WorldWideScience

Sample records for acoustic-based nondestructive methods

  1. Nondestructive testing method

    Nondestructive testing (NDT) is the use of physical and chemical methods for evaluating material integrity without impairing its intended usefulness or continuing service. Nondestructive tests are used by manufaturer's for the following reasons: 1) to ensure product reliability; 2) to prevent accidents and save human lives; 3) to aid in better product design; 4) to control manufacturing processes; and 5) to maintain a uniform quality level. Nondestructive testing is used extensively on power plants, oil and chemical refineries, offshore oil rigs and pipeline (NDT can even be conducted underwater), welds on tanks, boilers, pressure vessels and heat exchengers. NDT is now being used for testing concrete and composite materials. Because of the criticality of its application, NDT should be performed and the results evaluated by qualified personnel. There are five basic nondestructive examination methods: 1) liquid penetrant testing - method used for detecting surface flaws in materials. This method can be used for metallic and nonmetallic materials, portable and relatively inexpensive. 2) magnetic particle testing - method used to detect surface and subsurface flaws in ferromagnetic materials; 3) radiographic testing - method used to detect internal flaws and significant variation in material composition and thickness; 4) ultrasonic testing - method used to detect internal and external flaws in materials. This method uses ultrasonics to measure thickness of a material or to examine the internal structure for discontinuities. 5) eddy current testing - method used to detect surface and subsurface flaws in conductive materials. Not one nondestructive examination method can find all discontinuities in all of the materials capable of being tested. The most important consideration is for the specifier of the test to be familiar with the test method and its applicability to the type and geometry of the material and the flaws to be detected

  2. Electromagnetic methods of nondestructive testing

    The papers presented in this volume provide an overview of recent developments (both in the United States and Europe) in the field of electromagnetic nondestructive testing methods and also show how numerical analysis techniques can provide a generic modeling procedure. Topics discussed include applications of numerical field modeling to electromagnetic methods of nondestructive testing, multifrequency eddy current examination of heat exchanger tubing, pulsed eddy current flaw detection and flaw characterization, and current practice in the use of electromagnetic nondestructive defect inspection methods in Europe

  3. Microwave Nondestructive Testing Method

    V. I. Gorbunov; V. A. Sutorikhin

    2012-01-01

    The processes of ultrasonic elastic wave interaction with conduction electrons in metals were investigated by a new technique- microwave (MW) sensor. The authors obtained practical application results in the nondestructive testing (NDT) of metal objects in the static and motion mode.

  4. Forty years with nondestructive methods

    Teodoru, George

    1999-12-01

    The author takes the opportunity to strike the balance of his activity. He was the first establishing the qualitative and quantitative influence of curing conditions of concrete on the relations between nondestructively measured values, ultrasonic pulse velocity or attenuation and rebound indices (V,A,R) and its compressive strength. Since 1969 he had been behind a new approach for simultaneous use of concrete. The advantage of this multiple correlation concept (an off-spring of an original method for statistical quality analysis for the control of concrete quality) have been already well documented. The author established also a new criterium for the frost resistance of concrete, based on the variation of the logarithmic decrement of the vibrations (both free or forced). His activity as an expert led to the foundation of the "Engineering Society Cologne." He was entrusted with its presidency. Further examples shall inform about different field investigations carried out.

  5. Emerging nondestructive inspection methods for aging aircraft

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  6. OPGW Corrosion Detection Using Nondestructive Test Method

    Jeong, J.K.; Yoon, G.G.; Kang, J.W.; Yang, H.W. [Hanyang University, Seoul (Korea, Republic of)

    1998-02-01

    This paper deals with some characteristics of a nondestructive eddy current detector to measure OPGW(composite overhead ground wire with optical fiber) corrosion. This detector is designed to automatically run on OPGW and to continuously inspect the corrosion of the line. The impedance of the eddy coil changing by any corrosion phenomenon of OPGW is analyzed. Several performances of the detector are described and experimental procedures and test results are also given. As a result, it is shown that the implemented detector can be measured some quantitative data for crack, broken wires or severe deteriorations in OPGW. This nondestructive test method would be applied to improve the reliability and efficiency of transmission lines in service. (author). 5 refs., 9 figs., 2 tabs.

  7. Nondestructive evaluation ultrasonic methods for construction materials

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  8. Nondestructive assay methods for solids containing plutonium

    Specific nondestructive assay (NDA) methods, e.g. calorimetry, coincidence neutron counting, singles neutron counting, and gamma ray spectrometry, were studied to provide the Savannah River Plant with an NDA method to measure the plutonium content of solid scrap (slag and crucible) generated in the JB-Line plutonium metal production process. Results indicate that calorimetry can be used to measure the plutonium content to within about 3% in 4 to 6 hours by using computerized equilibrium sample power predictive models. Calorimetry results confirm that a bias exists in the present indirect measurement method used to estimate the plutonium content of slag and crucible. Singles neutron counting of slag and crucible can measure plutonium to only +-30%, but coincidence neutron counting methods improve measurement precision to better than +-10% in less than ten minutes. Only four portions of a single slag and crucible sample were assayed, and further study is recommended

  9. Non-destructive methods to estimate physical aging of plywood

    Bobadilla Maldonado, Ignacio; Santirso, María Cristina; Herrero Giner, Daniel; Esteban Herrero, Miguel; Iñiguez Gonzalez, Guillermo

    2011-01-01

    This paper studies the relationship between aging, physical changes and the results of non-destructive testing of plywood. 176 pieces of plywood were tested to analyze their actual and estimated density using non-destructive methods (screw withdrawal force and ultrasound wave velocity) during a laboratory aging test. From the results of statistical analysis it can be concluded that there is a strong relationship between the non-destructive measurements carried out, and the decline in the phys...

  10. Development of ultrasonic methods for the nondestructive inspection of concrete

    Claytor, T. M.; Ellingson, W. A.

    1983-08-01

    Nondestructive inspection of Portland cement and refractory concrete is conducted to determine strength, thickness, presence of voids or foreign matter, presence of cracks, amount of degradation due to chemical attack, and other properties without the necessity of coring the structure (which is usually accomplished by destructively removing a sample). The state of the art of acoustic nondestructive testing methods for Portland cement and refractory concrete is reviewed. Most nondestructive work on concrete has concentrated on measuring acoustic velocity by through transmission methods. Development of a reliable pitch-catch or pulse-echo system would provide a method of measuring thickness with access from only one side of the concrete.

  11. NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.

    BERNDT,M.L.

    2001-03-23

    Non-destructive testing is a key component of optimized plant inspection and maintenance programs. Risk based inspection, condition based maintenance and reliability centered maintenance systems all require detection, location and sizing of defects or flaws by non-destructive methods. Internal damage of geothermal piping by corrosion and erosion-corrosion is an ongoing problem requiring inspection and subsequent maintenance decisions to ensure safe and reliable performance. Conventional manual ultrasonic testing to determine remaining wall thickness has major limitations, particularly when damage is of a random and localized nature. Therefore, it is necessary to explore alternative non-destructive methods that offer potential benefits in terms of accurate quantification of size, shape and location of damage, probability of detection, ability to use on-line over long ranges, and economics. A review of non-destructive methods and their applicability to geothermal piping was performed. Based on this, ongoing research will concentrate on long range guided wave and dynamic methods.

  12. Advanced non-destructive methods for an efficient service performance

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  13. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    Greenbaum, Elias

    1988-01-01

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electroyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polargraphically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods.

  14. Nondestructive testing of concrete by gamma backscattering method

    Nondestructive testing (NDT) methods are used to examine objects without destroying it. In many situations like working industrial plants and fluid transportation system, inspection of huge or thick sized objects by destructive methods are not desirable. The Compton backscattering of gamma rays, one of NDT techniques could be used for material characterization and detection of defects in materials easily. Concrete structures require testing after the concrete has hardened, to determine whether the structure is suitable for its designed use. There is a possibility of defects in the constructed buildings and structures, and therefore, defects like voids and cracks, if any, have to be evaluated for the purpose. Further, periodic testing of old buildings and structures to know their integrity has become a necessity. These types of testings can be conducted only by employing nondestructive techniques

  15. Characteristic Evaluation on Bolt Stress by Ultrasonic Nondestructive Methods

    Qinxue Pan

    2015-01-01

    Full Text Available Based on the acoustoelasticity theory, a certain relationship exists between ultrasonic velocity and stress. By combining shear and longitudinal waves, this paper provides a nondestructive method of evaluating axial stress in a tightened bolt. For measuring the bolt axial stress in different situations, such as under low or high loads, this paper provides guidelines for calculating the stress for a given load factor. Experimental and calculated results were compared for three bolt test samples: an austenitic stainless steel bolt (A2-70 and low-carbon steel 4.8 and 8.8 bolts. On average, the experimental results were in good agreement with those obtained through calculations, thus providing a nondestructive method for bolt stress measurements.

  16. Optical fiber sensor methods for nondestructive evaluation of bridges

    Garrett, Tracey Lynette

    1995-01-01

    This report defines a present problem with U.S. bridges and suggests several reasons for bridge infrastructure deterioration and degradation, such as traffic overload, expired life cycles, environmental and operational conditions, and budget cuts. The most commonly used nondestructive evaluation (NDE) methods for determining the health of bridge infrastructure are summarized and compared. Advantages and disadvantages of each NDE technique are provided, and the lack of an adequa...

  17. Research on nondestructive examination methods for CANDU fuel channel inspection

    The requirements of the 1994 edition of CAN/CSA-N285.4 Periodic Inspection Standard, which address all known and postulated degradation mechanisms and introduce material surveillance demands, involve a growing need for improved nondestructive examination (NDE) methods and technologies. In order to have a proper technical support in its decisions concerning fuel channel inspections at Cernavoda NPP, the Romanian Power Authority (RENEL) initiated a Research Program regarding the nondestructive characterization of the fuel channels structural integrity. The paper presents the most significant results obtained on this Research Program: the ENDUS experimental system for Laboratory simulation of the fuel channel inspection, ultrasonic Rayleigh-Lamb waves technique for pressure tubes examination, phase analysis technique for near-surface flaws, influence of the metallurgical state of the pressure tube material on the eddy current defectoscopic signals, characterization of plastic deformation and fracture of zirconium alloys by acoustic emission. (author)

  18. Laser heterodyne photothermal nondestructive method: extension to transparent probe

    Pencheva, V.; Penchev, S.; Naboko, V.; Toyoda, K.; Donchev, T.

    2007-03-01

    We present a contribution to the development of the laser heterodyne method of nondestructive material analysis employing photothermal displacement (PTD) probe. PTD is a dominant factor of the photothermal effect in metals and semiconductors, where the derived linear dependence on absorbed energy exhibits a fingerprint of their physical properties. Theoretical consideration of the case of transparent probe is accomplished extending thermal diffusion model. Laser double heterodyne detection is verified for opaque and transparent probes, and in the exclusive case of silicon. The achieved resolution of photothermal displacement is less than 10 -12 m well above the limits of heterodyne measurement.

  19. Nondestructive testing methods for 55-gallon, waste storage drums

    The Westinghouse Hanford Company (WHC) authorized Pacific Northwest Laboratory (PNL) to conduct a feasibility study to identify promising nondestructive testing (NDT) methods for detecting general and localized (both pitting and pinhole) corrosion in the 55-gal drums that are used to store solid waste materials at the Hanford Site. This document presents results obtained during a literature survey, identifies the relevant reference materials that were reviewed, provides a technical description of the methods that were evaluated, describes the laboratory tests that were conducted and their results, identifies the most promising candidate methods along with the rationale for these selections, and includes a work plan for recommended follow-on activities. This report contains a brief overview and technical description for each of the following NDT methods: magnetic testing techniques; eddy current testing; shearography; ultrasonic testing; radiographic computed tomography; thermography; and leak testing with acoustic detection

  20. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  1. Development of nondestructive evaluation methods for structural ceramics

    Advanced nondestructive evaluation methods are being developed to characterize ceramic materials and allow improvement of process technology. If one can spatially determine porosity, map organic binder/plasticizer distributions, measure average through-volume and in-plane density, as well as detect inclusions, process and machining operations may be modified to enhance the reliability of ceramics. Two modes of X-ray tomographic imaging -- advanced film (analog) tomography and computed tomography -- are being developed to provide flaw detection and density profile mapping capability. Nuclear magnetic resonance imaging is being developed to determine porosity and map the distribution of organic binder/plasticizer. Ultrasonic backscatter and through-transmission are being developed to measure average through-thickness densities and detect surface inclusions

  2. Some Non-Destructive Testing Methods Applicable to Sintered Materials

    Bearing in mind the specific granular structure of sintered materials produced from powders, whose compaction process is linked with the sintering treatment, we have experimented with methods of checking the degree of sintering and certain other properties. The non-destructive methods used include: (1) Examination of the crystalline structure of solid sinters, using metallography and electron microscopy. These methods show the homogeneity of the structure, the grain size and orientation, the presence of various flaws such as inclusions and pores, and the actual course of the sintering process, including crystal formation, grain growth, etc. In certain cases the microscopic examination can be combined with micro-hardness tests. This examination of the microcrystalline structure is one of the principal methods of checking the quality of sintered materials, and is irreplaceable by any other method. (2) The degree of compaction, which is the main factor in determining the quality of sintered materials, can also be checked by measuring certain properties such as electrical and thermal conductivity in relation to density, since for sintered materials conductivity is directly proportional to the degree of sintering. We have also tested and found satisfactory a method for checking porosity, and have obtained interesting experimental data, especially on free porosity, which is susceptible to gaseous inclusions. The paper gives experimental data on the application of these methods to certain sintered materials of importance in nuclear technology. (author)

  3. Automated Nondestructive Evaluation Method for Characterizing Ceramic and Metallic Hot Gas Filters

    Ellingson, W.A.; Pastila, P.; Koehl, E.R.; Wheeler, B.; Deemer, C.; Forster, G.A.

    2002-09-19

    The objective of this work was to develop a nondestructive (NDE), cost-effective and reliable method to assess the condition of rigid ceramic hot gas filters. The work was intended to provide an end user, as well as filter producers, with a nondestructive method to assess the ''quality'' or status of the filters.

  4. Non-destructive, mechanical method for measurement of plums' firmness

    Konopacka D.

    2003-12-01

    Full Text Available A method was developed based on the measurement of the apparent modulus of the elasticity of plums, using a cylindrical probe and a force of 1 N. This method is extremely sensitive and is fully nondestructive. The measurements are taken using an Instron Universal Testing Machine. The results obtained correlate very well with other objective quality indices and sensory tests. The method was verified on several plum cultivars. This method is suitable in estimating the different grades at which any particular fruit has ripened by the day of picking and during storage and may be used to establish the firmness of the plums from the point of view of the consumer. It was found that fruit of the Dąbrowicka, Amerf and Valjevka varieties should have - at the consumption stage of maturity - an apparent modulus of elasticity ranging from 0.100 to 0.250 MPa (optimum at 0.150 MPa, when measured using a 6 mm probe and when recalculated using a 4 mm probe, respectively 0.071-0.217 MPa (optimum at 0.120 MPa.

  5. Nondestructive Evaluation Methods for the Ares I Common Bulkhead

    Walker, James

    2010-01-01

    A large scale bonding demonstration test article was fabricated to prove out manufacturing techniques for the current design of the NASA Ares I Upper Stage common bulkhead. The common bulkhead serves as the single interface between the liquid hydrogen and liquid oxygen portions of the Upper Stage propellant tank. The bulkhead consists of spin-formed aluminum domes friction stir welded to Y-rings and bonded to a perforated phenolic honeycomb core. Nondestructive evaluation methods are being developed for assessing core integrity and the core-to-dome bond line of the common bulkhead. Detection of manufacturing defects such as delaminations between the core and face sheets as well as service life defects such as crushed or sheared core resulting from impact loading are all of interest. The focus of this work will be on the application of thermographic, shearographic, and phased array ultrasonic methods to the bonding demonstration article as well as various smaller test panels featuring design specific defect types and geometric features.

  6. Qualification of non-destructive examination methods on critical components

    Czech Dukovany and Temelin Nuclear Power Plants face a challenge to improve and optimise their in-service inspection programmes based on requirements of the Czech law No. 18/97 and the Decree 214/97. As priorities for new inspection programmes of critical components are considered inspection intervals that ought to be prolonged up to eight years, application of qualified NDT (non-destructive testing) methods and techniques and to identify inspection areas that are not covered by the current ISI programmes. This approach is based on a detailed review of ISI programmes available, application of recent structural integrity assessments and programme of in-service inspection qualifications in compliance with ENIQ and IEAE methodologies. Approaches used by Dukovany and Temelin NPP are similar for qualifications of inspection procedures that are expected to be used for selected RPV inspection areas as nozzle inner radii, safe-end (or nozzle to MCP homogenous weld) and circumferential RPV shell welds, required by the Czech Regulatory Authority in compliance with the Decree 214/97 to be completed till the end of the year 2002. A review of all NDT qualification projects including PHARE projects completed or at least started in Czech Republic is given in the paper with more detailed explanation for some of them as examples. Described in detail are PHARE project 4.1.2/93 and PHARE project 1.02/95 and one national project devoted to WWER 440 circumferential RPV shell weld qualification (1999-2000). (author)

  7. Development of nondestructive method for prediction of crack instability

    Schroeder, J.L.; Eylon, D.; Shell, E.B.; Matikas, T.E.

    2000-07-01

    A method to characterize the deformation zone at a crack tip and predict upcoming fracture under load using white light interference microscopy was developed and studied. Cracks were initiated in notched Ti-6Al-4V specimens through fatigue loading. Following crack initiation, specimens were subjected to static loading during in-situ observation of the deformation area ahead of the crack. Nondestructive in-situ observations were performed using white light interference microscopy. Profilometer measurements quantified the area, volume, and shape of the deformation ahead of the crack front. Results showed an exponential relationship between the area and volume of deformation and the stress intensity factor of the cracked alloy. These findings also indicate that it is possible to determine a critical rate of change in deformation versus the stress intensity factor that can predict oncoming catastrophic failure. In addition, crack front deformation zones were measured as a function of time under sustained load, and crack tip deformation zone enlargement over time was observed.

  8. Qualification of non-destructive examination methods on critical components

    Zdarek, J. [Nuclear Research Institute REZ, plc (Czech Republic)

    2001-07-01

    Czech Dukovany and Temelin Nuclear Power Plants face a challenge to improve and optimise their in-service inspection programmes based on requirements of the Czech law No. 18/97 and the Decree 214/97. As priorities for new inspection programmes of critical components are considered inspection intervals that ought to be prolonged up to eight years, application of qualified NDT (non-destructive testing) methods and techniques and to identify inspection areas that are not covered by the current ISI programmes. This approach is based on a detailed review of ISI programmes available, application of recent structural integrity assessments and programme of in-service inspection qualifications in compliance with ENIQ and IEAE methodologies. Approaches used by Dukovany and Temelin NPP are similar for qualifications of inspection procedures that are expected to be used for selected RPV inspection areas as nozzle inner radii, safe-end (or nozzle to MCP homogenous weld) and circumferential RPV shell welds, required by the Czech Regulatory Authority in compliance with the Decree 214/97 to be completed till the end of the year 2002. A review of all NDT qualification projects including PHARE projects completed or at least started in Czech Republic is given in the paper with more detailed explanation for some of them as examples. Described in detail are PHARE project 4.1.2/93 and PHARE project 1.02/95 and one national project devoted to WWER 440 circumferential RPV shell weld qualification (1999-2000). (author)

  9. Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration ...

  10. The display of ultrasonic waves by the Schlieren method and the application to nondestructive testing

    The principle of the Schlieren method applied to the ultrasonic wave range is presented: diffraction of light by ultrasonic waves; diffraction pattern; image. The advantages of the Schlieren method and the possible applications in nondestructive testing are discussed

  11. ESTIMATION OF IN-PLACE STRENGTH OF CONCRETE WITH COMBINED NONDESTRUCTIVE METHOD

    İsa YÜKSEL

    2003-01-01

    This paper presents estimation of concrete strength by the SONREB method that is a combined non-destructive testing method and application of the method on a reinforced concrete building structure. Comparison of results of both destructive and non-destructive test results is introduced also. The SONREB method is based on evaluation of the combination of Schmidt hammer readings and ultrasonic pulse velocity measurements. The measured material properties are correlated with compressive strength...

  12. Standard terminology of C26.10 nondestructive assay methods

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The terminology defined in this document is associated with nondestructive assay of nuclear material. 1.2 All of the definitions are associated with measurement techniques that measure nuclear emissions (that is, neutrons, gamma-rays, or heat) directly or indirectly. 1.3 definitions are relevant to any standards and guides written by subcommittee C26.10.

  13. Non-destructive methods for food texture assessment

    Food texture is important to the successful marketing and profitability of food products. Non-destructive sensing would allow food producers and processors to inspect, sort, grade, or track individual product items, so that they can deliver consistent, superior food products to the marketplace. Over...

  14. Nondestructive methods of elementary analysis. Application to 'objets d'art' and archeological specimens

    The paper reviews nondestructive analysis methods, especially the techniques using ion beams. Examples presented are: papers and historical papers, paintings, teeth, bones, earthenware, glass, obsidian, iron and bronze specimens, coins and golden jewels. 8 tabs., 11 figs., 68 refs

  15. Non-destructive methods in strength grading of structural timber

    Plos, Mitja

    2006-01-01

    Good knowledge of the characteristics of building material is of the utmost importance in static calculations in civil engineering. The characteristics of a piece of timber may vary depending on the growth area, log, and cutting. Therefore, each piece of timber should be examined separately. The examination is based on non-destructive testing, distinguishing – as in our case – between different strength grades. Eurocode 5 refers to the EN 14081 standard, which allows visual and machine gradin...

  16. Non-destructive diagnostic methods of polymer matrix composites degradation

    G. Wróbel

    2008-11-01

    Full Text Available Purpose: The aim of this paper is to present results of application of ultrasonic and termovision techniques to non-destructive evaluation of the degree of thermal degradation of fibre reinforced polymer composites. a model describing heat transfer taking place during Thermographic tests were undertaken to identify thermal properties of searched material and to correlate them with operational characteristics. In the same manner ultrasounds propagation characteristics were correlated with strength properties.Design/methodology/approach: Epoxy-glass composites were exposed to thermal ageing and subsequently tested using thermography and ultrasounds. Finally destructive bending test was performed. Material characteristics evaluated in these test were compared and related to elaborate diagnostic relations.Findings: The most essential result of the project is the methodology of applying thermovision and ultrasonic testing to diagnose the state of thermal degradation of polymeric composites.Research limitations/implications: Results showed the possibility of non-destructive diagnosis of the degree of thermal degradation manifested by strength capacity deterioration of wide class of materials, namely polymeric composites.Practical implications: Results of presented project together with results of planned experimental programme devoted to elaboration of diagnostic relations enable to apply thermography and ultrasonic testing directly to the state of polymeric structural materials assessment. Especially the degree of material degradation may be estimated.Originality/value: Originality of the project is based on possibility of practical application of the thermovison and ultrasonic testing to non-destructive diagnosis of kinematics of degradation processes.

  17. Development of nondestructive evaluation methods for ceramic coatings

    Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners

  18. Qualification, calibration, and error estimation methods for nondestructive assay. Regulatory guide 5.53, Revision 1

    Nondestructive assay (NDA) can enhance the ability of the material control and accounting system to detect unaccounted-for loss or diversion of special nuclear material (SNM) to unauthorized uses. This guide describes methods and procedures acceptable to the NRC staff for meeting the provisions of paragraph 70.58(f) of 10 CFR Part 70 as it relates to the use of nondestructive assay

  19. Experimental study on the compressive strength of grouted concrete block masonry based on nondestructive detection methods

    JIANG Hong-bin; LI Long-fei

    2009-01-01

    Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry, i.e. the rebound method, pulling-out method and core drilling method were employed to test the strength of block, mortar and grouted concrete, respectively. The suitability of these methods for the testing of strength of grouted concrete block masonry was discussed, and the comprehensive strength of block masonry was appraised by combining existing nondestructive or micro-destructive detection methods. The nondestructive detection test on 25 grouted concrete block masonry specimens was carried out. Experimental results show that these methods mentioned above are applicable for the strength detection of grouted concrete block masonry. Moreover, the formulas of compressive strength, detection methods and proposals are given as well.

