WorldWideScience

Sample records for acoustic signature

  1. Acoustic Signature Monitoring and Management of Naval Platforms

    Basten, T.G.H.; Jong, C.A.F. de; Graafland, F.; Hof, J. van 't

    2015-01-01

    Acoustic signatures make naval platforms susceptible to detection by threat sensors. The variable operational conditions and lifespan of a platform cause variations in the acoustic signature. To deal with these variations, a real time signature monitoring capability is being developed, with advisory

  2. Modeling ground vehicle acoustic signatures for analysis and synthesis

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems

  3. Ionospheric signatures of acoustic waves generated by transient tropospheric forcing

    Zettergren, M. D.; Snively, J. B.

    2013-10-01

    Acoustic waves generated by tropospheric sources may attain significant amplitudes in the thermosphere and overlying ionosphere. Although they are weak precursors to gravity waves in the mesosphere below, acoustic waves may achieve temperature and vertical wind perturbations on the order of approximately tens of Kelvin and m/s throughout the E and F regions. Their perturbations to total electron content are predicted to be detectable by ground-based radar and GPS receivers; they also drive field-aligned currents that may be detectable in situ via magnetometers. Although transient and short lived, ionospheric signatures of acoustic waves may provide new and quantitative insight into the forcing of the upper atmosphere from below.

  4. Algorithm for classifying multiple targets using acoustic signatures

    Damarla, Thyagaraju; Pham, Tien; Lake, Douglas

    2004-08-01

    In this paper we discuss an algorithm for classification and identification of multiple targets using acoustic signatures. We use a Multi-Variate Gaussian (MVG) classifier for classifying individual targets based on the relative amplitudes of the extracted harmonic set of frequencies. The classifier is trained on high signal-to-noise ratio data for individual targets. In order to classify and further identify each target in a multi-target environment (e.g., a convoy), we first perform bearing tracking and data association. Once the bearings of the targets present are established, we next beamform in the direction of each individual target to spatially isolate it from the other targets (or interferers). Then, we further process and extract a harmonic feature set from each beamformed output. Finally, we apply the MVG classifier on each harmonic feature set for vehicle classification and identification. We present classification/identification results for convoys of three to five ground vehicles.

  5. Feature extraction from time domain acoustic signatures of weapons systems fire

    Yang, Christine; Goldman, Geoffrey H.

    2014-06-01

    The U.S. Army is interested in developing algorithms to classify weapons systems fire based on their acoustic signatures. To support this effort, an algorithm was developed to extract features from acoustic signatures of weapons systems fire and applied to over 1300 signatures. The algorithm filtered the data using standard techniques then estimated the amplitude and time of the first five peaks and troughs and the location of the zero crossing in the waveform. The results were stored in Excel spreadsheets. The results are being used to develop and test acoustic classifier algorithms.

  6. The acoustic signatures of cavitation erosion on grade DH36 steel

    Armakolas, I.; Carlton, J.; Vidakovic, M.; Sun, T.; Grattan, K. T. V.

    2015-12-01

    Cavitation can cause considerable erosion to adjacent materials. Erosion is accompanied by acoustic emissions, related to crack formation and propagation inside the material. In this study a piezoelectric acoustic sensor mounted on the back of a grade DH36 steel plate is used to identify the acoustic signatures of cavitation. Cavitation is induced near the plate by means of an ultrasonic transducer (sonotrode). Various ‘non-erosive’ and erosive test rig configurations are examined and an acoustic threshold value for the onset of cavitation erosion is identified and presented. The use of a fibre Bragg grating (FBG)-based acoustic sensor developed at City University London for acoustic monitoring purposes is also examined. Acoustic signals from both sensors are analysed, by means of a fast Fourier transform, showing a very good agreement in terms of captured frequencies.

  7. Mesospheric hydroxyl airglow signatures of acoustic and gravity waves generated by transient tropospheric forcing

    Snively, J. B.

    2013-09-01

    Numerical model results demonstrate that acoustic waves generated by tropospheric sources may produce cylindrical "concentric ring" signatures in the mesospheric hydroxyl airglow layer. They may arrive as precursors to upward propagating gravity waves, generated simultaneously by the same sources, and produce strong temperature perturbations in the thermosphere above. Transient and short-lived, the acoustic wave airglow intensity and temperature signatures are predicted to be detectable by ground-based airglow imaging systems and may provide new insight into the forcing of the upper atmosphere from below.

  8. Effect of a cracked surface of porous silicon on the behaviour of the acoustic signature

    Bouhedja Samia

    2014-06-01

    Full Text Available We study in this work the effect of a crack, located on the porous silicon, Psi, surface on the propagation of Rayleigh waves. We simulate and analyse the acoustic signature V(z according porosity at 142 MHz, to study the microstructure of PSi around the crack.

  9. Identification of cavitation signatures using both optical and PZT acoustic sensors

    Vidakovic, M.; Armakolas, I.; Sun, T.; Carlton, J.; Grattan, K. T. V.

    2015-09-01

    This paper presents the results obtained from monitoring a simulated material cavitation process using both a fibre Bragg grating (FBG)-based acoustic sensor system developed at City University London and a commercial PZT (Piezoelectric Transducer) acoustic sensor, with an aim to identify the cavitation signatures. In the experiment, a sample metal plate with its back surface being instrumented with both sensors is positioned very close to an excitation sonotrode with a standard frequency of 19.5kHz. The data obtained from both sensors are recorded and analyzed, showing a very good agreement.

  10. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  11. The underwater acoustic signature of a nuclear explosion at the ocean surface. Interim technical report

    Bache, T.C.; Barker, T.G.; Brown, M.G.; Pyatt, K.D.; Swanger, H.J.

    1980-07-01

    The gross spectral character and duration of the acoustic wave signature of a nuclear explosion near the ocean surface is estimated by constructing theoretical pressure-time histories, using models for the explosion and wave propagation. The explosion is assumed to have a yield of 1 KT and the nominal range is 6600 km. The frequencies of interest are rather low, 50 Hz and less, so absorption is small and the estimates of spectral character and duration essentially decouple. The spectrum depends almost entirely on the source characteristics and the duration is controlled by characteristics of the travel path. The airblast-induced pressure loading on the ocean surface dominates the source, with the acoustic waves from direct coupling into the water being relatively small. At large distances, the spectrum for 1 KT peaks near 20 Hz and is band-limited between 5 and 50 Hz. For different energy yields these frequencies scale with the cube-root of the yield. Different assumptions about the (laterally homogeneous) oceanic sound profile lead to differing estimates for the signal duration. Values of 20 to 60 seconds seem most reasonable.

  12. Implementation of algorithms to discriminate chemical/biological airbursts from high explosive airbursts utilizing acoustic signatures

    Hohil, Myron E.; Desai, Sachi; Morcos, Amir

    2006-05-01

    The Army is currently developing acoustic sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other sensor suite technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to current conventional methods. Distinct characteristics arise within the different airburst signatures because High Explosive (HE) warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over immense areas, therefore utilizing a slower burning, less intensive explosion to mix and distribute their contents. Highly reliable discrimination (100%) has been demonstrated at the Portable Area Warning Surveillance System

  13. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  14. The acoustic signatures of ground acceleration, gas expansion, and spall fallback in experimental volcanic explosions

    Bowman, Daniel C.; Taddeucci, Jacopo; Kim, Keehoon; Anderson, Jacob F.; Lees, Jonathan M.; Graettinger, Alison H.; Sonder, Ingo; Valentine, Greg A.

    2014-03-01

    Infrasound and high-speed imaging during a series of field-scale buried explosions suggest new details about the generation and radiation patterns of acoustic waves from volcanic eruptions. We recorded infrasound and high-speed video from a series of subsurface explosions with differing burial depths and charge sizes. Joint observations and modeling allow the extraction of acoustic energy related to the magnitude of initial ground deformation, the contribution of gas breakout, and the timing of the fallback of displaced material. The existence and relative acoustic amplitudes of these three phases depended on the size and depth of the explosion. The results motivate a conceptual model that relates successive contributions from ground acceleration, gas breakout, and spall fallback to the acoustic amplitude and waveform characteristics of buried explosions. We place the literature on infrasound signals at Santiaguito Volcano, Guatemala, and Sakurajima and Suwonosejima Volcanoes, Japan, in the context of this model.

  15. Selective focusing through target identification and experimental acoustic signature extraction: Numerical experiments.

    Rodriguez, S; Jacob, X; Gibiat, V

    2016-05-01

    Using transducer arrays and appropriate emission delays allow to focus acoustic waves at a chosen location in a medium. The focusing spatial accuracy depends on the accurate knowledge of its acoustic properties. When those properties are unknown, methods based on the Time-Reversal principle allow accurate focusing. Still, these methods are either intrusive (an active source has to be introduced at the target location first), either blind (the target cannot be selected in the presence of several objects.) The purpose of the present work is to achieve non-invasive accurate focusing on a selected target using inaccurate acoustic properties for the investigated medium. Potential applications are for instance noninvasive surgery based on High Intensity Focused Ultrasound (HIFU). Numerical experiments are presented and demonstrate accurate focusing on a previously designated target located in an unknown heterogeneous medium. PMID:26890791

  16. R&D studies for the development of a compact transmitter able to mimic the acoustic signature of a UHE neutrino interaction

    Ardid, M; Bou-Cabo, M; Larosa, G; Mart\\inez-Mora, J A; Espinosa, V; Camarena, F; Ferri, M

    2011-01-01

    Calibration of acoustic neutrino telescopes with neutrino-like signals is an essential aspect to evaluate the feasibility of the technique and to know the efficiency of the detectors. However, it is not straightforward to have acoustic transmitters that, on one hand, are able to mimic the signature of a UHE neutrino interaction, that is, a bipolar acoustic pulse with the 'pancake' directivity, and, on the other hand, fulfill practical issues such as ease of deployment and operation. This is a non-trivial problem since it requires directive transducer with cylindrical symmetry for a broadband frequency range. Classical solutions using linear arrays of acoustic transducers result in long arrays with many elements, which increase the cost and the complexity for deployment and operation. In this paper we present the extension of our previous R&D studies using the parametric acoustic source technique by dealing with the cylindrical symmetry, and demonstrating that it is possible to use this technique for havin...

  17. Acoustic communication and sound degradation: how do the individual signatures of male and female zebra finch calls transmit over distance?

    Solveig C Mouterde

    Full Text Available BACKGROUND: Assessing the active space of the various types of information encoded by songbirds' vocalizations is important to address questions related to species ecology (e.g. spacing of individuals, as well as social behavior (e.g. territorial and/or mating strategies. Up to now, most of the previous studies have investigated the degradation of species-specific related information (species identity, and there is a gap of knowledge of how finer-grained information (e.g. individual identity can transmit through the environment. Here we studied how the individual signature coded in the zebra finch long distance contact call degrades with propagation. METHODOLOGY: We performed sound transmission experiments of zebra finches' distance calls at various propagation distances. The propagated calls were analyzed using discriminant function analyses on a set of analytical parameters describing separately the spectral and temporal envelopes, as well as on a complete spectrographic representation of the signals. RESULTS/CONCLUSION: We found that individual signature is remarkably resistant to propagation as caller identity can be recovered even at distances greater than a hundred meters. Male calls show stronger discriminability at long distances than female calls, and this difference can be explained by the more pronounced frequency modulation found in their calls. In both sexes, individual information is carried redundantly using multiple acoustical features. Interestingly, features providing the highest discrimination at short distances are not the same ones that provide the highest discrimination at long distances.

  18. Low Mach number prediction of the acoustic signature of fractal-generated turbulence

    Laizet, Sylvain, E-mail: s.laizet@imperial.ac.uk [Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Fortune, Veronique, E-mail: veronique.fortune@lea.univ-poitiers.fr [Department of Fluid Flow, Heat Transfer and Combustion, Institute PPRIME, Universite de Poitiers, ENSMA, CNRS, Teleport 2 - Bd. Marie et Pierre Curie, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex (France); Lamballais, Eric, E-mail: lamballais@univ-poitiers.fr [Department of Fluid Flow, Heat Transfer and Combustion, Institute PPRIME, Universite de Poitiers, ENSMA, CNRS, Teleport 2 - Bd. Marie et Pierre Curie, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex (France); Vassilicos, John Christos, E-mail: j.c.vassilicos@imperial.ac.uk [Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Acoustic properties of a fractal square grid and regular grid. Black-Right-Pointing-Pointer Hybrid approach based on Lighthill's analogy and Direct Numerical Simulation. Black-Right-Pointing-Pointer Noise reduction for the fractal square grid. Black-Right-Pointing-Pointer Well-defined peak at a Strouhal number between 0.2 and 0.3 for the fractal square grid, absent for the regular grid. - Abstract: In this work, we compare the acoustic properties of a fractal square grid with those of a regular grid by means of a hybrid approach based on Lighthill's analogy and Direct Numerical Simulation (DNS). Our results show that the sound levels corresponding to our fractal square grid of three fractal iterations are significantly reduced by comparison to a regular grid of same porosity and mesh-based Reynolds number. We also find a well-defined peak at a Strouhal number between 0.2 and 0.3 in the acoustic spectrum of our fractal square grid which is absent in the case of our regular grid. We explain this effect in terms of a new criterion for quasi-periodic vortex shedding from a regular or fractal grid.

  19. Acoustic signatures of the phases and phase transitions in Yb2Ti2O7

    Bhattacharjee, Subhro; Erfanifam, S.; Green, E. L.; Naumann, M.; Wang, Zhaosheng; Granovsky, S.; Doerr, M.; Wosnitza, J.; Zvyagin, A. A.; Moessner, R.; Maljuk, A.; Wurmehl, S.; Büchner, B.; Zherlitsyn, S.

    2016-04-01

    We report on measurements of the sound velocity and attenuation in a single crystal of the candidate quantum-spin-ice material Yb2Ti2O7 as a function of temperature and magnetic field. The acoustic modes couple to the spins magnetoelastically and, hence, carry information about the spin correlations that sheds light on the intricate magnetic phase diagram of Yb2Ti2O7 and the nature of spin dynamics in the material. Particularly, we find a pronounced thermal hysteresis in the acoustic data with a concomitant peak in the specific heat indicating a possible first-order phase transition at about 0.17 K. At low temperatures, the acoustic response to magnetic field saturates hinting at the development of magnetic order. The experimental data are consistent with a first-order phase transition from a cooperative paramagnet to a ferromagnet below T ≈0.17 K, as shown by fitting the data with a phenomenological mean-field theory.

  20. A comparison of methods for 3D target localization from seismic and acoustic signatures

    ELBRING,GREGORY J.; GARBIN,H. DOUGLAS; LADD,MARK D.

    2000-04-03

    An important application of seismic and acoustic unattended ground sensors (UGS) is the estimation of the three dimensional position of an emitting target. Seismic and acoustic data derived from UGS systems provide the taw information to determine these locations, but can be processed and analyzed in a number of ways using varying amounts of auxiliary information. Processing methods to improve arrival time picking for continuous wave sources and methods for determining and defining the seismic velocity model are the primary variables affecting the localization accuracy. Results using field data collected from an underground facility have shown that using an iterative time picking technique significantly improves the accuracy of the resulting derived target location. Other processing techniques show little advantage over simple crosscorrelation along in terms of accuracy, but may improve the ease with which time picks can be made. An average velocity model found through passive listening or a velocity model determined from a calibration source near the target source both result in similar location accuracies, although the use of station correction severely increases the location error.

  1. Investigation of the ocean acoustic signatures from strong explosions at a long distance in the ocean sound channel by computer simulation

    The identification and location of ocean acoustic signatures are the principal objectives of a program to discourage clandestine testing of nuclear explosives. Difficulties arise primarily from variations in the water column. In turn, these variations affect acoustic propagation in the SOFAR channel. In this study, the path effects on the signals generated by strong explosions (1 and 10 kn) are investigated. The goal is to make a quantitative correlation between the initial source description and the final acoustical signatures received at a great distance under various conditions. The study is performed entirely by computer simulations applying two computer programs in succession. First, the explosions are simulated by a 2-D hydrodynamic computer program, CALE, which was originally developed to calculate astrophysical problems. The computed signals have reached more than 700 m deep approaching the SOFAR channel. At this point, the CALE output is linked to a hydro-acoustic computer program, the NPE code, by which wave propagation in the SOFAR channel is modeled. The NPE code was developed at the Naval Research Laboratory to study ocean acoustics. [Work supported by the U. S. Department of Energy under Contract No. W-7405-ENG-48.

  2. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  3. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  4. Non destructive testing by acoustic signature of damage level in 304L steel samples submitted to rolling, tensile test and thermal annealing treatments

    The aim of this work is to demonstrate the ability of acoustic signature technique to detect in a non-destructive way mechanical property variations due to damage of the internal material structure for 304L steel samples, provided by EDF company. For this purpose, the velocity and the attenuation of Rayleigh acoustic waves have been measured for rolled, drawn and thermally treated samples. Complementary information provided by echography have also been used to calculate the corresponding variations of the dynamic Young's modulus E

  5. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  6. Acoustic emission signature analysis. Technical progress report No. 2, 1 March 1979-29 February 1980

    Acoustic emission in plate glass and steel has been studied as a function of angle. The low frequency AE in glass (< 1 MHz) was studied in detail, and contributions from P, S and Rayleigh waves identified. These results are isotropic, as expected theoretically. Limited high frequency (5-20 MHz) results have been obtained in glass. This is the first time, that AE energy has been measured above 3 MHz. The measurement of AE on transgranular crack growth in steel during fatigue crack growth was accomplished by use of a low noise manual hydraulic loading system and an electronic gate to reject grip noise. The signals are complex, and not yet understood in detail. The concept of the wave momentum of an AE, first introduced during the previous year, was elaboratored and a measurement technique suggested. The theoretical study of this problem led to the discovery of an infinite, previously unknown, family of elastic surface (Rayleigh-like) waves, and to further cylindrical, radially propagating plate waves. It appears these waves may be useful in other areas of ultrasonics

  7. Ultrasonic thermometry simulation in a random fluctuating medium: Evidence of the acoustic signature of a one-percent temperature difference.

