WorldWideScience

Sample records for acoustic wave propagation

  1. Propagation behavior of acoustic wave in wood

    Huadong Xu; Guoqi Xu; Lihai Wang; Lei Yu

    2014-01-01

    We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.

  2. Unidirectional propagation of designer surface acoustic waves

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  3. Surface acoustic wave propagation in graphene film

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals

  4. Surface acoustic wave propagation in graphene film

    Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  5. Nonlinear propagation and control of acoustic waves in phononic superlattices

    Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J

    2015-01-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  6. Estimating propagation velocity through a surface acoustic wave sensor

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  7. Propagation of plate acoustic waves in contact with fluid medium

    Ghatadi Suraji, Nagaraj

    The characteristics of acoustic waves propagating in thin piezoelectric plates in the presence of a fluid medium contacting one or both of the plate surfaces are investigated. If the velocity of plate wave in the substrate is greater than velocity of bulk wave in the fluid, then a plate acoustic wave (PAW) traveling in the substrate will radiate a bulk acoustic wave (BAW) in the fluid. It is found that, under proper conditions, efficient conversion of energy from plate acoustic waves to bulk acoustic waves and vice versa can be obtained. For example, using the fundamental anti symmetric plate wave mode (A0 mode) propagating in a lithium niobate substrate and water as the fluid, total mode conversion loss (PAW to BAW and back from BAW to PAW) of less than 3 dB has been obtained. This mode conversion principle can be used to realize miniature, high efficiency transducers for use in ultrasonic flow meters. Similar type of transducer based on conversion of energy from surface acoustic wave (SAW) to bulk acoustic wave (BAW) has been developed previously. The use of plate waves has several advantages. Since the energy of plate waves is present on both plate surfaces, the inter digital transducer (IDT) can be on the surface opposite from that which is in contact with the fluid. This protects the IDT from possible damage due to the fluid and also simplifies the job of making electrical connections to the IDT. Another advantage is that one has wider choice of substrate materials with plate waves than is the case with SAWs. Preliminary calculations indicate that the mode conversion principle can also be used to generate and detect ultrasonic waves in air. This has potential applications for realizing transducers for use in non-contact ultrasonic's. The design of an ASIC (Application Specific Integrated Circuit) chip containing an amplifier and frequency counter for use with ultrasonic transducers is also presented in this thesis.

  8. Analysis of Acoustic Wave Propagation in a Thin Moving Fluid

    Joly, Patrick; Weder, Ricardo

    2009-01-01

    We study the propagation of acoustic waves in a fluid that is contained in a thin two-dimensional tube, and that it is moving with a velocity profile that only depends on the transversal coordinate of the tube. The governing equations are the Galbrun equations, or, equivalently, the linearized Euler equations. We analyze the approximate model that was recently derived by Bonnet-Bendhia, Durufl\\'e and Joly to describe the propagation of the acoustic waves in the limit when the width of the tub...

  9. Propagation of Acoustic Waves in Troposphere and Stratosphere

    Kashyap, J M

    2016-01-01

    Acoustic waves are those waves which travel with the speed of sound through a medium. H. Lamb has derived a cutoff frequency for stratified and isothermal medium for the propagation of acoustic waves. In order to find the cutoff frequency many methods were introduced after Lamb's work. In this paper, we have chosen the method to determine cutoff frequencies for acoustic waves propagating in non-isothermal media. This turning point frequency method can be applied to various atmospheres like solar atmosphere, stellar atmosphere, earth's atmosphere etc. Here, we have analytically derived the cutoff frequency and have graphically analyzed and compared with the Lamb's cut-off frequencyfor earth's troposphere, lower and upper stratosphere.

  10. Propagation of acoustic gravity waves excited by explosions

    Acoustic gravity waves excited by low-altitude nuclear explosions have been observed in the ionosphere, by H.F. Doppler soundings, at horizontal distances from the source between 100 and 1200 km. The characteristics of the initial shock wave, which is observed at short range, are progressively replaced by those of the atmospheric wave guide. In particular, the dispersion properties of the signal observed in the ionosphere at long range are those of the first acoustic and gravity modes. Detailed study of the propagation times to middle and long range shows that the wave guide is mainly excited by the focalisation of acoustic energy which is produced by non-linear mechanisms at an altitude of about 100 km and at a small horizontal distance from the explosion

  11. Numerical modelling of nonlinear full-wave acoustic propagation

    Velasco-Segura, Roberto; Rendón, Pablo L.

    2015-10-01

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe's linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  12. Numerical modelling of nonlinear full-wave acoustic propagation

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed

  13. Numerical modelling of nonlinear full-wave acoustic propagation

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  14. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  15. Propagation-invariant waves in acoustic, optical, and radio-wave fields

    Salo, Janne

    2003-01-01

    The physical phenomena considered in this thesis are associated with electromagnetic and acoustic waves that propagate in free space or in homogeneous media without diffraction. The concept of rotationally periodic wave propagation is introduced in the first journal article included in the thesis and it is subsequently used to analyse waves that avoid diffractive deterioration by repeatedly returning to their initial shape, possibly rotated around the optical axis. Such waves constitute an es...

  16. Controlling acoustic-wave propagation through material anisotropy

    Tehranian, Aref; Amirkhizi, Alireza V.; Irion, Jeffrey; Isaacs, Jon; Nemat-Nasser, Sia

    2009-03-01

    Acoustic-wave velocity is strongly direction dependent in an anisotropic medium. This can be used to design composites with preferred acoustic-energy transport characteristics. In a unidirectional fiber-glass composite, for example, the preferred direction corresponds to the fiber orientation which is associated with the highest stiffness and which can be used to guide the momentum and energy of the acoustic waves either away from or toward a region within the material, depending on whether one wishes to avoid or harvest the corresponding stress waves. The main focus of this work is to illustrate this phenomenon using numerical simulations and then check the results experimentally.

  17. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  18. Propagation and localization of acoustic waves in Fibonacci phononic circuits

    Aynaou, H [Laboratoire de Dynamique et d' Optique des Materiaux, Departement de Physique, Faculte des Sciences, Universite Mohamed Premier, 60000 Oujda (Morocco); Boudouti, E H El [Laboratoire de Dynamique et d' Optique des Materiaux, Departement de Physique, Faculte des Sciences, Universite Mohamed Premier, 60000 Oujda (Morocco); Djafari-Rouhani, B [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, UFR de Physique, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France); Akjouj, A [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, UFR de Physique, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France); Velasco, V R [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2005-07-13

    A theoretical investigation is made of acoustic wave propagation in one-dimensional phononic bandgap structures made of slender tube loops pasted together with slender tubes of finite length according to a Fibonacci sequence. The band structure and transmission spectrum is studied for two particular cases. (i) Symmetric loop structures, which are shown to be equivalent to diameter-modulated slender tubes. In this case, it is found that besides the existence of extended and forbidden modes, some narrow frequency bands appear in the transmission spectra inside the gaps as defect modes. The spatial localization of the modes lying in the middle of the bands and at their edges is examined by means of the local density of states. The dependence of the bandgap structure on the slender tube diameters is presented. An analysis of the transmission phase time enables us to derive the group velocity as well as the density of states in these structures. In particular, the stop bands (localized modes) may give rise to unusual (strong normal) dispersion in the gaps, yielding fast (slow) group velocities above (below) the speed of sound. (ii) Asymmetric tube loop structures, where the loops play the role of resonators that may introduce transmission zeros and hence new gaps unnoticed in the case of simple diameter-modulated slender tubes. The Fibonacci scaling property has been checked for both cases (i) and (ii), and it holds for a periodicity of three or six depending on the nature of the substrates surrounding the structure.

  19. Acoustic wave propagation in fluids with coupled chemical reactions

    This investigation presents a hydroacoustic theory which accounts for sound absorption and dispersion in a multicomponent mixture of reacting fluids (assuming a set of first-order acoustic equations without diffusion) such that several coupled reactions can occur simultaneously. General results are obtained in the form of a biquadratic characteristic equation (called the Kirchhoff-Langevin equation) for the complex propagation variable chi = - (α + iω/c) in which α is the attenuation coefficient, c is the phase speed of the progressive wave and ω is the angular frequency. Computer simulations of sound absorption spectra have been made for three different chemical systems, each comprised of two-step chemical reactions using physico-chemical data available in the literature. The chemical systems studied include: (1) water-dioxane, (2) aqueous solutions of glycine and (3) cobalt polyphosphate mixtures. Explicit comparisons are made between the exact biquadratic characteristic solution and the approximate equation (sometimes referred to as a Debye equation) previously applied to interpret the experimental data for the chemical reaction contribution to the absorption versus frequency. The relative chemical reaction and classical viscothermal contributions to the sound absorption are also presented. Several discrepancies that can arise when estimating thermodynamic data (chemical reaction heats or volume changes) for multistep chemical reaction systems when making dilute solution or constant density assumptions are discussed

  20. Propagation of acoustic edge waves in graphene under quantum Hall effect

    Vikström, Anton

    2014-01-01

    We consider a graphene sheet with a zigzag edge subject to a perpendicular magnetic field and investigate the propagation of in-plane acoustic edge waves under the influence of magnetically induced electronic edge states. In particular is is shown that propagation is significantly blocked for certain frequencies defined by the resonant absorption due to electronic-acoustic interaction. We suggest that strong interaction between the acoustic and electronic edge states in graphene may generate ...

  1. Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels

    Ko, Seung Hwan; Lee, Daeho; Pan, Heng; Ryu, Sang-Gil; Grigoropoulos, Costas P.; Kladias, Nick; Panides, Elias; Domoto, Gerald A.

    2010-01-01

    Short pulsed laser-induced single acoustic wave generation, propagation, interaction within a water-filled internal channel are experimentally and numerically studied. A large-area, short-duration, single-plane acoustic wave was generated by the thermoelastic interaction of a homogenized nanosecond pulsed laser beam with a liquid–solid interface and propagated at the speed of sound in water. Laser flash Schlieren photography was used to visualize the transient interaction of the plane acousti...

  2. 3D FEM-BEM coupled resolution for acoustic waves propagation in potential flow

    BALIN, Nolwenn; SYLVAND, Guillaume; Casenave, Fabien

    2012-01-01

    International audience In order to reduce the environmental impact of aircrafts, it is necessary to accurately simulate the acoustics waves propagation in complex environment. A classical method used to compute the noise propagation on large distances is the Boundary Element Method. However this method restricts the flow to a uniform one. To improve the level of modeling, we present here a coupling between Finite Element (FEM) and Boundary Element Methods (BEM) to solve the acoustic propag...

  3. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solv...

  4. Numerical study of nonlinear full wave acoustic propagation

    Velasco-Segura, Roberto; Rendon, Pablo L.

    2013-11-01

    With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.

  5. Propagation of Ion-Acoustic Wave in an Inhomogeneous Dusty Plasma with. Dust Charge Fluctuation

    LI Jing-Ju; XIAO De-Long; LI Yang-Fang; MA Jin-Xiu

    2007-01-01

    @@ The propagation of dust ion-acoustic wave in an inhomogeneous dusty plasma is studied by taking the dust charge fluctuation and collisions into account. It is shown that the dust charge fluctuation brings a phase shift to the wave. Furthermore, because of the presence of dust charge fluctuation, a new damping term rises, which makes the damping more sharply.

  6. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. PMID:25937493

  7. Modeling of acoustic and gravity waves propagation through the atmosphere with spectral element method

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2014-12-01

    Low-frequency events such as tsunamis generate acoustic and gravity waves which quickly propagate in the atmosphere. Since the atmospheric density decreases exponentially as the altitude increases and from the conservation of the kinetic energy, those waves see their amplitude raise (to the order of 105 at 200km of altitude), allowing their detection in the upper atmosphere. Various tools have been developed through years to model this propagation, such as normal modes modeling or to a greater extent time-reversal techniques, but none offer a low-frequency multi-dimensional atmospheric wave modelling.A modeling tool is worthy interest since there are many different phenomena, from quakes to atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool.Starting from the SPECFEM program that already propagate waves in solid, porous or fluid media using a spectral element method, this work offers a tool with the ability to model acoustic and gravity waves propagation in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source.Atmospheric attenuation is required in a proper modeling framework since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals. The bottom forcing feature has been implemented due to its ability to easily model the coupling with the Earth's or ocean's surface (that vibrates when a surface wave go through it) but also huge atmospheric events.

  8. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla;

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  9. Numerical modeling of acoustic and gravity waves propagation in the atmosphere using a spectral element method

    Martin, Roland; Brissaud, Quentin; Garcia, Raphael; Komatitsch, Dimitri

    2015-04-01

    During low-frequency events such as tsunamis, acoustic and gravity waves are generated and quickly propagate in the atmosphere. Due to the exponential decrease of the atmospheric density with the altitude, the conservation of the kinetic energy imposes that the amplitude of those waves increases (to the order of 105 at 200km of altitude), which allows their detection in the upper atmosphere. This propagation bas been modelled for years with different tools, such as normal modes modeling or to a greater extent time-reversal techniques, but a low-frequency multi-dimensional atmospheric wave modelling is still crucially needed. A modeling tool is worth of interest since there are many different sources, as earthquakes or atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool. By adding some developments to the SPECFEM package that already models wave propagation in solid, porous or fluid media using a spectral element method, we show here that acoustic and gravity waves propagation can now be modelled in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source. The bottom forcing feature has been implemented to easily model the coupling with the Earth's or ocean's vibrating surfaces but also huge atmospheric events. Atmospheric attenuation is also introduced since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals.

  10. Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction

    Oba, Roger; Finette, Steven

    2002-02-01

    Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is

  11. Visualization of Acoustic Waves Propagating within a Single Anisotropic Crystalline Plate

    Chiaki Miyasaka; Kenneth L. Telschow; Jeffry T. Sadler; Roman. Gr. Maev

    2007-04-01

    High frequency acoustic waves propagating within a thin anisotropic plate were imaged using a hybrid system consisting of an acoustic lens (Frequency: 200MHz; Point Focus) for point excitation on one side and a laser displacement interferometer for point detection on the opposite side. The laser beam spot was about 5µm diameter on the surface and the sample was scanned to provide an image of the lateral spatial distribution of the resultant displacement. Theoretical prediction of the resultant displacement was performed using the Angular Spectrum Analysis approach for propagation through the [100] oriented silicon. Comparison of the theoretical predictions with experimental measurements is presented.

  12. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.; Blanc-Benon, P. [Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509, École Centrale de Lyon, Université de Lyon, 69134 Ecully Cedex (France); Marsden, O. [European Center For Medium Range Weather Forecasts, United Kingdom Shinfield (United Kingdom)

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.

  13. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations

  14. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  15. Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation on Lithium Niobate

    C. Soumali

    2016-06-01

    Full Text Available Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of motion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separation between the different modes of propagation is proposed regarding the attenuation coefficients and not to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3; transformations between modes of propagation, under uniform stress, have been found. These results leads to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable acoustic devices.

  16. Coronal Seismology and the Propagation of Acoustic Waves Along Coronal Loops

    Klimchuk, J A; De Moortel, I

    2004-01-01

    We use a combination of analytical theory, numerical simulation, and data analysis to study the propagation of acoustic waves along coronal loops. We show that the intensity perturbation of a wave depends on a number of factors, including dissipation of the wave energy, pressure and temperature gradients in the loop atmosphere, work action between the wave and a flow, and the sensitivity properties of the observing instrument. In particular, the scale length of the intensity perturbation varies directly with the dissipation scale length (i.e., damping length) and the scale lengths of pressure, temperature, and velocity. We simulate wave propagation in three different equilibrium loop models and find that dissipation and pressure and temperature stratification are the most important effects in the low corona where the waves are most easily detected. Velocity effects are small, and cross-sectional area variations play no direct role for lines-of-sight that are normal to the loop axis. The intensity perturbation...

  17. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.

    Wang, Ding; Wang, Liji; Ding, Pinbo

    2016-08-01

    An illustrative theory is developed to analyze the acoustic wave propagation characteristics in the porous media with anisotropic permeability. We focus here on the role of fracture permeability in the unconsolidated porous media, looking in particular at the compressional P-wave phase velocity and attenuation. Two fluid pressure equilibration characteristic time factors are defined, which are corresponding to crack-pore system and crack-crack system, respectively. The theoretical results show that the dispersion and attenuation characteristics of acoustic wave are affected by porous matrix and fracture permeability simultaneously. Due to the fluid exchange that takes place between fractures and pores dominantly, the influence of the fracture connectivity on the wave propagation is very weak when the permeability of background medium is relatively high. However, correlation between wave propagation and fracture permeability is significant when the matrix permeability at a low level. A second attenuation peak occurs for the fluid flow within fractures in high-frequency region for more and more higher fracture permeability. The exact analytical solutions that are compared to numerical forward modeling of wave propagation in fractured media allow us to verify the correctness of the new model. If there exists another approach for obtaining the connectivity information of background media, we can use this model to analyze qualitatively the permeability of fractures or afford an indicator of in-situ permeability changes in a oil reservoir, for example, fracturing operations. PMID:27259119

  18. Characterization of acoustic wave propagation in a concrete member after fire exposure

    Chiang, Chih-Hung; Huang, Chin-Ting

    2001-04-01

    The acoustic wave propagation in a concrete member with embedded reinforcing bars was analyzed. Fire exposure was applied to two batches of concrete specimens prior to acoustic wave characterization. The fire duration and maximum temperature were simulated for experimental studies using a custom-built electric oven. A standard ultrasonic pulse velocity testing system for concrete was used to provide the through-transmission wave propagation. Multiple peaks were found in the frequency domain based on the fast Fourier transform of the waveform. This could be due to cracks induced by the incompatibility of thermal deformation of the constituents of concrete. Further study showed bond deterioration between reinforcing bars and concrete would also contribute to the variation in frequency content of the recorded waveform.

  19. Effects of dissipation on propagation of surface electromagnetic and acoustic waves

    Nagaraj, Nagaraj

    With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. With this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. The first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an effort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. A dielectric-metal-dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. An equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a Kronig-Penny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. In the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the metal plates, I derive a dispersion equation that gives

  20. Effect of crystalline quality of diamond film to the propagation loss of surface acoustic wave devices.

    Fujii, Satoshi; Shikata, Shinichi; Uemura, Tomoki; Nakahata, Hideaki; Harima, Hiroshi

    2005-10-01

    Diamond films with various crystal qualities were grown by chemical vapor deposition on silicon wafers. Their crystallinity was characterized by Raman scattering and electron backscattering diffraction. By fabricating a device structure for surface acoustic wave (SAW) using these diamond films, the propagation loss was measured at 1.8 GHz and compared with the crystallinity. It was found that the propagation loss was lowered in relatively degraded films having small crystallites, a narrow distribution in the diamond crystallite size, and preferential grain orientation. This experiment clarifies diamond film characteristics required for high-frequency applications in SAW filters. PMID:16382634

  1. Acoustic wave propagation in Ni3 ( = Mo, Nb, Ta) compounds

    Pramod Kumar Yadawa

    2011-04-01

    The ultrasonic properties of the hexagonal closed packed structured Ni3Mo, Ni3Nb and Ni3Ta compounds were studied at room temperature for their characterization. For the investigations of ultrasonic properties, the second-order elastic constants using Lennard–Jones potential were computed. The velocities 1 and 2 have minima and maxima respectively at 45° with the unique axis of the crystal, while 3 increases with respect to angle with the unique axis of the crystal. The inconsistent behaviour of angle-dependent velocities is associated with the action of second-order elastic constants. Debye average sound velocities of these compounds increase with the angle and has maximum at 55° with the unique axis at room temperature. Hence, when a sound wave travels at 55° with the unique axis of these materials, the average sound velocity is found to be maximum. The results achieved are discussed and compared with the available experimental and theoretical results.

  2. Time domain numerical modeling of wave propagation in 2D acoustic / porous media

    Chiavassa, Guillaume

    2011-01-01

    Numerical methods are developed to simulate the wave propagation in 2D heterogeneous fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach...

  3. Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas

    Sultana, S; Hellberg, M A

    2012-01-01

    The linear and nonlinear properties of large amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modelled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential type analysis reveals the existence of large amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely, the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliquen...

  4. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143

  5. Effect of polarization force on the propagation of dust acoustic solitary waves

    We report the modifications in the propagation characteristics of dust acoustic solitary waves (DASWs) due to the polarization force acting on micron-size dust particles in a non-uniform plasma. In the small amplitude limit, we derive a K-dV-type equation and show that there is an increase in the amplitude and a reduction in the width of a solitary structure as the polarization force is enhanced for a given Mach number. For arbitrary amplitude waves we employ the Sagdeev potential method and find that the range of Mach numbers where solitary structures can exist becomes narrower in the presence of the polarization interaction. In both limits there exists a critical value of grain size beyond which the DASW cannot propagate.

  6. Effect of polarization force on the propagation of dust acoustic solitary waves

    Bandyopadhyay, P; Konopka, U; Khrapak, S A; Morfill, G E [Max-Planck Institut fuer Extraterrestrische Physik, D-85741 Garching (Germany); Sen, A, E-mail: pintu@mpe.mpg.d [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

    2010-07-15

    We report the modifications in the propagation characteristics of dust acoustic solitary waves (DASWs) due to the polarization force acting on micron-size dust particles in a non-uniform plasma. In the small amplitude limit, we derive a K-dV-type equation and show that there is an increase in the amplitude and a reduction in the width of a solitary structure as the polarization force is enhanced for a given Mach number. For arbitrary amplitude waves we employ the Sagdeev potential method and find that the range of Mach numbers where solitary structures can exist becomes narrower in the presence of the polarization interaction. In both limits there exists a critical value of grain size beyond which the DASW cannot propagate.

  7. TOPICAL REVIEW: Sensors and actuators based on surface acoustic waves propagating along solid liquid interfaces

    Lindner, Gerhard

    2008-06-01

    The propagation of surface acoustic waves (SAWs) along solid-liquid interfaces depends sensitively on the properties of the liquid covering the solid surface and may result in a momentum transfer into the liquid and thus a propulsion effect via acoustic streaming. This review gives an overview of the design of different SAW devices used for the sensing of liquids and the basic mechanisms of the interaction of SAWs with overlaying liquids. In addition, applications of devices based on these phenomena with respect to touch sensing and the measurement of liquid properties such as density, viscosity or the composition of mixed liquids are described, including microfabricated as well as macroscopic devices made from non-piezoelectric materials. With respect to the rapidly growing field of acoustic streaming applications, recent developments in the movement of nanolitre droplets on a single piezoelectric chip, the rather macroscopic approaches to the acoustic pumping of liquids in channels and recent attempts at numerical simulations of acoustic streaming are reported.

  8. Sensors and actuators based on surface acoustic waves propagating along solid-liquid interfaces

    The propagation of surface acoustic waves (SAWs) along solid-liquid interfaces depends sensitively on the properties of the liquid covering the solid surface and may result in a momentum transfer into the liquid and thus a propulsion effect via acoustic streaming. This review gives an overview of the design of different SAW devices used for the sensing of liquids and the basic mechanisms of the interaction of SAWs with overlaying liquids. In addition, applications of devices based on these phenomena with respect to touch sensing and the measurement of liquid properties such as density, viscosity or the composition of mixed liquids are described, including microfabricated as well as macroscopic devices made from non-piezoelectric materials. With respect to the rapidly growing field of acoustic streaming applications, recent developments in the movement of nanolitre droplets on a single piezoelectric chip, the rather macroscopic approaches to the acoustic pumping of liquids in channels and recent attempts at numerical simulations of acoustic streaming are reported. (topical review)

  9. Modeling of acoustic wave propagation and scattering for telemetry of complex structures

    This study takes place in the framework of tools development for the telemetry simulation. Telemetry is a possible technology applied to monitoring the sodium-cooled fast reactors (SFR) and consists in positioning in the reactor core a transducer to generate an ultrasonic beam. This beam propagates through an inhomogeneous random medium since temperature fluctuations occur in the liquid sodium and consequently the sound velocity fluctuates as well, which modifies the bream propagation. Then the beam interacts with a reactor structure immersed in sodium. By measuring the time of flight of the backscattered echo received by the same transducer, one can determine the precise location of the structure. The telemetry simulation therefore requires modeling of both the acoustic wave propagation in an inhomogeneous random medium and the interaction of this wave with structures of various shapes; this is the objective of this work. A stochastic model based on a Monte Carlo algorithm is developed in order to take into account the random fluctuations of the acoustic field. The acoustic field through an inhomogeneous random medium is finally modeled from the field calculated in a mean homogeneous medium by modifying the travel times of rays in the homogeneous medium, using a correction provided by the stochastic model. This stochastic propagation model has been validated by comparison with a deterministic model and is much simpler to integrate in the CIVA software platform for non destructive evaluation simulation and less time consuming than the deterministic model. In order to model the interaction between the acoustic wave and the immersed structures, classical diffraction models have been evaluated for rigid structures, including the geometrical theory of diffraction (GTD) and the Kirchhoff approximation (KA). These two approaches appear to be complementary. Combining them so as to retain only their advantages, we have developed a hybrid model (the so-called refined KA

  10. Nonlinear propagation of ion-acoustic waves in a degenerate dense plasma

    M M Masud; A A Mamun

    2013-07-01

    Nonlinear propagation of ion-acoustic (IA) waves in a degenerate dense plasma (with all the constituents being degenerate, for both the non-relativistic or ultrarelativistic cases) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de Vries (KdV) equation have been derived, and the numerical solutions of KdV equation have been analysed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs and neutron stars, have been briefly discussed.

  11. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    El-Labany, S. K.; Behery, E. E. [Department of Physics, Faculty of Science, Damietta University, P.O. Box 34517 New Damietta (Egypt); El-Shamy, E. F. [Department of Physics, Faculty of Science, Damietta University, P.O. Box 34517 New Damietta (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004 Abha (Saudi Arabia)

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  12. Multi-path propagation of acoustical wave and time reversal field in a solid plate

    WU Hao; ZHANG Bixing; WANG Chenghao

    2005-01-01

    The multi-path effect of the acoustical wave in a solid plate is studied. The multireflection and wave conversion of the cylindrical compressional and shear waves, which are excited by an infinite strip on a free surface of the solid plate, are analyzed thoroughly by the far-field approximation method. The concise analytical representations of the cylindrical waves are obtained. The time reversal processing is then applied to the propagation of the cylindrical waves and analyzed theoretically and experimentally. It is shown that the waves coming from different array elements and different paths all arrive at the original place after the time reversal operation. It indicates that the time reversal can compensate automatically the wave aberration caused by the multi-path effect. The self-adaptive focusing of the time reversal field is also analyzed quantificationally by the focusing gain and the ratio of the principal to the second lobe. The effects of the focus position and the aperture of the transducer array on the focused field are also investigated. It shows that theoretical and experimental results are consistent to each other very well.

  13. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation

    Chernogor, L. F.; Frolov, V. L.

    2013-09-01

    We present the results of the bandpass filtering of temporal variations of the Doppler frequency shift of radio signals from a vertical-sounding Doppler radar located near the city of Kharkov when the ionosphere was heated by high-power periodic (with 10 and 15-min periods) radiation from the Sura facility. The filtering was done in the ranges of periods that are close to the acoustic cutoff period and the Brunt—Väisälä period (4-6, 8-12, and 13-17 min). Oscillations with periods of 4-6 min and amplitudes of 50-100 mHz were not recorded in fact. Oscillations with periods of 8-12 and 13-17 min and amplitudes of 60-100 mHz were detected in almost all the sessions. In the former and the latter oscillations, the time of delay with respect to the heater switch-on was close to 100 min and about 40-50 min, respectively. These values correspond to group propagation velocities of about 160 and 320-400 m/s. The Doppler shift oscillations were caused by the acoustic-gravity waves which led to periodic variations in the electron number density with a relative amplitude of about 0.1-1.0%. It was demonstrated that the acoustic-gravity waves were not recorded when the effective power of the Sura facility was equal to 50 MW and they were confidently observed when the effective power was increased up to 130 MW. It is shown that the period of the wave processes was determined by the period of the heating-pause cycles, and the duration of the wave trains did not depend on the duration of the series of heating-pause cycles. The data suggest that the generation mechanism of recorded wave disturbances is different from the mechanism proposed in 1970-1990.

  14. Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma

    Ferdousi, M.; Sultana, S.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2015-03-15

    The properties of obliquely propagating ion-acoustic solitary waves in the presence of ambient magnetic field have been investigated theoretically in an electron-positron-ion nonthermal plasma. The plasma nonthermality is introduced via the q-nonextensive distribution of electrons and positrons. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting reductive perturbation method. The solution of K-dV and modified K-dV equation, which describes the solitary wave characteristics in the long wavelength limit, is obtained by steady state approach. It is seen that the electron and positron nonextensivity and external magnetic field (obliqueness) have significant effects on the characteristics of solitary waves. A critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas where static external magnetic field is present.

  15. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  16. Effect of secondary electron emission on the propagation of dust acoustic waves in a dusty plasma

    The effect of secondary electron emission on dust acoustic wave (DA) propagation has been investigated based on orbit motion limited theory of dust grain charging. The emitted secondaries are assumed to have the same temperature as that of the ambient plasma electrons so that the plasma effectively consists of three components: the ions, electrons, and the variable charge dusts. Together with the effect of secondary emission, the effect of ion and electron capture and ionization of neutral atoms and recombination have been included in the ion and electron fluid equations. Small amplitude perturbation is considered about a charge neutral steady state. It is seen that if the dust charge is positive there may occur under certain conditions zero frequency exponentially growing perturbation about the equilibrium. The possibility of the occurrence of such purely growing mode in a dusty plasma was not noted earlier. The frequency and damping decrement of DA waves in dusty plasmas with negatively charged dust and also of DA waves with positively charged dust, when they exist, are determined. Comparisons with corresponding results of DA waves in the absence of secondary emission are exhibited graphically

  17. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  18. Stability analysis for acoustic wave propagation in tilted TI media by finite differences

    Bakker, Peter M.; Duveneck, Eric

    2011-05-01

    Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves

  19. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  20. Wave propagation in a 2D nonlinear structural acoustic waveguide using asymptotic expansions of wavenumbers

    Vijay Prakash, S.; Sonti, Venkata R.

    2016-02-01

    Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrödinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions.

  1. Propagation characteristics of dust-acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-08-01

    The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  2. Modeling acoustic wave propagation in the Southern Ocean to estimate the acoustic impact of seismic surveys on marine mammals

    Breitzke, M.; Bohlen, T.

    2007-12-01

    According to the Protocol on Environmental Protection to the Antarctic Treaty, adopted 1991, seismic surveys in the Southern Ocean south of 60°S are exclusively dedicated to academic research. The seismic surveys conducted by the Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany during the last 20 years focussed on two areas: The Wedell Sea (60°W - 0°W) and the Amundsen/Bellinghausen Sea (120°W - 60°W). Histograms of the Julian days and water depths covered by these surveys indicate that maximum activities occurred in January and February, and most lines were collected either in shallow waters of 400 - 500 m depth or in deep waters of 2500 - 4500 m depth. To assess the potential risk of future seismic research on marine mammal populations an acoustic wave propagation modeling study is conducted for the Wedell and the Amundsen/ Bellinghausen Sea. A 2.5D finite-difference code is used. It allows to simulate the spherical amplitude decay of point sources correctly, considers P- and S-wave velocities at the sea floor and provides snapshots of the wavefield at any spatial and temporal resolution. As source signals notional signatures of GI-, G- and Bolt guns, computed by the NUCLEUS software (PGS) are used. Based on CTD measurements, sediment core samplings and sediment echosounder recordings two horizontally-layered, range-independent generic models are established for the Wedell and the Amundsen/Bellinghausen Sea, one for shallow (500 m) and one for deep water (3000 m). They indicate that the vertical structure of the water masses is characterized by a 100 m thick, cold, low sound velocity layer (~1440 - 1450 m/s), centered in 100 m depth. In the austral summer it is overlain by a warmer, 50 m thick surface layer with slightly higher sound velocities (~1447 - 1453 m/s). Beneath the low-velocity layer sound velocities increase rapidly to ~1450 - 1460 m/s in 200 m depth, and smoothly to ~1530 m/s in 4700 m depth. The sea floor is mainly

  3. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.

