft tissue is a nearly incompressible, transversely isotropic (ITI) material characterized by three parameters: minimum shear modulus (µ), shear anisotropy (ϕ=µ1µ-1) and tensile anisotropy (ζ=E1E2-1). These parameters can be determined using magnetic resonance elastography (MRE) to visualize shear waves, if the angle between the shear-wave propagation direction and fiber direction is known. Most MRE studies assume isotropic material models with a single shear (µ) or tensile (E) modulus. In this study, two types of shear waves, "fast" and "slow", were analyzed for a given propagation direction to estimate anisotropic parameters µ, ϕ, and ζ in two fibrous soft materials: turkey breast ex vivo and aligned fibrin gels. As expected, the speed of slow shear waves depended on the angle between fiber direction and propagation direction. Fast shear waves were observed when the deformations due to wave motion induced stretch in the fiber direction. Finally, MRE estimates of anisotropic mechanical properties in turkey breast were compared to estimates from direct mechanical tests. PMID:26920505
Unbounded wall flow with free surface waves and horizontal shear
Lapham, Gary; McHugh, John
2015-11-01
Free surface waves in the presence of a non-uniform shear flow are treated. The shear flow of interest varies with both the transverse and vertical coordinates, U (y , z) . Initial results treat a mean flow varying only with the transverse, U (y) . The domain is bounded on one side by a flat rigid vertical wall and is unbounded on the other side. The mean flows considered here are nonzero near the vertical wall and approach zero far from the wall, e.g. U =e-γy . The flowfield is treated as inviscid but rotational. Linear solutions are obtained using a nonuniform coordinate transformation that converts the free surface boundary condition into a modified Bessel equation. Velocity components are expanded in modified Bessel functions of the first kind of purely imaginary order. The dispersion relation for steady waves are found with wavespeeds outside the range of U, matching previous results for a flow bounded on both sides. Corresponding eigenvectors show a sequence of wave profiles of increasing complexity near the wall. The wave amplitude approaches zero far from the wall.
Shear Wave Splitting Inversion in a Complex Crust
Lucas, A.
2015-12-01
Shear wave splitting (SWS) inversion presents a method whereby the upper crust can be interrogated for fracture density. It is caused when a shear wave traverses an area of anisotropy, splits in two, with each wave experiencing a different velocity resulting in an observable separation in arrival times. A SWS observation consists of the first arrival polarization direction and the time delay. Given the large amount of data common in SWS studies, manual inspection for polarization and time delay is considered prohibitively time intensive. All automated techniques used can produce high amounts of observations falsely interpreted as SWS. Thus introducing error into the interpretation. The technique often used for removing these false observations is to manually inspect all SWS observations defined as high quality by the automated routine, and remove false identifications. We investigate the nature of events falsely identified compared to those correctly identified. Once this identification is complete we conduct a inversion for crack density from SWS time delay. The current body of work on linear SWS inversion utilizes an equation that defines the time delay between arriving shear waves with respect to fracture density. This equation makes the assumption that no fluid flow occurs as a result of the passing shear wave, a situation called squirt flow. We show that the assumption is not applicable in all geological situations. When it is not true, its use in an inversion produces a result which is negatively affected by the assumptions. This is shown to be the case at the test case of 6894 SWS observations gathered in a small area at Puna geothermal field, Hawaii. To rectify this situation, a series of new time delay formulae, applicable to linear inversion, are derived from velocity equations presented in literature. The new formula use a 'fluid influence parameter' which indicates the degree to which squirt flow is influencing the SWS. It is found that accounting for
Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.
2016-03-01
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
H. Z. Baumert
2008-11-01
Full Text Available A new two-equation, closure-like turbulence model for stably stratified flows is introduced which uses the turbulent kinetic energy (K and the turbulent enstrophy (Ω as primary variables. It accounts for mean shear – and internal wave-driven mixing in the two limits of mean shear and no waves and waves but no mean shear, respectively. The traditional TKE balance is augmented by an explicit energy transfer from internal waves to turbulence. A modification of the Ω-equation accounts for the effect of the waves on the turbulence time and space scales. The latter is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean-flow shear when turbulence is produced exclusively by internal waves. The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the swift tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
SHEAR WAVES IN PERIODIC WAVEGUIDE WITH ALTERNATING BOUNDARY CONDITIONS
Piliposyan D.G.
2014-06-01
Full Text Available The propagation of shear waves in elastic waveguide of periodic structure consisting of three different materials with alternating along the guide walls boundary conditions is investigated. Using the transfer matrix approach the problem is reduced to the solution of a block transfer matrix eigenvalue problem. Bloth the dispersion and the band gap structure analysis have been carried out numerically. It is shown that for alternating boundary conditions along the waveguide walls, by modulating the ratio of the length of the unit cell to the width of the waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin zone
The velocity of shear waves in unsaturated soil
Whalley, W. R.; Jenkins, M; Attenborough, K.
2012-01-01
The velocities of shear waves Vs in two soils, a loamy sand and a sandy clay loam, were measured at various matric potentials and confining pressures. We used a combination of Haines apparatus, pressure plate apparatus and a Bishop and Wesley tri-axial cell to obtain a range of saturation and consolidation states. We proposed a single effective stress variable based on a modification to Bishop’s equation which could be used in a published empirical model (Santamarina et al., 2001) to relate s...
Measurement and modeling of bed shear stress under solitary waves
Jayakumar, S.; Guard, P.A.; Baldock, T.E.
) of the water particles, and kinematic viscosity (ν ): ν Au R e = (2) In order to estimate R e , the semi-excursion length of the water particles needs to be estimated properly for the solitary waves. This semi-excursion of the water particle... ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ =νν (8) where, z 0 is roughness height, z is depth, ν is kinematic viscosity. It was also shown that to leading order bed shear stress, τ , can be expressed as convolution integral of the depth integrated averaged horizontal velocity, u , Eq...
Propagation of shear wave in nonlinear and dissipative medium
The civil engineering projects, like nuclear installations, submitted to vibrations or seismic motions, require the study of the soil behaviour underlying the site under intensive dynamic loading. In order to understand in depth the soil damping phenomenon, a propagation of a shear seismic wave in a dissipative medium has been numerically simulated. The computer code, based on a nonlinear hysteretic model using Newmark-Wilson and Newton-Raphson algorithms and variable spatial steps, passes through the difficulties related to acceleration discontinuities. The simulation should allow the identification of the soil parameters by comparison with in situ measures. (author)
Berryman, J G
2004-02-24
Layered earth models are well justified by experience, and provide a simple means of studying fairly general behavior of the elastic and poroelastic characteristics of seismic waves in the earth. Thomsen's anisotropy parameters for weak elastic and poroelastic anisotropy are now commonly used in exploration, and can be conveniently expressed in terms of the layer averages of Backus. Since our main interest is usually in the fluids underground, it would be helpful to have a set of general equations relating the Thomsen parameters as directly as possible to the fluid properties. This end can be achieved in a rather straightforward fashion for these layered earth models, and the present paper develops and then discusses these relations. Furthermore, it is found that, although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves in VTI media. The effects of the pore fluids on this effective shear modulus can be substantial - an increase of shear wave speed on the order of 10% is shown to be possible when circumstances are favorable -when the medium behaves in an undrained fashion, and the shear modulus fluctuations are large (resulting in strong anisotropy). These effects are expected to be seen at higher frequencies such as sonic and ultrasonic waves for well-logging or laboratory experiments, or at seismic wave frequencies for low permeability regions of reservoirs, prior to hydrofracing. Results presented are strictly for velocity analysis.
Solitary waves of permanent form in a deep fluid with weak shear
Derzho, Oleg G.; Velarde, Manuel G.
1995-06-01
The Benjamin-Davis-Acrivos-Ono equation is generalized to account for finite, large amplitude solitary waves in a sheared deep fluid. It is shown how fine structure of stratification and weak noncritical shear in such geophysical flows do affect length (shape), wave (phase) velocity, and even stability of finite amplitude solitary waves.
A NEW MEASURE FOR DIRECT MEASUREMENT OF THE BED SHEAR STRESS OF WAVE BOUNDARY LAYER IN WAVE FLUME
无
2007-01-01
In this article, a shear plate was mounted on the bottom in a wave flume and direct measurements of the smooth and rough bed shear stress under regular and irregular waves were conducted with the horizontal force exerted on the shear plates by the bottom shear stress in the wave boundary layer. Under immobile bed condition, grains of sand were glued uniformly and tightly onto the shear plate, being prevented from motion with the fluid flow and generation of sand ripples. The distribution of the bottom mean shear stress varying with time was measured by examining the interaction between the shear plate and shear transducers. The relation between the force measured by the shear transducers and its voltage is a linear one. Simultaneous measurements of the bottom velocity were carried out by an Acoustic Doppler Velocimeter (ADV), while the whole process was completely controlled by computers, bottom shear stress and velocity were synchronously measured. Based on the experimental results, it can be concluded that (1) the friction coefficient groews considerably with the increase of the Reynolds number, (2) the shear stress is a function varying with time and linearly proportional to the velocity. Compared with theoretical results and previous experimental data, it is shown that the experimental method is feasible and effective, A further study on the bed shear stress under regular or irregular waves can be carried out. And applicability to the laboratory studies on the initiation of sediments and the measurement of the shear stress after sediment imigration.
Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.
2016-03-01
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
Liu Xiqiang; Zhou Huilan; Li Hong; Gai Dianguang
2000-01-01
Based on the propagation characteristics of shear wave in the anisotropic layers, thecorrelation among several splitting shear-wave identification methods hasbeen studied. Thispaper puts forward the method estimating splitting shear-wave phases and its reliability byusing of the assumption that variance of noise and useful signal data obey normaldistribution. To check the validity of new method, the identification results and errorestimation corresponding to 95% confidence level by analyzing simulation signals have beengiven.
Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile
T.A. Sanny
2003-05-01
Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.
A Comparative Study of Strain- and Shear-Wave-Elastography in an Elasticity Phantom
Carlsen, Jonathan F; Pedersen, Malene R; Ewertsen, Caroline; Săftoiu, Adrian; Lönn, Lars; Rafaelsen, Søren R; Nielsen, Michael B
2015-01-01
OBJECTIVE. The purpose of this study was to assess the diagnostic accuracy of strain and shear-wave elastography for determining targets of varying stiffness in a phantom. The effect of target diameter on elastographic assessments and the effect of depth on shear-wave velocity were also investiga......OBJECTIVE. The purpose of this study was to assess the diagnostic accuracy of strain and shear-wave elastography for determining targets of varying stiffness in a phantom. The effect of target diameter on elastographic assessments and the effect of depth on shear-wave velocity were also...
Near surface shear wave velocity in Bucharest, Romania
M. von Steht
2008-12-01
Full Text Available Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs^{30} varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.
Near surface shear wave velocity in Bucharest, Romania
von Steht, M.; Jaskolla, B.; Ritter, J. R. R.
2008-12-01
Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp) structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55 65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s) in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45 0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.
Wave blocking phenomenon of surface waves on a shear flow with a constant vorticity
Maïssa, Philippe; Rousseaux, Germain; Stepanyants, Yury
2016-03-01
Propagation of gravity-capillary surface waves on a background shear flow with a constant vorticity is studied and compared with the case when the background flow is uniform in depth. Under the assumption that the background flow gradually varies in the horizontal direction, the primary attention is paid to the wave blocking phenomenon; the effect of vorticity on this phenomenon is studied in detail. The conditions for wave blocking are obtained and categorized for different values of the governing dimensionless parameters: Froude number, dimensionless vorticity, and surface tension.
A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis. (paper)
Drift-wave spectra in plasmas with magnetic shear
The nonlinear radial eigenmode equation governing the evolution of drift waves in a weakly turbulent state is obtained under the assumption that ion nonlinear scattering (nonlinear ion Landau damping) is the dominant saturation mechanism. The poloidal spectrum is to be derived from the eigenvalue equation. The local character of the interaction in frequencies allows the transformation of the otherwise integral wave kinetic equation (i.e., the eigenvalue equation) into a system of two first-order differential equations coupling the spectra I(k/sub theta/) and I(k/sup dagger//sub theta/) if ω(k/sup dagger//sub theta/) = ω(k/sub theta/). The density fluctuation spectrum is obtained analytically in the limit of the small temperature ratio T/sub i//T/sub e/. Some features are: (i) the spectral index at high mode numbers agrees well with experimental values; (ii) the long-wavelength spectrum peaks at k/sub theta/a/sub s/approx. =0.62 (a/sub s/ equivalentsound Larmor radius), (iii) the cross-field diffusion is mostly induced by the high-mode-number fluctuations, whereas the major contribution to the density fluctuations is in the long wavelengths; (iv) the frequency spectrum of the beat waves peaks at ω = 0 (they then have a convective cell character); and (v) the turbulence level is a factor L/sub n//L/sub s/ (ratio of density and shear lengths) smaller than with former theories
Razani, Marjan; Mariampillai, Adrian; Sun, Cuiru; Luk, Timothy W H; Yang, Victor X D; Kolios, Michael C
2012-05-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a 20 MHz piezoelectric transducer (circular element 8.5 mm diameter) transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force (ARF) was applied to two gelatin phantoms (differing in gelatin concentration by weight, 8% vs. 14%). Differential OCT phase maps, measured with and without the ARF, demonstrate microscopic displacement generated by shear wave propagation in these phantoms of different stiffness. We present preliminary results of OCT derived shear wave propagation velocity and modulus, and compare these results to rheometer measurements. The results demonstrate the feasibility of shear wave OCE (SW-OCE) for high-resolution microscopic homogeneous tissue mechanical property characterization. PMID:22567590
Gravitational, shear and matter waves in Kantowski-Sachs cosmologies
Keresztes, Zoltán; Bradley, Michael; Dunsby, Peter K S; Gergely, László Á
2015-01-01
A general treatment of vorticity-free, perfect fluid perturbations of Kantowski-Sachs models with a positive cosmological constant are considered within the framework of the 1+1+2 covariant decomposition of spacetime. The dynamics is encompassed in six evolution equations for six harmonic coefficients, describing certain gravito-magnetic, kinematic and matter perturbations, and a set of algebraic expressions for the rest of the variables. The six equations further decouple into a set of four equations sourced by the perfect fluid, representing forced oscillations and two uncoupled damped oscillator equations. In the geometric optics approximation, the even and odd tensorial perturbations of the Weyl tensor evolve as gravitational waves on the anisotropic Kantowski-Sachs background, while the modes describing the shear and the matter density gradient are dephased by $\\pi /2$ and share the same speed of sound.
Laboratory measurements of compressional and shear wave speeds through methane hydrate
Durham, W B; Waite, WF; Pinkston, J C; Stern, L A; Kirby, S H; Helgerud, M B; Nur, A
1999-10-25
Simultaneous measurements of compressional and shear wave speeds through polycrystalline methane hydrate have been made. Methane hydrate, grown directly in a wave speed measurement chamber, was uniaxially compacted to a final porosity below 2%. At 277 K, the compacted material's compressional wave speed was 3650 {+-} 50 m/s. The shear wave speed, measured simultaneously, was 1890 {+-} 30 m/s. From these wave speed measurements, we derive Vp/Vs, Poisson's Ratio, bulk, shear and Young's moduli.
Ship waves on uniform shear current at finite depth: wave resistance and critical velocity
Li, Yan
2016-01-01
We present a comprehensive theory for linear gravity-driven ship waves in the presence of a shear current with uniform vorticity, including the effects of finite water depth. The wave resistance in the presence of shear current is calculated for the first time, containing in general a non-zero lateral component. While formally apparently a straightforward extension of existing deep water theory, the introduction of finite water depth is physically non-trivial, since the surface waves are now affected by a subtle interplay of the effects of the current and the sea bed. This becomes particularly pronounced when considering the phenomenon of critical velocity, the velocity at which transversely propagating waves become unable to keep up with the moving source. The phenomenon is well known for shallow water, and was recently shown to exist also in deep water in the presence of a shear current [Ellingsen, J.~Fluid Mech.\\ {\\bf 742} R2 (2014)]. We derive the exact criterion for criticality as a function of an intrin...
[INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids
Pezeril, Thomas
2016-09-01
The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
Pamuk, Eren; Özdaǧ, Özkan Cevdet; Akgün, Mustafa
2016-04-01
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.
Passive elastography: shear-wave tomography from physiological-noise correlation in soft tissues.
Gallot, Thomas; Catheline, Stefan; Roux, Philippe; Brum, Javier; Benech, Nicolas; Negreira, Carlos
2011-06-01
Inspired by seismic-noise correlation and time reversal, a shear-wave tomography of soft tissues using an ultrafast ultrasonic scanner is presented here. Free from the need for controlled shear-wave sources, this passive elastography is based on Green's function retrieval and takes advantage of the permanent physiological noise of the human body. PMID:21693392
A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy
Freund, Jonathan B.; Colonius, Tim; Evan, Andrew P.