    Nagaso, M; Moysan, J; Benjeddou, S; Massacret, N; Ploix, M A; Komatitsch, D; Lhuillier, C

    2016-05-01

    We study the development potential of ultrasonic thermometry in a liquid fluctuating sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In particular we study if small temperature variations in the sodium flow of e.g. about 1% of the sodium temperature, i.e., about 5°C, can have a reliably-measurable acoustic signature. Since to our knowledge no experimental setups are available for such a study, and considering the practical difficulties of experimentation in sodium, we resort to a numerical technique for full wave propagation called the spectral-element method, which is a highly accurate finite-element method owing to the high-degree basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature difference of one percent in the case of a static temperature gradient as well as in the presence of a random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline the potential of ultrasonic thermometry in such a context. PMID:26921558

  8. The Fugløy Reef at 70°N; acoustic signature, geologic, geomorphologic and oceanographic setting

    Lindberg, Björn; Berndt, Christian; Mienert, Jürgen

    2007-02-01

    This is the first in-depth study of a cluster of cold-water coral reefs, the Fugløy Reefs, found at 70°N on the Norwegian margin. Combining high-resolution seismic reflection data, side-scan sonar, video-images, and oceanographic measurements reveals the geologic, geomorphologic and oceanographic setting in which the reefs occur. The reefs consist mainly of the scleractinian ahermatypic Lophelia pertusa, and exist below the thermocline at water depths between 140 m and 190 m. The reefs appear as cone-shaped, acoustically transparent features on seismic reflection data, consistently located in places characterized by the availability of hard substrate, high relief, and periodical exposure to high tidal currents (>30 cm/s). These currents transport water of the Norwegian Atlantic Current to the reefs from an area with fluid expulsion-related pockmarks. The spatial relationship between reef, pockmark locations, and current directions suggests that seepage of biogenic gas might be a catalyst to reef growth. With a height of more than 40 m some of the Fugløy reefs are among the highest reported from the Norwegian Margin. This indicates highly favourable growth conditions, and conservative estimates indicate a net growth rate for the reefs of ~5 mm/year. We expect that cold-water reefs will be found further north along the Barents Sea margin as general awareness on the geophysical signature and appearance of the reefs increases, because all known factors involved in reef establishment and growth are within the required intervals also further north.

  9. R and D studies for the development of a compact transmitter able to mimic the acoustic signature of a UHE neutrino interaction

    Calibration of acoustic neutrino telescopes with neutrino-like signals is essential to evaluate the feasibility of the technique and to know the efficiency of the detectors. However, it is not straightforward to have acoustic transmitters that, on one hand, are able to mimic the signature of a UHE neutrino interaction, that is, a bipolar acoustic pulse with the ‘pancake’ directivity, and on the other hand, fulfil practical issues such as ease of deployment and operation. This is a non-trivial problem since it requires directive transducer with cylindrical symmetry for a broadband frequency range. Classical solutions using linear arrays of acoustic transducers result in long arrays with many elements, which increase the cost and the complexity for deployment and operation. In this paper we present the extension of our previous R and D studies using the parametric acoustic source technique by dealing with the cylindrical symmetry and demonstrating that it is possible to use this technique for having a compact solution that could be much more easily included in neutrino telescope infrastructures or used in specific sea campaigns for calibration.

  10. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  11. Particle mesh simulations of the Lyman-alpha forest and the signature of Baryon Acoustic Oscillations in the intergalactic medium

    White, Martin; Carlson, Jordan; Heitmann, Katrin; Habib, Salman; Fasel, Patricia; Daniel, David; Lukic, Zarija

    2009-01-01

    We present a set of ultra-large particle-mesh simulations of the LyA forest targeted at understanding the imprint of baryon acoustic oscillations (BAO) in the inter-galactic medium. We use 9 dark matter only simulations which can, for the first time, simultaneously resolve the Jeans scale of the intergalactic gas while covering the large volumes required to adequately sample the acoustic feature. Mock absorption spectra are generated using the fluctuating Gunn-Peterson approximation which have approximately correct flux probability density functions (PDFs) and small-scale power spectra. On larger scales there is clear evidence in the redshift space correlation function for an acoustic feature, which matches a linear theory template with constant bias. These spectra, which we make publicly available, can be used to test pipelines, plan future experiments and model various physical effects. As an illustration we discuss the basic properties of the acoustic signal in the forest, the scaling of errors with noise ...

  12. Constraint on the growth factor of the cosmic structure from the damping of the baryon acoustic oscillation signature

    Nakamura, Gen; Huetsi, Gert; Sato, Takahiro; Yamamoto, Kazuhiro

    2009-01-01

    We determine a constraint on the growth factor by measuring the damping of the baryon acoustic oscillations in the matter power spectrum using the Sloan Digital Sky Survey luminous red galaxy sample. The damping of the BAO is detected at the one sigma level. We obtain \\sigma_8D_1(z=0.3) = 0.42^{+0.34}_{-0.28} at the 1\\sigma statistical level, where \\sigma_8 is the root mean square overdensity in a sphere of radius 8h^{-1}Mpc and D_1(z) is the growth factor at redshift z. The above result assu...

  13. Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor.

    Farrell, W E; Munk, Walter

    2013-10-01

    In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature. PMID:24116511

  14. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  15. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  16. Tracking and understanding the acoustic signature of fluido-fractures: a dual optical/micro-seismic study

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2015-04-01

    The characterization and comprehension of irreversible rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, control the mechanical stability of rock and soil formations during the injection or extraction of fluids, landslides with hydrological control, volcanic eruptions), or in the industry, as CO2 sequestration. In this study, analogue models are developed (similar to the previous work of Johnsen[1] but in rectangular shape) to study the instabilities developing during motion of fluid in dense porous materials: fracturing, fingering, channelling… We study these complex fluid/solid mechanical systems using two imaging techniques: fast optical imaging and high frequency resolution of acoustic emissions. Additionally, we develop physical models rendering for the fluid mechanics (similar to the work of Niebling[2] but with injection of fluid) in the channels and the propagation of microseismic waves around the fracture. We then confront a numerical resolution of this physical system with the observed experimental system. The experimental setup consists in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. During the experiments, the fluid is injected into the system with a constant injection pressure from the point opposite to the semi-permeable boundary. The fluid penetrates into the solid using the pore network. At the large enough injection pressures, the fluid also makes its way via creating channels, fractures to the semi-permeable boundary. During the experiments acoustic signals are recorded using different sensors then, those signals are compared and investigated further in both time and frequency domains

  17. Truck acoustic data analyzer system

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  18. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    Cheng, Ying; Liu, XiaoJun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Chen; Wei, Qi; Wu, DaJian [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  19. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution

  20. CERTIFICATELESS SIGNATURE AND BLIND SIGNATURE

    Zhang Lei; Zhang Futai

    2008-01-01

    Certificateless public key cryptography is a new paradigm introduced by AI-Riyami and Paterson. It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-based Public Key Cryptography (ID-PKC). Due to the advantages of the certificateless public key cryptography,a new efficient certificateless pairing-based signature scheme is presented,which has some advantages over previous constructions in computational cost. Based on this new signature scheme,a certificateless blind signature scheme is proposed. The security of our schemes is proven based on the hardness of computational Diffie-Hellman problem.

  1. Radiation signatures

    A new concept for modelling radiation risk is proposed. This concept is based on the proposal that the spectrum of molecular lesions, which we dub ''the radiation signature'', can be used to identify the quality of the causal radiation. If the proposal concerning radiation signatures can be established then, in principle, both prospective and retrospective risk determination can be assessed on an individual basis. A major goal of biophysical modelling is to relate physical events such as ionization, excitation, etc. to the production of radiation carcinogenesis. A description of the physical events is provided by track structure. The track structure is determined by radiation quality, and it can be considered to be the ''physical signature'' of the radiation. Unfortunately, the uniqueness characteristics of this signature are dissipated in biological systems in ∼10-9s. Nonetheless, it is our contention that this physical disturbance of the biological system eventuates later, at ∼100s, in molecular lesion spectra which also characterize the causal radiation. (author)

  2. Violins characterization through vibro-acoustic experiments

    RAVINA, Enrico

    2012-01-01

    International audience An approach of integrated vibratory and acoustic experiments oriented to identify the specific characteristics and peculiarities of violins is presented in the paper. Today the up-level luthery handicraft needs a scientific and methodical supports specifically oriented to underline the acoustic peculiarities of each musical instrument, able to define the “signature” of a specific instrument. The proposed approach integrates vibration and acoustic non destructive anal...

  3. Communication Acoustics

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  4. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  5. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  6. Acoustic cloaking and transformation acoustics

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  7. Acoustic cloaking and transformation acoustics

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  8. First images of thunder: Acoustic imaging of triggered lightning

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  9. Acoustical Imaging

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  10. Acoustic Transmitters for Underwater Neutrino Telescopes

    Ardid, Miguel; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to...

  11. Radiation acoustics

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  12. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  13. Battlefield acoustics

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  14. Acoustical Imaging

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  15. Acoustic telemetry

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive...

  16. Acoustics Research

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  17. Human signatures in urban environments using low cost sensors

    Winston, Mark; Zong, Lei; Calcutt, Wade; Jones, Barry; Houser, Jeff

    2006-05-01

    McQ has produced a family of small (98 cm 3), inexpensive ($100), unattended ground sensors well suited for urban environments. As a result, a broad range of data has been collected in urban settings. This paper discusses human signatures in urban environments using low cost seismic, infrared, acoustic, and magnetic transducers. Transducer performance and the effects of orientation, building construction, and environmental noise will be focused on. Detection methods used to exploit signatures and resulting performance statistics will also be discussed.

  18. Interpreting underwater acoustic images of the upper ocean boundary layer

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of physical processes occurring simultaneously beneath the surface of the sea. Sonars are so sensitive that they detected a new acoustic signature at the breaking of surface gravity waves in deep water, which resembles oblique motion-like vortices

  19. Qualified Mobile Server Signature

    Orthacker, Clemens; Centner, Martin; Kittl, Christian

    2010-01-01

    International audience A legal basis for the use of electronic signatures exists since the introduction of qualified electronic signatures in EU Directive 1999/ 93/EC. Although considered as key enablers for e-Government and e-Commerce, qualified electronic signatures are still not widely used. Introducing amobile component addresses most of the shortcomings of existing qualified signature approaches but poses certain difficulties in the security reasoning. The proposed server based mobile...

  20. Efficient Threshold Signature Scheme

    Sattar J Aboud

    2012-01-01

    Full Text Available In this paper, we introduce a new threshold signature RSA-typed scheme. The proposed scheme has the characteristics of un-forgeable and robustness in random oracle model. Also, signature generation and verification is entirely non-interactive. In addition, the length of the entity signature participate is restricted by a steady times of the length of the RSA signature modulus. Also, the signing process of the proposed scheme is more efficient in terms of time complexity and interaction.

  1. Acoustic emission

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  2. Infra-sound Signature of Lightning

    Arechiga, R. O.; Badillo, E.; Johnson, J.; Edens, H. E.; Rison, W.; Thomas, R. J.

    2012-12-01

    We have analyzed thunder from over 200 lightning flashes to determine which part of thunder comes from the gas dynamic expansion of portions of the rapidly heated lightning channel and which from electrostatic field changes. Thunder signals were recorded by a ~1500 m network of 3 to 4 4-element microphone deployed in the Magdalena mountains of New Mexico in the summers of 2011 and 2012. The higher frequency infra-sound and audio-range portion of thunder is thought to come from the gas dynamic expansion, and the electrostatic mechanism gives rise to a signature infra-sound pulse peaked at a few Hz. More than 50 signature infra-sound pulses were observed in different portions of the thunder signal, with no preference towards the beginning or the end of the signal. Detection of the signature pulse occurs sometimes only for one array and sometimes for several arrays, which agrees with the theory that the pulse is highly directional (i.e., the recordings have to be in a specific position with respect to the cloud generating the pulse to be able to detect it). The detection of these pulses under quiet wind conditions by different acoustic arrays corroborates the electrostatic mechanism originally proposed by Wilson [1920], further studied by Dessler [1973] and Few [1985], observed by Bohannon [1983] and Balachandran [1979, 1983], and recently analyzed by Pasko [2009]. Pasko employed a model to explain the electrostatic-to-acoustic energy conversion and the initial compression waves in observed infrasonic pulses, which agrees with the observations we have made. We present thunder samples that exhibit signature infra-sound pulses at different times and acoustic source reconstruction to demonstrate the beaming effect.

  3. Quantum threshold group signature

    2008-01-01

    In most situations, the signer is generally a single person. However, when the message is written on behalf of an organization, a valid message may require the approval or consent of several persons. Threshold signature is a solution to this problem. Generally speaking, as an authority which can be trusted by all members does not exist, a threshold signature scheme without a trusted party appears more attractive. Following some ideas of the classical Shamir’s threshold signature scheme, a quantum threshold group signature one is proposed. In the proposed scheme, only t or more of n persons in the group can generate the group signature and any t-1 or fewer ones cannot do that. In the verification phase, any t or more of n signature receivers can verify the message and any t-1 or fewer receivers cannot verify the validity of the signature.

  4. Acoustic Transmitters for Underwater Neutrino Telescopes

    Carlos D. Llorens

    2012-03-01

    Full Text Available In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars, high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

  5. Uncertainty in hydrological signatures

    Westerberg, I. K.; McMillan, H. K.

    2015-09-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  6. MMW, IR, and SAM signature collection

    Reichstetter, Fred; Ward, Mary E.

    2002-08-01

    During the development of smart weapon's seeker/sensors, it is imperative to collect high quality signatures of the targets the system is intended to engage. These signatures are used to support algorithm development so the system can find and engage the targets of interest in the specific kill area on the target. Englin AFB FL is the AF development center for munitions; and in support of the development effort, the 46th Test Wing (46 TW) has initiated significant improvements in collection capabilities for signatures in the MMW, Infrared and Seismic, Acoustic and Magnetic (SAM) spectrum. Additionally, the Joint Munitions Test and Evaluation program office maintains a fleet of foreign ground vehicle targets used for such signature collection including items such as tanks, SCUD missile launchers, air defense units such as SA-06, SA-8, SA-13, and associated ground support trucks and general purpose vehicles. The major test facility includes a 300 ft tower used for mounting the instrumentation suite that currently includes, 10, 35 and 94 GHz MMW and 2-5(mu) and 8-12(mu) IR instrumentation systems. This facility has undergone major improvements in terms of background signature reduction, construction of a high bay building to house the turntable on which the targets are mounted, and an additional in- ground stationary turntable primarily for IR signature collection. Our experience using this facility to collect signatures for the smart weapons development community has confirmed a significant improvement in quality and efficiency. The need for the stationary turntable signature collection capability was driven by the requirements of the IR community who are interested in collecting signatures in clutter. This tends to be contrary to the MMW community that desires minimum background clutter. The resulting location, adjacent to the MMW tower, allows variations in the type and amount of clutter background that could be incorporated and also provides maximum utilization of

  7. Blind Collective Signature Protocol

    Nikolay A. Moldovyan

    2011-06-01

    Full Text Available Using the digital signature (DS scheme specified by Belarusian DS standard there are designed the collective and blind collective DS protocols. Signature formation is performed simultaneously by all of the assigned signers, therefore the proposed protocols can be used also as protocols for simultaneous signing a contract. The proposed blind collective DS protocol represents a particular implementation of the blind multisignature schemes that is a novel type of the signature schemes. The proposed protocols are the first implementations of the multisignature schemes based on Belarusian signature standard.

  8. Unconditionally Secure Quantum Signatures

    Ryan Amiri

    2015-08-01

    Full Text Available Signature schemes, proposed in 1976 by Diffie and Hellman, have become ubiquitous across modern communications. They allow for the exchange of messages from one sender to multiple recipients, with the guarantees that messages cannot be forged or tampered with and that messages also can be forwarded from one recipient to another without compromising their validity. Signatures are different from, but no less important than encryption, which ensures the privacy of a message. Commonly used signature protocols—signatures based on the Rivest–Adleman–Shamir (RSA algorithm, the digital signature algorithm (DSA, and the elliptic curve digital signature algorithm (ECDSA—are only computationally secure, similar to public key encryption methods. In fact, since these rely on the difficulty of finding discrete logarithms or factoring large primes, it is known that they will become completely insecure with the emergence of quantum computers. We may therefore see a shift towards signature protocols that will remain secure even in a post-quantum world. Ideally, such schemes would provide unconditional or information-theoretic security. In this paper, we aim to provide an accessible and comprehensive review of existing unconditionally securesecure signature schemes for signing classical messages, with a focus on unconditionally secure quantum signature schemes.

  9. Acoustic lenses

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  10. Ultrasonic Doppler methods to extract signatures of a walking human.

    Mehmood, Asif; Sabatier, James M; Damarla, Thyagaraju

    2012-09-01

    Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics. In this work, 40 kHz ultrasonic sonar is employed to measure the Doppler signature generated by the motion of body segments using different electronic and signal processing schemes. These schemes are based on both analog and digital demodulation with homodyne and heterodyne receiver circuitry. The results and analyses from these different schemes are presented. PMID:22979839

  11. Machine Fault Signature Analysis

    K. B. Mulchandani

    2008-03-01

    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  12. Are there molecular signatures?

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  13. Advanced Missile Signature Center

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  14. THE ELECTRONIC SIGNATURE

    Voiculescu Madalina Irena; Gramada Dragu Argentina

    2009-01-01

    Article refers to significance and the digital signature in electronic commerce. Internet and electronic commerce open up many new opportunities for the consumer, yet, the security (or perceived lack of security) of exchanging personal and financial data

  15. Meteor signature interpretation

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  16. Stateless Transitive Signature Schemes

    MA Chun-guang; CAI Man-chun; YANG Yi-xian

    2004-01-01

    A new practical method is introduced to transform the stateful transitive signature scheme to stateless one without the loss of security. According to the approach, two concrete stateless transitive signature schemes based on Factoring and RSA are presented respectively. Under the assumption of the hardness of factoring and one-more- RSA-inversion problem, both two schemes are secure under the adaptive chosen-message attacks in random oracle model.

  17. Machine Fault Signature Analysis

    Mulchandani, K. B.; A.K. Wadhwani; Pratesh Jayaswal

    2008-01-01

    The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while deta...

  18. Acoustic hemostasis

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  19. Acoustic telemetry.

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  20. Acoustic Neuroma Educational Video

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  1. Use of acoustic vortices in acoustic levitation

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...

  2. Potential Competitive Dynamics of Acoustic Ecology.

    Radford, C A; Montgomery, J C

    2016-01-01

    The top predators in coastal marine ecosystems, such as whales, dolphins, seabirds, and large predatory fishes (including sharks), may compete with each other to exploit food aggregations. Finding these patchy food sources and being first to a food patch could provide a significant competitive advantage. Our hypothesis is that food patches have specific sound signatures that marine predators could detect and that acoustic sources and animal sensory capabilities may contribute to competition dynamics. Preliminary analysis shows that diving gannets have a distinct spectral signature between 80 and 200 Hz, which falls within the hearing sensitivity of large pelagic fishes. Therefore, we suggest that diving birds may contribute to the sound signatures of food aggregations, linking competition dynamics both above and below the water surface. PMID:26611047

  3. Acoustic dispersive prism

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  4. Spectroscopic Signatures Related to a Sunquake

    Matthews, Sarah A; Zharkov, Sergei; Green, Lucie M

    2015-01-01

    The presence of flare related acoustic emission (sunquakes) in some flares represents a severe challenge to our current understanding of flare energy transport processes. We present a comparison of new spectral observations from Hinode's EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the atmosphere above a sunquake, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the sunquake is determined using both time-distance and acoustic holography methods, and we find that, unlike many previous sunquake detections, the signal is rather dispersed, but that the time-distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using spectroscopic measurements we find that in this location at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger veloc...

  5. Actions for signature change

    Embacher, F

    1995-01-01

    This is a contribution on the controversy about junction conditions for classical signature change. The central issue in this debate is whether the extrinsic curvature on slices near the hypersurface of signature change has to be continuous ({\\it weak} signature change) or to vanish ({\\it strong} signature change). Led by a Lagrangian point of view, we write down eight candidate action functionals S_1,...S_8 as possible generalizations of general relativity and investigate to what extent each of these defines a sensible variational problem, and which junction condition is implied. Four of the actions involve an integration over the total manifold. A particular subtlety arises from the precise definition of the Einstein-Hilbert Lagrangian density |g|^{1/2} R[g]. The other four actions are constructed as sums of integrals over singe-signature domains. The result is that {\\it both} types of junction conditions occur in different models, i.e. are based on different first principles, none of which can be claimed t...