  20. Attributes identification of nuclear material by non-destructive radiation measurement methods

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  1. Techniques involving extreme environment, nondestructive techniques, computer methods in metals research, and data analysis

    A number of different techniques which range over several different aspects of materials research are covered in this volume. They are concerned with property evaluation of 40K and below, surface characterization, coating techniques, techniques for the fabrication of composite materials, computer methods, data evaluation and analysis, statistical design of experiments and non-destructive test techniques. Topics covered in this part include internal friction measurements; nondestructive testing techniques; statistical design of experiments and regression analysis in metallurgical research; and measurement of surfaces of engineering materials

  2. TESTING OF FRAMED STRUCTURE PARTS OF COMPACT MUON SOLENOID BY NONDESTRUCTIVE METHOD

    L. Larchenkov

    2014-09-01

    Full Text Available Suspension parts of a compact muon solenoid for Large Hadron Collider have been tested in the paper. The paper describes a steady-state and cyclic “tension-compression” load created by superconducting electromagnet with energy of 3 GJ and magnetic induction of 4 tesla. A nondestructive testing method has been applied in the paper.

  3. Attribution of nuclear material by non-destructive radiation measurement methods

    The paper briefly introduces the foundational principle of non-destructive analysis for the attribution of nuclear material. Facility in processing and simplicity in analysing mean that this method will provide effective support in the prevention of trafficking and smuggling in nuclear materials. (author)

  4. Estimation of concrete strength by non-destructive combined method and its application

    The purpose of this report is to obtain a practical expression for estimating the compressive strength of concrete using the non-destructive method of testing combining rebound number and ultrasonic pulse velocity at the construction sites for obtaining highest accuracy in predicting the compressive strength

  5. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR

    Nevalainen, O.; Hakala, T.; Suomalainen, J.M.; Mäkipää, R.; Peltoniemi, M.; Krooks, A.; Kaasalainen, S.

    2014-01-01

    We propose an empirical method for nondestructive estimation of chlorophyll in tree canopies. The first prototype of a full waveform hyperspectral LiDAR instrument has been developed by the Finnish Geodetic Institute (FGI). The instrument efficiently combines the benefits of passive and active remot

  6. SKODA Concern's present methods of non-destructive material testing

    A survey is presented of methods used to detect various shapes, sizes and locations. Radioisotopes (192Ir, 60Co, 137Cs), X-ray apparatus and high energy radiation sources (betatron, the Neptun II linear accelerator) were used for radiographic testing. Ultrasound is used for testing basic materials, welds and overlays. Of surface methods the most frequently used are powder and capillary magnetic methods. Other methods used are acoustic emission and leak tests. (E.S.)

  7. Non-destructive testing and process control using x-ray methods and radioisotopes

    This paper discusses the potential of two and three-dimensional computed x-ray tomography (CT), computed laminography (CL) and radiotracer techniques. The first and second methods non-destructively make images of the density distribution of cross-sections or of the total volume, while the third method is used in industry to investigate mass transport and mass distribution. The principles of the methods are given and examples for their application are discussed. (author)

  8. ESTIMATION OF IN-PLACE STRENGTH OF CONCRETE WITH COMBINED NONDESTRUCTIVE METHOD

    İsa YÜKSEL

    2003-02-01

    Full Text Available This paper presents estimation of concrete strength by the SONREB method that is a combined non-destructive testing method and application of the method on a reinforced concrete building structure. Comparison of results of both destructive and non-destructive test results is introduced also. The SONREB method is based on evaluation of the combination of Schmidt hammer readings and ultrasonic pulse velocity measurements. The measured material properties are correlated with compressive strength of concrete by using special iso-strength curves established in the laboratory. The strength is also checked with strength of cores drilled from suitable positions on the building. In-place strength of concrete giving without any structural damage to the structure could be estimated rapidly and approximately with the SONREB method. It was concluded that the special isostrength curves increase sensitivity of in-place compressive strength estimation of concrete.

  9. A method for accurate, non-destructive diagnosis of congenital heart defects from heart specimens

    Schleich, Jean-Marc; Abdulla, Tariq; Houyel, Lucile; Paul, Jean-François; Summers, Ron; Dillenseger, Jean-Louis

    2013-01-01

    International audience The accurate analysis of congenital heart defect (CHD) specimens is often difficult and up to now required the opening of the heart. The objective of this study is to define a non-destructive method that allows for the precise analysis of each specimen and its different cardiac components in order to improve classification of the defect and thus provide an indication of underpinning causal mechanisms. We propose a method in which the heart volume is acquired by a CT ...

  10. Non-destructive testing methods in veneer-based products manufacturing

    Antikainen, Toni

    2015-01-01

    In modern veneer-based product manufacturing non-destructive testing (NDT) measurement methods are of importance. The great variation in wood (and veneer) material properties brings challenges in production and in the quality of the end product. By using NDT measurements methods the aim is to detect key material properties and grade the raw material into different predefined categories to obtain an end product with good properties having as low a deviation in these properties as possible. ...

  11. Multimode nondestructive detecting method for high-speed rail defects

    Sun, Mingjian; Cheng, Xingzhen; Wan, Guangnan; Liu, Ting; Fu, Ying; Wang, Yan

    2015-11-01

    It is very important to detect the surface defects of the high-speed rail for security concerns. A multimode detecting method, which integrates high resolution of optical image, high precision of photoacoustic detection and strong penetration of ultrasound detecting, is proposed for the rail defect detection. Utilizing the surface defect characteristics obtained from optical signal, the photoacoustic and ultrasound scanning region could be determined, and rail shallow and internal defect characteristics can be acquired subsequently. Eventually, fusing three modal signals mentioned above, the information of the entire rail defect, including type, extension trend and depth can be detected. It has been proved that the multimode method can improve the detecting efficiency, and enlarge the detection range in the meantime.

  12. Training methods in non-destructive examination with ultrasonic testing

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  13. Capabilities to Assess Health/Maintenance Status of Gas Turbine Blades with Non-Destructive Methods

    Błachnio Józef

    2015-01-01

    Full Text Available The paper has been intended to discuss non-destructive testing methods and to present capabilities of applying them to diagnose objectively changes in the microstructure of a turbine blade with computer software engaged to assist with the analyses. The following techniques are discussed: a visual method, based on the processing of images of the material surface in visible light, active thermography, based on the detection of infrared radiation, and the X-ray computed tomography. All these are new non-destructive methods of assessing technical condition of structural components of machines. They have been intensively developed at research centers worldwide, and in Poland. The computer-aided visual method of analyzing images enables diagnosis of the condition of turbine blades, without the necessity of dismantling of the turbine. On the other hand, the active thermography and the X-ray computed tomography, although more sensitive and more reliable, can both be used with the blades dismounted from the turbine. If applied in a complex way, the non-destructive methods presented in this paper, are expected to increase significantly probability of detecting changes in the blade's condition, which in turn would be advantageous to reliability and safety of gas turbine service.

  14. An evaluation of nondestructive methods for ceramic heat exchanger applications

    Bower, J. R.; Powers, T.

    For both seeded defects and naturally occurring defects, there is little correlation between test results for small defects. This is because X-ray is sensitive to density variations and ultrasonics and scanning laser acoustic microscopy (SLAM) are sensitive to acoustic impedance variations. The grain boundaries and microporosity of the material produce a high scattering background for the acoustic methods, masking small inclusions. X-ray is insensitive to grain boundary effects and the uniform microporosity averages out over the material thickness. If minor inclusions are to be detected, X-ray must be used. Ultrasonics and SLAM are sensitive only to the presence of an open crack, not its width. If cracks are to be detected, ultrasonics or SLAM must be used. SLAM is by far the fastest method of scanning for OD cracks, but only ultrasonics will find ID cracks. Results of this first phase study give four guidelines to tube design. First, surface irregularities are a major limitation to testing. The eventual tests will be much more sensitive if surface finish can be improved. Second, porosity is another major limit to testing. Pores are not generally strength limiting in this material, but pores scatter ultrasound very badly and produce irregular densities on X-ray film, in both cases obscuring more important defect indications. Third, the dimple shape of the closed end is essentially untestable. The fourth design guideline is provided by the fractography results. In some cases, failure was initiated in or near clusters of large grains. Defect sizing depends upon the detection methods.

  15. Method and Apparatus for Non-Destructive Evaluation of Materials

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor); Martin, Christopher (Inventor)

    2015-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  16. Risk analysis of radiography as a nondestructive testing method

    The risk analysis was made in preparation of a safety manual for the wide variety of applications of industrial radiography. The safety manual is intended to serve as a guide to professionals, presenting the information about safety and health risks involved in a concise though very illustrative manner. The potential risks were listed and evaluated on the occasion of a meeting of experts in October 1999, who used the FMEA analysis, a quality management tool. The following methods or sources were analysed and rated in terms of risks involved: (a) ionizing radiation (b) electric power (c) handling of radioactive radiation sources (d) minor accidents (e) defect equipment (f) activities at construction sites (g) transportation of gear and instruments (h) auxiliary equipment. The risk evaluation presented in the paper also permits identification of problematic aspects in the daily routine. (orig./CB)

  17. Development of a nondestructive evaluation method for FRP bridge decks

    Brown, Jeff; Fox, Terra

    2010-05-01

    Open steel grids are typically used on bridges to minimize the weight of the bridge deck and wearing surface. These grids, however, require frequent maintenance and exhibit other durability concerns related to fatigue cracking and corrosion. Bridge decks constructed from composite materials, such as a Fiber-reinforced Polymer (FRP), are strong and lightweight; they also offer improved rideability, reduced noise levels, less maintenance, and are relatively easy to install compared to steel grids. This research is aimed at developing an inspection protocol for FRP bridge decks using Infrared thermography. The finite element method was used to simulate the heat transfer process and determine optimal heating and data acquisition parameters that will be used to inspect FRP bridge decks in the field. It was demonstrated that thermal imaging could successfully identify features of the FRP bridge deck to depths of 1.7 cm using a phase analysis process.

  18. A fracture mechanics and reliability based method to assess non-destructive testings for pressure vessels

    Quantitative evaluation has not been made on the effects of carrying out preservice and in-service nondestructive tests for securing the soundness, safety and maintainability of pressure vessels, spending large expenses and labor. Especially the problems concerning the time and interval of in-service inspections lack the reasonable, quantitative evaluation method. In this paper, the problems of pressure vessels are treated by having developed the analysis method based on reliability technology and probability theory. The growth of surface cracks in pressure vessels was estimated, using the results of previous studies. The effects of nondestructive inspection on the defects in pressure vessels were evaluated, and the influences of many factors, such as plate thickness, stress, the accuracy of inspection and so on, on the effects of inspection, and the method of evaluating the inspections at unequal intervals were investigated. The analysis of reliability taking in-service inspection into consideration, the evaluation of in-service inspection and other affecting factors through the typical examples of analysis, and the review concerning the time of inspection are described. The method of analyzing the reliability of pressure vessels, considering the growth of defects and preservice and in-service nondestructive tests, was able to be systematized so as to be practically usable. (Kako, I.)

  19. RAPID AND NONDESTRUCTIVE MEASUREMENT SYSTEM FOR WELDING RESDIUAL STRESS BY ULTRASONIC METHOD

    2008-01-01

    Traditional methods of residual stress measurement are generally destructive or semi-destructive, as well as expensive, time-consuming and complex to implement. With the new development of welded structure, traditional methods can not satisfy the need of full life task management. So the acoustical theory is introduced, since the ultrasonic technique provides a useful nondestructive tool in the evaluation of stresses. In this study an ultrasonic stress measurement experimental installation is established, which consists of a special transducer, a signal emission unit and a signal recipient processing unit. Longitudinal critically refracted wave is selected as the measurement wave mode. The supporting software is programmed by Labview software. The longitudinal residual stress and transverse residual stress of twin wire welded plate are measured by this installment, in which the measuring process is real-time, quick and nondestructive. The experiment results indicate that the system can satisfy the need of life evaluation for welded structure. The system is light and portable.

  20. Nondestructive methods of analysis applied to oriental swords

    Edge, David

    2015-12-01

    Full Text Available Various neutron techniques were employed at the Budapest Nuclear Centre in an attempt to find the most useful method for analysing the high-carbon steels found in Oriental arms and armour, such as those in the Wallace Collection, London. Neutron diffraction was found to be the most useful in terms of identifying such steels and also indicating the presence of hidden patternEn el Centro Nuclear de Budapest se han empleado varias técnicas neutrónicas con el fin de encontrar un método adecuado para analizar las armas y armaduras orientales con un alto contenido en carbono, como algunas de las que se encuentran en la Colección Wallace de Londres. El empleo de la difracción de neutrones resultó ser la técnica más útil de cara a identificar ese tipo de aceros y también para encontrar patrones escondidos.

  1. Nondestructive methods for materials characterization. Materials Research Society symposium proceedings, Volume 591

    The symposium, Nondestructive Methods for Materials Characterization, was held at the Materials Research Society 1999 Fall Meeting on November 29--30 in Boston, Massachusetts. The papers focused on advanced nondestructive evaluation (NDE) methodologies and instrumentation. Several X-ray techniques were developed or tailored for process control and deformation behavior in high- and low-density materials. Fracture, fatigue, and corrosion behavior of aging aircraft materials were characterized via linear and nonlinear acoustics. Structure-sensitive properties in magnetic materials and building materials were gauged with NDE parameters. Electric and dielectric properties in ceramics and composite materials were established. Thickness and interface properties in silicon wafers and thin films were studied. Advanced optical and infrared techniques were investigated for the characterization of capacitance, circuit boards, laser diodes, and material growth. Thirty five papers were processed separately for inclusion on the data base

  2. Nondestructive methods for materials characterization. Materials Research Society symposium proceedings, Volume 591

    Baaklini, G.Y.; Meyendorf, N.; Matikas, T.E.; Gilmore, R.S. [eds.

    2000-07-01

    The symposium, Nondestructive Methods for Materials Characterization, was held at the Materials Research Society 1999 Fall Meeting on November 29--30 in Boston, Massachusetts. The papers focused on advanced nondestructive evaluation (NDE) methodologies and instrumentation. Several X-ray techniques were developed or tailored for process control and deformation behavior in high- and low-density materials. Fracture, fatigue, and corrosion behavior of aging aircraft materials were characterized via linear and nonlinear acoustics. Structure-sensitive properties in magnetic materials and building materials were gauged with NDE parameters. Electric and dielectric properties in ceramics and composite materials were established. Thickness and interface properties in silicon wafers and thin films were studied. Advanced optical and infrared techniques were investigated for the characterization of capacitance, circuit boards, laser diodes, and material growth. Thirty five papers were processed separately for inclusion on the data base.

  3. A Study on Non-Destructive Method for Detecting Toxin in Pepper Using Neural Networks

    M.Rajalakshmi

    2012-08-01

    Full Text Available Mycotoxin contamination in certain agricultural systems have been a serious concern for human andanimal health. Mycotoxins are toxic substances produced mostly as secondary metabolites by fungi thatgrow on seeds and feed in the field, or in storage. The food-borne Mycotoxins likely to be of greatestsignificance for human health in tropical developing countries are Aflatoxins and Fumonisins.Chili pepper is also prone to Aflatoxin contamination during harvesting, production and storage periods.Various methods used for detection of Mycotoxins give accurate results, but they are slow, expensive anddestructive. Destructive method is testing a material that degrades the sample under investigation.Whereas, non-destructive testing will, after testing, allow the part to be used for its intended purpose.Ultrasonic methods, Multispectral image processing methods, Terahertz methods, X-ray andThermography have been very popular in nondestructive testing and characterization of materials andhealth monitoring. Image processing methods are used to improve the visual quality of the pictures and toextract useful information from them. In this proposed work, the chili pepper samples will be collected, andthe X-ray, multispectral images of the samples will be processed using image processing methods.The term “Computational Intelligence” referred as simulation of human intelligence on computers. It isalso called as “Artificial Intelligence” (AI approach. The techniques used in AI approach are Neuralnetwork, Fuzzy logic and evolutionary computation. Finally, the computational intelligence method will beused in addition to image processing to provide best, high performance and accurate results for detectingthe Mycotoxin level in the samples collected. This research paper gives an overview of the ongoingresearch in non-destructive methods for finding toxins in chili pepper by making a comparative study of theprevious works.

  4. A Study on Non-Destructive Method for Detecting Toxin in Pepper Using Neural Networks

    M.Rajalakshmi

    2012-07-01

    Full Text Available Mycotoxin contamination in certain agricultural systems have been a serious concern for human and animal health. Mycotoxins are toxic substances produced mostly as secondary metabolites by fungi that grow on seeds and feed in the field, or in storage. The food-borne Mycotoxins likely to be of greatest significance for human health in tropical developing countries are Aflatoxins and Fumonisins. Chili pepper is also prone to Aflatoxin contamination during harvesting, production and storage periods. Various methods used for detection of Mycotoxins give accurate results, but they are slow, expensive and destructive. Destructive method is testing a material that degrades the sample under investigation. Whereas, non-destructive testing will, after testing, allow the part to be used for its intended purpose. Ultrasonic methods, Multispectral image processing methods, Terahertz methods, X-ray and Thermography have been very popular in nondestructive testing and characterization of materials and health monitoring. Image processing methods are used to improve the visual quality of the pictures and to extract useful information from them. In this proposed work, the chili pepper samples will be collected, and the X-ray, multispectral images of the samples will be processed using image processing methods. The term “Computational Intelligence” referred as simulation of human intelligence on computers. It is also called as “Artificial Intelligence” (AI approach. The techniques used in AI approach are Neural network, Fuzzy logic and evolutionary computation. Finally, the computational intelligence method will be used in addition to image processing to provide best, high performance and accurate results for detecting the Mycotoxin level in the samples collected. This research paper gives an overview of the ongoing research in non-destructive methods for finding toxins in chili pepper by making a comparative study of the previous works.

  5. Non-destructive method for internal quality determination of belgian endive (cichorium intybus l.)

    De Baerdemaeker J.; Quenon V.

    2000-01-01

    A method and process were developed to nondestructively measure the length of the floral stalk in Belgian endive Cichorium intybus L. Current X-ray technology proved to be a feasible method. A detection algorithm was developed based on the minimal transmitted intensities along the length. The method is very accurate with an absolute precision of 4.9 mm and allows the study of the influence of storage conditions and time on the Belgian endive internal quality. The growth of the floral stalk is...

  6. Efficiency of two non-destructive testing methods to detect defects in polymeric materials

    M. Szczepanik

    2010-02-01

    Full Text Available Purpose: The aim of this paper was to compare application possibilities of non-destructive ultrasonic and thermographic testing methods to detect defects in polymeric materials. In experimental part, subsurface defects were made in specimens of polymeric materials such as PE, PMMA, laminate then experimentally detected and directly displayed in ultrasonic and thermographic images.Design/methodology/approach: In this paper the development of a real-time non-invasive technique using pulsed infrared (IR thermography to measure the temperature of polymer materials is described. In this study 16 specimens were pre-heated during specific time using infrared lamp. After that the specimen’s surface temperature was scanned during cooling down process by a thermovision camera, then defects were detected by means of a thermographic images analysis. The second method applied was ultrasonic testing using the pulse-echo technique as a type of non-destructive testing commonly used to find flaws in materials and to measure the objects thickness. Frequencies of 2 to 10 MHz are common but for special purposes other frequencies are used.Findings: The experimental results have demonstrated that application of ultrasonic and thermographic testing are effective methods to visualize and reveal defects in the polymeric materials.Research limitations/implications: It is not possible to detect defects after a long pre-heating time of researched material because it results in uniform temperature on the whole surface of specimen. The most problems about identification of defects in tested materials by ultrasounds concern laminates.Originality/value: This paper is a unique because it compares two non-destructive testing methods usually used separately to detect defects in polymeric materials.

  7. Destructive and nondestructive methods for controlling nuclear materials for the purpose of safeguards in the CSSR

    Central Control Laboratory (CCL) of the Nuclear Research Institute was charged with the control of nuclear materials in CSSR within the framework of the safeguards system. The CCL has been directed by the Department of nuclear safety and safeguards of CAEC according to a long-term plan, elaborated for controlling nuclear material in CSSR. The CCL has mainly been performing independent, rapid, accurate, and reliable analyses of nuclear materials, using destructive as well as non-destructive methods; the analyses of samples taken in MBA's in CSSR are mentioned, concerning the determinations of U, Pu, and Th contents, isotopic compositions of U and Pu, and burn up. The results of the analyses have served for the material and isotopic balances of fissile materials and the control of fuel reprocessing under laboratory conditions. The methods for sampling and sample transport as well as sample treatment before the analysis are described. The experience is given, obtained at CCL during a routine application of chemical methods for highly precise determinations of U, Pu, and Th (titration-based methods), mass-spectrometric determinations of U and Pu (isotopic composition, IDA using 233U and 242Pu), and burn-up determinations based on radioactive fissile products (Cs, Ru, Ce) and stable Nd isotopes. Some non-destructive methods for controlling nuclear materials (passive gamma-spectrometry) are discussed

  8. A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation.

    Peressotti, Elisa; Duchêne, Eric; Merdinoglu, Didier; Mestre, Pere

    2011-02-01

    The availability of fast, reliable and non-destructive methods for the analysis of pathogen development contributes to a better understanding of plant-pathogen interactions. This is particularly true for the genetic analysis of quantitative resistance to plant pathogens, where the availability of a method allowing a precise quantification of pathogen development allows the reliable detection of different genomic regions involved in the resistance. Grapevine downy mildew, caused by the biotrophic Oomycete Plasmopara viticola, is one of the most important diseases affecting viticulture. Here we report the development of a simple image analysis-based semi-automatic method for the quantification of grapevine downy mildew sporulation, requiring just a compact digital camera and the open source software ImageJ. We confirm the suitability of the method for the analysis of the interaction between grapevine and downy mildew by performing QTL analysis of resistance to downy mildew as well as analysis of the kinetics of downy mildew infection. The non-destructive nature of the method will enable comparison between the phenotypic and molecular data obtained from the very same sample, resulting in a more accurate description of the interaction, while its simplicity makes it easily adaptable to other plant-pathogen interactions, in particular those involving downy mildews. PMID:21167874

  9. Uses of x-ray radiographic and tomographic methods for nondestructive evaluation (NDE) of waste

    Recent advances in radiographic and tomographic hardware, digital processing hardware, image processing and analysis software, coupled with applications of long-standing inspection methods used in other applications (medical and industrial) may enhance the ability for inspection agents and radiography operators to determine and quantify container contents. The majority of development work in the area of radiographic and tomographic waste inspection to date has emphasized only hardware development of the source and detector, and image display. As the volume of data and data quality improves, new methods of handling and interpreting the information must be developed. This paper will present a summary of recent developments in x-ray radiographic and tomographic methods for waste container inspection and emphasize the use of data derived from these methods to improve interpretations for nondestructive evaluation (NDE) and nondestructive assay (NDA). The emphasis will be on transuranic and mixed wastes from the DOE complex including 55-gallon drums, boxes of various sizes, and conveyor systems. Following a brief survey of developments throughout the waste inspection community, we will describe several recent efforts at the Idaho National Engineering Laboratory (INEL) to advance the state of the art in waste inspection through x-ray imaging. Real time digital image enhancements to analog RTR images, digital acquisition and processing of single digital radiographic projection images, identification and quantification of materials, enhanced image display techniques, and rapid tomographic data acquisition will be presented

  10. A Novel Complementary Method for the Point-Scan Nondestructive Tests Based on Lamb Waves

    Rahim Gorgin

    2014-01-01

    Full Text Available This study presents a novel area-scan damage identification method based on Lamb waves which can be used as a complementary method for point-scan nondestructive techniques. The proposed technique is able to identify the most probable locations of damages prior to point-scan test which lead to decreasing the time and cost of inspection. The test-piece surface was partitioned with some smaller areas and the damage probability presence of each area was evaluated. A0 mode of Lamb wave was generated and collected using a mobile handmade transducer set at each area. Subsequently, a damage presence probability index (DPPI based on the energy of captured responses was defined for each area. The area with the highest DPPI value highlights the most probable locations of damages in test-piece. Point-scan nondestructive methods can then be used once these areas are found to identify the damage in detail. The approach was validated by predicting the most probable locations of representative damages including through-thickness hole and crack in aluminum plates. The obtained experimental results demonstrated the high potential of developed method in defining the most probable locations of damages in structures.