2007-01-01
Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. While it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many...
Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming
To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/dΔ. Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation
Acoustic-radiation-force-induced shear wave propagation in cardiac tissue
Bouchard, Richard R.; Wolf, Patrick D.; Hsu, Stephen J.; Dumont, Douglas M.; Trahey, Gregg E.
2009-02-01
Shear wave elasticity imaging (SWEI) was employed to track acoustic radiation force (ARF)-induced shear waves in the myocardium of a beating heart. Shear waves were generated in and tracked through the myocardium of the left ventricular free wall (LVFW) in an in vivo heart that was exposed through a thoracotomy; matched studies were also preformed on an ex vivo myocardial specimen. Average shear wave velocities ranged from 2.22 to 2.53 m/s for the ex vivo specimen and 1.5 to 2.9 m/s (1.5-2.09 m/s during diastole; 2.9 m/s during systole) for in vivo specimens. Despite the known rotation of myocardial fiber orientation with tissue depth, there was no statistically significant shear wave velocity depth dependence observed in any of the experimental trials.
Imaging mechanical shear waves induced by piezoelectric ceramics in magnetic resonance elastography
无
2006-01-01
Magnetic Resonance Elastography (MRE) is a noninvasive technique to measure elasticity of tissues in vivo. In this paper, a mechanical shear wave MR imaging system experiment is set for MRE. A novel actuator is proposed to generate mechanical shear waves propagating inside a gel phantom. The actuator is made of piezoelectric ceramics, and fixed on a plexiglass bracket. Both of the gel phantom and the actuator are put into a head coil inside the MR scanner's bore. The actuator works synchronously with an MR imaging sequence running on the MR scanner. The sequence is modified from a FLASH sequence into a motion-sensitizing phase- contrast sequence for shear wave MR imaging. Shear wave images are presented, and these effects on the shear wave MR imaging system, including the stiffness of phantoms, the frequency of the actuator, the parameters of the motion-sensitizing gradient, and the oscillation of the patient bed, are discussed.
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs
A wave interaction approach to studying non-modal homogeneous and stratified shear instabilities
Guha, Anirban
2012-01-01
Resonant interaction between two (or more) progressive interfacial waves produce exponentially growing instabilities in idealized, homogeneous and density stratified, inviscid shear layers (Holmboe 1962). Resonance occurs when the two waves attain a "phase-locked" configuration. In this paper we have generalized the mechanistic picture of shear instabilities described in Holmboe (1962). Unlike Holmboe, we do not initially assume the wave type (e.g. vorticity wave or gravity wave), nor do we impose the normal-mode waveform (which only accounts for exponential growth). Starting from the first principles, we demonstrate that two oppositely propagating interfacial waves, having arbitrary initial amplitudes (which are small enough to satisfy linearity) and phases, eventually phase-lock, provided they satisfy a certain condition. We show it to be the necessary and sufficient condition for exponentially growing instabilities in idealized shear layers. We investigate three types of shear instabilities - Kelvin Helmho...
Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves
IceCube Collaboration; Klein, Spencer
2009-06-04
We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
Razani, Marjan; Mariampillai, Adrian; Sun, Cuiru; Luk, Timothy W. H.; Yang, Victor X. D.; Kolios, Michael C
2012-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a 20 MHz piezoelectric transducer (circular element 8.5 mm diameter) transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force (ARF) was applied to two gelatin phantoms (differing in gelatin concentration by w...
LU Ming-Zhu; LIU Xue-Jin; SHI Yu; KANG Yan-Ni; GUAN Yu-Bo; WAN Ming-Xi
2012-01-01
We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue.The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method.A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated.It is noted that unlike the dissipative effect,the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis,compresses or stretches the focus area.The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100％ peak positive displacement and 64％ peak negative displacement.This action is useful in discerning the water-like lesion.%We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue. The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method. A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated. It is noted that unlike the dissipative effect, the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis, compresses or stretches the focus area. The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100% peak positive displacement and 64% peak negative displacement. This action is useful in discerning the water-like lesion.
Generating Shear Waves in the Human Brain for Ultrasound Elastography: A new Approach
Nicolas, Emmanuel; Callé, Samuel; Remenieras, Jean-Pierre
One of the challenges of brain elastography is the generation of the shear waves inside the brain. The generation system has to bypass the body's natural protection while keeping a good level of comfort for the patient. We propose a shear wave inducing system for brain ultrasound elastography. In this paper we will validate this system in vitro on a tissue mimicking phantom by doing shear wave velocity measurements. The system proves to work well on phantoms and to be comfortable for the patient. Further work will include measurements in vivo.
Systematic Analysis Method of Shear-Wave Splitting:SAM Software System
Gao Yuan; Liu Xiqiang; Liang Wei; Hao Ping
2004-01-01
In order to make a more effective use of the data from regional digital seismograph networks and to promote the study on shear wave splitting and its application to earthquake stressforecasting, SAM software system, i.e., the software on systematic analysis method of shear wave splitting has been developed. This paper introduces the design aims, system structure,function and characteristics about the SAM software system and shows some graphical interfaces of data input and result output. Lastly, it discusses preliminarily the study of shear wave splitting and its application to earthquake forecasting.
Nonlinear shear wave in a non Newtonian visco-elastic medium
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Grasland-Mongrain, Pol; Tang, An; Catheline, Stefan; Cloutier, Guy
2016-01-01
This study presents the first observation of shear wave induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitude of 5 and 0.5 micrometers were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
New pure shear elastic surface waves in magneto-electro-elastic half-space
Melkumyan, Arman
2006-01-01
Pure shear surface waves guided by the free surface of a magneto-electro-elastic material are investigated. Three surface waves are obtained for various magneto-electrical conditions on the free surface of the magneto-electro-elastic half-space. The velocities of propagation and the existence conditions for each of these waves are obtained in explicit exact form.
Dong, Hefeng; Hovem, Jens M.; Frivik, Svein Arne
2006-10-01
Estimates of shear wave velocity profiles in seafloor sediments can be obtained from inversion of measured dispersion relations of seismo-acoustic interface waves propagating along the seabed. The interface wave velocity is directly related to shear wave velocity with value of between 87-96% of the shear wave velocity, dependent on the Poission ratio of the sediments. In this paper we present two different techniques to determine the dispersion relation: a single-sensor method used to determine group velocity and a multi-sensor method used to determine the phase velocity of the interface wave. An inversion technique is used to determine shear wave velocity versus depth and it is based on singular value decomposition and regularization theory. The technique is applied to data acquired at Steinbåen outside Horten in the Oslofjorden (Norway) and compared with the result from independent core measurements taken at the same location. The results show good agreement between the two ways of determining shear wave velocity.
Tweten, Dennis J; Okamoto, Ruth J; Schmidt, John L; Garbow, Joel R; Bayly, Philip V
2015-11-26
This paper describes a method to estimate mechanical properties of soft, anisotropic materials from measurements of shear waves with specific polarization and propagation directions. This method is applicable to data from magnetic resonance elastography (MRE), which is a method for measuring shear waves in live subjects or in vitro samples. Here, we simulate MRE data using finite element analysis. A nearly incompressible, transversely isotropic (ITI) material model with three parameters (shear modulus, shear anisotropy, and tensile anisotropy) is used, which is appropriate for many fibrous, biological tissues. Both slow and fast shear waves travel concurrently through such a material with speeds that depend on the propagation direction relative to fiber orientation. A three-parameter estimation approach based on directional filtering and isolation of slow and fast shear wave components (directional filter inversion, or DFI) is introduced. Wave speeds of each isolated shear wave component are estimated using local frequency estimation (LFE), and material properties are calculated using weighted least squares. Data from multiple finite element simulations are used to assess the accuracy and reliability of DFI for estimation of anisotropic material parameters. PMID:26476762
Surface waves in an incompressible fluid - Resonant instability due to velocity shear
The effects of velocity shear on the resonance absorption of incompressible MHD surface waves are studied. It is found that there are generally values of the velocity shear for which the surface wave decay rate becomes zero. In some cases, the resonance absorption goes to zero even for very small velocity shears. It is also found that the resonance absorption can be strongly enhanced at other values of the velocity shear, so the presence of flows may be generally important for determining the effects of resonance absorption, such as might occur in the interaction of p-modes with sunspots. Resonances leading to instability of the global surface mode can exist, and instability can occur for velocity shears significantly below the Kelvin-Helmholtz threshold. These instabilities may play a role in the development or turbulence in regions of strong velocity shear in the solar wind or the earth's magnetosphere. 27 refs
Miao, Hongchen; Wang, Qiangzhong; Li, Faxin
2016-01-01
The non-dispersive fundamental shear horizontal (SH0) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH transducers have been proposed so far. In this work, an omnidirectional SH wave piezoelectric transducer (OSH-PT) was proposed which consists of a ring array of twelve face-shear (d24) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties,...
Variations of shear wave splitting in the 2008 Wen chuan earthquake region
DING ZhiFeng; WU Yan; WANG Hui; ZHOU XiaoFeng; LI GuiYin
2008-01-01
Through the analysis of S-wave particle motion of local events in the shear wave window, the polarization directions of the faster shear wave and the delay times between the faster and the slower shear waves were derived from seismic recordings at the stations near the fault zones. The shear wave splitting results of seven stations in the area of Longmenshan fault zone reveal spatial variation of the polarization directions of the fast shear wave. The directions at stations in the southeastern side of the Longmenshan fault zone (in the Sichuan Basin area) are in the NE direction, whereas the direction at station PWU (in the Plateau), which is in the northwestern side of the faults, is in the EW direction.Systematic changes of the time delays between two split shear waves were also observed. At station L5501 in the southern end of the aftershock zone, the delay times of the slower shear wave decrease systematically after the main shock. After the main shock, the delay times at station PWU were longer than those before the earthquake. Seismic shear wave splitting is caused mostly by stress-aligned microcracks in the rock below the stations. The results demonstrate changes of local stress field during the main-shock and the aftershocks. The stress in the southern part of Wenchuan seismogenic zone was released by the main-shock and the aftershocks. The crustal stresses were transferred to the northeastern part of the zone, resulting in stress increase at station PWU after the main-shock.
Variations of shear wave splitting in the 2008 Wenchuan earthquake region
2008-01-01
Through the analysis of S-wave particle motion of local events in the shear wave window, the polariza-tion directions of the faster shear wave and the delay times between the faster and the slower shear waves were derived from seismic recordings at the stations near the fault zones. The shear wave split-ting results of seven stations in the area of Longmenshan fault zone reveal spatial variation of the po-larization directions of the fast shear wave. The directions at stations in the southeastern side of the Longmenshan fault zone (in the Sichuan Basin area) are in the NE direction, whereas the direction at station PWU (in the Plateau), which is in the northwestern side of the faults, is in the EW direction. Systematic changes of the time delays between two split shear waves were also observed. At station L5501 in the southern end of the aftershock zone, the delay times of the slower shear wave decrease systematically after the main shock. After the main shock, the delay times at station PWU were longer than those before the earthquake. Seismic shear wave splitting is caused mostly by stress-aligned microcracks in the rock below the stations. The results demonstrate changes of local stress field dur-ing the main-shock and the aftershocks. The stress in the southern part of Wenchuan seismogenic zone was released by the main-shock and the aftershocks. The crustal stresses were transferred to the northeastern part of the zone, resulting in stress increase at station PWU after the main-shock.
The effect of subducting slabs in global shear wave tomography
Lu, Chang; Grand, Stephen P.
2016-05-01
Subducting slabs create strong short wavelength seismic anomalies in the upper mantle where much of Earth's seismicity is located. As such, they have the potential to bias longer wavelength seismic tomography models. To evaluate the effect of subducting slabs in global tomography, we performed a series of inversions using a global synthetic shear wave traveltime data set for a theoretical slab model based on predicted thermal anomalies within slabs. The spectral element method was applied to predict the traveltime anomalies produced by the 3-D slab model for paths corresponding to our current data used in actual tomography models. Inversion tests have been conducted first using the raw traveltime anomalies to check how well the slabs can be imaged in global tomography without the effect of earthquake mislocation. Our results indicate that most of the slabs can be identified in the inversion result but with smoothed and reduced amplitude. The recovery of the total mass anomaly in slab regions is about 88 per cent. We then performed another inversion test to investigate the effect of mislocation caused by subducting slabs. We found that source mislocation largely removes slab signal and significantly degrades the imaging of subducting slabs-potentially reducing the recovery of mass anomalies in slab regions to only 41 per cent. We tested two source relocation procedures-an iterative relocation inversion and joint relocation inversion. Both methods partially recover the true source locations and improve the inversion results, but the joint inversion method worked significantly better than the iterative method. In all of our inversion tests, the amplitudes of artefact structures in the lower mantle caused by the incorrect imaging of slabs (up to ˜0.5 per cent S velocity anomalies) are comparable to some large-scale lower-mantle heterogeneities seen in global tomography studies. Based on our inversion tests, we suggest including a-priori subducting slabs in the
Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.
Amador, Carolina; Song, Pengfei; Meixner, Duane D; Chen, Shigao; Urban, Matthew W
2016-05-01
Quantification of liver elasticity is a major application of shear wave elasticity imaging (SWEI) to non-invasive assessment of liver fibrosis stages. SWEI measurements can be highly affected by ultrasound image quality. Ultrasound harmonic imaging has exhibited a significant improvement in ultrasound image quality as well as for SWEI measurements. This was previously illustrated in cardiac SWEI. The purpose of this study was to evaluate liver shear wave particle displacement detection and shear wave velocity (SWV) measurements with fundamental and filter-based harmonic ultrasound imaging. In a cohort of 17 patients with no history of liver disease, a 2.9-fold increase in maximum shear wave displacement, a 0.11 m/s decrease in the overall interquartile range and median SWV and a 17.6% increase in the success rate of SWV measurements were obtained when filter-based harmonic imaging was used instead of fundamental imaging. PMID:26803391
Xing, Guangchi; Niu, Fenglin; Chen, Min; Yang, Yingjie
2016-05-01
Surface wave tomography routinely uses empirically scaled density model in the inversion of dispersion curves for shear wave speeds of the crust and uppermost mantle. An improperly selected empirical scaling relationship between density and shear wave speed can lead to unrealistic density models beneath certain tectonic formations such as sedimentary basins. Taking the Sichuan basin east to the Tibetan plateau as an example, we investigate the differences between density profiles calculated from four scaling methods and their effects on Rayleigh wave phase velocities. Analytical equations for 1-D layered models and adjoint tomography for 3-D models are used to examine the trade-off between density and S-wave velocity structures at different depth ranges. We demonstrate that shallow density structure can significantly influence phase velocities at short periods, and thereby affect the shear wave speed inversion from phase velocity data. In particular, a deviation of 25 per cent in the initial density model can introduce an error up to 5 per cent in the inverted shear velocity at middle and lower crustal depths. Therefore one must pay enough attention in choosing a proper velocity-density scaling relationship in constructing initial density model in Rayleigh wave inversion for crustal shear velocity structure.
Finite difference modelling to evaluate seismic P wave and shear wave field data
T. Burschil
2014-08-01
Full Text Available High-resolution reflection seismic methods are an established non-destructive tool for engineering tasks. In the near surface, shear wave reflection seismic measurements usually offer a higher spatial resolution in the same effective signal frequency spectrum than P wave data, but data quality varies more strongly. To discuss the causes of these differences, we investigated a P wave and a SH wave reflection seismic profile measured at the same location on Föhr island, and applied reflection seismic processing to the field data as well as finite difference modelling of the seismic wavefield (SOFI FD-code. The simulations calculated were adapted to the acquisition field geometry, comprising 2 m receiver distance and 4 m shot distance along the 1.5 km long P wave and 800 m long SH wave profiles. A Ricker-Wavelet and the use of absorbing frames were first order model parameters. The petrophysical parameters to populate the structural models down to 400 m depth are taken from borehole data, VSP measurements and cross-plot relations. The first simulation of the P wave wavefield was based on a simplified hydrogeological model of the survey location containing six lithostratigraphic units. Single shot data were compared and seismic sections created. Major features like direct wave, refracted waves and reflections are imaged, but the reflectors describing a prominent till layer at ca. 80 m depth was missing. Therefore, the P wave input model was refined and 16 units assigned. These define a laterally more variable velocity model (vP = 1600–2300 m s−1 leading to a much better reproduction of the field data. The SH wave model was adapted accordingly but only led to minor correlation with the field data and produced a higher signal-to-noise ratio. Therefore, we suggest to consider for future simulations additional features like intrinsic damping, thin layering, or a near surface weathering layer. These may lead to a better understanding of key
Pandey, Vikash; Holm, Sverre
2016-04-01
An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials, but rather it can be justified from real physical process of grain-shearing as well.