  6. NATO TG-53: acoustic detection of weapon firing joint field experiment

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  7. Seismic signatures of partial saturation on acoustic borehole modes

    Chao, G.E.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2007-01-01

    We present an exact theory of attenuation and dispersion of borehole Stoneley waves propagating along porous rocks containing spherical gas bubbles by using the Biot theory. An effective frequency-dependent fluid bulk modulus is introduced to describe the dynamic (oscillatory) behavior of the gas bu

  8. Quantum signature of analog Hawking radiation in momentum space

    Boiron, D.; Fabbri, A.; Larré, P. -É.; Pavloff, N; Westbrook, C. I.; Ziń, P.

    2014-01-01

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger...

  9. Acoustic Neurinomas

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  10. Acoustic Spatiality

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  11. Springer Handbook of Acoustics

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  12. Responsive acoustic surfaces

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design for the...... acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design was...... simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  13. Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Salomon, K; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C

    2005-01-01

    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.

  14. Practical quantum digital signature

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  15. Acoustic source for generating an acoustic beam

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  16. Acoustic vs VHF Lightning Location Systems

    Arechiga, R. O.; Lapierre, J. L.; Stock, M.; Erives, H.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    A single acoustic array can determine the 3-D location of lightning sources by using time of arrival differences arriving at the microphones and ranging techniques. The range is obtained from the time difference between the electromagnetic emission (detected by the acoustic data logger) and the acoustic signal produced by lightning. Audio frequency acoustic location systems are sensitive to the gas dynamic expansion of portions of a rapidly heating lightning channel, and so acoustic signatures are produced by a wide variety of different lightning discharge processes including: return strokes, K changes, M components, leader stepping and more. Infrasonic frequency range acoustic sensors are also sensitive to gas dynamic expansion, and in addition are also sensitive to processes which are electro-static in nature. RF location systems such as the Lightning Mapping Array (LMA) and the Continuous Sampling Broadband VHF Digital Interferometer (DITF) from New Mexico Tech (NMT) produce high quality maps of lightning discharges; however, they are sensitive to breakdown processes only and can not locate sources originating in already well conducting channels. During the summer of 2013 an acoustic audio-range array and an infrasound array were co-located with the NMT DITF in the Magdalena mountains of central New Mexico, where an LMA is also operating. The audio-range acoustic array consists of custom-designed GPS-synced data loggers with a 50 kHz sampling rate and audio range omnidirectional dynamic microphones. The infrasound array uses GPS time-synced data logger and custom-designed broadband microphones with flat response in the band of 0.01 to 500 Hz. The DITF uses flat plate dE/dt antennas bandpass filtered to 20 to 80 MHz, providing 2D maps of lightning emissions with very high (sub-microsecond) timing resolution. Both acoustic and interferometric arrays of antennas determine location of sources by coherently comparing the signals arriving at the antennas (or

  17. Aperiodic logarithmic signatures

    Baumeister, Barbara

    2011-01-01

    In this paper we propose a method to construct logarithmic signatures which are not amalgamated transversal and further do not even have a periodic block. The latter property was crucial for the successful attack on the system MST3 by Blackburn et al. [1]. The idea for our construction is based on the theory in Szab\\'o's book about group factorizations [12].

  18. The dark energy signature

    Though the concept of a dark energy driven accelerating universe was introduced by the author in 1997, to date dark energy itself, as described below has remained a paradigm. We quickly review these and find a second cosmological signature of the 1997 model, consistent with latest observations. (author)

  19. UV missile plume signatures

    Neele, F.P.; Schleijpen, H.M.A.

    2002-01-01

    As a result of the deployment of UV missile warning systems, recent years have seen an increasing interest in threat assessment in the UV band. Unfortunately, due to the different nature of the physical processes that are needed to describe a missile signature in the UV, available codes for the IR c

  20. Atlantic Herring Acoustic Surveys

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  1. Acoustic Neuroma Educational Video

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  2. Acoustic Neuroma Educational Video

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  3. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  4. Acoustic Neuroma Educational Video

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  5. Acoustic Neuroma Educational Video

    Full Text Available ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ...

  6. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA. ...

  7. Cystic acoustic neuromas

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  8. NW-MILO Acoustic Data Collection

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    There is an enduring requirement to improve our ability to detect potential threats and discriminate these from the legitimate commercial and recreational activity ongoing in the nearshore/littoral portion of the maritime domain. The Northwest Maritime Information and Littoral Operations (NW-MILO) Program at PNNL’s Coastal Security Institute in Sequim, Washington is establishing a methodology to detect and classify these threats - in part through developing a better understanding of acoustic signatures in a near-shore environment. The purpose of the acoustic data collection described here is to investigate the acoustic signatures of small vessels. The data is being recorded continuously, 24 hours a day, along with radar track data and imagery. The recording began in August 2008, and to date the data contains tens of thousands of signals from small vessels recorded in a variety of environmental conditions. The quantity and variety of this data collection, with the supporting imagery and radar track data, makes it particularly useful for the development of robust acoustic signature models and advanced algorithms for signal classification and information extraction. The underwater acoustic sensing system is part of a multi-modal sensing system that is operating near the mouth of Sequim Bay. Sequim Bay opens onto the Straight of Juan de Fuca, which contains part of the border between the U.S. and Canada. Table 1 lists the specific components used for the NW-MILO system. The acoustic sensor is a hydrophone permanently deployed at a mean depth of about 3 meters. In addition to a hydrophone, the other sensors in the system are a marine radar, an electro-optical (EO) camera and an infra-red (IR) camera. The radar is integrated with a vessel tracking system (VTS) that provides position, speed and heading information. The data from all the sensors is recorded and saved to a central server. The data has been validated in terms of its usability for characterizing the

  9. A PRACTICAL PROXY SIGNATURE SCHEME

    Sattar Aboud

    2012-01-01

    Full Text Available A proxy signature scheme is a variation of the ordinary digital signature scheme which enables a proxy signer to generate signatures on behalf of an original signer. In this paper, we present two efficient types of proxy signature scheme. The first one is the proxy signature for warrant partial delegation combines an advantage of two well known warrant partial delegation schemes. This proposed proxy signature scheme is based on the difficulty of solving the discrete logarithm problem. The second proposed scheme is based on threshold delegation the proxy signer power to sign the message is share. We claim that the proposed proxy signature schemes meet the security requirements and more practical than the existing proxy signature schemes.

  10. Two Improved Digital Signature Schemes

    2001-01-01

    In this paper, two improved digital signature schemes are presented based on the design of directed signaturescheme [3]. The peculiarity of the system is that only if the scheme is specific recipient, the signature is authenticated.Since the scheme adds the screen of some information parameters, the difficulty of deciphered keys and the security ofdigital signature system are increased.

  11. ACOUSTICAL STANDARDS NEWS.

    Blaeser, Susan B; Struck, Christopher J

    2016-03-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Susan B. Blaeser.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27036268

  12. Signal Classification for Acoustic Neutrino Detection

    Neff, M; Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; Richardt, C

    2011-01-01

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of one percent is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  13. Simulating acoustic waves in spotted stars

    Papini, Emanuele; Gizon, Laurent; Hanasoge, Shravan M

    2015-01-01

    Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the non-magnetic effects of starspots on global modes with angular degree $\\ell \\leq 2$ in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for...

  14. AST Launch Vehicle Acoustics

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  15. On Constructing Certificateless Proxy Signature from Certificateless Signature

    WAN Zhong-mei; LAI Xue-jia; WENG Jian; HONG Xuan; LONG Yu; JIA Wei-wei

    2008-01-01

    In proxy signature schemes,an original signer A delegates its signing capability to a proxy signer B,in such a way that B can sign message on behalf of A.The recipient of the final message verifies at the same time that B computes the signature and that A has delegated its signing capability to B.Recently many identity-based (ID-based) proxy signature schemes have been proposed,however,the problem of key escrow is inherent in this setting.Certificateless cryptography can overcome the key escrow problem.In this paper,we present a general security model for certificateless proxy signature scheme.Then,we give a method to construct a secure certificateless proxy scheme from a secure certificateless signature scheme,and prove that the security of the construction can be reduced to the security of the original certificateless signature scheme.

  16. The acoustic communities: Definition, description and ecological role.

    Farina, Almo; James, Philip

    2016-09-01

    An acoustic community is defined as an aggregation of species that produces sound by using internal or extra-body sound-producing tools. Such communities occur in aquatic (freshwater and marine) and terrestrial environments. An acoustic community is the biophonic component of a soundtope and is characterized by its acoustic signature, which results from the distribution of sonic information associated with signal amplitude and frequency. Distinct acoustic communities can be described according to habitat, the frequency range of the acoustic signals, and the time of day or the season. Near and far fields can be identified empirically, thus the acoustic community can be used as a proxy for biodiversity richness. The importance of ecoacoustic research is rapidly growing due to the increasing awareness of the intrusion of anthropogenic sounds (technophonies) into natural and human-modified ecosystems and the urgent need to adopt more efficient predictive tools to compensate for the effects of climate change. The concept of an acoustic community provides an operational scale for a non-intrusive biodiversity survey and analysis that can be carried out using new passive audio recording technology, coupled with methods of vast data processing and storage. PMID:27262416

  17. Signatures of nonthermal melting

    Tobias Zier

    2015-09-01

    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  18. The signature package on Witt spaces, II. Higher signatures

    Albin, Pierre; Mazzeo, Rafe; Piazza, Paolo

    2009-01-01

    This is a sequel to the paper "The signature package on Witt spaces, I. Index classes" by the same authors. In the first part we investigated, via a parametrix construction, the regularity properties of the signature operator on a stratified Witt pseudomanifold, proving, in particular, that one can define a K-homology signature class. We also established the existence of an analytic index class for the signature operator twisted by a C^*_r\\Gamma Mischenko bundle and proved that the K-homology signature class is mapped to the signature index class by the assembly map. In this paper we continue our study, showing that the signature index class is invariant under rational Witt bordisms and stratified homotopies. We are also able to identify this analytic class with the topological analogue of the Mischenko symmetric signature recently defined by Banagl. Finally, we define Witt-Novikov higher signatures and show that our analytic results imply a purely topological theorem, namely that the Witt-Novikov higher sign...

  19. Acoustic streaming in microchannels

    Tribler, Peter Muller

    , and experimental results for the streaming-induced drag force dominated motion of particles suspended in a water-filled microchannel supporting a transverse half-wavelength resonance. The experimental and theoretical results agree within a mean relative dierence of approximately 20%, a low deviation given state......This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...

  20. Vibro-acoustics

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  1. Springer handbook of acoustics

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  2. Acoustic chemometric prediction of total solids in bioslurry

    Ihunegbo, Felicia; Madsen, Michael; Esbensen, Kim;

    2012-01-01

    several earlier dedicated attempts. A full-scale feasibility study based on standard addition experiments involving natural plant biomass was conducted using multivariate calibration (Partial Least Squares Regression, PLS-R) of acoustic signatures against dry matter content (total solids, TS). Prediction...... range of 5.8–10.8% w/w dry matter. Based on these excellent prediction performance measures, it is concluded that acoustic chemometrics has come of age as a full grown PAT approach for on-line monitoring of dry matter (TS) in complex bioslurry, with a promising application potential in other biomass...

  3. Localized Acoustic Surface Modes

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  4. Shallow Water Acoustic Laboratory

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  5. Handbook of Engineering Acoustics

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  6. Acoustic dispersive prism

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  7. Signatures of AGN feedback

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  8. Clustering signatures classify directed networks

    Ahnert, S. E.; Fink, T. M. A.

    2008-09-01

    We use a clustering signature, based on a recently introduced generalization of the clustering coefficient to directed networks, to analyze 16 directed real-world networks of five different types: social networks, genetic transcription networks, word adjacency networks, food webs, and electric circuits. We show that these five classes of networks are cleanly separated in the space of clustering signatures due to the statistical properties of their local neighborhoods, demonstrating the usefulness of clustering signatures as a classifier of directed networks.

  9. Indicators and signatures

    Full text: The goal of this presentation is to give an idea of the methodology used to deal with proliferation problems. It can be useful for chemical, biological, balistical proliferation. Here, we underline nuclear proliferation scenarios. Nevertheless, the overall approach is also similar to activities related to terrorism. Everyone knows that to strengthen the NPT/IAEA safeguards and similar treaties verification protocols, the organisations in charge need to build strong capabilities to assess known situations and also to prepare themselves to unknown, or undeclared events and activities. To accomplish this, to collect, analyze, build ad hoc knowledge, organisations have to select the information, to manage the enormous amount of available data. Rather recently, the emergence of new crisis has confirmed the central and vital role that information processing plays at each levels of the international or national non-proliferation community. It is why looking for indicators and signatures is so important, to focus on pertinent information, that could mean something from a nuclear proliferation perspective. This allows people dealing with nuclear proliferation not to be overwhelmed by tons of paper or G bites of memory. A strong need for expertise. Identifying, select and following indicators or looking for signatures is not an easy task. It requires strong expertise. From the development and maintenance of its nuclear deterrence, France acquired expertise in the design, production of fissile material, manufacture and testing of nuclear weapons. There is also in France a long history of nuclear achievements, with small or large scale facilities, both in civilian and military fields; each step of the nuclear fuel cycle can be very precisely described. French nuclear technical assessment relies on Commissariat a l'Energie Atomique (CEA, i.e. Atomic Energy Commission). Since 1958, CEA laboratories are in charge of nuclear civilian and military applications. Other

  10. Expressiveness considerations of XML signatures

    Jensen, Meiko; Meyer, Christopher

    2011-01-01

    more and more challenging. In this paper, we investigate this issue, describing how an attacker can still interfere with Web Services communication even in the presence of XML Signatures. Additionally, we discuss the interrelation of XML Signatures and XML Encryption, focussing on their security......XML Signatures are used to protect XML-based Web Service communication against a broad range of attacks related to man-in-the-middle scenarios. However, due to the complexity of the Web Services specification landscape, the task of applying XML Signatures in a robust and reliable manner becomes...

  11. What Is an Acoustic Neuroma

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  12. Parent-offspring communication in the Nile crocodile Crocodylus niloticus: do newborns' calls show an individual signature?

    Vergne, Amélie L.; Avril, Alexis; Martin, Samuel; Mathevon, Nicolas

    2007-01-01

    Young Nile crocodiles Crocodylus niloticus start to produce calls inside the egg and carry on emitting sounds after hatching. These vocalizations elicit maternal care and influence the behaviour of other juveniles. In order to investigate the acoustic structure of these calls, focusing on a possible individual signature, we have performed acoustic analyses on 400 calls from ten young crocodiles during the first 4 days after hatching. Calls have a complex acoustic structure and are strongly frequency modulated. We assessed the differences between the calls of the individuals. We found a weak individual signature. An individual call-based recognition of young by the mother is thus unlikely. In other respects, the call acoustic structure changes from the first to the fourth day after hatching: fundamental frequency progressively decreases. These modifications might provide important information to the mother about her offspring—age and size—allowing her to customize her protective care to best suit the needs of each individual.

  13. Ultrasonic acoustic health monitoring of ball bearings using neural network pattern classification of power spectral density

    Kirchner, William; Southward, Steve; Ahmadian, Mehdi

    2010-03-01

    This paper presents a generic passive non-contact based approach using ultrasonic acoustic emissions (UAE) to facilitate the neural network classification of bearing health, and more specifically the bearing operating condition. The acoustic emission signals used in this study are in the ultrasonic range (20-120 kHz). A direct benefit of microphones capable of measurements in this frequency range is their inherent directionality. Using selected bands from the UAE power spectrum signature, it is possible to pose the health monitoring problem as a multi-class classification problem, and make use of a single neural network to classify the ultrasonic acoustic emission signatures. Artificial training data, based on statistical properties of a significantly smaller experimental data set is used to train the neural network. This specific approach is generic enough to suggest that it is applicable to a variety of systems and components where periodic acoustic emissions exist.

  14. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    2010-01-01

    Roč. 4, č. 1 (2010), s. 25-36. ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  15. Acoustic Neuroma Educational Video

    Full Text Available ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ...

  16. PROXY BLIND SIGNATURE BASED ON ECDLP

    SATARUPA PRADHAN,

    2011-03-01

    Full Text Available Proxy blind signature combines the properties of both proxy signature and blind signature. In a proxy signature scheme, a signer delegates his signing power to a proxy, who signs a message on behalf of the original signer. In a blind signature scheme, the signer cannot link the relationship between the blind message and the signature of the chosen message. Therefore, it is very suitable for electronic commerceapplication. In this paper, a proxy blind signature scheme based on ECDLP (Elliptic Curve Discrete Logarithm Problem has been proposed, which satisfy the security properties of both the blind signature and the proxy signature. Analysis shows that our scheme is secure and efficient.

  17. Ocean acoustic hurricane classification.

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  18. Cochlear bionic acoustic metamaterials

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  19. Computational Ocean Acoustics

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  20. Acoustic Signals and Systems

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will...... present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  1. Signatures de l'invisible

    CERN Press Office. Geneva

    2000-01-01

    "Signatures of the Invisible" is an unique collaboration between contemporary artists and contemporary physicists which has the potential to help redefine the relationship between science and art. "Signatures of the Invisible" is jointly organised by the London Institute - the world's largest college of art and design and CERN*, the world's leading particle physics laboratory. 12 leading visual artists:

  2. Quantum Signature of Analog Hawking Radiation in Momentum Space

    Boiron, D.; Fabbri, A.; Larré, P.-É.; Pavloff, N.; Westbrook, C. I.; Ziń, P.

    2015-07-01

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  3. Use of acoustic analogy for marine propeller noise characterisation

    Lidtke, Artur; Turnock, Stephen; Humphrey, Victor

    2015-01-01

    Being able to predict shipborne noise is of significant importance to international maritime community. Porous Ffowcs-Williams Hawkings acoustic analogy is used with cavitation model by Sauer & Schnerr in order to predict the noise signature of the Potsdam Propeller operating in open water. The radiation pattern is shown to be predominantly affected by a dipole source, in addition to less prominent sources at the propeller plane and in the wake. It is shown that the predicted sound pressure l...

  4. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  5. Flat acoustic lens by acoustic grating with curled slits

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating

  6. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  7. UTSig: A Persian Offline Signature Dataset

    Soleimani, Amir; Fouladi, Kazim; Araabi, Babak N.

    2016-01-01

    The crucial role of datasets in signature verification systems has motivated researchers to collect signature samples. However, with regard to the distinct characteristics of Persian signature, existing offline signature datasets cannot be used in Persian systems. This paper presents a new and public Persian offline signature dataset, UTSig, which consists of 8280 images from 115 classes that each class has 27 genuine, 3 opposite-hand signatures of the genuine signer, and 42 skilled forgeries...

  8. Underwater Applications of Acoustical Holography

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  9. Predicting Acoustics in Class Rooms

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be...