    Sankaranarayanan, Subramanian K R S; Bhethanabotla, Venkat R

    2009-03-01

    We develop a 3-D finite element model of a focused surface acoustic wave (F-SAW) device based on LiNbO(3) to analyze the wave generation and propagation characteristics for devices operating at MHz frequencies with varying applied input voltages. We compare the F-SAW device to a conventional SAW device with similar substrate dimensions and transducer finger periodicity. SAW devices with concentrically shaped focused interdigital transducer fingers (F-IDTs) are found to excite waves with high intensity and high beam-width compression ratio, confined to a small localized area. F-SAW devices are more sensitive to amplitude variations at regions close to the focal point than conventional SAW devices having uniform IDT configuration. We compute F-SAW induced streaming forces and velocity fields by applying a successive approximation technique to the Navier-Stokes equation (Nyborg's theory). The maximum streaming force obtained at the focal point varies as the square of the applied input voltage. Computed streaming velocities at the focal point in F-SAW devices are at least an order of magnitude higher than those in conventional SAW devices. Simulated frequency response indicates higher insertion losses in F-SAW devices than in conventional devices, reflecting their greater utility as actuators than as sensors. Our simulation findings suggest that F-SAW devices can be utilized effectively for actuation in microfluidic applications involving diffusion limited transport processes. PMID:19411221

  4. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    K K Mondal

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust-acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived.

  5. Propagation characteristics of dust$-$acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    Choudhary, Mangilal; Bandyopadhyay, P

    2016-01-01

    The experimental observation of the self$-$excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object are investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in the background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at lower pressure. The excitation of such low frequency wave is a result of the ion--dust streaming instability in the dust cloud. The characteristics of the propagating dust acoustic wave get modified in presence of a floating cylindrical object of radius larger than the dust Debye length. Instead of propagating in the vertical direction, the DAWs are found to propagate obliquely in presence of the floating object (kept either vertically or horizontally). I...

  6. Propagation and interaction of ion-acoustic solitary waves in a quantum electron-positron-ion plasma

    Han Jiu-Ning; Luo Jun-Hua; Sun Gui-Hua; Liu Zhen-Lai; Li Shou-Yi

    2011-01-01

    This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron-positron-ion plasma by using the quantum hydrodynamic equations. The extended Poincaré-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries equations for quantum ion-acoustic solitary waves in this plasma. The effects of the ratio of positrons to ions unperturbation number density p and the quantum diffraction parameter He (Hp) on the newly formed wave during interaction, and the phase shift of the colliding solitary waves are studied. It is found that the interaction between two solitary waves fits linear superposition principle and these plasma parameters have significantly influence on the newly formed wave and phase shift of the colliding solitary waves. The investigations should be useful for understanding the propagation and interaction of ion-acoustic solitary waves in dense astrophysical plasmas (such as white dwarfs) as well as in intense laser-solid matter interaction experiments.

  7. Propagation des ondes acoustiques dans les milieux poreux saturés Propagation of Acoustic Waves in Saturated Porous Media

    Coussy O.

    2006-11-01

    Full Text Available Ce travail comporte deux parties. La première partie concerne la théorie de la propagation des ondes acoustiques dans les milieux poreux saturés. Une revue des différentes méthodes existantes est faite et un développement critique de la théorie de Biot est exposé en détail. On examine en particulier les différents résultats auxquels cette théorie conduit et on regarde, dans quelles conditions et sur quels problèmes géophysiques, les phénomènes physiques mis en évidence peuvent jouer de manière notable. Dans la deuxième partie, on présente une vérification expérimentale due à Plona (1980 de la théorie de Biot. Après une introduction qualitative de l'expérience mise en place, on expose les résultats obtenus pour un grand nombre de matériaux de porosités différentes. La notion de tortuosité d'un milieu poreux est introduite théoriquement et discutée expérimentalement. This article is in two parts. The first part has to do with the theory of acoustic wave propagation in saturated porous media. Different existing methods are reviewed, and Biot's theory is critically developed in detail. In particular, the different results to which this theory leads are examined, and the conditions and geophysical problems on which the physical phenomena involved may have an appreciable effect are considered. The second part is devoted to the experimental check made by Plona (1980 of Biot's theory. After a qualitative introduction of the experimental procedure, the results obtained for many materials of different porosities are described. The concept of the tortuosity of a porous medium is introduced theoretically and discussed experimentally.

  8. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  9. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    A. M., El-Hanbaly; E. K., El-Shewy; Elgarayhi, A.; A. I., Kassem

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  10. Acoustic-radiation-force-induced shear wave propagation in cardiac tissue

    Bouchard, Richard R.; Wolf, Patrick D.; Hsu, Stephen J.; Dumont, Douglas M.; Trahey, Gregg E.

    2009-02-01

    Shear wave elasticity imaging (SWEI) was employed to track acoustic radiation force (ARF)-induced shear waves in the myocardium of a beating heart. Shear waves were generated in and tracked through the myocardium of the left ventricular free wall (LVFW) in an in vivo heart that was exposed through a thoracotomy; matched studies were also preformed on an ex vivo myocardial specimen. Average shear wave velocities ranged from 2.22 to 2.53 m/s for the ex vivo specimen and 1.5 to 2.9 m/s (1.5-2.09 m/s during diastole; 2.9 m/s during systole) for in vivo specimens. Despite the known rotation of myocardial fiber orientation with tissue depth, there was no statistically significant shear wave velocity depth dependence observed in any of the experimental trials.

  11. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta 34517, Egypt and Department of Physics, College of Science, King Khalid University, Abha P.O. 9004 (Saudi Arabia)

    2014-08-15

    The solitary structures of multi–dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  12. Effects of liquid pore water on acoustic wave propagation in snow as a Biot-type porous material

    Sidler, Rolf

    2015-01-01

    A method to estimate phase velocity and attenuation of acoustic waves in the presence of liquid water in a snowpack is presented. The method is based on Biot's theory of wave propagation in porous materials. Empirical relations and a priori information is used to characterize snow as a porous material as a function of porosity. Plane wave theory and an equivalent pore fluid are used to solve Biot's differential equations and to asses the impact of the air and water in the pore space. The liquid water in the pore space of a snow pack reduces the velocity of the first compressional wave by roughly 300 m/s for every 0.1 increase in liquid water saturation. Also the attenuation of the compressional waves is increased with increasing liquid water content. Two end member models for compaction are evaluated to asses the importance of an independent density measurement for an estimate of liquid pore water saturation in snow with acoustic waves. The two end members correspond to no compaction at all and to a melting s...

  13. On propagation characteristics of SH-type surface acoustic waves in periodic metal gratings by variational principle

    XU Fangqian; HE Shitang; LIU Jiansheng; CHEN Yixiang

    2009-01-01

    Based on D.P. Chen and Haus' theory, a theoretical method was presented to analyze dispersion characteristics of SH-type surface acoustic waves (SAWs) propagating on periodic metallic grating structures with a variational principle and coupling-of-modes equation. Without using complicated Green's function, the calculating results of the method agree well with those of Hashimoto's theory. On the other hand, Hashimoto's method is helpless for calculating the dispersion relation of short-circuited gratings on ST-90°X quartz etc. However, the method developed in this paper can successfully calculate it.

  14. A partially wetting film of water and surfactant under the influence of a propagating MHz surface acoustic wave

    Altshuler, Gennady; Manor, Ofer

    2015-01-01

    We use both theory and experiment to study the response of {\\it partially wetting} films of water and surfactant solutions to a propagating MHz vibration in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). The SAW invokes a drift of mass in the liquid film, which is associated with the Schlichting boundary layer flow (also known as the Schlichting streaming). We study thin films that are governed by a balance between the drift and capillary stress alone. We demonstra...

  15. Oblique propagation of dust ion-acoustic solitary waves in a magnetized dusty pair-ion plasma

    Misra, A P

    2013-01-01

    We study the linear and nonlinear properties of electrostatic waves in a magnetized pair-ion plasma with immobile positively charged dusts. For the obliquely propagating linear waves, a general dispersion relation is derived, from which it is shown that the low-frequency (in comparison with the negative-ion cyclotron frequency) long-wavelength "slow" and a "fast" modes can propagate as dust ion-acoustic (DIA) and dust ion-cyclotron (DIC)-like waves. The properties of these modes are analyzed with the effects of obliqueness of propagation $(\\theta)$, the negative to positive ion mass ratio $(m)$, the ratio of negative to positive ion temperatures $(T)$, the static magnetic field as well as the presence of charged dusts (characterized by the dust to negative-ion number density $\\delta$) in the plasma. In the nonlinear regime, a standard reductive perturbation technique is used to derive a Korteweg-de Vries (KdV) equation for the oblique DIA waves. We show that the KdV equation can admit either compressive or ra...

  16. Spectroscopic Observations of Propagating Disturbances in a Polar Coronal Hole: Evidence of Slow Magneto-acoustic Waves

    Gupta, G R; Marsch, E; Solanki, S K; Banerjee, D

    2012-01-01

    We focus on detecting and studying quasi-periodic propagating features that have been interpreted both in terms of slow magneto-acoustic waves and of high speed upflows. We analyze long duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the off-limb region and obtain time--distance maps in intensity, Doppler velocity and line width. We also perform a cross correlation analysis on different time series curves at different latitudes. We study average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and perform a red-blue asymmetry analysis. We find the clear presence of propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about $60\\pm 4.8$ km s$^{-1}$ and a periodicity of $\\approx$14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances i...

  17. Effect of spatial dispersion on transient acoustic wave propagation in 3D.

    Every, A G

    2006-12-22

    Spatial dispersion is the variation of wave speed with wavelength. It sets in when the acoustic wavelength approaches the natural scale of length of the medium, which could, for example, be the lattice constant of a crystal, the repeat distance in a superlattice, or the grain size in a granular material. In centrosymmetric media, the first onset of dispersion is accommodated by the introduction of fourth order spatial derivatives into the wave equation. These lead to a correction to the phase velocity which is quadratic in the spatial frequency. This paper treats the effect of spatial dispersion on the point force elastodynamic Green's functions of solids. The effects of dispersion are shown to be most pronounced in the vicinity of wave arrivals. These lose their singular form, and are transformed into wave trains known as quasi-arrivals. The step and ramp function wave arrivals are treated, and it is shown that their unfolded quasi-arrival forms can be expressed in terms of integrals involving the Airy function. PMID:16828830

  18. Strong acoustic wave action

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  19. Theoretical modeling of propagation of magneto-acoustic waves in magnetic regions below sunspots

    Khomenko, E; Collados, M; Parchevsky, K; Olshevsky, V

    2008-01-01

    We use 2D numerical simulations and eikonal approximation to study properties of magneto-acoustic gravity waves traveling below the solar surface through the magnetic structure of sunspots. We consider a series of magnetostatic models of sunspots of different magnetic field strengths, from the deep interior to the chromosphere. The purpose of these studies is to quantify the effect of the magnetic field on local helioseismology measurements. Waves are excited by a sub-photospheric source located in the region beta slightly larger than 1. Time-distance diagrams and travel times are calculated for various frequency intervals and compared to the non-magnetic case. The results confirm that the observed time-distance helioseismology signals in sunspot regions correspond to fast MHD waves. The slow MHD waves form a distinctly different pattern in the time-distance diagram, which has not been detected in observations. The numerical results are in good agreement with the solution in the short-wavelength (eikonal) app...

  20. Numerical study of wave propagation around an underground cavity: acoustic case

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  1. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI.

    Liu, Yu; Fite, Brett Z; Mahakian, Lisa M; Johnson, Sarah M; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W

    2015-01-01

    Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable. PMID:26439259

  2. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI.

    Yu Liu

    Full Text Available Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm, as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable.

  3. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  4. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  5. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  6. Propagation of ion-acoustic waves in a dusty plasma with non-isothermal electrons

    K K Mondal

    2007-08-01

    For an unmagnetised collisionless plasma consisting of warm ions, non-isothermal electrons and cold, massive and charged dust grains, the Sagdeev potential equation, considering both ion dynamics and dust dynamics has been derived. It has been observed that the Sagdeev potential () exists only for > 0 up to an upper limit ( ≃ 1.2). This implies the possibility of existence of compressive solitary wave in the plasma. Exhaustive numerics done for both the large-amplitude and small-amplitude ion-acoustic waves have revealed that various parameters, namely, ion temperature, non-isothermality of electrons, Mach numbers etc. have considerable impact on the amplitude as well as the width of the solitary waves. Dependence of soliton profiles on the ion temperature and the Mach number has also been graphically displayed. Moreover, incorporating dust-charge fluctuation and non-isothermality of electrons, a non-linear equation relating the grain surface potential to the electrostatic potential has been derived. It has been solved numerically and interdependence of the two potentials for various ion temperatures and orders of non-isothermality has been shown graphically.

  7. ZnO Films on {001}-Cut -Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  8. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  9. Propagation of Ion Acoustic Perturbations

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  10. Identification of acoustic wave propagation in a duct line and its application to detection of impact source location based on signal processing

    Shin, Yong Woo; Kim, Min Soo; Lee, Sang Kwon [Inha University, Seoul (Korea, Republic of)

    2010-12-15

    For the detection of the impact location in a pipeline system, the correlation method has been the conventional method. For the application of the correlation method, the diameter of a duct should be small so that the acoustic wave inside the duct can propagate with nondispersive characteristics, in the form of, for example, a plane wave. This correlation method calculates the cross-correlation between acoustic waves measured at two acceleration sensors attached to a buried duct. It also gives information about the arrival time delay of an acoustic wave between two sensors. These arrival time delays are used for the estimation of the impact location. However, when the diameter of the duct is large, the acoustic waves inside the duct propagate with dispersive characteristics owing to the reflection of the acoustic wave off of the wall of the duct. This dispersive characteristic is related to the acoustic modes inside a duct. Therefore, the correlation method does not work correctly for the detection of the impact location. This paper proposes new methods of accurately measuring the arrival time delay between two sensors attached to duct line system. This method is based on the time-frequency analyses of the short time Fourier transform (STFT) and continuous wavelet transform (CWT). These methods can discriminate direct waves (non-dispersive waves) and reflective waves (dispersive waves) from the measured wave signals through the time-frequency analysis. The direct wave or the reflective wave is used to estimate the arrival time delay. This delay is used for the identification of the impact location. This systematic method can predict the impact location due to the impact forces of construction equipment with more accuracy than the correlation method

  11. Identification of acoustic wave propagation in a duct line and its application to detection of impact source location based on signal processing

    For the detection of the impact location in a pipeline system, the correlation method has been the conventional method. For the application of the correlation method, the diameter of a duct should be small so that the acoustic wave inside the duct can propagate with nondispersive characteristics, in the form of, for example, a plane wave. This correlation method calculates the cross-correlation between acoustic waves measured at two acceleration sensors attached to a buried duct. It also gives information about the arrival time delay of an acoustic wave between two sensors. These arrival time delays are used for the estimation of the impact location. However, when the diameter of the duct is large, the acoustic waves inside the duct propagate with dispersive characteristics owing to the reflection of the acoustic wave off of the wall of the duct. This dispersive characteristic is related to the acoustic modes inside a duct. Therefore, the correlation method does not work correctly for the detection of the impact location. This paper proposes new methods of accurately measuring the arrival time delay between two sensors attached to duct line system. This method is based on the time-frequency analyses of the short time Fourier transform (STFT) and continuous wavelet transform (CWT). These methods can discriminate direct waves (non-dispersive waves) and reflective waves (dispersive waves) from the measured wave signals through the time-frequency analysis. The direct wave or the reflective wave is used to estimate the arrival time delay. This delay is used for the identification of the impact location. This systematic method can predict the impact location due to the impact forces of construction equipment with more accuracy than the correlation method

  12. The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics

    Bayliss, A.; Goldstein, C. I.; Turkel, E.

    1984-01-01

    The Helmholtz Equation (-delta-K(2)n(2))u=0 with a variable index of refraction, n, and a suitable radiation condition at infinity serves as a model for a wide variety of wave propagation problems. A numerical algorithm was developed and a computer code implemented that can effectively solve this equation in the intermediate frequency range. The equation is discretized using the finite element method, thus allowing for the modeling of complicated geometrices (including interfaces) and complicated boundary conditions. A global radiation boundary condition is imposed at the far field boundary that is exact for an arbitrary number of propagating modes. The resulting large, non-selfadjoint system of linear equations with indefinite symmetric part is solved using the preconditioned conjugate gradient method applied to the normal equations. A new preconditioner is developed based on the multigrid method. This preconditioner is vectorizable and is extremely effective over a wide range of frequencies provided the number of grid levels is reduced for large frequencies. A heuristic argument is given that indicates the superior convergence properties of this preconditioner.

  13. Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium

    Mishra, S.; Schwab, Ch.; Šukys, J.

    2016-05-01

    We consider the very challenging problem of efficient uncertainty quantification for acoustic wave propagation in a highly heterogeneous, possibly layered, random medium, characterized by possibly anisotropic, piecewise log-exponentially distributed Gaussian random fields. A multi-level Monte Carlo finite volume method is proposed, along with a novel, bias-free upscaling technique that allows to represent the input random fields, generated using spectral FFT methods, efficiently. Combined together with a recently developed dynamic load balancing algorithm that scales to massively parallel computing architectures, the proposed method is able to robustly compute uncertainty for highly realistic random subsurface formations that can contain a very high number (millions) of sources of uncertainty. Numerical experiments, in both two and three space dimensions, illustrating the efficiency of the method are presented.

  14. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  15. Phonon-polariton and band structure of electro-magneto-acoustic SH wave propagation oblique to the periodic layered piezoelectric structures

    Xu, Y.L. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q. [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China); Tian, X.G., E-mail: tiansu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China)

    2013-05-03

    Electro-magneto-acoustic SH waves propagating oblique to the periodic layered piezoelectric structures are studied under the coupling of the acoustic wave and the electromagnetic wave. Band structures of the so-called piezoelectric superlattice and phononic/photonic crystal are given both at acoustic frequencies and at optical frequencies. For the periodic layered piezoelectric structures, phonon-polaritons (the coupling modes of the phonons and photons) are found not only happening near the center of the Brillouin zone (in the long-wavelength limit) at acoustic frequencies, but also being able to appear in the whole Brillouin zone at optical frequencies. Appearing of these phonon-polaritons may provide a way to design a new type of acousto-optic devices.

  16. Stability of three-dimensional obliquely propagating dust acoustic waves in dusty plasma including the polarization force effect

    El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E.; Zedan, N. A.

    2015-12-01

    Propagation of dust acoustic solitary waves (DASWs) in a magnetized dusty plasma consisting of extremely massive, negatively/positively charged dust fluid and Boltzmann distributed electrons and ions is studied. A nonlinear Zakharov-Kuznetsov (ZK) equation adequate for describing the solitary waves is derived by applying a reductive perturbation technique. Moreover, an extended Zakharov Kuznetsov (EZK) equation is derived at the vicinity of the critical phase velocity. The effects of the polarization force are explicitly discussed and the growth rate of the produced waves is calculated. It is found that the physical parameters have strong effects on the instability criterion as well as on the growth rate. It is noted that the phase velocity decreases as the polarization force, the effective-to-ion temperature ratio, and the ion-to-electron temperature ratio increase. Moreover, the nonlinearity coefficient and the critical phase velocity increase by increasing the polarization force. The relevance of these findings to a recent plasma experiment and astrophysical plasma observations is briefly discussed.

  17. Propagation des ondes acoustiques dans les milieux poreux saturés. Effets d'interface Propagation of Acoustic Waves in Saturated Porous Media. Interface Effects (Part One

    Rasolofosaon P.

    2006-11-01

    égligeable. En outre, nous montrons que la géométrie du milieu de propagation joue un rôle relativement secondaire. This article is the logical continuation of a previous article (O. Coussy and T. Bourbié, 1984 concerning the propagation, within the framework of Biot's theory, of acoustic waves in infinite saturated porous media. Starting from the same assumptions as O. Coussy and T. Bourbié concerning the propagation media, this article analyzes the influence of the presence of plane geometric discontinuities (free semi-infinite media or the contacts between two semi-infinite media or discontinuities with cylindrical symmetry (wells. After reviewing the stress-strain relations for a porous medium and the basic equations for dynamic poroelasticity, the article discusses the boundary conditions to be imposed on the interfaces. It then examines the general laws of reflection and refraction in poroelasticity (generalized Snell-Descartes laws. The application of these laws to several interesting specific cases mainly reveals the following phenomena: (1 a slow compressive wave is always generated at the interface between two saturated porous media; (2 the reflected and transmitted waves are generally inhomogeneous. In the next phase the propagation of acoustic waves is examined on the free surface of a semi-infinite saturated porous medium (Rayleigh waves and at the plane interface between a liquid and a saturated porous medium (Stoneley waves. Compared to the properties known for them in conventional elastodynamics, these waves in poroelasticity are slightly dispersive, and appreciably attenuated because of the two-phase nature of the propagation medium. Lastly, the influence of a submerged source emitting near a permeable interface is examined. Emphasis is placed on the fundamental role of permeability and flow conditions at interfaces on the attenuation of S waves and surface waves. By way of comparison, the influence of these parameters on the first arrivals (P waves is

  18. Propagation des ondes acoustiques dans les milieux poreux saturés. Effets d'interface Propagation of Acoustic Waves in Saturated Porous Media. Interface Effects (Part Three

    Rasolofosaon P.

    2006-11-01

    égligeable. En outre, nous montrons que la géométrie du milieu de propagation joue un rôle relativement secondaire. This article is the logical continuation of a previous article (O. Coussy and T. Bourbié, 1984 concerning the propagation, within the framework of Biot's theory, of acoustic waves in infinite saturated porous media. Starting from the same assumptions as O. Coussy and T. Bourbié concerning the propagation media, this article analyzes the influence of the presence of plane geometric discontinuities (free semi-infinite media or the contacts between two semi-infinite media or discontinuities with cylindrical symmetry (wells. After reviewing the stress-strain relations for a porous medium and the basic equations for dynamic poroelasticity, the article discusses the boundary conditions to be imposed on the interfaces. It then examines the general laws of reflection and refraction in poroelasticity (generalized Snell-Descartes laws. The application of these laws to several interesting specific cases mainly reveals the following phenomena: (1 a slow compressive wave is always generated at the interface between two saturated porous media; (2 the reflected and transmitted waves are generally inhomogeneous. In the next phase the propagation of acoustic waves is examined on the free surface of a semi-infinite saturated porous medium (Rayleigh waves and at the plane interface between a liquid and a saturated porous medium (Stoneley waves. Compared to the properties known for them in conventional elastodynamics, these waves in poroelasticity are slightly dispersive, and appreciably attenuated because of the two-phase nature of the propagation medium. Lastly, the influence of a submerged source emitting near a permeable interface is examined. Emphasis is placed on the fundamental role of permeability and flow conditions at interfaces on the attenuation of S waves and surface waves. By way of comparison, the influence of these parameters on the first arrivals (P waves is

  19. Propagation des ondes acoustiques dans les milieux poreux saturés. Effets d'interface Propagation of Acoustic Waves in Saturated Porous Media. Interface Effects (Part Two

    Rasolofosaon P.

    2006-11-01

    égligeable. En outre, nous montrons que la géométrie du milieu de propagation joue un rôle relativement secondaire. This article is the logical continuation of a previous article (O. Coussy and T. Bourbié, 1984 concerning the propagation, within the framework of Biot's theory, of acoustic waves in infinite saturated porous media. Starting from the same assumptions as O. Coussy and T. Bourbié concerning the propagation media, this article analyzes the influence of the presence of plane geometric discontinuities (free semi-infinite media or the contacts between two semi-infinite media or discontinuities with cylindrical symmetry (wells. After reviewing the stress-strain relations for a porous medium and the basic equations for dynamic poroelasticity, the article discusses the boundary conditions to be imposed on the interfaces. It then examines the general laws of reflection and refraction in poroelasticity (generalized Snell-Descartes laws. The application of these laws to several interesting specific cases mainly reveals the following phenomena: (1 a slow compressive wave is always generated at the interface between two saturated porous media; (2 the reflected and transmitted waves are generally inhomogeneous. In the next phase the propagation of acoustic waves is examined on the free surface of a semi-infinite saturated porous medium (Rayleigh waves and at the plane interface between a liquid and a saturated porous medium (Stoneley waves. Compared to the properties known for them in conventional elastodynamics, these waves in poroelasticity are slightly dispersive, and appreciably attenuated because of the two-phase nature of the propagation medium. Lastly, the influence of a submerged source emitting near a permeable interface is examined. Emphasis is placed on the fundamental role of permeability and flow conditions at interfaces on the attenuation of S waves and surface waves. By way of comparison, the influence of these parameters on the first arrivals (P waves is

  20. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping

    De Basabe, Jonás D.

    2010-04-01

    We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively. © 2010 The Authors Journal compilation © 2010 RAS.

  1. Surface Acoustic Wave Devices

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model of a...... output waveguide and the MZI can thus be used as an optical switch. It is explained how the mechanical model of the SAW is coupled to a model of the optical waves such that the change in effective refractive index introduced in the MZI arms by the SAW can be calculated. Results of a parameter study of...

  2. Free films of a partially wetting liquid under the influence of a propagating MHz surface acoustic wave

    Altshuler, Gennady; Manor, Ofer

    2016-07-01

    We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.

  3. Theoretical analysis of surface acoustic wave propagating properties of Y-cut nano lithium niobate film on silicon dioxide

    Chen, Jing, E-mail: jingchen0408@hotmail.com; Zhang, Qiaozhen; Han, Tao; Zhou, Liu; Tang, Gongbin; Liu, Boquan; Ji, Xiaojun [Department of Instrument Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2015-08-15

    The surface acoustic wave (SAW) propagating characteristics of Y-cut nano LiNbO{sub 3} (LN) film on SiO{sub 2}/LN substrate have been theoretically calculated. The simulated results showed a shear horizontal (SH) SAW with enhanced electromechanical coupling factor K{sup 2} owing to a dimensional effect of the nanoscale LN film. However, a Rayleigh SAW and two other resonances related to thickness vibrations caused spurious responses for wideband SAW devices. These spurious waves could be fully suppressed by properly controlling structural parameters including the electrode layer height, thickness, and the Euler angle (θ) of the LN thin film. Finally, a pure SH SAW was obtained with a wide θ range, from 0° to 5° and 165° to 180°. The largest K{sup 2} achieved for the pure SH SAW was about 35.1%. The calculated results demonstrate the promising application of nano LN film to the realization of ultra-wideband SAW devices.

  4. Evaluation of Wave Propagation Properties during a True-Triaxial Rock Fracture Experiment using Acoustic Emission Frequency Characteristics

    Goodfellow, S. D.; Ghofrani Tabari, M.; Nasseri, M. B.; Young, R.

    2013-12-01

    A true-triaxial deformation experiment was conducted to study the evolution of wave propagation properties by using frequency characteristics of AE waveforms to diagnose the state of fracturing in a sample of sandstone. Changes in waveform frequency content has been interpreted as either the generation of progressively larger fractures or the relative attenuation of high-frequency wave components as a result of micro-crack formation. A cubic sample of Fontainebleau sandstone was initially loaded to a stress state of σ1 = σ2 = 35 MPa, σ3 = 5 MPa at which point σ1¬ was increased until failure. Acoustic emission (AE) activity was monitored by 18 PZT transducers, three embedded in each platen. The sensor amplitude response spectrum was determined by following an absolute source calibration procedure and showed a relatively constant sensitivity in the frequency range between 20 kHz and 1200 kHz. Amplified waveforms were continuously recorded at a sampling rate of 10 MHz and 12-bit resolution. Continuous acoustic emission waveforms were harvested to extract discrete events. Using a time-varying transverse isotropic velocity model, 48,502 events were locatable inside the sample volume. Prior to peak-stress, AE activity was associated with stable quasi-static growth of fractures coplanar with σ1 and σ2 located near the platen boundaries. In the post peak-stress regime, fracture growth displays unstable ¬dynamic propagation. Analysis of waveform frequency characteristics was limited to the pre peak-stress regime. Analysis of AE frequency characteristics was conducted on all 48,502 located AE events; each event file containing 18 waveforms of varied quality. If the signal to noise ratio was greater than 5, the waveforms power spectrum was estimated and the source-receiver raypath vector was calculated. The power spectrum of each waveform was divided into three frequency bands (Low: 100 - 300 kHz, Medium: 300 - 600 kHz and High: 600 - 1000 kHz) and the power in each

  5. Topology optimization of wave-propagation problems

    Jensen, Jakob Søndergaard; Sigmund, Ole

    Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....

  6. Propagation of Shear Waves Generated by Acoustic Radiation Force in Nondissipative Inhomogeneous Media

    LU Ming-Zhu; LIU Xue-Jin; SHI Yu; KANG Yan-Ni; GUAN Yu-Bo; WAN Ming-Xi

    2012-01-01

    We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue.The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method.A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated.It is noted that unlike the dissipative effect,the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis,compresses or stretches the focus area.The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100% peak positive displacement and 64% peak negative displacement.This action is useful in discerning the water-like lesion.%We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue. The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method. A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated. It is noted that unlike the dissipative effect, the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis, compresses or stretches the focus area. The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100% peak positive displacement and 64% peak negative displacement. This action is useful in discerning the water-like lesion.

  7. Band gaps of acoustic waves propagating in a solid/liquid phononic Fibonacci structure

    Albuquerque, E.L., E-mail: eudenilson@dfte.ufrn.br; Sesion, P.D.

    2010-09-01

    We study the acoustic-phonon transmission spectra in quasiperiodic (Fibonacci type) superlattices made up from the solid crystal quartz and the liquid mercury (Hg). The phonon dynamics is described by a coupled elastic equations within the static field approximation model. We use a transfer-matrix treatment to simplify the algebra, which would be otherwise quite complicated, allowing a neat analytical expression for the phonon transmission coefficients. Numerical results is presented and discussed for both the transmittance spectra as well as the localization factor derived from the Lyapunov exponent, showing that the Fibonacci quasiperiodic structure acts as a filter for the phonon's transmission spectra.

  8. Simulation of Stress Wave Propagation

    Pelikán, Vladimír; Hora, Petr; Machová, Anna; Červená, Olga

    Prague : CESNET, 2010 - (Křenková, I.; Antoš, D.; Matyska, L.), s. 105-114 ISBN 978-80-904173-7-3 R&D Projects: GA AV ČR KJB200760802; GA ČR(CZ) GA101/07/0789 Institutional research plan: CEZ:AV0Z20760514 Keywords : molecular dynamics * wave propagation Subject RIV: BI - Acoustics http://meta.cesnet.cz/cs/about/MetaCentrum_Yearbook9_web.pdf

  9. A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation

    Velasco-Segura, Roberto

    2013-01-01

    A form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite volume method using the Roe linearization was implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is based on CLAWPACK and is written for parallel execution on a GPU, thus improving performance by a factor of over 60 when compared to the standard CLAWPACK code.

  10. Propagation of arbitrary amplitude dust-ion acoustic waves in the collisional magnetized dusty plasma in the presence of non-thermal electrons

    Sayyar, M.; Zahed, H.; Pestehe, S. J.; Sobhanian, S.

    2016-07-01

    Using the Sagdeev pseudo-potential method, the oblique propagation of dust-ion acoustic solitary waves is studied in a magnetized dusty plasma. By considering non-thermal distribution of electrons, the related pseudo-potential is obtained using the Poisson equation. The behavior of the wave is investigated for some ranges of parameters. It is demonstrated that the increase in ion density, lz, β, and also δ1 can lead to the increases in the width and amplitude of the pseudo-potential, while any increase of a2, the coefficient that describes the first nonlinear term in the G ( ϕ ) , increases the amplitude of the V ( ϕ ) .

  11. Propagation of waves

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  12. Comment on "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus" [J. Acoust. Soc. Am. 132, 2887-2895 (2012)].