  11. Non-destructive methods for nuclear power plants components thermal ageing monitoring

    Full text of publication follows: Non destructive methods to monitor ageing: The materials of an industrial installation may age under service conditions. This aging may induce materials properties degradations. These degradations are taken into account through applying safety margins in the design of the power plants. Moreover, periodic non-destructive inspections are performed in order to detect and measure both pre-existing accepted defects and flaws appeared during the power plant operation. These operations enable to ensure the components integrity. Nevertheless, the aim of managing and extending the lifetime of existing power plants leads to a new requirement: characterising material degradation before the occurrence of cracks. During the last ten years several non-destructive methods have been developed in order to monitor the evolution of materials degradation. The measured signals generally give an indirect assessment of the required property. Moreover these signals may be influenced by several parameters, such as chemical composition, temperature, residual stress. Consequently the study of non-destructive methods for characterising materials microstructure combines the development of innovative techniques with the knowledge of aging degradation mechanisms. Example of duplex stainless steel components thermal ageing: Some components of the primary loop of Pressurized Water Reactors (pump casings, some elbows, pipes, fittings and valve casings) are made of cast duplex stainless steels (austenite and ferrite). Since the beginning of the 80's, it is known that this kind of steel may age even at relatively low temperatures (under 400 deg. C i. e. in the temperature range of PWR service conditions) due to a microstructural evolution of the ferritic phase. Microstructural investigations have shown that the main microstructural evolution is the unmixing of the ferritic Fe-Cr-Ni solid solution due to the spinodal decomposition. This aging process results in the

  12. RF impedance method for nondestructive moisture content determination for in-shell peanuts

    Kandala, C. V. K.; Nelson, S. O.

    2007-04-01

    A method was developed earlier for estimating the moisture content (mc) in samples of wheat, corn and peanut kernels, nondestructively, by measuring their complex impedance values. In this method, capacitance (C), phase angle (θ) and dissipation factor (D) were measured with an impedance analyser at 1 and 5 MHz on a parallel-plate capacitor holding a few kernels of a particular commodity between the plates. These values were then used in an empirical equation based on the parameters C, θ and D, and the moisture content was calculated. The calculated mc values were within 1% of the air-oven values for about 85% of the kernel samples tested in the moisture range from 6% to 20% for wheat, corn and peanuts. However, it would be useful during drying and processing of peanuts, if the mc could be determined without shelling them. In this work, the feasibility of determining the moisture content of in-shell peanuts (pods) by similar impedance measurements was investigated. Values of capacitance, phase angle and dissipation factor measured at 24 °C and at three frequencies were used in a modified prediction equation and the moisture content was estimated within 1% of the air-oven values for over 90% of the pod samples tested in the moisture range from 6% to 25%. The method is rapid and nondestructive and may be used in the development of a commercial instrument.

  13. Residual Detergent Detection Method for Nondestructive Cytocompatibility Evaluation of Decellularized Whole Lung Scaffolds.

    Zvarova, Barbora; Uhl, Franziska E; Uriarte, Juan J; Borg, Zachary D; Coffey, Amy L; Bonenfant, Nicholas R; Weiss, Daniel J; Wagner, Darcy E

    2016-05-01

    The development of reliable tissue engineering methods using decellularized cadaveric or donor lungs could potentially provide a new source of lung tissue. The vast majority of current lung decellularization protocols are detergent based and incompletely removed residual detergents may have a deleterious impact on subsequent scaffold recellularization. Detergent removal and quality control measures that rigorously and reliably confirm removal, ideally utilizing nondestructive methods, are thus critical for generating optimal acellular scaffolds suitable for potential clinical translation. Using a modified and optimized version of a methylene blue-based detergent assay, we developed a straightforward, noninvasive method for easily and reliably detecting two of the most commonly utilized anionic detergents, sodium deoxycholate (SDC) and sodium dodecyl sulfate (SDS), in lung decellularization effluents. In parallel studies, we sought to determine the threshold of detergent concentration that was cytotoxic using four different representative human cell types utilized in the study of lung recellularization: human bronchial epithelial cells, human pulmonary vascular endothelial cells (CBF12), human lung fibroblasts, and human mesenchymal stem cells. Notably, different cells have varying thresholds for either SDC or SDS-based detergent-induced cytotoxicity. These studies demonstrate the importance of reliably removing residual detergents and argue that multiple cell lines should be tested in cytocompatibility-based assessments of acellular scaffolds. The detergent detection assay presented here is a useful nondestructive tool for assessing detergent removal in potential decellularization schemes or for use as a potential endpoint in future clinical schemes, generating acellular lungs using anionic detergent-based decellularization protocols. PMID:26905643

  14. Modified nondestructive colorimetric method to evaluate the variability of oxygen diffusion rate through wine bottle closures.

    Brotto, Laura; Battistutta, Franco; Tat, Lara; Comuzzo, Piergiorgio; Zironi, Roberto

    2010-03-24

    Some modifications to a previous nondestructive colorimetric method that permits evaluation of the oxygen diffusion rate through wine closures were proposed. The method is based on the reaction of indigo carmine solution with oxygen and the tristimulus measurement of the consequent color change. Simplified preparation and measurement procedures were set up, allowing the analysis of a large number of samples simultaneously. The method was applied to the evaluation of the variability within the lot of 20 different types of stoppers (synthetic, produced by molding, and natural cork). The closures were tested at a storage temperature of 26 degrees C. With regard to oxygen permeability, the natural cork stopper showed a low homogeneity within the lot, especially during the first month after bottling, whereas the synthetic closure showed a greater steadiness in the performance. The limits of the colorimetric method were also analyzed, and three possible causes of degradation of the indigo carmine solution were identified: oxygen, light, and heat. PMID:20187636

  15. Non-destructive indication of irradiation embrittlement of ferromagnetic steel by the method of magnetic adaptive testing

    Tomas, I. [Inst. of Physics, ASCS, Prague (Czech Republic); Vertesy, G. [Research Inst. for Technical Physics and Materials Science, Budapest (Hungary); Kocik, J. [Nuclear Research Inst. Rez plc and Research Centre Rez Ltd. (Czech Republic)

    2007-07-01

    Method of magnetic adaptive testing is suggested as a highly promising non-destructive alternative of destructive Charpy impact tests for monitoring irradiation embrittlement of surveillance samples in pressure vessels of nuclear reactors. Magnetic adaptive testing is a non-destructive method, it is technically very simple, it offers much higher sensitivity than the traditional magnetic approaches and it is ideally suited even for in-situ tests inside the hot nuclear pressure vessels. The method is described and its efficiency and sensitivity is illustrated on an example of mechanically embrittled series of round robin samples tested in a number of laboratories by different magnetic methods. (orig.)

  16. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  17. Experimental Study on the Compressive Strength of Big Mobility Concrete with Nondestructive Testing Method

    Huai-Shuai Shang

    2012-01-01

    Full Text Available An experimental study of C20, C25, C30, C40, and C50 big mobility concrete cubes that came from laboratory and construction site was completed. Nondestructive testing (NDT was carried out using impact rebound hammer (IRH techniques to establish a correlation between the compressive strengths and the rebound number. The local curve for measuring strength of the regression method is set up and its superiority is proved. The rebound method presented is simple, quick, and reliable and covers wide ranges of concrete strengths. The rebound method can be easily applied to concrete specimens as well as existing concrete structures. The final results were compared with previous ones from the literature and also with actual results obtained from samples extracted from existing structures.

  18. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. PMID:23351273

  19. A nondestructive calibration method for maximizing the range and accuracy of AFM force measurement

    In this paper, a nondestructive method for the normal and lateral sensitivity calibrations of the optical lever in atomic force microscope (AFM) is presented. The practical application of this method in a dual-probe AFM is discussed in detail. To calibrate the conversion factors between photodiode responses and probe's deflection angles accurately without applying forces to the probe, a two-degrees-of-freedom flexure-hinge-based calibration device (FHCD) is developed. The device, which mainly consists of two mutually perpendicular flexure-hinge levers that share the same rotational center, serves as a switching mechanism for precise translation-to-rotation conversions both in the normal and lateral directions. During the calibration, a probe is attached to the FHCD at the meeting of the rotational axes of two levers. The FHCD is mounted on an AFM sample platform. The probe in this method acts as a mirror to be normally and laterally tilted at nanoscale angles to deflect the reflected laser beam by twisting the corresponding flexure-hinge levers, rather than the force-inducing probe deflection in traditional AFM calibration methods. With this method, the nondestructive calibration of the local and full-range sensitivities of the optical levers can be completed without destroying the probe tip or modifying the actual system setup of an AFM. Moreover, the nonlinearities of the optical levers are accurately compensated. Experimental results show that the linear ranges (with a deviation of 5% in the full range) of the force measurement are extended to 3.6 and 4.5 times in the normal and lateral directions, respectively, increasing to over 90% of the full range of the force measurement. (paper)

  20. Non-destructive method of determination of elastic properties and adhesion coefficient of different coating materials

    M. Kubisztal

    2010-12-01

    Full Text Available Purpose: The paper presents a non-destructive method of determination of Young’s modulus and adhesion coefficient of different coating materials (metallic coatings, polymer, composite etc.. Some of the results obtained by applying this method are discussed in detail.Design/methodology/approach: The presented method consists in measuring the dynamic response of the examined material in the form of a flat rectangular bar subjected to external periodic mechanical stress i.e. the so called vibrating reed technique. General equations describing elastic properties of the sample consisting of a substrate and a deposited coating are derived and discussed in detail.Findings: It was shown that the application of the proposed approach to the metallic, polymeric and composite coatings allowed to obtain a quantitative data concerning the change of both the elastic properties and the adhesion coefficient with a change of: coating thickness, measurement temperature, chemical composition of coating, surface preparation or in the case of epoxy resin coatings with a change of curing time or curing temperature.Research limitations/implications: The proposed method can be applied in many scientific problems in the field of coating materials (e.g. elastic properties of porous coating, crystallization of amorphous coating, adhesion of different polymeric coatings.Practical implications: It was shown that the described method can be successfully used in optimisation of some technological processes of deposition of different coatings on metallic substrate.Originality/value: The paper presents methodology of a non-destructive approach to determination of elastic properties and adhesion coefficient of coating materials with an overview of some applications already publish and also the new ones. Especially interesting are the results concerning the influence of surface preparation on adhesion coefficient which are published for the first time.

  1. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  2. Non-destructive methods are useful for detecting any kind of corrosion

    Non-destructive methods are used to detect and follow the evolution of corrosion. The right method to use depends on the type of corrosion we want to study and on the conditions in which the control is performed. The acoustic emission testing (AET) is one of the most promising. Uniform corrosion and localized corrosion can be studied by AET and technologies based on AET are being developed to control the state of pressure vessels or of gas or liquid containers. Other fields of applications are under investigation: the control of the propagation of fissures generated by stress corrosion or by hydrogen embrittlement or by corrosion fatigue. The CETIM (technical center of mechanic industries) has realized a database that gathers all the work made concerning AET and the detection of corrosion. (A.C.)

  3. Research on non-destructive screening method for radiation hardened performance of very large scale integrated circuit

    Combining the mathematical regression analysis with the physical stressing experiment, the non-destructive screening method for radiation hardened performance of integrated circuit was investigated. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The sensitive parameters to irradiation were confirmed. The pluralistic linear regression equation for the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability of the non-destructive screening method can be improved by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  4. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  5. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  6. Standard practice for digital imaging and communication nondestructive evaluation (DICONDE) for computed radiography (CR) test methods

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of computed radiography (CR) imaging and data acquisition equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This practice is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information objec...

  7. Combination Of The Non-Destructive Methods For Evaluating The Quality Of Concrete Used In Structures In Reinforced Concrete

    Mr. R. OBAD

    2014-12-01

    Full Text Available The study is aboutthe use and comparison of three non-destructive methods (dynamic auscultation, sclerometric auscultation and auscultation by RADAR (Radio Detecting and Ranging to monitor and assess the quality of concrete. Samples of reinforced concrete panels, dimensions 200x100x30 cm of concrete dosed at 350 kg/m3 with diverse E/C ratio were achieved, conserved in the laboratory and subjected to various non-destructive test. The synthesis of the results obtained by auscultation RADAR shows a decrease in the propagation speed of the electromagnetic wave with an increase of the E/C ratio and a decrease in resistance of concrete values measured and confirmed by other non-destructive techniques (sclerometric and dynamic auscultations. This shows that more the dielectric constant is high, morethe concrete resistance is reduced, and conversely the opposite.

  8. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  9. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  10. X-ray based methods for non-destructive testing and material characterization

    The increasing complexity and miniaturization in the field of new materials as well as in micro-production requires in the same way improvements and technical advances in the field of micro-NDT to provide better quality data and more detailed knowledge about the internal structures of micro-components. Therefore, non-destructive methods like radioscopy, ultrasound, optical or thermal imaging increasingly gain in importance with respect to ongoing product and material development in the different phases like material characterization, production control or module reliability testing. Because of the manifold different application fields, i.e., certain physical NDT methods applied to material inspection, characterization or reliability testing, this contribution will focus on the radioscopic-based methods related to their most important applications. Today, in modern industrial quality control, X-ray transmission is used in two different ways: - Two-dimensional radioscopic transmission imaging (projection technique), usually applied to inline inspection tasks in application fields like lightweight material production, electronic component soldering or food production. - Computed tomography (CT) for generation of three-dimensional data, representing spatial information and density distribution of objects. CT application fields are on the one hand the understanding of production process failure or component and module inspection (completeness) and on the other hand the dimensional measuring of hidden geometrical outlines (metrology). This paper demonstrates the methods including technical set-ups (X-ray source and detector), imaging and reconstruction results and the methods for high speed and high-resolution volume data generation and evaluation

  11. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  12. A non-destructive ammonium detection method as indicator for freshness for packed fish: Application on cod

    Heising, J.K.; Dekker, M.; Bartels, P.V.; Boekel, van M.A.J.S.

    2012-01-01

    This paper introduces a non-destructive method for monitoring headspace ammonium as an indicator for changes in the freshness status of packed fish. Electrodes in an aqueous phase in the package monitor changes in the concentration of ammonia produced in/on the packed fish and released in the headsp

  13. NON-DESTRUCTIVE TESTS OF LOCK TONGUES USED IN ATR-72 AIRCRAFT LANDING GEAR BASED ON MAGNETIC METHOD

    Mirosław Malec

    2013-12-01

    Full Text Available The purpose of this work is to highlight the opportunities of using and analyzing process progression of Non-destructive Testing in aeronautical industries and technologies. This paper concentrates on magnetic-fluorescent method, which is used to showcase the practical test of lock tongue installed in ATR-72 aircraft landing gear.

  14. NON-DESTRUCTIVE TESTS OF LOCK TONGUES USED IN ATR-72 AIRCRAFT LANDING GEAR BASED ON MAGNETIC METHOD

    Mirosław Malec; Tomasz Cieplak; Sławomir Walczuk

    2013-01-01

    The purpose of this work is to highlight the opportunities of using and analyzing process progression of Non-destructive Testing in aeronautical industries and technologies. This paper concentrates on magnetic-fluorescent method, which is used to showcase the practical test of lock tongue installed in ATR-72 aircraft landing gear.

  15. Standard test method for nondestructive assay of plutonium by passive neutron multiplicity counting

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes the nondestructive assay of plutonium in forms such as metal, oxide, scrap, residue, or waste using passive neutron multiplicity counting. This test method provides results that are usually more accurate than conventional neutron coincidence counting. The method can be applied to a large variety of plutonium items in various containers including cans, 208-L drums, or 1900-L Standard Waste Boxes. It has been used to assay items whose plutonium content ranges from 1 g to 1000s of g. 1.2 There are several electronics or mathematical approaches available for multiplicity analysis, including the multiplicity shift register, the Euratom Time Correlation Analyzer, and the List Mode Module, as described briefly in Ref. (1). 1.3 This test method is primarily intended to address the assay of 240Pu-effective by moments-based multiplicity analysis using shift register electronics (1, 2, 3) and high efficiency neutron counters specifically designed for multiplicity analysis. 1.4 This tes...

  16. Standard test method for nondestructive assay of special nuclear material holdup using Gamma-Ray spectroscopic methods

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes gamma-ray methods used to nondestructively measure the quantity of 235U, or 239Pu remaining as holdup in nuclear facilities. Holdup occurs in all facilities where nuclear material is processed, in process equipment, in exhaust ventilation systems and in building walls and floors. 1.2 This test method includes information useful for management, planning, selection of equipment, consideration of interferences, measurement program definition, and the utilization of resources (1, 2, 3, 4). 1.3 The measurement of nuclear material hold up in process equipment requires a scientific knowledge of radiation sources and detectors, transmission of radiation, calibration, facility operations and error analysis. It is subject to the constraints of the facility, management, budget, and schedule; plus health and safety requirements; as well as the laws of physics. The measurement process includes defining measurement uncertainties and is sensitive to the form and distribution of the material...

  17. Standard test method for nondestructive assay of radioactive material by tomographic gamma scanning

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method describes the nondestructive assay (NDA) of gamma ray emitting radionuclides inside containers using tomographic gamma scanning (TGS). High resolution gamma ray spectroscopy is used to detect and quantify the radionuclides of interest. The attenuation of an external gamma ray transmission source is used to correct the measurement of the emission gamma rays from radionuclides to arrive at a quantitative determination of the radionuclides present in the item. 1.2 The TGS technique covered by the test method may be used to assay scrap or waste material in cans or drums in the 1 to 500 litre volume range. Other items may be assayed as well. 1.3 The test method will cover two implementations of the TGS procedure: (1) Isotope Specific Calibration that uses standards of known radionuclide masses (or activities) to determine system response in a mass (or activity) versus corrected count rate calibration, that applies to only those specific radionuclides for which it is calibrated, and (2) Respo...

  18. A time-domain finite element boundary integration method for ultrasonic nondestructive evaluation.

    Shi, Fan; Choi, Wonjae; Skelton, Elizabeth A; Lowe, Michael J S; Craster, Richard V

    2014-12-01

    A 2-D and 3-D numerical modeling approach for calculating the elastic wave scattering signals from complex stress-free defects is evaluated. In this method, efficient boundary integration across the complex boundary of the defect is coupled with a time-domain finite element (FE) solver. The model is designed to simulate time-domain ultrasonic nondestructive evaluation in bulk media. This approach makes use of the hybrid concept of linking a local numerical model to compute the near-field scattering behavior and theoretical mathematical formulas for postprocessing to calculate the received signals. It minimizes the number of monitoring signals from the FE calculation so that the computation effort in postprocessing decreases significantly. In addition, by neglecting the conventional regular monitoring box, the region for FE calculation can be made smaller. In this paper, the boundary integral method is implemented in a commercial FE code, and it is validated by comparing the scattering signals with results from corresponding full FE models. The coupled method is then implemented in real inspection scenarios in both 2-D and 3-D, and the accuracy and the efficiency are demonstrated. The limitations of the proposed model and future works are also discussed. PMID:25474780

  19. On the performance of nondestructive testing methods in the hydroelectric turbine industry

    Welded joints of turbine runners are one of the most critical parts of Francis turbines due to the presence of welding discontinuity and high stress. Because of thermal cycles, solidification, cooling distortion and residual stresses, welded joints always include discontinuities of different types and sizes. Some specific parameters will limit welding flaw dimensions in some or all direction based on the joint geometry, material and welding procedure. If discontinuities of critical size remain undetected, fatigue cracks might initiate and propagate in these zones because of dynamic in-service stresses leading to high repair costs and long down times. Therefore, reliable NDT methods and good knowledge of the probability of occurrence of welding flaws is important for fatigue life estimations. Every NDT method has its weaknesses; therefore, even after meticulous inspections it is likely for some discontinuities of critical sizes to remain in the welded joint. Our objective is to clarify the probability of detection and occurrence of different types of welding flaws in hydroelectric turbine runners. Furthermore, an overview of current nondestructive inspection methods and their capability in characterizing flaw dimensions will be discussed. Finally, advanced NDT techniques, for the characterization of welded joints integrity, will be proposed

  20. On the performance of nondestructive testing methods in the hydroelectric turbine industry

    Habibzadeh Boukani, H.; Viens, M.; Tahan, S. A.; Gagnon, M.

    2014-03-01

    Welded joints of turbine runners are one of the most critical parts of Francis turbines due to the presence of welding discontinuity and high stress. Because of thermal cycles, solidification, cooling distortion and residual stresses, welded joints always include discontinuities of different types and sizes. Some specific parameters will limit welding flaw dimensions in some or all direction based on the joint geometry, material and welding procedure. If discontinuities of critical size remain undetected, fatigue cracks might initiate and propagate in these zones because of dynamic in-service stresses leading to high repair costs and long down times. Therefore, reliable NDT methods and good knowledge of the probability of occurrence of welding flaws is important for fatigue life estimations. Every NDT method has its weaknesses; therefore, even after meticulous inspections it is likely for some discontinuities of critical sizes to remain in the welded joint. Our objective is to clarify the probability of detection and occurrence of different types of welding flaws in hydroelectric turbine runners. Furthermore, an overview of current nondestructive inspection methods and their capability in characterizing flaw dimensions will be discussed. Finally, advanced NDT techniques, for the characterization of welded joints integrity, will be proposed.

  1. Decision-level multi-method fusion of spatially scattered data from nondestructive inspection of ferromagnetic parts

    Heideklang, René; Shokouhi, Parisa

    2015-01-01

    This article deals with the fusion of flaw detections from multi-sensor nondestructive materials testing. Because each testing method makes use of different physical effects for defect localization, a multi-method approach is promising to effectively distinguish the many false alarms from actual material defects. To this end, we propose a new fusion technique for scattered two- or three-dimensional location data. Using a density-based approach, the proposed method is able to explicitly addres...