  10. On the signature of LINCOS

    Ollongren, Alexander

    2010-12-01

    Suppose the international SETI effort yields the discovery of some signal of evidently non-natural origin. Could it contain linguistic information formulated in some kind of Lingua Cosmica? One way to get insight into this matter is to consider what specific (bio) linguistic signature( s) could be attached to a cosmic language for interstellar communication—designed by humans or an alien society having reached a level of intelligence (and technology) comparable to or surpassing ours. For this purpose, we consider in the present paper the logico-linguistic system LINCOS for ( A)CETI, developed during a number of years by the author in several papers and a monograph [1]. The system has a two-fold signature, which distinguishes it significantly from natural languages. In fact abstract and concrete signatures can be distinguished. That an abstract kind occurs is due to the manner in which abstractions of reality are represented in LINCOS-texts. They can take compound forms because the system is multi-expressive—partly due to the availability of inductive (recursive) entities. On the other hand, the concrete signature of LINCOS is related to the distribution of delimiters and predefined tokens in texts. Assigning measures to concrete signatures will be discussed elsewhere. The present contribution concentrates on the abstract signature of the language. At the same time, it is realized that an alien Lingua Cosmica might, but not necessarily needs to have this kind of signatures.

  11. Tunable acoustic metamaterials

    Babaee, Sahab; Viard, Nicolas; Fang, Nicholas; Bertoldi, Katia

    2015-03-01

    We report a new class of active and switchable acoustic metamaterials composed of three-dimensional stretchable chiral helices arranged on a two-dimensional square lattice. We investigate the propagation of sounds through the proposed structure both numerically and experimentally and find that the deformation of the helices can be exploited as a novel and effective approach to control the propagation of acoustic waves. The proposed concept expands the ability of existing acoustic metamaterials since we demonstrate that the deformation can be exploited to turn on or off the band gap, opening avenues for the design of adaptive noise-cancelling devices.

  12. Paradigm Signature S8

    2007-01-01

    不说不知道,Paradigm在北美市场可是占用率位居前列的品牌,而且产品在世界各地获奖连连.足以证明他的成功。但风光的背后,肯定离不开默默的耕耘。Paradigm工厂就在加拿大,全世界销售的Paradigm产品都出自这个地广人稀、资源丰富、风景优美的北美绿洲。Paradigm的产品线甚广,SignatureS8是其中的现役旗舰。和很多旗舰产品动不动就要价数十万的品牌相比,这个Paradigm的产品定位可是务实得多,

  13. Statistical clumped isotope signatures.

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  14. Secure mediated certificateless signature scheme

    YANG Chen; MA Wen-ping; WANG Xin-mei

    2007-01-01

    Ju et al proposed a certificateless signature scheme with instantaneous revocation by introducing security mediator (SEM) mechanism. This article presents a detailed cryptoanalysis of this scheme and shows that, in their proposed scheme, once a valid signature has been produced, the signer can recover his private key information and the instantaneous revocation property will be damaged. Furthermore, an improved mediated signature scheme, which can eliminate these disadvantages, is proposed, and security proof of the improved scheme under elliptic curve factorization problem (ECFP) assumption and bilinear computational diffie-hellman problem (BCDH) assumption is also proposed.

  15. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu; Liang Feng; Yan-Feng Chen

    2009-01-01

    Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surf...

  16. The vocal imitation of bottlenose dolphin (Tursiops truncatus) signature whistles: their use in vocal matching interactions and their role as vocal labels

    King, Stephanie Laura

    2012-01-01

    The bottlenose dolphin uses vocal learning to develop its own unique acoustic signal. This signal encodes the identity of the signaller, and is known as the animal’s signature whistle. The dolphin’s ability for vocal learning means that the signature whistle of one animal may be found in the vocal repertoire of other animals. This copying of signature whistle types may allow conspecifics to label or address one another. This thesis investigated the use of signature whistle copying in both cap...

  17. Acoustic integrated extinction

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  18. Acoustics Noise Test Cell

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  19. Principles of musical acoustics

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  20. Compact acoustic refrigerator

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  1. Acoustics lecturing in Mexico

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  2. Acoustic Igniter Project

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  3. Thermal Acoustic Fatigue Apparatus

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  4. Acoustic Neuroma Educational Video

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  5. Acoustic coherent perfect absorbers

    In this paper, we explore the possibility of achieving acoustic coherent perfect absorbers. Through numerical simulations in two dimensions, we demonstrate that the energy of coherent acoustic waves can be totally absorbed by a fluid absorber with specific complex mass density or bulk modulus. The robustness of such absorbing systems is investigated under small perturbations of the absorber parameters. We find that when the resonance order is the lowest and the size of the absorber is comparable to the wavelength in the background, the phenomenon of perfect absorption is most stable. When the wavelength inside both the background and the absorber is much larger than the size of the absorber, perfect absorption is possible when the mass density of the absorber approaches the negative value of the background mass density. Finally, we show that by using suitable dispersive acoustic metamaterials, broadband acoustic perfect absorption may be achieved. (papers)

  6. Ocean acoustic reverberation tomography.

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  7. Autonomous Acoustic Receiver System

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  8. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  9. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    Plzeň : University of West Bohemia, 2009 - (Adámek, V.; Zajíček, M.). s. 1-2 ISBN 978-80-7043-824-4. [Výpočtová mechanika 2009. 09.11.2009-11.11.2009, Nečtiny] R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  10. The autonomous acoustic buoy

    Pellicer, Francisco; Reitsma, Robert; Agüera, Joaquín; Marinas, Alexandra

    2013-01-01

    The Acoustic Buoy is a project between the Laboratory of Applied Bioacoustics (LAB) and the Universitat Politècnica de Catalunya (UPC). In areas that the human activities produce high noise levels, such as oil exploration or construction, there is a need to monitor the environment for the presence of cetaceans. Another need is for fishing, to prevent endangered species from being killed. This can be done with an Autonomous Acoustic Buoy (AAB). Mooring or anchoring at to the seaflo...

  11. Anal acoustic reflectometry

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  12. Initial Semantics for Strengthened Signatures

    Hirschowitz, André; 10.4204/EPTCS.77.5

    2012-01-01

    We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax). Our strengthened arities admit colimits, which allows the treatment of the \\lambda-calculus with explicit substitution.

  13. Initial Semantics for Strengthened Signatures

    André Hirschowitz

    2012-02-01

    Full Text Available We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax. Our strengthened arities admit colimits, which allows the treatment of the λ-calculus with explicit substitution.

  14. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  15. Equiangular Frames and Signature Sets

    Singh, Preeti

    2009-01-01

    We will present a relation between real equiangular frames and certain special sets in groups which we call signature sets and show that many equiangular frames arise in this manner. Then we will define quasi-signature sets and will examine equiangular frames associated to these subsets of groups. We will extend these results to complex equiangular frames where the inner product between any pair of vectors is a common multiple of a cube root of unity and exhibit equiangular frames that arise ...

  16. Object Recognition Using Spatiotemporal Signatures

    James V Stone

    1998-01-01

    The sequence of images generated by motion between observer and object specifies a spatiotemporal signature for that object. Evidence is presented that such spatiotemporal signatures are used in object recognition. Subjects learned novel, three-dimensional, rotating objects from image sequences in a continuous recognition task. During learning, the temporal order of images of a given object was constant. During testing, the order of images in each sequence was reversed, relative to its order ...

  17. An arbitrated quantum signature scheme

    Zeng, G; Zeng, Guihua; Keitel, Christoph H.

    2002-01-01

    The general principle for a quantum signature scheme is proposed and investigated based on ideas from classical signature schemes and quantum cryptography. The suggested algorithm is implemented by a symmetrical quantum key cryptosystem and Greenberger-Horne-Zeilinger (GHZ) triplet states and relies on the availability of an arbitrator. We can guarantee the unconditional security of the algorithm, mostly due to the correlation of the GHZ triplet states and the use of quantum one-time pads.

  18. Contract Signature Using Quantum Information

    De Sousa, P B M; Ramos, Rubens Viana; Sousa, Paulo Benicio Melo de

    2006-01-01

    This paper describes how to perform contract signature in a fair way using quantum information. The protocol proposed permits two partners, users of a communication network, to exchange their signatures with non-repudiation. For this, we assume that there is a trustable arbitrator, responsible for the authentication of the signers and that performs a central task in a quantum teleportation protocol of the XOR function between two classical bits.

  19. Visual identification by signature tracking

    Munich, Mario E.; Perona, Pietro

    2003-01-01

    We propose a new camera-based biometric: visual signature identification. We discuss the importance of the parameterization of the signatures in order to achieve good classification results, independently of variations in the position of the camera with respect to the writing surface. We show that affine arc-length parameterization performs better than conventional time and Euclidean arc-length ones. We find that the system verification performance is better than 4 percent error on skilled fo...

  20. Acoustic vector sensor signal processing

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  1. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  2. SIGNATURE: A workbench for gene expression signature analysis

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  3. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-02-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.

  4. A theoretical study of acoustic glitches in low-mass main-sequence stars

    There are regions in stars, such as ionization zones and the interface between radiative and convective regions, that cause a localized sharp variation in the sound speed. These are known as 'acoustic glitches'. Acoustic glitches leave their signatures on the oscillation frequencies of stars, and hence these signatures can be used as diagnostics of these regions. In particular, the signatures of these glitches can be used as diagnostics for the position of the second helium ionization zone and that of the base of the envelope convection zone. With the help of stellar models, we study the properties of these acoustic glitches in main-sequence stars. We find that the acoustic glitch due to the helium ionization zone does not correspond to the dip in the adiabatic index Γ1 caused by the ionization of He II, but to the peak in Γ1 between the He I and He II ionization zones. We find that it is easiest to study the acoustic glitch that is due to the helium ionization zone in stars with masses in the range 0.9-1.2 M ☉.

  5. Acoustic comfort in eating establishments

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating...

  6. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu

    2009-12-01

    Full Text Available Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surface evanescent waves have also been recognized to play key roles to reach acoustic subwavelength imaging and enhanced transmission.

  7. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... the first phases in the architectural process and set out a reverse strategy for simulation programmes to do so - from developing acoustics from given spaces to developing spaces from given acoustics...

  8. Signature molecular descriptor : advanced applications.

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  9. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  10. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  11. Acoustic detection of pneumothorax

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  12. Seamount acoustic scattering

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  13. Acoustics waves and oscillations

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  14. Practical acoustic emission testing

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  15. Advanced Active Acoustics Lab (AAAL)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  16. A New Wave of Acoustics.

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  17. A Century of Acoustic Metrology

    Rasmussen, Knud

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  18. Graph Analytics for Signature Discovery

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  19. Strong acoustic wave action

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  20. Acoustic black holes

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  1. Structural Acoustics and Vibrations

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  2. Densitometry By Acoustic Levitation

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  3. Equiangular Frames and Signature Sets

    Singh, Preeti

    2009-01-01

    We will present a relation between real equiangular frames and certain special sets in groups which we call signature sets and show that many equiangular frames arise in this manner. Then we will define quasi-signature sets and will examine equiangular frames associated to these subsets of groups. We will extend these results to complex equiangular frames where the inner product between any pair of vectors is a common multiple of a cube root of unity and exhibit equiangular frames that arise from groups in this manner.

  4. A Signature Scheme with Non-Repudiation

    XIN Xiangjun; GUO Xiaoli; XIAO Guozhen

    2006-01-01

    Based on the Schnorr signature scheme, a new signature scheme with non-repudiation is proposed. In this scheme, only the signer and the designated receiver can verify the signature signed by the signer, and if necessary, both the signer and the designated receiver can prove and show the validity of the signature signed by the signer. The proof of the validity of the signature is noninteractive and transferable. To verify and prove the validity of the signature, the signer and the nominated receiver needn't store extra information besides the signature. At the same time, neither the signer nor the designated receiver can deny a valid signature signed. Then, there is no repudiation in this new signature scheme. According to the security analysis of this scheme, it is found the proposed scheme is secure against existential forgery on adaptive chosen message attack.

  5. Acoustic-gravity waves, theory and application

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  6. Underwater Acoustic Networking Techniques

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  7. COMBUSTION ACOUSTICS DIAGNOSTICS

    This is an Exploratory Research Project that was awarded by APPCD for research on developing an acoustic flame condition monitor. It will involve a bench scale experiment of 4-6 weeks duration to record adjacent audible energy of a Bunsen burner. The experiment will require a d...

  8. Acoustic Signals and Systems

    present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  9. Distributed acoustic sensing for pipeline monitoring

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  10. Galaxy interactions : The HI signature

    Sancisi, R; Barnes, JE; Sanders, DB

    1999-01-01

    HI observations are an excellent tool for investigating tidal interactions. Ongoing major and minor interactions which can lead to traumatic mergers or to accretion and the triggering of star formation, show distinct HI signatures. Interactions and mergers in the recent past can also be recognized i

  11. Disaster relief through composite signatures

    Hawley, Chadwick T.; Hyde, Brian; Carpenter, Tom; Nichols, Steve

    2012-06-01

    A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper builds on previous work developing innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral. For the composite signature approach to be successful it requires effective data fusion and visualization. This plays a key role in both preparedness and the response and recovery which are critical to saving lives. Visualization tools enhance the overall understanding of the crisis by pulling together and analyzing the data, and providing a clear and complete analysis of the information to the organizations/agencies dependant on it for a successful operation. An example of this, Freedom Web, is an easy-to-use data visualization and collaboration solution for use in homeland security, emergency preparedness, situational awareness, and event management. The solution provides a nationwide common operating picture for all levels of government through a web based, map interface. The tool was designed to be utilized by non-geospatial experts and is easily tailored to the specific needs of the users. Consisting of standard COTS and open source databases and a web server, users can view, edit, share, and highlight information easily and quickly through a standard internet browser.

  12. Elliptic Curve Blind Digital Signature Schemes

    YOULin; YANGYixian; WENQiaoyan

    2003-01-01

    Blind signature schemes are important cryptographic protocols in guaranteeing the privacy or anonymity of the users.Three new blind signature schemes and their corresponding generalizations are pro-posed. Moreover, their securities are simply analyzed.

  13. Blind Signature Scheme Based on Chebyshev Polynomials

    Maheswara Rao Valluri

    2011-12-01

    Full Text Available A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete logarithms ofChebyshev polynomials.

  14. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  15. Frequency Analysis of Acoustic Emission - Application to machining and welding

    Ultrasonic acoustic waves have been seized and exploited within a bandwidth ranging from 30 kHz to 55 kHz for non-destructive control when boring 3 kinds of steel with a digitaly programmed drill. In addition, these waves have been considered in soldering two steels and one aluminium using T.I.G. process. Spectrum analysis of acoustic emissions produced during the drill is closely related to the extraction of turnings from the metal. Because of the wick's progressive wearing out, the spectrum tends to be close to the machine's own noise spectrum. Meanwhile in the soldering operation of test-tubes of 2 mm thickness, the frequency analysis shows a particular frequency called ''signature'' corresponding to the flow of protection gas. Other frequencies associated to some internal defects in the soldering process as a delay in the fissure and a lack in the fusion have been detected

  16. Frequency Analysis of Acoustic Emission - Application to machining and welding

    Snoussi, A.

    1987-01-01

    Ultrasonic acoustic waves were seized and exploited within a bandwidth ranging from 30 kHz to 55 kHz for non-destructive control when boring three kinds of steel with a digitally programmed drill. In addition, these waves were considered in soldering two steels and one aluminum using T.I.G. process. Spectrum analysis of acoustic emissions produced during the drill is closely related to the extraction of turnings from the metal. Because of the wick's progressive wearing out, the spectrum tends to be close to the machine's own noise spectrum. Meanwhile in the soldering operation of test-tubes of 2 mm thickness, the frequency analysis shows a particular frequency called signature corresponding to the flow of protection gas. Other frequencies associated to some internal defects in the soldering process as a delay in the fissure and a lack in the fusion were detected.

  17. Combining passive thermography and acoustic emission for large area fatigue damage growth assessment of a composite structure

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-05-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.

  18. Helium signature in red giant oscillation patterns observed by Kepler

    Vrard, M; Barban, C; Belkacem, K; Elsworth, Y; Kallinger, T; Hekker, S; Samadi, R; Beck, P G

    2015-01-01

    The space-borne missions CoRoT and Kepler have provided a large amount of precise photometric data. Among the stars observed, red giants show a rich oscillation pattern that allows their precise characterization. Long-duration observations allow for investigating the fine structure of this oscillation pattern. A common pattern of oscillation frequency was observed in red giant stars, which corresponds to the second-order development of the asymptotic theory. This pattern, called the universal red giant oscillation pattern, describes the frequencies of stellar acoustic modes. We aim to investigate the deviations observed from this universal pattern, thereby characterizing them in terms of the location of the second ionization zone of helium. We also show how this seismic signature depends on stellar evolution. We measured the frequencies of radial modes with a maximum likelihood estimator method, then we identified a modulation corresponding to the departure from the universal oscillation pattern. We identify ...

  19. Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology

    Cyr-Racine, Francis-Yan; Raccanelli, Alvise; Sigurdson, Kris

    2013-01-01

    If all or a fraction of the dark matter (DM) were coupled to a bath of dark radiation (DR) in the early Universe we expect the combined DM-DR system to give rise to acoustic oscillations of the dark matter until it decouples from the DR. Much like the standard baryon acoustic oscillations, these dark acoustic oscillations (DAO) imprint a characteristic scale, the sound horizon of dark matter, on the matter power spectrum. We compute in detail how the microphysics of the DM-DR interaction affects the clustering of matter in the Universe and show that the DAO physics also gives rise to unique signatures in the temperature and polarization spectra of the cosmic microwave background (CMB). We use cosmological data from the CMB, baryon acoustic oscillations (BAO), and large-scale structure to constrain the possible fraction of interacting DM as well as the strength of its interaction with DR. Like nearly all knowledge we have gleaned about dark matter since inferring its existence this constraint rests on the betr...

  20. Acoustical monitoring of diesel engines in reverberant environment

    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs

  1. Flat acoustic lens by acoustic grating with curled slits

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  2. Acoustics Discipline Overview

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  3. Acoustic methodology review

    Schlegel, R. G.

    1982-01-01

    It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.

  4. Acoustic Tractor Beam

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  5. Acoustic classification of dwellings

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...... insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms of...... descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  6. Polarization signatures of airborne particulates

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  7. Acoustic emission source modeling

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  8. The acoustics of snoring.

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  9. Robust RSA for Digital Signature

    Virendra Kumar; Puran Krishen Koul

    2011-01-01

    The RSA cryptosystem is currently used in a wide variety of products, platforms, and industries around the world. It is found in many commercial software products and is planned to be in many more. In hardware, the RSA algorithm can be found in secure telephones, on ethernet network cards, and on smart cards.It offers encryption and digital signatures (authentication). In this paper we will illustrate the application and problem associated with RSA Algorithm.

  10. Quantum signatures of Chimera states

    Bastidas, V. M.; Omelchenko, I.; ZAKHAROVA, A.; Schöll, E.; Brandes, T.

    2015-01-01

    Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum ...