Seismic anisotropy of the crust in Yunnan,China: Polarizations of fast shear-waves
SHI Yu-tao; GAO Yuan; WU Jing; LUO Yan; SU You-jin
2006-01-01
Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003,the dominant polarization directions of fast shear-waves are obtained at l0 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan.The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.
Linear mechanism of surface gravity wave generation in horizontally sheared flow
An analysis is presented of a linear mechanism of surface gravity wave generation in a horizontally sheared flow in a fluid layer with free boundary. A free-surface flow of this type is found to be algebraically unstable. The development of instability leads to the formation of surface gravity waves whose amplitude grows with time according to a power law. Flow stability is analyzed by using a nonmodal approach in which the behavior of a spatial Fourier harmonic of a disturbance is considered in a semi-Lagrangian frame of reference moving with the flow. Shear-flow disturbances are divided into two classes (wave and vortex disturbances) depending on the value of potential vorticity. It is shown that vortex disturbances decay with time while the energy of wave disturbances increases indefinitely. Transformation of vortex disturbances into wave ones under strong shear is described.
Overstability of acoustic waves in strongly magnetized anisotropic MHD shear flows
Uchava, E S; Tevzadze, A G; Poedts, S
2014-01-01
We present a linear stability analysis of the perturbation modes in anisotropic MHD flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model, that takes into account not only the effect of pressure anisotropy, but also the effect of anisotropic heat fluxes. In this model the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also impor...
Free surface waves on shear currents with non-uniform vorticity: third-order solutions
Free surface waves of moderate amplitude on a fluid endowed with vorticity are calculated by computer-assisted perturbation expansions. Solitary waves are generated by deriving the nonlinear evolution equation (NEE) for the free surface displacement. Another recursive iteration procedure is then performed on the NEE. Properties obtained from second- and third-order expansions are computed explicitly for the case of a linear shear profile, or uniform vorticity distribution. Comparisons with known results in the literature show excellent agreement for small amplitude waves. Applications to non-uniform vorticity distributions are feasible and valuable, as existing methods will generally fail for nonlinear shear currents. Algebraic shear profiles U(y) = aym (a = a constant, m not necessarily an integer) are tested, and backward modes display peculiar properties. Examples include a non-monotonic trend in the half-width of solitary waves and a local maximum in the velocity of the wave.
Over-reflection of slow magnetosonic waves by homogeneous shear flow: Analytical solution
We have analyzed the amplification of slow magnetosonic (or pseudo-Alfvenic) waves (SMW) in incompressible shear flow. As found here, the amplification depends on the component of the wave-vector perpendicular to the direction of the shear flow. Earlier numerical results are consistent with the general analytic solution for the linearized magnetohydrodynamic equations, derived here for the model case of pure homogeneous shear (without Coriolis force). An asymptotically exact analytical formula for the amplification coefficient is derived for the case when the amplification is sufficiently large.
The Influence of the Shear on the Gravitational Waves in the Early Anisotropic Universe
Song, Yoogeun
2016-01-01
We study the singularity of the congruences for both timelike and null geodesic curves using the expansion of the early anisotropic Bianchi type I Universe. In this paper, we concentrate on the influence of the shear of the timelike and null geodesic congruences in the early Universe. Under some natural conditions, we derive the Raychaudhuri type equation for the expansion and the shear-related equations. Recently, scientists working on the LIGO (Laser Interferometer Gravitational-Wave Observatory) have shown many possibilities to observing the anisotropy of the primordial gravitational wave background radiation. We deduce the evolution equation for the shear that may be responsible for those observational results.
Dispersion relation of drift-wave instability in a collisionless plasma with sheared magnetic field
Detailed measurements are performed on drift-wave instability in a collisionless plasma column under a sheared magnetic field. The instability is found to be destabilized by the small magnetic shear and has a maximum amplitude at the shear length, where the electron thermal speed is nearly equal to the axial phase velocity (controlled by the shear) of the instability. The dispersion relation of the instability agrees with the local theory, which yields almost the same results as the non-local theory taking into account the measured radial density profile of a slender plasma column. (author)
Magnetic-Field Generation by Randomly Forced Shearing Waves
Schekochihin, A A; Kleeorin, N; Lesur, G; Mallet, A; McWilliams, J C; Rogachevskii, I; Yousef, T A
2008-01-01
A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of Rm << Re << 1. This is a minimal proof-of-concept calculation aiming to put the shear dynamo, a new effect recently reported in a number of numerical experiments, on a firm physical and analytical footing. Numerically observed scalings of the wavenumber and growth rate of the fastest growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo may be a generic property of shear flows -- with ubiquitous relevance to astrophysical systems.
Application of a laser/EMAT system for using shear and LS mode converted waves.
Murray, P R; Dewhurst, R J
2002-05-01
Quantitative time-of-flight analysis of laser-generated shear waves and longitudinal-shear mode-converted waves has demonstrated an effective method for non-contact monitoring of the thickness of metal plates. Q-switched Nd:YAG laser pulses with energies of approximately 18 mJ, delivered to the material surface via an optical fibre and focused to a line source by a cylindrical lens, excited surface waves, longitudinal and shear waves. Bulk waves propagated through the plate to be reflected from the far surface. Returning waves were detected using an electro-magnetic acoustic transducer (EMAT) sensitive to in-plane motion. The compilation of B-scans generated as the sensor head was moved along the material's surface to produce a 2-D intensity profile made any changes in the plate thickness easy to visualise. The longitudinal-shear (L-S) and shear-longitudinal (S-L) mode-converted waves provided a method of simultaneously monitoring two different points on the far surface enabling any changes in the material thickness to be clearly identified. This method was used to determine the thickness of aluminium samples ranging in from 5 to 70 mm. PMID:12160043
Determination of Shear Properties in the Upper Seafloor Using Seismo-acoustic Interface Waves
Frivik, Svein Arne
1998-12-31
This thesis develops methods for recording and analysis of seismo-acoustic interface waves for determination of shear wave velocity as a function of depth and includes this in standard refraction seismic surveying. It investigates different techniques for estimation of dispersion characteristics of the interface waves and demonstrates that multi sensor spectral estimation techniques improve the dispersion estimates. The dispersion estimate of the fundamental interface wave mode is used as input to an object function for a model based linearized inversion. The inversion scheme provides an estimate of the shear wave velocity as a function of depth. Three field surveys were performed. Data were acquired with a standard bottom deployed refraction seismic hydrophone array containing 24 or 48 receivers, with a receiver spacing of 2.5 m. Explosive charges were used as sources. The recording time was increased from 0.5 to 8 s, compared to standard refraction seismic surveys. Shear wave velocity and shear modulus estimates were obtained from all the sites. At one of the sites, geotechnically obtained shear wave parameters were available, and a comparison between the two techniques were performed. the result of the comparison is promising and shows the potential of the technique. Although the result of applying the processing scheme to all three data sets is promising, it appears that survey parameters, like source-array spacing, receiver spacing and type of source might have been optimized for better performance. Based on this limitation, a new processing scheme and a new array configuration is proposed for surveys which integrates the recording and processing of both compressional waves and shear waves. 89 refs., 65 refs., 19 tabs.
Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows
Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)
2015-08-15
The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.
Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows
The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration
Optical coherence tomography detection of shear wave propagation in MCF7 cell modules
Razani, Marjan; Mariampillai, Adrian; Berndl, Elizabeth S. L.; Kiehl, Tim-Rasmus; Yang, Victor X. D.; Kolios, Michael C.
2014-02-01
In this work, we explored the potential of measuring shear wave propagation using Optical Coherence Elastography (OCE) in MCF7 cell modules (comprised of MCF7 cells and collagen) and based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs, synchronized with an OCT swept source wavelength sweep imaging system. Acoustic radiation force was applied to the MCF7 cell constructs. Differential OCT phase maps, measured with and without the acoustic radiation force, demonstrate microscopic displacement generated by shear wave propagation in these modules. The OCT phase maps are acquired with a swept-source OCT (SS-OCT) system. We also calculated the tissue mechanical properties based on the propagating shear waves in the MCF7 + collagen phantoms using the Acoustic Radiation Force (ARF) of an ultrasound transducer, and measured the shear wave speed with the OCT phase maps. This method lays the foundation for future studies of mechanical property measurements of breast cancer structures, with applications in the study of breast cancer pathologies.
Pandey, Vikash
2015-01-01
An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that...
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property. PMID:26512505
Zhou, T.; Chen, J.; Han, J.; Tian, Y.; Wu, M.; Yang, Y.; Ning, J.
2014-12-01
We investigate crustal and upper mantle phase velocity structures beneath NorthEastern China (NEC, 40°-54°N, 112°-135°E), a tectonically active region with continental volcanicity divided by active faults. Rayleigh wave phase velocity is obtained respectively by Ambient Noise Method (ANM, Lin et al., GJI, 2009), Two Station Method (TSM, Meier et al., GJI, 2004) and Two Plane Wave Method (TPWM, Yang and Forsyth, JGR, 2005), assuring good frequency coverage. Two-year' events with magnitude Ms>5.5 and epicentral distance Δ>30°recorded by NECESSArray and some permanent stations of CEA are together used in TPWM and TSM, while 1 s continuous seismic observations in the same period are employed in ANM. The period of Rayleigh wave phase velocity spans from 6 s to 150 s, i.e., from 6 s to 30 s (ANM); 30 s to 100 s (TPWM) and 30 s to 150 s (TSM). Shear wave velocity structure of the research region is obtained by Weighted Least Squares Inversion, in which the weight is adopted as function of data quality. Our results not only display close relation with tectonics of this region, such as mountains, sedimentary basins, faults, but also reveal variation feature of crustal thickness. Moreover, our results clearly show that all volcanos in this region have their roots — low velocity zones, among them the roots of Changbai, Jingbohu, Wudalianchi are obviously connected, while the biggest one of Daxinganling is separated. This feature might be result of an early intense eruption in western NEC and a late weak one in eastern NEC.
Validation of recent shear wave velocity models in the United States with full-wave simulation
Gao, Haiying; Shen, Yang
2015-01-01
Interpretations of dynamic processes and the thermal and chemical structure of the Earth depend on the accuracy of Earth models. With the growing number of velocity models constructed with different tomographic methods and seismic data sets, there is an increasing need for a systematic way to validate model accuracy and resolution. This study selects five shear wave velocity models in the U.S. and simulates full-wave propagation within the 3-D structures. Surface-wave signals extracted from ambient seismic noise and regional earthquakes are compared with synthetic waveforms at multiple-frequency bands. Phase delays and cross-correlation coefficients between observed and synthetic waveforms allow us to compare and validate these models quantitatively. In general, measurements from regional earthquakes are consistent with ambient noise results, but appear more scattered, which may result from uncertainty of the earthquake source location, origin time, and moment tensor. Our results show the improvement of model prediction with the increase of seismic data sets and implement of advanced methods. There exists a positive linear trend between phase delay and interstation distance for three models, indicating that on average, these models are faster than the real Earth structure. The phase delays from the jointly inverted model of ambient noise and receiver function have negative means at all periods while without obvious dependence on the interstation distance. The full-wave ambient noise tomographic model predicts more accurate phase arrivals compared to other models. This study suggests a need for an integrated model constructed with multiple seismic waveforms and consideration of anisotropy and attenuation.
Prediction of shear wave velocity using empirical correlations and artificial intelligence methods
Maleki, Shahoo; Moradzadeh, Ali; Riabi, Reza Ghavami; Gholami, Raoof; Sadeghzadeh, Farhad
2014-06-01
Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR) and Back-Propagation Neural Network (BPNN). Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.
A Monte Carlo method of multiple scattered coherent light with the information of shear wave propagation in scattering media is presented. The established Monte-Carlo algorithm is mainly relative to optical phase variations due to the acoustic-radiation-force shear-wave-induced displacements of light scatterers. Both the distributions and temporal behaviors of optical phase increments in probe locations are obtained. Consequently, shear wave speed is evaluated quantitatively. It is noted that the phase increments exactly track the propagations of shear waves induced by focus-ultrasound radiation force. In addition, attenuations of shear waves are demonstrated in simulation results. By using linear regression processing, the shear wave speed, which is set to 2.1 m/s in simulation, is estimated to be 2.18 m/s and 2.35 m/s at time sampling intervals of 0.2 ms and 0.5 ms, respectively
Research on definition of hard rock shear wave velocity of site for nuclear power plant
Background: The definition of hard rock shear wave velocity is one of the most critical issues in the work of site selection. Purpose: To make a definition of hard rock site on which the model can be assumed as fixed-base condition, a series of research had been done. Several possible hard rock site soil models were developed. Methods: Shear wave velocity of hard rock had been assumed from 1100 m/s to 3200 m/s. For each case, free field analysis and soil structure analysis had been performed. And responses in soil and key nodes of structure were compared. Results: In free field analysis, responses of models that shear wave velocity below 2400 m/s decreased a lot. In SSI analysis, structure responses didn't change much when shear wave velocity was above 2400 m/s. Conclusions: 2400 m/s was the lowest shear wave velocity for hard rock site for fixed-base assumption. (authors)
Xu, Yanlong
2015-09-01
Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. © 2015.
The study of laser array generation of elastic shear wave and surface wave
The principle of laser light generation of ultrasound is the result of the absorption of light energy by the sample medium that is converted into thermal stress. From literature survey, single laser-generated ultrasound has some limitations. First, the high energy from laser light may cause the ablation on the material surface. Second, the single laser beam generation method is hard to control the beam-width and focusing direction of ultrasound. Third, the single laser-generated ultrasound is unable to enhance the ultrasound signal. The optical fiber phased array generation of ultrasound offer the improvement of the control of the beam-width and focusing direction, and to increase the amplitude of the generated ultrasound in the thermoelastic range. This research investigated the directivity pattern from the in-phased laser array generation of shear wave and surface wave in comparison with old and improved theoretical model. The theoretical data which was filtered by the electronic instruments were compared with the literature data, also.
The high resolution shear wave seismic reflection technique
This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions
Shear wave identification near by shallow seismic source
Vilhelm, Jan; Rudajev, Vladimír.; Živor, Roman
2010-05-01
Interference of P- and S-waves occurs during the first period of P-wave when the shallow seismic measurement is realized near the seismic source (the distance is less or equal to one P-wave wavelength). Polarization analysis method (particle motion) is suitable for the determination of S-wave arrival time in these conditions. Three component geophones are usually used in this case for the registration of seismic waves generated by a hammer blow. With regard to P- and S-waves polarization it is advantageous to orientate the three component orthogonal system of geophones so that separate components make an angle of 35.26° to horizontal plane (Galperin geophone configuration). Azimuth angle between separate components is 120° in this case. This configuration insures the equivalent gravity force moments affect all the three components in the same way. It is in the contrast to the standard arrangement of the three component geophone with two horizontal and one vertical component. The inclined arrangement results in equal frequency responses for all the three components. Phase and amplitude characteristics between the components should therefore be the same. This facilitates the S-wave arrival detection. An example of application of this method to the determination of seismic wave propagation velocity anisotropy is presented.
Inertia-gravity waves in inertially stable and unstable shear flows
Lott, François; Vanneste, Jacques
2015-01-01
An inertia-gravity wave (IGW) propagating in a vertically sheared, rotating stratified fluid interacts with the pair of inertial levels that surround the critical level. An exact expression for the form of the IGW is derived here in the case of a linear shear and used to examine this interaction in detail. This expression recovers the classical values of the transmission and reflection coefficients $|T|=\\exp(-\\pi \\mu )$ and $|R|=0$, where $\\mu^2=J(1+\
Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity
Dae Woo Park
2016-01-01
Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model...
Guided wave generation, sensing and damage detection using in-plane shear piezoelectric wafers
This work presents guided wave generation, sensing, and damage detection in metallic plates using in-plane shear (d36 type) piezoelectric wafers as actuators and sensors. The conventional lead zirconate titanate (PZT) based on induced in-plane normal strain (d31 type) has been widely used to excite and receive guided waves in plates, pipes or thin-walled structures. The d36 type of piezoelectric wafer, however, induces in-plane (or called face) shear deformation in the plane normal to its polarization direction. This form of electromechanical coupling generates more significant shear horizontal (SH) waves in certain wave propagation directions, whose amplitudes are much greater than those of Lamb waves. In this paper, an analysis of SH waves generated using in-plane shear electromechanical coupling is firstly presented, followed by a multiphysics finite element analysis for comparison purposes. Voltage responses of both the conventional d31 and the new d36 sensors are obtained for comparison purposes. Results indicate that this type of wafer has the potential to provide a simple quantitative estimation of damage in structural health monitoring. (paper)
Gravity shear waves atop the cirrus layer of intense convective storms
Stobie, J. G.