  2. Methods for nondestructive assay holdup measurements in shutdown uranium enrichment facilities

    Measurement surveys of uranium holdup using nondestructive assay (NDA) techniques are being conducted for shutdown gaseous diffusion facilities at the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant). When in operation, these facilities processed UF6 with enrichments ranging from 0.2 to 93 wt % 235U. Following final shutdown of all process facilities, NDA surveys were initiated to provide process holdup data for the planning and implementation of decontamination and decommissioning activities. A three-step process is used to locate and quantify deposits: (1) high-resolution gamma-ray measurements are performed to generally define the relative abundances of radioisotopes present, (2) sizable deposits are identified using gamma-ray scanning methods, and (3) the deposits are quantified using neutron measurement methods. Following initial quantitative measurements, deposit sizes are calculated; high-resolution gamma-ray measurements are then performed on the items containing large deposits. The quantitative estimates for the large deposits are refined on the basis of these measurements. Facility management is using the results of the survey to support a variety of activities including isolation and removal of large deposits; performing health, safety, and environmental analyses; and improving facility nuclear material control and accountability records. 3 refs., 1 tab

  3. Non-destructive burn-up degree evaluation method for nuclear fuel

    Ueda, Makoto; Kumanomido, Hironori

    1998-01-06

    The present invention concerns a non-destructive burn-up degree evaluation method for spent fuels by a spontaneous neutron releasing rate method. Namely, an equation (1) is provided as: S = ({phi}/P)x(1-k) where {phi} is spontaneous neutron flux, P is the proportional coefficient, S is neutron releasing rate and k is neutron effective multiplication factor. S is further given by an equation (2): S = S4{sub 0}x(1+S2/S4{sub 0})xVxT where S2 is releasing rate from Cm242, S4{sub 0} is releasing rate from other nuclides, v is a void ratio of coolants and T is a time decaying effect, and the equations (1) and (2) are joined. P is determined by theoretical calculation, and S2/S4{sub 0} is determined based on a half decay characteristics of Cm242 to determine a correction amount. S4{sub 0} and V are determined as a correlational function of the burn-up degree: x based on burning calculation while using the Pu enrichment degree {epsilon}, Pu compositional ratio f, and concrete void ratio v. k is determined as a correlational function of v. A first appropriate value of x is obtained while having the burnup degree x{sup (0)} as an initial value. x is determined successively by repeating calculation based on modified k in this case. (I.S.)

  4. Non-destructive testing (NDT) methods applied to subsurface environmental problems

    Described in this paper are a series of environmental problems involving spilled liquids which subsequently penetrate into the subsurface soil. The migration of these liquids (which are, or contain, hazardous materials) is of great interest to industrial, private and governmental groups. It is a complex and perplexing problem which is generally solved by taking soil borings, sampling the material, and interpolating information between them. The net effect is a slow, random, and expensive process which is felt to be outmoded and impractical. In contrast, a number on non-destructive tests (NDT) are outlined in this paper which could detect and monitor these subsurface liquid spills. The paper briefly reviews them, providing key references for further details, and then individually rates the methods against each specific problem. The rating at this time is tentative but does offer an initial attempt at viewing hazardous material spill problems in light of current NDT methods. A current EPA grant to Drexel University is focused at updating this rating and is based in both laboratory and field evaluations

  5. New applications of old processes in nondestructive testing - irradiation and backscatter methods

    The application of two non-destructive test processes based on photon irradiation measurement is described. The photon backscatter process and the irradiation measurement were used in the technical field and in examining artificial articles. With the aid of the two beam absorption method, wall thicknesses on large liquid containers made of polyethylene and of steel were measured. The same process with a somewhat modified test rig was used in measuring pipe wall thickness on an antique musical instrument. The components made of turbine blade material were excited to X-ray fluorescence with a source of radio nuclides and analysed with a semiconductor detector. This is particularly advantageous for elements which cannot be determined or can only be determined with difficulty by 'conventional' methods (e.g.: yttrium, rhenium). Also the wall thickness measurement for large (diameter approx. 6 m) plastic pipes with the aid of gamma backscatter is described, as is humidity measurement in brick material. Finally, there is a report on wood profile measurement in a stringed instrument with the aid of gamma backscatter. (orig./HP)

  6. Nondestructive evaluation of plate type nuclear fuel elements during manufacturing stage using ultrasonic test method

    Structural discontinuities, such as cracks and bonding lacks at the core/cladding interface can be introduced in plate type nuclear fuel elements during the manufacturing stages, due to the mechanical and thermal processing conditions. They can reduce the performance of the nuclear fuel during its operational life or contribute to its premature failure. Plate type nuclear fuels (PTNF) consist of a core formed by a dispersion of UO2 into a metallic matrix, involved by a metallic cladding. Nondestructive testing methods such as eddy current, radiography and ultrasonic have been used to detect and monitoring discontinuities generated in the fuel's manufacturing stage, each one presenting advantages and limitations. The use of ultrasonic testing for this purpose presents two main difficulties: the small thickness of the plates as well as the presence of materials with different characteristics. The study described in this paper presents the methodology used in the evaluation of a prototype of PTNF by ultrasonic testing method, using different test techniques and transducers. The main results obtained and the next steps to be developed in this activity are discussed. (author)

  7. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  8. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Abbey Rosso

    Full Text Available Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144 at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count, among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4% using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2. Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  9. Automatic Method for Synchronizing Workpiece Frames in Twin-robot Nondestructive Testing System

    LU Zongxing; XU Chunguang; PAN Qinxue; MENG Fanwu; LI Xinliang

    2015-01-01

    The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the twin robots cannot reach the same point to complete the process of workpiece frame positioning. Thus, a new method is proposed to solve the problem of coincidence between workpiece frames. Transformation between two robot base frames is initiated by measuring the coordinate values of three non-collinear calibration points. The relationship between the workpiece frame and that of the slave robot base frame is then determined according to the known transformation of two robot base frames, as well as the relationship between the workpiece frame and that of the master robot base frame. Only one robot is required to actually measure the coordinate values of the calibration points on the workpiece. This requirement is beneficial when one of the robots cannot reach and measure the calibration points. The coordinate values of the calibration points are derived by driving the robot hand to the points and recording the values of top center point(TCP) coordinates. The translation and rotation matrices relate either the two robot base frames or the workpiece and master robot. The coordinated are solved using the measured values of the calibration points according to the Cartesian transformation principle. An optimal method is developed based on exponential mapping of Lie algebra to ensure that the rotation matrix is orthogonal. Experimental results show that this method involves fewer steps, offers significant advantages in terms of operation and time-saving. A method used to synchronize workpiece frames in twin-robot system automatically is presented.

  10. Application Research on Nondestructive Testing Technology for Quality of Anchor Based on Elastic Wave Reflection Method

    Xiao, G.; Zhou, L.

    2014-12-01

    Anchor technology has been widely used to reinforce slopes, underground caverns, deep excavations and the foundation of dams. It has attracted more and more attention of research worldwide on how to find a comfortable method to test the quality of anchoring systems. According to the characteristics of anchor systems, we set up the kinetic equations and mathematical models, then solved the models using ANSYS / LS-DYNA program. We found that the simulated mathematical models perfectly match the experimental data. By changing one of the parameters or the input conditions in the model, we were able to understand the characteristic response of excitation energy, excitation length, structural defects, rock quality, and different data acquisition methods. For short anchor systems (grouting density. The obtained values were consistent with the actual experimental data. We also demonstrated that the kinetic energy of the collected waves from the bottom of the anchor had very close relationship with the grouting density and the position of the structural defects. For long anchors (> 60 m), mostly cable anchors, since little research could be followed, we started our research from designing the instrument, writing the program for data acquisition and analysis. We designed and developed novel sensors and preamplifiers. We used vertical stack technology to effectively enhance the weak signals from the deeper interfaces. In data processing, in addition to the traditional filter method, we also explored the current technology of signal processing such as true amplitude recovery and deconvolution, which enabled us to obtain improved signal to noise ratio and sensing precision. Through the above mentioned systematical studies, we developed a reliable nondestructive test method for both short and long anchors based on elastic wave reflection. This research is funded by National Natural Science Foundation of China (Grant No. 41202223)

  11. Non-destructive radionuclide characterization methods of radioactive wastes by gamma spectrometry

    At Post-Irradiation Examination Laboratory (LEPI) of INR Pitesti methods were developed and procedures were worked out for non-destructive radionuclide characterization by gamma spectrometry of the radioactive wastes barrels destined to final disposal. The equipment used, complying to the ISO 9000 standard, consists in a high resolution HPGe portable detector of Ge-25185P type, a portable spectrometric system of type NOMAD PLUSTM, controlled by a portable PC. The software for data acquisition and spectral analysis, background extraction, peaks' identification, nuclide identification and concentration determination was GAMMAVISIONTM and NUCLIDE NAVIGATOR''TM, while for the efficiency calibration and activity calculation of the radioactive waste barrels the ISOTOPIC TM code was used. The correct activity estimation of the barrels, containing the radioactive wastes, implies an as accurate as possible knowledge of the materials entering the waste matrix composition. The measuring method and the results' treatment implies the following steps: - energy and efficiency calibration of the detector; - weighing the barrel to calculate the radioactive waste matrix density; - the gamma spectra of the barrel are determined with the detector placed at 1.2 m distance; - the GAMMAVISIONTM code is applied to get the activity of the radionuclides in the barrel containing the radioactive wastes; - the report generated by this code is introduced as input file into the ISOTOPIC TM code. Finally, a report is obtained listing all the radionuclide activities, the combined activity, as well as, the implied errors for any of the barrels examined. Experimental methods of checking the occurrence of the computation methods are described. In the frame of radioactive waste managing campaign of the year 2000, 30 barrels containing 137 Cs, 134 Cs and 60 Co were measured at the LEPI department

  12. Comparative study of destructive and non-destructive methods in the activation analysis of rocks

    A comparative study between non-destructive thermal neutron activation analysis and activation analysis with radiochemical group separation is made Both methods are applied to the determination of trace elements minor and major elements in rocks. The treatment of the rocks, with special reference to the problems related to grinding and contamination by foreign elements is described. The choice of standards for multielement trace activation analysis is discussed. Two types of computer programs for the evalution of data obtained through Ge-li detector counting are used. All the phases of the destructive and non destructive analysis are described. In the destructive analysis, an adaptation of the group separation scheme developed by Morrison et al for the activation analysis of geological samples is made. The changes introduced make the radiochemical separation simpler and more rapid. Both destructive and non destructive methods are tested by means of the analysis of the United States Geological Survey standard rock AGV-1, which has been analysed by many authors. The same procedure is then applied to some alcaline rocks taken from the apatite mine of Jacupiranga, in the State of Sao Paulo, Brazil. The knowledge of the trace element concentration in these rocks is important for geochemical studies. A detailed study of the possible interferences encountered in the neutron activation analysis of these rocks is made, considering the interferences due to major activities, and to the proximity of the several gamma ray energies of the radioisotopes produced. Finally, the comparative study between the two methods is presented, using statistical tests for the quantitative evalution of results. (Author)

  13. Development of Natural Flaw Samples for Evaluating Nondestructive Testing Methods for Foam Thermal Protection Systems

    Workman, Gary L.; Davis, Jason; Farrington, Seth; Walker, James

    2007-01-01

    Low density polyurethane foam has been an important insulation material for space launch vehicles for several decades. The potential for damage from foam breaking away from the NASA External Tank was not realized until the foam impacts on the Columbia Orbiter vehicle caused damage to its Leading Edge thermal protection systems (TPS). Development of improved inspection techniques on the foam TPS is necessary to prevent similar occurrences in the future. Foamed panels with drilled holes for volumetric flaws and Teflon inserts to simulate debonded conditions have been used to evaluate and calibrate nondestructive testing (NDT) methods. Unfortunately the symmetric edges and dissimilar materials used in the preparation of these simulated flaws provide an artificially large signal while very little signal is generated from the actual defects themselves. In other words, the same signal are not generated from the artificial defects in the foam test panels as produced when inspecting natural defect in the ET foam TPS. A project to create more realistic voids similar to what actually occurs during manufacturing operations was began in order to improve detection of critical voids during inspections. This presentation describes approaches taken to create more natural voids in foam TPS in order to provide a more realistic evaluation of what the NDT methods can detect. These flaw creation techniques were developed with both sprayed foam and poured foam used for insulation on the External Tank. Test panels with simulated defects have been used to evaluate NDT methods for the inspection of the External Tank. A comparison of images between natural flaws and machined flaws generated from backscatter x-ray radiography, x-ray laminography, terahertz imaging and millimeter wave imaging show significant differences in identifying defect regions.

  14. Theoretical detection ranges for acoustic based manatee avoidance technology.

    Phillips, Richard; Niezrecki, Christopher; Beusse, Diedrich O

    2006-07-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. To reduce the number of collisions, warning systems based upon detecting manatee vocalizations have been proposed. One aspect of the feasibility of an acoustically based warning system relies upon the distance at which a manatee vocalization is detectable. Assuming a mixed spreading model, this paper presents a theoretical analysis of the system detection capabilities operating within various background and watercraft noise conditions. This study combines measured source levels of manatee vocalizations with the modeled acoustic properties of manatee habitats to develop a method for determining the detection range and hydrophone spacing requirements for acoustic based manatee avoidance technologies. In quiet environments (background noise approximately 70 dB) it was estimated that manatee vocalizations are detectable at approximately 250 m, with a 6 dB detection threshold, In louder environments (background noise approximately 100dB) the detection range drops to 2.5 m. In a habitat with 90 dB of background noise, a passing boat with a maximum noise floor of 120 dB would be the limiting factor when it is within approximately 100 m of a hydrophone. The detection range was also found to be strongly dependent on the manatee vocalization source level. PMID:16875213

  15. New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life

    K. Konstankiewicz; L. Frankevych; L.I. Muravsky; A. Zdunek

    2007-01-01

    This paper presents a new spatial-temporal speckle correlation technique applied for quality evaluation of apples. Evaluations were performed using a nondestructive and noninvasive method based on the interpretation of an optical phenomenon that occurs when the fruit is illuminated with coherent light, referred as biospeckle. The temporal and spatial changes of speckle patterns created by laser light scattered in fruit have been measured through their correlation functions. The cross-correlat...

  16. The Application of Various Nondestructive Testing Methods to Fuel Elements of the Orgel Type

    The paper describes the various methods employed to detect flaws (dimensional or structural) in fuel-element canning tubes. The authors also describe the final tests on complete fuel elements, in particular radiography of welds and leak-tightness tests. This subject has already been discussed to some extent. The dimensional characteristics of smooth SAP (sintered aluminium powder) canning tubes have been fairly extensively investigated, and in particular: 1. The internal and external diameters have been measured using pneumatic pick-ups and recording the result; 2. The thicknesses have been measured using either ultrasonic resonance methods or y-rays (a Euratom- Istituto Sperimentale Metalli Leggeri contract); 3. Checking the deflection; 4. Tests of finned tubes. Work has also been carried out on detecting flaws in smooth canning tubes, and rejection criteria have been adopted depending on the prospective use of the tubes. (a) The making of artificial flaws corresponding to the harmfulness of actual flaws in the SAP is described. This study revealed high sensitivity to flaws of the longitudinal type generally caused by large inclusions during processing. (b) Ultrasonic tests. Longitudinal flaws: Comparison between the method with two pick-ups and that with one shows the limitations of these two methods. Transverse flaws: The single pick-up method used in investigating these is briefly described. Mechanical drive: A laboratory type mechanical test bench for investigating test criteria and a special semi-industrial bench for the continuous inspection of the tubes and the recording of flaws are mentioned. The difficulties encountered and the steps taken to prevent them are described. (c) Radiographic tests. This method will be discussed in a special paper; here we simply indicate the results obtained on pressure tubes and canning tubes. (d) Various tests. The final tests on complete fuel elements can be summed up in two sections: Helium leak-tests developed by SOGEV

  17. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  18. The use of non-destructive passive neutron measurement methods in dismantling and radioactive waste characterization

    The cleaning up and dismantling of nuclear facilities lead to a great volume of technological radioactive wastes which need to be characterized in order to be sent to the adequate final disposal or interim storage. The control and characterization can be performed with non-destructive nuclear measurements such as gamma-ray spectrometry. Passive neutron counting is an alternative when the alpha-gamma emitters cannot be detected due to the presence of a high gamma emission resulting from fission or activation products, or when the waste matrix is too absorbing for the gamma rays of interest (too dense and/or made of high atomic number elements). It can also be a complement to gamma-ray spectrometry when two measurement results must be confronted to improve the confidence in the activity assessment. Passive neutron assays involve the detection of spontaneous fission neutrons emitted by even nuclides (238Pu, 240Pu, 242Pu, 242Cm, 244Cm...) and neutrons resulting from (α, n) reactions with light nuclides (O, F, Be...). The latter is conditioned by the presence of high α-activity radionuclides (234U, 238Pu, 240Pu, 241Am...) and low-Z elements, which depends on the chemical form (metallic, oxide or fluorine) of the plutonium or uranium contaminant. This paper presents the recent application of passive neutron methods to the cleaning up of a nuclear facility located at CEA Cadarache (France), which concerns the Pu mass assessment of 2714 historic, 100 litre radioactive waste drums produced between 1980 and 1997. Another application is the dismantling and decommissioning of an uranium enrichment facility for military purposes, which involves the 235U and total uranium quantifications in about a thousand, large compressors employed in the gaseous diffusion enrichment process. (authors)

  19. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  20. Sampling methods and non-destructive examination techniques for large radioactive waste packages

    Progress is reported on work undertaken to evaluate quality checking methods for radioactive wastes. A sampling rig was designed, fabricated and used to develop techniques for the destructive sampling of cemented simulant waste using remotely operated equipment. An engineered system for the containment of cooling water was designed and manufactured and successfully demonstrated with the drum and coring equipment mounted in both vertical and horizontal orientations. The preferred in-cell orientation was found to be with the drum and coring machinery mounted in a horizontal position. Small powdered samples can be taken from cemented homogeneous waste cores using a hollow drill/vacuum section technique with the preferred subsampling technique being to discard the outer 10 mm layer to obtain a representative sample of the cement core. Cement blends can be dissolved using fusion techniques and the resulting solutions are stable to gelling for periods in excess of one year. Although hydrochloric acid and nitric acid are promising solvents for dissolution of cement blends, the resultant solutions tend to form silicic acid gels. An estimate of the beta-emitter content of cemented waste packages can be obtained by a combination of non-destructive and destructive techniques. The errors will probably be in excess of +/-60 % at the 95 % confidence level. Real-time X-ray video-imaging techniques have been used to analyse drums of uncompressed, hand-compressed, in-drum compacted and high-force compacted (i.e. supercompacted) simulant waste. The results have confirmed the applicability of this technique for NDT of low-level waste. 8 refs., 12 figs., 3 tabs

  1. THE SYSTEM WORKING OF METHODS OF NON-DESTRUCTIVE CONTROL OF AVIATION CONSTRUCTIONS

    Єременко, В.С.; Національний авіаційний університет; Переїденко, А.В.; Національний авіаційний університет

    2013-01-01

    This report is devoted to realization the automatic data processing system of NDT measuring results using the LabVIEW 8.5 programming environment. System can be used for calculation signal data and certainty value of non-destructive testing.

  2. Nondestructive inspection of concrete structures by nonlinear elastic wave spectroscopy methods

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Chlada, Milan

    Brno: University of Technology, 2014. ISBN 978-80-214-5018-9. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. 06.10.2014-10.10.2014, Praha] Institutional support: RVO:61388998 Keywords : civil engineering * nuclear * power plant * structural health monitoring (SHM) * signal processing * other medhods * ultrasonic testing (UT) Subject RIV: BI - Acoustics

  3. Evaluation of nondestructive assay characterization methods for pipe-over-pack containers

    Nondestructive assay (NDA) measurements of Transuranic (TRU) waste at Los Alamos National Laboratory (LANL) packed in Pipe-Over-Pack Containers or POC's exhibit a number of complexities. The POC is highly attenuating to both gamma rays and neutrons which presents a difficult waste matrix for correct quantification of material in the container. Also, chemical and matrix properties of the Pu contaminated waste in the POCs that may affect the measurement result are generally unknown in advance of the measurement. Currently there are a number of POC containers at LANL that require evaluation for shipment to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. At LANL, a single instrument has been used to explore the appropriateness of both passive neutron and quantitative gamma ray methods for measuring POC's. The instrument, a High Efficiency Neutron Counter (HENC) with an integrated high purity germanium detector incorporates both passive neutron and high resolution gamma counting capabilities. The passive neutron approach uses the Reals coincidence count rate to establish plutonium mass and other parameters of interest for TRU waste. The quantitative gamma ray method assumes a homogeneous distribution of matrix and source material and assays the drum with a calibration based on the known density of the matrix. Both methods are supplemented by a simultaneous gamma isotopic measurement using Multi-Group Analysis (MGA) software to determine the plutonium isotopic composition. If MGA fails to provide a viable isotopic result Fixed energy Response function Analysis with Multiple efficiencies (FRAM) could be used to replace MGA results. Acceptable knowledge (AK) may also be used in certain instances. This report will discuss the two measurement methods in detail for POC analysis. Included in the discussion will be descriptions of the setup parameters and calibration techniques for the instrument. A number of test measurements have been performed to compare HENC data

  4. Nondestructive evaluation

    Martz, H.E.

    1997-02-01

    Research reported in the thrust area of nondestructive evaluation includes: advanced 3-D imaging technologies; new techniques in laser ultrasonic testing; infrared computed tomography for thermal NDE of materials, structures, sources, and processes; automated defect detection for large laser optics; multistatic micropower impulse radar imaging for nondestructive evaluation; and multi-modal NDE for AVLIS pod shielding components.

  5. Analysis of quality control efficiency for NPP pipeline welded joints using nondestructive methods

    The problems of improving the quality of nondestructive examination for welded joints of NPP cooling system pipelines are considered. The data of ultrasonic testing and radiography of the welded joints of pipelines 800 mm in-diameter at the Smolensk and Kursk NPPs are analyzed. The conclusion on the necessity of accurate fulfilment of the existing PN AEh G-7-010-89 Rules of testing during NPP contruction and operation is made

  6. Nondestructive inspection of concrete structures by nonlinear elastic wave spectroscopy methods

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Chlada, Milan

    2014-01-01

    Roč. 19, č. 12 (2014). ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : civil engineering * nuclear * power plant * structural health monitoring (SHM) * signal processing * other medhods * ultrasonic testing (UT) Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/642_Prevorovsky_Rev1.pdf

  7. Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast

    Whitbeck, M.; Grace, J.B.

    2006-01-01

    The estimation of aboveground biomass is important in the management of natural resources. Direct measurements by clipping, drying, and weighing of herbaceous vegetation are time-consuming and costly. Therefore, non-destructive methods for efficiently and accurately estimating biomass are of interest. We compared two non-destructive methods, visual obstruction and light penetration, for estimating aboveground biomass in marshes of the upper Texas, USA coast. Visual obstruction was estimated using the Robel pole method, which primarily measures the density and height of the canopy. Light penetration through the canopy was measured using a Decagon light wand, with readings taken above the vegetation and at the ground surface. Clip plots were also taken to provide direct estimates of total aboveground biomass. Regression relationships between estimated and clipped biomass were significant using both methods. However, the light penetration method was much more strongly correlated with clipped biomass under these conditions (R2 value 0.65 compared to 0.35 for the visual obstruction approach). The primary difference between the two methods in this situation was the ability of the light-penetration method to account for variations in plant litter. These results indicate that light-penetration measurements may be better for estimating biomass in marshes when plant litter is an important component. We advise that, in all cases, investigators should calibrate their methods against clip plots to evaluate applicability to their situation. ?? 2006, The Society of Wetland Scientists.