    Marston, Philip L

    2014-03-01

    The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions. PMID:24606246

  13. Nonlinear propagation of dust-acoustic solitary waves in a dusty plasma with arbitrarily charged dust and trapped electrons

    O Rahman; A A Mamun

    2013-06-01

    A theoretical investigation of dust-acoustic solitary waves in three-component unmagnetized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian electron distribution to a vortex-like one, the dynamics of small but finite amplitude dust-acoustic (DA) waves is governed by a nonlinear equation of modified Korteweg–de Vries (mKdV) type (instead of KdV). The reductive perturbation method was employed to study the basic features (amplitude, width, speed, etc.) of DA solitary waves which are significantly modified by the presence of trapped electrons. The implications of our results in space and laboratory plasmas are briefly discussed.

  14. The effect of non-thermal electrons on obliquely propagating electron acoustic waves in a magnetized plasma

    Singh, Satyavir; Bharuthram, Ramashwar

    2016-07-01

    Small amplitude electron acoustic solitary waves are studied in a magnetized plasma consisting of hot electrons following Cairn's type non-thermal distribution function and fluid cool electrons, cool ions and an electron beam. Using reductive perturbation technique, the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation is derived to describe the nonlinear evolution of electron acoustic waves. It is observed that the presence of non-thermal electrons plays an important role in determining the existence region of solitary wave structures. Theoretical results of this work is used to model the electrostatic solitary structures observed by Viking satellite. Detailed investigation of physical parameters such as non-thermality of hot electrons, beam electron velocity and temperature, obliquity on the existence regime of solitons will be discussed.

  15. Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves

    Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactive (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included

  16. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  17. Propagating waves along spicules

    Okamoto, Takenori J

    2011-01-01

    Alfv\\'enic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigated the statistical properties of Alfv\\'enic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high cadence observations of the Solar Optical Telescope (SOT) onboard \\emph{Hinode}. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules, and found: (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively). (2) The phase speed gradually increases with height. (3) Upward waves dominant at lower altitudes, standing waves at higher altitudes. (4) Standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase. (5) In some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule. (...

  18. Vlasov simulation of 2D Modulational Instability of Ion Acoustic Waves and Prospects for Modeling such instabilities in Laser Propagation Codes

    Berger, Richard; Chapman, T.; Banks, J. W.; Brunner, S.

    2015-11-01

    We present 2D+2V Vlasov simulations of Ion Acoustic waves (IAWs) driven by an external traveling-wave potential, ϕ0 (x , t) , with frequency, ω, and wavenumber, k, obeying the kinetic dispersion relation. Both electrons and ions are treated kinetically. Simulations with ϕ0 (x , t) , localized transverse to the propagation direction, model IAWs driven in a laser speckle. The waves bow with a positive or negative curvature of the wave fronts that depends on the sign of the nonlinear frequency shift ΔωNL , which is in turn determined by the magnitude of ZTe /Ti where Z is the charge state and Te , i is the electron, ion temperature. These kinetic effects result can cause modulational and self-focusing instabilities that transfer wave energy to kinetic energy. Linear dispersion properties of IAWs are used in laser propagation codes that predict the amount of light reflected by stimulated Brillouin scattering. At high enough amplitudes, the linear dispersion is invalid and these kinetic effects should be incorporated. Including the spatial and time scales of these instabilities is computationally prohibitive. We report progress including kinetic models in laser propagation codes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 15.

  19. Acoustics waves and oscillations

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  20. Propagation of waves in porous media

    Çorapçıoplu, M. Yavuz; Tuncay, Kağan

    1996-01-01

    Wave propagation in porous media is of interest in various diversified areas of science and engineering. The theory of the phenomenon has been studied extensively in soil mechanics, seismology, acoustics, earthquake engineering, ocean engineering, geophysics, and many other disciplines. This review presents a general survey of the literature within the context of porous media mechanics. Following a review of the Biot's theory of wave propagation in linear, elastic, fluid saturated porous medi...

  1. Reflection of Propagating Slow Magneto-acoustic Waves in Hot Coronal Loops: Multi-instrument Observations and Numerical Modeling

    Mandal, Sudip; Yuan, Ding; Fang, Xia; Banerjee, Dipankar; Pant, Vaibhav; Van Doorsselaere, Tom

    2016-09-01

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  2. Reflection Of Propagating Slow Magneto-acoustic Waves In Hot Coronal Loops : Multi-instrument Observations and Numerical Modelling

    Mandal, Sudip; Fang, Xia; Banerjee, Dipankar; Pant, Vaibhav; Van Doorsselaere, Tom

    2016-01-01

    Slow MHD waves are important tools for understanding the coronal structures and dynamics. In this paper, we report a number of observations, from X-Ray Telescope (XRT) on board HINODE and SDO/AIA of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and the temperature of the loop plasma by performing DEM analysis on the AIA image sequence. The estimated speed of propagation is comparable or lower than the local sound speed suggesting it to be a propagating slow wave. The intensity perturbation amplitudes, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observati...

  3. Acoustic wave propagation simulation in a poroelastic medium saturated by two immiscible fluids using a staggered finite-difference with a time partition method

    ZHAO HaiBo; WANG XiuMing

    2008-01-01

    Based on the three-pheee theory proposed by Santos, acoustic wave propagation in a poroelastic medium saturated by two immiscible fluids was simulated using a staggered high-order finite-difference algorithm with a time partition method, which is firstly applied to such a three-phase medium. The partition method was used to solve the stiffness problem of the differential equations in the three-pheee theory. Considering the effects of capillary pressure, reference pressure and coupling drag of two fluids in pores, three compressional waves and one shear wave predicted by Santos have been correctly simulated. Influences of the parameters, porosity, permeability and gas saturation on the velocities and amplitude of three compres-sional waves were discussed in detail. Also, a perfectly matched layer (PML) absorbing boundary condition was firstly implemented in the three-phase equations with a staggered-grid high-order finite-difference. Comparisons between the proposed PML method and a commonly used damping method were made to validate the efficiency of the proposed boundary absorption scheme. It was shown that the PML works more efficiently than the damping method in this complex medium.Additionally, the three-phase theory is reduced to the Blot's theory when there is only one fluid left in the pores, which is shown in Appendix. This reduction makes clear that three-phase equation systems are identical to the typical Blot's equations if the fluid saturation for either of the two fluids in the pores approaches to zero.

  4. Acoustic wave propagation simulation in a poroelastic medium saturated by two immiscible fluids using a staggered finite-difference with a time partition method

    2008-01-01

    Based on the three-phase theory proposed by Santos, acoustic wave propagation in a poroelastic medium saturated by two immiscible fluids was simulated using a staggered high-order finite-difference algorithm with a time partition method, which is firstly applied to such a three-phase medium. The partition method was used to solve the stiffness problem of the differential equations in the three-phase theory. Considering the effects of capillary pressure, reference pressure and coupling drag of two fluids in pores, three compressional waves and one shear wave predicted by Santos have been correctly simulated. Influences of the parameters, porosity, permeability and gas saturation on the velocities and amplitude of three compressional waves were discussed in detail. Also, a perfectly matched layer (PML) absorbing boundary condition was firstly implemented in the three-phase equations with a staggered-grid high-order finite-difference. Comparisons between the proposed PML method and a commonly used damping method were made to validate the efficiency of the proposed boundary absorption scheme. It was shown that the PML works more efficiently than the damping method in this complex medium. Additionally, the three-phase theory is reduced to the Biot’s theory when there is only one fluid left in the pores, which is shown in Appendix. This reduction makes clear that three-phase equation systems are identical to the typical Biot’s equations if the fluid saturation for either of the two fluids in the pores approaches to zero.

  5. An automated code generator for three-dimensional acoustic wave propagation with geometrically complex solid-wall boundaries

    Dyson, Rodger William, Jr.

    1999-10-01

    Finding the sources of noise generation in a turbofan propulsion system requires a computational tool that has sufficient fidelity to simulate steep gradients in the flow field and sufficient efficiency to run on today's computer systems. The goal of this dissertation was to develop an automated code generator for the creation of software that numerically solves the linearized Euler equations on Cartesian grids in three dimensional spatial domains containing bodies with complex shapes. It is based upon the recently developed Modified Expansion Solution Approximation (MESA) series of explicit finite-difference schemes that provide spectral-like resolution with extraordinary efficiency. The accuracy of these methods can, in theory, be arbritarily high in both space and time, without the significant inefficiences of Runge- Kutta based schemes. The complexity of coding these schemes was, however, very high, resulting in code that could not compile or took so long to write in FORTRAN that they were rendered impractical. Therefore, a tool in Mathematica was developed that could automatically code the MESA schemes into FORTRAN and the MESA schemes themselves were reformulated into a very simple form-making them practical to use without automation or very powerful with it. A method for automatically creating the MESA propagation schemes and their FORTRAN code in two and three spatial dimensions is shown with up to 29th order accuracy in space and time. Also, a method for treating solid wall boundaries in two dimensions is shown with up to 11th order accuracy on grid aligned boundaries and with up to 2nd order accuracy on generalized boundaries. Finally, an automated method for parallelizing these approaches on large scale parallel computers with near perfect scalability is presented. All these methods are combined to form a turnkey code generation tool in Mathematica that once provided the CAD geometry file can automatically simulate the acoustical physics by replacing the

  6. Visualization of Surface Acoustic Waves in Thin Liquid Films

    Rambach, R. W.; Taiber, J.; C. M. L. Scheck; Meyer, C.; Reboud, J.; Cooper, J M; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with anWe demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfl...

  7. Wave propagation in electromagnetic media

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  8. An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization

    Noguchi, Y.; Yamada, T.; Otomori, M.; Izui, K.; Nishiwaki, S.

    2015-11-01

    This letter presents an acoustic metasurface that converts longitudinal acoustic waves into transverse elastic waves in an acoustic-elastic coupled system. Metasurface configurations are obtained by a level set-based topology optimization method, and we describe the mechanism that changes the direction of the wave motion. Numerical examples of 2D problems with prescribed frequencies of incident acoustic waves are provided, and transverse elastic wave amplitudes are maximized by manipulating the propagation of the acoustic waves. Frequency analysis reveals that each of the different metasurface designs obtained for different wavelengths of incident waves provides peak response at the target frequency.

  9. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated

  10. Acoustic Kappa-Density Fluctuation Waves in Suprathermal Kappa Function Fluids

    Collier, Michael R.; Roberts, Aaron; Vinas, Adolfo

    2007-01-01

    We describe a new wave mode similar to the acoustic wave in which both density and velocity fluctuate. Unlike the acoustic wave in which the underlying distribution is Maxwellian, this new wave mode occurs when the underlying distribution is a suprathermal kappa function and involves fluctuations in the power law index, kappa. This wave mode always propagates faster than the acoustic wave with an equivalent effective temperature and becomes the acoustic wave in the Maxwellian limit as kappa g...

  11. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  12. Isomorphic surface acoustic waves on multilayer structures

    Hunt, William D.

    2001-03-01

    There has been growing interest in recent years over the investigation of bulk acoustic waves (BAWs) which propagate along certain directions in anisotropic crystals with a minimum of diffraction. One application of these BAWs is for multichannel acousto-optic devices. The fact that the beams propagate with the minimum diffraction implies that the channels in such a device can be closely packed. Since surface acoustic waves (SAWs) are constrained to be within roughly one acoustic wavelength from the surface, the possibility exists to deposit thin films of isotropic or anisotropic material on the substrate and embue the aggregate multilayer structure with properties not present in the beginning substrate material. The characteristic investigated in this article is the velocity anisotropy which, as is known, predominates SAW diffraction. Specifically, we present a method whereby self-collimating SAWs can be generated on surfaces even though the substrate material itself does not exhibit this behavior. We discuss the particular case of a ZnO layer on (001)-cut -propagating GaAs for which a fair amount of slowness surface data exists. Finally, using angular spectrum of plane waves diffraction theory, we present data which substantiate the claim that self-collimating can more accurately be viewed as isomorphic because the SAW beam profile can propagate without changing its shape.

  13. The anisotropy of attenuation of acoustic waves in acoustic-optic crystals

    On the basis of experimental data on the attenuation of acoustic waves in crystals of lithium niobate and lithium tantalate the components of a complex elasticity tensor have been determined. The surfaces characterizing the anisotropy of the attenuation coefficient of longitudinal and transverse acoustic waves in these crystals were constructed. It is shown that the most noticeable change in the acoustic attenuation for all types of waves is observed when the direction of propagation of the acoustic wave changes from the [111] to [001] axis. (authors)

  14. Wave propagation in metamaterial lattice sandwich plates

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-04-01

    This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.

  15. Acoustic propagation in fluids: an unexpected example of Lorentzian geometry

    Visser, Matt

    2016-01-01

    It is a deceptively simple question to ask how acoustic disturbances propagate in a non--homogeneous flowing fluid. If the fluid is barotropic and inviscid, and the flow is irrotational (though it may have an arbitrary time dependence), then the equation of motion for the velocity potential describing a sound wave can be put in the (3+1)--dimensional form: d'Alembertian psi = 0. That is partial_mu(sqrt{-g} g^{mu nu} partial_nu psi)/sqrt{-g} = 0. The acoustic metric --- g_{mu nu}(t,x) --- governing the propagation of sound depends algebraically on the density, flow velocity, and local speed of sound. Even though the underlying fluid dynamics is Newtonian, non--relativistic, and takes place in flat space + time, the fluctuations (sound waves) are governed by a Lorentzian spacetime geometry.

  16. Propagation of acoustic waves in two waveguides coupled by perforations. II. Application to periodic lattices of finite length

    Pachebat, Marc

    2016-01-01

    The paper deals with the generic problem of two waveguides coupled by perforations, which can be perforated tube mufflers without or with partitions, possibly with absorbing materials. Other examples are ducts with branched resonators of honeycomb cavities , which can be coupled or not, and splitter silencers. Assuming low frequencies, only one mode is considered in each guide. The propagation in the two waveguides can be very different, thanks e.g. to the presence of constrictions. The model is a discrete, periodic one, based upon 4th-order impedance matrices and their diagonalization. All the calculation is analytical, thanks to the partition of the matrices in 2nd-order matrices, and allows the treatment of a very wide types of problems. Several aspects are investigated: the local or non-local character of the reaction of one guide to the other; the definition of a coupling coefficient; the effect of finite size when a lattice with n cells in inserted into an infinite guide; the relationship between the In...

  17. Manipulation of transmitted wave front using ultrathin planar acoustic metasurfaces

    Zhai, Shilong; Chen, Huaijun; Ding, Changlin; Shen, Fangliang; Luo, Chunrong; Zhao, Xiaopeng

    2015-09-01

    Nowadays, the acoustic devices are developing toward miniaturization. However, conventional materials can hardly satisfy the requirements because of their large size and complex manufacturing process. The introduction of acoustic metasurfaces has broken these restrictions, as they are able to manipulate sound waves at will by utilizing ultrathin planar metamaterials. Here, a simple acoustic metasurface is designed and characterized, whose microstructure is constructed with a cavity filled with air and two elastic membranes on the ends of cavity. By appropriately optimizing the configurations of microstructures, the steering of transmitted wave trajectory is demonstrated, and some extraordinary phenomena are realized at 3.5 kHz, such as planar acoustic axicon, acoustic lens, the conversion from spherical waves to plane waves, and the transformation from propagating waves to surface waves.

  18. Reconstruction of nonlinear wave propagation

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  19. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas or a...

  20. Oblique amplitude modulation of dust-acoustic plasma waves

    Kourakis, I.; Shukla, P. K.

    2004-01-01

    Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schroedinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on ...

  1. Application of a finite difference technique to thermal wave propagation

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Next, computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.

  2. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic

  3. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    Tabrizian, R., E-mail: rtabrizi@umich.edu [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Ayazi, F. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308 (United States)

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  4. Acoustic-gravity waves, theory and application

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  5. On the Synchronization of Acoustic Gravity Waves

    Lonngren, Karl E.; Bai, Er-Wei

    Using the model proposed by Stenflo, we demonstrate that acoustic gravity waves found in one region of space can be synchronized with acoustic gravity waves found in another region of space using techniques from modern control theory.

  6. Nonlinear acoustic-gravity waves

    Stenflo, Lennart; Shukla, P. K.

    2009-01-01

    Previous results on nonlinear acoustic-gravity waves are reconsidered. It turns out that the mathematical techniques used are somewhat similar to those already adopted by the plasma physics community. Consequently, a future interaction between physicists On different fields, e.g in meteorology and plasma physics, can be very fruitful.

  7. Wave propagation in linear electrodynamics

    Obukhov, Yu N; Rubilar, G F; Obukhov, Yuri N.; Fukui, Tetsuo; Rubilar, Guillermo

    2000-01-01

    The Fresnel equation governing the propagation of electromagnetic waves for the most general linear constitutive law is derived. The wave normals are found to lie, in general, on a fourth order surface. When the constitutive coefficients satisfy the so-called reciprocity or closure relation, one can define a duality operator on the space of the two-forms. We prove that the closure relation is a sufficient condition for the reduction of the fourth order surface to the familiar second order light cone structure. We finally study whether this condition is also necessary.

  8. Wave propagation and group velocity

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  9. Acoustic Remote Sensing of Rogue Waves

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  10. Acoustic Propagation Modeling for Marine Hydro-Kinetic Applications

    Johnson, C. N.; Johnson, E.

    2014-12-01

    The combination of riverine, tidal, and wave energy have the potential to supply over one third of the United States' annual electricity demand. However, in order to deploy and test prototypes, and commercial installations, marine hydrokinetic (MHK) devices must meet strict regulatory guidelines that determine the maximum amount of noise that can be generated and sets particular thresholds for determining disturbance and injury caused by noise. An accurate model for predicting the propagation of a MHK source in a real-life hydro-acoustic environment has been established. This model will help promote the growth and viability of marine, water, and hydrokinetic energy by confidently assuring federal regulations are meet and harmful impacts to marine fish and wildlife are minimal. Paracousti, a finite difference solution to the acoustic equations, was originally developed for sound propagation in atmospheric environments and has been successfully validated for a number of different geophysical activities. The three-dimensional numerical implementation is advantageous over other acoustic propagation techniques for a MHK application where the domains of interest have complex 3D interactions from the seabed, banks, and other shallow water effects. A number of different cases for hydro-acoustic environments have been validated by both analytical and numerical results from canonical and benchmark problems. This includes a variety of hydrodynamic and physical environments that may be present in a potential MHK application including shallow and deep water, sloping, and canyon type bottoms, with varying sound speed and density profiles. With the model successfully validated for hydro-acoustic environments more complex and realistic MHK sources from turbines and/or arrays can be modeled.

  11. Wave equations for pulse propagation

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  12. Twisted Dust Acoustic Waves in Dusty Plasmas

    Shukla, P K

    2012-01-01

    We examine linear dust acoustic waves (DAWs) in a dusty plasma with strongly correlated dust grains, and discuss possibility of a twisted DA vortex beam carrying orbital angular momentum (OAM). For our purposes, we use the Boltzmann distributed electron and ion density perturbations, the dust continuity and generalized viscoelastic dust momentum equations, and Poisson's equation to obtain a dispersion relation for the modified DAWs. The effects of the polarization force, strong dust couplings, and dust charge fluctuations on the DAW spectrum are examined. Furthermore, we demonstrate that the DAW can propagate as a twisted vortex beam carrying OAM. A twisted DA vortex structure can trap and transport dust particles in dusty plasmas.

  13. Modeling of the propagation and reception of elastic waves emitted by a crack under stress. Application to the simulation of non-destructive testing by acoustic emission

    AE Non-destructive testing is used in many fields such as nuclear energy, oil and gas, civil engineering or mechanical engineering to check the integrity of structures under stress. Depending on the ratio of structure thickness to wavelength, the energy released by a crack under stress can propagate either as guided waves (in thin structures) or as Rayleigh wave (in thick structures). The analysis of signals resulting from this ultrasonic 'passive' method is particularly difficult due to the complexity of typically measured signals. The objective of this thesis is to develop models to enable the simulation of AE testing experiments in the case of thick or thin structure. The developed models rely on the coupling between an AE source model, wave propagation models and an AE Sensor model. In the case of thick structures two 2D models (for plane and cylindrical surfaces) and a 3D model (for plane surface) have been developed to predict the signal corresponding to the Rayleigh wave emitted by a crack under stress. In the case of thin structures, a 2D model has been developed to predict the signal corresponding to the guided modes emitted by a crack under stress. Several parametric studies have been conducted to determine the influence of the different model input data on the AE signals and thus help to interpret AE testing results. (author)

  14. Influence of a forest edge on acoustical propagation: experimental results.

    Swearingen, Michelle E; White, Michael J; Guertin, Patrick J; Albert, Donald G; Tunick, Arnold

    2013-05-01

    Acoustic propagation through a forest edge can produce complicated pressure time histories because of scattering from the trees and changes in the microclimate and ground parameters of the two regions. To better understand these effects, a field experiment was conducted to measure low-frequency acoustic pulses propagating in an open field, a forest, and passing through a forest edge in both directions. Waveforms measured in the open field were simple impulses with very low scattering, whereas waveforms at the edge and within the forest had stronger reverberations after the direct arrival. The direct wave pulse shapes increased in duration in accordance with the path length in the forest, which had an effective flow resistivity 12 to 13 that of the grassy open field. The measurements exhibit different rates of attenuation in the two regions, with relatively lower attenuation in the open field than higher rates in the forest. Decay of SEL transmitted into the forest was 4 dB more per tenfold distance than for outbound transmission. Stronger attenuation in the 1-2 kHz range occurs when propagating into the forest. While the measured meteorological profiles revealed three distinct microclimates, meteorological effects are not sufficient to explain the apparent non-reciprocal propagation. PMID:23654365

  15. Waveform inversion of acoustic waves for explosion yield estimation

    Kim, K.; Rodgers, A.

    2016-07-01

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  16. Controlling an acoustic wave with a cylindrically-symmetric gradient-index system

    We present a detailed theoretical description of wave propagation in an acoustic gradient-index system with cylindrical symmetry and demonstrate its potential to numerically control acoustic waves in different ways. The trajectory of an acoustic wave within the system is derived by employing the theory of geometric acoustics, and the validity of the theoretical descriptions is verified numerically by using the finite element method simulation. The results show that by tailoring the distribution function of the refractive index, the proposed system can yield a tunable manipulation of acoustic waves, such as acoustic bending, trapping, and absorbing. (paper)

  17. Stress wave propagation in the Institute of Thermomechanics

    Okrouhlík, Miloslav

    Prague : ITAM AS CR, v. v. i., 2012 - (Náprstek, J.; Fischer, C.), s. 969-970 ISBN 978-80-86246-40-6. [Engineering Mechanics 2012 /18./. Svratka (CZ), 14.05.2012-17.05.2012] Institutional research plan: CEZ:AV0Z20760514 Keywords : historical survey * stress wave propagation in solids * Institute of Thermomechanics Subject RIV: BI - Acoustics

  18. Propagating wave patterns for the 'resonant' Davey-Stewartson system

    The resonant nonlinear Schroedinger (RNLS) equation exhibits the usual cubic nonlinearity present in the classical nonlinear Schroedinger (NLS) equation together with an additional nonlinear term involving the modulus of the wave envelope. It arises in the context of the propagation of long magneto-acoustic waves in cold, collisionless plasma and in capillarity theory. Here, a natural (2 + 1) (2 spatial and 1 temporal)-dimensional version of the RNLS equation is introduced, termed the 'resonant' Davey-Stewartson system. The multi-linear variable separation approach is used to generate a class of exact solutions, which will describe propagating, doubly periodic wave patterns.

  19. Wave Propagation in Modified Gravity

    Lindroos, Jan Ø; Mota, David F

    2015-01-01

    We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the non-linear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within General Relativity such approximation is good and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and non-linearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated to the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that t...

  20. Separation of acoustic waves in isentropic flow perturbations

    Henke, Christian, E-mail: christian.henke@atlas-elektronik.com

    2015-04-15

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given.

  1. Separation of acoustic waves in isentropic flow perturbations

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given

  2. Wind, waves, and acoustic background levels at Station ALOHA

    Duennebier, Fred K.; Lukas, Roger; Nosal, Eva-Marie; Aucan, JéRome; Weller, Robert A.

    2012-03-01

    Frequency spectra from deep-ocean near-bottom acoustic measurements obtained contemporaneously with wind, wave, and seismic data are described and used to determine the correlations among these data and to discuss possible causal relationships. Microseism energy appears to originate in four distinct regions relative to the hydrophone: wind waves above the sensors contribute microseism energy observed on the ocean floor; a fraction of this local wave energy propagates as seismic waves laterally, and provides a spatially integrated contribution to microseisms observed both in the ocean and on land; waves in storms generate microseism energy in deep water that travels as seismic waves to the sensor; and waves reflected from shorelines provide opposing waves that add to the microseism energy. Correlations of local wind speed with acoustic and seismic spectral time series suggest that the local Longuet-Higgins mechanism is visible in the acoustic spectrum from about 0.4 Hz to 80 Hz. Wind speed and acoustic levels at the hydrophone are poorly correlated below 0.4 Hz, implying that the microseism energy below 0.4 Hz is not typically generated by local winds. Correlation of ocean floor acoustic energy with seismic spectra from Oahu and with wave spectra near Oahu imply that wave reflections from Hawaiian coasts, wave interactions in the deep ocean near Hawaii, and storms far from Hawaii contribute energy to the seismic and acoustic spectra below 0.4 Hz. Wavefield directionality strongly influences the acoustic spectrum at frequencies below about 2 Hz, above which the acoustic levels imply near-isotropic surface wave directionality.

  3. On the propagation of elastic waves in acoustically anisotropic austenitic materials and at their boundaries during non-destructive inspection with ultrasound

    Munikoti, V.K.

    2001-03-01

    In this work the propagation behaviour of ultrasound in austenitic weld metal has been analyzed by the time-harmonic plane wave approach. Bounded beam and pulse propagation as occurring in ultrasonic testing can be sufficiently dealt with by this approach. More sophisticated approaches principally do not offer any improvements in the results of plane wave modeling except for diffraction and aperture effects and, therefore, the subject matter of this work has been limited to plane wave propagation in the bulk of the medium and at different types of interfaces. Inspite of the fact, that the individual columnar grains of the weld metal have cubic symmetry, the austenitic weld metal as a whole exhibits cylinder-symmetrical texture, as substantiated by metallurgical examination, and therefore has been treated as an anisotropic poly-crystalline medium with transverse isotropic symmetry. (orig.) [German] In der vorliegenden Arbeit wird die Ultraschallausbreitung in akustisch anisotropen, homogenen Werkstoffen mit stengelkristalliner Textur wie austenitischen Plattierungen und Schweissverbindungen, austenitischem Guss oder geschweissten Komponenten aus austenitischem Guss modelliert. Wie die in dieser Arbeit referierten metallurgischen Untersuchungen gezeigt haben, koennen austenitisches Schweissgut und stengelkristallin erstarrter austenitischer Guss makroskopisch als polykristallines Medium mit zylindersymmetrischer Textur behandelt werden, also als Medium mit transversal isotroper Symmetrie, obwohl mikroskopisch die einzelnen Stengelkristallite kubische Symmetrie aufweisen. Die Schallausbreitung wird mit Hilfe des Ansatzes ebener Wellen modelliert. Obwohl bei der Ultraschallpruefung gepulste und begrenzte Schallbuendel verwendet werden, liefert dieser Ansatz die bei der Ultraschallpruefung beobachteten Wellenarten mit Geschwindigkeiten und Polarisationen, Schallbuendelablenkung und Reflexion und Brechnung nach Richtung und Amplitude, so dass ueber das Modell der ebenen

  4. Propagation of sound waves in ducts

    Jacobsen, Finn

    2000-01-01

    Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....

  5. Theory of electromagnetic wave propagation

    Papas, Charles Herach

    1965-01-01

    While there are so many books on general electromagnetic theory for graduate-level students, there are significantly fewer that concentrate on the radiation aspects as does this well-known work. Interfacing physics and electrical engineering, Dr. Papas's clearly written text discusses highly important topics in the theory of electromagnetic wave propagation and antennas in a way that reveals the inherent simplicity of the basic ideas and their logical development from the Maxwell field equation.Chapter 1: Maxwell's field equations and those parts of electromagnetic field theory necessary for u

  6. Wave propagation in thermoelastic saturated porous medium

    M D Sharma

    2008-12-01

    Biot ’s theory for wave propagation in saturated porous solid is modified to study the propagation of thermoelastic waves in poroelastic medium. Propagation of plane harmonic waves is considered in isotropic poroelastic medium. Relations are derived among the wave-induced temperature in the medium and the displacements of fluid and solid particles. Christoffel equations obtained are modified with the thermal as well as thermoelastic coupling parameters. These equations explain the existence and propagation of four waves in the medium. Three of the waves are attenuating longitudinal waves and one is a non-attenuating transverse wave. Thermal properties of the medium have no effect on the transverse wave. The velocities and attenuation of the longitudinal waves are computed for a numerical model of liquid-saturated sandstone. Their variations with thermal as well as poroelastic parameters are exhibited through numerical examples.

  7. Gasoline identifier based on SH0 plate acoustic waves.

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible. PMID:27125559

  8. Electron-acoustic plasma waves: oblique modulation and envelope solitons

    Kourakis, I.; Shukla, P. K.

    2004-01-01

    Theoretical and numerical studies are presented of the amplitude modulation of electron-acoustic waves (EAWs) propagating in space plasmas whose constituents are inertial cold electrons, Boltzmann distributed hot electrons and stationary ions. Perturbations oblique to the carrier EAW propagation direction have been considered. The stability analysis, based on a nonlinear Schroedinger equation (NLSE), reveals that the EAW may become unstable; the stability criteria depend on the angle $\\theta$...

  9. Correlation length facilitates Voigt wave propagation

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2004-01-01

    Under certain circumstances, Voigt waves can propagate in a biaxial composite medium even though the component material phases individually do not support Voigt wave propagation. This phenomenon is considered within the context of the strong--permittivity--fluctuation theory. A generalized implementation of the theory is developed in order to explore the propagation of Voigt waves in any direction. It is shown that the correlation length--a parameter characterizing the distributional statisti...

  10. Wave Propagation in Origami-inspired Foldable Metamaterials

    Wang, Pai; Sun, Sijie; Bertoldi, Katia

    2015-03-01

    We study the propagation of elastic waves in foldable thin-plate structures. Both 1D systems of periodic folds and 2D Miura-Ori patterns are investigated. The dispersion relations are calculated by finite element simulations on the unit cell of spatial periodicity. Experimental efforts and considerations are also discussed. The characteristic propagating bands and bandgaps are found to be very sensitive to the folding angles. The existence of highly tunable bandgap makes the system suitable for potential applications including adaptive filters in vibration-reduction devices, wave guides and acoustic imaging equipment.

  11. Correlation length facilitates Voigt wave propagation

    Mackay, Tom G

    2004-01-01

    Under certain circumstances, Voigt waves can propagate in a biaxial composite medium even though the component material phases individually do not support Voigt wave propagation. This phenomenon is considered within the context of the strong--permittivity--fluctuation theory. A generalized implementation of the theory is developed in order to explore the propagation of Voigt waves in any direction. It is shown that the correlation length--a parameter characterizing the distributional statistics of the component material phases--plays a crucial role in facilitating the propagation of Voigt waves in the homogenized composite medium.

  12. Dissipation of acoustic-gravity waves: an asymptotic approach.

    Godin, Oleg A

    2014-12-01

    Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed. PMID:25480091

  13. Observations of Obliquely Propagating Electron Bernstein Waves

    Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.;

    1981-01-01

    Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....