1975-01-01
Recent visual satellite photographs of certain intense convective storms have revealed concentric wave patterns. A model for the generation and growth of these waves is proposed. The proposed initial generating mechanism is similar to the effect noticed when a pebble is dropped into a calm pond. The penetration of the tropopause by overshooting convection is analogous to the pebble's penetration of the water's surface. The model for wave growth involves instability due to the wind shear resulting from the cirrus outflow. This model is based on an equation for the waves' phase speed which is similar to the Helmholtz equation. It, however, does not assume an incompressible atmosphere, but rather assumes density is a logarithmic function of height. Finally, the model is evaluated on the two mid-latitude and three tropical cases. The data indicate that shearing instability may be a significant factor in the appearance of these waves.
Shear wave velocity and attenuation from pulse-echo studies of Berea sandstone
Green, D.H. [Ohio Univ., Athens, OH (United States); Wang, H.F. [Univ. of Wisconsin, Madison, WI (United States)
1994-06-10
The pulse-echo spectral-ratio technique has been adapted to the determination of ultrasonic shear wave attenuation in sandstone at variable states of saturation and pressure. The method can measure shear attenuation coefficients in the range 0.5 dB/cm to 8 dB/cm to within {+-}0.5 dB/cm. For the Berea sandstone, this range corresponds to values of the shear quality factor (Q{sub s}) between 10 and 100. Spectra of Q{sub s} show that between 600 and 1100 kHz, Q{sub s} decreases with frequency, particularly at high pressures (up to 700 MPa). Ultrasonic shear wave attenuation in a 90% water-saturated sample was intermediate between that for dry samples and the relatively high attenuation in fully saturated rock. Strong pressure dependence is seen in the shear attenuation for all saturation states, indicating a dominant role of dissipation mechanisms operating within open and compliant cracks. Substantial shear attenuation remains at the highest effective pressure applied to the saturated sample, which may be due to a more {open_quotes}global{close_quotes} fluid-flow loss mechanism. Scattering losses, as described by weak scattering theories for compressional waves, do not appear to be dominant at these frequencies. 46 refs., 9 figs.
Shear wave velocity and attenuation from pulse-echo studies of Berea sandstone
Green, Douglas H.; Wang, Herbert F.
1994-06-01
The pulse-echo spectral-ratio technique has been adapted to the determination of ultrasonic shear wave attenuation in sandstone at variable states of saturation and pressure. The method can measure shear attenuation coefficients in the range 0.5 dB/cm to 8 dB/cm to within +/- 0.5 dB/cm. For the Berea sandstone, this range corresponds to values of the shear quality factor Q(sub s) between 10 and 100. Spectra Q(sub s) show that between 600 and 1110 kHz, Q(sub s) decreases with frequency, particularly at high pressures (up to 70 MPa). Ultrasonic shear wave attenuation in a 90% water-saturated sample was intermediate between that for dry samples and the relatively high attenuation in fully saturated rock. Strong pressure dependence is seen in the shear attentuation for all saturation states, indicating a dominant role of dissipation mechanisms operating within open and compliant cracks. Substantial shear attenuation remains at the highest effective pressure applied to the saturated sample, which may be due to a more 'global' fluid-flow loss mechanism. Scattering losses as described by weak scattering theories for compressional waves, do not appear to be dominant at these frequencies.
The Character of Shear-wave Splitting in Marble in the Critical State of Rupture
Gao Yuan
2001-01-01
This paper mainly observed and analyzed the character of shear-wave splitting in rock specimens while they were in the critical state of rupture. The rock specimens for study are made of Laizhou marble from Shandong, China. A series of records were obtained from two rock specimens when they were in the critical state of rupture. The result shows that, in the critical state just before rock rupture, there may be the phenomenon of rise and fall in the time delay of shear-wave splitting, even though the load was kept constant. That is to say, the time delay of shear-wave splitting may have a falling process before rock rupture.
Imaging of Shear Waves Induced by Lorentz Force in Soft Tissues
Grasland-Mongrain, Pol; Cartellier, Florian; Zorgani, Ali; Chapelon, Jean-Yves; Lafon, Cyril; Catheline, Stefan
2014-01-01
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this 5 study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 um. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model 10 using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.
The new theory of sporadic E density oscillation with double atmospheric gravity wave (AGW) frequency in two-dimensional case taking into account ions ambipolar diffusion is presented. It is found that densities of multi-layered sporadic E, formed under the influence of atmospheric vortical perturbation (with vertical wavelength λz≠0) evolving in the horizontal shear flow (shear wave), can oscillate with up to double Brunt-Vaeisaelae frequency under the action of short-period AGW, in which shear wave is transformed. The formation of multi-layered sporadic E (inside regions with vertical thickness about λz/2) and its density changes in every half AGW period close to ions convergence region occur by combined action of ion-neutral collision and Lorentz forcing and can cause additional accumulation of ions responsible for sporadic E density oscillation with double AGW frequency.
Compressional and shear waves in saturated rock during water-stream transition
Compressional and shear wave velocities were measured in water-filled Berea sandstone as a function of pore pressure, with a constant confining pressure of 300 bars. The measurements were made at room temperature, 1450C, and 1980C. At 1450C, compressional velocity increased from vapor-saturated (low pore pressure) to liquid-saturated (high pore pressure) conditions, whereas shear wave velocity decreased. For compressional waves there was a velocity minimum and increased attenuation near the liquid-vapor transition. The results at 1980C show decreases of both compressional and shear velocities and a small velocity minimum for compressional velocity without marked attenuation. At both temperatures, V/sub p//V/sub s/ and Poisson's ratios increased from steam- to water-saturated rock. The results are compatible with the mechanical effects of mixing steam and water in the pore space near the phase transition and may be applicable to in situ geothermal field evaluation
Twisted shear Alfvén waves with orbital angular momentum
Shukla, P.K., E-mail: profshukla@yahoo.de [International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Mechanical and Aerospace Engineering and Centre for Energy Research, University of California San Diego, La Jolla, CA 92093 (United States)
2012-09-10
It is shown that a dispersive shear Alfvén wave (DSAW) in a magnetized plasma can propagate as a twisted Alfvén vortex beam carrying orbital angular momentum (OAM). We obtain a wave equation from the generalized ion vorticity equation and the magnetic field-aligned electron momentum equation that couple the scalar and vector potentials of the DSAW. A twisted shear Alfvén vortex beam can trap and transport plasma particles and energy in magnetoplasmas, such as those in the Earth's auroral zone, in the solar atmosphere, and in Large Plasma Device (LAPD) at University of California, Los Angeles. -- Highlights: ► We present dispersive shear Alfvén waves (DSAWs) with a twist. ► DSAWs carry orbital angular momentum. ► Twisted DSAWs can transport particles and energy in space and laboratory plasmas.
Twisted shear Alfvén waves with orbital angular momentum
It is shown that a dispersive shear Alfvén wave (DSAW) in a magnetized plasma can propagate as a twisted Alfvén vortex beam carrying orbital angular momentum (OAM). We obtain a wave equation from the generalized ion vorticity equation and the magnetic field-aligned electron momentum equation that couple the scalar and vector potentials of the DSAW. A twisted shear Alfvén vortex beam can trap and transport plasma particles and energy in magnetoplasmas, such as those in the Earth's auroral zone, in the solar atmosphere, and in Large Plasma Device (LAPD) at University of California, Los Angeles. -- Highlights: ► We present dispersive shear Alfvén waves (DSAWs) with a twist. ► DSAWs carry orbital angular momentum. ► Twisted DSAWs can transport particles and energy in space and laboratory plasmas.
Variable aspect ratio method in the Xu–White model for shear-wave velocity estimation
Shear-wave velocity logs are useful for various seismic interpretation applications, including bright spot analyses, amplitude-versus-offset analyses and multicomponent seismic interpretations. This paper presents a method for predicting the shear-wave velocity of argillaceous sandstone from conventional log data and experimental data, based on Gassmann's equations and the Xu–White model. This variable aspect ratio method takes into account all the influences of the matrix nature, shale content, porosity size and pore geometry, and the properties of pore fluid of argillaceous sandstone, replacing the fixed aspect ratio assumption in the conventional Xu–White model. To achieve this, we first use the Xu–White model to derive the bulk and shear modulus of dry rock in a sand–clay mixture. Secondly, we use Gassmann's equations to calculate the fluid-saturated elastic properties, including compressional and shear-wave velocities. Finally, we use the variable aspect ratio method to estimate the shear-wave velocity. The numerical results indicate that the variable aspect ratio method provides an important improvement in the application of the Xu–White model for sand–clay mixtures and allows for a variable aspect ratio log to be introduced into the Xu–White model instead of the constant aspect ratio assumption. This method shows a significant improvement in predicting velocities over the conventional Xu–White model. (paper)
High resolution shear wave reflection surveying for hydrogeological investigations
The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones
Fracture characterization at the Conoco Borehole Test Facility using shear-wave anisotropy
Horne, S.A. [Univ. of Edinburgh (United Kingdom); MacBeth, C.D.; Queen, J.; Rizer, W.D.
1995-12-31
Two multi-component near-offset VSP experiments are used, in conjunction with borehole data, to characterise the subsurface fracture system at the Conoco Borehole Test Facility, Oklahoma. Time delays between the fast and slow split shear-waves are observed to correlate with the heavily fractured sandstone formations. Inversion of the shear-wave splitting estimates is achieved using a Genetic Algorithm which incorporates an anisotropic ray tracing scheme. The inversion results suggest that the fracture orientation is sub-vertical. A method of determining fracture dip using an opposite azimuth VSP method is suggested.
Existence of Shear Horizontal Surface Waves in a Magneto-Electro-Elastic Material
WEI Wei-Yi; LIU Jin-Xi; FANG Dai-Ning
2009-01-01
The existence of shear horizontal surface waves in a magneto-electro-elastic (MEE) half-space with hexagonal (6mm) symmetry is investigated.The surface of the MEE half-space is mechanically free, but subjected to four types of electromagnetic boundary conditions.These boundary conditions are electrically open/magnetically closed, electrically open/magnetically open, electrically closed/magnetically open and electrically closed/magnetically closed.It is shown that except for the electrically open/magnetically closed condition, the three other sets of electromagnetic boundary conditions allow the propagation of shear horizontal surface waves.
On System-Dependent Sources of Uncertainty and Bias in Ultrasonic Quantitative Shear-Wave Imaging.
Deng, Yufeng; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2016-03-01
Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error can be expected. PMID:26886980
Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves
Greenleaf, James F.; Chen, Shigao
2007-03-01
Fundamental mechanical properties of tissue are altered by many diseases. Regional and systemic diseases can cause changes in tissue properties. Liver stiffness is caused by cirrhosis and fibrosis. Vascular wall stiffness and tone are altered by smoking, diabetes and other diseases. Measurement of tissue mechanical properties has historically been done with palpation. However palpation is subjective, relative, and not quantitative or reproducible. Elastography in which strain is measured due to stress application gives a qualitative estimate of Young's modulus at low frequency. We have developed a method that takes advantage of the fact that the wave equation is local and shear wave propagation depends only on storage and loss moduli in addition to density, which does not vary much in soft tissues. Our method is called shearwave dispersion ultrasonic velocity measurement (SDUV). The method uses ultrasonic radiation force to produce repeated motion in tissue that induces shear waves to propagate. The shear wave propagation speed is measured with pulse echo ultrasound as a function of frequency of the shear wave. The resulting velocity dispersion curve is fit with a Voight model to determine the elastic and viscous moduli of the tissue. Results indicate accurate and precise measurements are possible using this "noninvasive biopsy" method. Measurements in beef along and across the fibers are consistent with the literature values.
de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.
2013-04-01
To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.
Turbulent mixing driven by mean-flow shear and internal gravity waves in oceans and atmospheres
Baumert, Helmut Z
2012-01-01
This study starts with balances deduced by Baumert and Peters (2004, 2005) from results of stratified-shear experiments made in channels and wind tunnels by Itsweire (1984) and Rohr and Van Atta (1987), and of free-decay experiments in a resting stratified tank by Dickey and Mellor (1980). Using a modification of Canuto's (2002) ideas on turbulence and waves, these balances are merged with an (internal) gravity-wave energy balance presented for the open ocean by Gregg (1989), without mean-flow shear. The latter was augmented by a linear (viscous) friction term. Gregg's wave-energy source is interpreted on its long-wave spectral end as internal tides, topography, large-scale wind, and atmospheric low-pressure actions. In addition, internal eigen waves, generated by mean-flow shear, and the aging of the wave field from a virginal (linear) into a saturated state are taken into account. Wave packets and turbulence are treated as particles (vortices, packets) by ensemble kinetics so that the loss terms in all thre...
Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma
Ikezoe, R., E-mail: ikezoe@prc.tsukuba.ac.jp; Ichimura, M.; Okada, T.; Hirata, M.; Yokoyama, T.; Iwamoto, Y.; Sumida, S.; Jang, S.; Takeyama, K.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X. [Plasma Research Center, University of Tsukuba, Tsukuba 305-8577 (Japan)
2015-09-15
A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in the magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.
Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma
A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in the magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves
Second-harmonic generation in shear wave beams with different polarizations
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic
Second-harmonic generation in shear wave beams with different polarizations
Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)
2015-10-28
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
The instability of counter-propagating kernel gravity waves in a constant shear flow
Umurhan, O M; Harnik, N; Lott, F
2007-01-01
The mechanism describing the recently developed notion of kernel gravity waves (KGWs) is reviewed and such structures are employed to interpret the unstable dynamics of an example stratified plane parallel shear flow. This flow has constant vertical shear, is infinite in the vertical extent, and characterized by two density jumps of equal magnitude each decreasing successively with height, in which the jumps are located symmetrically away from the midplane of the system. We find that for a suitably defined bulk-Richardson number there exists a band of horizontal wavenumbers which exhibits normal-mode instability. The instability mechanism closely parallels the mechanism responsible for the instability seen in the problem of counter-propagating Rossby waves. In this problem the instability arises out of the interaction of counter-propagating gravity waves. We argue that the instability meets the Hayashi-Young criterion for wave instability. We also argue that the instability is the simplest one that can arise ...
2D instabilities of surface gravity waves on a linear shear current
Francius, Marc; Kharif, Christian
2016-04-01
Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational
Strip waves in vibrated shear-thickening wormlike micellar solutions.
Epstein, T; Deegan, R D
2010-06-01
We present an instability in vertically vibrated dilute wormlike micellar solutions. Above a critical driving acceleration the fluid forms elongated solitary domains of high amplitude waves. We model this instability using a Mathieu equation modified to account for the non-Newtonian character of the fluid. We find that our model successfully reproduces the observed transitions. PMID:20866525
ZHOU Yan-guo; CHEN Yun-min; KE Han
2005-01-01
Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, incorporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measurements. Although in the range of Vs1＞200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.
Drift wave shear damping annulment due to parametric coupling and magnetic field variation
Nonlinear suppression of the drift wave shear damping by the simultaneous action of a strong standing pump wave and of the magnetic field variation along the magnetic field line is studied using a version of the Hasegawa-Mima equation. The threshold for the parametric destabilization is calculated as a function of the plasma parameters. Destabilization occurs due to the elimination of the energy convection towards the dissipative layer, by both the linear toroidal coupling and nonlinear parametric coupling
Ianculescu, Victor; Ciolovan, Laura Maria [Radiology Department, Gustave Roussy, Villejuif (France); Dunant, Ariane [Department of Statistics, Gustave Roussy, Villejuif (France); Vielh, Philippe [Department of Biopathology, Gustave Roussy, Villejuif (France); Mazouni, Chafika [Department of Surgery, Gustave Roussy, Villejuif (France); Delaloge, Suzette [Department of Oncology, Gustave Roussy, Villejuif (France); Dromain, Clarisse [Radiology Department, Gustave Roussy, Villejuif (France); Blidaru, Alexandru [Department of Surgery, Bucharest Institute of Oncology, Bucharest (Romania); Balleyguier, Corinne, E-mail: corinne.balleyguier@gustaveroussy.fr [Radiology Department, Gustave Roussy, Villejuif (France); UMR 8081, IR4M, Paris-Sud University, 91405 Orsay (France)
2014-05-15
Purpose: To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Materials and methods: Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. Results: BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann–Whitney U test, p < 0.0001). By selecting a lesion cut-off value of 3.31 m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. Conclusion: VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies.
Purpose: To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Materials and methods: Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. Results: BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann–Whitney U test, p < 0.0001). By selecting a lesion cut-off value of 3.31 m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. Conclusion: VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies
Variational characteristics of shear-wave splitting on the 2001 Shidian earthquakes in Yunnan, China
高原; 梁维; 丁香; 薛艳; 蔡明军; 刘希强; 苏有锦; 彭立国
2004-01-01
In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes.