  8. Portable non-destructive assay methods for screening and segregation of radioactive waste

    Significant cost-savings and operational efficiency may be realised by performing rapid non-destructive classification of radioactive waste at or near its point of retrieval or generation. There is often a need to quickly categorize and segregate bulk containers (drums, crates etc.) into waste streams defined at various boundary levels (based on its radioactive hazard) in order to meet disposal regulations and consignor waste acceptance criteria. Recent improvements in gamma spectroscopy technologies have provided the capability to perform rapid in-situ analysis using portable and hand-held devices such as battery-operated medium and high resolution detectors including lanthanum halide and high purity germanium (HPGe). Instruments and technologies that were previously the domain of complex lab systems are now widely available as touch-screen 'off-the-shelf' units. Despite such advances, the task of waste stream screening and segregation remains a complex exercise requiring a detailed understanding of programmatic requirements and, in particular, the capability to ensure data quality when operating in the field. This is particularly so when surveying historical waste drums and crates containing heterogeneous debris of unknown composition. The most widely used portable assay method is based upon far-field High Resolution Gamma Spectroscopy (HRGS) assay using HPGe detectors together with a well engineered deployment cart (such as the PSC TechniCARTTM technology). Hand-held Sodium Iodide (NaI) detectors are often also deployed and may also be used to supplement the HPGe measurements in locating hot spots. Portable neutron slab monitors may also be utilised in cases where gamma measurements alone are not suitable. Several case histories are discussed at various sites where this equipment has been used for in-situ characterization of debris waste, sludge, soil, high activity waste, depleted and enriched uranium, heat source and weapons grade plutonium, fission products

  9. Evaluating the effectiveness of correlation digital speckle photography method for non-destructive testing of rough surfaces

    The work is devoted to the investigation of the process of reflection of laser beams from rough surfaces with different degrees of roughness. Based on the results of numerical experiments the applicability of the method of correlation analysis of speckle-structures for non-destructive inspection of surfaces with different parameters of roughness was evaluated. The optimal ratios between the parameters of the rough surfaces and parameters of the optical system, which provide the best efficiency of the method, were determined. It was established that in case of the increase of the number of topological charges the sensitivity of the optical system to changes of parameters of surface roughness increases.

  10. Evaluation of non-destructive testing methods with possible applications in nuclear power concrete constructions

    Non-destructive Testing (NDT) has been applied in several Swedish nuclear power plant projects in the last ten year period. It is assumed that the results in these projects are similar. Before continuing with further development this survey of available reports is performed. The reader must be aware that NDT of concrete is presently poorly developed in Sweden and that we are aware that intense development is taking place abroad. Here, it is not yet widely recognized that NDT is necessary, if we shall be able to economically maintain ageing concrete structures. Experience from conventional testing of cores, removed from a nuclear reactor containment in Finland, show that there is a 100% variation in strength - thus there is no possibility to assign general values to concrete strength. Instead it is necessary to find the local errors or degradations. To do this it is difficult to see any other possibilities than assessment based on NDT. Assessment is the application of different techniques, like NDT, at a specific point and time in order to calculate the state of the detail relative the original design. Monitoring, in contrast, means that the structure is continuously supervised along the axis of time which allows the detection of events. The level of security is thus elevated by monitoring and this should have as consequence that safety factors or coefficients of variation can be set lower. The time series created by monitoring are of great value for the possibility of future generations to evaluate ageing constructions. The purpose of this report is to give recommendations regarding which NDTmethods are suitable for practical application and which should be selected for further development, provided that the results are intended to be used in calculations, that will result in the remaining service-life of the plant. In order to do this the engineer has to determine the as-built conditions, local concrete strength, fissures, rebar corrosion, delamination and losses

  11. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  12. Nondestructive methods for detection of hidden fatigue crack in the steel bridge element

    Valach, Jaroslav; Frýba, Ladislav; Jandejsek, Ivan; Lesák, Jaroslav; Vála, Ondřej; Urushadze, Shota

    Olomouc : Univerzita Palackého v Olomouci, 2010 - (Šmíd, P.), s. 497-503 ISBN 978-80-244-2533-7. [Experimentalní analýza napětí 2010. Velké Losiny (CZ), 31.05.2010-03.06.2010] Grant ostatní: evropská komise(XE) RFSR-CT-2008-00033 (BRIFAG); GA ČR(CZ) GA103/08/1340 Institutional research plan: CEZ:AV0Z20710524 Keywords : fatigue crack * detection * non-destructive Subject RIV: JM - Building Engineering

  13. Non-destructive evaluation of material degradation in RPV steel by magnetic methods

    The minor hysteresis loops are measured with increasing magnetic field amplitude, Ha, step by step and analyzed in connection with the lattice defects such as dislocations in deformed and neutron irradiated A533B steels. We have defined several new magnetic parameters in the minor loops: they are a pseudo coercive force Hc*, a pseudo remanence BR*, a magnetic susceptibility at pseudo coercive force χ H*, pseudo hysteresis loss Wf*, pseudo remanence work Wr*. Hc* is the magnetic field where the magnetization becomes zero in the minor loop. Six coefficients sensitive to lattice defects are obtained by the pseudo magnetic properties and they are independent of Ha as well as the magnetic field. These coefficients are effective parameters for nondestructive evaluation of degradation before the initiation of cracking. The minor loops have several advantages for the nondestructive evaluation compared with the major loop. The coefficients have much information about lattice defects and the high accuracy. The measurement is available for low magnetic field of 20 Oe and the Ha step is not necessarily fine for the detailed information because of the similarity. (orig.)

  14. Non-destructive high-throughput DNA extraction and genotyping methods for cotton seeds and seedlings.

    Zheng, Xiuting; Hoegenauer, Kevin A; Maeda, Andrea B V; Wang, Fei; Stelly, David M; Nichols, Robert L; Jones, Don C

    2015-05-01

    Extensive use of targeted PCR-based genotyping is precluded for many plant research laboratories by the cost and time required for DNA extraction. Using cotton (Gossypium hirsutum) as a model for plants with medium-sized seeds, we report here manual procedures for inexpensive non-destructive high-throughput extraction of DNA suitable for PCR-based genotyping of large numbers of individual seeds and seedlings. By sampling only small amounts of cotyledon tissue of ungerminated seed or young seedlings, damage is minimized, and viability is not discernibly affected. The yield of DNA from each seed or seedling is typically sufficient for 1000 or 500 PCR reactions, respectively. For seeds, the tissue sampling procedure relies on a modified 96-well plate that is used subsequently for seed storage. For seeds and seedlings, the DNA is extracted in a strongly basic DNA buffer that is later neutralized and diluted. Extracts can be used directly for high-throughput PCR-based genotyping. Any laboratory can thus extract DNA from thousands of individual seeds/seedlings per person-day at a very modest cost for consumables (~$0.05 per sample). Being non-destructive, our approach enables a wide variety of time- and resource-saving applications, such as marker-assisted selection (MAS), before planting, transplanting, and flowering. PMID:25967902

  15. Development of nondestructive sorting method for brown bloody eggs using VIS/NIR spectroscopy

    Lee, Hong Seock; Kim, Dae Yong; Kandpal, Lalit Mohan; Lee, Sang Dae; Cho, Byoung Kwan [Dept. of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeun; Hong, Soon Jung [Rural Development Administration, Jeonju (Korea, Republic of)

    2014-02-15

    The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.

  16. Development of nondestructive sorting method for brown bloody eggs using VIS/NIR spectroscopy

    The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.

  17. Use of destructive and nondestructive methods of analysis for quality assurance at MOX fuel production in the Russia

    Parameters of MOX fuel with various plutonium contents are considered from the point of view of necessity of their control for quality assurance. Destructive and nondestructive methods used for this purpose in the Russia are described: controlled potential coulometry for determination of uranium or/and plutonium contents, their ratio and oxygen factor; mass spectrometry for determination of uranium and plutonium isotopic composition; chemical spectral emission method for determination of contents of 'metal' impurities, boron and silicon, and methods of determination of gas forming impurities. Capabilities of nondestructive gamma-ray spectrometry techniques are considered in detail and results of their use at measurement of uranium and plutonium isotopic composition in initial dioxides, at determination of contents of uranium and plutonium, and uniformity of their distribution in MOX powder and pellets. The necessity of correction of algorithm of the MGA program is shown for using the program at analyses of gamma-ray spectra of MOX with low contents of low burnup plutonium. (authors)

  18. Use of destructive and nondestructive methods of analysis for quality assurance at MOX fuel production in the Russia

    Bibilashvili, Y.K.; Rudenko, V.S.; Chorokhov, N.A.; Korovin, Y.I.; Petrov, A.M.; Vorobiev, A.V.; Mukhortov, N.F.; Smirnov, Y.A.; Kudryavtsev, V.N. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (Russian Federation)

    2000-07-01

    Parameters of MOX fuel with various plutonium contents are considered from the point of view of necessity of their control for quality assurance. Destructive and nondestructive methods used for this purpose in the Russia are described: controlled potential coulometry for determination of uranium or/and plutonium contents, their ratio and oxygen factor; mass spectrometry for determination of uranium and plutonium isotopic composition; chemical spectral emission method for determination of contents of 'metal' impurities, boron and silicon, and methods of determination of gas forming impurities. Capabilities of nondestructive gamma-ray spectrometry techniques are considered in detail and results of their use at measurement of uranium and plutonium isotopic composition in initial dioxides, at determination of contents of uranium and plutonium, and uniformity of their distribution in MOX powder and pellets. The necessity of correction of algorithm of the MGA program is shown for using the program at analyses of gamma-ray spectra of MOX with low contents of low burnup plutonium. (authors)

  19. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  20. Examples of applications of results and implementations of state research project ''New methods of nondestructive materials testing using ionizing radiation''

    An X-ray television system was developed for X-ray radiography and neutron radiography, the method was developed of nondestructive testing of materials and products using accelerator radiography. An Atlas of the faults of blunt welds of medium thicknesses was compiled. Other resolved projects were: the measurement of the wear of cog wheels using the method of surface activation with charged particles, the method of detecting wear of parts of combustion engines by surface activation with alpha particles and deuterons using the measurement of the lubricating medium activity, the use of radionuclide methods in the research of wear of anti-friction bearings, the use of radionuclides for evaluating corrosion resistance of steels and anti-corrosion protection, and the use of radionuclides for improving the quality of high-grade steel production. (M.D.)

  1. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela;

    2011-01-01

    This paper introduces a non-destructive test method to monitor the development of corrosion products as well as the corrosion-induced formation and propagation of cracks in cementitious materials. A parametric experimental investigation (utilizing x-ray attenuation measurement technique) was cond......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities.......This paper introduces a non-destructive test method to monitor the development of corrosion products as well as the corrosion-induced formation and propagation of cracks in cementitious materials. A parametric experimental investigation (utilizing x-ray attenuation measurement technique) was...... conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...

  2. Classification of hot particles from the Chernobyl accident and nuclear weapons detonations by non-destructive methods

    Both after the Chernobyl accident and nuclear weapon detonations, agglomerates of radioactive material, so-called hot particles, were released or formed which show a behaviour in the environment quite different from the activity released in gaseous or aerosol form. The differences in their characteristic properties, in the radionuclide composition and the uranium and actinide contents are described in detail for these particles. While nuclear bomb hot particles (both from fission and fusion bombs) incorporate well detectable trace amounts of 60Co and 152Eu, these radionuclides are absent in Chernobyl hot particles. In contrast, Chernobyl hot particles contain 125Sb and 144Ce which are absent in atomic bomb HPs. Obvious differences are also observable between fusion and fission bombs' hot particles (significant differences in 152Eu/155Eu, 154Eu/155Eu and 238Pu/239Pu ratios) which facilitate the identification of HPs of unknown provensence. The ratio of 239Pu/240Pu in Chernobyl hot particles could be determined by a non-destructive method at 1:1.5. A non-destructive method to determine the content of non-radioactive elements by Kα-emission measurements was developed by which inactive Zr, Nb, Fe and Ni could be verified in the particles

  3. Challenges in Integrating Nondestructive Evaluation and Finite Element Methods for Realistic Structural Analysis

    Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.

    2000-01-01

    Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.

  4. Verification of nuclear fuel plates by a developed non-destructive assay method

    Nuclear material (NM) verification is a main target for NM accounting and control. In this work a new relative non-destructive assay technique has been developed to verify the uranium mass content in nuclear fuel. The technique uses a planar high-resolution germanium gamma ray spectrometer in combination with the MCNP-4B Monte Carlo transport code. A standard NM sample was used to simulate the assayed NM and to determine the average intrinsic full energy peak efficiency of the detector for assayed configuration. The developed technique was found to be capable of verifying the operator declarations with an average accuracy of about 2.8% within a precision of better than 4%

  5. Innovative nondestructive method determines fracture toughness of in-service pipelines

    Haggag, F.M.; Phillips, L.D. [Advanced Technology Corp., Oak Ridge, TN (United States)

    2004-07-01

    New inspection regulations and practices are now being used to ensure the safe and efficient operation of oil and gas pipelines. This paper provided details of a novel non-destructive stress-strain microprobe (SSM) system that used in situ automated ball indentation (ABI) technique to determine the fracture strength of in-service steel pipelines. ABI-measured key mechanical properties were used alongside in-line smart pigs and on-line ultrasound measurements to determine safe operating pressures of pipelines as well as to determine necessary rehabilitation options. ABI tests were based on progressive indentation with intermediate partial unloadings until the required maximum depth strain is reached. The ABI test provided the actual values of fracture strength properties for base metal, welds, and heat-affected zones in pipelines. This paper presented 2 case studies in which the SSM-ABI system was used: (1) a catastrophic failure that occurred in a natural gas plant following a leak of liquid natural gas into a gas pipeline; and (2) a fire that occurred as a result of a leak from a 356 mm diameter kerosene pipeline. In the first case study, the SSM system was used to measure the tensile and fracture toughness properties from multiple ABI tests on several pipeline pieces. The ABI-measured properties then provided the basis for a fitness-for-service assessment of the remaining pipeline sections at the plant. In the second study, 15 in situ ABI tests were conducted to measure tensile and fracture properties of an undocumented grade of carbon steel pipeline. Results of the tests showed that the pipeline was within pipeline specification codes. Coating failure was determined as the source of corrosion. It was concluded that the SSM-ABI tests provided pipeline operators in both cases with accurate, nondestructive ABI-measured fracture toughness values for deterministic pipeline integrity assessments. 10 refs., 1 tab., 5 figs.

  6. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  7. An example value-impact analysis of non-destructive examination methods used for inservice inspection of BWR piping

    This paper describes work recently completed at Pacific Northwest Laboratory (PNL) to use value-impact (V/I) analysis methods to help guide research to improve the effectiveness of inservice inspection (ISI) procedures at nuclear power plants. The example developed at PNL uses the results of probabilistic fracture mechanics and probabilistic risk analysis (PRA) studies to compare three generic categories of non-destructive examination (NDE) methods. These NDE methods are used to detect possible pipe cracks such as those induced by intergranular stress corrosion (IGSCC). The results of the analysis of this example include 1) quantification of the effectiveness of ISI in increasing plant safety in terms of reduction in core-melt frequency, 2) estimates of the industry cost of performing ISI, 3) estimates of radiation exposures to plant personnel as a result of performing ISI, and 4) potential areas of improvement in the NDE and ISI process

  8. Example value-impact analysis of non-destructive examination methods used for inservice inspection of BWR piping

    This paper describes work recently completed at Pacific Northwest Laboratory (PNL) to use value-impact (V/I) analysis methods to help guide research to improve the effectiveness of inservice inspection (ISI) procedures at nuclear power plants. The example developed at PNL uses the results of probabilistic fracture mechanics and probabilistic risk analysis (PRA) studies to compare three generic categories of non-destructive examination (NDE) methods. These NDE methods are used to detect possible pipe cracks such as those induced by intergranular stress corrosion (IGSCC). The results of the analysis of this example include (1) quantification of the effectiveness of ISI in increasing plant safety in terms of reduction in core-melt frequency, (2) estimates of the industry cost of performing ISI, (3) estimates of radiation exposures to plant personnel as a result of performing ISI, and (4) potential areas of improvement in the NDE and ISI process

  9. A novel non-destructive method for distinguishing between fatigue and stress corrosion cracks using electromagnetic induction

    This paper proposes a new non-destructive method for distinguishing between fatigue and stress corrosion cracks in conductive materials. The method is based on the electromagnetic induction, and utilizes the difference between fatigue and stress corrosion cracks in their response to eddy currents flowing perpendicular and parallel to a crack. A rectangular coil (exciter) driven with AC current induces eddy currents of a uniform distribution. A circular coil (pick-up) attached to the bottom of the exciter senses a magnetic field created by the eddy currents that are perturbed when a crack is in presence. A quantitative parameter, which is defined as a ratio of amplitudes of the pick-up signal for the perpendicular and the parallel directions of eddy currents concerning the orientation of a crack, is proposed to distinguish the two kinds of crack. Numerical simulations and consequent experimental verifications are performed, which demonstrate the validity of the proposed method. (author)

  10. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales.

    Wasko, Adriane P; Martins, Cesar; Oliveira, Claudio; Foresti, Fausto

    2003-01-01

    DNA-based studies have been one of the major interests in conservation biology of endangered species and in population genetics. As species and population genetic assessment requires a source of biological material, the sampling strategy can be overcome by non-destructive procedures for DNA isolation. An improved method for obtaining DNA from fish fins and scales with the use of an extraction buffer containing urea and further DNA purification with phenol-chloroform is described. The methodology combines the benefits of a non-destructive DNA sampling and its high efficiency. In addition, comparisons with other methodologies for isolating DNA from fish demonstrated that the present procedure also becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses. The DNA samples, isolated from different fish species, have been successfully used on random amplified polymorphic DNA (RAPD) experiments, as well as on amplification of specific ribosomal and mitochondrial DNA sequences. The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa. PMID:14641478

  11. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements

  12. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  13. Non-Destructive Testing Methods Applied to Multi-Finned SAP Tubing for Nuclear-Fuel Elements

    The Danish Atomic Energy Commission has undertaken a design study oi an organic-cooled, heavy- water-moderated power reactor. The fuel element for the reactor is a 19-rod bundle; the fuel rods contain sintered uranium-dioxide pellets canned in 2-m long, helically-finned tubes of Sintered Aluminium Product (SAP). A very high quality of the canning tubes is necessary to obtain the optimum heat-transfer conditions and to maintain the integrity of the fuel element during reactor service. Two examples of tube design illustrate the narrow dimensional tolerances. In order to ensure an adequate quality of the canning tubes, a stringent quality control has been established, to a wide extent based upon non-destructive methods. An account is presented of the non-destructive techniques developed for measuring wall thickness and diameters and for detecting defects. The complex 24-finned cross-section prevents the application of ultrasonic or eddy-current methods for wall-thickness measurements. Therefore, a special recording beta-gauge has been developed, based upon the attenuation of beta radiation from a Sr90 source placed inside the tube. An ultrasonic immersion resonance method is used for the continuous recording of the wall thickness of the more simple 12-finned tube design. Inner and outer (across fin tips) diameters are continuously recorded by rapid air-gauge systems. Flaw detection is carried out by the ultrasonic pulse-echo immersion technique and by eddy-current inspection.. Transverse cracks can easily be detected by the ultrasonic method whereas inspection for longitudinal flaws has not appeared feasible with this method. Therefore, eddy-current inspection is applied in addition to the ultrasonic testing. (author)

  14. New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life

    K. Konstankiewicz

    2007-09-01

    Full Text Available This paper presents a new spatial-temporal speckle correlation technique applied for quality evaluation of apples. Evaluations were performed using a nondestructive and noninvasive method based on the interpretation of an optical phenomenon that occurs when the fruit is illuminated with coherent light, referred as biospeckle. The temporal and spatial changes of speckle patterns created by laser light scattered in fruit have been measured through their correlation functions. The cross-correlation coefficient of biospeckle patterns decrease or increase in fruits with different speeds subject to conditions of their freshness, moisture and preservation. Significant exponential changes of the cross-correlation coefficient value difference Ct=15 were observed during apple shelf life. This shows that the method can be utilized for quality evaluation of apples.

  15. Non-destructive radiochemical method for determining carbon concentrations in thin sheet 3% Si-Fe alloy

    A non-destructive radiochemical method for determining carbon concentrations in thin sheet 3% Si-Fe has been developed. An ingot of 3% Si-Fe was doped with 14C during the melting operation, and subsequently processed to give a 0.30-mm thick sheet. Decarburising annealing conditions were controlled in order to obtain sheets having final carbon concentrations in the range 1.5 to 110 ppm. The β-radiation emanating from a thin surface layer of these sheets was found to be independent of sheet thickness, and linearly correlated to the bulk carbon content determined by the Leco carbon analyser, in the range 1.5 to 110 ppm. The radiochemical method is more sensitive for carbon concentrations below 20 ppm than techniques which rely on sample combustion. (author)

  16. Non-destructive methods for the defect detection in the ITER high heat flux components

    Roccella, S., E-mail: selanna.roccella@enea.it [Associazione ENEA-Euratom sulla Fusione C.R.Frascati - 00044-Frascati, RM (Italy); Burrasca, G.; Cacciotti, E. [Associazione ENEA-Euratom sulla Fusione C.R.Frascati - 00044-Frascati, RM (Italy); Castillo, A. [Associazione Euratom-ENEA sulla Fusione, C.R.Casaccia, Via Anguillarese 301-00123 S. Maria di Galeria, RM (Italy); Universidad Politecnica de Valencia, Valencia (Spain); Mancini, A.; Pizzuto, A. [Associazione ENEA-Euratom sulla Fusione C.R.Frascati - 00044-Frascati, RM (Italy); Tati, A. [Associazione Euratom-ENEA sulla Fusione, C.R.Casaccia, Via Anguillarese 301-00123 S. Maria di Galeria, RM (Italy); Visca, E. [Associazione ENEA-Euratom sulla Fusione C.R.Frascati - 00044-Frascati, RM (Italy)

    2011-10-15

    This paper discusses the application of non-destructive testing (NDT) by ultrasonic technique for the control of the joining interfaces of the ITER divertor vertical target plasma facing units. The defect detection capability has to be proved for both metal to metal and metal to carbon/carbon fibre composite (CFC) joints because these two types of joints have to be realized for the manufacturing of the high heat flux units. In this paper the UT results coming from the investigation performed during the manufacturing, but also after the thermal fatigue testing (up to 20 MW/m{sup 2}) of six mock-ups manufactured using the Hot Radial Pressure technology (HRP) in ENEA labs are presented and compared with the evidences from the final destructive examination. Regarding the Cu/CFC joint, the effectiveness of the ultrasonic test has been deeply studied due to the high acoustic attenuation of CFC to ultrasonic waves. To investigate the possibility to use the ultrasonic technique for this type of joint, an 'ad hoc' flat Cu/CFC joint sample, that reproduces the actual annular joint interfaces, was manufactured. This flat sample has the advantage of being easily tested by probes with different geometry and frequency. UT results are compared with X-ray and eddy current testing of the same sample.

  17. Pore size evaluation of mesoporous organosilicate films by non-destructive X-ray reflectivity methods

    200-nm-thick organosilicate films deposited by mixture of tetraethyl orthosilicate (TEOS) and methyltrimethoxysilane (MTMS) dissolving in different cetrimonium bromide (CTAB)/ethanol ratios were characterized in terms of pore size determination and its distribution. Under the toluene ambient, the pores would adsorb the gas hence elevating the whole film density. The X-ray reflectivity (XRR) equipped with mass flow control was utilized to detect the film density increasing. By fitting with Gaussian function and conversing with Kelvin's equation, the pore size was increased from 6.2 to 10.8 Å as the CTAB/ethanol ratio increasing to 0.075. It was attributed to the ethanol and CTAB enhanced the TEOS hollow droplets stability and dissolvability. As the CTAB/ethanol ratio is further increased, the pore size is reversely decreased, owing to the formation of solid microspheres. The non-destructive XRR measurement can evaluate the sub-nano pore sizes and its size distribution, which would fascinate the development and characterization of back-end of line process. (author)

  18. Non-destructive methods for the defect detection in the ITER high heat flux components

    This paper discusses the application of non-destructive testing (NDT) by ultrasonic technique for the control of the joining interfaces of the ITER divertor vertical target plasma facing units. The defect detection capability has to be proved for both metal to metal and metal to carbon/carbon fibre composite (CFC) joints because these two types of joints have to be realized for the manufacturing of the high heat flux units. In this paper the UT results coming from the investigation performed during the manufacturing, but also after the thermal fatigue testing (up to 20 MW/m2) of six mock-ups manufactured using the Hot Radial Pressure technology (HRP) in ENEA labs are presented and compared with the evidences from the final destructive examination. Regarding the Cu/CFC joint, the effectiveness of the ultrasonic test has been deeply studied due to the high acoustic attenuation of CFC to ultrasonic waves. To investigate the possibility to use the ultrasonic technique for this type of joint, an 'ad hoc' flat Cu/CFC joint sample, that reproduces the actual annular joint interfaces, was manufactured. This flat sample has the advantage of being easily tested by probes with different geometry and frequency. UT results are compared with X-ray and eddy current testing of the same sample.