  11. Nonlinear control of magnetic signatures

    Niemoczynski, Bogdan

    Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and

  12. Robust RSA for Digital Signature

    Virendra Kumar

    2011-11-01

    Full Text Available The RSA cryptosystem is currently used in a wide variety of products, platforms, and industries around the world. It is found in many commercial software products and is planned to be in many more. In hardware, the RSA algorithm can be found in secure telephones, on ethernet network cards, and on smart cards.It offers encryption and digital signatures (authentication. In this paper we will illustrate the application and problem associated with RSA Algorithm.

  13. Acoustically enhanced heat transport

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  14. Selection signatures in Shetland ponies.

    Frischknecht, M; Flury, C; Leeb, T; Rieder, S; Neuditschko, M

    2016-06-01

    Shetland ponies were selected for numerous traits including small stature, strength, hardiness and longevity. Despite the different selection criteria, Shetland ponies are well known for their small stature. We performed a selection signature analysis including genome-wide SNPs of 75 Shetland ponies and 76 large-sized horses. Based upon this dataset, we identified a selection signature on equine chromosome (ECA) 1 between 103.8 Mb and 108.5 Mb. A total of 33 annotated genes are located within this interval including the IGF1R gene at 104.2 Mb and the ADAMTS17 gene at 105.4 Mb. These two genes are well known to have a major impact on body height in numerous species including humans. Homozygosity mapping in the Shetland ponies identified a region with increased homozygosity between 107.4 Mb and 108.5 Mb. None of the annotated genes in this region have so far been associated with height. Thus, we cannot exclude the possibility that the identified selection signature on ECA1 is associated with some trait other than height, for which Shetland ponies were selected. PMID:26857482

  15. Signature Inversion in Odd-odd Nuclei

    LIU Min-liang; ZHANG Yu-hu; ZHOU Xiao-hong; GUO Ying-xiang; LEI Xiang-guo; GUO Wen-tao

    2009-01-01

    Signature inversion in odd-odd nuclei is investigated by using a proton and a neutron coupling to the coherent state of the core.Two parameters are employed in the Hamiltonian to set the energy scales of rotation,neutron-proton coupling and their competition.Typical level staggering is extracted from the calculated level energies.The calculation can approximately reproduce experimental signature inversion.Signature inversion is attributed to the rotational motion and neutronproton residual interaction having reversed signature splitting rules.It is found signature inversion can appear at axially symmetric shape and high-K band.

  16. Infrared signature studies of aerospace vehicles

    Mahulikar, Shripad P.; Sonawane, Hemant R.; Arvind Rao, G.

    2007-10-01

    Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.

  17. A New Signature Scheme with Shared Verification

    JIA Xiao-yun; LUO Shou-shan; YUAN Chao-wei

    2006-01-01

    With expanding user demands, digital signature techniques are also being expanded greatly, from single signature and single verification techniques to techniques supporting multi-users. This paper presents a new digital signature scheme vith shared verification based on the fiat-shamir signature scheme. This scheme is suitable not only for digital signatures of one public key, but also for situations where multiple public keys are required. In addition, the scheme can resist all kinds of collusion, making it more practicable and safer. Additionally it is more efficient than other schemes.

  18. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  19. The electro-acoustic transition process of pulsed corona discharge in conductive water

    Huang, Yifan; Yan, Hui; Wang, Bingzhe; Zhang, Xuming; Liu, Zhen; Yan, Keping

    2014-06-01

    A pulsed corona discharge in conductive water is studied theoretically and experimentally via pre-discharge analysis, thermodynamic and dynamic processes of a plasma-containing bubble, an acoustic signature and energy partitioning. The total particle density and electron density inside the bubble, internal temperature and pressure, bubble radius and bubble wall Mach number are simulated by solving a set of equations including the ideal gas equation, Rayleigh equation and energy balance equation. The bubble radius is also measured by a high-speed charge-coupled device camera on a homemade experimental device. The acoustic waveforms and their power spectral density are calculated indirectly. By using several diagnostic tools, the electrical parameters of the load, light emission from the plasma and acoustic waveforms are recorded simultaneously. Simulation and experimental results of the bubble radius and acoustic signature agree reasonably well over the range of energy inputs from 5 to 30 J per pulse. Different kinds of terminations or intermediates of the energy transition process are analysed through simulation and experimental data. The electro-acoustic efficiency varies from 0.8% to 1.9%, while most of the discharge energy is consumed by circuit loss, Joule heating and thermal radiation, or is transformed into kinetic energy in the water.

  20. The electro-acoustic transition process of pulsed corona discharge in conductive water

    A pulsed corona discharge in conductive water is studied theoretically and experimentally via pre-discharge analysis, thermodynamic and dynamic processes of a plasma-containing bubble, an acoustic signature and energy partitioning. The total particle density and electron density inside the bubble, internal temperature and pressure, bubble radius and bubble wall Mach number are simulated by solving a set of equations including the ideal gas equation, Rayleigh equation and energy balance equation. The bubble radius is also measured by a high-speed charge-coupled device camera on a homemade experimental device. The acoustic waveforms and their power spectral density are calculated indirectly. By using several diagnostic tools, the electrical parameters of the load, light emission from the plasma and acoustic waveforms are recorded simultaneously. Simulation and experimental results of the bubble radius and acoustic signature agree reasonably well over the range of energy inputs from 5 to 30 J per pulse. Different kinds of terminations or intermediates of the energy transition process are analysed through simulation and experimental data. The electro-acoustic efficiency varies from 0.8% to 1.9%, while most of the discharge energy is consumed by circuit loss, Joule heating and thermal radiation, or is transformed into kinetic energy in the water. (paper)

  1. High-Frequency Seafloor Acoustics

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  2. Fundamentals of Shallow Water Acoustics

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  3. Latest Trends in Acoustic Sensing

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  4. Wireless Acoustic Measurement System

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  5. Provably secure robust threshold partial blind signature

    CAO Zhenfu; ZHU Haojin; LU Rongxing

    2006-01-01

    Threshold digital signature and blind signature are playing important roles in cryptography as well as in practical applications such as e-cash and e-voting systems.Over the past few years, many cryptographic researchers have made considerable headway in this field. However, to our knowledge, most of existing threshold blind signature schemes are based on the discrete logarithm problem. In this paper, we propose a new robust threshold partial blind signature scheme based on improved RSA cryptosystem.This scheme is the first threshold partial blind signature scheme based on factoring, and the robustness of threshold partial blind signature is also introduced. Moreover, in practical application, the proposed scheme will be especially suitable for blind signature-based voting systems with multiple administrators and secure electronic cash systems to prevent their abuse.

  6. A new quantum blind signature with unlinkability

    Shi, Wei-Min; Zhang, Jian-Biao; Zhou, Yi-Hua; Yang, Yu-Guang

    2015-08-01

    Recently, some quantum blind signature protocols have been proposed. However, the previous schemes cannot satisfy the unlinkability requirement. To overcome the drawback of unlinkability in the previous schemes, we propose a new quantum blind signature based on Bell states with the help of an authentic party. In this paper, we provide a method to inject a randomizing factor into a message when it is signed by the signer and then get rid of the blind factor from the blinded signature when it is verified by the verifier. Even when the message owner publishes the message-signature pair, the signer cannot identify the association between the message-signature pair and the blind signature he generated. Therefore, our scheme really realizes unlinkability property. At last, analysis results show that this scheme satisfies the basis security requirements of a weak signature such as no-counterfeiting, no-disavowing, blindness and traceability, and our total efficiency is not less than the previous schemes.

  7. Magneto-photo-acoustic imaging

    Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Truby, Ryan; Homan, Kimberly; Joshi, Pratixa; Chen, Yun-Sheng; Sokolov, Konstantin; Emelianov, Stanislav

    2011-01-01

    Magneto-photo-acoustic imaging, a technique based on the synergy of magneto-motive ultrasound, photoacoustic and ultrasound imaging, is introduced. Hybrid nanoconstructs, liposomes encapsulating gold nanorods and iron oxide nanoparticles, were used as a dual-contrast agent for magneto-photo-acoustic imaging. Tissue-mimicking phantom and macrophage cells embedded in ex vivo porcine tissue were used to demonstrate that magneto-photo-acoustic imaging is capable of visualizing the location of cel...

  8. Room acoustic auralization with Ambisonics

    Polack, Jean-Dominique; Leão Figueiredo, Fábio

    2012-01-01

    International audience During the year of 2009, the room acoustics group of the LAM (Équipe Lutheries, Acoustique, Musique de l’Institut Jean Le Rond d’Alembert - Université Pierre et Marie Curie, Paris) performed a series of acoustical measurements in music halls in Paris. The halls were chosen in regarding their importance to the historic, architectural or acoustic domains. The measured ensemble of fourteen rooms includes quite different architectural designs. The measurements were carri...

  9. Combined Environment Acoustic Chamber (CEAC)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  10. Acoustic transparency and slow sound using detuned acoustic resonators

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  11. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  12. An Identity Based Aggregate Signature from Pairings

    Yike Yu

    2011-04-01

    Full Text Available An aggregate signature is a useful digital signature that supports aggregation: Given n signatures on n distinct messages from n distinct users, aggregate signature scheme is possible to aggregate all these signature into a single short signature. This single signature, along with the n original messages will convince any verifier that the n users did indeed sign the n original messages respectively (i.e., for i=1,...,n user i signed message  mi. In this paper, we propose an identity based aggregate signature scheme which requires constant pairing operations in the verification and the size of aggregate signature is independent of the number of signers. We prove that the proposed signature scheme is secure against existential forgery under adaptively chosen message and identity attack in the random oracle model assuming the intractability of the computational Diffie-Hellman problem.

  13. Acoustic Mechanical Feedthroughs

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  14. Genetic signatures of heroin addiction

    Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang

    2016-01-01

    Abstract Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086

  15. Infrared signatures for remote sensing

    PNL's capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm-1 at 2 laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at ∼10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl4 at 770--800 cm-1. This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO2 laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks

  16. Mesospheric, Thermospheric, and Ionospheric Responses to Acoustic and Gravity Waves Generated by Transient Forcing

    Snively, J. B.; Zettergren, M. D.

    2014-12-01

    Strong acoustic waves with periods ~1-4 minutes have been confirmed to perturb the ionosphere following their generation by earthquakes [e.g., Garcia et al., GRL, 40(5), 2013] and volcanic eruption events [e.g., Heki, GRL, 33, L14303, 2006]. Clear acoustic and gravity wave signatures have also been reported in ionospheric data above strong tropospheric convection [Nishioka, GRL, 40(21), 2013], and prior modeling results suggest that convectively-generated acoustic waves with ~3-4 minute periods are readily detectable above their sources in TEC [Zettergren and Snively, GRL, 40(20), 2013]. These observations have provided quantitative insight into the coupling of processes occurring near Earth's surface with the upper atmosphere and ionosphere over short time-scales. Here, we investigate acoustic waves and short-period gravity waves generated by sources near ground level, and the observable responses of the mesosphere, lower-thermosphere, and ionosphere (MLTI) systems. Numerical simulations are performed using a nonlinear, compressible, atmospheric dynamics model, in cylindrically-axisymmetric coordinates, to investigate wave generation, upward propagation, steepening, and dissipation. Acoustic waves may produce observable signatures in the mesospheric hydroxyl airglow layer [e.g., Snively, GRL, 40(17), 2013], and can strongly perturb the lower-thermosphere and E- and F-region ionosphere, prior to the arrival of simultaneously-generated gravity waves. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for mid and low latitudes using a 2D dipole magnetic field coordinate system [Zettergren and Snively, GRL, 40(20), 2013], we investigate its response to realistic acoustic wave perturbations. In particular, we demonstrate that the MLT and ionospheric responses are significantly and nonlinearly determined by the acoustic wave source geometry, spectrum, and amplitude, in addition to the local ambient state of the

  17. Taming Acoustic Cavitation

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.

  18. Dynamic acoustic tractor beams

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  19. Dynamic acoustic tractor beams

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  20. Lecture Notes On Acoustics

    This book mentions string vibration and wave, one-dimension wave and wave equation, characteristic impedance, governing equation of string, and wave energy from string, wave equation of wave and basic physical quantity like one-dimension wave equation, sound unit, sound intensity and energy, sound movement in a surface of discontinuity with transmission loss of sound by partition, and Snell's law, radiation, scatter and diffraction and sound in closed space with Sabine's theory, sound characteristic of closed space and duct acoustics.

  1. Saturation Physics: Probes and Signatures

    A hadron wavefunction at high energy contains many gluons which carry a small fraction x of the valence quark energy. At fixed impact parameters as one increases the hadron energy, the gluon occupation number in the wavefunction eventually saturates and becomes of order of 1/αs, the maximum allowed by QCD. The resulting hadron state at high energy is then called a Color Glass Condensate (CGC). Signatures and predictions of the formalism are reviewed and compared with the experimental data at RHIC.

  2. Quantum signatures of chimera states

    Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.

    2015-12-01

    Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.

  3. Quantum broadcasting multiple blind signature with constant size

    Xiao, Min; Li, Zhenli

    2016-06-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  4. Acoustic Center or Time Origin?

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  5. Propagation of Ion Acoustic Perturbations

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  6. Acoustic engineering and technology '90

    Acoustic monitoring, testing and diagnosis in machines, production processes and products enhance the uptimes and profitability of machinery and plants. 18 papers discuss the current state of the art of acoustic monitoring systems including integrated factory planning as well as industrial health, and noise protection. (DG)

  7. Acoustic Metamaterials and Phononic Crystals

    2013-01-01

    This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.

  8. Digital Controller For Acoustic Levitation

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  9. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.

    2012-12-01

    Methane is a prominent greenhouse gas that escapes naturally from thermogenic reservoirs as seepage from marine and lacustrine biogenic sources as bubble ebullition. Geologic methane emissions are critically important contributors to the global methane budget however, few quantitative flux measurements are available for shallow waters. This gap in knowledge is critical as in these settings gas can easily transit as bubbles through the water column and directly influence global atmospheric budgets. Video and active acoustic (sonar) measurements of bubble flux have spatial limitations requiring predictable bubble emission location. Passive acoustics are less affected by these limitations, in addition, they can provide data in water too shallow for effective sonar bubble observations. Lab tests were undertaken to quantify the acoustic signature of bubbles formed in non-cohesive sediments. specifically focusing on mechanisms that complicate interpretation of acoustic data. Lab tests then were compared to field data to provide measurement calibration/validation. The principles behind the acoustic analysis method are based on the Minnaert equation, which relates a bubble radius and acoustic frequency. Bubble size and the resultant acoustic frequency from known flows and capillary tube diameters are well documented; however changing sediment pathways adds to the complexity of bubble formation and the resultant bubble acoustic signal. These complex signals were investigated in a lab tank with a thick, cohesive fine-grained sediment bed, through which bubbles produced by a syringe pump migrated to the sediment-water interface. Then, the resultant bubbles were diverted into clear water and measured from high speed, high definition video, while the acoustic signature of bubble formation was recorded concurrently by a hydrophone. Bubble formation is influenced by currents, which shifts the acoustical signal towards a higher frequency with a more complex pattern than the

  10. MEMS Based Acoustic Array

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  11. Acoustics and Hearing

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  12. Musical acoustics demonstrations

    Hoekje, P. L.

    2003-10-01

    The ASA Musical Acoustics Demonstrations website (trial version at http://www.bw.edu/~phoekje) includes sound files, video clips, program code listings, and other material for demonstrations related to musical acoustics. Many of the sound demonstrations may be experienced either as expositions, in which the phenomena are explained before they are presented, or as experiments, in which the explanation comes after listeners have had the opportunity to draw their own conclusions. Suggestions are provided for apparatus construction and classroom experiments, as well as for building simple musical instruments. Software is recommended if it is available free and compatible with multiple personal computer operating systems. For example, Audacity (http://audacity.sourceforce.net) is a sound file editor and analyzer that can be used to visually represent sounds and manipulate them. Source files are included for the synthesized sound examples, which were created in Csound (http://csounds.com), so that interested users may create their own variations. Source code is also included for visual demonstrations created in Visual Python and Python (http://www.python.org), an efficient, high level programming language. Suggestions, criticisms, and contributions are always welcome! [Work supported by ASA and Baldwin-Wallace College.

  13. Time-reversal acoustics

    Fink, Mathias [Laboratoire Ondes et Acoustique, Ecole Superieure de Physique et de Chimie Industrielle de la Ville de Paris, Universite Denis Diderot, UMR CNRS 7587, 10 Rue Vauquelin, 75005 Paris (France)], E-mail: mathias.fink@espci.fr

    2008-10-15

    Time-reversal mirrors (TRMs) refocus an incident acoustic field to the position of the original source regardless of the complexity of the propagation medium. TRM's have now been implemented in a variety of physical scenarios from MHz ultrasonics with order centimeter aperture size to hundreds/thousands of Hz in ocean acoustics with order hundred meter aperture size. Common to this broad range of scales is a remarkable robustness exemplified by observations at all scales that the more complex the medium between the probe source and the TRM, the sharper the focus. The relation between the medium complexity and the size of the focal spot is studied in this paper. It is certainly the most exciting property of TRM compared to standard focusing devices. A TRM acts as an antenna that uses complex environments to appears wider than it is, resulting for a broadband pulse in a refocusing quality that does not depend of the TRM aperture. In this paper, we investigate the time-reversal approach in various media of increasing complexity and we discuss the link existing between time-reversal approach and local helioseismology where Green's functions can be extracted from diffusive noise.

  14. Signature splitting in 135Pr

    In-beam spectroscopic study of 135Pr was made using 91 MeV 120Sn(19F,4n) reaction. A strong negative parity proton band based on the h/sub 11/2-/ 1/2[550] configuration with α = -1/2 was observed. Possibly α = +1/2 unfavored band is observed. Also two positive parity proton bands are observed most likely based on the g/sub 7/2+/ 5/2[413] configurations with α = +-1/2. In all cases (except for the (π,α) = (-,+1/2) band) the backbending is caused by alignment of two h/sub 11/2-/ 9/2[514] quasi-neutrons. For the strongly decoupled π(-) bands the observed signature splitting decreases with increasing rotational frequency. The signature splitting of the positive parity bands increases with rotational frequency and then inverts above the backbending. This is interpreted to be caused by the quasi-neutrons, which drive the γ-deformation to the negative values. 18 refs., 6 figs

  15. Collider Signatures of Goldstone Bosons

    Cheung, Kingman; Yuan, Tzu-Chiang

    2014-01-01

    Recently Weinberg suggested that Goldstone bosons arising from the spontaneous breakdown of some global hidden symmetries can interact weakly in the early Universe and account for a fraction of the effective number of neutrino species N_{eff}, which has been reported persistently 2\\sigma away from its expected value of three. In this work, we study in some details a number of experimental constraints on this interesting idea based on the simplest possibility of a global U(1), as studied by Weinberg. We work out the decay branching ratios of the associated light scalar field \\sigma and suggest a possible collider signature at the Large Hadron Collider (LHC). In some corners of the parameter space, the scalar field \\sigma can decay into a pair of pions with a branching ratio of order 10% while the rest is mostly a pair of Goldstone bosons. The collider signature would be gluon fusion into the standard model Higgs boson gg -> H followed by H -> \\sigma \\sigma -> (\\pi\\pi) (\\alpha\\alpha) where \\alpha is the Goldsto...