Kinetic structures of shear Alfven and acoustic wave spectra in burning plasmas
Zonca, F; Biancalani, A; Chavdarovski, I; Chen, L; Di Troia, C; Wang, X, E-mail: fulvio.zonca@enea.it
2010-11-01
We present a general theoretical framework for discussing the physics of low frequency fluctuation spectra of shear Alfven and acoustic waves in toroidal plasmas of fusion interest. This framework helps identifying the relevant dynamics and, thus, interpreting experimental observations. We also discuss the roles of such general theoretical framework for verification and validation of numerical simulation codes vs. analytic predictions and experimental results.
Kinetic structures of shear Alfven and acoustic wave spectra in burning plasmas
We present a general theoretical framework for discussing the physics of low frequency fluctuation spectra of shear Alfven and acoustic waves in toroidal plasmas of fusion interest. This framework helps identifying the relevant dynamics and, thus, interpreting experimental observations. We also discuss the roles of such general theoretical framework for verification and validation of numerical simulation codes vs. analytic predictions and experimental results.
Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data
Lyulyukin, V. S.; Kallistratova, M. A.; Kouznetsov, R. D.; Kuznetsov, D. D.; Chunchuzov, I. P.; Chirokova, G. Yu.
2015-03-01
The year-round continuous remote sounding of the atmospheric boundary layer (ABL) by means of the Doppler acoustic radar (sodar) LATAN-3 has been performed at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, since 2008. A visual analysis of sodar echograms for four years revealed a large number of wavelike patterns in the intensity field of a scattered sound signal. Similar patterns were occasionally identified before in sodar, radar, and lidar sounding data. These patterns in the form of quasi-periodic inclined stripes, or cat's eyes, arise under stable stratification and significant vertical wind shears and result from the loss of the dynamic stability of the flow. In the foreign literature, these patterns, which we call internal gravity-shear waves, are often associated with Kelvin-Helmholtz waves. In the present paper, sodar echograms are classified according to the presence or absence of wavelike patterns, and a statistical analysis of the frequency of their occurrence by the year and season was performed. A relationship between the occurrence of the patterns and wind shear and between the wave length and amplitude was investigated. The criteria for the identification of gravity-shear waves, meteorological conditions of their excitation, and issues related to their observations were discussed.
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the
Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. - Highlights: • Shear horizontal wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. • Calculations on band structure and transmission show that the graded layered media possess very large band gaps. • Finite element method confirms that waves in band gaps are spatially enhanced and stopped by the graded units. • The study suggests that the graded structure possesses the property of manipulating elastic waves spatially
Xu, Yanlong, E-mail: xuyanlong814@sina.com
2015-09-04
Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. - Highlights: • Shear horizontal wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. • Calculations on band structure and transmission show that the graded layered media possess very large band gaps. • Finite element method confirms that waves in band gaps are spatially enhanced and stopped by the graded units. • The study suggests that the graded structure possesses the property of manipulating elastic waves spatially.
Shear wave velocities from noise correlation at local scale
De Nisco, G.; Nunziata, C.; Vaccari, F.; Panza, G. F.
2008-07-01
Cross correlations of ambient seismic noise recordings have been studied to infer shear seismic velocities with depth. Experiments have been done in the crowded and noisy historical centre of Napoli over inter-station distances from 50 m to about 400 m, whereas active seismic spreadings are prohibitive, even for just one receiver. Group velocity dispersion curves have been extracted with FTAN method from the noise cross correlations and then the non linear inversion of them has resulted in Vs profiles with depth. The information of near by stratigraphies and the range of Vs variability for samples of Neapolitan soils and rocks confirms the validity of results obtained with our expeditious procedure. Moreover, the good comparison of noise H/V frequency of the first main peak with 1D and 2D spectral amplifications encourages to continue experiments of noise cross-correlation. If confirmed in other geological settings, the proposed approach could reveal a low cost methodology to obtain reliable and detailed Vs velocity profiles.
Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming
Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf; Sumer, B. Mutlu
2009-01-01
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953. The...... work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two...
Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface
Zhang, Ziyin; Nagy, Peter B.; Hassan, Waled
2016-02-01
Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the excess nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
Correlation of densities with shear wave velocities and SPT N values
Anbazhagan, P.; Uday, Anjali; Moustafa, Sayed S. R.; Al-Arifi, Nassir S. N.
2016-06-01
Site effects primarily depend on the shear modulus of subsurface layers, and this is generally estimated from the measured shear wave velocity (V s) and assumed density. Very rarely, densities are measured for amplification estimation because drilling and sampling processes are time consuming and expensive. In this study, an attempt has been made to derive the correlation between the density (dry and wet density) and V s/SPT (standard penetration test) N values using measured data. A total of 354 measured V s and density data sets and 364 SPT N value and density data sets from 23 boreholes have been used in the study. Separate relations have been developed for all soil types as well as fine-grained and coarse-grained soil types. The correlations developed for bulk density were compared with the available data and it was found that the proposed relation matched well with the existing data. A graphical comparison and validation based on the consistency ratio and cumulative frequency curves was performed and the newly developed relations were found to demonstrate good prediction performance. An attempt has also been made to propose a relation between the bulk density and shear wave velocity applicable for a wide range of soil and rock by considering data from this study as well as that of previous studies. These correlations will be useful for predicting the density (bulk and dry) of sites having measured the shear wave velocity and SPT N values.
Greenwood, Margaret S; Adamson, Justus D; Bond, Leonard J
2006-12-22
We have developed an on-line computer-controlled sensor, based on ultrasound reflection measurements, to determine the product of the viscosity and density of a liquid or slurry for Newtonian fluids and the shear impedance of the liquid for non-Newtonian fluids. A 14 MHz shear wave transducer is bonded to one side of a 45-90 degrees fused silica wedge and the base is in contract with the liquid. Twenty-eight echoes were observed due to the multiple reflections of an ultrasonic shear horizontal (SH) wave within the wedge. The fast Fourier transform of each echo was obtained for a liquid and for water, which serves as the calibration fluid, and the reflection coefficient at the solid-liquid interface was obtained. Data were obtained for 11 sugar water solutions ranging in concentration from 10% to 66% by weight. The viscosity values are shown to be in good agreement with those obtained independently using a laboratory viscometer. The data acquisition time is 14s and this can be reduced by judicious selection of the echoes for determining the reflection coefficient. The measurement of the density results in a determination of the viscosity for Newtonian fluids or the shear wave velocity for non-Newtonian fluids. The sensor can be deployed for process control in a pipeline, with the base of the wedge as part of the pipeline wall, or immersed in a tank. PMID:16793108
The effect of wind shear on the formation of roll waves in flows down an incline
In this paper we investigate the effect of a prescribed superficial shear stress on the generation and structure of roll waves developing from infinitesimal disturbances on the surface of a fluid layer flowing down an incline. The unsteady equations of motion are depth integrated according to the von Karman momentum integral method to obtain a nonhomogeneous system of nonlinear hyperbolic conservation laws governing the average flow rate and the thickness of the fluid layer. By conducting a linear stability analysis we obtain an analytical formula for the critical conditions for the onset of instability of a uniform and steady flow in terms of the prescribed surface shear stress. A nonlinear analysis is performed by numerically calculating the nonlinear evolution of a perturbed flow. The calculation is carried out using a TVD finite volume scheme. The source term is handled by implementing the quasi-steady wave propagation algorithm. Conclusions are drawn regarding the effect of the applied surface shear stress parameter and flow conditions on the development and characteristics of the roll waves arising from the instability. In the particular case of zero shear stress applied at the surface, the results are compared with those yielded by an analytical procedure. (author)
Stability of steady rotational water-waves of finite amplitude on arbitrary shear currents
Seez, William; Abid, Malek; Kharif, Christian
2016-04-01
A versatile solver for the two-dimensional Euler equations with an unknown free-surface has been developed. This code offers the possibility to calculate two-dimensional, steady rotational water-waves of finite amplitude on an arbitrary shear current. Written in PYTHON the code incorporates both pseudo-spectral and finite-difference methods in the discretisation of the equations and thus allows the user to capture waves with large steepnesses. As such it has been possible to establish that, in a counter-flowing situation, the existence of wave solutions is not guaranteed and depends on a pair of parameters representing mass flux and vorticity. This result was predicted, for linear solutions, by Constantin. Furthermore, experimental comparisons, both with and without vorticity, have proven the precision of this code. Finally, waves propagating on top of highly realistic shear currents (exponential profiles under the surface) have been calculated following current profiles such as those used by Nwogu. In addition, a stability analysis routine has been developed to study the stability regimes of base waves calculated with the two-dimensional code. This linear stability analysis is based on three dimensional perturbations of the steady situation which lead to a generalised eigenvalue problem. Common instabilities of the first and second class have been detected, while a third class of wave-instability appears due to the presence of strong vorticity. {1} Adrian Constantin and Walter Strauss. {Exact steady periodic water waves with vorticity}. Communications on Pure and Applied Mathematics, 57(4):481-527, April 2004. Okey G. Nwogu. {Interaction of finite-amplitude waves with vertically sheared current fields}. Journal of Fluid Mechanics, 627:179, May 2009.
Shear wave seismic interferometry for lithospheric imaging: Application to southern Mexico
Frank, J. G.; Ruigrok, E. N.; Wapenaar, K.
2014-07-01
Seismic interferometry allows for the creation of new seismic traces by cross correlating existing ones. With sufficient sampling of remote-source positions, it is possible to create a virtual source record by transforming a receiver location into a virtual source. The imaging technique developed here directly retrieves reflectivity information from the subsurface. Other techniques, namely receiver-function and tomography, rely on mode-converted energy and perturbations in a velocity field, respectively, to make inferences regarding structure. We select shear phases as an imaging source because of their lower propagation velocity, sensitivity to melt, and ability to treat vertical shear and horizontal shear wavefields independently. Teleseismic shear phases approximate a plane wave due to the extent of wavefront spread compared to a finite receiver array located on the free surface. The teleseismic shear phase transmission responses are used as input to the seismic interferometry technique. We create virtual shear source records by converting each receiver in the array into a virtual source. By cross correlating the received signals, the complex source character of distant earthquakes is imprinted on the virtual source records as the average autocorrelation of individual source-time functions. We demonstrate a technique that largely removes this imprint by filtering in the common-offset domain. A field data set was selected from the Meso-America Subduction Experiment. Despite the suboptimal remote-source sampling, an image of the lithosphere was produced that confirms features of the subduction zone that were previously found with the receiver-function technique.
Internal inspection of reinforced concrete for nuclear structures using shear wave tomography
Highlights: • Aging of reinforced concrete used for worldwide nuclear structures is increasing and necessitating evaluation. • Nondestructive evaluation is a tool for assessing the condition of reinforced concrete of nuclear structures. • Ultrasonic shear wave tomography as a stress wave technique has begun to be utilized for investigation of concrete material. • A study using ultrasonic shear wave tomography indicates anomalies vital to the long-term operation of the structure. • The use of this technique has shown to successfully evaluate the internal state of reinforced concrete members. - Abstract: Reinforced concrete is important for nuclear related structures. Therefore, the integrity of structural members consisting of reinforced concrete is germane to the safe operation and longevity of these facilities. Many issues that reduce the likelihood of safe operation and longevity are not visible on the surface of reinforced concrete material. Therefore, an investigation of reinforced concrete material should include techniques which will allow peering into the concrete member and determining its internal state. The performance of nondestructive evaluations is pursuant to this goal. Some of the categories of nondestructive evaluations are electrochemical, magnetism, ground penetrating radar, and ultrasonic testing. A specific ultrasonic testing technique, namely ultrasonic shear wave tomography, is used to determine presence and extent of voids, honeycombs, cracks perpendicular to the surface, and/or delamination. This technique, and others similar to it, has been utilized in the nuclear industry to determine structural conditions
Lorenzo, J. M.; Goff, D.; Hayashi, K.
2015-12-01
Unconsolidated Holocene deltaic sediments comprise levee foundation soils in New Orleans, USA. Whereas geotechnical tests at point locations are indispensable for evaluating soil stability, the highly variable sedimentary facies of the Mississippi delta create difficulties to predict soil conditions between test locations. Combined electrical resistivity and seismic shear wave studies, calibrated to geotechnical data, may provide an efficient methodology to predict soil types between geotechnical sites at shallow depths (0- 10 m). The London Avenue Canal levee flank of New Orleans, which failed in the aftermath of Hurricane Katrina, 2005, presents a suitable site in which to pioneer these geophysical relationships. Preliminary cross-plots show electrically resistive, high-shear-wave velocity areas interpreted as low-permeability, resistive silt. In brackish coastal environments, low-resistivity and low-shear-wave-velocity areas may indicate both saturated, unconsolidated sands and low-rigidity clays. Via a polynomial approximation, soil sub-types of sand, silt and clay can be estimated by a cross-plot of S-wave velocity and resistivity. We confirm that existent boring log data fit reasonably well with the polynomial approximation where 2/3 of soil samples fall within their respective bounds—this approach represents a new classification system that could be used for other mid-latitude, fine-grained deltas.
Shear wave velocity structure of northern and North-Eastern Ethiopia
The non-linear inversion technique known as hedgehog is utilized to define the average crustal structure of North and North-Eastern Ethiopia. To accomplish the task a two dimensional frequency-time analysis is performed to obtain Rayleigh wave group velocity dispersion curves. Six earthquakes recorded by the broad-band digital seismograph installed at the Geophysical Observatory of Addis Ababa University are utilized. The crustal structure between the Gulf of Tadjura (western Gulf of Aden) and Addis Ababa crossing southern Afar (path I) can be approximated by a total thickness of about 22 km with average S-wave velocity in the range 2.3 - 3.9 km/s. The crust-mantle transition is poorly developed at greater depths and the shear wave velocity ranges from 4.0 km/s to 4.3 km/s. If the effect of the plateau part is taken into account the average total crustal thickness is found to be less than 18 km and the average S-wave velocity varies in the range 2.4 - 3.9 km/s. The low shear wave velocity under the Afar crust is consistent with the result of other geophysical studies. For path II, which passes through the border of the Western Ethiopian plateau, the average crustal structure is found to be approximated by a thickness of about 40 km and average S-wave velocity between 3.0 km/s and 3.9 km/s. The crust overlies a lithospheric mantle with a shear wave velocity in the range 4.1-4.4 km/s. (author). 37 refs, 11 figs, 4 tabs
On the possibility of wave-induced chaos in a sheared, stably stratified fluid layer
W. B. Zimmermann
1994-01-01
Full Text Available Shear flow in a stable stratification provides a waveguide for internal gravity waves. In the inviscid approximation, internal gravity waves are known to be unstable below a threshold in Richardson number. However, in a viscous fluid, at low enough Reynolds number, this threshold recedes to Ri = 0. Nevertheless, even the slightest viscosity strongly damps internal gravity waves when the Richardson number is small (shear forces dominate buoyant forces. In this paper we address the dynamics that approximately govern wave propagation when the Richardson number is small and the fluid is viscous. When Ri ξ = λ1A + λ2Aξξ + λ3Aξξξ + λ4AAξ + b(ξ where ξ is the coordinate of the rest frame of the passing temperature wave whose horizontal profile is b(ξ. The parameters λi are constants that depend on the Reynolds number. The above dynamical system is know to have limit cycle and chaotic attrators when forcing is sinusoidal and wave attenuation negligible.
Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu
2014-03-01
The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
The Doppler-shifted cyclotron resonance (ω-kzvz=Ωf) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; kz, axial wavenumber; vz, fast-ion axial speed; Ωf, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li+ source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ωci. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
Cuperman, S.; Heristchi, D.
1992-08-01
The transcendental dispersion equation for electromagnetic waves propagating in the slow mode in sheared non-neutral relativistic cylindrical electron beams in strong applied magnetic fields is solved exactly. Thus, rather than truncated power series for the modified Bessel functions involved, use is made of modern algorithms able to compute such functions up to 18-digit accuracy. Consequently, new and significantly more important branches of the velocity shear instability are found. When the shear-factor and/or the geometrical parameter a/b (pipe-to-beam radius ratio) are increased, the unstable branches join, and the higher-frequency, larger-wavenumber modes are significantly enhanced. Since analytical solutions of the exact dispersion relation cannot be obtained, it is suggested that in all similar cases the methods proposed and demonstrated here should be used to carry out a rigorous stability analysis.
Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity
Dae Woo Park
2016-01-01
Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.
Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields.