  19. Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials

    Pujari, P.K., E-mail: pujari@barc.gov.in [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sudarshan, K.; Tripathi, R.; Dutta, D.; Maheshwari, P.; Sharma, S.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Srivastava, D. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Krause-Rehberg, R. [Martin Luther University Halle, Dept. of Physics, 06099 Halle (Germany); Butterling, M.; Anwand, W.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510119, 01314 Dresden (Germany)

    2012-01-01

    This paper describes a new methodology for volumetric assay of defects in large engineering materials nondestructively. It utilizes high energy photons produced by nuclear reaction to create positrons in situ whose fate is followed using conventional positron spectroscopic techniques. The photon induced positron annihilation (PIPA) spectroscopy system has been set-up using a Folded Tandem Ion Accelerator (FOTIA). Possibility of using prompt {gamma}-rays produced in nuclear reactions {sup 27}Al({sup 1}H,{gamma}){sup 28}Si and {sup 19}F({sup 1}H,{alpha}{gamma}){sup 16}O has been examined. The reaction {sup 19}F({sup 1}H,{alpha}{gamma}){sup 16}O is seen to provide higher photon flux (and positron yield) and measurements have been carried out in large samples of metals and polymers. We could establish good sensitivity of the technique as well as reproducibility in a number of measurements. This technique has been used to carry out defect studies in cold worked zircaloy-2 plates. The measured S-parameter, indicative of defect concentration, was seen to correlate well with the measured residual stress using X-ray technique. The results were validated by {gamma}-induced positron annihilation lifetime measurements at ELBE LINAC based GiPS facility.

  20. Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials

    Pujari, P. K.; Sudarshan, K.; Tripathi, R.; Dutta, D.; Maheshwari, P.; Sharma, S. K.; Srivastava, D.; Krause-Rehberg, R.; Butterling, M.; Anwand, W.; Wagner, A.

    2012-01-01

    This paper describes a new methodology for volumetric assay of defects in large engineering materials nondestructively. It utilizes high energy photons produced by nuclear reaction to create positrons in situ whose fate is followed using conventional positron spectroscopic techniques. The photon induced positron annihilation (PIPA) spectroscopy system has been set-up using a Folded Tandem Ion Accelerator (FOTIA). Possibility of using prompt γ-rays produced in nuclear reactions 27Al( 1H,γ) 28Si and 19F( 1H,αγ) 16O has been examined. The reaction 19F( 1H,αγ) 16O is seen to provide higher photon flux (and positron yield) and measurements have been carried out in large samples of metals and polymers. We could establish good sensitivity of the technique as well as reproducibility in a number of measurements. This technique has been used to carry out defect studies in cold worked zircaloy-2 plates. The measured S-parameter, indicative of defect concentration, was seen to correlate well with the measured residual stress using X-ray technique. The results were validated by γ-induced positron annihilation lifetime measurements at ELBE LINAC based GiPS facility.

  1. A multi-inspection non-destructive testing method for quality evaluation of composite riveted structure

    Wang, Weihan; He, Jingjing; Yang, Jingsong; Liu, Shengwang; Zhang, Weifang

    2015-03-01

    Carbon fiber composites have excellent mechanical properties, which are widely used in aerospace industry. However, 60% to 80% damages in composite occur in riveted structures. This research focuses on the quality evaluation of three major riveted structures used in mechanical connection: pressure riveted connection, hammer riveted connection and pull riveted connection. The non-destructive testing results show that the pull riveting technology introduces minimal damage to the composite, but the hammer riveted structure can be seriously damaged by the riveting technology. The pull riveted structure is an interference fit, which makes the composite plate firmly fixed. However, the fix is weak in the pressure riveted structure and the hammer riveted structure, due to the small gap between the rivets and plate. The results show that the pull riveted structure has a higher tensile strength compared with the pressure riveted structure and hammer riveted structure. The hammer riveted structure has a large dispersion in mechanical properties caused by the impact loading used in the hammer riveting technology.

  2. Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials

    This paper describes a new methodology for volumetric assay of defects in large engineering materials nondestructively. It utilizes high energy photons produced by nuclear reaction to create positrons in situ whose fate is followed using conventional positron spectroscopic techniques. The photon induced positron annihilation (PIPA) spectroscopy system has been set-up using a Folded Tandem Ion Accelerator (FOTIA). Possibility of using prompt γ-rays produced in nuclear reactions 27Al(1H,γ)28Si and 19F(1H,αγ)16O has been examined. The reaction 19F(1H,αγ)16O is seen to provide higher photon flux (and positron yield) and measurements have been carried out in large samples of metals and polymers. We could establish good sensitivity of the technique as well as reproducibility in a number of measurements. This technique has been used to carry out defect studies in cold worked zircaloy-2 plates. The measured S-parameter, indicative of defect concentration, was seen to correlate well with the measured residual stress using X-ray technique. The results were validated by γ-induced positron annihilation lifetime measurements at ELBE LINAC based GiPS facility.

  3. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex B. Sensors and non-destructive testing methods for damage detection in wind turbine blades

    Lading, Lars; McGugan, Malcolm; Sendrup, P.;

    2002-01-01

    This annex provides a description of the sensor schemes and the non-destructive testing (NDT) methods that have been investigated in this project. Acoustic emission and fibre optic sensors are described in some detail whereas only the key features ofwell-established NDT methods are presented. Est...

  4. Can XRF scanning of speleothems be used as a non-destructive method to identify paleoflood events in caves?

    Martin Finné

    2015-01-01

    Full Text Available We have developed a novel, quick and non-destructive method for tracing flood events in caves through the analysis of a stalagmite thick section with an XRF core scanner. The analyzed stalagmite has multiple horizons of fine sediments from past flood events intercalated with areas of cleaner calcite. Flood events detected from the elemental XRF core scanning data show good agreement with the position of flood horizons identified in petrographic thin sections. The geochemical composition of the individual flood layers shows that in certain cases the clay horizons had a distinct geochemical fingerprint suggesting that it may be possible to distinguish individual flood layers based on their geochemistry. This presents the possibility for using flood events as marker horizons to chronologically tie different speleothems in a cave to each other.

  5. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  6. Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.

    1995-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  7. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for digital radiographic (DR) test methods

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of digital X-ray imaging equipment by specifying image data transfer and archival methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitions, information modules and a ...

  8. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for X-ray computed tomography (CT) test methods

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of X-ray computed tomography (CT) imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitio...

  9. Method for non-destructive measurement of heat affected zone of identification code on nuclear fuel rod

    In a method for the nondestructive measurement of the depth of the heat affected zone underneath a laser generated identification code on a nuclear fuel rod tube, the change in impedance of an electromagnetic foil produced by a portion of the tube is measured before and after the etching of a bar code is performed by use of laser power. The impedance change in the coil produced by the bar code-bearing tube portion is compared with the impedance change produced in the coil by the same tube portion before the bar code is generated thereon to determine whether a maximum allowed depth of the heat affected zone of the tube portion has been exceeded. (author)

  10. Material Nondestructive Evalution by Eddy Current Testing Material Nondestructive Evalution by Eddy Current Testing

    Tomas Marek

    2005-01-01

    Eddy current method is one of many methods of nondestructive testing. The aim of nondestructive testing is prevention of equipment breakdown without any impact on equipment operation. Especially breakdowns coused by hidden material defect from witch is equipment or part of equipment made. This paper explains the basic principles of method and present its functionality by simulation.
    Eddy current method is one of many methods of nondestructive testing. The aim of nondestructive test...

  11. Density determination of nano-layers depending to the thickness by non-destructive method

    Gacem, A. [Département des Sciences Fondamentales, Faculté des Sciences et Sciences de l' Ingénieur, Université 20 Aout.1955, Skikda, BP 26, DZ-21000 Algérie and Laboratoire des Semi-Conducteurs, Département de Physique (Algeria); Doghmane, A.; Hadjoub, Z. [Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, BP 12, Annaba, DZ-23000 (Algeria)

    2013-12-16

    Non-destructive tests used to characterize and observe the state of the solids near the surface or at depth, without damaging them or damaging them. Density is frequently used to follow the variations of the physical structure of the samples, as well as in the calculation of quantity of material required to fill a given volume, and it is also used to determine the homogeneity of a sample. However, the measurement of the acoustic properties (density, elastic constants,…) of a thin film whose thickness is smaller than several atomic layers is not easy to perform. For that reason, we expose in this work the effects of the thicknesses of thin films on the evolution of the density, where several samples are analyzed. The samples selected structures are thin films deposited on substrates, these coatings have thicknesses varying from a few atomic layers to ten or so micrometers and can change the properties of the substrate on which they are deposited. To do so, we considered a great number of layers (Cr, Al, SiO{sub 2}, ZnO, Cu, AlN, Si{sub 3}N{sub 4}, SiC) deposited on different substrates (Al{sub 2}O{sub 3}, Cu and Quartz). It is first shown that the density exhibits a dispersive behaviour. Such a behaviour is characterized by an initial increase (or decrease) followed by a saturated region. Further investigations of these dependences led to the determination of a semi-empirical universal relations, ρ=f(h/λ{sub T}), for all the investigated layer/substrate combination. Such expression could be of great importance in the density prediction of even layers thicknesses.

  12. Nondestructive methods of determination of isotope composition and burnup of spent fuel from WWER-type reeactor

    Application of the nondestructive methods of analysis (NDA) is discussed being used for determination of burnup and isotope ratio as well as composition of spent fuel elements in the fuel assemblies of WWER-type reactor. Results are discussed which have been obtained by means of the γ-spectrometric method. Prospects are noted of a semiempiric method of determination of the burnup and isotope ratio of the fuel in WWER-type reactors. This method is based on the combination of the data which have been obtained by the γ-spectroscopy and of calculation. NDA has been considered which is based on the registration of self radiation of neutrons from spent fuel elements and assemblies. This method has some advantages as to compare to the γ-spectrometric one which permits to hope for successful, in the case of it's firther elaboration, appliaction of the neutron passive method both in the fuel cycle and in the safeguard system. In the conclusion, prospects are discussed of development and application of the NDA for spent fuels from nuclear power plants

  13. Application of nondestructive methods for qualification of high density fuels in the IEA-R1 reactor

    Silva, Jose E.R.; Silva, Antonio T.; Domingos, Douglas B.; Terremoto, Luis A.A., E-mail: jersilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN/CNEN-SP manufactures fuels to be used in its research reactor - the IEA-R1. To qualify those fuels, it is necessary to check if they have a good performance under irradiation. As Brazil still does not have nuclear research reactors with high neutron fluxes, or suitable hot cells for carrying out post-irradiation examination of nuclear fuels, IPEN/CNEN-SP has conducted a fuel qualification program based on the use of uranium compounds (U{sub 3}O{sub 8} and U{sub 3}Si{sub 2} dispersed in Al matrix) internationally tested and qualified to be used in research reactors, and has attained experience in the technological development stages for the manufacturing of fuel plates, irradiation and non-destructive post-irradiation testing. Fuel elements containing low volume fractions of fuel in the dispersion were manufactured and irradiated successfully directly in the core of the IEA-R1. However, there are plans at IPEN/CNEN-SP to increase the uranium density of the fuels. Ten fuel miniplates (five containing U{sub 3}O{sub 8}-Al and five containing U{sub 3}Si{sub 2}-Al), with densities of 3.2 gU/cm{sup 3} and 4.8 gU/cm{sup 3} respectively, are being irradiated inside an irradiation device placed in a peripheral position of the IEA-R1 core. Non-destructive methods will be used to evaluate irradiation performance of the fuel miniplates after successive cycles of irradiation, by means: monitoring the reactor parameters during operation; periodic underwater visual inspection of fuel miniplates, eventual sipping test for fuel miniplates suspected of leakage and underwater measuring of the miniplate thickness for assessment of the fuel miniplate swelling. (author)

  14. Application of nondestructive methods for qualification of high density fuels in the IEA-R1 reactor

    IPEN/CNEN-SP manufactures fuels to be used in its research reactor - the IEA-R1. To qualify those fuels, it is necessary to check if they have a good performance under irradiation. As Brazil still does not have nuclear research reactors with high neutron fluxes, or suitable hot cells for carrying out post-irradiation examination of nuclear fuels, IPEN/CNEN-SP has conducted a fuel qualification program based on the use of uranium compounds (U3O8 and U3Si2 dispersed in Al matrix) internationally tested and qualified to be used in research reactors, and has attained experience in the technological development stages for the manufacturing of fuel plates, irradiation and non-destructive post-irradiation testing. Fuel elements containing low volume fractions of fuel in the dispersion were manufactured and irradiated successfully directly in the core of the IEA-R1. However, there are plans at IPEN/CNEN-SP to increase the uranium density of the fuels. Ten fuel miniplates (five containing U3O8-Al and five containing U3Si2-Al), with densities of 3.2 gU/cm3 and 4.8 gU/cm3 respectively, are being irradiated inside an irradiation device placed in a peripheral position of the IEA-R1 core. Non-destructive methods will be used to evaluate irradiation performance of the fuel miniplates after successive cycles of irradiation, by means: monitoring the reactor parameters during operation; periodic underwater visual inspection of fuel miniplates, eventual sipping test for fuel miniplates suspected of leakage and underwater measuring of the miniplate thickness for assessment of the fuel miniplate swelling. (author)

  15. 29 CFR 1919.78 - Nondestructive examinations.

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Nondestructive examinations. 1919.78 Section 1919.78 Labor... Nondestructive examinations. (a) Wherever it is considered necessary by the accredited person or his authorized...., examination of structure or parts by electronic, ultrasonic, or other nondestructive methods may be...

  16. Weed control based on real time patchy application of herbicides using image analysis as a non-destructive estimation method for weed infestation and herbicide effects

    Asif, Ali

    crop yield. The excessive use of spraying can potentially be reduced by spraying only those parts of the field where it has economic importance. The competition relation between weeds and crop was ana-lyzed in context of real time patch spray. A non-destructive image analysis method was developed to...

  17. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two

  18. Method Developed for the High-Temperature Nondestructive Evaluation of Fiber-Reinforced Silicon Carbide Ceramic Matrix Composites

    Goldsby, Jon C.

    1998-01-01

    Ceramic matrix composites have emerged as candidate materials to allow higher operating temperatures (1000 to 1400 C) in gas turbine engines. A need, therefore, exists to develop nondestructive methods to evaluate material integrity at the material operating temperature by monitoring thermal and mechanical fatigue. These methods would also have potential as quality inspection tools. The goal of this investigation at the NASA Lewis Research Center is to survey and correlate the temperature-dependent damping and stiffness of advanced ceramic composite materials with imposed thermal and stress histories that simulate in-service turbine engine conditions. A typical sample size of 100 by 4 by 2 cubic millimeters, along with the specified stiffness and density, placed the fundamental vibration frequencies between 100 and 2000 Hz. A modified Forster apparatus seemed most applicable to simultaneously measure both damping and stiffness. Testing in vacuum reduced the effects of air on the measurements. In this method, a single composite sample is vibrated at its fundamental tone; then suddenly, the mechanical excitation is removed so that the sample's motion freely decays with time. Typical results are illlustrated in this paper.

  19. Applications of Non-destructive methods (GPR and 3D Laser Scanner) in Historic Masonry Arch Bridge Assessment

    Alani, Amir; Banks, Kevin

    2014-05-01

    There exist approximately 70,000 masonry arch bridge spans (brick and stone) in the UK with tens of thousands more throughout Europe. A significant number of these bridges are still in operation and form part of the road and rail network systems in many countries. A great majority of these bridges are in desperate need of repair and maintenance. Applications of non-destructive testing methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and vibration detecting sensors amongst many others have been used to assess and monitor such structures in the past few years. This presentation provides results of the applications of a 2GHz GPR antenna system and a 3D laser scanner on a historic masonry arch bridge (the Old Bridge, Aylesford) located in Kent, in the south east of England. The older part of the bridge (the mid-span) is 860 years old. The bridge was the subject of a major alteration in 1811. This presentation forms part of a larger ongoing study which is using the two above mentioned non-destructive methods for long-term monitoring of the bridge. The adopted survey planning strategy and technique, data acquisition and processing as well as challenges encountered during actual survey and fieldworks have been discussed in this presentation. As a result of this study the position of different layers of the deck structure has been established with the identification of the original stone base of the bridge. This information in addition to the location of a number of structural ties (anchors - remedial work carried out previously) in the absence of reliable and accurate design details proved to be extremely useful for the modelling of the bridge using the finite element method. Results of the 3D laser scanning of the bridge have also been presented which have provided invaluable data essential for the accurate modelling of the bridge as well as the long term monitoring of the bridge. 2014 EGU-GA GI3.1 Session, organised by COST Action

  20. Nondestructive evaluation

    Martz, H E

    1998-01-01

    The Nondestructive Evaluation (NDE) thrust area at Lawrence Livermore National Laboratory (LLNL) supports initiatives that advance inspection science and technology. The goal is to provide cutting-edge technologies, that show promise for quantitative inspection and characterization tools two to three years into the future. The NDE thrust area supports a multidisciplinary team, consisting of mechanical and electronics engineers, physicists, materials and computer scientists, chemists, technicians, and radiographers. These team members include personnel that cross departments within LLNL, and some are from academia and industry, within the US and abroad. This collaboration brings together the necessary and diver disciplines to provide the key scientific and technological advancements required to meet LLNL programmatic and industrial NDE challenges. The primary contributions of the NDE thrust area this year are described in these five reports: (1) Image Recovery Techniques for X-Ray Computed Tomography for Limited-Data Environments; (2) Techniques for Enhancing Laser Ultrasonic Nondestructive Evaluation; (3) Optical Inspection of Glass-Epoxy Bonds; (4) Miniature X-Ray Source Development; and (5) Improving Computed Tomography Design and Operation Using Simulation Tools.

  1. Review of fiber optic methods for strain monitoring and non-destructive testing

    Bruinsma, A.J.A.

    1989-01-01

    A number of fiber optic methods has been developed for the inspection of critical components of mechanical structures. For inspection from a remote location various methods have been developed for the detection of cracks and strain. Some of these monitoring methods use a fiber mesh or OTDR techniques for distributed measurement of strain or to locate cracks. Fiber optic methods for non-contact ultrasonic inspection require other techniques, e.g. a pulsed laser with fiber optic delay lines and...

  2. Review of fiber optic methods for strain monitoring and non-destructive testing

    Bruinsma, A.J.A.

    1989-01-01

    A number of fiber optic methods has been developed for the inspection of critical components of mechanical structures. For inspection from a remote location various methods have been developed for the detection of cracks and strain. Some of these monitoring methods use a fiber mesh or OTDR technique

  3. A method of non-destructive quantitative analysis of the ancient ceramics with curved surface

    Generally the surface of the sample should be smooth and flat in XRF analysis, but the ancient ceramics and hardly match this condition. Two simple methods are put forward in fundamental method and empirical correction method of XRF analysis, so the analysis of little sample or the sample with curved surface can be easily completed

  4. The Role of Mathematical Methods in Efficiency Calibration and Uncertainty Estimation in Gamma Based Non-Destructive Assay - 12311

    Mathematical methods are being increasingly employed in the efficiency calibration of gamma based systems for non-destructive assay (NDA) of radioactive waste and for the estimation of the Total Measurement Uncertainty (TMU). Recently, ASTM (American Society for Testing and Materials) released a standard guide for use of modeling passive gamma measurements. This is a testimony to the common use and increasing acceptance of mathematical techniques in the calibration and characterization of NDA systems. Mathematical methods offer flexibility and cost savings in terms of rapidly incorporating calibrations for multiple container types, geometries, and matrix types in a new waste assay system or a system that may already be operational. Mathematical methods are also useful in modeling heterogeneous matrices and non-uniform activity distributions. In compliance with good practice, if a computational method is used in waste assay (or in any other radiological application), it must be validated or benchmarked using representative measurements. In this paper, applications involving mathematical methods in gamma based NDA systems are discussed with several examples. The application examples are from NDA systems that were recently calibrated and performance tested. Measurement based verification results are presented. Mathematical methods play an important role in the efficiency calibration of gamma based NDA systems. This is especially true when the measurement program involves a wide variety of complex item geometries and matrix combinations for which the development of physical standards may be impractical. Mathematical methods offer a cost effective means to perform TMU campaigns. Good practice demands that all mathematical estimates be benchmarked and validated using representative sets of measurements. (authors)

  5. A non-destructive method for quantification the irradiation doses of irradiated sucrose using Vis/NIR spectroscopy.

    Gong, Aiping; Qiu, Zhengjun; He, Yong; Wang, Zhiping

    2012-12-01

    This article proposes a new method for fast discrimination of irradiation doses of sucrose based on visible-near infrared (Vis/NIR) spectroscopy technology. 250 sucrose samples were categorized into five groups to be irradiated at 0, 1.5, 3.0, 4.5, 6.0 kGy respectively and prepared for the discrimination analysis. The 50 samples of each group were randomly divided into a calibration set containing 40 samples, and a validation set containing the remaining 10 samples. Principal component clustering analysis (PCCA) was applied for the extraction of principal components (PCs) and for clustering analysis. The first five PCs were regarded as the inputs to develop the back propagation neural network (BPNN) model. The performance of the model was validated by the 50 unknown samples and the BPNN achieved an excellent precision and recognition ration of 100%. The results indicated that Vis/NIR spectroscopy could be utilized as a rapid and non-destructive method for the classification of different irradiation doses of irradiated sucrose. PMID:23041915

  6. Defect Reconstruction by Non-Destructive Analyzing Methods as Basis for Fracture Mechanical Evaluation

    In standard ultrasonic inspection different registration levels are used and all echoes exceeding these levels are reported transforming the echo amplitude with respect to the travel time into reference reflectors using e.g. the DGS (distance, gain, size) evaluation method. The DGS uses penny-shaped reference reflectors, which of course have only poor correlation with real defects. Therefore during the last 20 years a lot of research work was spent on the development of new analyzing methods which may be roughly divided in methods which - analyze the defects performing a reconstruction which results in an image of the defects - classify the defects from their characteristic ultrasonic scattering behaviour, the so called stationary methods. This paper focusses on the reconstructing (imaging) methods. The potential of the analyzing methods shown above is really high but further research work should be done to improve the interpretation of the results. Possibly a knowledge based expert system could be helpful to overcome this problem. (author)

  7. Lorestan Bronze Plate Design Identification by Nondestructive Radiography Method and Image Processing by Means of Histogram Matching

    Radiography is known as one of the oldest and most widely used nondestructive testing techniques, where it introduces the most appreciated technique by producing images which are acting as unique fingerprint records of samples of interest. Among the interesting applications of radiography are archaeological and art applications. In this research, radiography was implemented for identification of a damaged art-historical material. The sample was a brass plate belonging to Iran cultural heritage. The estimated age of the plate was about 3500 years. The plate was discovered in Lorestan province, where it is generally called Lorestan bronze. The plate was damaged seriously due to serious corrosion environmental attacks, and recognition of the sample was considered as the major problem. The simple radiography method was quite helpful for the plate determination but the method suffered from some major drawbacks due to contrast and thickness measurements. The thickness measurement and corrosion/erosion evaluation were the vital components of the inspection. The image processing techniques and precise thickness measurement method were added to the digitized radiographs. For the digital image processing, a histogram matching algorithm and an edge detection method were used. After all, the resulted image showed an enhanced quality image of the original traces of the hammered design. The results showed that a good experimental setup of radiography along with the image processing technique can give a high quality radiographic image which is able to be used effectively for the identification of art antiques. The human evaluation results also confirmed the ability of the proposed method with a high degree of certainty.