  16. Update on PIN or Signature

    Matyas, Vashek

    We promised a year back some data on the experiment that we ran with chip and PIN. If you recall, it was the first phase that we reported on here last year, where we used the University bookstore, and two PIN pads, one with very solid privacy shielding, the other one without any. We ran 17 people through the first one, 15 people through the second one, and we also had the students do, about half of them forging the signature, half of them signing their own signature, on the back of the card that is used for purchasing books, or whatever.We had a second phase of the experiment, after long negotiations, and very complicated logistics, with a supermarket in Brno where we were able to do anything that we wanted through the experiment for five hours on the floor, with only the supermarket manager, the head of security, and the camera operators knowing about the experiment. So the shop assistants, the ground floor security, everybody basically on the floor, did not know about the experiment. That was one of the reasons why the supermarket, or management, agreed to take part, they wanted to control their own internal security procedures.

  17. Theoretical Characterizaiton of Visual Signatures

    Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.

    2015-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.

  18. Acoustic Absorption in Porous Materials

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  19. Acoustic monitoring method and device

    The present invention provides a method of eliminating resonance noises upon acoustically monitoring the operation state of power plants and plant equipments whether they are normal or not, to improve sensitivity for detecting abnormalities. Namely, a microphone detects acoustic signals including leaking sounds and converts them into electric signals. An amplifier amplifies the electric signals to an appropriate level. A noise eliminating section eliminates resonance noises other than the leaking sounds. An abnormality judging section judges presence of abnormality based on the level of the acoustic signals of the leaking sounds. With such a constitution, a plurality of resonance noises generated also during normal plant operation are automatically eliminated. Since resonance noises as a factor of lowering the sensitivity for abnormal sound detection are not included in the acoustic signals, the sensitivity for the abnormal sound detection is improved. Accordingly, the performance of the acoustic monitoring device is improved. (I.S.)

  20. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection. PMID:23821459

  1. Cryptoschemes Based on New Signature Formation Mechanism

    A.A.Moldovyan

    2006-12-01

    Full Text Available Several variants of new digital signature schemes (DSS based on the discrete logarithm and factorization problems have been proposed. Considered DSS are characterized in that a novel mechanism of the signature generation is used, in which two parameters of the (k,S or (R,S signature are defined after solving a system of two congruences. In the case of composite modulus additional restrictions conditions have been introduced for selection of the public key.

  2. Mediated Certificateless Signature without Random Oracles

    Minghui Zheng

    2011-08-01

    Full Text Available It is worthwhile challenges to deal with the key escrow problem and key revocation in identity-based signatures. We first introduce the notion of security-mediated certificateless signature scheme and proves the scheme in the standard model. The mediated certificateless public key cryptography not only provides a fast revocation with fine granularity but also overcomes the key escrow property which exists in ID-based signature. The scheme is provably secure without random oracles.

  3. AN INSPECTION ON OFFLINE SIGNATURE AUTHENTICATION

    Sapna Agrawal; Neelmani Verma

    2015-01-01

    In the era of emergent technology, security is that the foremost anxiety to avoid replicas and counterfeits. There are diverse Biometric systems that enable in personal identification, amongst those verification systems, one system is Signature Verification System. Signatures are substantiated discrimination on-line and offline systems. Every human being has their own writing style and hence their signature is used in the financial domain for identity verification. So it is necess...

  4. Short Signatures from Difficulty of Factorization Problem

    Nikolay A. Moldovyan

    2009-01-01

    Full Text Available New ways are proposed to design short signature schemes based on difficulty of factorizing a composite number n that is a product of two large secret primes. The paper presents digital signature schemes in which the signature represents a pair of numbers (k,g and its length is reduced to 320~bits providing security of the RSA cryptosystem with 1024-bit modulus.

  5. Acoustic Remote Sensing of Rogue Waves

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  6. Tsunami and acoustic-gravity waves in water of constant depth

    Hendin, Gali; Stiassnie, Michael [Faculty of Civil and Environmental Engineering, Technion – Israel institute of technology, Haifa 32000 (Israel)

    2013-08-15

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  7. Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid

    Gerace, Dario; Carusotto, Iacopo

    2012-01-01

    We theoretically study Hawking radiation processes from an analog acoustic black hole in a flowing superfluid of exciton-polaritons in a one-dimensional semiconductor microcavity. Polaritons are coherently injected into the microcavity by a laser pump with a suitably tailored spot profile. An event horizon with a large analog surface gravity is created by inserting a defect in the polariton flow along the cavity plane. Experimentally observable signatures of the analog Hawking radiation are i...

  8. Tsunami and acoustic-gravity waves in water of constant depth

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami

  9. Tsunami and acoustic-gravity waves in water of constant depth

    Hendin, Gali; Stiassnie, Michael

    2013-08-01

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  10. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background.

    Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen

    2015-08-28

    The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum. PMID:26371637

  11. Application of Wavelet Packet Analysis to the Measurement of the Baryon Acoustic Oscillation

    Kadowaki, Kevin; Garcia, Noel; Ford, Taurean; Pando, Jesus; SDSS-FAST Collaboration

    2016-03-01

    We develop a method of wavelet packet analysis to measure the Baryon Acoustic Oscillation (BAO) peak and apply this method to the CMASS galaxy catalog from the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We compare our results to a fiducial ?CDM flat cosmological model and detect a BAO signature in the power spectrum comparable to the previous consensus results of the BOSS collaboration. We find DA = 1365rd /rd , fid at z = . 54 . Member ID Forthcoming.

  12. Institute of Geophysics, Planetary Physics, and Signatures

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  13. On reliable discovery of molecular signatures

    Björkegren Johan

    2009-01-01

    Full Text Available Abstract Background Molecular signatures are sets of genes, proteins, genetic variants or other variables that can be used as markers for a particular phenotype. Reliable signature discovery methods could yield valuable insight into cell biology and mechanisms of human disease. However, it is currently not clear how to control error rates such as the false discovery rate (FDR in signature discovery. Moreover, signatures for cancer gene expression have been shown to be unstable, that is, difficult to replicate in independent studies, casting doubts on their reliability. Results We demonstrate that with modern prediction methods, signatures that yield accurate predictions may still have a high FDR. Further, we show that even signatures with low FDR may fail to replicate in independent studies due to limited statistical power. Thus, neither stability nor predictive accuracy are relevant when FDR control is the primary goal. We therefore develop a general statistical hypothesis testing framework that for the first time provides FDR control for signature discovery. Our method is demonstrated to be correct in simulation studies. When applied to five cancer data sets, the method was able to discover molecular signatures with 5% FDR in three cases, while two data sets yielded no significant findings. Conclusion Our approach enables reliable discovery of molecular signatures from genome-wide data with current sample sizes. The statistical framework developed herein is potentially applicable to a wide range of prediction problems in bioinformatics.

  14. DESIGN OF INTELLIGENT CONTROL SYSTEM USING ACOUSTIC PARAMETERS FOR GRINDING MILL OPERATION

    Sonali Sen

    2013-02-01

    Full Text Available This paper utilizes acoustic parameters such as FS,NC, N, P, INC, FL, FH, W for acoustic signals S of different running conditions of a ballmill to deriveout the acoustic signatures and hence control signals, which is to be used for designing the control systems of the mill. The parameters FS, NC, N, P, INC, FL, FH and W are represented by sample rate in Hz, number of cepstral coefficients, length of frame in samples, number of filters in filter bank, frame increment, low end of the lowest filter, high end of highest filter and the window over which the analysis is to be performed respectively. The work establishes an appropriate theoretical background that helps to predict dynamic breakage characteristics with respect to particle size distribution of materials, adequately supported by experimental data. The signatures of different running conditions of grinding mill have been extracted from the captured signal in time frame these have been used as feedback signal to monitor the grinding operation. Condenser based microphones have been used for capturing acoustic signals in time domain directly in computers and stored for further analysis. Matlab R2010b has been used for different analysis of the experiment. On analyzing the signatures, it has been observed whether the fines are produced progressively to attain the desired size range or the mill producing undesired products. Thus, the approach has been used in this paper has the ability to arrive in the stage of optimum grinding by tuning parameters of the mill in real time, and also it can prevent the mill to enter into an erroneous state. Moreover, on study it has found that the present scheme can be used more accurately in comparison to the earlier work of the author. This paper presents an implementation scheme to use acoustic signal as the control signal to regulate the operation of a grinding mill.

  15. Impact-acoustics-based health monitoring of tile-wall bonding integrity using principal component analysis

    Tong, F.; Tso, S. K.; Hung, M. Y. Y.

    2006-06-01

    The use of the acoustic features extracted from the impact sounds for bonding integrity assessment has been extensively investigated. Nonetheless, considering the practical implementation of tile-wall non-destructive evaluation (NDE), the traditional defects classification method based directly on frequency-domain features has been of limited application because of the overlapping feature patterns corresponding to different classes whenever there is physical surface irregularity. The purpose of this paper is to explore the clustering and classification ability of principal component analysis (PCA) as applied to the impact-acoustics signature in tile-wall inspection with a view to mitigating the adverse influence of surface non-uniformity. A clustering analysis with signature acquired on sample slabs shows that impact-acoustics signatures of different bonding quality and different surface roughness are well separated into different clusters when using the first two principal components obtained. By adopting as inputs the feature vectors extracted with PCA applied, a multilayer back-propagation artificial neural network (ANN) classifier is developed for automatic health monitoring and defects classification of tile-walls. The inspection results obtained experimentally on the prepared sample slabs are presented and discussed, confirming the utility of the proposed method, particularly in dealing with tile surface irregularity.

  16. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  17. Controlling sound with acoustic metamaterials

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  18. Electrostatic supersolitons and double layers at the acoustic speed

    Verheest, Frank, E-mail: frank.verheest@ugent.be [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-01-15

    Supersolitons are characterized by subsidiary extrema on the sides of a typical bipolar electric field signature or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It has been proven that supersolitons may exist in several plasmas having at least three constituent species, but they cannot be found in weakly nonlinear theory. Another recent aspect of pseudopotential theory is that in certain plasma models and parameter regimes solitons and/or double layers can exist at the acoustic speed, having no reductive perturbation counterparts. Importantly, they signal coexistence between solitons having positive and negative polarity, in that one solution can be realized at a time, depending on infinitesimal perturbations from the equilibrium state. Weaving the two strands together, we demonstrate here that one can even find supersolitons and double layers at the acoustic speed, as illustrated using the model of cold positive and negative ions, in the presence of nonthermal electrons following a Cairns distribution. This model has been discussed before, but the existence and properties of supersolitons at the acoustic speed were not established at the time of publication.

  19. Preliminary theoretical acoustic and rf sounding calculations for MILL RACE

    As participant in DOE/ISA's Ionospheric Monitoring Program, LLNL has the responsibility of providing theoretical understanding and calculational support for experimental activities carried out by Los Alamos National Laboratory in using ionospheric sounders to remotely detect violent atmospheric phenomena. We have developed a system of interconnected computer codes which simulate the entire range of atmospheric and ionospheric processes involved in this remote detection procedure. We are able to model the acoustic pulse shape from an atmospheric explosion, the subsequent nonlinear transport of this energy to all parts of the immediate atmosphere including the ionosphere, and the propagation of high-frequency ratio waves through the acoustically perturbed ionosphere. Los Alamos' coverage of DNA's MILL RACE event provided an excellent opportunity to assess the credibility of the calculational system to correctly predict how ionospheric sounders would respond to a surface-based chemical explosion. In this experiment, 600 tons of high explosive were detonated at White Sands Missile Range at 12:35:40 local time on 16 September 1981. Vertical incidence rf phase sounders and bistatic oblique incidence rf sounders fielded by Los Alamos and SRI International throughout New Mexico and southern Colorado detected the ionospheric perturbation that ensued. A brief account of preliminary calculations of the acoustic disturbance and the predicted ionospheric sounder signatures for MILL RACE is presented

  20. Surface Acoustic Wave Devices

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model of a...... output waveguide and the MZI can thus be used as an optical switch. It is explained how the mechanical model of the SAW is coupled to a model of the optical waves such that the change in effective refractive index introduced in the MZI arms by the SAW can be calculated. Results of a parameter study of...

  1. Evoked acoustic emission

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar to...... the emission evoked by click stimuli. It is concluded that significant information is obtained by the click rather than by the tonal stimuli. The click-evoked emissions were also recorded from both ears in a consecutive series of 100 full-term and otherwise normal babies 2-4 days after birth. The...

  2. Acoustic emission testing

    Grosse, Christian U

    2008-01-01

    Acoustic Emission (AE) techniques have been studied in civil engineering for a long time. The techniques are recently going to be more and more applied to practical applications and to be standardized in the codes. This is because the increase of aging structures and disastrous damages due to recent earthquakes urgently demand for maintenance and retrofit of civil structures in service for example. It results in the need for the development of advanced and effective inspection techniques. Thus, AE techniques draw a great attention to diagnostic applications and in material testing. The book covers all levels from the description of AE basics for AE beginners (level of a student) to sophisticated AE algorithms and applications to real large-scale structures as well as the observation of the cracking process in laboratory specimen to study fracture processes.

  3. Acoustic fault injection tool (AFIT)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  4. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  5. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  6. Flow rate estimation using acoustic field distortions caused by turbulent flows: time-reversal approach

    Zimmermann, A. L.; Pérez, N.; Adamowski, J. C.

    2011-05-01

    A new acoustic technique for flow rate estimation is proposed here. This technique is based on the traditional ultrasonic cross-correlation flow meter, but instead of using a continuous wave or pulse trains in each transmitter-receiver pair, the acoustic time-reversal technique is applied. The system relies on the principle that a turbulent flow with multiple vortices will cause random distortions in a given acoustic field; hence, analyzing this noise caused in the ultrasound signal by the turbulence over time allows a "signature" or "tag" of the flow to be defined. In other words, the vortices modify the frequency response function of the flowing system uniquely, since the distortion is assumed to be random. The use of the time-reversal procedure in the cross-correlation flow meter provides improvements in several aspects: it simplifies the signal processing needed after the reception of the signals, avoiding the use of a demodulator to obtain the signature of the vortex; the signal is focused at the position of the reception transducer and; the sensitivity is also increased because the wave travels twice in the acoustic channel. The method is theoretically discussed showing its limitations and improvements. Experimental results in a laboratory water tank are also presented.

  7. Fusing geophysical signatures of locally recorded surface explosions to improve blast detection

    Carmichael, Joshua D.; Nemzek, Robert; Arrowsmith, Stephen; Sentz, Kari

    2016-03-01

    We recorded acoustic, seismic and radio-frequency signatures of 70 solid charge (˜2-12 kg) surface explosions (shots) at local distances (0.1-1.5 km) to determine if such signals could be fused for blast monitoring. We observed that each geophysical signature was sufficiently repeatable between similar shots to be identifiable with multichannel correlation detectors. Using template signals from a large explosion, we then processed heavily contaminated data recording a smaller shot with these detectors, and missed or marginally detected the resultant target signals. By then fusing the p-values of these statistics through Fisher's combined probability test, we clearly identified the same explosion signals at thresholds consistent with the false alarm on noise rates of the correlation detectors. This resulting Fisher test thereby provided high-probability detections, zero false alarms and higher theoretical detection capability.

  8. An asymptotic model in acoustics:acoustic drift equations

    Vladimirov, Vladimir; Ilin, Konstantin

    2013-01-01

    A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.

  9. Anisotropic spectra of acoustic turbulence

    We found universal anizopropic spectra of acoustic turbulence with the linear dispersion law ω(k)=ck within the framework of generalized kinetic equation which takes into account the finite time of three-wave interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The implications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main result of the article is that the spectra of acoustic turbulence tend to become more isotropic. (c) 2000 The American Physical Society

  10. Theoretical acoustics of underwater structures

    Skelton, EA

    1997-01-01

    This important book provides an account of the linear acoustics of basic isotropic/anisotropic structures excited by time-harmonic and transient mechanical forces and acoustic sources. Many numerical examples are given to aid physical insight and to provide benchmark computations of sound radiation and sound scattering. The theoretical methods, developed originally for naval noise control problems, should find civil application in the acoustic modelling of structures fabricated from both fibre-reinforced and isotropic materials. Such an endeavour is increasingly desirable and necessary in this

  11. Acoustic metamaterial with negative density

    We fabricated a one-dimensional acoustic metamaterial with negative effective density using an array of very thin elastic membranes. We observed acoustic equivalence of the plasma oscillation at ωc=735 Hz. The metamaterial was opaque in the frequency range from 0 to 735 Hz, and was transparent above 735 Hz. We report direct observation of negative acceleration in this acoustic medium below 735 Hz. The frequency characteristics of the metamaterial have the same form as that of metals with negative permittivity. We also provide a simple theory to explain the experimental results.

  12. Noise Shielding Using Acoustic Metamaterials

    We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamaterials. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Acoustic metamaterial with negative modulus

    We present experimental and theoretical results on an acoustic metamaterial that exhibits a negative effective modulus in a frequency range from 0 to 450 Hz. A one-dimensional acoustic metamaterial with an array of side holes on a tube was fabricated. We observed that acoustic waves above 450 Hz propagated well in this structure, but no sound below 450 Hz passed through. The frequency characteristics of the metamaterial has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the experimental results.

  14. Debit card competition: signature versus pin

    Victor Lubasi

    2005-01-01

    This article explores costs and benefits of two types of debit card authorization methods—signature and PIN (personal identification number)—for merchants, consumers, and financial institutions. It also considers competition between signature- and PIN-based debit cards in the United States and looks at Canada's predominant usage of PIN-based debit cards.

  15. A Dark Matter Signature for Condensed Neutrinos

    Morley, P. D.; Buettner, D. J.

    2016-01-01

    We derive the signature for condensed neutrino objects (CNOs) as the primary source of Dark Matter. Restricting our source data to minimize systematic errors, we find that by just using weak lensing data and Sunyaev-Zel'dovich data, that there may be a weak CNO signature.

  16. Does Social Work Have a Signature Pedagogy?

    Earls Larrison, Tara; Korr, Wynne S.

    2013-01-01

    This article contributes to discourse on signature pedagogy by reconceptualizing how our pedagogies are understood and defined for social work education. We critique the view that field education is social work's signature pedagogy and consider what pedagogies are distinct about the teaching and learning of social work. Using Shulman's…

  17. Analysis of signature wrapping attacks and countermeasures

    Gajek, Sebastian; Jensen, Meiko; Liao, Lijun;

    2009-01-01

    In recent research it turned out that Boolean verification, of digital signatures in the context of WSSecurity, is likely to fail: If parts of a SOAP message, are signed and the signature verification applied to, the whole document returns true, then nevertheless the, document may have been signi......, that this solution is both efficient and secure. © 2009 IEEE....