Forrester, Derek Michael; Huang, Jinrui; Pinfield, Valerie J; Luppé, Francine
2016-03-14
Here we present the verification of shear-mediated contributions to multiple scattering of ultrasound in suspensions. Acoustic spectroscopy was carried out with suspensions of silica of differing particle sizes and concentrations in water to find the attenuation at a broad range of frequencies. As the particle sizes approach the nanoscale, commonly used multiple scattering models fail to match experimental results. We develop a new model, taking into account shear mediated contributions, and find excellent agreement with the attenuation spectra obtained using two types of spectrometer. The results determine that shear-wave phenomena must be considered in ultrasound characterisation of nanofluids at even relatively low concentrations of scatterers that are smaller than one micrometre in diameter. PMID:26763173
Piezoelectric transducers are commonly used in structural health monitoring systems to generate and measure ultrasonic guided waves (GWs) by applying interfacial shear and normal stresses to the host structure. In most cases, in order to perform damage detection, advanced signal processing techniques are required, since a minimum of two dispersive modes are propagating in the host structure. In this paper, a systematic approach for mode selection is proposed by optimizing the interfacial shear stress profile applied to the host structure, representing the first step of a global optimization of selective mode actuator design. This approach has the potential of reducing the complexity of signal processing tools as the number of propagating modes could be reduced. Using the superposition principle, an analytical method is first developed for GWs excitation by a finite number of uniform segments, each contributing with a given elementary shear stress profile. Based on this, cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel genetic algorithm optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The complexity of the optimal shear stress profile obtained is shown considering two cost functions with various optimal excitation widths and number of segments. Results illustrate that the desired mode (A0 or S0) can be excited dominantly over other modes up to a wave power ratio of 1010 using an optimal shear stress profile. (paper)
Chao, Pei-Yu; Li, Pai-Chi
2016-08-22
The high imaging resolution and motion sensitivity of optical-based shear wave detection has made it an attractive technique in biomechanics studies with potential for improving the capabilities of shear wave elasticity imaging. In this study we implemented laser speckle contrast imaging for two-dimensional (X-Z) tracking of transient shear wave propagation in agarose phantoms. The mechanical disturbances induced by the propagation of the shear wave caused temporal and spatial fluctuations in the local speckle pattern, which manifested as local blurring. By mechanically moving the sample in the third dimension (Y), and performing two-dimensional shear wave imaging at every scan position, the three-dimensional shear wave velocity distribution of the phantom could be reconstructed. Based on comparisons with the reference shear wave velocity measurements obtained using a commercial ultrasound shear wave imaging system, the developed system can estimate the shear wave velocity with an error of less than 6% for homogeneous phantoms with shear moduli ranging from 1.52 kPa to 7.99 kPa. The imaging sensitivity of our system makes it capable of measuring small variations in shear modulus; the estimated standard deviation of the shear modulus was found to be less than 0.07 kPa. A submillimeter spatial resolution for three-dimensional shear wave imaging has been achieved, as demonstrated by the ability to detect a 1-mm-thick stiff plate embedded inside heterogeneous agarose phantoms. PMID:27557169
Ismail, A.; Anderson, N.
2007-01-01
Shear-wave velocity (Vs) as a function of soil stiffness is an essential parameter in geotechnical characterization of the subsurface. In this study, multichannel analysis of surface wave (MASW) and downhole methods were used to map the shear-wave velocity-structure and depth to the bed-rock surface at a 125m ?? 125m geotechnical site in Missouri. The main objective was to assess the suitability of the site for constructing a large, heavy building. The acquired multichannel surface wave data were inverted to provide 1D shear-wave velocity profile corresponding to each shot gather. These 1D velocity profiles were interpolated and contoured to generate a suite of 2D shear-wave velocity sections. Integrating the shear-wave velocity data from the MASW method with the downhole velocity data and the available borehole lithologic information enabled us to map shear-wave velocity-structure to a depth on the order of 20m. The bedrock surface, which is dissected by a significant cut-and-fill valley, was imaged. The results suggest that the study site will require special consideration prior to construction. The results also demonstrate the successful use of MASW methods, when integrated with downhole velocity measurements and borehole lithologic information, in the characterization of the near surface at the geotechnical sites. ?? 2007 European Association of Geoscientists & Engineers.
Correlation between Shear Wave Velocity and Porosity in Porous Solids and Rocks
J. Kováčik
2013-01-01
Full Text Available The shear wave velocity dependence on porosity was modelled using percolation theory model for the shear modulus porosity dependence. The obtained model is not a power law dependence (no simple scaling with porosity, but a more complex equation. Control parameters of this equation are shear wave velocity of bulk solid, percolation threshold of the material and the characteristic power law exponent for shear modulus porosity dependence. This model is suitable for all porous materials, mortars and porous rocks filled with liquid or gas. In the case of pores filled with gas the model can be further simplified: The term for the ratio of the gas density to the density of solid material can be omitted in the denominator (the ratio is usually in the range of (10−4, 10−3 for all solids. This simplified equation was then tested on the experimental data set for porous ZnO filled with air. Due to lack of reasonable data the scientists are encouraged to test the validity of proposed model using their experimental data.
Finite-amplitude shear-Alfv\\'en waves do not propagate in weakly magnetized collisionless plasmas
Squire, J; Schekochihin, A A
2016-01-01
It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfv\\'en fluctuations above a critical amplitude $\\delta B_{\\perp}/B_{0} \\sim \\beta^{\\,-1/2}$, where $\\beta$ is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfv\\'en-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in the high-$\\beta$ conditions prevalent in many astrophysical plasmas, as well as for the solar wind at $\\sim 1 \\mathrm{AU}$ where $\\beta \\gtrsim 1$.
Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks
An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles
Scattering of shear waves by an elliptical cavity in a radially inhomogeneous isotropic medium
Hei, Baoping; Yang, Zailin; Chen, Zhigang
2016-03-01
Complex function and general conformal mapping methods are used to investigate the scattering of elastic shear waves by an elliptical cylindrical cavity in a radially inhomogeneous medium. The conformal mappings are introduced to solve scattering by an arbitrary cavity for the Helmholtz equation with variable coefficient through the transformed standard Helmholtz equation with a circular cavity. The medium density depends on the distance from the origin with a power-law variation and the shear elastic modulus is constant. The complex-value displacements and stresses of the inhomogeneous medium are explicitly obtained and the distributions of the dynamic stress for the case of an elliptical cavity are discussed. The accuracy of the present approach is verified by comparing the present solution results with the available published data. Numerical results demonstrate that the wave number, inhomogeneous parameters and different values of aspect ratio have significant influence on the dynamic stress concentration factors around the elliptical cavity.
Development of a low frequency omnidirectional piezoelectric shear horizontal wave transducer
Belanger, Pierre; Boivin, Guillaume
2016-04-01
Structural health monitoring (SHM) may offer an alternative to time based maintenance of safety critical components. Ultrasonic guided waves have recently emerged as a prominent option because their propagation carries information regarding the location, severity and types of damage. The fundamental shear horizontal ultrasonic guided wave mode has recently attracted interest in SHM because of its unique properties. This mode is not dispersive and has no attenuation due to fluid loading. In order to cover large areas using an SHM system, omnidirectional transduction is desired. Omnidirectional transduction of SH0 is challenging because of the required torsional surface stress. This paper presents a concept based on the discretisation of a torsional surface stress source using shear piezoelectric trapezoidal elements. Finite element simulation and experimental results are used to demonstrate the performance of this concept. The experimental modal selectivity is 17 dB and the transducer has a true omnidirectional behaviour.
Overstability of acoustic waves in strongly magnetized anisotropic MHD shear flows
Uchava, E. S.; B. M. Shergelashvili; Tevzadze, A. G.; Poedts, S.
2014-01-01
We present a linear stability analysis of the perturbation modes in anisotropic MHD flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model, that takes into account not only the effect of pressure anisotropy, but also the effect of anisotropic heat fluxes. In this model the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower ...
Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing
2015-12-01
Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.
Effect of Shear on Ultrasonic Flow Measurement Using Nonaxisymmetric Wave Modes
Yong Chen; Yiyong Huang; Xiaoqian Chen; Dengpeng Hu
2014-01-01
Nonaxisymmetric wave propagation in an inviscid fluid with a pipeline shear flow is investigated. Mathematical equation is deduced from the conservations of mass and momentum, leading to a second-order differential equation in terms of the acoustic pressure. Meanwhile a general boundary condition is formulated to cover different types of wall configurations. A semianalytical method based on the Fourier-Bessel theory is provided to transform the differential equation to algebraic equations. Nu...
Maksuti, Elira; Widman, Erik; Larsson, David; Urban, Matthew W; Larsson, Matilda; Bjällmark, Anna
2016-01-01
Arterial stiffness is an independent risk factor found to correlate with a wide range of cardiovascular diseases. It has been suggested that shear wave elastography (SWE) can be used to quantitatively measure local arterial shear modulus, but an accuracy assessment of the technique for arterial applications has not yet been performed. In this study, the influence of confined geometry on shear modulus estimation, by both group and phase velocity analysis, was assessed, and the accuracy of SWE in comparison with mechanical testing was measured in nine pressurized arterial phantoms. The results indicated that group velocity with an infinite medium assumption estimated shear modulus values incorrectly in comparison with mechanical testing in arterial phantoms (6.7 ± 0.0 kPa from group velocity and 30.5 ± 0.4 kPa from mechanical testing). To the contrary, SWE measurements based on phase velocity analysis (30.6 ± 3.2 kPa) were in good agreement with mechanical testing, with a relative error between the two techniques of 8.8 ± 6.0% in the shear modulus range evaluated (40-100 kPa). SWE by phase velocity analysis was validated to accurately measure stiffness in arterial phantoms. PMID:26454623
Shi, P; Chen, C Q; Zou, W N
2015-01-01
Coupled shear (SH) elastic and electromagnetic (EM) waves propagating oblique to a one dimensional periodic piezoelectric and piezomagnetic composite are investigated using the transfer matrix method. Closed-form expression of the dispersion relations is derived. We find that the band structures of the periodic composite show simultaneously the features of phononic and photonic crystals. Strong interaction between the elastic and EM waves near the center of the Brillouin zone (i.e., phonon-polariton) is revealed. It is shown the elastic branch of the band structures is more sensitive to the piezoelectric effect while the phonon-polariton is more sensitive to the piezomagnetic effect of the composite. PMID:25200701
Radiation of a Plane Shear Wave from an Elastic Waveguide to a Composite Elastic Space
Grigoryan E.Kh.
2007-09-01
Full Text Available The radiation of a plane shear wave from an elastic strip (waveguide to an elastic space is investigated in this paper. The strip is embedded into a space and is partially bonded with it. A given plane shear wave propagates from the free part of the strip and radiates into the composite space. The problem’s solution is led to a system of two uncoupled functional Wiener-Hopf type equations which are solved via the method of factorization. Closed form expressions are obtained which determine the wavefield in all the parts of the strip and space. Asymptotic expressions are provided which represent the wavefield in the far field and in the neighborhood of the contact zones. From these formulas it follows that: a in the cases of several values of the ratio of the wave numbers of the strip and space the order of vanishing of the volume wave in the strip becomes less and equal to the one in the case of a homogeneous material, b the radiated volume wave in the strip has a velocity of propagation equal to the volume wave’s velocity in the space.
Variation of shear and compressional wave modulus upon saturation for pure pre-compacted sands
Bhuiyan, M. H.; Holt, R. M.
2016-07-01
Gassmann's fluid substitution theory is commonly used to predict seismic velocity change upon change in saturation, and is hence essential for 4-D seismic and AVO studies. This paper addresses the basics assumptions of the Gassmann theory, in order to see how well they are fulfilled in controlled laboratory experiments. Our focus is to investigate the sensitivity of shear modulus to fluid saturation, and the predictability of Gassmann's fluid substitution theory for P-wave modulus. Ultrasonic P- and S-wave velocities in dry and saturated (3.5 wt per cent NaCl) unconsolidated clean sands (Ottawa and Columbia) were measured in an oedometer test system (uniaxial strain conditions) over a range of 0.5-10 MPa external vertical stress. This study shows shear modulus hardening upon brine saturation, which is consistent with previous data found in the literature. Analysis of the data shows that most of the hardening of the ultrasonic shear modulus may be explained by Biot dispersion. Isotropic Gassmann's fluid substitution is found to underestimate the P-wave modulus upon fluid saturation. However, adding the Biot dispersion effect improves the prediction. More work is required to obtain good measurements of parameters influencing dispersion, such as tortuosity, which is very ambiguous and challenging to measure accurately.
Variation of shear and compressional wave modulus upon saturation for pure pre-compacted sands
Bhuiyan, M. H.; Holt, R. M.
2016-04-01
Gassmann's fluid substitution theory is commonly used to predict seismic velocity change upon change in saturation, and is hence essential for 4D seismic and AVO studies. This paper addresses the basics assumptions of the Gassmann theory, in order to see how well they are fulfilled in controlled laboratory experiments. Our focus is to investigate the sensitivity of shear modulus to fluid saturation, and the predictability of Gassmann's fluid substitution theory for P-wave modulus. Ultrasonic P- and S-wave velocities in dry and saturated (3.5wt% NaCl) unconsolidated clean sands (Ottawa and Columbia) were measured in an oedometer test system (uniaxial strain conditions) over a range of 0.5 MPa to 10 MPa external vertical stress. This study shows shear modulus hardening upon brine saturation, which is consistent with previous data found in the literature. Analysis of the data shows that most of the hardening of the ultrasonic shear modulus may be explained by Biot dispersion. Isotropic Gassmann's fluid substitution is found to underestimate the P-wave modulus upon fluid saturation. However, adding the Biot dispersion effect improves the prediction. More work is required to obtain good measurements of parameters influencing dispersion, such as tortuosity, which is very ambiguous and challenging to measure accurately.
Shear Wave Elastography in the Living, Perfused, Post-Delivery Placenta.
McAleavey, Stephen A; Parker, Kevin J; Ormachea, Juvenal; Wood, Ronald W; Stodgell, Christopher J; Katzman, Philip J; Pressman, Eva K; Miller, Richard K
2016-06-01
The placenta is the critical interface between the mother and the developing fetus and is essential for survival and growth. Despite the widespread use of ultrasound imaging and Doppler in obstetrics and gynecology and the recent growth of elastographic technologies, little is known about the biomechanical (elastic shear wave) properties of the placenta and the range of normal and pathologic parameters that are present. This study uses a well-developed protocol for perfusing whole placentas, post-delivery, to maintain tissue integrity and function for hours. In this model, the placenta is living, whole and maintained within normal physiologic parameters such as flow, arterial pressure and oxygen, throughout examination by ultrasound, Doppler and shear wave elastography. The preliminary results indicate that normal placental tissue on the fetal side has shear wave speeds on the order of 2 m/s, in a range similar to those of animal livers. Some abnormalities are found outside this range, and thus, elastographic measures of the placenta may provide useful assessments related to the state of the tissue. PMID:27006269
Shear horizontal surface acoustic waves in a magneto-electro-elastic system
Eskandari, Shahin; Shodja, Hossein M.
2016-04-01
Propagation of shear horizontal surface acoustic waves (SHSAWs) within a functionally graded magneto-electro-elastic (FGMEE) half-space was previously presented (Shodja HM, Eskandari S, Eskandari M. J. Eng. Math. 2015, 1-18) In contrast, the current paper considers propagation of SHSAWs in a medium consisting of an FGMEE layer perfectly bonded to a homogeneous MEE substrate. When the FGMEE layer is described by some special inhomogeneity functions - all the MEE properties have the same variation in depth which may or may not be identical to that of the density - we obtain the exact closed-form solution for the MEE fields. Additionally, certain special inhomogeneity functions with monotonically decreasing bulk shear wave velocity in depth are considered, and the associated boundary value problem is solved using power series solution. This problem in the limit as the layer thickness goes to infinity collapses to an FGMEE half-space with decreasing bulk shear wave velocity in depth. It is shown that in such a medium SHSAW does not propagate. Using power series solution we can afford to consider some FGMEE layers of practical importance, where the composition of the MEE obeys a prescribed volume fraction variation. The dispersive behavior of SHSAWs in the presence of such layers is also examined.
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
On the theory of MHD waves in a shear flow of a magnetized turbulent plasma
Mishonov, Todor M.; Maneva, Yana G.; Dimitrov, Zlatan D.; Hristov, Tihomir S.
The set of equations for magnetohydrodynamic (MHD) waves in a shear flow is consecutively derived. This investigation is devoted on the wave heating of space plasmas. The proposed scenario involves the presence of a self-sustained turbulence and magnetic field. In the framework of Langevin--Burgers approach the influence of the turbulence is described by an additional external random force in the MHD system. Kinetic equation for the spectral density of the slow magnetosonic (Alfvénic) mode is derived in the short wavelength (WKB) approximation. The results show a pressing need for conduction of numerical Monte Carlo (MC) simulations with a random driver to take into account the influence of the long wavelength modes and to give a more precise analytical assessment of the short ones. Realistic MC calculations for the heating rate and shear stress tensor should give an answer to the perplexing problem for the missing viscosity in accretion disks and reveal why the quasars are the most powerful sources of light in the universe. It is supposed that the heating mechanism by alfvén waves absorption is common for many kinds of space plasmas from solar corona to active galactic nuclei and the solution of these longstanding puzzles deserves active interdisciplinary research. The work is illustrated by typical solutions of MHD equations and their spectral densities obtained by numerical calculations or by analytical solutions with the help of Heun functions. The amplification coefficient of slow magnetosonic wave in shear flow is analytically calculated. Pictorially speaking, if in WKB approximation we treat Alfvén waves as particles -- this amplification is effect of ``lasing of alfvons.''