  8. HTR fuel integrity with electromagnetic, vision and radiographic nondestructive evaluation methods - HTR2008-58092

    In order to ensure HTR fuel qualification, as well as reactor safety, particles need to satisfy a set of specifications including particle integrity. To achieve this goal, AREVA NP has been engaged for several years in a R and D program aiming at the development of innovative industrial non destructive evaluation methods for HTR fuel as alternatives to destructive methods. After investigating a number of potential techniques, development has been focused on vision and eddy currents, both aiming at crack detection. High resolution Phase Contrast X-Ray imaging was also studied for structural defects characterization. For all these techniques, besides the development of HTR fuel dedicated control methods, equipment and probes were specifically designed, tested and optimized thanks to experiments conducted on real and artificial flaws, yielding for some of the methods to potential industrialization and quality control performed over 100% of the fuel production. (authors)

  9. Non-destructive testing of concrete structures with the impact-echo method

    The impact-echo method is based on the use of elastic waves. It was developed in the 1980 for the testing of concrete structures and is currently widespread. Main application areas are the component and coating thickness measurement and detection of delaminations, voids and other defects. Specifically, the method is also used to check the injection faults of clamping channels. Another application is the determination of mechanical material parameters such as the modulus of elasticity. Since the original development of the method has undergone several enhancements. The conversion of a single-point measurement method towards a area component testing, the use by the optimized measurement data acquisition and evaluation enlarged and delivered an important prerequisite for increasing the efficiency. The use of air-coupled sensors not only increases the measurement speed but also provides advantages in rough component surfaces. The imaging analysis in conjunction with signal processing algorithms simplifies the interpretation and allows statistical evaluation.

  10. Application of acoustic emission analysis as a non-destructive test method for production control

    The application of acoustic emission measurements with a bandpass of 50 kHz - 1,5 MHz for the detection of fatigue-crack propagation in pressure vessels and to the perception of welding cracks is investigated. The method can also be used in laboratory tests for the determination of structural transformations of metals, for examinations in connection with stress-corrosion cracking and for tests of laminated materials. Some possibilities of application and the limits of the methode are shown. (orig.)

  11. Investigation of the Potential for Evaluation of Concrete Flaws Using Nondestructive Testing Methods

    Alexandre Lorenzi; Luciane Fonseca Caetano; Josue Argenta Chies; Luiz Carlos Pinto da Silva Filho

    2014-01-01

    Adoption of periodic or continuous monitoring strategies to assess condition state of infrastructure elements is a vital part of service life management (SLM). NDT methods are increasingly seen as an attractive and viable strategy to support condition monitoring. Over the last 15 years, the LEME research group at UFRGS has investigated several aspects related to the use of the ultrasonic pulse velocity (UPV) method and its potential for real field applications. One of the main advances involv...

  12. Development of nondestructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression

    Lee, Sang Dae; Lohumi, Santosh; Cho, Byoung Kwan [Dept. of Biosystems Machinery Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Moon Sung [United States Department of Agriculture Agricultural Research Service, Washington (United States); Lee, Soo Hee [Life and Technology Co.,Ltd., Hwasung (Korea, Republic of)

    2014-08-15

    This study was conducted to develop a non-destructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression(PLSR). Garlic and ginger powder, which are used as natural seasoning and in health supplement foods, were selected for this experiment. Samples were adulterated with corn starch in concentrations of 5-35%. PLSR models for adulterated garlic and ginger powders were developed and their performances evaluated using cross validation. The R{sup 2}{sub c} and SEC of an optimal PLSR model were 0.99 and 2.16 for the garlic powder samples, and 0.99 and 0.84 for the ginger samples, respectively. The variable importance in projection (VIP) score is a useful and simple tool for the evaluation of the importance of each variable in a PLSR model. After the VIP scores were taken pre-selection, the Raman spectrum data was reduced by one third. New PLSR models, based on a reduced number of wavelengths selected by the VIP scores technique, gave good predictions for the adulterated garlic and ginger powder samples.

  13. Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments

    Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian

    2013-01-01

    Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.

  14. Study of development of non-destructive method for determining FGR from high burned PWR type fuel rod

    Experimental study was made to evaluate the FGR (Fission Product Gas Release) from high burned PWR type fuel rods by means of non-destructive method through measurement of the gamma activity of 85Kr isotope which was accumulated in the fuel top plenum. Experimental result shows that it is possible to know the amounts of FGR at fuel plenum by the equations given in the followings. FGR = 0.28C/Vf or FGR = 0.07C where, FGR (%) is the amounts of Xe and Kr released from UO2 fuel, C (counts/h) the radioactivity of 85Kr at plenum of the tested fuel rod and Vf (ml) the plenum volume of the tested fuel rod, respectively. The present study was made by using 14 x 14 PWR type fuel rods preirradiated up to the burn-up of 42.1 MWd/kgU, followed by the pulse irradiation at Nuclear Safety Research Reactor of Japan Atomic Energy Research Institute (JAERI). The FGR of the tested segmented fuel rods were measured by puncturing and found to range from 0.6% to 12% according to the magnitude of the deposited energy given by pulse. Estimated experimental error bands against the above equations were within plus minus 30%. (author)

  15. Quantitative nondestructive methods for the determination of ticlopidine in tablets using reflectance near-infrared and Fourier transform Raman spectroscopy.

    Markopoulou, C K; Koundourellis, J E; Orkoula, M G; Kontoyannis, C G

    2008-02-01

    Two different nondestructive spectroscopy methods based on near-infrared (NIR) and Fourier transform (FT) Raman spectroscopy were developed for the determination of ticlopidine-hydrochloride (TCL) in pharmaceutical formulations and the results were compared to those obtained by high-performance liquid chromatography (HPLC). An NIR assay was performed by reflectance over the 850-1700 nm region using a partial least squares (PLS) prediction model, while the absolute FT-Raman intensity of TCL's most intense vibration was used for constructing the calibration curve. For both methodologies the spectra were obtained from the as-received film-coated tablets of TCL. The two quantitative techniques were built using five "manual compressed" tablets containing different concentrations and validated by evaluating the calibration model as well as the accuracy and precision. The models were applied to commercial preparations (Ticlid). The results were compared to those obtained from the application of HPLC using the methodology described by "Sanofi Research Department" and were found to be in excellent agreement, proving that NIR, using fiber-optic probes, and FT-Raman spectroscopy can be used for the fast and reliable determination of the major component in pharmaceutical analysis. PMID:18284803

  16. Development of nondestructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression

    This study was conducted to develop a non-destructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression(PLSR). Garlic and ginger powder, which are used as natural seasoning and in health supplement foods, were selected for this experiment. Samples were adulterated with corn starch in concentrations of 5-35%. PLSR models for adulterated garlic and ginger powders were developed and their performances evaluated using cross validation. The R2c and SEC of an optimal PLSR model were 0.99 and 2.16 for the garlic powder samples, and 0.99 and 0.84 for the ginger samples, respectively. The variable importance in projection (VIP) score is a useful and simple tool for the evaluation of the importance of each variable in a PLSR model. After the VIP scores were taken pre-selection, the Raman spectrum data was reduced by one third. New PLSR models, based on a reduced number of wavelengths selected by the VIP scores technique, gave good predictions for the adulterated garlic and ginger powder samples.

  17. Positron annihilation spectroscopy - a non-destructive method for lifetime prediction in the field of dynamical material testing

    The fatigue behavior of iron-based materials has been investigated by rotating bending testing, employing positron annihilation spectroscopy to probe defects on the atomic level. Positron annihilation spectra have been recorded at various stages of material fatigue. The defect density has been determined by analysing the line shape of the Doppler broadening of the annihilation radiation in the photo peak. The line shape parameter (S parameter), a measure of the defect density, showed a linear relation to the logarithm of the number of loadings, thus from only a small number of loadings it is possible to determine the remaining useful life of the sample. Furthermore, along the longitudinal sample axis spatially resolved line-scans are taken using the Bonn Positron Microprobe. Due to the special sample geometry, the stress gradient allows to obtain the S parameter for different values of the applied load using the very same sample. This leads to a way to determine a complete Woehler diagram using a non-destructive method for just one sample. (orig.)

  18. A multi-sensing electromechanical impedance method for non-destructive evaluation of metallic structures

    One of the problems with regard to the electromechanical impedance (EMI) method in the field of structural health monitoring is the relatively high cost requirement of the system. Since the EMI method utilizes a piezoelectric material in small sizes, numerous pieces of equipment are usually required to cover a large area. Thus, in order to compete for the increasing demand for structural health monitoring of components and structures, the technique must be cost effective and large areas need to be rapidly scanned with minimal disruption to the structure’s operation. In this study, a technique is proposed for the EMI method to allow sensing of multiple areas with a single frequency sweep, minimizing both the time and the cost of the method. The principle of the proposed technique is the utilization of different resonance frequencies with the piezoelectric material, allowing one to find the location of the damage. Experiments show exceptional results, bringing the EMI method a step closer for real field application. (paper)

  19. Verification of recursive probabilistic integration (RPI) method for fatigue life management using non-destructive inspections

    Chen, Tzikang J.; Shiao, Michael

    2016-04-01

    This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.

  20. Materials research and non-destructive testing using neutron tomography methods

    This paper describes the modern tool of neutron tomography as an alternative and complement to the more common X-ray options and its potential for applications in materials research and engineering. Based on our own practical experiences, the challenges, success and limitations of neutron tomography are sketched and the potential for further improvements and methodical extensions is described. Using the performance at dedicated neutron imaging beam lines, there are many new aspects which only can be made available with neutron methods such as energy-selective imaging near Bragg edges, imaging with polarized neutrons and even imaging in the resonance region. Therefore, it is of high importance to get more and easier access to suitable beam ports at advanced neutron sources to make methodical progress and to attract more scientific and industrial users. (orig.)

  1. Application of the bead flush method to welded pipes to evaluate residual stresses nondestructively

    To assess the structural integrity of welded structures during the design and in-service inspection, it is important to evaluate welding residual stresses. Recently, the design process of structures has shifted from 'the design by rule' to 'the design by analysis' using the FEM (finite element method) codes. As the design process advances, analytical processes have formed a link in the chain of manufacturing and in-service inspection procedures. Under this circumstance, authors have proposed a new method called 'the Bead Flush Method', to evaluate the welding residual stresses by utilizing the FEM data constructed during the structural design. In this method, eigenstrains as sources of residual stresses are calculated from released elastic strains after removal of reinforcement of the weld by applying the inverse analysis. Then, residual stresses as well as displacements at any location concerned are evaluated by imposing eigenstrains as initial strains in the FEM analysis. Mechanical properties required through this analysis are the elastic constants at room temperature. No further properties, such as temperature dependencies of the yield strength and the thermal coefficient, are needed. By now, we have confirmed its utility for welded plates by computer simulations and experiments. In this study, further development of this method for application to welded pipes was attempted. Despite its relatively simple shape of pipes (axe symmetrical) compared with welded plates (3-dimentional), welded pipe problems are more complicated than those of welded plates from a view point of the inverse analysis. As a first step, a basic formulization was attempted to overcome this difficulty and future problems to be solved were made clear. Then computer simulations of the bead flush method conducted for a thin walled welded pipe confirmed its utility. Refs. 2 (author)

  2. Non-destructive Determination of Martensitic Content by Means of Magnetic Methods

    The detection of material degradation in a pre-cracked stage would be very advantageous. Therefore the main objective of the EC 5th Framework Programme Project CRETE (Contract No. FIS5-1999-00280) was to assess the capability and the reliability of innovative NDT-inspection techniques for the detection of material degradation, induced by low cycle fatigue (LCF) and neutron irradiation of metastable austenitic and ferritic low-alloy steel. Within work package WP6 and WP7 several project partners tested aged or irradiated samples, using various advanced measuring techniques, such as acoustic, magnetic and thermoelectric ones. These indirect methods require a careful interpretation of the measured signal in terms of micro-structural evolutions due to ageing of the material. Therefore the material had to be characterized in its undamaged, as well as in its damaged state. Based on results from former investigations, main attention was paid to the content of martensitic phase as an indicator for fatigue. Since most NDT-methods are considered as indirect methods for the detection of martensite, neutron diffraction was applied as a reference method for a quantitative determination of martensite. The material characterization performed at PSI and INSA de Lyon is published in the PSI Bericht Nr. 03-17, July 2003, (ISSN 1019-0643). The present report only describes the magnetic methods applied at PSI for the detection of material degradation and summarises the results obtained in WP3 of the CRETE project. The report is issued simultaneously as a PSI report and the CRETE work package WP3 report. At PSI the following magnetic methods were applied to LCF specimens: (1) Ferromaster for measuring the magnetic permeability, (2) Eddy current impedance measuring by means of a Giant Magneto Resistance sensor (GMR), (3) Remanence field measurements using high sensitive Fluxgate and SQUID sensors. With these methods three sets of fatigue specimens, made from different metastable

  3. Carbon dioxide blasting as a nondestructive method for nuclear material decontamination

    Many traditional methods of decontamination use chemicals that are inherently harmful and can be direct environmental hazards. These methods may generate large volumes of mixed waste and high disposal costs. Sandblasting grit disposal costs have dramatically increased. Also, the additional volume of contaminated waste generated by sandblasting affects facilities disposal quotas. Water blasting now requires expensive processing procedures. State and federal governments are developing regulations that restrict the use of these methods; therefore, alternative technologies are becoming increasingly important. Carbon dioxide (CO2) blasting is an important break-through for nuclear decontamination because of its superior environmental characteristics. The CO2 blasting method is waterless, waste free, noncorrosive, and nonreactive. Commercial CO2 is primarily produced as a salvaged waste gas from the production of other industrial gases. In the blasting operation, the frozen CO2 pellet is transformed into its gaseous state, which is a normal component of the earth's atmosphere. The CO2 blasting system can solve many of the environmental and cost problems now facing managers responsible for nuclear contamination

  4. Damage detection of carbon reinforced composites using nondestructive evaluation with ultrasound and electromagnetic methods

    Savin, A.; Barsanescu, P. D.; Vizureanu, P.; Stanciu, M. D.; Curtu, I.; Iftimie, N.; Steigmann, R.

    2016-06-01

    CFRP have applications among most different domains due their low density, high elastic modulus and high ultimate strength along the carbon fibers direction, no fatigue and the expansion coefficient is small. This paper presents the behavior of carbon fiber woven-PPS composites at low velocity impacts. The transversal electrical conductivity is modified due to the plastic deformation following the impacts, and thus electromagnetic procedures can be used for assessment of CFRP using a high resolution sensor with metamaterials lens and comparing the results with those obtained from ultrasound testing with phased array sensor. The area of the delamination is overestimated when the method of phased array ultrasound is used and substantially underestimated by the electromagnetic testing. There were a good agreement between the simulations with finite element method and experimental measurements.

  5. A nondestructive method for diagnostic of insulated building walls using infrared thermography

    Larbi Youcef, Mohamed H. A.; Mazioud, Atef; Bremond, Pierre; Ibos, Laurent; Candau, Yves; Piro, Michel; Filloux, Alain

    2007-04-01

    This work deals with the development of an experimental protocol for the diagnostic of multi-layered insulated building walls. First, a test bench is set up in order to measure front and back sides temperatures of standard panels. The panels considered have insulation thicknesses of 2, 6 and 10cm. The front side is heated by two halogen lamps of 500W. A CEDIP Jade Long wave infrared camera and thermocouples are used to carry out temperature measurements. In a second time, a one dimensional model based on thermal quadruples and Laplace transforms was developped under Matlab environment. Also, we developped a three dimensional model based on finite volumes using Fluent computational code. Finally, a method of identification of physical parameters is implemented by performing least square minimization based on Levenberg-Marquardt method. The experimental measurements are compared to theoretical results and by minimization we obtain thermal conductivity and diffusivity as well as thickness of the two layers.

  6. Nondestructive strength evaluation of adhesive-bonded single-lap joints by signal processing method

    Application of bonding by adhesives can be found in many industries, particularly in advanced technological domains such as the aeronautical and space industries, automobile manufacture, and electronics. Periodic inspection with conventional ultrasonic NDE techniques is capable of indicating the presence and possible location of crack. Continuous ultrasonic attenuation monitoring has potential to supply information. This study used adhesive-bonded single-lap joints specimen to evaluate such possibility by ultrasonic signal processing method

  7. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method

    Anna Skic

    2016-05-01

    Full Text Available Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1, FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW of the “Ligol” and “Szampion” apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index and physiological parameters (respiration and ethylene emission of both apple cultivars. Changes of biospeckle activity (BA over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson’s correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of

  8. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method

    Skic, Anna; Szymańska-Chargot, Monika; Kruk, Beata; Chylińska, Monika; Pieczywek, Piotr Mariusz; Kurenda, Andrzej; Zdunek, Artur; Rutkowski, Krzysztof P.

    2016-01-01

    Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the “Ligol” and “Szampion” apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson’s correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre

  9. Pneutest: a non-destructive method of testing aircraft tyres using a radioactive tracer

    The object of this method is to evaluate the overall level of fatigue in aircraft tyres and to pinpoint localised defects before retreading. A radioactive gas (Xenon-133) is injected under pressure and diffuses along the plies inside the tyre. Suitable detectors are used to determine the location and size of accumulations of gas inside any existing porosities or defects. The process involves no risk of ruining the tyre nor of having any significantly harmful effect on personnel who have to carry out the test. The first results obtained are encouraging, and suggest that, with suitable equipment, 100% inspection could be achieved

  10. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method.

    Skic, Anna; Szymańska-Chargot, Monika; Kruk, Beata; Chylińska, Monika; Pieczywek, Piotr Mariusz; Kurenda, Andrzej; Zdunek, Artur; Rutkowski, Krzysztof P

    2016-01-01

    Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the "Ligol" and "Szampion" apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson's correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre

  11. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  12. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Bin Zhang; Chanjuan Han; Xiong Bill Yu

    2015-01-01

    Frozen soils cover about 40%of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR) sensor and thermal pulse technology (TPT) to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing) was measured with the TDR module; and the corre-sponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezingethawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  13. A rapid non-destructive method for quantification of fungal infection on barley and malt

    Bodevin, Sabrina; Larsen, Tone Glarborg; Lok, Finn;

    Description of topic: Barley harvest 2007 in Europe has seen the resurgence of crops highly infected by filamentous fungi. Hence the evaluation of fungal infection on barley and malt kernels by conventional optical measurement methods lacks accuracy and can be tedious. Here we are presenting a new...... harvest 2004, 2007 and 2008 were collected and screened for their degree of fungal infection using the VideometerLab® equipment. In parallel these samples were analyzed for their Fusarium and hydrophobins content using real-time PCR and/or competitive ELISA. As reference samples, kernels with low content...... obtained indicate that the videometerlab® equipment can accurately evaluate the percentage of global fungal infection in kernels. Discussion: We believe that this system will be able to discriminate between kernels infected from non-infected ones in mixed samples. This system will allow to quantify the...

  14. Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring

    Frolik, Jeff (Inventor); Skalka, Christian (Inventor)

    2013-01-01

    A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.

  15. Numeric ultrasonic image processing method: application to non-destructive testing of stainless austenitic steel welds

    A bibliographic research on the means used to improve the ultrasonic inspection of heterogeneous materials such as stainless austenitic steel welds has shown, taking into account the first analysis, a signal assembly in the form of an image (space, time) which carries an original solution to fault detection in highly noisy environments. A numeric grey-level ultrasonic image processing detection method is proposed based on the research of a certain determinism, in the way which the ultrasonic image evolves in space and time in the presence of a defect: the first criterion studies the horizontal stability of the gradients in the image and the second takes into account the time-transient nature of the defect echo. A very important rise in the signal-to-noise ratio obtained in welding inspections evidencing defects (real and artificial) is shown with the help of a computerized ultrasonic image processing/management system, developed for this application

  16. Short time evaluation of metallic materials' fatigue potential combining destructive and non-destructive testing methods

    Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.

  17. Short time evaluation of metallic materials' fatigue potential combining destructive and non-destructive testing methods

    Starke, Peter; Wu, Haoran; Boller, Christian [Univ. des Saarlandes, Saarbruecken (Germany). Campus Dudweiler

    2015-07-01

    Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.

  18. Nondestructive testing: use of IR and acoustics methods in buildings pathology

    Esposti, Walter; Meroni, Italo

    1995-03-01

    In the paper the authors present some experiences made using IR and acoustics methods in a non destructive way for the evaluation of situations of degradation in building materials and components. Two studies are presented: (1) detection of the delamination of wall renderings, especially those supporting frescos, by means of IR and sonic investigation; (2) use of infrared thermography for the visualization of fracture zones of walls and steel components under cyclic loads. The possibility of detecting rendering delaminations is based on the different path of the heat diffusion in part of the wall affected by the delamination, compared to the rest of the wall. The difference is caused by the presence of small pockets containing still air. The case study showed makes reference to the analysis of adhesion conditions of a rendering dating back to the IV century, applied on the bell towers of the ancient basilica dedicated to S. Lorenzo in Milan, Italy. The use of infrared thermography for detecting the strength status of materials and components is based on the fact that the strength status of parts of building components can become evident because of heat losses which appear where the component is weaker. The IR observation was made on steel bars subject to traction testing and on lightweight concrete prismatic samples subject to compression testing. The experiences indicate that there is room for this NdT technique to provide some useful answers. Nevertheless it is sure that more experimental work is needed in order to increase the full comprehension of the phenomena which are the basis of their applications for alternative uses.

  19. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview

    Sergio Toscani; Liberato Ferrara; Roberto Ottoboni; Marco Faifer

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progr...

  20. A Nondestructive Islanding Detection Method Based on Adaptive and Periodic Disturbance on Reactive Power Output of Inverter-Based Distributed Generation

    Xiaolong Chen; Yongli Li

    2014-01-01

    In order to detect islanding nondestructively, an islanding detection method for microgrid is proposed based on adaptive and periodic disturbance on the reactive power output of inverter-based distributed generation (DG). The first two parts of the disturbance in a cycle form a symmetric triangular shape and the disturbance can adaptively adjust its peak value and cycle time for two purposes. One is to minimize the total amount of the disturbance. The other is to guarantee that the absolute v...

  1. Nondestructive evaluations

    Kulkarni, S.

    1993-03-01

    This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc.; and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

  2. Non-destructive controls

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary

  3. Identifying cryptotephra units using correlated rapid, nondestructive methods: VSWIR spectroscopy, X-ray fluorescence, and magnetic susceptibility

    McCanta, Molly C.; Hatfield, Robert G.; Thomson, Bradley J.; Hook, Simon J.; Fisher, Elizabeth

    2015-12-01

    Understanding the frequency, magnitude, and nature of explosive volcanic eruptions is essential for hazard planning and risk mitigation. Terrestrial stratigraphic tephra records can be patchy and incomplete due to subsequent erosion and burial processes. In contrast, the marine sedimentary record commonly preserves a more complete historical record of volcanic activity as individual events are archived within continually accumulating background sediments. While larger tephra layers are often identifiable by changes in sediment color and/or texture, smaller fallout layers may also be present that are not visible to the naked eye. These cryptotephra are commonly more difficult to identify and often require time-consuming and destructive point counting, petrography, and microscopy work. Here we present several rapid, nondestructive, and quantitative core scanning methodologies (magnetic susceptibility, visible to shortwave infrared spectroscopy, and XRF core scanning) which, when combined, can be used to identify the presence of increased volcaniclastic components (interpreted to be cryptotephra) in the sedimentary record. We develop a new spectral parameter (BDI1000VIS) that exploits the absorption of the 1 µm near-infrared band in tephra. Using predetermined mixtures, BDI1000VIS can accurately identify tephra layers in concentrations >15-20%. When applied to the upper ˜270 kyr record of IODP core U1396C from the Caribbean Sea, and verified by traditional point counting, 29 potential cryptotephra layers were identified as originating from eruptions of the Lesser Antilles Volcanic Arc. Application of these methods in future coring endeavors can be used to minimize the need for physical disaggregation of valuable drill core material and allow for near-real-time recognition of tephra units, both visible and cryptotephra. This article was corrected on 23 DEC 2015. See the end of the full text for details.