  18. Acoustic-optic investigations of acoustic gyrotropy in crystals

    For the experimental investigation of the acoustic activity the Bragg light diffraction method on transverse acoustic waves was used in the frequency range 0.4-1.8 GHz. It is shown that the oscillation period of the intensity of the diffracted light is defined by the specific rotator power of the crystal. On the basis of experimental data the specific rotation of the polarization plane in a number of gyrotropic crystals was determined. (authors)

  19. Acoustic Remote Sensing of Extreme Sea States

    Parsons, Wade; Kadri, Usama

    2016-04-01

    Extreme sea states from storms, landslides, ice-quakes, meteorite fall, submarines explosions, and earthquakes, are associated with a sudden change in water pressure. Consequently, acoustic-gravity waves (AGWs) may radiate carrying information on those states at the speed of sound. Using remote sensing of AGWs, we propose an early detection system for such extreme sea states. We show that the AGW pressure signature for a small circularly symmetric sinusoidal component of oscillation of the free surface preserves the frequency but modifies the amplitude of the component. Further tests indicate that this amplitude is independent of the frequency but depends on the radial distance from the source, as expected. Therefore, an input spectrum for a sea state will give rise to a similar spectrum shape for the AGW pressure signal with an amplitude modulation function that can be estimated from the model. This then leads to a robust method to remote sense sea state spectra from measurements of their induced AGW pressure spectra.

  20. Redactable signatures for signed CDA Documents.

    Wu, Zhen-Yu; Hsueh, Chih-Wen; Tsai, Cheng-Yu; Lai, Feipei; Lee, Hung-Chang; Chung, Yufang

    2012-06-01

    The Clinical Document Architecture, introduced by Health Level Seven, is a XML-based standard intending to specify the encoding, structure, and semantics of clinical documents for exchange. Since the clinical document is in XML form, its authenticity and integrity could be guaranteed by the use of the XML signature published by W3C. While a clinical document wants to conceal some personal or private information, the document needs to be redacted. It makes the signed signature of the original clinical document not be verified. The redactable signature is thus proposed to enable verification for the redacted document. Only a little research does the implementation of the redactable signature, and there still not exists an appropriate scheme for the clinical document. This paper will investigate the existing web-technologies and find a compact and applicable model to implement a suitable redactable signature for the clinical document viewer. PMID:21181244

  1. Robust Threshold Guillou-Quisquater Signature Scheme

    WANG Hong; ZHANG Zhen-feng; FENG Deng-guo

    2005-01-01

    The deficiencies of the first threshold GuillouQuisquater signature scheme presented by Li-San Liu, ChengKang Chu and Wen-Guey Tzeng are analysised at first, and then a new threshold Guillou-Quisquater signature scheme is presented. The new scheme is unforgeable and robust against any adaptive adversary if the base Guillou-Quisquater signature scheme is unforgeable under the chosen message attack and computing the discrete logarithm modulo a prime is hard.This scheme can also achieve optimal resilience. However,the new scheme does not need the assumption that N is the product of two safe primes. The basic signature scheme underlying the new scheme is exactly Guillou-Quisquater signature scheme, and the additional strong computation assumption introduced by the first threshold Guillou-Quisquater scheme is weaken.

  2. An ECC-Based Blind Signature Scheme

    Fuh-Gwo Jeng

    2010-08-01

    Full Text Available Cryptography is increasingly applied to the E-commerce world, especially to the untraceable payment system and the electronic voting system. Protocols for these systems strongly require the anonymous digital signature property, and thus a blind signature strategy is the answer to it. Chaum stated that every blind signature protocol should hold two fundamental properties, blindness and intractableness. All blind signature schemes proposed previously almost are based on the integer factorization problems, discrete logarithm problems, or the quadratic residues, which are shown by Lee et al. that none of the schemes is able to meet the two fundamental properties above. Therefore, an ECC-based blind signature scheme that possesses both the above properties is proposed in this paper.

  3. DIGITAL SIGNATURE IN THE WAY OF LAW

    Ruya Samlı

    2013-01-01

    Full Text Available Signature can be defined as a person’s name or special signs that he/she writes when he/she wants to indicate he/she wrote or confirm that writing. A person signs many times in his/her life. A person’s signature that is used for thousands of times for many things from formal documents to exams has importance for that person. Especially, signing in legal operations is an operation that can build important results. If a person’s signature is imitated by another person, he/she can become beholden, donate his/her whole wealth, commits offences or do some judicial operations. Today, because many operations can be done with digital environments and internet, signature operation that provides identity validation must also be carried to digital environment. In this paper digital signature concept that is approved for this reason and its situation in international areas and Turkish laws are investigated.

  4. Signatures of mutational processes in human cancer

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Wedge, David C.; Aparicio, Samuel A.J.R.; Behjati, Sam; Biankin, Andrew V.; Bignell, Graham R.; Bolli, Niccolo; Borg, Ake; Børresen-Dale, Anne-Lise; Boyault, Sandrine; Burkhardt, Birgit; Butler, Adam P.; Caldas, Carlos; Davies, Helen R.; Desmedt, Christine; Eils, Roland; Eyfjörd, Jórunn Erla; Foekens, John A.; Greaves, Mel; Hosoda, Fumie; Hutter, Barbara; Ilicic, Tomislav; Imbeaud, Sandrine; Imielinsk, Marcin; Jäger, Natalie; Jones, David T.W.; Jones, David; Knappskog, Stian; Kool, Marcel; Lakhani, Sunil R.; López-Otín, Carlos; Martin, Sancha; Munshi, Nikhil C.; Nakamura, Hiromi; Northcott, Paul A.; Pajic, Marina; Papaemmanuil, Elli; Paradiso, Angelo; Pearson, John V.; Puente, Xose S.; Raine, Keiran; Ramakrishna, Manasa; Richardson, Andrea L.; Richter, Julia; Rosenstiel, Philip; Schlesner, Matthias; Schumacher, Ton N.; Span, Paul N.; Teague, Jon W.; Totoki, Yasushi; Tutt, Andrew N.J.; Valdés-Mas, Rafael; van Buuren, Marit M.; van ’t Veer, Laura; Vincent-Salomon, Anne; Waddell, Nicola; Yates, Lucy R.; Zucman-Rossi, Jessica; Futreal, P. Andrew; McDermott, Ultan; Lichter, Peter; Meyerson, Matthew; Grimmond, Sean M.; Siebert, Reiner; Campo, Elías; Shibata, Tatsuhiro; Pfister, Stefan M.; Campbell, Peter J.; Stratton, Michael R.

    2013-01-01

    All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy. PMID:23945592

  5. An Approach to Shorten Digital Signature Length

    Nikolay A. Moldovyan

    2006-12-01

    Full Text Available A new method is proposed to design short signature schemes based on difficulty of factorizing a composite number n=qr, where q and r are two large primes. Using the method new digital signature schemes (DSS with the 320-bit and 240-bit signature size are developed. The characteristic feature of the 240-bit signature DSS is the use of "three-level" verification equation. The (k,g signature corresponds to the H hash value and represents a pair of natural numbers having the size of 80 and 160~bits, respectively. The δ modulus is a prime number. The public key is the triple (α,β,p , where p=2n+1 is prime, β is the q order element modulo p,α is the γ order element modulo q. The private key is represented by the pair of two prime numbers (q, γ.

  6. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species. PMID:26233026

  7. Hybrid optical and acoustic force based sorting

    O'Mahoney, Paul; Brodie, Graham W.; Wang, Han; Demore, Christine E. M.; Cochran, Sandy; Spalding, Gabriel C.; MacDonald, Michael P.

    2014-09-01

    We report the combined use of optical sorting and acoustic levitation to give particle sorting. Differing sizes of microparticles are sorted optically both with and without the aid of acoustic levitation, and the results compared to show that the use of acoustic trapping can increase sorting efficiency. The use of a transparent ultrasonic transducer is also shown to streamline the integration of optics and acoustics. We also demonstrate the balance of optical radiation pressure and acoustic levitation to achieve vertical sorting.

  8. Frequency Steered Acoustic Transducer Project

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  9. Frequency Steered Acoustic Transducer Project

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is to fabricate, characterize, and verify performance of a new type of frequency steered acoustic...

  10. Airborne synthetic aperture acoustic imaging.

    Soumekh, M

    1997-01-01

    This paper presents a system model and inversion for airborne synthetic aperture acoustic (SAA) imaging. The system model accurately represents the intercation of the acoustic source and the target region at near range values. Moreover, the model incorporates the fact that the relative speed of the vehicle's (transmitter/receiver) with respect to the target region is comparable to the acoustic wave propagation speed. The inversion utilizes the principle of spectral decomposition of spherical phase functions to develop a wavefront reconstruction method from SAA data. Processing issues and selection of appropriate acoustic FM-CW sources are discussed. Results are provided that exhibit the superior accuracy of the proposed SAA system model and inversion over their synthetic aperture radar (SAR) counterpart in which the vehicle's speed is assumed to be much smaller than the wave propagation speed. PMID:18282912

  11. Cryogenic Acoustic Suppression Testing Project

    National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...

  12. Reverberant Acoustic Test Facility (RATF)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  13. Acoustic Invisibility in Turbulent Fluids

    Huang, Xun; Zhong, Siyang

    2013-01-01

    Acoustic invisibility of a cloaking system in turbulent uids has been poorly understood. Here we show that evident scattering would appear in turbulent wakes owing to the submergence of a classical cloaking device. The inherent mechanism is explained using our theoretical model, which eventually inspires us to develop an optimized cloaking approach. Both the near- and far-?eld scatted ?elds are examined using high order computational acoustic methods. The remarkably low scattering demonstrate...

  14. Passive/Active Acoustic metamaterials

    Lissek, Hervé

    2011-01-01

    Within the last years, an increasing number of studies have been carried out in the field of acoustic metamaterials. These artificial composite materials aim at achieving new macroscopic properties, like negative refraction, that are not readily present in nature. In analogy to electromagnetics, where such concepts are already more mature, a novel concept of artificial acoustic transmission line has recently been reported, which presents such artificial behavior. In this presentation, the des...

  15. Stable And Oscillating Acoustic Levitation

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  16. Simplified Rotation In Acoustic Levitation

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  17. Computational Modeling of Airway Acoustic

    Horáček, Jaromír

    Salt Lake City: National Center for Voice and Speech, University of Utah, 2014. s. 14-14. [International Conference on Voice Physiology and Biomechanics /9./. 10.04.2014-12.04.2014, Salt Lake City] R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61388998 Keywords : biomechanics of voice * finite element method * acoustic waves propagation Subject RIV: BI - Acoustics

  18. Maximizing biomarker discovery by minimizing gene signatures

    Chang Chang

    2011-12-01

    Full Text Available Abstract Background The use of gene signatures can potentially be of considerable value in the field of clinical diagnosis. However, gene signatures defined with different methods can be quite various even when applied the same disease and the same endpoint. Previous studies have shown that the correct selection of subsets of genes from microarray data is key for the accurate classification of disease phenotypes, and a number of methods have been proposed for the purpose. However, these methods refine the subsets by only considering each single feature, and they do not confirm the association between the genes identified in each gene signature and the phenotype of the disease. We proposed an innovative new method termed Minimize Feature's Size (MFS based on multiple level similarity analyses and association between the genes and disease for breast cancer endpoints by comparing classifier models generated from the second phase of MicroArray Quality Control (MAQC-II, trying to develop effective meta-analysis strategies to transform the MAQC-II signatures into a robust and reliable set of biomarker for clinical applications. Results We analyzed the similarity of the multiple gene signatures in an endpoint and between the two endpoints of breast cancer at probe and gene levels, the results indicate that disease-related genes can be preferably selected as the components of gene signature, and that the gene signatures for the two endpoints could be interchangeable. The minimized signatures were built at probe level by using MFS for each endpoint. By applying the approach, we generated a much smaller set of gene signature with the similar predictive power compared with those gene signatures from MAQC-II. Conclusions Our results indicate that gene signatures of both large and small sizes could perform equally well in clinical applications. Besides, consistency and biological significances can be detected among different gene signatures, reflecting the

  19. Opto-acoustic cell permeation

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  20. Prediction of acoustic comfort and acoustic silence in Goan Catholic churches

    Menino A. S. M. P. Tavares; S. Rajagopalan; Satish J. Sharma; António P. O. Carvalho

    2009-01-01

    Acoustic Comfort and Acoustic Silence are determinants of tranquility in a worship space. The results presented here are part of a study that investigates the behaviour of acoustically constituted worship parameters in six Catholic churches (Goa, India). Acoustic comfort is quantified through an Acoustic Comfort Impression Index which measures the net comfort induced through the optimization of the desired subjective acoustic impressions for different types of music and different music source...

  1. Spectral signatures of penumbral transients

    Reardon, K. [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Tritschler, A. [National Solar Observatory/Sacramento Peak, P.O. Box 62, Sunspot, NM 88349 (United States); Katsukawa, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-12-20

    In this work we investigate the properties of penumbral transients observed in the upper photospheric and chromospheric region above a sunspot penumbra using two-dimensional spectroscopic observations of the Ca II 854.21 nm line with a 5 s cadence. In our 30 minutes of observations, we identify several penumbral-micro jets (PMJs) with cotemporal observations from Dunn Solar Telescope/IBIS and Hinode/SOT. We find that the line profiles of these PMJ events show emission in the two wings of the line (±0.05 nm), but little modification of the line core. These are reminiscent of the line profiles of Ellerman bombs observed in plage and network regions. Furthermore, we find evidence that some PMJ events have a precursor phase starting 1 minute prior to the main brightening that might indicate initial heating of the plasma prior to an acoustic or bow shock event. With the IBIS data, we also find several other types of transient brightenings with timescales of less than 1 minute that are not clearly seen in the Hinode/SOT data. The spectral profiles and other characteristics of these events are significantly different from those of PMJs. The different appearances of all these transients are an indicator of the general complexity of the chromospheric magnetic field and underscore the highly dynamic behavior above sunspots. It also highlights the care that is needed in interpreting broadband filter images of chromospheric lines, which may conceal very different spectral profiles, and the underlying physical mechanisms at work.

  2. Multifractal signatures of infectious diseases.

    Holdsworth, Amber M; Kevlahan, Nicholas K-R; Earn, David J D

    2012-09-01

    Incidence of infection time-series data for the childhood diseases measles, chicken pox, rubella and whooping cough are described in the language of multifractals. We explore the potential of using the wavelet transform maximum modulus (WTMM) method to characterize the multiscale structure of the observed time series and of simulated data generated by the stochastic susceptible-exposed-infectious-recovered (SEIR) epidemic model. The singularity spectra of the observed time series suggest that each disease is characterized by a unique multifractal signature, which distinguishes that particular disease from the others. The wavelet scaling functions confirm that the time series of measles, rubella and whooping cough are clearly multifractal, while chicken pox has a more monofractal structure in time. The stochastic SEIR epidemic model is unable to reproduce the qualitative singularity structure of the reported incidence data: it is too smooth and does not appear to have a multifractal singularity structure. The precise reasons for the failure of the SEIR epidemic model to reproduce the correct multiscale structure of the reported incidence data remain unclear. PMID:22442094

  3. Ecosystem engineers and geomorphological signatures in landscapes

    Jones, Clive G.

    2012-07-01

    Biogeomorphologists study the roles of biota in landscape formation and decay. Ecologists interested in ecosystem engineering study environmental change caused by biota and the consequences for the engineer, other organisms, and ecological processes. The interface is geomorphological change, an interface both are aware of but study somewhat independently and differently. Interaction and integration among the two fields is the goal of this special issue. Here I take an ecological perspective of geomorphological change caused by ecosystem engineers in patches within landscapes that I hope can help facilitate this goal. I ask the following general questions: When will an ecosystem engineering species create a geomorphological signature in a landscape? What, in qualitative terms, is such a signature? How can the signature be estimated and how long will it last? What engineer attributes and ecological factors will determine signature change? What creates complications? How do the answers inform whether or not life leaves a geomorphological signature? To attempt answers, I develop a provisional, general theory of ecosystem engineering signatures that draws on and integrates a geomorphological foundation of balance between formation and decay; landscape patch dynamics; a general framework for ecosystem engineering; and empirical studies. I treat a landscape engineering signature as the balance of rates of formation (F) and rates of decay (D) across patches whose ratio value (F/D) can be transformed (> 1), intermediate (1) or untransformed (leaves a geomorphological signature, using this to contrast my approach with biogeomorphology, and asking what a hypothetical analysis of signature patterns across many engineer species/landscape combinations might imply for the interface of ecology and biogeomorphology.

  4. Optimized multisectioned acoustic liners

    Baumeister, K. J.

    1979-01-01

    A critical examination is presented of the use of optimized axially segmented acoustic liners to increase the attenuation of a liner. New calculations show that segmenting is most efficient at high frequencies with relatively long duct lengths where the attenuation is low for both uniform and segmented liners. Statistical considerations indicate little advantage in using optimized liners with more than two segments while the bandwidth of an optimized two-segment liner is shown to be nearly equal to that of a uniform liner. Multielement liner calculations show a large degradation in performance due to changes in assumed input modal structure. Finally, in order to substantiate previous and future analytical results, in-house (finite difference) and contractor (mode matching) programs are used to generate theoretical attenuations for a number of liner configurations for liners in a rectangular duct with no mean flow. Overall, the use of optimized multisectioned liners (sometimes called phased liners) fails to offer sufficient advantage over a uniform liner to warrant their use except in low frequency single mode application.

  5. Reduction of a Ship's Magnetic Field Signatures

    Holmes, John

    2008-01-01

    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  6. DIGITAL SIGNATURE IN THE WAY OF LAW

    Ruya Samlı

    2013-01-01

    Signature can be defined as a person’s name or special signs that he/she writes when he/she wants to indicate he/she wrote or confirm that writing. A person signs many times in his/her life. A person’s signature that is used for thousands of times for many things from formal documents to exams has importance for that person. Especially, signing in legal operations is an operation that can build important results. If a person’s signature is imitated by another person, he/she can be...

  7. Arbitrated quantum signature with an untrusted arbitrator

    Yang, Yu-Guang; Zhou, Zheng; Teng, Yi-Wei; Wen, Qiao-Yan

    2011-02-01

    In an arbitrated signature scheme, all communications involve a so called arbitrator who has access to the contents of the messages. The security of most arbitrated signature schemes depends heavily on the trustworthiness of the arbitrators. In this paper we show how to construct an arbitrated quantum signature protocol of classical messages with an untrusted arbitrator. Its security is analyzed and it is proved to be secure even if the arbitrator is compromised. In addition, the proposed protocol does not require a direct quantum link between any two communicating users, which is an appealing advantage in the implementation of a practical quantum distributed communication network.

  8. Improved Quantum Signature Scheme with Weak Arbitrator

    Su, Qi; Li, Wen-Min

    2013-09-01

    In this paper, we find a man-in-the-middle attack on the quantum signature scheme with a weak arbitrator (Luo et al., Int. J. Theor. Phys., 51:2135, 2012). In that scheme, the authors proposed a quantum signature based on quantum one way function which contains both verifying the signer phase and verifying the signed message phase. However, after our analysis we will show that Eve can adopt different strategies in respective phases to forge the signature without being detected. Then we present an improved scheme to increase the security.