Generation of shear Alfvén waves by repetitive electron heating
Wang, Y.; Gekelman, W.; Pribyl, P.; Van Compernolle, B.; Papadopoulos, K.
2016-01-01
ELF/ULF waves are powerful tools for submarine communication, geophysical mapping, and radiation belt remediation. However, due to their large wavelength (on the order of 102-104 km or 0.1-10 RE) it is difficult to launch them using ground-based antennas. Alternatively, these waves can be generated by modulating the temperature of the ionosphere using ground-based HF transmitters. The paper reports a detailed laboratory study on the generation of shear Alfvén waves by repetitive electron heating. The experiments were conducted on the large plasma device at University of California, Los Angeles. In the experiment, 10 pulses of high-power microwaves (250 kW, 1 µs each) near the plasma frequency modulated at a variable fraction between 0.1 and 1.0 of fci are launched transverse to the background field. In addition to bulk electron heating the interaction generates a population of fast electrons in the tail of the distribution function. The field-aligned current carried by the fast electrons acts as an antenna that radiates shear Alfvén waves. It is demonstrated that a shear Alfvén wave at a controllable, arbitrary frequency (f microwave pulses. The radiation pattern and power dependence of the virtual antenna are also presented. The experiments provide a novel virtual antenna concept relevant to the equatorial region where the Earth's magnetic field is horizontal and the field-aligned plasma density gradient is small. The results are important to design of new mobile ionospheric heaters for equatorial and middle latitude locations.
Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection
Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.
2010-12-01
We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave
The Peano-series solution for modeling shear horizontal waves in piezoelectric plates
Ben Ghozlen M.H.
2012-06-01
Full Text Available The shear horizontal (SH wave devices have been widely used in electroacoustic. To improve their performance, the phase velocity dispersion and the electromechanical coupling coefficient of the Lamb wave should be calculated exactly in the design. Therefore, this work is to analyze exactly the Lamb waves polarized in the SH direction in homogeneous plate pie.zoelectric material (PZT-5H. An alternative method is proposed to solve the wave equation in such a structure without using the standard method based on the electromechanical partial waves. This method is based on an analytical solution, the matricant explicitly expressed under the Peano series expansion form. Two types of configuration have been addressed, namely the open circuited and the short circuited. Results confirm that the SH wave provides a number of attractive properties for use in sensing and signal processing applications. It has been found that the phase velocity remains nearly constant for all values of h/λ (h is the plate thickness, λ the acoustic wavelength. Secondly the SH0 wave mode can provide very high electromechanical coupling. Graphical representations of electrical and mechanical amounts function of depth are made, they are in agreement with the continuity rules. The developed Peano technique is in agreement with the classical approach, and can be suitable with cylindrical geometry.
Areal and Shear Strain Coupling of PBO Borehole Strainmeters From Teleseismic Surface Waves
Roeloffs, E.; McCausland, W.
2007-12-01
In order to compare borehole strainmeter data with tectonic models, we must know the coupling parameters relating elastic deformation of the strainmeter to strain in the surrounding rock. At least two coupling parameters are required: the ratios of instrument areal and shear strain to formation areal and shear strain, respectively. These coupling parameters depend on the relative elastic moduli of the formation, grout, and strainmeter, and typical elastic moduli yield nominal coupling parameters of 1.5 and 3. More accurate coupling parameters must be determined by analyzing each strainmeter's response to a known deformation source after the instrument has been grouted into the borehole. Borehole strainmeters installed by the National Science Foundation-funded Earthscope Plate Boundary Observatory (PBO) consist of four gauges, sampled at 20 Hz, that measure extension along distinct azimuths. Teleseismic Love and Rayleigh waves that produce fractional gauge elongations > 10-7 , such as those from the M8.3 Kuril Islands earthquake of November 15, 2006, can be used to constrain the coupling parameters. A planar Love or Rayleigh wave is expected to have a simple strain field that produces the same waveform on all four gauges of a strainmeter. The two-parameter coupling model is consistent with the variation of surface wave amplitudes as functions of azimuth for the borehole strainmeter data analyzed to date, although most of the PBO strainmeters require that differences in the relative gains of the four gauges be estimated as well. Fits to the data can be improved for some strainmeters by allowing for two distinct shear strain coupling parameters, and/or for a small (grout with a relatively low elastic modulus. Surface waves are well recorded by some strainmeters that do not record earth tides, demonstrating that for some borehole strainmeter installations, coupling may decrease at long periods.
Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra
U. Polom
2008-01-01
Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami
Ito, H. [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H.; Brie, A.
1996-10-01
Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.
Increased hepatic venous pressure can be observed in patients with advanced liver disease and congestive heart failure. This elevated portal pressure also leads to variation in acoustic radiation-force-derived shear wave-based liver stiffness estimates. These changes in stiffness metrics with hepatic interstitial pressure may confound stiffness-based predictions of liver fibrosis stage. The underlying mechanism for this observed stiffening behavior with pressurization is not well understood and is not explained with commonly used linear elastic mechanical models. An experiment was designed to determine whether the stiffness increase exhibited with hepatic pressurization results from a strain-dependent hyperelastic behavior. Six excised canine livers were subjected to variations in interstitial pressure through cannulation of the portal vein and closure of the hepatic artery and hepatic vein under constrained conditions (in which the liver was not free to expand) and unconstrained conditions. Radiation-force-derived shear wave speed estimates were obtained and correlated with pressure. Estimates of hepatic shear stiffness increased with changes in interstitial pressure over a physiologically relevant range of pressures (0–35 mmHg) from 1.5 to 3.5 m s−1. These increases were observed only under conditions in which the liver was free to expand while pressurized. This behavior is consistent with hyperelastic nonlinear material models that could be used in the future to explore methods for estimating hepatic interstitial pressure noninvasively. (paper)
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Stochastic ion heating by an electrostatic wave in a sheared magnetic field
Effects of the shear of the magnetic field on the stochastic acceleration of ions due to an electrostatic wave with a frequency in the lower-hybrid range are considered. An appropriate Hamiltonian formalism is used to analyze the equations of motion numerically and theoretically. The surface of section method is used to visualize the solutions and to compare these with the theoretical predictions. From this analysis it appears that there exists an upper adiabatic barrier for the stochastic region which seems to be responsible for the formation of a hot tail in the ion velocity distribution. In addition to lowering the threshold for the onset of stochasticity, the effect of shear is to shift the tail structure to lower values of the velocities. Consequently, these results might help to improve the efficiency of heating by external radiation in the lower-hybrid frequency range
Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.
2015-12-01
Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in
Kim, G.; Shin, J.; Chi, H. C.; Sheen, D.; Park, J.; Cho, C.
2011-12-01
The crustal structure around the Korean Peninsula was investigated by analyzing the Rayleigh waves generated from the 2nd North Korea underground nuclear explosion on May 25, 2009. Group velocity dispersion curves were measured from vertical component waveforms of 20 broadband stations in the range of 194 to 1183 km from the test site. The measured dispersion curves were inverted to get shear-wave velocity models for depths from 0 to 50 km. The dispersion curves and the velocity models clearly show lateral variations in the crustal structure, which could be more clearly classified into the North Korea-Northeast China group, the Western Margin of the East Sea group, and the Japan Basin group. For each group, an averaged dispersion curve and an averaged velocity model were measured. The averaged shear-wave velocity model of the North Korea-Northeast China group shows that the mean shear-wave velocity of the Moho discontinuity, which is known to be located at approximately 35 km, is 4.37 km/s with a standard deviation of 0.15 km/s. The averaged shear-wave velocity model of the Japan Basin group shows a mean shear-wave velocity of 4.26 km/s with a standard deviation of 0.14 km/s in the layer between 16 and 22 km. The averaged shear-wave velocity model of the Western Margin of the East Sea group shows characteristics of a transition zone between the North Korea-Northeast China group, which represents continental crust, and the Japan Basin group, which represents oceanic crust. The mean shear-wave velocity in the layer between 16 and 22 km is 4.12 km/s with a standard deviation of 0.05 km/s.
Liu, Yu; Fite, Brett Z; Mahakian, Lisa M; Johnson, Sarah M; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W
2015-01-01
Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable. PMID:26439259
Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting
Gilligan, Amy; Bastow, Ian D.; Watson, Emma; Darbyshire, Fiona A.; Levin, Vadim; Menke, William; Lane, Victoria; Hawthorn, David; Boyce, Alistair; Liddell, Mitchell V.; Petrescu, Laura
2016-06-01
SUMMARYPlate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (φ) and the delay-time between the fast and slow split shear waves (δt) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Paleozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (φ, δt) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length-scale (≥100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are sub-parallel to the opening direction of Mesozoic rifting; associated δt values of > 1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.
Yu Liu
Full Text Available Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm, as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable.
Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting
Gilligan, Amy; Bastow, Ian D.; Watson, Emma; Darbyshire, Fiona A.; Levin, Vadim; Menke, William; Lane, Victoria; Hawthorn, David; Boyce, Alistair; Liddell, Mitchell V.; Petrescu, Laura
2016-08-01
Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (φ) and the delay time between the fast and slow split shear waves (δt) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (φ, δt) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of >1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.
Potential use of point shear wave elastography for the pancreas: A single center prospective study
Kawada, Natsuko, E-mail: kawada-na@mc.pref.osaka.jp [Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Department of Gastroenterology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Tanaka, Sachiko, E-mail: sachi686@cocoa.plala.or.jp [Osaka Center for Cancer and Cardiovascular Disease Prevention, 1-6-107, Morinomiya, Johtoh, Osaka 536-8588 (Japan); Uehara, Hiroyuki, E-mail: uehara-hi@mc.pref.osaka.jp [Department of Gastroenterology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Ohkawa, Kazuyoshi, E-mail: okawa-ka@mc.pref.osaka.jp [Department of Gastroenterology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Yamai, Takuo, E-mail: yamai-ta@mc.pref.osaka.jp [Department of Gastroenterology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Takada, Ryoji, E-mail: takada-ry@mc.pref.osaka.jp [Department of Gastroenterology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Shiroeda, Hisakazu, E-mail: shiroeda@kanazawa-med.ac.jp [Department of Gastroenterology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Arisawa, Tomiyasu, E-mail: tarisawa@kanazawa-med.ac.jp [Department of Gastroenterology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Tomita, Yasuhiko, E-mail: tomota-ya@mc.pref.osaka.jp [Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan)
2014-04-15
Aim: Clinical use of point shear wave elastography for the liver has been established, however, few studies demonstrated its usefulness for the pancreas. A prospective study was conducted to clarify its feasibility for the pancreas and its usefulness for the identification of high risk group for pancreatic cancer. Patients and methods: Consecutive eighty-five patients underwent point shear wave elastography for the pancreas. The success rate of shear wave velocity (SWV) measurement, that is the number of successful measurements over total 10 measurements, was recorded. The SWV of the pancreas measured at non-tumorous area was compared between patients with and without pancreatic cancer. Factors associated with high SWV were determined by logistic regression model. Results: Sixty patients were included, of these 18 had pancreatic cancer. The success rate of 100% was achieved at the head, the body and the tail of the pancreas in 80%, 83%, and 68% of the patients, respectively. The success rate of ≥80% was achieved in 100%, 100%, and 96% of the patients, respectively. Although mean SWV of the pancreas harboring pancreatic cancer tended to be higher compared with that of the pancreas without cancer (1.51 ± 0.45 m/s vs 1.43 ± 0.28 m/s), they did not reach statistical significance. Multivariate analysis showed that increased amount of alcohol intake was associated with high SWV. Conclusion: The SWV of the pancreas was measured with excellent success rate. However, tendency of higher SWV obtained from the pancreas harboring pancreatic cancer needed to be further investigated.
Potential use of point shear wave elastography for the pancreas: A single center prospective study
Aim: Clinical use of point shear wave elastography for the liver has been established, however, few studies demonstrated its usefulness for the pancreas. A prospective study was conducted to clarify its feasibility for the pancreas and its usefulness for the identification of high risk group for pancreatic cancer. Patients and methods: Consecutive eighty-five patients underwent point shear wave elastography for the pancreas. The success rate of shear wave velocity (SWV) measurement, that is the number of successful measurements over total 10 measurements, was recorded. The SWV of the pancreas measured at non-tumorous area was compared between patients with and without pancreatic cancer. Factors associated with high SWV were determined by logistic regression model. Results: Sixty patients were included, of these 18 had pancreatic cancer. The success rate of 100% was achieved at the head, the body and the tail of the pancreas in 80%, 83%, and 68% of the patients, respectively. The success rate of ≥80% was achieved in 100%, 100%, and 96% of the patients, respectively. Although mean SWV of the pancreas harboring pancreatic cancer tended to be higher compared with that of the pancreas without cancer (1.51 ± 0.45 m/s vs 1.43 ± 0.28 m/s), they did not reach statistical significance. Multivariate analysis showed that increased amount of alcohol intake was associated with high SWV. Conclusion: The SWV of the pancreas was measured with excellent success rate. However, tendency of higher SWV obtained from the pancreas harboring pancreatic cancer needed to be further investigated
Anisotropic Shear-wave Velocity Structure of East Asian Upper Mantle from Waveform Tomography
Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.
2012-12-01
East Asia is a seismically active region featuring active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. In this study, we applied full waveform time domain tomography to image 3D isotropic, radially and azimuthally anisotropic upper mantle shear velocity structure of East Asia. High quality teleseismic waveforms were collected for both permanent and temporary stations in the target and its adjacent regions, providing good ray path coverage of the study region. Fundamental and overtone wave packets, filtered down to 60 sec, were inverted for isotropic and radially anisotropic shear wave structure using normal mode asymptotic coupling theory (NACT: Li and Romanowicz, 1995). Joint inversion of SKS measurements and seismic waveforms was then carried out following the methodology described in (Marone and Romanowicz, 2007). The 3D velocity model shows strong lateral heterogeneities in the target region, which correlate well with the surface geology in East Asia. Our model shows that Indian lithosphere has subducted beneath Tibet with a different northern reach from western to eastern Tibet,. We also find variations of the slab geometry in Western Pacific subduction zones. Old and stable regions, such as, Indian shield, Siberia platform, Tarim and Yangtze blocks are found to have higher shear wave velocity in the upper mantle. Lower velocity anomalies are found in regions like Baikal rift, Tienshan, Indochina block, and the regions along Japan island-Ryukyu Trench and Izu-bonin Trench. The dominant fast and slow velocity boundaries in the study region are well correlated with tectonic belts, such as the central Asian orogenic belt and Alty/Qilian-Qinling/Dabie orogenic belt. Our radially anisotropic model shows Vsh> Vsv in oceanic regions and at larger depths(>300km), and Vsv > Vsh in some orogenic zones.. We'll show preliminary results of azimuthally anisotropic joint inversion of SKS
Plasma turbulence driven by transversely large-scale standing shear Alfvén waves
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k⊥) lying in the range de−1-6de−1, de being the electron inertial length, suggesting non-local parametric decay from small to large k⊥. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k||). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k⊥) = |E⊥(k⊥)/|B⊥(k⊥)| ≪ VA for k⊥de A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
John Z. G. Ma
2016-01-01
We study the modulation of atmospheric nonisothermality and wind shears on the propagation of seismic tsunami-excited gravity waves by virtue of the vertical wavenumber, m (with its imaginary and real parts, m i and m r , respectively), within a correlated characteristic range of tsunami wave periods in tens of minutes. A ge...