  14. Isentropic acoustic propagation in a viscous fluid with uniform circular pipeline flow.

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-10-01

    Isentropic wave propagation in a viscous fluid with a uniform mean flow confined by a rigid-walled circular pipeline is considered. A method based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to solve the convected acoustic equations. After validating the method's convergence, the cut-off frequency of wave modes is addressed. Furthermore, the effect of flow profile on wave attenuation is analyzed. Meanwhile, measurement performance of an ultrasonic flow meter based on wave propagation is numerically accounted. PMID:24116397

  15. Anisotropic metamaterials for full control of acoustic waves

    Christensen, Johan; García de Abajo, F. Javier

    2012-01-01

    We show that a holey anisotropic metamaterial can exert subwavelength control over sound waves beyond that achieved with naturally occurring materials [Nature Physics 3, 851 (2007)]. We predict that, for appropriate choices of geometrical parameters, these metamaterials support negative refraction, backward wave propagation along a direction opposite with respect to the acoustic energy flow, and subwavelength imaging [Nature Physics 7, 52 (2011)] with both the source and the image situated fa...

  16. Negative refraction and backward waves in layered acoustic metamaterials

    Christensen, Johan; García de Abajo, F. Javier

    2012-01-01

    We investigate layered acoustic metamaterials capable of exhibiting a wide variety of wave propagation phenomena, including backward and forward waves with and without negative refraction. The metamaterials are formed by periodically perforated hard plates, which we describe analytically in the limit of small holes compared to both the period and the separation between plates. In particular, we derive expressions for the index of refraction and the transmission and reflection coefficients of ...

  17. Lamb Wave Propagation in Laminated Composite Structures

    Gopalakrishnan, S.

    2013-01-01

    Damage detection using guided Lamb waves is an important tool in Structural health Monitoring. In this paper, we outline a method of obtaining Lamb wave modes in composite structures using two dimensional Spectral Finite Elements. Using this approach, Lamb wave dispersion curves are obtained for laminated composite structures with different fibre orientation. These propagating Lamb wave modes are pictorially captured using tone burst signal.

  18. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  19. A Statistical Study of Mid-latitude Thunderstorm Characteristics associated with Acoustic and Gravity Waves

    Lay, E. H.; Shao, X. M.; Kendrick, A.

    2014-12-01

    Gravity waves with periods greater than 5 minutes and acoustic waves with periods between 3 and 5 minutes have been detected at ionospheric heights (250-350 km) and associated with severe thunderstorms. Modeling results support these findings, indicating that acoustic waves should be able to reach 250-350 km within ~250 km horizontally of the source, and gravity waves should be able to propagate significantly further. However, the mechanism by which the acoustic waves are generated and the ubiquity of occurrence of both types of wave is unknown. We use GPS total electron content measurements to detect gravity and acoustic waves in the ionosphere. We perform a statistical study from 2005 May - July to compare the occurrence rate and horizontal extent of the waves to storm size and convective height from NEXRAD radar measurements. It is found that both gravity waves and acoustic wave horizontal extent is primarily associated with storm size and not convective height.

  20. On Collisionless Damping of Ion Acoustic Waves

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  1. Algorithms and Codes for Wave Propagation Problems

    Holst, Henrik

    2011-01-01

    This technical report is a summary of selected numerical methods formultiscale wave propagation problems. The main topic is the discussionof nite dierence schemes, kernels for computing the mean value of oscil-latory functions and how to compute coecients in an eective equationfor long time wave propagation.

  2. Voigt-wave propagation in active materials

    Mackay, Tom G

    2015-01-01

    If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give rise to a material that supports the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by infiltration with an active dye.

  3. Terrestrial propagation of long electromagnetic waves

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  4. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses

    Jukna, Vytautas; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-01-01

    Acoustic signals generated by filamentation of ultrashort TW laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  5. Second-order dust acoustic wave theory

    A second-order perturbation theory for non-dispersive, undamped dust acoustic waves is presented. The analysis leads to a second-order wave equation with source terms consisting of (nonlinear) products of first-order terms. The nonlinear effects included in this analysis might be useful in explaining the non-sinusoidal waveforms that are observed with large-amplitude, self-excited dust acoustic waves.

  6. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  7. Pulse Wave Propagation in the Arterial Tree

    van de Vosse, Frans N.; Stergiopulos, Nikos

    2011-01-01

    The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.

  8. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study

    Kyriakou, Adamos; Neufeld, Esra; Werner, Beat; Székely, Gábor; Kuster, Niels

    2015-01-01

    Background Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and ampl...

  9. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study

    Kyriakou, Adamos; Neufeld, Esra; Werner, Beat; Székely, Gábor; Kuster, Niels

    2015-01-01

    BACKGROUND Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amp...

  10. Superwide-angle acoustic propagations above the critical angles of the Snell law in liquid—solid superlattice

    In this paper, superwide-angle acoustic propagations above the critical angles of the Snell law in liquid—solid superlattice are investigated. Incident waves above the critical angles of the Snell law usually inevitably induce total reflection. However, incident waves with big oblique angles through the liquid—solid superlattice will produce a superwide angle transmission in a certain frequency range so that total reflection does not occur. Together with the simulation by finite element analysis, theoretical analysis by using transfer matrix method suggests the Bragg scattering of the Lamb waves as the physical mechanism of acoustic wave super-propagation far beyond the critical angle. Incident angle, filling fraction, and material thickness have significant influences on propagation. Superwide-angle propagation phenomenon may have potential applications in nondestructive evaluation of layered structures and controlling of energy flux. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  12. Propagation of shock waves through petroleum suspensions

    Mukuk, K. V.; Makhkamov, S. M.; Azizov, K. K.

    1986-01-01

    Anomalous shock wave propagation through petroleum with a high paraffin content was studied in an attempt to confirm the theoretically predicted breakdown of a forward shock wave into oscillating waves and wave packets as well as individual solitons. Tests were performed in a shock tube at 10, 20, and 50 to 60 C, with pure kerosene as reference and with kerosene + 5, 10, 15, and 20% paraffin. The addition of paraffin was found to radically alter the rheodynamic characteristics of the medium and, along with it, the pattern of shock wave propagation. The integro-differential equation describing a one dimensional hydraulic shock process in viscoelastic fluids is reduced to the Burgers-Korteweg-deVries equation, which is solved numerically for given values of the system parameters. The results indicate that the theory of shock wave propagation through such an anomalous suspension must be modified.

  13. A New Wave of Acoustics.

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  14. Dilaton field and cosmic wave propagation

    We study the electromagnetic wave propagation in the joint dilaton field and axion field. Dilaton field induces amplification/attenuation in the propagation while axion field induces polarization rotation. The amplification/attenuation induced by dilaton is independent of the frequency (energy) and the polarization of electromagnetic waves (photons). From observations, the agreement with and the precise calibration of the cosmic microwave background (CMB) to blackbody radiation constrains the fractional change of dilaton |Δψ|/ψ to less than about 8×10−4 since the time of the last scattering surface of the CMB. - Highlights: • We study the wave propagation in the joint dilaton field and the axion field. • Dilaton field induces amplification/attenuation in the electromagnetic propagation. • Axion field induces polarization rotation in the electromagnetic propagation. • Agreement of the CMB to blackbody radiation spectrum constrains dilaton field. • The fractional dilatonic change is less than 8×10−4 since the CMB decoupling

  15. Propagation of SLF/ELF electromagnetic waves

    Pan, Weiyan

    2014-01-01

    This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).

  16. Demonstration of slow sound propagation and acoustic transparency with a series of detuned resonators

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2014-01-01

    We present experimental results demonstrating the phenomenon of acoustic transparency with a significant slowdown of sound propagation realized with a series of paired detuned acoustic resonators (DAR) side-attached to a waveguide. The phenomenon mimics the electromagnetically induced transparency...... of more than 20 dB on both sides of the transparency window, and we quantify directly (using a pulse propagation) the acoustic slowdown effect, resulting in the sound group velocity of 9.8 m/s (i.e. in the group refractive index of 35). We find very similar values of the group refractive index by...... using measurements of the phase of the transmitted wave. It is also shown that a direct coupling exists between the DAR in each pair, which cannot be explained by the interference of waves radiated from those resonators. This detrimental coupling becomes noticeable for small values of detuning and also...

  17. Wave propagation and scattering in random media

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  18. Some problems connected with Rayleigh (edge) wave propagation in thin orthotropic structures

    Červ, Jan

    Lisabon : International Institute of Acoustics and Vibration, Instituto Superior Técnico, 2005 - (Bento Coelho, J.; Alarcao , D.), s. 1-8 [The International Congress on Sound and Vibration /12./. Lisabon (PT), 11.07.2005-14.07.2005] Institutional research plan: CEZ:AV0Z20760514 Keywords : wave propagation * anisotropic material Subject RIV: BI - Acoustics

  19. Modulational instability of ion acoustic waves in a magnetised plasma

    The modulational instability of ion acoustic waves is studied in the presence of d.c. magnetic field. It is found that while the instability sets in for wave numbers exceeding 1.47 ksub(D) in the absence of the magnetic field, the switching-on of the magnetic field can generate instability earlier. In general, two regions emerge where the waves can become modulationally unstable. The relative sizes of these regions change as the magnetic field and the angle of propagation are varied. (author)

  20. Controls on flood and sediment wave propagation

    Bakker, Maarten; Lane, Stuart N.; Costa, Anna; Molnar, Peter

    2015-04-01

    The understanding of flood wave propagation - celerity and transformation - through a fluvial system is of generic importance for flood forecasting/mitigation. In association with flood wave propagation, sediment wave propagation may induce local erosion and sedimentation, which will affect infrastructure and riparian natural habitats. Through analysing flood and sediment wave propagation, we gain insight in temporal changes in transport capacity (the flood wave) and sediment availability and transport (the sediment wave) along the river channel. Heidel (1956) was amongst the first to discuss the progressive lag of sediment concentration behind the corresponding flood wave based on field measurements. Since then this type of hysteresis has been characterized in a number of studies, but these were often based on limited amount of floods and measurement sites, giving insufficient insight into associated forcing mechanisms. Here, as part of a project concerned with the hydrological and geomorphic forcing of sediment transfer processes in alpine environments, we model the downstream propagation of short duration, high frequency releases of water and sediment (purges) from a flow intake in the Borgne d'Arolla River in south-west Switzerland. A total of >50 events were measured at 1 minute time intervals using pressure transducers and turbidity probes at a number of sites along the river. We show that flood and sediment wave propagation can be well represented through simple convection diffusion models. The models are calibrated/validated to describe the set of measured waves and used to explain the observed variation in wave celerity and diffusion. In addition we explore the effects of controlling factors including initial flow depth, flood height, flood duration, bed roughness, bed slope and initial sediment concentration, on the wave propagation processes. We show that the effects of forcing mechanisms on flood and sediment wave propagation will lead to different

  1. S-Wave Normal Mode Propagation in Aluminum Cylinders

    Lee, Myung W.; Waite, William F.

    2010-01-01

    Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.

  2. Nonlinear wave propagation in strongly coupled dusty plasmas.

    Veeresha, B M; Tiwari, S K; Sen, A; Kaw, P K; Das, A

    2010-03-01

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain. PMID:20365882

  3. Voigt-wave propagation in active materials

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2015-01-01

    If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give ris...

  4. HF Doppler observations of acoustic waves excited by the earthquake

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  5. Nonlinear interaction between acoustic gravity waves

    P. Axelsson; J. Larsson; Stenflo, L.

    1996-01-01

    The resonant interaction between three acoustic gravity waves is considered. We improve on the results of previous authors and write the new coupling coefficients in a symmetric form. Particular attention is paid to the low-frequency limit.

  6. Velocity-modulation control of electron-wave propagation in graphene

    Raoux, Arnaud; Polini, Marco; Asgari, Reza; Hamilton, A. R.; Fazio, Rosario; MacDonald, A. H.

    2009-01-01

    Wave propagation control by spatial modulation of velocity has a long history in optics and acoustics. We address velocity-modulation control of electron wave propagation in graphene and other two-dimensional Dirac-electron systems, pointing out a key distinction of the Dirac-wave case. We also propose a strategy for pattern transfer from a remote metallic layer that is based on many-body velocity renormalization.

  7. Seismic wave imaging in visco-acoustic media

    WANG Huazhong; ZHANG Libin; MA Zaitian

    2004-01-01

    Realistic representation of the earth may be achieved by combining the mechanical properties of elastic solids and viscousliquids. That is to say, the amplitude will be attenuated withdifferent frequency and the phase will be changed in the seismicdata acquisition. In the seismic data processing, this effect mustbe compensated. In this paper, we put forward a visco-acoustic wavepropagator which is of better calculating stability and tolerablecalculating cost (little more than an acoustic wave propagator).The quite good compensation effect is demonstrated by thenumerical test results with synthetic seismic data and real data.

  8. Ion acoustic waves in large radio-frequency electric fields

    The propagation of ion acoustic waves (IAW) in high-frequency fields is experimentally studied. The resulting phase-velocity shift and enhanced damping are observed for RF-field amplitudes up to α/sub e/ approximately equal to .5, where α/sub e/ = eE/(m/sub e/ω0v/sub e/) is the normalized amplitude. Good agreement with the theory of Albright is found. (auth)

  9. Surface acoustic wave applications of lithium niobate thin films

    A technique combining metalorganic decomposition and rf sputtering is used to grow lithium niobate (LiNbO3) thin films on diamond/silicon substrates, and surface acoustic wave (SAW) filters are fabricated by depositing interdigital transducers onto the multilayer LiNbO3/diamond/silicon structures. Microwave characterization is achieved by using a network analyzer. Evidence is found for SAW propagation in these structures. These experimental findings agree with theoretical predictions

  10. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  11. Theoretical analysis of leaky surface acoustic waves of point-focused acoustic lens and some experiments

    When a point-focused acoustic lens in the scanning acoustic microscope (SAM) is faced to test specimen and defocused to some extent, two effective echoes can be obtained. One is the echo of longitudinal wave, which is normally incident upon the specimen of an on-axis beam in the central region of the lens and is reflected normal to the lens surface, hence detected by the transducer. The other is of leaky surface acoustic waves(LSAW), which are mode converted front a narrow beam of off-axis longitudinal wave, then propagate across the surface of the specimen and reradiate at angles normal to the lens surface, thus detected by the transducer. These two echoes are either interfered or separated with each other depending ell the defocused distance. It turned out theoretically that the LSAW have a narrow focal spot in the central region of the point-focused acoustic lens, whose size is approximately 40% of the LSAW wavelength. On top of that, a wavelength of LSAW is about 50% short as that of longitudinal wave. So, It is expected that high resolution images can be obtained provided LSAW are used in the scanning acoustic microscope.

  12. Wave propagation in spatially modulated tubes

    Ziepke, A; Engel, H

    2016-01-01

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we can observe finite intervals of propagation failure of waves induced by the tube's modulation. In addition, using the Fick-Jacobs approach for the highly diffusive limit we show that wave velocities within tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pul...

  13. Radiation and propagation of electromagnetic waves

    Tyras, George; Declaris, Nicholas

    1969-01-01

    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  14. Faraday Pilot-Waves: Generation and Propagation

    Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John

    2015-11-01

    We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.

  15. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  16. Optimization of Surface Acoustic Wave-Based Rate Sensors

    Fangqian Xu

    2015-10-01

    Full Text Available The optimization of an surface acoustic wave (SAW-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor.

  17. Wave propagation on microstate geometries

    Keir, Joseph

    2016-01-01

    Supersymmetric microstate geometries were recently conjectured to be nonlinearly unstable due to numerical and heuristic evidence, based on the existence of very slowly decaying solutions to the linear wave equation on these backgrounds. In this paper, we give a thorough mathematical treatment of the linear wave equation on both two and three charge supersymmetric microstate geometries, finding a number of surprising results. In both cases we prove that solutions to the wave equation have uniformly bounded local energy, despite the fact that three charge microstates possess an ergoregion; these geometries therefore avoid Friedman's "ergosphere instability". In fact, in the three charge case we are able to construct solutions to the wave equation with local energy that neither grows nor decays, although this data must have nontrivial dependence on the Kaluza-Klein coordinate. In the two charge case we construct quasimodes and use these to bound the uniform decay rate, showing that the only possible uniform dec...

  18. Dust-acoustic solitary waves in a dusty plasma with two-temperature nonthermal ions

    Zhi-Jian Zhou; Hong-Yan Wang; Kai-Biao Zhang

    2012-01-01

    By using reductive perturbation method, the nonlinear propagation of dust-acoustic waves in a dusty plasma (containing a negatively charged dust fluid, Boltzmann distributed electrons and two-temperature nonthermal ions) is investigated. The effects of two-temperature nonthermal ions on the basic properties of small but finite amplitude nonlinear dust-acoustic waves are examined. It is found that two-temperature nonthermal ions affect the basic properties of the dust-acoustic solitary waves. It is also observed that only compressive solitary waves exist in this system.

  19. Interaction of a Surface Acoustic Wave with a Two-dimensional Electron Gas

    YANG Shi-Jie; ZHAO Hu; YU Yue

    2005-01-01

    When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.

  20. Effects of wave propagation anisotropy on the wave focusing by negative refractive sonic crystal flat lenses

    S.Alagoz

    2012-01-01

    In this study,wave propagation anisotropy in a triangular lattice crystal structure and its associated waveform shaping in a crystal structure are investigated theoretically.A directional variation in wave velocity inside a crystal structure is shown to cause bending wave envelopes.The authors report that a triangular lattice sonic crystal possesses six numbers of a high symmetry direction,which leads to a wave convergence caused by wave velocity anisotropy inside the crystal.However,two of them are utilized mostly in wave focusing by an acoustic flat lens.Based on wave velocity anisotropy,the pseudo ideal imaging effect obtained in the second band of the flat lens is discussed.

  1. Acoustic nonlinearity of ultrasonic wave by crack face contacting effect

    Nonlinear acoustic effect accompanied by the propagation of ultrasonic wave has been discussed from log time before and the effort to evaluate material degradation or degree of damage by measuring this effect has been tried in recent. The mechanism for the generation of nonlinear acoustic effect was proposed by several researchers and these previous studies have identified two primary sources of the nonlinearity. One source is the anharmonicity of lattice itself. The other source is associated with the contribution of dislocation displacement. In this paper, an another new source of nonlinearity generated due to the partial contact of crack face when the ultrasonic wave passes through tiny crack is considered. At first, the mechanism of the generation of acoustic nonlinearity at the crack face by half wave model was explained and the relationship between the separation distance of crack faces and. the magnitude of nonlinearity was investigated quantitatively by fourier transform of the half wave and computer simulation. In next, the existence of the proposed new source of nonlinearity at crack face was shown experimentally in the actual case, SAM signal obtained for the Newton ring. From the result, we confirmed that the crack face contacting effect should be considered as a additive source of acoustic nonlinearity when we apply the ultrasonic nonlinearity analysis to the evaluation of material degradation.

  2. Wave propagation in complex coordinates

    Horsley, S A R; Philbin, T G

    2015-01-01

    We investigate the analytic continuation of wave equations into the complex position plane. For the particular case of electromagnetic waves we provide a physical meaning for such an analytic continuation in terms of a family of closely related inhomogeneous media. For bounded permittivity profiles we find the phenomenon of reflection can be related to branch cuts in the wave that originate from poles of the permittivity at complex positions. Demanding that these branch cuts disappear, we derive a large family of inhomogeneous media that are reflectionless for a single angle of incidence. Extending this property to all angles of incidence leads us to a generalized form of the Poschl Teller potentials. We conclude by analyzing our findings within the phase integral (WKB) method.

  3. Rich eight-branch spectrum of the oblique propagating longitudinal waves in partially spin-polarized electron-positron-ion plasmas

    Andreev, Pavel A.; Iqbal, Z.

    2016-03-01

    We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider the oblique propagating longitudinal waves in these systems. Working in a regime of high-density n0˜1027cm-3 and high-magnetic-field B0=1010 G, we report the presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at the propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas, we find four branches: the Langmuir wave, the positron-acoustic wave, and a pair of waves having spin nature, they are the SEAW and the wave discovered in this paper, called the spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, the Trivelpiece--Gould wave, a pair of positron-acoustic waves, a pair of SEAWs, and a pair of SEPAWs. Thus, for the first time, we report the existence of the second positron-acoustic wave existing at the oblique propagation and the existence of SEPAWs.

  4. Nonlinear radial propagation of drift wave turbulence

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  5. Matter wave propagation through microstructured waveguides*

    Full text: Significant experimental progress in recent years has been seen in the field of 'atom chips', ie integrated atom optics, where trapping, propagation and manipulation of ultracold atoms have all been done above a single microchip surface. Our theoretical efforts have been focussed on exploring the nature of wave propagation through such microstructured waveguides. We present here a smorgasbord of fundamental physics, ranging from wave excitations and quantum/classical correspondence, through to interference-based vortex production and dispersion management. Copyright (2005) Australian Institute of Physics

  6. Dilaton field and cosmic wave propagation

    Ni, Wei-Tou

    2014-01-01

    We study the electromagnetic wave propagation in the joint dilaton field and axion field. Dilaton field induces amplification/attenuation in the propagation while axion field induces polarization rotation. The amplification/attenuation induced by dilaton is independent of the frequency (energy) and the polarization of electromagnetic waves (photons). From observations, the agreement with and the precise calibration of the cosmic microwave background (CMB) to blackbody radiation constrains the fractional change of dilaton |{\\Delta}{\\psi}|/{\\psi} to less than about 8 x 10^(-4) since the time of the last scattering surface of the CMB.

  7. Exciton transport by surface acoustic waves

    Rudolph, J.; Hey, R.; Santos, P. V.

    2007-05-01

    Long-range acoustic transport of excitons in GaAs quantum wells (QWs) is demonstrated. The mobile strain field of a surface acoustic wave creates a dynamic lateral type I modulation of the conduction and valence bands in a double-quantum-well (DQW) structure. This mobile potential modulation transports long-living indirect excitons in the DQW over several hundreds of μm.

  8. Gas explosion characterization, wave propagation

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. The maximum flame speed has been of the order of 100 m/s, resulting in positive peak pressures of 50-100x102Pa in 5-10 m distance from the source. The explosion process was found to be reasonable symmetric. The attenuation of the blast wave due to vegetation and the influence of obstacles as banks, walls and houses on the pressure field have been investigated. The presence of the bank and the house was felt in a zone with a length corresponding to a typical dimension of the obstacles, whereas the overall pressure field is shown to be unaffected by the the type of obstacles and vegetation investigated. For the wall and house, reflection factors have been established, and some variation over the surface has been measued. The scatter of the pressure measurements is estimated for stable, neutral and unstable atmospheric conditions, and an attempt to determine the ground reflection factor has been performed. Finally the accelerations of a house exposed to the blast wave have been examined. (author)

  9. Characteristics of acoustic gravity waves obtained from Dynasonde data

    Negrea, Cǎtǎlin; Zabotin, Nikolay; Bullett, Terrence; Fuller-Rowell, Tim; Fang, Tzu-Wei; Codrescu, Mihail

    2016-04-01

    Traveling ionospheric disturbances (TIDs) are ubiquitous in the thermosphere-ionosphere and are often assumed to be caused by acoustic gravity waves (AGWs). This study performs an analysis of the TID and AGW activity above Wallops Island, VA, during October 2013. The variations in electron density and ionospheric tilts obtained with the Dynasonde technique are used as primary indicators of wave activity. The temporal and spectral characteristics of the data are discussed in detail, using also results of the Whole Atmosphere Model (WAM) and the Global Ionosphere Plasmasphere Model (GIP). The full set of propagation parameters (frequency, and the vertical, zonal and meridional wave vector components) of the TIDs is determined over the 160-220 km height range. A test of the self-consistency of these results within the confines of the theoretical AGW dispersion relation is devised. This is applied to a sample data set of 24 October 2013. A remarkable agreement has been achieved for wave periods between 52 and 21 min, for which we can rigorously claim the TIDs are caused by underlying acoustic gravity waves. The Wallops Island Dynasonde can operate for extended periods at a 2 min cadence, allowing determination of the statistical distributions of propagation parameters. A dominant population of TIDs is identified in the frequency band below 1 mHz, and for it, the distributions of the horizontal wavelengths, vertical wavelengths, and horizontal phase speeds are obtained.

  10. Imaging of Acoustic Waves in Sand

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  11. Numerical solution of elastic wave propagation by isogeometric analysis

    Kolman, Radek; Plešek, Jiří; Okrouhlík, Miloslav; Gabriel, Dušan; Kopačka, Ján

    Prague : Institute of Thermomechanics ASCR, v. v. i., 2012. s. 73-74 ISBN 978-80-87012-41-3. [EUROMECH Colloquium 540. 01.10.2012-03.10.2012, Praha] R&D Projects: GA ČR GPP101/10/P376; GA ČR GA101/09/1630; GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315 Institutional research plan: CEZ:AV0Z20760514 Keywords : elastic wave propagation * isogeometric analysis * B-spline and NURBS shape functions Subject RIV: BI - Acoustics

  12. Total transmission and total reflection of acoustic wave by zero index metamaterials loaded with general solid defects

    Wang, Ziyu; Yang, Fan; Liu, Libing; Kang, Ming; Liu, Fengming

    2013-01-01

    This work investigates acoustic wave transmission property through a zero index metamaterials (ZIM) waveguide embedded with a general solid defect. Total transmission and total reflection can be achieved by adjusting the parameters of the solid defect. We comprehensively study how longitudinal/transverse wave speeds of the solid defect affect the acoustic wave propagation through the waveguide. A two-dimensional (2D) acoustic crystals (ACs) system with zero index is used to realize these intr...

  13. Topological charge pump by surface acoustic waves

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  14. Simulation of blast wave propagation from source to long distance with topography and atmospheric effects

    Nguyen-Dinh, Maxime; Gainville, Olaf; Lardjane, Nicolas

    2015-10-01

    We present new results for the blast wave propagation from strong shock regime to the weak shock limit. For this purpose, we analyse the blast wave propagation using both Direct Numerical Simulation and an acoustic asymptotic model. This approach allows a full numerical study of a realistic pyrotechnic site taking into account for the main physical effects. We also compare simulation results with first measurements. This study is a part of the french ANR-Prolonge project (ANR-12-ASTR-0026).

  15. Propagation of Nonlinear Pressure Waves in Blood

    Elgarayhi, A.; E. K. El-Shewy; MAHMOUD, ABEER A.; Elhakem, Ali A.

    2013-01-01

    The propagation of weakly nonlinear pressure waves in a fluid-filled elastic tube has been investigated. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude. The effect of the final inner radius of the tube on the basic properties of the soliton wave was discussed. Moreover, the conditions of stability and the soliton existence via the potential and the corresponding phase portrait were computed. The applicability of the ...

  16. Parallel electric field in the auroral ionosphere: excitation of acoustic waves by Alfvén waves

    P. L. Israelevich

    2004-09-01

    Full Text Available We investigate a new mechanism for the formation of a parallel electric field observed in the auroral ionosphere. For this purpose, the excitation of acoustic waves by propagating Alfvén waves was studied numerically. We find that the magnetic pressure perturbation due to finite amplitude Alfvén waves causes the perturbation of the plasma pressure that propagates in the form of acoustic waves, and gives rise to a parallel electric field. This mechanism explains the observations of the strong parallel electric field in the small-scale electromagnetic perturbations of the auroral ionosphere. For the cases when the parallel electric current in the small-scale auroral perturbations is so strong that the velocity of current carriers exceeds the threshold of the ion sound instability, the excited ion acoustic waves may account for the parallel electric fields as strong as tens of mV/m.

  17. An experimental study on the ultrasonic wave propagation in cancellous bone: waveform changes during propagation.

    Fujita, Fuminori; Mizuno, Katsunori; Matsukawa, Mami

    2013-12-01

    Wave propagation in a trabecular bone was experimentally investigated using an acoustic tube. For the purposes of this study, a cubic sample was gradually filed so the waveform change due to the sample thickness could be observed. The initial sample showed clear two-wave separation. As the sample became thinner, the fast and slow waves gradually overlapped. The apparent frequencies and amplitudes of the fast waves obtained from the time domain data decreased significantly for the smaller thicknesses. This indicates an increase in the apparent attenuation at the initial stage of the propagation. Next the authors investigated the distribution of the ultrasonic field after the transmission through the cancellous bone sample. In addition to a large aperture receiver, a needle-type ultrasonic transducer was used to observe the ultrasonic field. Within an area of the same size of the large transducer, the waveforms retrieved with the needle sensor exhibited high spatial variations; however, the averaged waveform in the plane was similar to the waveform obtained with the large aperture receiver. This indicates that the phase cancellation effect on the surface of the large aperture receiver can be one of the reasons for the strong apparent attenuation observed at the initial stages of the propagation. PMID:25669289

  18. Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons

    Selim, M. M.; El-Depsy, A.; El-Shamy, E. F.

    2015-12-01

    Properties of nonlinear ion-acoustic travelling waves propagating in a three-dimensional multicomponent magnetoplasma system composed of positive ions, negative ions and superthermal electrons are considered. Using the reductive perturbation technique (RPT), the Zkharov-Kuznetsov (ZK) equation is derived. The bifurcation theory of planar dynamical systems is applied to investigate the existence of the solitary wave solutions and the periodic travelling wave solutions of the resulting ZK equation. It is found that both compressive and rarefactive nonlinear ion-acoustic travelling waves strongly depend on the external magnetic field, the unperturbed positive-to-negative ions density ratio, the direction cosine of the wave propagation vector with the Cartesian coordinates, as well as the superthermal electron parameter. The present model may be useful for describing the formation of nonlinear ion-acoustic travelling wave in certain astrophysical scenarios, such as the D and F-regions of the Earth's ionosphere.

  19. Wave propagation in pantographic 2D lattices with internal discontinuities

    Madeo, A; Neff, P

    2014-01-01

    In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular 'long' waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.

  20. Prospects for coupling Surface Acoustic Waves to superconducting qubits

    Gustafsson, Martin

    2013-03-01

    Recent years have seen great development in the quantum control of mechanical resonators. These usually consist of membranes, cantilevers or suspended beams, whose vibrational modes can be cooled to the quantum ground state. This presentation will focus on a different kind of micromechanical system, where the motion is not confined to a mode with fixed boundaries, but propagates along the surface of a microchip. These modes are known as Surface Acoustic Waves (SAWs), and superficially resemble ripples on water, moving with low loss along the surfaces of solids. On a piezoelectric substrate, electrode gratings known as Interdigital Transducers (IDTs) can be used to convert power between the electric and acoustic domains. Devices based on this effect are of profound technological importance as filters and analog signal processors in the RF domain. In the realm of quantum information processing, SAWs have primarily been used to transport carriers and excitons through piezoelectric semiconductors, in the electric potential wells propagating along with the mechanical wave. Our approach, however, is different in that we aim to explore the mechanical wave itself as a carrier of quantum information. We have previously shown that a single-electron transistor can be used as a local probe for SAWs, with encouraging sensitivity levels. Building on this, we now investigate the prospects for coupling a SAW beam directly to a superconducting qubit. By merging a circuit model for an IDT with a quasi-classical description of a transmon qubit, we estimate that the qubit can couple to an acoustic transmission line with approximately the same strength as to an electrical one. This type of coupling opens for acoustic analogs of recent experiments in microwave quantum optics, including the generation of non-classical acoustic states.

  1. Oblique Propagation of Ion Acoustic Solitons in Magnetized Superthermal Plasmas

    Devanandhan, S.; Sreeraj, T.; Singh, S.; Lakhina, G. S.

    2015-12-01

    Small amplitude ion-acoustic solitons are studied in a magnetized plasma consisting of protons, doubly charged helium ions and superthermal electrons. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) is derived to examine the properties of ion acoustic solitary structures observed in space plasmas. Our model is applicable for weakly magnetized plasmas. The results will be applied to the satellite observations in the solar wind at 1 AU where magnetized ion acoustic waves with superthermal electrons can exist. The effects of superthermality, temperature and densities on these solitary structures will be discussed.

  2. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    2010-01-01

    acoustic energy by at least one ultrasonic high intensity and high power gas-jet acoustic wave generator (101), where said ultrasonic high intensity and high power acoustic waves are directed to propagate towards said plasma (104) so that at least a part of said predetermined amount of acoustic energy is......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount of...... absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...

  3. Research in acoustic and optical wave technology

    Siegman, A. E.; Auld, B. A.; Kino, G. S.; Beasley, M. R.; Byer, R. L.