  4. Evaluation of Midwater Trawl Selectivity and its Influence on Acoustic-Based Fish Population Surveys

    Williams, Kresimir

    Trawls are used extensively during fisheries abundance surveys to derive estimates of fish density and, in the case of acoustic-based surveys, to identify acoustically sampled fish populations. However, trawls are selective in what fish they retain, resulting in biased estimates of density, species, and size compositions. Selectivity of the midwater trawl used in acoustic-based surveys of walleye pollock (Theragra chalcogramma) was evaluated using multiple methods. The effects of trawl selectivity on the acoustic-based survey abundance estimates and the stock assessment were evaluated for the Gulf of Alaska walleye pollock population. Selectivity was quantified using recapture, or pocket, nets attached to the outside of the trawl. Pocket net catches were modeled using a hierarchical Bayesian model to provide uncertainty in selectivity parameter estimates. Significant under-sampling of juvenile pollock by the midwater trawl was found, with lengths at 50% retention ranging from 14--26 cm over three experiments. Escapement was found to be light dependent, with more fish escaping in dark conditions. Highest escapement rates were observed in the aft of the trawl near to the codend though the bottom panel of the trawl. The behavioral mechanisms involved in the process of herding and escapement were evaluated using stereo-cameras, a DIDSON high frequency imaging sonar, and pocket nets. Fish maintained greater distances from the trawl panel during daylight, suggesting trawl modifications such as increased visibility of netting materials may evoke stronger herding responses and increased retention of fish. Selectivity and catchability of pollock by the midwater trawl was also investigated using acoustic density as an independent estimate of fish abundance to compare with trawl catches. A modeling framework was developed to evaluate potential explanatory factors for selectivity and catchability. Selectivity estimates were dependent on which vessel was used for the survey

  5. Evaluation of optical inspection methods for non-destructive assessment of embedded microstructures and defects in ceramic materials

    Su, Rong; Mattsson, Lars

    2012-01-01

    The future ceramic micro processing based on tape stacking requires the development of inspection systems toperform high-resolution in-process quality control of embedded manufactured cavities, metal structures anddefects. This paper presents non-destructive techniques for monitoring processes and controlling the differentsteering parameters. Results are shown for optical coherence tomography (OCT), IR-transmission and reflectionmeasurement, and X-ray micro computed tomography. Suitable worki...

  6. A comparison of 90Sr determination methods using separation on AnaLig® Sr-01 gel and non-destructive direct beta spectrometry

    The results of 90Sr activity determination by the radiochemical separation method with AnaLig® Sr-01 resin and a non-destructive physical method based on beta spectrometer with plastic scintillator were compared. Smear samples with different contamination levels were analysed. In case of the radiochemical method dissolved smears were repeatedly analysed and compared with the direct beta spectrometry measurements. No statistically significant differences between the results of two different methods were observed. It related to averages as well as to variances of repeated data results. Non-destructive direct 90Sr beta spectrometry measurements were selective even at high 137Cs background and provided similar results compared with the radiochemical method using AnaLig® Sr-01 strontium selective sorbent. However, the direct measurements of 90Sr were quicker and required much less effort during sample preparation. - Highlights: • Radiochemical and physical method for 90Sr activity measurement were compared. • Results of repeated measurements were statistically evaluated. • Similar results were obtained for both methods for surface contaminated samples. • Beta spectrometry result was not affected by the distribution of activity on sample. • Direct beta spectrometry method was more suitable for operative measurements

  7. Opera house acoustics based on subjective preference theory

    Ando, Yoichi

    2015-01-01

    This book focuses on opera house acoustics based on subjective preference theory; it targets researchers in acoustics and vision who are working in physics, psychology, and brain physiology. This book helps readers to understand any subjective attributes in relation to objective parameters based on the powerful and workable model of the auditory system. It is reconfirmed here that the well-known Helmholtz theory, which was based on a peripheral model of the auditory system, may not well describe pitch, timbre, and duration as well as the spatial sensations described in this book, nor overall responses such as subjective preference of sound fields and the annoyance of environmental noise.

  8. A non-destructive, ultrasonic method for the determination of internal pressure and gas composition in an LWR fuel rod on-going and future programme

    Several possible non-destructive methods have been investigated in the past to measure the internal gas pressure e.g., measurement of 85Kr directly, or after accumulation in the plenum by freezing with liquid nitrogen. However no satisfactory resolution to the problem has been found, so at present there is no rapid and accurate method of determining the fission gas pressure in a fuel rod without puncturing the cladding. This procedure is time-consuming and expensive and as a consequence a relatively small number of measurements are generally made compared with the number of fuel rods irradiated. In this paper it is proposed a new method for the measurement of pressure that is: Non-destructive; Non-invasive (i.e., allows re-irradiation of the measured rod); Easy to operate - directly in the reactor pool; Can be used on the critical path; Is inexpensive compared with the methods currently in use. This method is also being adapted to the on line measurement of fission gas release on fuel irradiation in research reactors. This method is based on the application of acoustic technology

  9. Non-Destructive Evaluation of Material Properties of Nanoscale Thin-Films Using Ultrafast Optical Pump-Probe Methods

    Exploration in microelectromechanical systems(MEMS) and nanotechnology requires evaluation techniques suitable for sub-micron length scale so that thermal and mechanical properties of novel materials can be investigated for optimal design of miro/nanostructures. The ultrafast optical pump-probe technique provides a contact-free and non-destructive way to characterize nanoscale thin-films, and its ultrahigh temporal resolution enables the study of heat-transport phenomena down to a sub-picosecond regime. This paper reviews the principle of optical pump-probe technique and introduces its application to the area of micro/nano-NDE

  10. Eddy currents non-destructive testing. use of a numeric/symbolic method to separate and characterize the transitions of a signal

    This paper presents an original numeric/symbolic method for solving an inverse problem in the field of non-destructive testing. The purpose of this method is to characterize the transitions of a signal even when they are superimposed. Its principle is to solve as many direct problems as necessary to obtain the solution, and to use some hypothesis to manage the reasoning of the process. The direct problem calculation yields to a 'model signal', and the solution is reached when the model signal is close to the measured one. This method calculates the directions of minimization thanks to a symbolic reasoning based on the peaks of the residual signal. The results of the method are good and seem very promising. (authors). 13 refs., 13 figs., 5 tabs

  11. Development of a nondestructive method for underglaze painted tiles--demonstrated by the analysis of Persian objects from the nineteenth century.

    Reiche, Ina; Röhrs, Stefan; Salomon, Joseph; Kanngiesser, Birgit; Höhn, Yvonne; Malzer, Wolfgang; Voigt, Friederike

    2009-02-01

    The paper presents an analytical method developed for the nondestructive study of nineteenth-century Persian polychrome underglaze painted tiles. As an example, 9 tiles from French and German museum collections were investigated. Before this work was undertaken little was known about the materials used in pottery at that time, although the broad range of colors and shades, together with their brilliant glazes, made these objects stand out when compared with Iranian ceramics of the preceding periods and suggested the use of new pigments, colorants, and glaze compositions. These materials are thought to be related to provenance and as such appropriate criteria for art-historical attribution. The analytical method is based on the combination of different nondestructive spectroscopic techniques using microfocused beams such as proton-induced X-ray emission/proton-induced gamma-ray emission, X-ray fluorescence, 3D X-ray absorption near edge structure, and confocal Raman spectroscopy and also visible spectroscopy. It was established to address the specific difficulties these objects and the technique of underglaze painting raise. The exact definition of the colors observed on the tiles using the Natural Color System helped to attribute them to different colorants. It was possible to establish the presence of Cr- and U-based colorants as new materials in nineteenth-century Persian tilemaking. The difference in glaze composition (Pb, Sn, Na, and K contents) as well as the use of B and Sn were identified as a potential marker for different workshops. PMID:19030848

  12. Verification tests on nondestructive assay for 238U content in uranium-contaminated waste drums using gamma method

    We have proposed a new theory on gamma assay for 238U determination of uranium-contaminated waste drums. According to this theory, regardless of the inhomogeneity of waste matrix density or uranium source distribution, we can accurately determine the amount of 238U contained in drums nondestructively using count rates of gamma rays of two energies(1001keV and 766keV) emitted from 238U progeny nuclide 234mPa. In this paper, we have verified the theory by tests under various waste conditions made by simulated waste drums. We have estimated the relative error to be less than 20%, and the detection limit to be 1.2Bq/g when the specific activity of uranium is 25000Bq/g, in these cases. We have confirmed that this new assay system is efficient for the rational classification of uranium wastes to be disposed of. (author)

  13. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview

    Sergio Toscani

    2013-01-01

    Full Text Available Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC and Fiber Reinforced Cementitious Composites (FRCCs plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective.

  14. Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview.

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. PMID:23337334

  15. Characterization of pigment/binder - systems in arts via FTIR and UV/Vis/NIR - spectroscopy with special consideration of nondestructive methods

    The main focus of this doctoral thesis is on the non-destructive analysis of art objects by using compound specific reflection-UV/Vis/NIR and reflection-FTIR spectroscopy. Based on commercially available instruments, measuring systems have been designed and built to meet the specific requirements of material analysis in the field of art. These systems have been utilized to analyse different types of art objects (watercolour paintings, easel paintings, contemporary graphic art objects) in order to identify the materials used by the artists. Furthermore, two new procedures are presented which allow to build up adequate reference databases from only minimal sample amounts of original watercolour materials of the 19th century. This is a crucial point as both methods require references for the identification of the materials. The results obtained demonstrate that UV/Vis/NIR and FTIR spectroscopy in reflection mode enable the non-destructive identification of a variety of both, organic and inorganic materials, particularly in combination with element specific XRF (X-ray fluorescence analysis) and thus are valuable tools for the analysis of cultural heritage objects. Furthermore, the results have shown that a comparison of the complementary methods strongly facilitated the evaluation of spectra obtained by the particular analytical techniques and hence reliable results could be obtained in many cases. As expected, several frequently used pigments e.g. carbon based blacks, earth pigments and lake pigments could not be identified unambiguously due to methodical limitations. Therefore, the use of additional complementary methods such as Raman spectroscopy and X-ray diffraction (XRD) would be highly desirable. Except a few examples, the characteristics of the radiation used for the investigations did not allow to draw conclusions about the distribution of materials in multilayer structures. For this reason, it still remains necessary to analyse cross-sections of samples for a

  16. A Nondestructive Method for Measuring the RMS Length of Charge Bunches Using the Wake Field Radiation Spectrum

    We report progress in the development of a nondestructive technique to measure bunch rms-length in the psec range and below, and eventually in the fsec range, by measuring the high-frequency spectrum of wake field radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric. We demonstrate both experimentally and numerically that the generated spectrum is determined by the bunch rms-length, while the choice of the axial and longitudinal charge distribution is not important. Measurement of the millimeter-wave spectrum will determine the bunch rms-length in the psec range. This has been done using a series of calibrated mesh filters and the charge bunches produced by the 50MeV rf linac system at ATF, Brookhaven. We have developed the analysis of the factors crucial for achieving good accuracy in this measurement, and find the experimental data are fully understood by the theory. We point out that this technique also may be used for measuring fsec bunch lengths, using a prepared planar wake field microstructure

  17. A model-based method for the characterisation of stress in magnetic materials using eddy current non-destructive evaluation

    A precise knowledge of the distribution of internal stresses in materials is key to the prediction of magnetic and mechanical performance and lifetime of many industrial devices. This is the reason why many efforts have been made to develop and enhance the techniques for the non-destructive evaluation of stress. In the case of magnetic materials, the use of eddy current (EC) techniques is a promising pathway to stress evaluation. The principle is based on the significant changes in magnetic permeability of magnetic materials subjected to mechanical stress. These modifications of magnetic permeability affect in turn the signal obtained from an EC probe inspecting the material. From this principle, a numerical tool is proposed in this paper to predict the EC signal obtained from a material subjected to stress. This numerical tool is a combination of a 3D finite element approach with a magneto-mechanical constitutive law describing the effect of stress on the magnetic permeability. The model provides the variations of impedance of an EC probe as a function of stress. An experimental setup in which a magnetic material subjected to a tension stress is inspected using EC techniques is tailored in order to validate the model. A very good agreement is found between experimental and modelling results. For the Iron-Cobalt alloy tested in this study, it is shown that a uniaxial tensile stress can be detected with an error lower than 3 MPa in the range from 0 to 100 MPa. (paper)

  18. A Non-Destructive Method for Distinguishing Reindeer Antler (Rangifer tarandus) from Red Deer Antler (Cervus elaphus) Using X-Ray Micro-Tomography Coupled with SVM Classifiers

    Lefebvre, Alexandre; Rochefort, Gael Y.; Santos, Frédéric; Le Denmat, Dominique; Salmon, Benjamin; Pétillon, Jean-Marc

    2016-01-01

    Over the last decade, biomedical 3D-imaging tools have gained widespread use in the analysis of prehistoric bone artefacts. While initial attempts to characterise the major categories used in osseous industry (i.e. bone, antler, and dentine/ivory) have been successful, the taxonomic determination of prehistoric artefacts remains to be investigated. The distinction between reindeer and red deer antler can be challenging, particularly in cases of anthropic and/or taphonomic modifications. In addition to the range of destructive physicochemical identification methods available (mass spectrometry, isotopic ratio, and DNA analysis), X-ray micro-tomography (micro-CT) provides convincing non-destructive 3D images and analyses. This paper presents the experimental protocol (sample scans, image processing, and statistical analysis) we have developed in order to identify modern and archaeological antler collections (from Isturitz, France). This original method is based on bone microstructure analysis combined with advanced statistical support vector machine (SVM) classifiers. A combination of six microarchitecture biomarkers (bone volume fraction, trabecular number, trabecular separation, trabecular thickness, trabecular bone pattern factor, and structure model index) were screened using micro-CT in order to characterise internal alveolar structure. Overall, reindeer alveoli presented a tighter mesh than red deer alveoli, and statistical analysis allowed us to distinguish archaeological antler by species with an accuracy of 96%, regardless of anatomical location on the antler. In conclusion, micro-CT combined with SVM classifiers proves to be a promising additional non-destructive method for antler identification, suitable for archaeological artefacts whose degree of human modification and cultural heritage or scientific value has previously made it impossible (tools, ornaments, etc.). PMID:26901355

  19. Nondestructive testing of concrete structures

    Nondestructive testing of concrete is highly inhomogeneous which makes it cumbersome to setup experimental procedures and analyze experimental data. However, recent research and development activities have discovered the different methods of NDT, like the electromagnetic method, ultrasonic pulse velocity test, pulse echo/impact echo test, infrared thermography, radar or short pulse radar techniques, neutron and gamma radiometry, radiography, carbonation test and half-cell potential method available for NDT of concrete structures. NDT of concrete is emerging as a useful tool for quality control and assurance. This papers also describes the more common NDT methods discussed during the two-week course on 'Nondestructive Testing of Concrete Structures', held at the Malaysian Institute for Nuclear Technology Research (MINT) in Malaysia, which was jointly organized by MINT and the International Atomic Energy Agency (IAEA)

  20. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases

  1. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  2. The study on defects in aluminum 2219-T6 thick butt friction stir welds with the application of multiple non-destructive testing methods

    Research highlights: → Friction stir weld-defect forming mechanisms of thick butt-joints. → Relationship between weld-defects and friction stir welding process parameters. → Multiple non-destructive testing methods applied to friction stir welds. → Empirical criterion basing on mass-conservation for inner material-loss defects. → Nonlinear correlation between weld strengths and root-flaw lengths. -- Abstract: The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al2Cu phase coarsening particles were found around a 'kissing-bond' defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17-20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack

  3. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel

    The magnetic properties of ferrite–martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels. - Highlights: • Normalized impedance decreased as the ASTM grain size number increased. • An increase in martensite percentage resulted in a decrease in normalized impedance. • As the martensite in the DP steels increased, the MBN signals increased. • Barkhausen jumps increased with increasing the ASTM grain size number. • Both ECT and MBN had a high potential to detect microstructural changes of DP steels

  4. Oblique Soft X-Ray Tomography as a Non-Destructive Method for Morphology Diagnostics in Degradation of Proton-Exchange Membrane Fuel Cell

    Graphical abstract: - Highlights: • Cutting of the MEA is not needed to obtain high-resolution CT images. • Observation of same MEA position at several stages of cell operation is possible. • Carbon corrosion in cathode CL is observed during start-up/shutdown operations. • Heavy carbon corrosion with new cracks occurs at the outlet of the fuel cell. • Size of cracks in the microporous layer decreased after cell operation. - Abstract: Diagnostics of performance degradation is important for improving the durability of proton-exchange membrane (PEM) fuel cells. X-ray computed tomography (CT) is a valuable non-destructive method to study the internal structure of PEM fuel cells. However, sample cutting is usually needed for high-resolution observations, which prevents the observer from obtaining information about morphology changes during fuel cell testing. In this study, oblique soft X-ray CT has been developed and its suitability as a non-destructive method for PEM fuel cell diagnostics without sample cutting is demonstrated. The CT images of a membrane-electrode assembly (MEA) were obtained at several stages of cell operation, including hot-pressing, load cycles, wet/dry cycles, and start-up/shutdown (SU/SD) experiments. After SU/SD operation, carbon corrosion with newly generated cracks was observed in the catalyst layer at the cathode outlet of the cell, while no corrosion was observed at the cathode inlet and center and at all anode-side positions. The size of cracks in the microporous layer, especially under the rib area, decreased after cell operation. This study validates that it is possible to observe the cause of fuel cell degradation, i.e., carbon corrosion, at a certain position of the MEA under several stages of operation, without cutting the MEA

  5. Characterization of Nuclear Materials Using Complex of Non-Destructive and Mass-Spectroscopy Methods of Measurements

    Information and Analytical Centre for nuclear materials investigations was established in Russian Federation in the February 2 of 2009 by ROSATOM State Atomic Energy Corporation (the order #80). Its purpose is in preventing unauthorized access to nuclear materials and excluding their illicit traffic. Information and Analytical Centre includes analytical laboratory to provide composition and properties of nuclear materials of unknown origin for their identification. According to Regulation the Centre deals with: · identification of nuclear materials of unknown origin to provide information about their composition and properties; · arbitration analyzes of nuclear materials; · comprehensive research of nuclear and radioactive materials for developing techniques characterization of materials; · interlaboratory measurements; · measurements for control and accounting; · confirmatory measurements. Complex of non-destructive and mass-spectroscopy techniques was developed for the measurements. The complex consists of: · gamma-ray techniques on the base of MGAU, MGA and FRAM codes for uranium and plutonium isotopic composition; · gravimetrical technique with gamma-spectroscopy in addition for uranium content; · calorimetric technique for plutonium mass; · neutron multiplicity technique for plutonium mass; · measurement technique on the base of mass-spectroscopy for uranium isotopic composition; · measurement technique on the base of mass-spectroscopy for metallic impurities. Complex satisfies the state regulation requirements of ensuring the uniformity of measurements including the Russian Federation Federal Law on Ensuring the Uniformity of Measurements #102-FZ, Interstate Standard GOST R ISO/IEC 17025-2006, National Standards of Russian Federation GOST R 8.563-2009, GOST R 8.703-2010, Federal Regulations NRB-99/2009, OSPORB 99/2010. Created complex is provided in reference materials, equipment end certificated techniques. The complex is included in accredited

  6. Nondestructive evaluation method on mechanical property change of graphite components in the HTGR by ultrasonic wave propagation with grain/pore microstructure

    Oxidation damage is one of the crucial factors to degrade mechanical properties of graphite components in the HTGRs. The oxidation increases the porosity of graphite and, hence, results in degradation. In order to evaluate the oxidation damage at neutron irradiated conditions, a new analytical method by ultrasonic wave propagation characteristics was developed. Irradiation effects, a dimensional change and a pinning of dislocations in crystals, on the propagation characteristics in graphite are taken into consideration in the method. It was shown that an equivalent velocity of the wave in graphite is increased by the irradiation, and that a signal height of a propagated waveform is increased by the irradiation, and it decreases with increasing porosity caused by the oxidation. The Young's modulus for an ideal graphite polycrystals without pore was evaluated by considering the wave velocity in them in order to evaluate the change of the apparent modulus at simultaneous irradiated and oxidized conditions as an application of the developed method. It was also shown that the oxidation-induced change of the modulus is appropriately evaluated by the method, suggesting that it is possible to evaluate the change for the irradiated conditions. It can be said from this study that the developed method is promising to evaluate the oxidation damage on graphite components in the HTGRs by nondestructive way. (author)

  7. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle “quality” qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  8. Standard test method for nondestructive assay of nuclear material in scrap and waste by passive-Active neutron counting using 252Cf shuffler

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the nondestructive assay of scrap and waste items for U, Pu, or both, using a 252Cf shuffler. Shuffler measurements have been applied to a variety of matrix materials in containers of up to several 100 L. Corrections are made for the effects of matrix material. Applications of this test method include measurements for safeguards, accountability, TRU, and U waste segregation, disposal, and process control purposes (1, 2, 3). 1.1.1 This test method uses passive neutron coincidence counting (4) to measure the 240Pu-effective mass. It has been used to assay items with total Pu contents between 0.03 g and 1000 g. It could be used to measure other spontaneously fissioning isotopes such as Cm and Cf. It specifically describes the approach used with shift register electronics; however, it can be adapted to other electronics. 1.1.2 This test method uses neutron irradiation with a moveable Cf source and counting of the delayed neutrons from the induced fissions to measure the 235U equiva...

  9. Standard test method for nondestructive assay of special nuclear material in low density scrap and waste by segmented passive gamma-Ray scanning

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the transmission-corrected nondestructive assay (NDA) of gamma-ray emitting special nuclear materials (SNMs), most commonly 235U, 239Pu, and 241Am, in low-density scrap or waste, packaged in cylindrical containers. The method can also be applied to NDA of other gamma-emitting nuclides including fission products. High-resolution gamma-ray spectroscopy is used to detect and measure the nuclides of interest and to measure and correct for gamma-ray attenuation in a series of horizontal segments (collimated gamma detector views) of the container. Corrections are also made for counting losses occasioned by signal processing limitations (1-3). 1.2 There are currently several systems in use or under development for determining the attenuation corrections for NDA of radioisotopic materials (4-8). A related technique, tomographic gamma-ray scanning (TGS), is not included in this test method (9, 10, 11). 1.2.1 This test method will cover two implementations of the Segmented Gamma Scanning ...

  10. State-of-the-Art of Non-Destructive Testing Methods and Technologies for Application to Nuclear Power Plant Safety-Related Concrete Structures

    Wiggenhauser, Dr. Herbert [Federal Institute for Materials Research and Testing (BAM); Naus, Dan J [ORNL

    2014-01-01

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: locating steel reinforcement and identification of its cover depth locating tendon ducts and identification of the condition of the grout materials detection of cracking, voids, delamination, and honeycombing in concrete structures detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner methods capable of identification of corrosion occurrence on the concrete side of the containment liner