Ultrasound radiation force-based methods can quantitatively evaluate tissue viscoelastic material properties. One of the limitations of the current methods is neglecting the inherent anisotropy nature of certain tissues. To explore the phenomenon of anisotropy in a laboratory setting, we created two phantom designs incorporating fibrous and fishing line material with preferential orientations. Four phantoms were made in a cube-shaped mold; both designs were arranged in multiple layers and embedded in porcine gelatin using two different concentrations (8%, 14%). An excised sample of pork tenderloin was also studied. Measurements were made in the phantoms and the pork muscle at different angles by rotating the phantom with respect to the transducer, where 0° and 180° were defined along the fibers, and 90° and 270° across the fibers. Shear waves were generated and measured by a Verasonics ultrasound system equipped with a linear array transducer. For the fibrous phantom, the mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 8% gelatin were 3.60 ± 0.03 and 3.18 ± 0.12 m s−1 and with 14% gelatin were 4.10 ± 0.11 and 3.90 ± 0.02 m s−1. For the fishing line material phantom, the mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 8% gelatin were 2.86 ± 0.20 and 2.44 ± 0.24 m s−1 and with 14% gelatin were 3.40 ± 0.09 and 2.84 ± 0.14 m s−1. For the pork muscle, the mean and standard deviations of the shear wave speeds along the fibers (0°) at two different locations were 3.83 ± 0.16 and 3.86 ± 0.12 m s−1 and across the fibers (90°) were 2.73 ± 0.18 and 2.70 ± 0.16 m s−1, respectively. The fibrous and fishing line gelatin-based phantoms exhibited anisotropy that resembles that observed in the pork muscle. (paper)
Comment on 'Statistical correlations of shear wave velocity and penetration resistance for soils'
A discussion is presented on a study that introduces statistical correlations between shear wave velocity (Vs) and Standard Penetration Test N (SPT-N) values. Selected key information on in situ methods that provide the best available options to obtain correlations between Vs and SPT-N is summarized with the limitations of other in situ methods. Effects of in situ tests used in the study and methodology for compilation and assessment of Vs/SPT-N data pairs are evaluated and possible uncertainties inherent in the presented correlation due to approximations and missing details are emphasized. (comments and replies)
Shear wave splitting in the records of German Regional Seismic Network.
L. P. Vinnik; V. G. Krishna; Rainer Kind; P. Bormann; K. Stammler;
1994-01-01
Estimates of the parameters of shear-wave splitting in the records of SKS and SKKS of the new German Regional Seismograph Network (GRSN) for one-layer model show large azimuthal variations at some stations of the network. It is found that the variations are compatible with the presence of two anisotropic mantle layers in the region of the South German Triangle (SGT); the fast direction in the upper layer is between N-S and NE-SW, close to the previously reported estimates of the fast directio...
Yue, Jinlong; Tardieu, Marion; Julea, Felicia; Chami, Linda; Lucidarme, Olivier; Maître, Xavier; Pellot-Barakat, Claire
2015-01-01
Ultrasound Supersonic Shear Wave Elastog-raphy (SSWE) as well as Magnetic Resonance Elastography (MRE) allow accessing the mechanical properties of human tissues. SSWE is usually performed using a 2D probe. 3D SSWE is now available but needs to be validated. We compared 3D SSWE with both 2D SSWE and MRE which is inherently 3D on a breast phantom. We found that 3D SSWE is reproducible and provides elasticity estimates comparable to those obtained with the validated 2D SSWE. We also showed that...
Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves.
Tzschätzsch, Heiko; Guo, Jing; Dittmann, Florian; Hirsch, Sebastian; Barnhill, Eric; Jöhrens, Korinna; Braun, Jürgen; Sack, Ingolf
2016-05-01
Palpation is one of the most sensitive, effective diagnostic practices, motivating the quantitative and spatially resolved determination of soft tissue elasticity parameters by medical ultrasound or MRI. However, this so-called elastography often suffers from limited anatomical resolution due to noise and insufficient elastic deformation, currently precluding its use as a tomographic modality on its own. We here introduce an efficient way of processing wave images acquired by multifrequency magnetic resonance elastography (MMRE), which relies on wave number reconstruction at different harmonic frequencies followed by their amplitude-weighted averaging prior to inversion. This results in compound maps of wave speed, which reveal variations in tissue elasticity in a tomographic fashion, i.e. an unmasked, slice-wise display of anatomical details at pixel-wise resolution. The method is demonstrated using MMRE data from the literature including abdominal and pelvic organs such as the liver, spleen, uterus body and uterus cervix. Even in small regions with low wave amplitudes, such as nucleus pulposus and spinal cord, elastic parameters consistent with literature values were obtained. Overall, the proposed method provides a simple and noise-robust strategy of in-plane wave analysis of MMRE data, with a pixel-wise resolution producing superior detail to MRE direct inversion methods. PMID:26845371
Inertial effects on thin-film wave structures with imposed surface shear on an inclined plane
Sivapuratharasu, M.; Hibberd, S.; Hubbard, M. E.; Power, H.
2016-06-01
This study provides an extended approach to the mathematical simulation of thin-film flow on a flat inclined plane relevant to flows subject to high surface shear. Motivated by modelling thin-film structures within an industrial context, wave structures are investigated for flows with moderate inertial effects and small film depth aspect ratio ε. Approximations are made assuming a Reynolds number, Re ∼ O(ε-1) and depth-averaging used to simplify the governing Navier-Stokes equations. A parallel Stokes flow is expected in the absence of any wave disturbance and a generalisation for the flow is based on a local quadratic profile. This approach provides a more general system which includes inertial effects and is solved numerically. Flow structures are compared with studies for Stokes flow in the limit of negligible inertial effects. Both two-tier and three-tier wave disturbances are used to study film profile evolution. A parametric study is provided for wave disturbances with increasing film Reynolds number. An evaluation of standing wave and transient film profiles is undertaken and identifies new profiles not previously predicted when inertial effects are neglected.
Asymmetric first order shear horizontal guided waves propagation in a tapered plate
In this paper, through numerical simulation of the first order shear horizontal guided waves propagation in a homogeneous tapered plate, we have realized sound unidirectional transmission based on the mode conversion mechanism. We also find that the contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle of tapered edge. And the working frequency range of the asymmetric transmission can be easily controlled by the height of tapered surface or the thickness of slab. This asymmetric system shows potentially significant applications in various sound devices. - Highlights: • We study the sound unidirectional transmission for SH1 guided wave in a homogeneous tapered plate. • The contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle. • The working frequency range of unidirectional transmission can be easily controlled by structure parameters
This paper compares the results of the ultrasonic and radiographic examinations of five austenitic pipe to pipe welds, which contained different types of intentional weld defects. Both the ultrasonic and radiographic examinations were made under laboratory conditions, and thus the results cannot directly be generalized to workshop examinations. The ultrasonic examination was performed using a conventional shear wave angle beam technique due to the geometric conditions of the welds. Longitudinal wave angle beam probes were not used in this work. Comparison between the results of the ultrasonic and radiographic examinations leads to the conclusion that neither method gives quite satisfactory results. Both methods missed some defects and the correlation between the results of the methods was not very good. In the ultrasonic examination the most difficult problem was the evaluation of the defects. (author)
Doppler-shifted cyclotron resonance of fast ions with circularly polarized shear Alfven waves
The Doppler-shifted cyclotron resonance between fast ions and shear Alfven waves (SAWs) has been experimentally investigated with a test-particle fast-ion (Li+) beam launched in the helium plasma of the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. Left- or right-hand circularly polarized SAWs are launched by an antenna with four current channels. A collimated fast-ion energy analyzer characterizes the resonance by measuring the nonclassical spreading of the averaged beam signal. Left-hand circularly polarized SAWs resonate with the fast ions but right-hand circularly polarized SAWs do not. The measured fast-ion profiles are compared with simulations by a Monte Carlo Lorentz code that uses the measured wave field data.
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection
Maria Kogia
2016-04-01
Full Text Available Guided Wave Testing (GWT using novel Electromagnetic Acoustic Transducers (EMATs is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0 waves for GWT with optimal high temperature properties (up to 500 °C has been developed. Thermal and Computational Fluid Dynamic (CFD simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection.
Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew
2016-01-01
Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH₀) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792
Effect of Shear on Ultrasonic Flow Measurement Using Nonaxisymmetric Wave Modes
Yong Chen
2014-01-01
Full Text Available Nonaxisymmetric wave propagation in an inviscid fluid with a pipeline shear flow is investigated. Mathematical equation is deduced from the conservations of mass and momentum, leading to a second-order differential equation in terms of the acoustic pressure. Meanwhile a general boundary condition is formulated to cover different types of wall configurations. A semianalytical method based on the Fourier-Bessel theory is provided to transform the differential equation to algebraic equations. Numerical analysis of phase velocity and wave attenuation in water is addressed in the laminar and turbulent flow. Meanwhile comparison among different kinds of boundary condition is given. In the end, the measurement performance of an ultrasonic flow meter is demonstrated.
Claudepierre, S G; Wiltberger, M; 10.1029/2007JA012890
2010-01-01
We present results from global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind/magnetosphere interaction. These MHD simulations are used to study ultra low frequency (ULF) pulsations in the Earth's magnetosphere driven by shear instabilities at the flanks of the magnetopause. We drive the simulations with idealized, constant solar wind input parameters, ensuring that any discrete ULF pulsations generated in the simulation magnetosphere are not due to fluctuations in the solar wind. The simulations presented in this study are driven by purely southward interplanetary magnetic field (IMF) conditions, changing only the solar wind driving velocity while holding all of the other solar wind input parameters constant. We find surface waves near the dawn and dusk flank magnetopause and show that these waves are generated by the Kelvin-Helmholtz (KH) instability. We also find that two KH modes are generated near the magnetopause boundary. One mode, the magnetopause KH mode, propagates tailwa...
Anomalous absorption of bulk shear sagittal acoustic waves in a layered structure with viscous fluid
Gramotnev, D K; Nieminen, T A; Gramotnev, Dmitri K.; Mather, Melissa L.; Nieminen, Timo A.
2003-01-01
It is demonstrated theoretically that the absorptivity of bulk shear sagittal waves by an ultra-thin layer of viscous fluid between two different elastic media has a strong maximum (in some cases as good as 100%) at an optimal layer thickness. This thickness is usually much smaller than the penetration depths and lengths of transverse and longitudinal waves in the fluid. The angular dependencies of the absorptivity are demonstrated to have significant and unusual structure near critical angles of incidence. The effect of non-Newtonian properties and non-uniformities of the fluid layer on the absorptivity is also investigated. In particular, it is shown that the absorption in a thin layer of viscous fluid is much more sensitive to non-zero relaxation time(s) in the fluid layer than the absorption at an isolated solid-fluid interface.
A kinetic theory of trapped electron driven drift wave turbulence in a sheared magnetic field
A kinetic theory of collisionless and dissipative trapped electron driven drift wave turbulence in a sheared magnetic field is presented. Weak turbulence theory is employed to calculate the nonlinear electron and ion responses and to derive a wave kinetic equation that determines the nonlinear evolution of trapped electron mode turbulence. Saturated fluctuation spectrum is calculated using the condition of nonlinear saturation. The turbulent transport coefficients are in turn calculated using saturated fluctuation spectrum. Due to the disparity in the three different radial scale lengths of the slab-like eigenmode: Δ (trapped electron layer width), xt (turning point width) and xi (Landau damping point), Δ t i, we find that ion Compton scattering rather than trapped electron Compton scattering is the dominant nonlinear saturation mechanism. Ion Compton scattering transfers wave energy from short to long wavelengths where the wave energy is shear damped. As a consequence, a saturated fluctuation spectrum |φ|2(kθ) ∼ kθ-α (α = 2 and 3 for the dissipative and collisionless regime, respectively) occurs for kθρs θρs > 1. The predicted fluctuation level and transport coefficients are well below the ''mixing length'' estimate. This is due to the contribution of radial wavenumbers xt-1 r ≤ ρi-1 to the nonlinear couplings, the effect of radial localization of trapped electron response to a layer of width, Δ, and the weak turbulence factor left-angle(γel)/(ωrvecκ)right-angle rveck < 1, which enters the saturation level. 18 refs., 1 tab
Shear wave elastography for detection of prostate cancer: A preliminary study
To assess the diagnostic value of shear wave elastography (SWE) for prostate cancer detection. In this retrospective study, 87 patients with the suspicion of prostate cancer (prostate-specific antigen > 4 ng/mL and abnormal digital rectal examination) underwent a protocol-based systematic 12-core biopsy followed by targeted biopsy at hypoechoic areas on grey-scale ultrasound. Prior to biopsy, SWE was performed by placing two circular 5 mm-sized regions of interest (ROIs) along the estimated biopsy tract in each sector and one ROI for hypoechoic lesions. SWE parameters, S (mean stiffness) and R (mean stiffness ratio), were calculated and compared regarding different histopathologic tissues and their accuracy for diagnosing prostate cancer was analyzed. SWE parameters were correlated with Gleason score and were compared between indolent ( 43.9 kPa and 60.8%, 66.4%, and 0.653, respectively, for R > 3. Both, S and R showed a significant correlation with Gleason score (r ≥ 0.296, p ≤ 0.008) and were significantly different between indolent and aggressive prostate cancer (p ≤ 0.006). Shear wave elastographic parameters are significantly different between prostate cancer and benign prostate tissue and correlate with Gleason score.
One-dimensional seismic response of two-layer soil deposits with shear wave velocity inversion
The paper presents the results of a parametric study with the purpose of investigating the 1D linear and equivalent linear seismic response of a 30 meters two-layer soil deposits characterized by a stiff layer overlying a soft layer. The thickness of the soft layer was assumed equal to 0.25, 0.5 and 0.75 H, being H the total thickness of the deposit. The shear wave velocity of the soft layer was assumed equal to Vs = 90 and 180 m/s while for the stiff layer Vs = 360, 500 and 700 m/s were considered. Six accelerograms extracted by an Italian database characterized by different predominant periods ranging from 0.1 to 0.7 s were used as input outcropping motion. For the equivalent liner analyses, the accelerograms were scaled at three different values of peak ground acceleration (PGA), namely 0.1, 0.3 and 0.5 g. The numerical results show that the two-layer ground motion is generally deamplified in terms of PGA with respect to the outcrop PGA. This reduction is mainly controlled by the shear wave velocity of the soft layer, being larger for lower Vs values, by the amount of nonlinearity experienced by the soft soil during the seismic shaking and, to a minor extent, by the thickness of the soft soil layer
Crustal shear-wave velocity structure beneath Sumatra from receiver function modeling
Bora, Dipok K.; Borah, Kajaljyoti; Goyal, Ayush
2016-05-01
We estimated the shear-wave velocity structure and Vp/Vs ratio of the crust beneath the Sumatra region by inverting stacked receiver functions from five three-component broadband seismic stations, located in diverse geologic setting, using a well known non-linear direct search approach, Neighborhood Algorithm (NA). Inversion results show significant variation of sediment layer thicknesses from 1 km beneath the backarc basin (station BKNI and PMBI) to 3-7 km beneath the coastal part of Sumatra region (station LHMI and MNAI) and Nias island (station GSI). Average sediment layer shear velocity (Vss) beneath all the stations is observed to be less (∼1.35 km/s) and their corresponding Vp/Vs ratio is very high (∼2.2-3.0). Crustal thickness beneath Sumatra region varies between 27 and 35 km, with exception of 19 km beneath Nias island, with average crustal Vs ∼3.1-3.4 km/s (Vp/Vs ∼1.8). It is well known that thick sediments with low Vs (and high Vp/Vs) amplify seismic waves even from a small-magnitude earthquake, which can cause huge damage in the zone. This study can provide the useful information of the crust for the Sumatra region. Since, Sumatra is an earthquake prone zone, which suffered the strong shaking of Great Andaman-Sumatra earthquake; this study can also be helpful for seismic hazard assessment.
Use of shear waves for diagnosis and ablation monitoring of prostate cancer: a feasibility study
Gomez, A.; Rus, G.; Saffari, N.
2016-01-01
Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis and treatment monitoring techniques imply that there is still a need for improvements. The efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High intensity focused ultrasound ablation is an emerging treatment modality, which enables the noninvasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its longterm efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. Elastography techniques are emerging as a promising real-time imaging method, as cancer nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate cancer. A finite-difference time domain model is developed for studying the feasibility of the method, and an inverse problem technique based on genetic algorithms is proposed for reconstructing the location, size and stiffness parameters of the tumour. Preliminary results indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is feasible.
Effect of Vertically Propagating Shear Waves on Seismic Behavior of Circular Tunnels
Tohid Akhlaghi
2014-01-01
Full Text Available Seismic design loads for tunnels are characterized in terms of the deformations imposed on the structure by surrounding ground. The free-field ground deformations due to a seismic event are estimated, and the tunnel is designed to accommodate these deformations. Vertically propagating shear waves are the predominant form of earthquake loading that causes the ovaling deformations of circular tunnels to develop, resulting in a distortion of the cross sectional shape of the tunnel lining. In this paper, seismic behavior of circular tunnels has been investigated due to propagation of shear waves in the vertical direction using quasi-static analytical approaches as well as numerical methods. Analytical approaches are based on the closed-form solutions which compute the forces in the lining due to equivalent static ovaling deformations, while the numerical method carries out dynamic, nonlinear soil-structure interaction analysis. Based on comparisons made, the accuracy and reliability of the analytical solutions are evaluated and discussed. The results show that the axial forces determined using the analytical approaches are in acceptable agreement with numerical analysis results, while the computed bending moments are less comparable and show significant discrepancies. The differences between the analytical approaches are also investigated and addressed.