    1982-04-01

    This report summaries the research progress and activity 1 April 1981 through 31 March 1982. Specific Projects are: (81-1) Interaction of Acoustic and Optical Waves with Domains in Ferroic Fibers with Bulk Materials: (B.A. Auld); (81-2) High T Josephson Junctions & Circuits (M. R. Beasley); (81-3) Optical & Nonlinear Optical Studies of Single Crystal Fibers (R. L. Byer); (81-4) Acoustic Surface Wave Scanning of Optical Images, (G. S. Kino); (81-5) Picosecond Raman Studies of Electronic Solids (A. E. Siegman).

  4. Free Propagation of Wave in Viscoelastic Cables with Small Curvature

    邹宗兰

    2003-01-01

    The coupled longitudinal-transverse waves propagating freely along a viscoelastic cable was studied. The frequency-spectrum equation governing propagating waves and the formulations of the phase velocities and the group velocities characterizing propagating waves were derived. The effects of viscosity parameters on the phase velocities and the group velocities were investigated with numerical simulation. The analyses show that viscosity has a strong influence on the phase velocity and the group velocity of propagating waves and attenuation waves for longitudinal-dominant waves, but the phase velocities of propagating waves of transverse-dominant waves do not change with viscosity.

  5. Wave propagation in complex coordinates

    Horsley, S. A. R.; King, C. G.; Philbin, T. G.

    2016-04-01

    We give an interpretation for the use of complex spatial coordinates in electromagnetism, in terms of a family of closely related inhomogeneous media. Using this understanding we find that the phenomenon of reflection can be related to branch cuts in the wave that originate from poles of ε (z) at complex positions. Demanding that these branch cuts disappear, we derive a new large family of inhomogeneous media that are reflectionless for a single angle of incidence. Extending this property to all angles of incidence leads us to a generalized form of the Pöschl Teller potentials that in general include regions of loss and gain. We conclude by analyzing our findings within the phase integral (WKB) method, and find another very large family of isotropic planar media that from one side have a transmission of unity and reflection of zero, for all angles of incidence.

  6. An optimal design problem in wave propagation

    Bellido, J.C.; Donoso, Alberto

    2007-01-01

    We consider an optimal design problem in wave propagation proposed in Sigmund and Jensen (Roy. Soc. Lond. Philos. Trans. Ser. A 361:1001-1019, 2003) in the one-dimensional situation: Given two materials at our disposal with different elastic Young modulus and different density, the problem consis...... prove also the existence of classical solutions in certain cases....

  7. Antenna Construction and Propagation of Radio Waves.

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  8. Prediction and near-field observation of skull-guided acoustic waves

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoaco...

  9. Numerical simulation of lower hybrid wave propagation

    Concerning the LHRH (Lower Hybrid Resonance Heating) in a tokamak, a numerical simulation is made of the propagation of a lower hybrid wave. By solving the system of two-fluid equations and Poisson's equation, ray trajectories of the lower hybrid waves are traced. The cases of cold plasma approximation, linear approximation and nonlinear two-fluid model are examined. The effect of density fluctuation due to the presence of a drift wave on the conical ray trajectories is also studied. Only the preliminary results are presented in this report. (auth.)

  10. Experiments on the acoustic solitary wave generated thermoacoustically in a looped tube

    Shimizu, Dai; Sugimoto, Nobumasa

    2015-10-01

    Emergence of an acoustic solitary wave is demonstrated in a gas-filled, looped tube with an array of Helmholtz resonators connected. The solitary wave is generated thermoacoustically and spontaneously by a pair of stacks positioned diametrically on exactly the opposite side of the loop. The temperature gradient is imposed on both stacks in the same sense along the tube. The stacks made of ceramics and of many square pores are sandwiched by hot and cold heat exchangers. The pressure profile measured and the propagation speed show good agreements with the theoretical ones of the acoustic solitary wave obtained by Sugimoto (J. Acoust. Soc. Am., 99, 1971-1976 (1996)).

  11. Effect of adiabatic variation of dust charges on dust acoustic solitary waves in magnetized dusty plasmas

    Duan Wen-Shan

    2004-01-01

    The effect of dust charging and the influence of its adiabatic variation on dust acoustic waves is investigated. By employing the reductive perturbation technique we derived a Zakharov-Kuznetsov (ZK) equation for small amplitude dust acoustic waves. We have analytically verified that there are only rarefactive solitary waves for this system. The instability region for one-dimensional solitary wave under transverse perturbations has also been obtained. The obliquely propagating solitary waves to the z-direction for the ZK equation are given in this paper as well.

  12. Effect of non-uniform mean flow field on acoustic propagation problems in computational aeroacoustics

    Si, Haiqing; Shen, Wen Zhong; Zhu, Wei Jun

    2013-01-01

    Acoustic propagation in the presence of a non-uniform mean flow is studied numerically by using two different acoustic propagating models, which solve linearized Euler equations (LEE) and acoustic perturbation equations (APE). As noise induced by turbulent flows often propagates from near field t...

  13. Low frequency acoustic pulse propagation in temperate forests.

    Albert, Donald G; Swearingen, Michelle E; Perron, Frank E; Carbee, David L

    2015-08-01

    Measurements of acoustic pulse propagation for a 30-m path were conducted in an open field and in seven different forest stands in the northeastern United States consisting of deciduous, evergreen, or mixed tree species. The waveforms recorded in forest generally show the pulse elongation characteristic of propagation over a highly porous ground surface, with high frequency scattered arrivals superimposed on the basic waveform shape. Waveform analysis conducted to determine ground properties resulted in acoustically determined layer thicknesses of 4-8 cm in summer, within 2 cm of the directly measured thickness of the litter layers. In winter the acoustic thicknesses correlated with the site-specific snow cover depths. Effective flow resistivity values of 50-88 kN s m(-4) were derived for the forest sites in summer, while lower values typical for snow were found in winter. Reverberation times (T60) were typically around 2 s, but two stands (deciduous and pruned spruce planted on a square grid) had lower values of about 1.2 s. One site with a very rough ground surface had very low summer flow resistivity value and also had the longest reverberation time of about 3 s. These measurements can provide parameters useful for theoretical predictions of acoustic propagation within forests. PMID:26328690

  14. Solitary Wave Propagation Influenced by Submerged Breakwater

    王锦; 左其华; 王登婷

    2013-01-01

    The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation.“Water column collapsing”method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.

  15. Propagation characteristics of magnetostatic waves: A review

    Parekh, J. P.

    1983-01-01

    This paper reviews the propagation characteristics of guided magnetostatic waves (MSW's) in a YIG film magnetized beyond saturation. There exist three guided magnetostatic wave-types, viz., magnetostatic surface waves (MSSW's) and magnetostatic forward and backward volume waves (MSFVW's and MSBVW's). The orientation of the internal bias field determines the particular wave-type that can be supported by the YIG film. The frequency spectrum of the volume waves coincides with that over which magnetostatic plane waves are of the homogeneous variety. The frequency spectrum of the MSSW's is located immediately above the MSVW spectrum. MSW's are dispersive, with the dispersion properties alterable through modification in boundary conditions. The most explored dispersion control technique employs the placement of a ground plane somewhat above the YIG film surface. This dispersion control technique, which provides one method of realizing nondispersive MSW propagation, raises the upper bound of the MSSW spectrum but does not affect the bounds of the MSVW spectrum. Numerical computations illustrating the dispersion and polarization characteristics of MSW's are presented.

  16. Speeding up tsunami wave propagation modeling

    Lavrentyev, Mikhail; Romanenko, Alexey

    2014-05-01

    Trans-oceanic wave propagation is one of the most time/CPU consuming parts of the tsunami modeling process. The so-called Method Of Splitting Tsunami (MOST) software package, developed at PMEL NOAA USA (Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration, USA), is widely used to evaluate the tsunami parameters. However, it takes time to simulate trans-ocean wave propagation, that is up to 5 hours CPU time to "drive" the wave from Chili (epicenter) to the coast of Japan (even using a rather coarse computational mesh). Accurate wave height prediction requires fine meshes which leads to dramatic increase in time for simulation. Computation time is among the critical parameter as it takes only about 20 minutes for tsunami wave to approach the coast of Japan after earthquake at Japan trench or Sagami trench (as it was after the Great East Japan Earthquake on March 11, 2011). MOST solves numerically the hyperbolic system for three unknown functions, namely velocity vector and wave height (shallow water approximation). The system could be split into two independent systems by orthogonal directions (splitting method). Each system can be treated independently. This calculation scheme is well suited for SIMD architecture and GPUs as well. We performed adaptation of MOST package to GPU. Several numerical tests showed 40x performance gain for NVIDIA Tesla C2050 GPU vs. single core of Intel i7 processor. Results of numerical experiments were compared with other available simulation data. Calculation results, obtained at GPU, differ from the reference ones by 10^-3 cm of the wave height simulating 24 hours wave propagation. This allows us to speak about possibility to develop real-time system for evaluating tsunami danger.

  17. Lagrangean description of nonlinear dust--ion acoustic waves in dusty plasmas

    Kourakis, I.; Shukla, P.K.

    2004-01-01

    An analytical model is presented for the description of nonlinear dust-ion-acoustic waves propagating in an unmagnetized, collisionless, three component plasma composed of electrons, ions and inertial dust grains. The formulation relies on a Lagrangean approach of the plasma fluid model. The modulational stability of the wave amplitude is investigated. Different types of localized envelope electrostatic excitations are shown to exist.

  18. Gravitational Wave Propagation in Isotropic Cosmologies

    Hogan, P A

    2002-01-01

    We study the propagation of gravitational waves carrying arbitrary information through isotropic cosmologies. The waves are modelled as small perturbations of the background Robertson-Walker geometry. The perfect fluid matter distribution of the isotropic background is, in general, modified by small anisotropic stresses. For pure gravity waves, in which the perturbed Weyl tensor is radiative (i.e. type N in the Petrov classification), we construct explicit examples for which the presence of the anisotropic stress is shown to be essential and the histories of the wave-fronts in the background Robertson-Walker geometry are shear-free null hypersurfaces. The examples derived in this case are analogous to the Bateman waves of electromagnetic theory.

  19. Wave Phenomena in an Acoustic Resonant Chamber

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  20. Marble Ageing Characterization by Acoustic Waves

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  1. Wave propagation in spatially modulated tubes.

    Ziepke, A; Martens, S; Engel, H

    2016-09-01

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train. PMID:27608990

  2. Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms

    Razani, Marjan; Mariampillai, Adrian; Sun, Cuiru; Luk, Timothy W. H.; Yang, Victor X. D.; Kolios, Michael C

    2012-01-01

    In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a 20 MHz piezoelectric transducer (circular element 8.5 mm diameter) transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force (ARF) was applied to two gelatin phantoms (differing in gelatin concentration by w...

  3. Investigation of guided waves propagation in pipe buried in sand

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S. [NDE Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  4. Investigation of guided waves propagation in pipe buried in sand

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence

  5. Acoustic wave-equation-based earthquake location

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  6. Pedagogical models of surface mechanical wave propagation in various materials

    We report on a teaching approach oriented to the understanding of some relevant concepts of wave propagation in solids. It is based on simple experiments involving the propagation of shock mechanical waves in solid slabs of various materials. Methods similar to the generation and propagation of seismic waves are adopted. Educational seismometers, interfaced with computers, are used to detect and visualize the shock waves and to analyse their propagation properties. A qualitative discussion of the results concerning the propagation and the attenuation of the waves allows us to draw basic conclusions about the response of the matter to solicitation impacts and their propagation

  7. Surface waves propagating on a turbulent flow

    Gutiérrez, Pablo; Aumaître, Sébastien

    2016-02-01

    We study the propagation of monochromatic surface waves on a turbulent flow of liquid metal, when the waves are much less energetic than the background flow. Electromagnetic forcing drives quasi-two-dimensional turbulence with strong vertical vorticity. To isolate the surface-wave field, we remove the surface deformation induced by the background turbulent flow using coherent-phase averaging at the wave frequency. We observe a significant increase in wavelength, when the latter is smaller than the forcing length scale. This phenomenon has not been reported before and can be explained by multiple random wave deflections induced by the turbulent velocity gradients. The shift in wavelength thus provides an estimate of the fluctuations in deflection angle. Local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is visible. Finally, we quantify the damping enhancement induced by the turbulent flow and compare it to the existing theoretical predictions. Most of them suggest that the damping increases as the square of the Froude number, whereas our experimental data show a linear increase with the Froude number. We interpret this linear relationship as a balance between the time for a wave to cross a turbulent structure and the turbulent mixing time. The larger the ratio of these two times, the more energy is extracted from the wave. We conclude with possible mechanisms for energy exchange.

  8. Lattice Boltzmann model for wave propagation.

    Zhang, Jianying; Yan, Guangwu; Shi, Xiubo

    2009-08-01

    A lattice Boltzmann model for two-dimensional wave equation is proposed by using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by using multiscale technique and Chapman-Enskog expansion. In order to obtain the lattice Boltzmann model for the wave equation with higher-order accuracy of truncation errors, we removed the second-order dissipation term and the third-order dispersion term by employing the moments up to fourth order. The reversibility in time appears owing to the absence of the second-order dissipation term and the third-order dispersion term. As numerical examples, some classical examples, such as interference, diffraction, and wave passing through a convex lens, are simulated. The numerical results show that this model can be used to simulate wave propagation. PMID:19792280

  9. Thickness measurement of Ni thin film using dispersion characteristics of a surface acoustic wave

    In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.

  10. Evidence of slow magneto-acoustic waves in photospheric observations of a sunspot

    Zharkov, S; Erdélyi, R; Thompson, M J

    2009-01-01

    We show the observational evidence for the presence of MHD waves in the solar photosphere deduced from SOHO MDI Dopplergram velocity observations. The magneto-acoustic oscillations are observed as acoustic power enhancement in the sunspot umbra at high frequency bands in the velocity component transverse to the magnetic field. We use numerical modelling of the wave propagation through localised non-uniform magnetic field concentration along with the same filtering procedure as applied to the observations to identify the observed waves. Underpinned by the results of the numerical simulations we classify the observed oscillations as slow magneto-acoustic waves excited by the trapped sub-photospheric acoustic waves. We consider the potential application of the presented method as a diagnostic tool for magnetohelioseismology.

  11. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  12. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  13. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    Leonhard Michael Reindl

    2013-02-01

    Full Text Available Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  14. Nonlinear transient wave propagation in homgeneous plasmas

    The transient phenomena associated with the propagation of nonlinear high frequency waves in homogeneous and isotropic or anisotropic plasma are considered. The basic equation for the different wave types included in this analysis are derived by using a two-fluid description of the plasma. Before discussing the importance of different nonlinearities the main results from a linear treatment are given. Generation of harmonic and local changes in the plasma frequency caused by ponderomotive forces are the nonlinear phenomena which are included in the nonlinear treatment. Generation of harmonics is only important for extraordinary waves and this case is discussed in detail. The density perturbations are described either as forced non-dispersive or as forced dispersive low frequency electrostatic waves. The differences between these two descriptions are first considered analytically then by a numerical analysis of the problem with the influence of the density variations on the propagation of the high frequency wave included. A one-dimensional description is used in all cases. (Auth.)

  15. Electromagnetic-wave propagation along curved surfaces

    We show that Maxwell's equations for a nonmagnetic, isotropic, but electrically inhomogeneous medium in the absence of charges or current sources lead to a wave equation governing surface electromagnetic wave propagation along a general curved, smooth surface which, when recasted using an appropriate choice of curvilinear coordinates u1,u2,u3, can be fully separated in the spatial dimensions. It is shown that surface electromagnetic wave solutions decay exponentially away from the surface (along the u3 coordinate) with the same decay rate independent of the shape of the surface. Transmission and reflection coefficients governing scattering of electromagnetic waves on a varying surface shape are derived. Two test cases of a Gaussian-shaped and a sinusoidal-shaped surface are solved in details and discussed numerically in terms of transmission and reflection coefficients including dependencies on surface-shape parameters in the wavelength range 250-750 nm. The present method for determining surface electromagnetic wave propagation along complex-shaped metal-dielectric surfaces allows better insight into the importance of surface geometry as well as considerably faster computational speeds than those provided by standard numerical methods.

  16. Bi-dust acoustic waves

    Martin, P.; Castro, E.; Puerta, J. [Universidad Simon Bolivar, Apartado 89000, Caracas 1080A (Venezuela); Valdeblanquez, E. [Universidad del Zulia, facultad de Ingenieria, Apartado 4011-A 526, Maracaibo, Edo. Zulia (Venezuela)

    2006-07-01

    Low frequencies waves in plasmas with two kind of dusty grains have been studied. Each species of dust particle is characterized by the grain radius, which determines its equilibrium charge. Relative velocities between the two kinds of dust grain for the unperturbed plasma is also considered in order to study instabilities and compare with astrophysical and industrial applications. In this analysis, each dust species is handled with a simplified model of kinetic-fluid equations, and the electrons and ions are determined by Boltzmann factors. The low frequency dispersion relation for bi-dust plasma waves with non relative motion between each kind of grain leads to damped waves with two characteristic frequencies. Instabilities are produced by the relative motion between the species. The onset of these instabilities is studied as a function of the plasma dust frequencies and relative velocities among each species. (Author)

  17. Fractional Calculus in Wave Propagation Problems

    Mainardi, Francesco

    2012-01-01

    Fractional calculus, in allowing integrals and derivatives of any positive order (the term "fractional" kept only for historical reasons), can be considered a branch of mathematical physics which mainly deals with integro-differential equations, where integrals are of convolution form with weakly singular kernels of power law type. In recent decades fractional calculus has won more and more interest in applications in several fields of applied sciences. In this lecture we devote our attention to wave propagation problems in linear viscoelastic media. Our purpose is to outline the role of fractional calculus in providing simplest evolution processes which are intermediate between diffusion and wave propagation. The present treatment mainly reflects the research activity and style of the author in the related scientific areas during the last decades.

  18. Influence of surface acoustic waves induced acoustic streaming on the kinetics of electrochemical reactions

    Tietze, Sabrina; Schlemmer, Josefine; Lindner, Gerhard

    2013-12-01

    The kinetics of electrochemical reactions is controlled by diffusion processes of charge carriers across a boundary layer between the electrode and the electrolyte, which result in a shielding of the electric field inside the electrolyte and a concentration gradient across this boundary layer. In accumulators the diffusion rate determines the rather long time needed for charging, which is a major drawback for electric mobility. This diffusion boundary can be removed by acoustic streaming in the electrolyte induced by surface acoustic waves propagating of the electrode, which results in an increase of the charging current and thus in a reduction of the time needed for charging. For a quantitative study of the influence of acoustic streaming on the charge transport an electropolishing cell with vertically oriented copper electrodes and diluted H3PO4-Propanol electrolytes were used. Lamb waves with various excitation frequencies were exited on the anode with different piezoelectric transducers, which induced acoustic streaming in the overlaying electrolytic liquid. An increase of the polishing current of up to approximately 100 % has been obtained with such a set-up.

  19. Wave propagation in fractured porous media

    Tuncay, Kağan; Çorapçıoplu, M. Yavuz

    1996-01-01

    A theory of wave propagation in fractured porous media is presented based on the double-porosity concept. The macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations. In microscale, the grains are assumed to be linearly elastic and the fluids are Newtonian. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the vali...

  20. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented

  1. Wave Propagation in Jointed Geologic Media

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  2. Characterization of wave physics in acoustic metamaterials using a fiber optic point detector

    Ganye, Randy; Chen, Yongyao; Liu, Haijun; Bae, Hyungdae; Wen, Zhongshan; Yu, Miao

    2016-06-01

    Due to limitations of conventional acoustic probes, full spatial field mapping (both internal and external wave amplitude and phase measurements) in acoustic metamaterials with deep subwavelength structures has not yet been demonstrated. Therefore, many fundamental wave propagation phenomena in acoustic metamaterials remain experimentally unexplored. In this work, we realized a miniature fiber optic acoustic point detector that is capable of omnidirectional detection of complex spatial acoustic fields in various metamaterial structures over a broadband spectrum. By using this probe, we experimentally characterized the wave-structure interactions in an anisotropic metamaterial waveguide. We further demonstrated that the spatial mapping of both internal and external acoustic fields of metamaterial structures can help obtain important wave propagation properties associated with material dispersion and field confinement, and develop an in-depth understanding of the waveguiding physics in metamaterials. The insights and inspirations gained from our experimental studies are valuable not only for the advancement of fundamental metamaterial wave physics but also for the development of functional metamaterial devices such as acoustic lenses, waveguides, and sensors.

  3. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.

    Dogan, Hakan; Popov, Viktor

    2016-05-01

    We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes. PMID:26611813

  4. Visualization of Surface Acoustic Waves in Thin Liquid Films.

    Rambach, R W; Taiber, J; Scheck, C M L; Meyer, C; Reboud, J; Cooper, J M; Franke, T

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  5. Visualization of Surface Acoustic Waves in Thin Liquid Films

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  6. Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms.

    Razani, Marjan; Mariampillai, Adrian; Sun, Cuiru; Luk, Timothy W H; Yang, Victor X D; Kolios, Michael C

    2012-05-01

    In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a 20 MHz piezoelectric transducer (circular element 8.5 mm diameter) transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force (ARF) was applied to two gelatin phantoms (differing in gelatin concentration by weight, 8% vs. 14%). Differential OCT phase maps, measured with and without the ARF, demonstrate microscopic displacement generated by shear wave propagation in these phantoms of different stiffness. We present preliminary results of OCT derived shear wave propagation velocity and modulus, and compare these results to rheometer measurements. The results demonstrate the feasibility of shear wave OCE (SW-OCE) for high-resolution microscopic homogeneous tissue mechanical property characterization. PMID:22567590

  7. Acoustic measurements above a plate carrying Lamb waves

    Talberg, Andreas Sørbrøden

    2016-01-01

    This article presents a set of acoustic measurements conducted on the Statoil funded Behind Casing Logging Set-Up, designed by SINTEF Petroleum Research to resemble an oil well casing. A set of simple simulations using COMSOL Multiphysics were also conducted and the results compared with the measurements. The experiments consists of measuring the pressure wave radiated of a set of Lamb waves propagating in a 3 mm thick steel plate, using the so called pitch-catch method. The Lamb waves were excited by a broadband piezoelectric immersion transducer with center frequency of 1 MHz. Through measurements and analysis the group velocity of the fastest mode in the plate was found to be 3138.5 m/s. Measuring the wave radiated into the water in a grid consisting of 8x33 measuring points, the spreading of the plate wave normal to the direction of propagation was investigated. Comparing the point where the amplitude had decreased 50 % relative to the amplitude measured at the axis pointing straight forward from the tran...

  8. A semi-analytical solution for viscothermal wave propagation in narrow gaps with arbitrary boundary conditions.

    Wijnant, Ysbrand; Spiering, Ruud; Blijderveen, van Maarten; Boer, de André

    2006-01-01

    Previous research has shown that viscothermal wave propagation in narrow gaps can efficiently be described by means of the low reduced frequency model. For simple geometries and boundary conditions, analytical solutions are available. For example, Beltman [4] gives the acoustic pressure in the gap b

  9. Experimental studies of lower hybrid wave propagation

    Experimental measurements of the dispersion and damping of externally excited lower hybrid waves are presented. A multiple-ring slow-wave antenna, having 2π/k/sub z/ = 23 cm, is used to excite these waves in the Princeton L3 or L4 linear devices (B = 0.5 -- 2.8 kG uniform to +- 1 percent for 1.6 m, n approximately 1010, T/sub e/ approximately 3-5 eV, T/sub i/ less than or equal to 0.1 eV, He gas, plasma diameter approximately 10 cm). The waves are localized in a spatial wave packet that propagates into the plasma along a conical trajectory which makes a small angle with respect to the confining magnetic field. Measurements of the dependence of wavelength on frequency are in good agreement with the cold plasma dispersion relation. Measured values of the wave damping are in good agreement with Landau damping by the combination of the main body of the electron distribution and a approximately 30 percent high energy (T/sub e/ approximately 15-30 eV) electron tail

  10. On the rich eight branch spectrum of the oblique propagating longitudinal waves in partially spin polarized electron-positron-ion plasmas

    Andreev, Pavel A

    2016-01-01

    We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider oblique propagating longitudinal waves in this systems. We report presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas we find four branches: the Langmuir wave, the positron-acoustic wave and pair of waves having spin nature, they are the SEAW and, as we called it, spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, Trivelpiece-Gould wave, pair of positron-acoustic waves, pair of SEAWs, and pair of SEPAWs. Thus, for the first time, we r...

  11. Holographic imaging of surface acoustic waves

    Bruno, Francois; Royer, Daniel; Atlan, Michael

    2014-01-01

    We report on an experimental demonstration of surface acoustic waves monitoring on a thin metal plate with heterodyne optical holography. Narrowband imaging of local optical pathlength modulation is achieved with a frequency-tunable time-averaged laser Doppler holographic imaging scheme on a sensor array, at video-rate. This method enables robust and quantitative mapping of out-of-plane vibrations of nanometric amplitudes at radiofrequencies.

  12. Propagation of Ultrasonic Guided Waves in Composite Multi-Wire Ropes

    Renaldas Raisutis; Rymantas Kazys; Liudas Mazeika; Vykintas Samaitis; Egidijus Zukauskas

    2016-01-01

    Multi-wire ropes are widely used as load-carrying constructional elements in bridges, cranes, elevators, etc. Structural integrity of such ropes can be inspected by using non-destructive ultrasonic techniques. The objective of this work was to investigate propagation of ultrasonic guided waves (UGW) along composite multi-wire ropes in the cases of various types of acoustic contacts between neighboring wires and the plastic core. The modes of UGW propagating along the multi-wire ropes were ide...

  13. Support minimized inversion of acoustic and elastic wave scattering

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion

  14. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  15. Reverse Doppler effect in backward spin waves scattered on acoustic waves

    A. V. Chumak; Dhagat, P.; Jander, A.; Serga, A. A.; Hillebrands, B

    2009-01-01

    We report on the observation of reverse Doppler effect in backward spin waves reflected off of surface acoustic waves. The spin waves are excited in a yttrium iron garnet (YIG) film. Simultaneously, acoustic waves are also generated. The strain induced by the acoustic waves in the magnetostrictive YIG film results in the periodic modulation of the magnetic anisotropy in the film. Thus, in effect, a travelling Bragg grating for the spin waves is produced. The backward spin waves reflecting off...

  16. On Dirac equations for linear magnetoacoustic waves propagating in an isothermal atmosphere

    Alicki, R.; Musielak, E. Z.; Sikorski, J.; Makowiec, D.

    1994-01-01

    A new analytical approach to study linear magnetoacoustic waves propagating in an isothermal, stratified, and uniformly magnetized atmosphere is presented. The approach is based on Dirac equations, and the theory of Sturm-Liouville operators is used to investigate spectral properties of the obtained Dirac Hamiltonians. Two cases are considered: (1) the background magnetic field is vertical, and the waves are separated into purely magnetic (transverse) and purely acoustic (longitudinal) modes; and (2) the field is tilted with respect to the vertical direction and the magnetic and acoustic modes become coupled giving magnetoacoustic waves. For the first case, the Dirac Hamiltonian possesses either a discrete spectrum, which corresponds to standing magnetic waves, or a continuous spectrum, which can be clearly identified with freely propagating acoustic waves. For the second case, the quantum mechanical perturbation calculus is used to study coupling and energy exchange between the magnetic and acoustic components of magnetoacoustic waves. It is shown that this coupling may efficiently prevent trapping of magnetoacoustic waves instellar atmospheres.

  17. Non-Linear Excitation of Ion Acoustic Waves

    Michelsen, Poul; Hirsfield, J. L.

    1974-01-01

    The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....

  18. Nonlinear progressive acoustic-gravity waves: Exact solutions

    Godin, Oleg

    2013-04-01

    We consider finite-amplitude mechanical waves in an inhomogeneous, compressible fluid in a uniform gravity field. The fluid is assumed to be inviscid, and wave motion is considered as an adiabatic thermodynamic process. The fluid either occupies an unbounded domain or has free and/or rigid boundaries. Wave motion is described by the momentum, continuity, and state equations in Lagrangian coordinates. We consider generic inhomogeneous fluids; no specific assumptions are made regarding the equation of state or spatial variations of the mass density or the sound speed in the absence of waves. The density and the sound speed are piece-wise continuous functions of position. The discontinuities represent fluid-fluid interfaces, such as the air-sea interface. Following a recent work on linear acoustic-gravity waves [O. A. Godin, Incompressible wave motion of compressible fluids, Phys. Rev. Lett., 108, 194501 (2012)], here we investigate a particular class of non-linear wave motions in fluids, in which pressure remains constant in each moving fluid parcel. Exact, analytic solutions of the non-linear hydrodynamics equations are obtained for two distinct scenarios. In the first scenario, the fluid is either unbounded or has a free surface. In the latter case, the exact analytic solution can be interpreted as a progressive surface wave. In the second scenario, the fluid has a free surface and a sloping, plane rigid boundary. Then the exact analytic solution represents an edge wave propagating horizontally along the rigid boundary. In both scenarios, the flow field associated with the finite-amplitude waves is rotational. When the sound speed tends to infinity, our results reduce to well-known finite-amplitude waves in incompressible fluids. In another limit, when the wave amplitude tends to zero, the exact solutions reduce to known results for linear waves in compressible fluids. The possibility of extending the theory to rotating fluids and fluids with a shearing background

  19. Enhancing propagation characteristics of truncated localized waves in silica

    Salem, Mohamed

    2011-07-01

    The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.

  20. Electromagnetic Wave Propagation in Random Media

    Pécseli, Hans

    1984-01-01

    The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived. A Fo...... Fokker-Planck type equation is contained as a limiting case. The results are readily generalized to include the features of the random coupling model and it is argued that the present problem is particularly suited for an analysis of this type....

  1. Elastic Wave Propagation and Generation in Seismology

    Lees, Jonathan M.

    The majority of mature seismologists of my generation were introduced to theoretical seismology via classic textbooks written in the early 1980s. Since this generation has matured and taken the mantle of teaching seismology to a new generation, several new books have been put forward as replacements, or alternatives, to the original classical texts. The target readers of the new texts range from beginner through intermediate to more advanced, although all have been attempts to improve upon what is now considered standard convention in quantitative seismology. To this plethora of choices we now have a new addition by Jose Pujol, titledElastic Wave Propagation and Generation in Seismology.

  2. Nonlinear ion acoustic waves scattered by vortexes

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  3. Model of propagation of acoustic pulses caused by underground nuclear explosion and theirs influence on the ionosphere

    Krasnov, V.; Drobzheva, Y.

    2003-04-01

    To describe the propagation of an acoustic pulse through the inhomogeneity atmosphere we developed new equation and correspondent computer simulation code. The equation takes into account nonlinear effects, inhomogeneities of the atmosphere, absorption, expansion of a wave acoustic front, etc. The model includes subroutine of vertical movement of earth surface during an underground nuclear explosion (we use an empirical model), subroutine of acoustic pulse generation by a spall zone, subroutine of propagation of acoustic pulse up to the ionospheric height, subroutine of acoustic wave influence on the ionospheric plasma, subroutine of ionospheric perturbation influence on Doppler frequency of a radio wave. All calculations take into account geomagnetic field and neutral wind. The data measurement of acoustic pulses at heights of the ionosphere with helping Doppler radio sounding were used to test the model. We used data of Doppler shift records which were obtained during 9 underground nuclear explosion for 16 traces of radio sounding of the ionoshphere. Coefficients correlation between calculated and experimental forms is 0.7-0.94.

  4. Mesospheric hydroxyl airglow signatures of acoustic and gravity waves generated by transient tropospheric forcing

    Snively, J. B.

    2013-09-01

    Numerical model results demonstrate that acoustic waves generated by tropospheric sources may produce cylindrical "concentric ring" signatures in the mesospheric hydroxyl airglow layer. They may arrive as precursors to upward propagating gravity waves, generated simultaneously by the same sources, and produce strong temperature perturbations in the thermosphere above. Transient and short-lived, the acoustic wave airglow intensity and temperature signatures are predicted to be detectable by ground-based airglow imaging systems and may provide new insight into the forcing of the upper atmosphere from below.

  5. Investigation into stress wave propagation in metal foams

    Li, Lang; Xue, Pu; Chen, Yue

    2015-09-01

    The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  6. Investigation into stress wave propagation in metal foams

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  7. Asymmetric Wave Propagation Through Saturable Nonlinear Oligomers

    Daniel Law

    2014-10-01

    Full Text Available In the present paper we consider nonlinear dimers and trimers (more generally, oligomers embedded within a linear Schrödinger lattice where the nonlinear sites are of saturable type. We examine the stationary states of such chains in the form of plane waves, and analytically compute their reflection and transmission coefficients through the nonlinear oligomer, as well as the corresponding rectification factors which clearly illustrate the asymmetry between left and right propagation in such systems. We examine not only the existence but also the dynamical stability of the plane wave states. Lastly, we generalize our numerical considerations to the more physically relevant case of Gaussian initial wavepackets and confirm that the asymmetry in the transmission properties also persists in the case of such wavepackets.

  8. Wave propagation through an electron cyclotron resonance layer

    Westerhof, E.

    1997-01-01

    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N-parallel to x upsilo

  9. Broadband Acoustic Cloak for Ultrasound Waves

    Zhang, Shu; Fang, Nicholas

    2010-01-01

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Due to the non-resonant nature of the building elements, this low loss (~6dB/m) cylindrical cloak exhibits excellent invisibility over a broad frequency range from 52 to 64 kHz in the measurements. The low visibility of the cloaked object for underwater ultrasound shed a light on the fundamental understanding of ma...

  10. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  11. Strongly driven ion acoustic waves in laser produced plasmas

    This paper present an experimental study of ion acoustic waves with wavenumbers corresponding to stimulated Brillouin scattering. Time resolved Thomson scattering in frequency and wavenumber space, has permitted to observe the dispersion relation of the waves as a function of the laser intensity. Apart from observing ion acoustic waves associated with a strong second component is observed at laser intensities above 1013Wcm-2

  12. Surface acoustic wave-induced precise particle manipulation in a trapezoidal glass microfluidic channel

    Surface acoustic wave (SAW) excitation of an acoustic field in a trapezoidal glass microfluidic channel for particle manipulation in continuous flow has been demonstrated. A unidirectional interdigital transducer (IDT) on a Y-cut Z-propagation lithium niobate (LiNbO3) substrate was used to excite a surface acoustic wave at approximately 35 MHz. An SU8 layer was used for adhesive bonding of the superstrate glass layer and the substrate piezoelectric layer. This work extends the use of SAWs for acoustic manipulation to also include glass channels in addition to prior work with mainly poly-di-methyl-siloxane channels. Efficient alignment of 1.9 µm polystyrene particles to narrow nodal regions was successfully demonstrated. In addition, particle alignment with only one IDT active was realized. A finite element method simulation was used to visualize the acoustic field generated in the channel and the possibility of 2D alignment into small nodal regions was demonstrated

  13. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  14. Optical coherence tomography detection of shear wave propagation in MCF7 cell modules

    Razani, Marjan; Mariampillai, Adrian; Berndl, Elizabeth S. L.; Kiehl, Tim-Rasmus; Yang, Victor X. D.; Kolios, Michael C.

    2014-02-01

    In this work, we explored the potential of measuring shear wave propagation using Optical Coherence Elastography (OCE) in MCF7 cell modules (comprised of MCF7 cells and collagen) and based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs, synchronized with an OCT swept source wavelength sweep imaging system. Acoustic radiation force was applied to the MCF7 cell constructs. Differential OCT phase maps, measured with and without the acoustic radiation force, demonstrate microscopic displacement generated by shear wave propagation in these modules. The OCT phase maps are acquired with a swept-source OCT (SS-OCT) system. We also calculated the tissue mechanical properties based on the propagating shear waves in the MCF7 + collagen phantoms using the Acoustic Radiation Force (ARF) of an ultrasound transducer, and measured the shear wave speed with the OCT phase maps. This method lays the foundation for future studies of mechanical property measurements of breast cancer structures, with applications in the study of breast cancer pathologies.

  15. Wave propagation in random granular chains.

    Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H

    2012-03-01

    The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation. PMID:22587093

  16. Simulating acoustic waves in spotted stars

    Papini, Emanuele; Gizon, Laurent; Hanasoge, Shravan M

    2015-01-01

    Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the non-magnetic effects of starspots on global modes with angular degree $\\ell \\leq 2$ in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for...

  17. Cylindrical nebulons, symbolic computation and Baecklund transformation for the cosmic dust acoustic waves

    In a cosmic dusty plasma, the dust-acoustic-wave propagation may be described by a cylindrical Kadomtsev-Petviashvili equation. In this Letter, for such modeling of environments like supernova shells, Saturn's F-ring, etc., cylindrical nebulons and an auto-Baecklund transformation are presented via symbolic computation. Nebulon structures are discussed, and possibly observable effects are proposed for cosmic plasmas

  18. Laser Plasmas : Effect of rippled laser beam on excitation of ion acoustic wave

    Nareshpal Singh Saini; Tarsem Singh Gill

    2000-11-01

    Growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in collisional unmagnetised plasma is investigated. From numerical computation, it is observed that self-focusing of main beam as well as ripple determine the growth dynamics of ripple with the distance of propagation. The effect of growing ripple on excitation of ion acoustic wave (IAW) has also been studied

  19. Acoustic microfluidics: Capillary waves and vortex currents in a spherical fluid drop

    Lebedev-Stepanov, P. V.; Rudenko, O. V.

    2016-07-01

    We calculate the radiation forces in a spherical drop lying on a solid substrate. The forces form as a result of the action of a capillary wave on a fluid as it propagates along the free spherical surface. We study the structure of acoustic currents excited by the radiation forces.

  20. Characteristics and realization of the second generation surface acoustic wave's wavelet device

    Wen Changbao; Zhu Changchun; Lu Wenke; Liu Qinghong; Liu Junhua

    2006-01-01

    To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW's) wavelet device, the full transfer multistrip coupler (MSC) is applied to implement wavelet device, and a novel structure of the second generation surface acoustic wave's (SGSAW's) wavelet device is proposed. In the SGSAW's wavelet device, the BAW is separated and eliminated in different acoustic propagating tracks, and the triple transit signal is suppressed. For arbitrary wavelet scale device, the center frequency is three times the radius of frequency band, which ensures that the frequency band of the SGSAW's wavelet device is continuous, and avoids losing signals caused by the discontinuation of frequency band. Experimental result confirms that the BAW suppression, ripples in band, receiving loss and insertion loss of the SGSAW's wavelet device are remarkably improved compared with those of the FGSAW's wavelet device.

  1. Instrumentation Suite for Acoustic Propagation Measurements in Complex Shallow Water Environments

    Federal Laboratory Consortium — FUNCTION: Obtain at-sea measurements to test theoretical and modeling predictions of acoustic propagation in dynamic, inhomogeneous, and nonisotropic shallow water...

  2. Acoustic clouds: standing sound waves around a black hole analogue

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  3. Wave-Flow Interactions and Acoustic Streaming

    Chafin, Clifford E

    2016-01-01

    The interaction of waves and flows is a challenging topic where a complete resolution has been frustrated by the essential nonlinear features in the hydrodynamic case. Even in the case of EM waves in flowing media, the results are subtle. For a simple shear flow of constant n fluid, incident radiation is shown to be reflected and refracted in an analogous manner to Snell's law. However, the beam intensities differ and the system has an asymmetry in that an internal reflection gap opens at steep incident angles nearly oriented with the shear. For EM waves these effects are generally negligible in real systems but they introduce the topic at a reduced level of complexity of the more interesting acoustic case. Acoustic streaming is suggested, both from theory and experimental data, to be associated with vorticity generation at the driver itself. Bounds on the vorticity in bulk and nonlinear effects demonstrate that the bulk sources, even with attenuation, cannot drive such a strong flow. A review of the velocity...

  4. Transmission experiment by the simulated LMFBR model and propagation analysis of acoustic signals

    Acoustic transducers to detect a boiling of sodium may be installed in the upper structure and at the upper position of reactor vessel wall under constricted conditions. A set of the experiments of transmission of acoustic vibration to various points of the vessel was performed utilizing the half scale-hydraulic flow test facility simulating reactor vessel over the frequency range 20 kHz -- 100 kHz. Acoustic signals from an installed sound source in the core were measured at each point by both hydrophones in the vessel and vibration pickups on the vessel wall. In these experiments transmission of signals to each point of detectors were clearly observed to background noise level. These data have been summarized in terms of the transmission loss and furthermore are compared with background noise level of flow to estimate the feasibility of detection of sodium boiling sound. The ratio of signal to noise was obtained to be about 13 dB by hydrophone in the upper structure, 8 dB by accelerometer and 16 dB by AE-sensor at the upper position on the vessel in experiments used the simulation model. Sound waves emanated due to sodium boiling also propagate along the wall of the vessel may be predicted theoretically. The result of analysis suggests a capability of detection at the upper position of the reactor vessel wall. Leaky Lamb waves of the first symmetric (L1) and of the antisymmetric (F1) mode and shear horizontal wave (SH) have been derived in light of the attenuation due to coupling to liquid sodium as the traveling modes over the frequency range 10 kHz -- 100 kHz up to 50 mm in thickness of the vessel wall. Leaky Lamb wave (L1) and (SH) mode have been proposed theoretically on the some assumption to be most available to detect the boiling sound of sodium propagating along the vessel wall. (author)

  5. Dual-mode acoustic wave biosensors microarrays

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  6. Wave propagation in predator-prey systems

    Fu, Sheng-Chen; Tsai, Je-Chiang

    2015-12-01

    In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).

  7. Simulation of dust-acoustic waves

    The authors use molecular dynamics (MD) and particle-in-cell (PIC) simulation methods to investigate the dispersion relation of dust-acoustic waves in a one-dimensional, strongly coupled (Coulomb coupling parameter Λ = ratio of the Coulomb energy to the thermal energy = 120) dusty plasma. They study both cases where the dust is represented by a small number of simulation particles that form into a regular array structure (crystal limit) as well as where the dust is represented by a much larger number of particles (fluid limit)

  8. Propagation of sound waves in drill strings

    Drumheller, D. S.; Knudsen, S. D.

    1995-04-01

    Deep wells are commonly drilled while steering the drill bit. The steering process is completely controlled by the drilling-rig operator. A key element of this procedure is the measurement and communication of navigation information from the bottom of the well to the operator. Pressure pulses modulated onto the flow of the drill fluid are now employed in some cases to communicate this information. However, data rates are only a few binary bits per second with this method. This drastically limits the quantity of data available to the operator. As an alternative method, elastic waves generated within the steel drill string can be used as a carrier signal to transmit data. The drill string is commonly assembled from 10-m segments of threaded pipe and forms a periodic structure. The elastic wavelengths of interest are shorter than this periodic length. Consequently, these waves undergo significant dispersion. This paper presents new data for the propagation of elastic waves in a 2-km drill string. The influence of aperiodicity in the drill string, rotation of the drill string, and noise levels are studied in detail. The data verify a method for reducing the attenuation of a carrier signal by a factor of 2.

  9. On the statistical detection of propagating waves in polar coronal hole

    Gupta, G R; Banerjee, Dhruba; Popescu, M; Doyle, J G

    2009-01-01

    Waves are important for the heating of the solar corona and the acceleration of the solar wind. We have examined a long spectral time series of a southern coronal hole observed on the 25th February 1997, with the SUMER spectrometer on-board SoHO. The observations were obtained in a transition region N IV 765 A line and in a low coronal Ne VIII 770 A line. Our observations indicate the presence of compressional waves with periods of 18 min. We also find significant power in shorter periods. Using Fourier techniques, we measured the phase delays between intensity as well as velocity oscillations in the two chosen lines over a frequency domain. From this we are able to measure the travel time of the propagating oscillations and, hence, the propagation speeds of the waves producing the oscillations. As the measured propagation speeds are subsonic, we conclude that the detected waves are slow magneto-acoustic in nature.

  10. Spin-electron acoustic waves: Linear and nonlinear regimes, and applications

    Andreev, Pavel

    2015-11-01

    Considering the spin-up and spin-down electrons as two different fluids we find corresponding hydrodynamic and kinetic equations from the Pauli equation. We find different pressure the spin-up and spin-down electrons due to different concentrations of electrons in the magnetized electron gas. This difference leads to existence of new branches of linear longitudinal waves propagating with small damping. These waves are called the spin-electron acoustic waves (SEAWs) due to linear dispersion dependence at small wave vectors. We obtain two waves at oblique propagation and one wave at propagation parallel or perpendicular to the external magnetic field. Dispersion dependences of these waves are calculated. Contribution of the Coulomb exchange interaction is included in the model and spectrums. Area of existence of nonlinear SEAWs appearing as a spin-electron acoustic soliton is found for the regime of wave propagation parallel to the external magnetic field. It is obtained that the SEAWs lead to formation of the Cooper pairs. This application of our results to the superconductivity phenomenon reveals in a model of the high-temperature superconductivity with the transition temperatures up to 300 K.

  11. Einstein-de Broglie relations for wave packet: the acoustic world

    Simaciu, Ion; Dumitrescu, Gheorghe; Georgeta, Nan

    2015-01-01

    In this paper we study the relations of Einstein-de Broglie type for the wave packets. We assume that the wave packet is a possible model of particle . When studying the behaviour of the wave packet for standing waves, in relation to an accelerated observer (i.e. Rindler observer), there can be demonstrated that the equivalent mass of the packet is the inertial mass. In our scenario, the waves and of the wave packets are depicted by the strain induced/produced in the medium. The properties of the waves, of the wave packet and, generally, of the perturbations in a material medium suggest the existence of an acoustic world. The acoustic world has mechanical and thermodynamical properties. The perturbations that are generated and propagated in the medium are correlated by means of acoustic waves with maximum speed. The observers of this world of disturbances (namely the acoustic world) have senses that are based on the perception of mechanical waves (disturbance of any kind) and apparatus for detecting and acqui...

  12. Wave propagation in two-dimensional viscoelastic metamaterials

    Wang, Yan-Feng; Wang, Yue-Sheng; Laude, Vincent

    2015-09-01

    Propagation of elastic waves in acoustic metamaterials based on locally resonant viscoelastic phononic crystals is discussed. A variational formulation of the complex band structure for in-plane polarized waves is proposed and used to formulate a finite element model. Two different types of locally resonant band gaps are found for quasilongitudinal and quasishear waves, with distinct features in terms of complex bands and transmission bandwidth. The influence of viscosity on the complex band structure, transmission properties, and effective dynamic mass density of two-dimensional locally resonant metamaterials is further investigated. It is found that bands that were degenerate in the elastic case are separated when viscosity is introduced, and that sharp corners at high symmetry points become rounded. Transmission is generally worsened in passing bands, while it is enhanced inside locally resonant band gaps, contrary to what was observed previously for Bragg band gaps. All changes in the complex band structure and transmission spectra are solely due to the dispersive and dissipative effects of viscosity. It is also found that the negative mass density property may also disappear when viscosity is introduced. These results are relevant to practical applications of elastic and viscoelastic metamaterials.

  13. Wave propagation in a dynamic system of soft granular materials.

    Harada, Shusaku; Takagi, Shu; Matsumoto, Yoichiro

    2003-06-01

    The wave propagation in a dynamic system of soft elastic granules is investigated theoretically and numerically. The perturbation theory for simple fluids is applied to the elastic granular system in order to relate the elastic properties of individual particles with the "thermodynamic" quantities of the system. The properties of a piston-driven shock are derived from the obtained thermodynamic relations and the Rankine-Hugoniot relations. The discrete particle simulation of a piston-driven shock wave in a granular system is performed by the discrete element method. From theoretical and numerical results, the effect of the elastic properties of a particle on shock properties is shown quantitatively. Owing to the finite duration of the interparticle contact, the compressibility factor of the elastic granular system decreases in comparison with that of the hard-sphere system. In addition, the relation between the internal energy and the granular temperature changes due to the energy preserved with the elastic deformation of the particle. Consequently, the shock properties in soft particles are considerably different from those in the hard-sphere system. We also show the theoretical prediction of the speed of sound in soft particles and discuss the effect of the elasticity on an acoustic wave. PMID:16241219

  14. Comparison of several numerical methods in one-dimensional discontinous elastic wave propagation

    Kolman, Radek; Berezovski, A.; Cho, S.S.; Kopačka, Ján; Gabriel, Dušan; Tamm, K.; Plešek, Jiří; Park, K.C.

    Tallinn : Institute of Cybernetics at Tallinn University of Technology, 2015 - (Berezovski, A.; Tamm, K.; Peets, T.), s. 89-92 ISBN 978-9949-430-96-3. [Nordic Seminar on Computational Mechanics /28./. Tallinn (EE), 22.10.2015-23.10.2015] R&D Projects: GA ČR(CZ) GAP101/12/2315; GA TA ČR(CZ) TH01010772 Institutional support: RVO:61388998 Keywords : elastic wave propagation * stress discontinuity and jumps * numerical method in wave propagation * dispersion * spurious oscillations Subject RIV: BI - Acoustics http://www.ioc.ee/nscm28/files/Proceedings_of_NSCM28.pdf

  15. An investigation into Voigt wave propagation for optical sensing

    Mackay, Tom G.

    2013-09-01

    In the nonsingular case of optical propagation in a linear, homogeneous, anisotropic, dielectric material, two independent plane waves, with orthogonal polarizations and different phase speeds, can propagate in a given direction. However, in certain dissipative biaxial materials there are particular directions along which these two waves coalesce to form a single plane wave. This coalescent Voigt wave represents the singular case. Most conspicuously, the amplitude of Voigt waves are linearly dependent upon propagation direction. A porous nanostructured thin film which supports Voigt wave propagation was investigated, with a view to possible optical sensing applications. The directions along which Voigt waves propagate can be highly sensitive to the refractive index of a fluid which infiltrates this porous material. Indeed, in our theoretical studies sensitivities which compare favourably to those of surface-plasmon-polariton-based optical sensors were found.

  16. Mesospheric, Thermospheric, and Ionospheric Responses to Acoustic and Gravity Waves Generated by Transient Forcing

    Snively, J. B.; Zettergren, M. D.

    2014-12-01

    Strong acoustic waves with periods ~1-4 minutes have been confirmed to perturb the ionosphere following their generation by earthquakes [e.g., Garcia et al., GRL, 40(5), 2013] and volcanic eruption events [e.g., Heki, GRL, 33, L14303, 2006]. Clear acoustic and gravity wave signatures have also been reported in ionospheric data above strong tropospheric convection [Nishioka, GRL, 40(21), 2013], and prior modeling results suggest that convectively-generated acoustic waves with ~3-4 minute periods are readily detectable above their sources in TEC [Zettergren and Snively, GRL, 40(20), 2013]. These observations have provided quantitative insight into the coupling of processes occurring near Earth's surface with the upper atmosphere and ionosphere over short time-scales. Here, we investigate acoustic waves and short-period gravity waves generated by sources near ground level, and the observable responses of the mesosphere, lower-thermosphere, and ionosphere (MLTI) systems. Numerical simulations are performed using a nonlinear, compressible, atmospheric dynamics model, in cylindrically-axisymmetric coordinates, to investigate wave generation, upward propagation, steepening, and dissipation. Acoustic waves may produce observable signatures in the mesospheric hydroxyl airglow layer [e.g., Snively, GRL, 40(17), 2013], and can strongly perturb the lower-thermosphere and E- and F-region ionosphere, prior to the arrival of simultaneously-generated gravity waves. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for mid and low latitudes using a 2D dipole magnetic field coordinate system [Zettergren and Snively, GRL, 40(20), 2013], we investigate its response to realistic acoustic wave perturbations. In particular, we demonstrate that the MLT and ionospheric responses are significantly and nonlinearly determined by the acoustic wave source geometry, spectrum, and amplitude, in addition to the local ambient state of the

  17. Experimental and numerical studies on standing surface acoustic wave microfluidics.

    Mao, Zhangming; Xie, Yuliang; Guo, Feng; Ren, Liqiang; Huang, Po-Hsun; Chen, Yuchao; Rufo, Joseph; Costanzo, Francesco; Huang, Tony Jun

    2016-02-01

    Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW microfluidic model based on the basic theory in acoustophoresis and our previous modelling strategy to predict the acoustophoresis of microparticles in SSAW microfluidics. This 2D SSAW microfluidic model considers the effects of boundary vibrations, channel materials, and channel dimensions on the acoustic propagation; as an experimental validation, the acoustophoresis of microparticles under continuous flow through narrow channels made of PDMS and silicon was studied. The experimentally observed motion of the microparticles matched well with the numerical predictions, while the 1D HSW model failed to predict many of the experimental observations. Particularly, the 1D HSW model cannot account for particle aggregation on the sidewall in PDMS channels, which is well explained by our 2D SSAW microfluidic model. Our model can be used for device design and optimization in SSAW microfluidics. PMID:26698361

  18. Acoustic phonon propagation in ultra-thin Si membranes under biaxial stress field

    We report on stress induced changes in the dispersion relations of acoustic phonons propagating in 27 nm thick single crystalline Si membranes. The static tensile stress (up to 0.3 GPa) acting on the Si membranes was achieved using an additional strain compensating silicon nitride frame. Dispersion relations of thermally activated hypersonic phonons were measured by means of Brillouin light scattering spectroscopy. The theory of Lamb wave propagation is developed for anisotropic materials subjected to an external static stress field. The dispersion relations were calculated using the elastic continuum approximation and taking into account the acousto-elastic effect. We find an excellent agreement between the theoretical and the experimental dispersion relations. (paper)

  19. Obliquely propagating cnoidal waves in a magnetized dusty plasma with variable dust charge

    We have studied obliquely propagating dust-acoustic nonlinear periodic waves, namely, dust-acoustic cnoidal waves, in a magnetized dusty plasma consisting of electrons, ions, and dust grains with variable dust charge. Using reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, we have derived Korteweg-de Vries (KdV) equation for the plasma. It is found that the contribution to the dispersion due to the deviation from plasma approximation is dominant for small angles of obliqueness, while for large angles of obliqueness, the dispersion due to magnetic force becomes important. The cnoidal wave solution of the KdV equation is obtained. It is found that the frequency of the cnoidal wave depends on its amplitude. The effects of the magnetic field, the angle of obliqueness, the density of electrons, the dust-charge variation and the ion-temperature on the characteristics of the dust-acoustic cnoidal wave are also discussed. It is found that in the limiting case the cnoidal wave solution reduces to dust-acoustic soliton solution.

  20. Ion acoustic waves in multi-species plasmas

    This thesis is concerned with the propagation of small amplitude ion acoustic waves through plasmas consisting of electrons and two species of ions, each with a Maxwellian velocity distribution function. The dispersion relation, derived from the Vlasov and Poisson equations, can easily be solved by numerical methods. The thesis is divided into two parts: 1. Stationary ions: when the average velocities of all the species are zero, the waves propagate in two different ways depending on electron-to-ion temperature ratio Theta, heavy-to-light ion mass ratio M, and the light ion concentation f. Either the principal mode in two different ways of the pure heavy ion plasma can be traced continuously to the principal mode of the light ion plasma as the proportion of light ions is steadily increased, or it becomes unobservable due to damping, while a second wave appears and develops into the principal light ion mode. It is shown that critical values of f and Theta governing this behaviour are associated with certain saddle points in the dielectric function. 2. Ion beams: If a mixture of ions is electrostatically accelerated, the two species assume different velocities and an instability may develop. The dependence of marginal stability on Theta, M and f and accelerating voltage E is investigated numerically. The unstable mode may be linked to the principal slow mode of the light ion beam. Higher order mode behaviour is also investigated, and the angular dependence of the instability in three dimensions is discussed. In both cases, a degeneracy appears in the dispersion relation at critical values of parameters. The excitation level of the waves is then very large. This phenomenon is interpreted as a resonance between the two species supporting the wave

  1. Nonlinear interaction of kinetic Alfvén waves and ion acoustic waves in coronal loops

    Sharma, Prachi; Yadav, Nitin; Sharma, R. P.

    2016-05-01

    Over the years, coronal heating has been the most fascinating question among the scientific community. In the present article, a heating mechanism has been proposed based on the wave-wave interaction. Under this wave-wave interaction, the high frequency kinetic Alfvén wave interacts with the low frequency ion acoustic wave. These waves are three dimensionally propagating and nonlinearly coupled through ponderomotive nonlinearity. A numerical code based on pseudo-spectral technique has been developed for solving these normalized dynamical equations. Localization of kinetic Alfvén wave field has been examined, and magnetic power spectrum has also been analyzed which shows the cascading of energy to higher wavenumbers, and this cascading has been found to have Kolmogorov scaling, i.e., k-5 /3 . A breakpoint appears after Kolmogorov scaling and next to this spectral break; a steeper scaling has been obtained. The presented nonlinear interaction for coronal loops plasmas is suggested to generate turbulent spectrum having Kolmogorov scaling in the inertial range and steepened scaling in the dissipation range. Since Kolmogorov turbulence is considered as the main source for coronal heating; therefore, the suggested mechanism will be a useful tool to understand the mystery of coronal loop heating through Kolmogorov turbulence and dissipation.

  2. Propagation characteristics of electromagnetic waves along a dense plasma filament

    Nowakowska, H.; Zakrzewski, Z. [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Moisan, M. [Departement de Physique, Universite de Montreal, Montreal, PQ (Canada)

    2001-05-21

    The characteristics of electromagnetic waves propagating along dense plasma filaments, as encountered in atmospheric pressure discharges, are examined in the microwave frequency range; they turn out to be surface waves. Results of numerical calculations of the dependence of the phase and attenuation coefficients on the plasma parameters are presented. In the limit of large electron densities, this guided wave is akin to a Sommerfeld wave and the propagation can be described in an analytical form. (author)

  3. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    S. S. Ghosh

    2004-01-01

    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  4. Mathematical problems in wave propagation theory

    1970-01-01

    The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc­ tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc­ tions of the Laplace operator from the exact solution for the surf...

  5. Effect of Resolution on Propagating Detonation Wave

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  6. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes

  7. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  8. Measurement of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials

    Chao, G; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the excitation of the surface modes. A fast Fourier transform-Prony-spectral ratio method is implemented to transform the data from the time-space domain to the frequency-wave-number domain. Frequency-de...

  9. Theoretical mass sensitivity of Love wave and layer guided acoustic plate mode sensors

    McHale, Glen; Newton, Michael; Martin, Fabrice

    2002-01-01

    A model for the mass sensitivity of Love wave and layer guided shear horizontal acoustic plate mode (SH–APM) sensors is developed by considering the propagation of shear horizontally polarized acoustic waves in a three layer system. A dispersion equation is derived for this three layer system and this is shown to contain the dispersion equation for the two layer system of the substrate and the guiding layer plus a term involving the third layer, which is regarded as a perturbing mass layer. T...

  10. X33 cut quartz for temperature compensated SAW (Surface Acoustic Wave) devices

    Webster, Richard T.

    1986-07-01

    An X-cut, 33.44 degree quartz crystal for propagating surface acoustic waves with a temperature stability in the order of - 0.0209 ppm/sq.cm. is described. The crystal orientation requires only a single rotation (33.44 degrees) from the crystal axes. This orientation is substantially simpler than previously reported cuts with comparable temperature stability which typically require three rotations. The X-cut orientation has a surface acoustic wave (SAW) velocity of 3175 m/sec, an electromechanical coupling of 0.0004, and a power flow angle of 2.7 degrees.

  11. Mechanisms of Ignition by Transient Energy Deposition: Regimes of Combustion Waves Propagation

    Kiverin, Alexey D; Ivanov, Mikhail F; Liberman, Michael A

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source and the size of the hot spot. The main parameters which define regimes of the combustion waves facilitated by the transient deposition of thermal energy are: acoustic timescale, duration of the energy deposition, ignition time scale and size of the hot spot. The interplay between these parameters specifies the role of gasdynamical processes, the formation and steepness of the temperature gradient and speed of the spontaneous wave. The obtained results show how ignition of one or another regime of combustion wave depends on the value of energy, rate of the energy deposition and size of the hot spot, which is import...

  12. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.

  13. Low-Frequency Acoustic Signals Propagation in Buried Pipelines

    Ovchinnikov, A. L.; Lapshin, B. M.

    2016-01-01

    The article deals with the issues concerning acoustic signals propagation in the large-diameter oil pipelines caused by mechanical action on the pipe body. Various mechanisms of signals attenuation are discussed. It is shown that the calculation of the attenuation caused only by internal energy loss, i.e, the presence of viscosity, thermal conductivity and liquid pipeline wall friction lead to low results. The results of experimental studies, carried out using the existing pipeline with a diameter of 1200 mm. are shown. It is experimentally proved that the main mechanism of signal attenuation is the energy emission into the environment. The numerical values of attenuation coefficients that are 0,14- 0.18 dB/m for the pipeline of 1200 mm in diameter, in the frequency range from 50 Hz to 500 Hz, are determined.

  14. Mechanism of an acoustic wave impact on steel during solidification

    K. Nowacki; P. Musiał; T. Lis

    2013-01-01

    Acoustic steel processing in an ingot mould may be the final stage in the process of quality improvement of a steel ingot. The impact of radiation and cavitation pressure as well as the phenomena related to the acoustic wave being emitted and delivered to liquid steel affect various aspects including the internal structure fragmentation, rigidity or density of steel. The article provides an analysis of the mechanism of impact of physical phenomena caused by an acoustic wave affecting the qual...

  15. Effect of the streamed negative ions on dust acoustic waves

    The propagation of streaming negative ions in the dust acoustic waves (DAWs) is investigated, including nonlinear effects such as dust charge fluctuation, dust temperature, and the negative ions. The streaming velocity of the negative ions played an essential and effective role in the DAWs characteristics. The dust charge fluctuation shows a remarkable decrease with the negative ions concentration decrement. Increasing of negative ions temperature causes an increase of the dust charge for different ratios of streaming velocity to thermal velocity (υ). Also, both of the amplitude and the width of the soliton solutions have shown strong dependence on υ as well as on the negative ions concentration. The results of this study will be useful for a better understanding of crystallization in dust plasma, especially phase transition governed from fluid state to solid state, and in a variety of modern technology applications such as fabrication of the semiconductor. (author)

  16. Investigation of surface acoustic waves in laser shock peened metals

    Ling Yuan; Gang Yan; Zhonghua Shen; Hangwei Xu; Xiaowu Ni; Jian Lu

    2008-01-01

    Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.

  17. Multilayer-graphene-based amplifier of surface acoustic waves

    The amplification of surface acoustic waves (SAWs) by a multilayer graphene (MLG)-based amplifier is studied. The conductivity of massless carriers (electrons or holes) in graphene in an external drift electric field is calculated using Boltzmann’s equation. At some carrier drift velocities, the real part of the variable conductivity becomes negative and MLG can be employed in SAW amplifiers. Amplification of Blustein’s and Rayleigh’s SAWs in CdS, a piezoelectric hexagonal crystal of the symmetry group C6v, is considered. The corresponding equations for SAW propagation in the device are derived and can be applied to other substrate crystals of the same symmetry. The results of the paper indicate that MLG can be considered as a perspective material for SAW amplification and related applications

  18. Surface acoustic waves in piezoelectrics with HTSC resonance film structure

    Analysis of surface acoustic wave (SAW) propagation in a periodic film structure of granulated high-temperature superconductor formed on the piezoelectric surface, is conducted. A number of notable features in the SAW characteristics is revealed. SAW parameter dependences on frequency and temperature can be of a resonance character in the region of N-S transition, in a zone, where Josephson currents on intergranular contacts of a superconductor prevail. Evaluations have shown that the resonance peak of attenuation can achieve the value of 100 decibel/cm, and SAW velocity difference in the region of resonance ΔV/V can exceed 10-2. A sharp temperature dependence of these parameters allows one to use the effects to construct bolometric acoustoelectron photoreceivers and other sensors. 9 refs.; 5 figs

  19. Meshless RBF based pseudospectral solution of acoustic wave equation

    Mishra, Pankaj K

    2015-01-01

    Chebyshev pseudospectral (PS) methods are reported to provide highly accurate solution using polynomial approximation. Use of polynomial basis functions in PS algorithms limits the formulation to univariate systems constraining it to tensor product grids for multi-dimensions. Recent studies have shown that replacing the polynomial by radial basis functions in pseudospectral method (RBF-PS) has the advantage of using irregular grids for multivariate systems. A RBF-PS algorithm has been presented here for the numerical solution of inhomogeneous Helmholtz's equation using Gaussian RBF for derivative approximation. Efficacy of RBF approximated derivatives has been checked through error analysis comparison with PS method. Comparative study of PS, RBF-PS and finite difference approach for the solution of a linear boundary value problem has been performed. Finally, a typical frequency domain acoustic wave propagation problem has been solved using Dirichlet boundary condition and a point source. The algorithm present...

  20. Multilayer-graphene-based amplifier of surface acoustic waves

    Stanislav O. Yurchenko

    2015-05-01

    Full Text Available The amplification of surface acoustic waves (SAWs by a multilayer graphene (MLG-based amplifier is studied. The conductivity of massless carriers (electrons or holes in graphene in an external drift electric field is calculated using Boltzmann’s equation. At some carrier drift velocities, the real part of the variable conductivity becomes negative and MLG can be employed in SAW amplifiers. Amplification of Blustein’s and Rayleigh’s SAWs in CdS, a piezoelectric hexagonal crystal of the symmetry group C6v, is considered. The corresponding equations for SAW propagation in the device are derived and can be applied to other substrate crystals of the same symmetry. The results of the paper indicate that MLG can be considered as a perspective material for SAW amplification and related applications.

  1. Multilayer-graphene-based amplifier of surface acoustic waves

    Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru; Komarov, Kirill A. [Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Pustovoit, Vladislav I. [Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-15

    The amplification of surface acoustic waves (SAWs) by a multilayer graphene (MLG)-based amplifier is studied. The conductivity of massless carriers (electrons or holes) in graphene in an external drift electric field is calculated using Boltzmann’s equation. At some carrier drift velocities, the real part of the variable conductivity becomes negative and MLG can be employed in SAW amplifiers. Amplification of Blustein’s and Rayleigh’s SAWs in CdS, a piezoelectric hexagonal crystal of the symmetry group C{sub 6v}, is considered. The corresponding equations for SAW propagation in the device are derived and can be applied to other substrate crystals of the same symmetry. The results of the paper indicate that MLG can be considered as a perspective material for SAW amplification and related applications.

  2. Numerical simulation of wave propagation and snow failure from explosive loading

    Sidler, Rolf; Dual, Jürg; Schweizer, Jürg

    2016-01-01

    Avalanche control by explosion is a widely applied method to minimize the avalanche risk to infrastructure in snow-covered mountain areas. However, the mechanisms involved leading from an explosion to the release of an avalanche are not well understood. Here we test the hypothesis that weak layers fail due to the stress caused by propagating acoustic waves. The underlying mechanism is that the stress induced by the acoustic waves exceeds the strength of the snow layers. We compare field measurements to a numerical simulation of acoustic wave propagation in a porous material. The simulation consists of an acoustic domain for the air above the snowpack and a poroelastic domain for the dry snowpack. The two domains are connected by a wave field decomposition and open pore boundary conditions. Empirical relations are used to derive a porous model of the snowpack from density profiles of the field experiment. Biot's equations are solved in the poroelastic domain to obtain simulated accelerations in the snowpack an...

  3. On the effects of small-scale variability on acoustic propagation in Fram Strait: The tomography forward problem.

    Dushaw, Brian D; Sagen, Hanne; Beszczynska-Möller, Agnieszka

    2016-08-01

    Acoustic tomography systems have been deployed in Fram Strait over the past decade to complement existing observing systems there. The observed acoustic arrival patterns are unusual, however, consisting of a single, broad arrival pulse, with no discernible repeating patterns or individual ray arrivals. The nature of these arrivals is caused by vigorous acoustic scattering from the small-scale processes that dominate ocean variability in Fram Strait. Simple models for internal wave and mesoscale variability were constructed and tailored to match the variability observed by moored thermisters in Fram Strait. The internal wave contribution to variability is weak. Acoustic propagation through a simulated ocean consisting of a climatological sound speed plus mesoscale and internal wave scintillations obtains arrival patterns that match the characteristics of those observed, i.e., pulse width and travel time variation. The scintillations cause a proliferation of acoustic ray paths, however, reminiscent of "ray chaos." This understanding of the acoustic forward problem is prerequisite to designing an inverse scheme for estimating temperature from the observed travel times. PMID:27586755

  4. Surface wave propagation characteristics in atmospheric pressure plasma column

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  5. Surface wave propagation characteristics in atmospheric pressure plasma column

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2007-04-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  6. Surface wave propagation characteristics in atmospheric pressure plasma column

    Pencheva, M [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164 Sofia (Bulgaria); Benova, E [Department for Language Teaching and International Students, Sofia University, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria); Zhelyazkov, I [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164 Sofia (Bulgaria)

    2007-04-15

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency ({nu}/{omega}) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption {nu}/{omega} = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary {nu}/{omega}. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  7. Analysis of wave propagation in fluid-filled viscoelastic pipes

    Prek, Matjaž

    2015-01-01

    This paper describes the investigation of the propagation wave speed and wave attenuation in viscoelastic fluid-filled pipes. Relatively predictable for metal pipes, these are largely unknown for plastic pipes, since they depend onthe pipe wall properties. Wave number measurements, encompassing both wave speed and wave attenuation, were carried out on different water-filled plastic pipes using three hydrophones. The frequency-dependent wave speed and attenuation were calculated from the trans...

  8. Models for seismic wave propagation in periodically layered porous media

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation no

  9. Transient electromagnetic wave propagation in laterally discontinuous, dispersive media

    Egorov, Igor; Kristensson, Gerhard; Weston, Vaughan H

    1996-01-01

    This paper concerns propagation of transient electromagnetic waves in laterally discontinuous dispersive media. The approach, used here, employs a component decomposition of all fields. Specifically, the propagation operator that maps a transverse field on one plane to another plane is specified. Expansion of this mapping near the wave front determines the precursor or forerunner of the problem.

  10. Topology Optimization in wave-propagation and flow problems

    Sigmund, Ole; Jensen, Jakob Søndergaard; Gersborg-Hansen, A.; Haber, R.

    We discuss recent extensions of the topology optimization method to wave-propagation and flow problems. More specifically, we optimize material distribution in scalar wave propagation problems modelled by Helmholtz equation. Moreover, we investigate the influence of the inertia term on the optima...

  11. Sound wave propagation in weakly polydisperse granular materials

    Mouraille, O.; Luding, S.

    2008-01-01

    Dynamic simulations of wave propagation are performed in dense granular media with a narrow polydisperse size-distribution and a linear contact-force law. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves, is examined. A size variation compa

  12. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  13. Numerical simulation of elastic wave propagation based on the transversely isotropic BISQ equation

    杨宽德; 杨顶辉; 王书强

    2002-01-01

    The Biot and Squirt-flow are the two most important mechanisms of fluid flow in the porous medium with fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, dispersion and attenuation of elastic waves in the porous medium are widely investigated in recent years. However, we have not read any reports on numerical simulation based on the BISQ equation. In this paper, following the BISQ equation, elastic wave propagation in the transversely isotropic porous medium filled with fluids is simulated by the staggered grid method for different frequency and phase boundary cases and the two-layer medium. And propagating characteristics of seismic and acoustic waves and various phenomena occured in the propagating process are investigated when the two mechanisms are considered simultaneously.

  14. Micro-seismic wave's propagation law and its numerical simulation

    PANG Huan-dong; JIANG Fu-xing; LIN Pei-lan

    2006-01-01

    Deduced the propagation rule of longitudinal and transverse wave. On the basis of this, propagation rules in attenuated visco-elastic media and varied Lame coefficient were put forward as well. The subsequent numerical analysis found that in a small scope longitudinal and transverse wave could be considered as homogeneously propagating when faultages and joints were not taken into account. The existence of lane hindered the wave's propagation, and it made the velocity gradient change in a local vicinity area.Therefore velocity varied in different direction.

  15. Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2008-01-01

    The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.

  16. BEM Analysis of Wave Propagation in a Water-Filled Borehole in an Anisotropic Solid

    2007-01-01

    This paper describes a time-domain boundary element method developed to analyze the interactions of acoustic and elastic waves near the interfaces between water and an anisotropic elastic solid. Two models are analyzed with one being the interface between two half spaces of fluid and solid and the other being a fluid region sandwiched by half space domains of anisotropic elastic solids. Both monopole and dipole point sources are used to generate an initial pressure wave in the fluid. Some snapshots of the transient wave behavior near the fluid-solid interfaces are given. The effect of the anisotropy in the solid on the pressure waveforms in the fluid is discussed. The numerical results allow detailed arrival identification and interpretation of acoustic and elastic waves propagating along the fluid-solid interfaces.

  17. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-charge wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.

  18. Applications of velocity potential function to acoustic duct propagation and radiation from inlets using finite element theory

    Baumeister, K. J.; Majjigi, R. K.

    1979-01-01

    A finite element velocity potential program has been developed to study acoustic wave propagation in complex geometries. For irrotational flows, relatively low sound frequencies, and plane wave input, the finite element solutions show significant effects of inlet curvature and flow gradients on the attenuation of a given acoustic liner in a realistic variable area turbofan inlet. In addition, as shown in the paper, the velocity potential approach can not be used to estimate the effects of rotational flow on acoustic propagation since the potential acoustic disturbances propagate at the speed of the media in sheared flow. Approaches are discussed that are being considered for extending the finite element solution to include the far field as well as the internal portion of the duct. A new matrix partitioning approach is presented that can be incorporated in previously developed programs to allow the finite element calculation to be marched into the far field. The partitioning approach provides a large reduction in computer storage and running times.

  19. Anisotropic metamaterials for full control of acoustic waves.

    Christensen, Johan; García de Abajo, F Javier

    2012-03-23

    We study a class of acoustic metamaterials formed by layers of perforated plates and producing negative refraction and backward propagation of sound. A slab of such material is shown to act as a perfect acoustic lens, yielding images with subwavelength resolution over large distances. Our study constitutes a nontrivial extension of similar concepts from optics to acoustics, capable of sustaining negative refraction over extended angular ranges, with potential application to enhanced imaging for medical and detection purposes, acoustofluidics, and sonochemistry. PMID:22540586

  20. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  1. Vector Wave Propagation Method : Ein Beitrag zum elektromagnetischen Optikrechnen

    Fertig, Matthias

    2011-01-01

    Based on the Rayleigh-Sommerfeld diffraction integral and the scalarWave Propagation Method (WPM), the VectorWave Propagation Method (VWPM) is introduced in the thesis. It provides a full vectorial and three-dimensional treatment of electromagnetic fields over the full range of spatial frequencies. A model for evanescent modes from [1] is utilized and eligible configurations of the complex propagation vector are identified to calculate total internal reflection, evanescent coupling and ...

  2. Analytical and numerical methods for wave propagation in fluid media

    Murawski, K

    2002-01-01

    This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance.Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.

  3. Raising Photoemission Efficiency with Surface Acoustic Waves

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  4. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials. PMID:27106317

  5. Subspace model identification of guided wave propagation in metallic plates

    In this study, a data-driven subspace system identification approach is proposed for modeling guided wave propagation in plate media. In the data-driven approach, the subspace system identification estimates a mathematical model fitted to experimentally measured data, but the black-box model identified captures the dynamics of wave propagation. To demonstrate the versatility of the black-box model, wave motions in various shapes of aluminum plates are investigated in the study. In addition, a waveform predictor and temperature change indicator are proposed as applications of the black-box models, to further promote the modeling approach to guided wave propagation. (paper)

  6. On the propagation of a cylindrical MHD blast wave

    The propagation of a cylindrical MHD shock wave, during the staqe when the wave is still strong (in the hydrodynamical sense) has been studied. The variations of the flow and field parameters at the rear of the wave are determined in terms of its radius R and the time derivatives of R. The dependence of the speed of propagation on the explosive energy, the radius of the wave and the magnetic field is determined and some interesting inferences are drawn. The law of propagation obtained by Lin (1954) has been recovered in the limit of vanishing magnetic field. (auth.)

  7. Ion-acoustic cnoidal waves in a quantum plasma

    Mahmood, S. [Physics Institute, Federal University of Rio Grande do Sul, RS, Porto Alegre 915051-970 (Brazil); Theoretical Physics Division (TPD), PINSTECH P.O. Nilore, Islamabad 44000 (Pakistan); Haas, F. [Physics Institute, Federal University of Rio Grande do Sul, RS, Porto Alegre 915051-970 (Brazil)

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  8. Ion-acoustic cnoidal waves in a quantum plasma

    Mahmood, Shahzad

    2016-01-01

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter $H_{e}$ which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  9. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    Graczykowski, B., E-mail: bartlomiej.graczykowski@icn.cat; Alzina, F.; Gomis-Bresco, J. [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Sotomayor Torres, C. M. [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); ICREA—Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain)

    2016-01-14

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.

  10. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe

  11. Anomalous sound propagation due to the horizontal variation of seabed acoustic properties

    LI; Zhenglin; ZHANG; Renhe; PENG; Zhaohui; LI; Xilu

    2004-01-01

    The sound propagation in shallow water is greatly influenced by the acoustic properties of seabed. An anomalous transmission loss was observed in an experiment, and a range dependent bottom model with horizontal variation of seabed acoustic property is proposed and could be well used to explain the anomalous phenomena. It is shown that the horizontal variation of bottom properties has a great effect on underwater sound propagation, and it should be given much attention in sound propagation and geoacoustic inversion problems.

  12. Local helioseismic and spectroscopic analyses of interactions between acoustic waves and a sunspot

    Rajaguru, S P; Sankarasubramanian, K; Couvidat, S; 10.1088/2041-8205/721/2/L86

    2010-01-01

    Using a high cadence imaging spectropolarimetric observation of a sunspot and its surroundings in magnetically sensitive (FeI 6173 A) and insensitive (FeI 7090 A) upper photospheric absorption lines, we map the instantaneous wave phases and helioseismic travel times as a function of observation height and inclination of magnetic field to the vertical. We confirm the magnetic inclination angle dependent transmission of incident acoustic waves into upward propagating waves, and derive (1) proof that helioseismic travel times receive direction dependent contributions from such waves and hence cause errors in conventional flow inferences, (2) evidences for acoustic wave sources beneath the umbral photosphere, and (3) significant differences in travel times measured from the chosen magnetically sensitive and insensitive spectral lines.

  13. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  14. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    Lay, Erin H.; Shao, Xuan-Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-01

    Acoustic waves with periods of 2-4 min and gravity waves with periods of 6-16 min have been detected at ionospheric heights (250-350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May-July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  15. On the rogue waves propagation in non-Maxwellian complex space plasmas

    The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas

  16. Subharmonics and noise excitation in transmission of acoustic wave through unconsolidated granular medium

    First laboratory-scale experimental observation of both subharmonics excitation and significant increase in noise level caused by propagation of the acoustic wave in unconsolidated granular material is reported. The bifurcation phenomenon, taking place above a critical level of acoustic excitation (and opening the subharmonics route to chaos) is attributed to the interaction of acoustic wave with distributed system of highly nonlinear inter-grain contacts. The estimates demonstrated that these are weak contacts (loaded at least two orders of magnitude weaker than in average) that might be responsible for the observed nonlinear effects. The additional intermittent contacts created by the acoustic wave (which are open in the absence of acoustic loading) can also contribute. In the clapping (tapping) regime, each of these contacts individually is similar to an impact oscillator, for which the scenario of period doubling cascade and the transition to chaotic behavior has been predicted theoretically and observed experimentally earlier. The experiments confirm that the nonlinear interactions of acoustic waves in granular assemblages are highly sensitive to the fraction of weakly loaded (and unloaded) contacts, information on which is difficult to access by any other experimental methods

  17. The Propagation of Circularly Polarized Waves in Quantum Plasma

    Rehab Albrulosy; Bahaa F. Mohamed

    2013-01-01

    The quantum effects on the propagation circularly polarized waves have been investigated in electron magnetized quantum plasmas. We obtain the dispersion equations of the propagation of circularly polarized laser beam through cold plasma. The results show that the laser can be propagated due to the quantum effects which enhance the propagation phase velocity. For this purpose, the quantum hydrodynamic (QHD) equations with magnetic field and Maxwell’s equations system is used to derive these ...

  18. Propagation of Axially Symmetric Detonation Waves

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  19. The influence of the Mindlin's boundary conditions on wave propagation in thick anisotropic plate

    Červená, Olga; Hora, Petr

    Praha: Institute of Thermomechanics AS CR, v. v. i., 2007 - (Zolotarev, I.), s. 29-30 ISBN 978-80-87012-06-2. [Engineering Mechanics 2007: national conference with international participation. Svratka (CZ), 14.05.2007-17.05.2007] R&D Projects: GA ČR GA101/06/1689 Institutional research plan: CEZ:AV0Z20760514 Keywords : wave propagation * dispersion curves * orthotropic plate Subject RIV: BI - Acoustics

  20. Component-wise partitioned explicit finite element method: Benchmark tests for linear wave propagation in solids

    Kolman, Radek; Cho, S.S.; Park, K.C.

    Atheny : National Technical University of Athens, 2015 - (Papadrakakis, M.; Papadopoulos, V.). C 620 ISBN 978-960-99994-7-2. [International Conference on Computational Method s in Structural Dynamics and Earthquake Engineering /5./. 25.05.2015-27.05.2015, Crete] R&D Projects: GA ČR(CZ) GAP101/12/2315; GA TA ČR(CZ) TH01010772 Institutional support: RVO:61388998 Keywords : wave propagation * spurious oscillations * finite element method Subject RIV: BI - Acoustics

  1. Component-wise partitioned explicit finite element method: Nonlinear wave propagation and dynamic contact problems

    Kolman, Radek; Cho, S.S.; Park, K.C.

    Atheny : National Technical University of Athens, 2015 - (Papadrakakis, M.; Papadopoulos, V.). C 619-619 ISBN 978-960-99994-7-2. [International Conference on Computational Method s in Structural Dynamics and Earthquake Engineering /5./. 25.05.2015-27.05.2015, Crete] R&D Projects: GA ČR(CZ) GAP101/12/2315; GA TA ČR(CZ) TH01010772 Institutional support: RVO:61388998 Keywords : wave propagation * spurious oscillations * finite element method Subject RIV: BI - Acoustics

  2. Component-wise partitioned finite element method for wave propagation and dynamic contact problems

    Kolman, Radek; Cho, S.S.; Červ, Jan; Park, K.C.

    Plzeň : University of West Bohemia, 2014 - (Adámek, V.). s. 55-56 ISBN 978-80-261-0429-2. [Computational Mechanics 2014 /30./. 03.11.2014-05.11.2014, Špičák] R&D Projects: GA ČR(CZ) GAP101/12/2315; GA ČR(CZ) GAP101/11/0288 Institutional support: RVO:61388998 Keywords : Stress wave propagation * Finite element method * Explicit time integrator Subject RIV: BI - Acoustics

  3. On an accurate explicit time integration algorithm for wave propagation problems in solids

    Kolman, Radek; Cho, S.S.; Park, K.C.

    Ostrava : Ústav geoniky AV ČR, 2014 - (Blaheta, R.; Starý, J.; Sysalová, D.). s. 58-58 ISBN 978-80-86407-47-0. [Modelling 2014. 02.06.2014-06.06.2014, Rožnov pod Radhoštěm] R&D Projects: GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : finite element method * wave propagation * spurious oscillations Subject RIV: BI - Acoustics

  4. A Schamel equation for ion acoustic waves in superthermal plasmas

    Williams, G., E-mail: gwilliams06@qub.ac.uk; Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Verheest, F. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Anowar, M. G. M. [Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400 (Bangladesh)

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  5. A kinetic approach to propagation and stability of detonation waves

    Pandolfi, Miriam; Monaco, Roberto

    2009-01-01

    The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine‐Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different over...

  6. AE source localization on the material with unknown elastic wave propagation velocity

    The ability to locate defects in materials is one of the major attractions of the acoustic emission technique. The standard method of planar source location is to place three or more transducers on the surface of a specimen and to triangulate the source position by using the differences in arrival times of the acoustic emission wave at the sensors. But the standard method have limited applications if the propagation velocity in the medium is riot known. In this paper, we propose a method for AE source localization on the material with unknown elastic wave propagation velocity. In this method, it is not needed to know the propagation velocity previously, that is, we can apply this method to arbitrary materials of which properties is not known exactly. We discuss the robustness of detecting AE source location algorithm according to the errors, and signal processing for measurement of the differences in arrival times of acoustic emission wave at the sensors. For performance evaluation of this algorithm, experiments performed using a lead break as the AE source on the surface of an aluminum plate.

  7. Statistical analysis of acoustic wave parameters near active regions

    Soares, M Cristina Rabello; Scherrer, Philip H

    2016-01-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyse the differences in the parameters in magnetically quiet regions nearby an active region (which we call `nearby regions'), compared with those of quiet regions at the same disc locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring diagram analysis of all active regions observed by HMI during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhancement (the `acoustic halo effect') is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes...

  8. Damping of an ion acoustic surface wave due to surface currents

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  9. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2016-08-01

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron and acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.

  10. Spatial damping of propagating sausage waves in coronal cylinders

    Guo, Ming-Zhe; Li, Bo; Xia, Li-Dong; Yu, Hui

    2015-01-01

    Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued longitudinal wavenumber $k$ at given real angular frequencies $\\omega$. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of $\\omega_{\\rm c}$, the critical angular frequency separating trapped from leaky waves. In contrast to the standing case, propagating sausage waves are allowed for $\\omega$ much lower than $\\omega_{\\rm c}$. However, while able to direct their energy upwards, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping ...

  11. Nonplanar dust acoustic solitary waves in a strongly coupled dusty plasma with superthermal ions

    El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 Egypt (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 Egypt (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia); El-Shamy, E. F., E-mail: emadel-shamy@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 Egypt (Egypt); Department of Physics, College of Science, King Khalid University, P.O. 9004 Abha (Saudi Arabia)

    2014-12-15

    The nonplanar amplitude modulation of dust acoustic (DA) envelope solitary waves in a strongly coupled dusty plasma (SCDP) has been investigated. By using a reductive perturbation technique, a modified nonlinear Schrödinger equation (NLSE) including the effects of geometry, polarization, and ion superthermality is derived. The modulational instability (MI) of the nonlinear DA wave envelopes is investigated in both planar and nonplanar geometries. There are two stable regions for the DA wave propagation strongly affected by polarization and ion superthermality. Moreover, it is found that the nonlinear DA waves in spherical geometry are the more structurally stable. The larger growth rate of the nonlinear DA MI is observed in the cylindrical geometry. The salient characteristics of the MI in the nonplanar geometries cannot be found in the planar one. The DA wave propagation and the NLSE solutions are investigated both analytically and numerically.

  12. Electro-acoustic solitary waves in dusty plasmas

    present a rigorous theoretical investigation of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] solitary waves in dusty plasmas. We employ the reductive perturbation method for small but finite amplitude solitary waves as well as the pseudo-potential approach for arbitrary amplitude ones. We also analyze the effects of non-planar geometry and dust charge fluctuations on both DIA and DA solitary waves, the effect of finite ion-temperature on DIA solitary waves, and the effects of dust-fluid temperature and non-isothermal ion distributions on DA solitary waves. It has been reported that these effects do not only significantly modify the basic features of DIA or DA solitary waves, but also introduce some important new features. The basic features and the underlying physics of DIA and DA solitary waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  13. Propagation of linear gravity waves in a relativistic atmosphere

    The propagation of gravity waves in the presence of massive stella winds is studied under the assumption of small departures from the equilibrium configuration. These waves exhibit singular properties at critical levels which act like valves so that waves may travel through these levels attenuated or amplified. The primary conclusion is that relativity increases the possibility of valve effect. (author). 4 refs

  14. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-01

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A0) either when using a symmetric (S0) or antisymmetric (A0) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  15. On the propagation of truncated localized waves in dispersive silica

    Salem, Mohamed

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  16. Electromagnetic Wave Propagation Models for Multiple-Diffraction Scenarios

    Mehmet Barış TABAKCIOĞLU

    2014-04-01

    Full Text Available Electromagnetic wave propagation models have been used for coverage estimation and field prediction at the receiver to make more reliable and efficient digital broadcasting systems. Propagation models can be classified into two groups as numerical and ray tracing based models. There is a tradeoff between computation time and accuracy of field prediction among electromagnetic wave propagation models. Although numerical models predict accurately, it requires more computation times. Ray tracing based models predicts the field strength less accurately with lower computation time. Many propagation models have been developed to provide optimum solution for accuracy and computation time

  17. Interaction of acoustic-gravity waves with an elastic shelf-break

    Tian, Miao; Kadri, Usama

    2016-04-01

    In contrast to surface gravity waves that induce flow field which decays exponentially with depth, acoustic-gravity waves oscillate throughout the water column. Their oscillatory profile exerts stresses to the ground which provides a natural explanation for the earth's microseism (Longuet-Higgins, 1950). This work is an extension of the shelf-break problem by Kadri and Stiassnie (2012) who considered the sea floor and the shelf-break to be rigid, and the elastic problem by Eyov et al. (2013) who illustrated the importance of the sea-floor elasticity. In this study we formulate and solve the two-dimensional problem of an incident acoustic-gravity wave mode propagating over an elastic wall and interacting with a shelf-break in a weakly compressible fluid. As the modes approach the shelf-break, part of the energy is reflected whereas the other part is transmitted. A mathematical model is formulated by matching particular solutions for each subregion of constant depth along vertical boundaries; the resulting matrix equation is then solved numerically. The physical properties of these waves are studied, and compared with those for waves over a rigid bottom. The present work broadens our knowledge of acoustic-gravity-waves propagation in realistic environment and can potentially benefit the early detection of tsunami, generated from landslides or submarine earthquakes. References Eyov E., Klar A., Kadri U. , Stiassnie M. 2013 Progressive waves in a compressible-ocean with an elastic bottom. Wave Motion 50, 929-939. Kadri, U., and M. Stiassnie, 2012 Acoustic-Gravity waves interacting with the shelf break. J. Geophys. Res. 117, C03035. Longuet-Higgins, M.S. 1950 A theory of the origin of microseisms. Philos. Trans. R. Soc. Lond. A 243, 1-35.

  18. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    Yihao Yang; Huaping Wang; Faxin Yu; Zhiwei Xu; Hongsheng Chen

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the re...

  19. Theoretical and Experimental Study on the Acoustic Wave Energy After the Nonlinear Interaction of Acoustic Waves in Aqueous Media

    兰朝凤; 李凤臣; 陈欢; 卢迪; 杨德森; 张梦

    2015-01-01

    Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves’ amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.

  20. Ionization wave propagation on a micro cavity plasma array

    Wollny, Alexander; Hemke, Torben; Gebhardt, Markus; Peter Brinkmann, Ralf; Mussenbrock, Thomas [Institute of Theoretical Electrical Engineering, Ruhr University Bochum, D-44780 Bochum (Germany); Boettner, Henrik; Winter, Joerg; Schulz-von der Gathen, Volker [Institute for Experimental Physics II, Ruhr University Bochum, D-44780 Bochum (Germany); Xiong, Zhongmin; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

    2011-10-03

    Microcavity plasma arrays of inverse pyramidal cavities fabricated on p-Si wafers act as localized dielectric barrier discharges. When operated at atmospheric pressure in argon and excited with high voltage at 10 kHz, a strong interaction between individual cavities is observed leading to wave-like optical emission propagating along the surface of the array. This phenomenon is numerically investigated. The computed ionization wave propagates with a speed of 5 km/s, which agrees well with experiments. The wave propagation is due to the sequential drift of electrons followed by drift of ions between cavities seeded by photoemission of electrons by the plasma in adjacent cavities.

  1. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  2. Finite-difference numerical modelling of gravitoacoustic wave propagation in a windy and attenuating atmosphere

    Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri

    2016-07-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3-D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale, we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2-D or 3-D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.

  3. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional calculus

    Pandey, Vikash

    2015-01-01

    An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that...

  4. Linking the viscous grain-shearing mechanism of wave propagation in marine sediments to fractional calculus

    Pandey, Vikash; Holm, Sverre

    2016-04-01

    An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials, but rather it can be justified from real physical process of grain-shearing as well.

  5. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  6. Analysis of guided wave propagation in a tapered composite panel

    Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw

    2015-03-01

    Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.

  7. Vertical elliptic operator for efficient wave propagation in TTI media

    Waheed, Umair bin

    2015-08-19

    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  8. Difference-frequency generation in nonlinear scattering of acoustic waves by a rigid sphere

    Silva, Glauber T

    2012-01-01

    In this paper, the partial-wave expansion method is applied to describe the difference-frequency pressure generated in a nonlinear scattering of two acoustic waves with an arbitrary wavefront by means of a rigid sphere. Particularly, the difference-frequency generation is analyzed in the nonlinear scattering with a spherical scatterer involving two intersecting plane waves in the following configurations: collinear, crossing at right angles, and counter-propagating. For the sake simplicity, the plane waves are assumed to be spatially located in a spherical region which diameter is smaller than the difference-frequency wavelength. Such arrangements can be experimentally accomplished in vibro-acoustography and nonlinear acoustic tomography techniques. It turns out to be that when the sphere radius is of the order of the primary wavelengths, and the downshift ratio (i.e. the ratio between the fundamental frequency and the difference-frequency) is larger than five, difference-frequency generation is mostly due to...

  9. Wave propagation in a magneto-electro- elastic plate

    2008-01-01

    The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by the standing wavenumber; there are many patterns for the physical property of the magneto-electro-elastic dielectric medium influencing the stress wave propagation. We proposed a self-adjoint method, by which the guided-wave restriction condition was derived. After the corresponding orthogonal sets were found, the analytic dispersion equa-tion was obtained. In the end, an example was presented. The dispersive spectrum, the group velocity curved face and the steady-state response curve of a mag-neto-electro-elastic plate were plotted. Then the wave propagations affected by the induced electric and magnetic fields were analyzed.

  10. Calculus of the uncertainty in acoustic field measurements: comparative study between the uncertainty propagation method and the distribution propagation method

    Navacerrada Saturio, Maria Angeles; Díaz Sanchidrián, César; Pedrero González, Antonio; Iglesias Martínez, Luis

    2008-01-01

    The new Spanish Regulation in Building Acoustic establishes values and limits for the different acoustic magnitudes whose fulfillment can be verify by means field measurements. In this sense, an essential aspect of a field measurement is to give the measured magnitude and the uncertainty associated to such a magnitude. In the calculus of the uncertainty it is very usual to follow the uncertainty propagation method as described in the Guide to the expression of Uncertainty in Measurements (GUM...

  11. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Xiong, Jichuan [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Xu, Xiaodong, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Glorieux, Christ, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Matsuda, Osamu [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Cheng, Liping [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  12. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz

  13. Modulation instability and ion-acoustic rogue waves in a strongly coupled collisional plasma with nonthermal nonextensive electrons

    Guo, Shimin; Mei, Liquan; He, Yaling; Li, Ying

    2016-02-01

    The nonlinear propagation of ion-acoustic waves is theoretically reported in a collisional plasma containing strongly coupled ions and nonthermal electrons featuring Tsallis distribution. For this purpose, the nonlinear integro-differential form of the generalized hydrodynamic model is used to investigate the strong-coupling effect. The modified complex Ginzburg-Landau equation with a linear dissipative term is derived for the potential wave amplitude in the hydrodynamic regime, and the modulation instability of ion-acoustic waves is examined. When the dissipative effect is neglected, the modified complex Ginzburg-Landau equation reduces to the nonlinear Schrödinger equation. Within the unstable region, two different types of second-order ion-acoustic rogue waves including single peak type and rogue wave triplets are discussed. The effect of the plasma parameters on the rogue waves is also presented.

  14. Finite volume schemes for dispersive wave propagation and runup

    Dutykh, Denys; Katsaounis, Theodoros; Mitsotakis, Dimitrios

    2010-01-01

    Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation a...

  15. Wave Propagation in Fluids Models and Numerical Techniques

    Guinot, Vincent

    2007-01-01

    This book presents the physical principles of wave propagation in fluid mechanics and hydraulics. The mathematical techniques that allow the behavior of the waves to be analyzed are presented, along with existing numerical methods for the simulation of wave propagation. Particular attention is paid to discontinuous flows, such as steep fronts and shock waves, and their mathematical treatment. A number of practical examples are taken from various areas fluid mechanics and hydraulics, such as contaminant transport, the motion of immiscible hydrocarbons in aquifers, river flow, pipe transients an

  16. On the Propagation and Interaction of Spherical Blast Waves

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  17. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  18. High-resolution finite-volume methods for acoustic waves in periodic and random media

    High-resolution numerical methods originally developed for shock capturing in the context of nonlinear conservation laws are found to be very useful for solving acoustics problems in rapidly varying heterogeneous media. These methods are based on solving Riemann problems at the interface between grid cells, which resolve waves into transmitted and reflected components at each interface. The wave-propagation method developed in R. J. LeVeque [J. Comput. Phys. 131, 327 endash 353 (1997)] and implemented in the CLAWPACK software package is tested on several acoustics problems with periodic or random media in one and two space dimensions. A new limiter function is presented for solving problems in a periodic medium where numerical instabilities are observed with standard limiters. copyright 1999 Acoustical Society of America.

  19. On generalized discrete PML optimized for propagative and evanescent waves

    Druskin, Vladimir; Guddati, Murthy; Hagstrom, Thomas

    2012-01-01

    We suggest a unified spectrally matched optimal grid approach for finite-difference and finite-element approximation of the PML. The new approach allows to combine optimal discrete absorption for both evanescent and propagative waves.

  20. Acoustic-Gravity Waves Interacting with a Rectangular Trench

    Usama Kadri

    2014-01-01

    A mathematical solution of the two-dimensional linear problem of an acoustic-gravity wave interacting with a rectangular trench, in a compressible ocean, is presented. Expressions for the flow field on both sides of the trench are derived. The dynamic bottom pressure produced by the acoustic-gravity waves on both sides of the trench is measurable, though on the transmission side it decreases with the trench depth. A successful recording of the bottom pressures could assist in the early detect...

  1. Optical transition radiation in presence of acoustic waves

    Mkrtchyan, A R; Saharian, A A

    2009-01-01

    Transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic wave.

  2. Use of Acoustic Waves for Pulsating Water Jet Generation

    Foldyna, Josef

    1. Rijeka: InTech Open Access Publisher, 2011 - (Beghi, M.), s. 323-342 ISBN 978-953-307-572-3 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional research plan: CEZ:AV0Z30860518 Keywords : acoustic waves * pulsating water jet * technology Subject RIV: JQ - Machines ; Tools http://www.intechopen.com/books/acoustic-waves-from-microdevices-to-helioseismology

  3. Surface Acoustic Wave (SAW Vibration Sensors

    Jerzy Filipiak

    2011-12-01

    Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  4. Surface acoustic wave devices for sensor applications

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  5. Nozzleless Spray Cooling Using Surface Acoustic Waves

    Ang, Kar Man; Yeo, Leslie; Friend, James; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Due to its reliability and portability, surface acoustic wave (SAW) atomization is an attractive approach for the generation of monodispersed microdroplets in microfluidics devices. Here, we present a nozzleless spray cooling technique via SAW atomization with key advantage of downward scalability by simply increasing the excitation frequency. With generation of micron size droplets through surface destabilization using SAW, the clogging issues commonly encountered by spraying nozzle can be neutralized. Using deionised water, cooling is improved when the atomization rate is increased and the position of the device is optimized such that the atomized droplets can be easily seeded into the upstream of the flow circulation. Cooling is further improved with the use of nanofluids; a suspension of nanoparticles in water. By increasing nanoparticle mass concentration from 1% to 3%, cooling is enhanced due to the deposition and formation of nanoparticle clusters on heated surface and eventually increase the surface area. However, further increase the concentration to 10% reduces the cooling efficiency due to drastic increase in viscosity μ that leads to lower atomization rate which scales as ṁ ~μ - 1 / 2 .

  6. Propagation of detonation wave in hydrogen-air mixture in channels with sound-absorbing surfaces

    Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.

    2015-12-01

    The possibility of using sound-absorbing surfaces for attenuating the intensity of detonation waves propagating in hydrogen-air mixtures has been experimentally studied in a cylindrical detonation tube open at one end, with an explosive initiated by spark discharge at the closed end. Sound-absorbing elements were made of an acoustic-grade foamed rubber with density of 0.035 g/cm3 containing open pores with an average diameter of 0.5 mm. The degree of attenuation of the detonation wave front velocity was determined as dependent on the volume fraction of hydrogen in the gas mixture.

  7. On A Problem Of Propagation Of Shock Waves Generated By Explosive Volcanic Eruptions

    Interdisciplinary study of flows of matter and energy in geospheres has become one of the most significant advances in Earth sciences. It is carried out by means of direct quantitative estimations based on detailed analysis of geological and geophysical observations and experimental data. The actual contribution is the interdisciplinary study of nonlinear acoustics and physical volcanology dedicated to shock wave propagation in a viscous and inhomogeneous medium. The equations governing evolution of shock waves with an arbitrary initial profile and an arbitrary cross-section of a beam are obtained. For the case of low viscous medium, the asymptotic solution meant to calculate a profile of a shock wave in an arbitrary point has been derived. The analytical solution of the problem on propagation of shock pulses from atmosphere into a two-phase fluid-saturated geophysical medium is analysed. Quantitative estimations were carried out with respect to experimental results obtained in the course of real explosive volcanic eruptions

  8. Stable probability laws modeling random propagation times of waves crossing different media

    Lacaze, Bernard

    2014-01-01

    In a communication scheme, there exist points at the transmitter and at the receiver where the wave is reduced to a finite set of functions of time which describe amplitudes and phases. For instance, the information is summarized in electrical cables which preceed or follow antennas. In many cases, a random propagation time is sufficient to explain changes induced by the medium. In this paper we study models based on stable probability laws which explain power spectra due to propagation of different kinds of waves in different media, for instance, acoustics in quiet or turbulent atmosphere, ultrasonics in liquids or tissues, or electromagnetic waves in free space or in cables. Physical examples show that a sub-class of probability laws appears in accordance with the causality property of linear filters.

  9. Modelling of radio wave propagation using Finite Element Analysis.

    Arshad, Kamran

    2007-01-01

    Fourth generation (4G) wireless communication systems are intended to support high data rates which requires careful and accurate modelling of the radio environment. In this thesis, for the first time finite clement based accurate and computationally efficient models of wave propagation in different outdoor and indoor environments has been developed. Three different environments were considered: the troposphere, vegetation and tunnels and wave propagation in these environments were modelled u...

  10. Torsional waves propagation in an initially stressed dissipative cylinder

    Selim, M.M.

    2009-01-01

    The present paper has been framed to show the effect of damping on the propagation of torsional waves in an initially stressed, dissipative, incompressible cylinder of infinite length. A governing equation has been formulated on Biot's incremental deformation theory. The velocities of torsional waves are obtained as complex ones, in which real part gives the phase velocity of propagation and corresponding imaginary part gives the damping. The study reveals that the damping of the medium has s...

  11. Wave Packet Propagation and Electric Conductivity of Nanowires

    Maeda, Munehiko; Saito, Keiji; Miyashita, Seiji; De Raedt, Hans

    2004-01-01

    We compute the electric conductivity of nanowires in the presence of magnetic domain walls by the method of wave packet propagation. We demonstrate that the propagation through the wire depends on the initial state used in the wave packet simulation. We propose a procedure, based on the Landauer formula, to reduce this dependence. Direct numerical calculations of the Kubo formula for small individual systems are used as reference data for the proposed procedure. The enhancement of the conduct...

  12. Shear wave propagation in anisotropic soft tissues and gels

    Namani, Ravi; Bayly, Philip V.

    2009-01-01

    The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized...

  13. Numerical simulation methods for wave propagation through optical waveguides

    The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

  14. On the nature of propagating MHD waves in polar coronal hole

    Gupta, Girjesh R.; Banerjee, Dipankar

    Waves play an important role in the heating of the solar corona and in the acceleration of the fast solar wind from polar Coronal Holes (pCHs). Recently using EIS/Hinode and SUMER/SOHO, we have reported the presence of accelerating waves in polar region (Gupta et al. 2010, ApJ, 718, 11). These waves appeared to be originating from a bright location on-disk, presumably the footprint of the coronal funnels. These waves were interpreted in terms of either propagating Alfven waves or fast magneto-acoustic waves. The new sets of observations are obtained from the EIS/Hinode 2'' slit and imaging data from AIA/SDO in various filters over plume and inter-plume regions as HOP175 programme. The combination of spectroscopic and imaging data will provide further details on mode identification and properties of these waves and will help in the energy calculations. In this presentation, preliminary results obtained from these observations in terms of different nature of propagating waves in plume and inter-plume regions and energy carried by these waves will be presented.

  15. A local-ether model of propagation of electromagnetic wave

    It is pointed out that the classical propagation model can be in accord with the Sagnac effect due to earth's rotational and orbital motions in the high-precision GPS (global positioning system) and interplanetary radar, if the reference frame of the classical propagation medium is endowed with a switchability according to the location of the wave. Accordingly, it is postulated that, as in the obsolete theory, electromagnetic waves propagate via a medium like the ether. However, the ether is not universal. It is proposed that in the region under sufficient influence of the gravity due to the earth, the sun, or another celestial body, there forms a local ether, which in turn is stationary with respect to the gravitational potential of the respective body. For earthbound and interplanetary propagation, the medium is stationary in a geocentric and a heliocentric inertial frame, respectively. An electromagnetic wave propagates at a constant speed with respect to the associated local ether, independent of the motions of source and receiver. Based on this local-ether model of wave propagation, a wide variety of earthbound, interplanetary, and interstellar propagation phenomena are accounted for. Strong evidence of this new classical model is its consistent account of the Sagnac effect due to earth's motions among GPS, the intercontinental microwave link, and the interplanetary radar. Moreover, as examined within the present precision, this model is still in accord with the Michelson-Morley experiment. To test the local-ether propagation model, a one-way-link rotor experiment is proposed. (orig.)

  16. Time-domain Wave Propagation in Dispersive Media①

    1997-01-01

    The equation of time-domain wave propagation in dispersive media and the explicit beam propagation method are presented in this paper.This method is demonstrated by the short optical pulses in a directional coupler with second order dispersive effect and shows to be in full agreement with former references.This method is simple,easy and practical.

  17. Teaching Wave Propagation and the Emergence of Viete's Formula

    Cullerne, J. P.; Goekjian, M. C. Dunn

    2012-01-01

    The well-known result for the frequency of a simple spring-mass system may be combined with elementary concepts like speed = wavelength x frequency to obtain wave propagation speeds for an infinite chain of springs and masses (masses "m" held apart at equilibrium distance "a" by springs of stiffness "gamma"). These propagation speeds are dependent…

  18. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    Andić, Aleksandra

    2008-01-01

    High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.

  19. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    Andić, A.

    2008-12-01

    Full Text Available High-frequency waves (5 mHz to 20 mHz have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT, Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analysed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.

  20. Time dependent wave envelope finite difference analysis of sound propagation

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  1. Shock wave propagation of circular dam break problems

    We examine the behavior of shock wave propagation of circular (radial) dam break problems. A dam break problem represents a reservoir having two sides of water at rest initially with different depth separated by a wall, then water flows after the wall is removed. The behavior of shock wave propagation is investigated with respect to water levels and with respect to the speeds of the shock waves. To the author's knowledge, such investigation for circular dam break problems had never been done before. Therefore, this new work shall be important for applied computational mathematics and physics communities as well as fluid dynamic researchers. Based on our research results, the propagation speed of shock wave in a circular dam break is lower than that of shock wave in a planar dam break having the same initial water levels as in the circular dam break

  2. Propagation of gravitational waves in the nonperturbative spinor vacuum

    The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists a fixed phase difference between the hyy,zz and hyz components of the wave; the phase and group velocities of gravitational waves are not equal to the velocity of light; the group velocity is always less than the velocity of light; under some conditions the gravitational waves are either damped or absent; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of an experimental verification of the obtained effects as a tool to investigate nonperturbative quantum field theories. (orig.)

  3. Very low frequency subionospheric remote sensing of thunderstorm-driven acoustic waves in the lower ionosphere

    Marshall, R. A.; Snively, J. B.

    2014-05-01

    We present observations of narrowband subionospheric VLF transmitter signals on 20 March 2001, exhibiting coherent fluctuations of over 1 dB peak to peak. Spectral analysis shows that the fluctuations have periods of 1-4min and are largely coherent. The subionospheric propagation path of the signal from Puerto Rico to Colorado passes over two regions of convective and lightning activity, as observed by GOES satellite imagery and National Lightning Detection Network lightning data. We suggest that these fluctuations are evidence of acoustic waves launched by the convective activity below, observed in the 80-90 km altitude range to which nighttime VLF subionospheric remote sensing is sensitive. These observations show that VLF subionospheric remote sensing may provide a unique, 24h remote sensing technique for acoustic and gravity wave activity. We reproduce this event in simulations using a fluid model of gravity and acoustic wave propagation to calculate the ionospheric disturbance, followed by an electromagnetic propagation model to calculate the perturbation amplitude at the location of the VLF receiver. Simulation results show that a very large and coherent convective source is required to produce these amplitude perturbations.

  4. Capacity of Underwater Wireless Communication Channel With Different Acoustic Propagation Loss Models

    Susan Joshy

    2010-09-01

    Full Text Available In this paper, we calculate the capacity of a point-to-point communication link in an underwater acousticchannel. The analysis takes into account the effects of various acoustic propagation loss models. A physicalmodel of ambient noise power spectral density is also considered. We perform a comparative assessment ofthe influence of various acoustic transmission loss models on the acoustic bandwidth and the capacity

  5. Electro-acoustic shock waves in dusty plasmas

    A rigorous theoretical investigation has been made of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] shock waves in unmagnetized dusty plasmas. The reductive perturbation method has been employed for the study of the small but finite amplitude DIA and DA shock waves. It has been reported that the dust grain charge fluctuation can be one of the candidates for the source of dissipation, and can be responsible for the formation of DIA shock waves in an unmagnetized dusty plasma with static charged dust particles. It has also been reported that the strong co-relation among dust particles can be one of the candidates for the source of dissipation, and can be responsible for the formation of DA shock waves in an unmagnetized strongly coupled dusty plasma. The basic features and the underlying physics of DIA and DA shock waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  6. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  7. Millimetre-wave propagation in the evaporation duct

    Levy, M. F.; Craig, K. H.

    1990-03-01

    Recent developments in propagation modeling based on the Parabolic Equation Method allow the forecasting of two-dimensional antenna coverage diagrams at millimeter wavelengths, in a dispersive atmosphere with arbitrary two-dimensional variation of the refractive index. The model was applied successfully to mm-wave propagation in the evaporation duct. The evaporation duct height is not sufficient to characterize mm-wave propagation, and information on the water vapor content is essential for the correct modeling of atmospheric absorption. Turbulence simulations were carried out, showing marked scintillation, effects in the evaporation duct. The method can be applied to arbitrary refractivity spectra, and gives a complete numerical description of the field statistics.

  8. A new model for nonlinear acoustic waves in a non-uniform lattice of Helmholtz resonators

    Mercier, Jean-François

    2016-01-01

    Propagation of high amplitude acoustic pulses is studied in a 1D waveguide, connected to a lattice of Helmholtz resonators. An homogenized model has been proposed by Sugimoto (J. Fluid. Mech., 244 (1992)), taking into account both the nonlinear wave propagation and various mechanisms of dissipation. This model is extended to take into account two important features: resonators of different strengths and back-scattering effects. The new model is derived and is proved to satisfy an energy balance principle. A numerical method is developed and a better agreement between numerical and experimental results is obtained.

  9. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Pinton, Gianmarco

    2015-10-01

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  10. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Pinton, Gianmarco [Joint Department of Biomedical Engineering, University of North Carolina - North Carolina State University, 348 Taylor Hall, Chapel Hill, NC 27599, USA gfp@unc.edu (United States)

    2015-10-28

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  11. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  12. Nonlinear propagation of short wavelength drift-Alfven waves

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...

  13. Demonstration of wave propagation in a periodic structure

    Simple apparatus is described which demonstrates wave propagation in a infinitely long periodic structure. The structure consists of a toroidal transmission line with periodic variation of the wave phase velocity around the line. Results are presented to illustrate the effect of the periodic perturbation on the resonant frequencies of the system

  14. Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments

    Yucel, Abdulkadir C.

    2013-01-01

    A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.

  15. Development of Surface Acoustic Wave Electronic Nose

    S.K. Jha

    2010-07-01

    Full Text Available The paper proposes an effective method to design and develop surface acoustic wave (SAW sensor array-based electronic nose systems for specific target applications. The paper suggests that before undertaking full hardware development empirically through hit and trial for sensor selection, it is prudent to develop accurate sensor array simulator for generating synthetic data and optimising sensor array design and pattern recognition system. The latter aspects are most time-consuming and cost-intensive parts in the development of an electronic nose system. This is because most of the electronic sensor platforms, circuit components, and electromechanical parts are available commercially-off-the-shelve (COTS, whereas knowledge about specific polymers and data analysis software are often guarded due to commercial or strategic interests. In this study, an 11-element SAW sensor array is modelled to detect and identify trinitrotoluene (TNT and dinitrotoluene (DNT explosive vapours in the presence of toluene, benzene, di-methyl methyl phosphonate (DMMP and humidity as interferents. Additive noise sources and outliers were included in the model for data generation. The pattern recognition system consists of: (i a preprocessor based on logarithmic data scaling, dimensional autoscaling, and singular value decomposition-based denoising, (ii principal component analysis (PCA-based feature extractor, and (iii an artificial neural network (ANN classifier. The efficacy of this approach is illustrated by presenting detailed PCA analysis and classification results under varied conditions of noise and outlier, and by analysing comparative performance of four classifiers (neural network, k-nearest neighbour, naïve Bayes, and support vector machine.Defence Science Journal, 2010, 60(4, pp.364-376, DOI:http://dx.doi.org/10.14429/dsj.60.493

  16. Impact induced solitary wave propagation through a woodpile structure

    Kore, R.; Waychal, A.; Agarwal, S.; Yadav, P.; Uddin, Ahsan; Sahoo, N.; Shelke, A.

    2016-02-01

    In this paper, we investigate solitary wave propagation through a one-dimensional woodpile structure excited by low and high velocity impact. Woodpile structures are a sub-class of granular metamaterial, which supports propagation of nonlinear waves. Hertz contact law governs the behavior of the solitary wave propagation through the granular media. Towards an experimental study, a woodpile structure was fabricated by orthogonally stacking cylindrical rods. A shock tube facility has been developed to launch an impactor on the woodpile structure at a velocity of 30 m s-1. Embedded granular chain sensors were fabricated to study the behavior of the solitary wave. The impact induced stress wave is studied to investigate solitary wave parameters, i.e. contact force, contact time, and solitary wave velocity. With the aid of the experimental setup, numerical simulations, and a theoretical solution based on the long wavelength approximation, formation of the solitary wave in the woodpile structure is validated to a reasonable degree of accuracy. The nondispersive and compact supported solitary waves traveling at sonic wave velocity offer unique properties that could be leveraged for application in nondestructive testing and structural health monitoring.

  17. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  18. Prediction and near-field observation of skull-guided acoustic waves

    Estrada, Héctor; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  19. Ion-acoustic solitary waves in ultra-relativistic degenerate pair-ion plasmas

    The arbitrary and the small amplitude ion-acoustic solitary waves (IASWs) have been studied. The former is studied by using the Sagdeev pseudo-potential approach in a plasma consisting of the degenerate ultrarelativistic electrons, positrons, and the non-relativistic classical ions. It is seen that only compressive solitary waves can propagate through such plasmas. The numerical calculations show that the region of existence of the ion-acoustic solitary waves depends upon the positron (ion) number density and the plasma thermal temperature. This study is appropriate for applications in inertial confinement fusion laboratory research as well as the study of astrophysical dense objects such as white dwarf and dense neutron stars.

  20. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  1. Propagation of internal waves up continental slope and shelf

    DAI Dejun; WANG Wei; QIAO Fangli; YUAN Yeli; XIANG Wenxi

    2008-01-01

    In a two-dimensional and linear framework, a transformation was developed to derive eigensolutions of internal waves over a subcriticai hyperbolic slope and to approximate the continental slope and shelf. The transformation converts a hyperbolic slope in physical space into a fiat bottom in transform space while the governing equations of internal waves remain hyperbolic. The eigensolutions are further used to study the evolution of linear internal waves as it propagates to subcritical continental slope and shelf. The stream function, velocity, and vertical shear of velocity induced by internal wave at the hyperbolic slope are analytically expressed by superposition of the obtained eigensolutions. The velocity and velocity shear increase as the internal wave propagates to a hyperbolic slope. They become very large especially when the slope of internal wave rays approaches the topographic slope, which is consistent with the previous studies.

  2. Propagation of Iamb waves in adhesively bonded multilayered media

    ZHANG Haiyan; XIE Yuanxia; LIU Zhenqing

    2003-01-01

    The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.

  3. Surface wave patterns on acoustically levitated viscous liquid alloys

    Hong, Z. Y.; Yan, N.; Geng, D. L.; Wei, B.

    2014-04-01

    We demonstrate two different kinds of surface wave patterns on viscous liquid alloys, which are melted and solidified under acoustic levitation condition. These patterns are consistent with the morphologies of standing capillary waves and ensembles of oscillons, respectively. The rapid solidification of two-dimensional liquid alloy surfaces may hold them down.

  4. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  5. Propagation of Electromagnetic Waves in Extremely Dense Media

    Masood, Samina

    2016-01-01

    We study the propagation of electromagnetic (EM) waves in extremely dense exotic systems with very unique properties. These EM waves develop a longitudinal component due to its interaction with the medium. Renormalization scheme of QED is used to understand the propagation of EM waves in both longitudinal and transverse directions. The propagation of EM waves in a quantum statistically treatable medium affects the properties of the medium itself. The electric permittivity and the magnetic permeability of the medium are modified and influence the related behavior of the medium. All the electromagnetic properties of a medium become a function of temperature and chemical potential of the medium. We study in detail the modifications of electric permittivity and magnetic permeability and other related properties of a medium in the superdense stellar objects.

  6. Manipulation of Particles with Counter-Propagating Evanescent Waves

    Xiang YU; Takamasa TORISAWA; Norihiro UMEDA

    2007-01-01

    Two counter-propagating evanescent beams are used to align and manipulate polystyrene particles on a prism surface. Since the radiation pressure transferred laterally from the evanescent wave is negated on both sides,particles can be stably aligned. By projecting a circular and a linear beam spot onto the interface, both multiple and single arrays of particles are achieved. Arrays of particles trapped on the interface can be easily moved adjusting the intensity of incident beams on either side. We also simulate electromagnetic distribution of scattering light that is converted from the evanescent wave using the FDTD method. The results show that scattering light converts from an evanescent wave propagating through a particle array and has a distance longer than that propagating from a normal evanescent wave.

  7. Propagation of bottom-trapped waves over variable topography

    Shetye, S.R.

    , with the shorter (longer) of the two having an eastward (westward) group velocity. When the short wave propagates to the region of constant depth, a reflected wave is generated. There is no transmitted wave, but a 'fringe' which decays away from the interface... between the slope and the region of fiat topography is produced. Over the fiat topography the fringe consists of baroclinic and barotropic motions which lead to bottom-intensification in the immediate vicinity of the slope and to increasingly barotropic...

  8. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  9. Sound propagation tests for acoustic detection of simulated sodium-water reaction

    The characteristics of sound propagation in a steam generator were tested in order to investigate the feasibility of an acoustic leak detection by small leak sodium-water reactions. The test model was composed of the vessel filled with water, the inner pipe, the shroud, and two heat transfer coils. Transducers, gas leak nozzles and an underwater speaker were set up for the simulated sound source. The results indicate that the acoustic signal detected at the vessel wall has a comparable SN ratio to the guide pipe or the heat transfer tubes, and that the difference of the RMS values depend on the standing wave, rather than the attenuation by distance or diffractions, Therefore, it was estimated that the sound field in the vessel was reverberant, and the difference between one and two helical coils depends on the sound energy absorption by them. The RMS values in the high frequency range (more than 50 kHz) do not increase in proportion to the gas leak rate, more than about 200 cc/s, because of the attenuation by gas bubbles. (author)

  10. Propagation of waves in shear flows

    Fabrikant, A L

    1998-01-01

    The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside

  11. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Biswajit Sahu

    2011-06-01

    Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.

  12. Ionospheric signatures of acoustic waves generated by transient tropospheric forcing

    Zettergren, M. D.; Snively, J. B.

    2013-10-01

    Acoustic waves generated by tropospheric sources may attain significant amplitudes in the thermosphere and overlying ionosphere. Although they are weak precursors to gravity waves in the mesosphere below, acoustic waves may achieve temperature and vertical wind perturbations on the order of approximately tens of Kelvin and m/s throughout the E and F regions. Their perturbations to total electron content are predicted to be detectable by ground-based radar and GPS receivers; they also drive field-aligned currents that may be detectable in situ via magnetometers. Although transient and short lived, ionospheric signatures of acoustic waves may provide new and quantitative insight into the forcing of the upper atmosphere from below.

  13. Modelling propagation of deflagration waves out of hot spots

    Partom, Yehuda

    2015-06-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives come about by a two-step process known as ignition and growth. In the first step a shock sweeping an explosive cell (control volume) creates hot spots that become ignition sites. In the second step deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in a cell depends on the speed of those deflagration waves and on the average distance between neighbouring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration wave depends on both pressure and temperature, where pressure dependence is dominant at low shock level, and temperature dependence is dominant at a higher shock level. From the simulation we obtain deflagration (or burn) fronts emanating out of the hot spots. For intermediate shock levels the deflagration waves consume the explosive between hot spots. For higher shock levels the deflagration waves strengthen to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds and show how they depend on reaction rate and on other material parameters.

  14. Guided wave propagation in multilayered piezoelectric structures

    2009-01-01

    A general formulation of the method of the reverberation-ray matrix (MRRM) based on the state space formalism and plane wave expansion technique is presented for the analysis of guided waves in multilayered piezoelectric structures. Each layer of the structure is made of an arbitrarily anisotropic piezoelectric material. Since the state equation of each layer is derived from the three-dimensional theory of linear piezoelectricity, all wave modes are included in the formulation. Within the framework of the MRRM, the phase relation is properly established by excluding exponentially growing functions, while the scattering relation is also appropriately set up by avoiding matrix inversion operation. Consequently, the present MRRM is unconditionally numerically stable and free from computational limitations to the total number of layers, the thickness of individual layers, and the frequency range. Numerical examples are given to illustrate the good performance of the proposed formulation for the analysis of the dispersion characteristic of waves in layered piezoelectric structures.

  15. Stress wave propagation in the Institute of Thermomechanics

    Okrouhlík, Miloslav

    Prague : ITAM AS CR, v. v. i., 2012 - (Náprstek, J.; Fischer, C.). s. 234-235 ISBN 978-80-86246-39-0. [Engineering Mechanics 2012. 14.05.2012-17.05.2012, Svratka] Institutional research plan: CEZ:AV0Z20760514 Keywords : historical survey * stress wave propation in solids Subject RIV: BI - Acoustics

  16. Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction

    Převorovský, Zdeněk

    ..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics

  17. Calculation of an axial temperature distribution using the reflection coefficient of an acoustic wave.

    Červenka, Milan; Bednařík, Michal

    2015-10-01

    This work verifies the idea that in principle it is possible to reconstruct axial temperature distribution of fluid employing reflection or transmission of acoustic waves. It is assumed that the fluid is dissipationless and its density and speed of sound vary along the wave propagation direction because of the fluid temperature distribution. A numerical algorithm is proposed allowing for calculation of the temperature distribution on the basis of known frequency characteristics of reflection coefficient modulus. Functionality of the algorithm is illustrated on a few examples, its properties are discussed. PMID:26520344

  18. Development and application of one-way elastic wave propagators in generally-anisotropic, heterogeneous, three-dimensional media

    Angus, Douglas A.

    A finite-difference narrow-angle one-way wave equation is implemented and is applied to various wave propagation problems to verify the method as well as to study frequency-dependent three-component waveform effects. The narrow-angle wave equation is the most approximate, yet most computationally practical, of the one-way wave equations derived by Thomson (1999). Although the vector narrow-angle wave equation is limited to a certain propagation distance, it is still a viable and powerful modelling approach to wave propagation in three-dimensional elastic media. A FORTRAN finite-difference code is developed that is second-order accurate in the lateral and forward propagation direction and requires only three extrapolation planes to be stored during each propagation step. Numerical analysis of the finite-difference algorithm indicates that the scheme is stable for appropriate initial conditions and, for the propagation path-lengths of interest, angular range of forward propagation and source-pulse spectral content, numerical grid-anisotropy is minimal. The narrow-angle propagator is sufficiently accurate for angles up to +/-15° to the preferred direction of propagation and is stable within singular regions of slowness space. For reasonable velocity gradients, the travel-times and amplitudes of transmitted and converted body-waves are in good agreement with an exact reference solution. The conical-point singularity is the main focus of the homogeneous, anisotropic wave propagation examples, because it represents the most extreme anisotropic singularity and poses the greatest difficulty for ray-based methods. The results of wave propagation along the acoustic axis display characteristic and potentially diagnostic waveform effects, such as wavefront folding and tearing, merging and splitting pulses, growth of anomalous components and bipolar waveforms. The results of wave propagation in isotropic heterogeneous media are consistent with various published results. Some

  19. Wave propagation and energy dissipation in viscoelastic granular media

    2001-01-01

    In terms of viscoelasticity, the relevant theory of wave in granular media is analyzed in this paper.Under the conditions of slight deformation of granules, wave equation, complex number expressions of propagation vector and attenuation vector, attenuation coefficient expressions of longitudinal wave and transverse wave,etc, are analyzed and deduced. The expressions of attenuation coefficients of viscoelastic longitudinal wave and transverse wave show that the attenuation of wave is related to frequency. The higher the frequency is, the more the attenuation is, which is tested by the laboratory experiment. In addition, the energy dissipation is related to the higher frequency wave that is absorbed by granular media. The friction amongst granular media also increase the energy dissipation. During the flowing situation the expression of transmission factor of energy shows that the granular density difference is the key factor which leads to the attenuation of vibrating energy.This has been proved by the experiment results.

  20. Rayleigh and acoustic gravity waves detection on magnetograms during the Japanese Tsunami, 2011

    Klausner, Virginia; Muella, Marcio T A H; Mendes, Odim; Domingues, Margarete O; Papa, Andres R R

    2015-01-01

    The continuous geomagnetic field survey holds an important potential in future prevention of tsunami damages, and also, it could be used in tsunami forecast. In this work, we were able to detected for the first time Rayleigh and ionospheric acoustic gravity wave propagation in the Z-component of the geomagnetic field due to the Japanese tsunami, 2011 prior to the tsunami arrival. The geomagnetic measurements were obtained in the epicentral near and far-field. Also, these waves were detected within minutes to few hours of the tsunami arrival. For these reasons, these results are very encouraging, and confirmed that the geomagnetic field monitoring could play an important role in the tsunami warning systems, and also, it could provide additional information in the induced ionospheric wave propagation models due to tsunamis.