  9. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  10. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    Ceban, V., E-mail: victor.ceban@phys.asm.md; Macovei, M. A., E-mail: macovei@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of)

    2015-11-15

    The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

  11. Reflection and refraction of (magneto-)acoustic waves at the magnetic canopy: further evidences from multi-height seismic data

    Rajaguru, S P; Hayashi, K; Couvidat, S

    2013-01-01

    We recently presented evidences (Rajaguru et al. 2012) that seismic halos around expanding magnetic structures in the lower solar atmosphere are related to the acoustic to magnetoacoustic wave conversions, using multi-height data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) (1700 and 1600 \\AA channels) onboard Solar Dynamics Observatory (SDO). Using the same data, we here present and discuss further evidences through analyses of maps of phase-shifts between observables from different heights and their correspondence with oscillation power. The phase shift maps provide more direct signatures of reflection and refraction of (magneto-)acoustic wave modes.

  12. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  13. An Improved Proxy Multi-Signature, Multi-Proxy Signature and Multi-Proxy Multi-Signature Scheme

    Jun Zhang

    2011-08-01

    Full Text Available Zhou’s proxy multi-signature scheme was a safe and effective scheme, but this scheme was not safety enough. In this work, security analysis was given to the scheme and results showed that the scheme was very easy aggressed by the forgery attack. The paper proposed that any attacker can sign some certain unauthorized messages after the attacker knows a valid signature, and any original signer ally with his proxy signer can forge any unauthorized messages. Then, the paper gave two kinds of inside attacks and outside attacks to the scheme correspondingly. Finally this paper proposed a new improved proxy multi-signature, multi-proxy signature and multi-proxy multi-signature schemes which based on the difficulty of the discrete logarithm problem (DLP. With verifying all the signers’ public keys, the improved schemes can resist lots of outsider attack and insider attack. The validity of the new scheme can be verified, and they are secure signature schemes.

  14. Reflective echo tomographic imaging using acoustic beams

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  15. Isotopic signatures by bulk analyses

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally

  16. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    Zhu, Zhaohuan, E-mail: zhzhu@astro.princeton.edu [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  17. Signature Region of Interest using Auto cropping

    Al-Mahadeen, Bassam; AlTarawneh, Islam H

    2010-01-01

    A new approach for signature region of interest pre-processing was presented. It used new auto cropping preparation on the basis of the image content, where the intensity value of pixel is the source of cropping. This approach provides both the possibility of improving the performance of security systems based on signature images, and also the ability to use only the region of interest of the used image to suit layout design of biometric systems. Underlying the approach is a novel segmentation method which identifies the exact region of foreground of signature for feature extraction usage. Evaluation results of this approach shows encouraging prospects by eliminating the need for false region isolating, reduces the time cost associated with signature false points detection, and addresses enhancement issues. A further contribution of this paper is an automated cropping stage in bio-secure based systems.

  18. 5 CFR 850.106 - Electronic signatures.

    2010-01-01

    ... 850.106 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... patterns, and voice recognition; (2) Cryptographic control methods, including— (i) Shared symmetric key cryptography; (ii) Public/private key (asymmetric) cryptography, also known as digital signatures; (3)...

  19. Threshold Ring Signature Scheme Based on TPM

    Gong Bei; Jiang Wei; Lin Li; Li Yu; Zhang Xing

    2012-01-01

    The conventional ring signature schemes cannot address the scenario where the rank of members of the ring needs to be distinguished, for example, in electronically commerce application. To solve this problem, we presented a Trusted Platform Module (TPM)-based threshold ring signature schen. Employing a reliable secret Share Distribution Center (SDC), the proposed approach can authenticate the TPM-based identity rank of members of the ring but not track a specific member's identity. A subset including t members with the same identity rank is built. With the signing cooperation of t members of the subset, the ring signature based on Chinese remainder theorem is generated. We proved the anonymity and unforgeability of the proposed scheme and compared it with the threshold ring signature based on Lagrange interpolation polynomial. Our scheme is relatively simpler to calculate.

  20. Probabilistic Model for Dynamic Signature Verification System

    Chai Tong Yuen

    2011-11-01

    Full Text Available This study has proposed the algorithm for signature verification system using dynamic parameters of the signature: pen pressure, velocity and position. The system is proposed to read, analyze and verify the signatures from the SUSig online database. Firstly, the testing and reference samples will have to be normalized, re-sampled and smoothed through pre-processing stage. In verification stage, the difference between reference and testing signatures will be calculated based on the proposed thresholded standard deviation method. A probabilistic acceptance model has been designed to enhance the performance of the verification system. The proposed algorithm has reported False Rejection Rate (FRR of 14.8% and False Acceptance Rate (FAR of 2.64%. Meanwhile, the classification rate of the system is around 97%.

  1. Electronic Signatures for Public Procurement across Europe

    Ølnes, Jon; Andresen, Anette; Arbia, Stefano; Ernst, Markus; Hagen, Martin; Klein, Stephan; Manca, Giovanni; Rossi, Adriano; Schipplick, Frank; Tatti, Daniele; Wessolowski, Gesa; Windheuser, Jan

    The PEPPOL (Pan-European Public Procurement On-Line) project is a large scale pilot under the CIP programme of the EU, exploring electronic public procurement in a unified European market. An important element is interoperability of electronic signatures across borders, identified today as a major obstacle to cross-border procurement. PEPPOL will address use of signatures in procurement processes, in particular tendering but also post-award processes like orders and invoices. Signature policies, i.e. quality requirements and requirements on information captured in the signing process, will be developed. This as well as technical interoperability of e-signatures across Europe will finally be piloted in demonstrators starting late 2009 or early 2010.

  2. Secure quantum signatures using insecure quantum channels

    Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika

    2016-03-01

    Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.

  3. Sonification of acoustic emission data

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  4. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  5. Electronic Seal Stamping Based on Group Signature

    Girija Srikanth

    2011-01-01

    This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted b...

  6. Persistence of social signatures in human communication

    Saramäki, Jari; Leicht, E. A.; López, Eduardo; Roberts, Sam G. B.; Reed-Tsochas, Felix; Robin I M Dunbar

    2014-01-01

    We combine cell phone data with survey responses to show that a person’s social signature, as we call the pattern of their interactions with different friends and family members, is remarkably robust. People focus a high proportion of their communication efforts on a small number of individuals, and this behavior persists even when there are changes in the identity of the individuals involved. Although social signatures vary between individuals, a given individual appears to retain a specific...

  7. Mutations in the K+ channel signature sequence.

    Heginbotham, L; Lu, Z; Abramson, T; MacKinnon, R

    1994-01-01

    Potassium channels share a highly conserved stretch of eight amino acids, a K+ channel signature sequence. The conserved sequence falls within the previously defined P-region of voltage-activated K+ channels. In this study we investigate the effect of mutations in the signature sequence of the Shaker channel on K+ selectivity determined under bi-ionic conditions. Nonconservative substitutions of two threonine residues and the tyrosine residue leave selectivity intact. In contrast, mutations a...

  8. Damping signatures in future neutrino oscillation experiments

    Blennow, Mattias; Ohlsson, Tommy; Winter, Walter

    2005-01-01

    We discuss the phenomenology of damping signatures in the neutrino oscillation probabilities, where either the oscillating terms or the probabilities can be damped. This approach is a possibility for tests of damping effects in future neutrino oscillation experiments, where we mainly focus on reactor and long-baseline experiments. We extensively motivate different damping signatures due to small corrections by neutrino decoherence, neutrino decay, oscillations into sterile neutrinos, or other...

  9. Prediction of soil effects on GPR signatures

    Rhebergen, J.B.; Lensen, H.A.; Wijk, C.V. van; Hendrickx, J.M.H.; Dam, R.; Borchers, B.

    2004-01-01

    In previous work we have shown that GPR signatures are affected by soil texture and soil water content. In this contribution we will use a three dimensional electromagnetic model and a hydrological soil model to explore in more detail the relationships between GPR signatures, soil physical conditions and GPR detection performance. First, we will use the HYDRUS2D hydrological model to calculate a soil water content distribution around a land-mine. This model has been verified against measured ...

  10. Computing negentropy based signatures for texture recognition

    Daniela COLTUC; Laurentiu FRANGU; Ana-Elena LUNGU

    2007-01-01

    The proposed method aims to provide a new tool for texture recognition. For this purpose, a set of texture samples are decomposed by using the FastICA algorithm and characterized by a negentropy based signature. In order to do recognition, the texture signatures are compared by means of Minkowski distance. The recognition rates, computed for a set of 320 texture samples, show a medium recognition accuracy and the method may be further improved.

  11. SS-IDS: Statistical Signature Based IDS

    Gupta, Payas; Raïssi, Chedy; Dray, Gérard; Poncelet, Pascal; Brissaud, Johan

    2009-01-01

    Security of web servers has become a sensitive subject today. Prediction of normal and abnormal request is problematic due to large number of false alarms in many anomaly based Intrusion Detection Systems(IDS). SS-IDS derives automatical ly the parameter profiles from the analyzed data thereby generating the Statistical Signatures. Statistical Signatures are based on modeling of normal requests and their distribution value without explicit intervention. Several attributes are used to calculate...

  12. Kinematics of Signature Writing in Healthy Aging*

    Caligiuri, Michael P.; Kim, Chi; Landy, Kelly M.

    2014-01-01

    Forensic document examiners (FDE) called upon to distinguish a genuine from a forged signature of an elderly person are often required to consider the question of age-related deterioration and whether the available exemplars reliably capture the natural effects of aging of the original writer. An understanding of the statistical relationship between advanced age and handwriting movements can reduce the uncertainty that may exist in an examiner’s approach to questioned signatures formed by eld...

  13. My 65 years in acoustics

    Beranek, Leo L.

    2001-05-01

    My entry into acoustics began as research assistant to Professor F. V. Hunt at Harvard University. I received my doctorate in 1940 and directed the Electro-Acoustic Laboratory at Harvard from October 1940 until September 1945. In 1947, I became a tenured associate professor at MIT, and, with Richard H. Bolt, formed the consulting firm Bolt and Beranek, that later included Robert B. Newman, becoming BBN. My most significant contributions before 1970 were design of wedge-lined anechoic chambers, systemization of noise reduction in ventilation systems, design of the world's largest muffler for the testing of supersonic jet engines at NASA's Lewis Laboratory in Cleveland, speech interference level, NC noise criterion curves, heading New York Port Authority's noise study that resulted in mufflers on jet aircraft, and steep aircraft climb procedures, and publishing books titled, Acoustical Measurements, Acoustics, Noise Reduction, Noise and Vibration Control, and Music, Acoustics and Architecture. As President of BBN, I supervised the formation of the group that built and operated the ARPANET (1969), which, when split in two (using TCP/IP protocol) became the INTERNET (1984). Since then, I have written two books on Concert Halls and Opera Houses and have consulted on four concert halls and an opera house.

  14. Determination of the acoustic signature of GRP (Glass Reinforced Plastic) composite corrosion

    Foulon, Anthony

    2015-01-01

    Since the 1980, Glass Reinforced Plastic (GRP) has been used for construction of pipes and tanks in the chemical industry, including the storage of mineral acids. This composite material offers superior and cost effective corrosion resistance. However, authors found accidental breakage of tanks (horizontal and vertical) containing mineral acids (hydrochloric and sulphuric). These failures are attributed to environmental stress-corrosion cracking (ESCC) mechanism. The corrosion of glass fibers...

  15. The gravitational-wave signature of core-collapse supernovae

    We review the ensemble of anticipated gravitational-wave (GW) emission processes in stellar core collapse and postbounce core-collapse supernova evolution. We discuss recent progress in the modeling of these processes and summarize most recent GW signal estimates. In addition, we present new results on the GW emission from postbounce convective overturn and protoneutron star g-mode pulsations based on axisymmetric radiation-hydrodynamic calculations. Galactic core-collapse supernovae are very rare events, but within 3-5 Mpc from Earth, the rate jumps to 1 in ∼2 years. Using the set of currently available theoretical gravitational waveforms, we compute upper-limit optimal signal-to-noise ratios based on current and advanced LIGO/GEO600/VIRGO noise curves for the recent SN 2008bk which exploded at ∼3.9 Mpc. While initial LIGOs cannot detect GWs emitted by core-collapse events at such a distance, we find that advanced LIGO-class detectors could put significant upper limits on the GW emission strength for such events. We study the potential occurrence of the various GW emission processes in particular supernova explosion scenarios and argue that the GW signatures of neutrino-driven, magneto-rotational, and acoustically-driven core-collapse SNe may be mutually exclusive. We suggest that even initial LIGOs could distinguish these explosion mechanisms based on the detection (or non-detection) of GWs from a galactic core-collapse supernova. (topical review)

  16. Acoustic metasurface with hybrid resonances.

    Ma, Guancong; Yang, Min; Xiao, Songwen; Yang, Zhiyu; Sheng, Ping

    2014-09-01

    An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions, with its thickness less than the peak absorption wavelength by two orders of magnitude. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies, or converted into other form(s) of energy, such as an electrical current. A high acoustic-electrical energy conversion efficiency of 23% is achieved. PMID:24880731

  17. Prototype acoustic resonance spectroscopy monitor

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn

  18. Acoustic Communication for Medical Nanorobots

    Hogg, Tad

    2012-01-01

    Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates up to 10,000 bits/second between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.

  19. Acoustic multivariate condition monitoring - AMCM

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  20. Acoustics of a broadcast center

    Beristain, Sergio

    2003-04-01

    A broadcast system in Mexico City had to change facilities in order to concentrate in a single site all related broadcast stations and production studios in order to facilitate its normal operation. This led to a design which included the acoustic noise isolation and the interior acoustics of every studio and control room, together with the audio interconection, the electricity layout, the air conditioning system, the office building, etc. This paper presents the acoustics profile of the center, including final results of the construction as they were measured on completion of the installation. The complex has seven AM and FM broadcast stations, plus seven production studios for news, commercials and radio-novels plus an audio master control room, and everything was completed within four months.

  1. Classroom acoustics: Three pilot studies

    Smaldino, Joseph J.

    2005-04-01

    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  2. Acoustic metamaterials for sound mitigation

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  3. Phoneme Recognition Using Acoustic Events

    Huebener, K; Huebener, Kai; Carson-Berndsen, Julie

    1994-01-01

    This paper presents a new approach to phoneme recognition using nonsequential sub--phoneme units. These units are called acoustic events and are phonologically meaningful as well as recognizable from speech signals. Acoustic events form a phonologically incomplete representation as compared to distinctive features. This problem may partly be overcome by incorporating phonological constraints. Currently, 24 binary events describing manner and place of articulation, vowel quality and voicing are used to recognize all German phonemes. Phoneme recognition in this paradigm consists of two steps: After the acoustic events have been determined from the speech signal, a phonological parser is used to generate syllable and phoneme hypotheses from the event lattice. Results obtained on a speaker--dependent corpus are presented.

  4. Application of acoustic emission technique for check valve monitoring

    Very limited choice is available in monitoring the health of check valves during service. Ultrasonics, magnetic flux leakage and acoustic emission (AE) monitoring are three methods, of which AE is the prominent. The paper describes work done on swing check valves in the ECCS circuit of Cirus using AE. It indicates that the valves can be monitored for any abnormal behaviour during their stable operation and during opening and closing. AE can also sense any abnormality at the hinge pin, hinge arm, disc etc., if they give AE emission. However, many of these may require background data from a spare valve of similar design or a working stand by. In absence of such a valve, data from the present study will be used as a baseline data for comparison with signatures taken during future inspections. (author). 3 refs., 5 figs., 1 tab

  5. Kibble-Zurek Mechanism in Microscopic Acoustic Cracking Noises

    Ghaffari, H O; Xia, K; Young, R P

    2014-01-01

    The fast evolution of microstructure is key to understanding crackling phenomena. It has been proposed that formation of a nonlinear zone around a moving crack tip controls the crack tip velocity. Progress in understanding the physics of this critical zone has been limited due to the lack of hard data describing the detailed complex physical processes that occur within. For the first time, we show that the signature of the non-linear elastic zone around a microscopic dynamic crack maps directly to generic phases of acoustic noises, supporting the formation of a strongly weak zone [2-3,5] near the moving crack tips. We additionally show that the rate of traversing to non-linear zone controls the rate of weakening, i.e. speed of global rupture propagation. We measure the power-law dependence of nonlinear zone size on the traversing rate, and show that our observations are in agreement with the Kibble-Zurek mechanism (KZM) .

  6. Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis

    ... Home » Health Info » Hearing, Ear Infections, and Deafness Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis On this page: ... more information about vestibular schwannomas? What is a vestibular schwannoma (acoustic neuroma)? Inner ear with vestibular schwannoma ( ...

  7. On the Synchronization of Acoustic Gravity Waves

    Lonngren, Karl E.; Bai, Er-Wei

    Using the model proposed by Stenflo, we demonstrate that acoustic gravity waves found in one region of space can be synchronized with acoustic gravity waves found in another region of space using techniques from modern control theory.

  8. Acoustojet: acoustic analogue of photonic jet phenomenon

    Minin, Igor V

    2016-01-01

    It has been demonstrated for the first time that an existence of acoustic analogue of photonic jet phenomenon, called acoustojet, providing for subwavelength localization of acoustic field in the shadow area of arbitrary 3D penetrable mesoscale particle, is possible.

  9. Golden Gate and Pt. Reyes Acoustic Detections

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  10. Acoustic remote sensing of ocean flows

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  11. CT findings of acoustic neuroma

    Sim, Do Choul; Lee, Jae Mun; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic Univ., Seoul (Korea, Republic of)

    1987-10-15

    Computed Tomography (CT) is very accurate in evaluating the location, size, shape and extension of acoustic neuroma. We analysed CT findings of 23 acoustic neuromas seen at Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College during the period of from January 1981 to June 1987. 1. Five (22%) were men and 18 (78%) were women with the high incidence occurring in the 4th and 5th decades. 2. Twenty two cases were diagnosed satisfactorily by CT examinations which included axial, coronal and reconstruction images. One with the smallest dimension of 8 mm in diameter could not be detected by the conventional CT scan. But is could be seen after metrizamide cisternography. mean size of the tumor masses was estimated 3.6 cm in diameter. 3. The shape of the tumor was oval in 50%, round in 27% and lobulated in 23%. The masses were presented as hypodense in 50%, isodense in 32% and hyperdense in 18%. All tumors were extended from the internal acoustic and toward the cerebellopontine angle. The internal acoustic canal was widened in 77%. Hydrocephalus was associated in 45%. Widening of cerebellopontine angle cistern was noted in 50%. 4. After contrast infusion the tumors were enhanced markedly in 45%, moderately in 32% and mildly in 23%. The enhanced pattern was homogeneous in 41%, mixed in 41% and rim in 18%. The margin of the tumors was sharply defined in 82%. The tumors were attached to the petrous bone with acute angle in 73%. Cystic change within the tumor was found in 27%. The peritumoral edema was noted in 45%. In conclusion, CT is of most effective modalities to evaluate size, shape, extent and internal architecture of acoustic neuroma as well as relationship with adjacent anatomic structures including the internal acoustic canal.

  12. Acoustically-Induced Electrical Signals

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  13. A Formal Model for the Security of Proxy Signature Schemes

    GU Chun-xiang; ZHU Yue-fei; ZHANG Ya-juan

    2005-01-01

    This paper provides theoretical foundations for the secure proxy signature primitive. We present a formal model for the security of proxy signature schemes, which defines the capabilities of the adversary and the security goals to capture which mean for a proxy signature scheme to be secure. Then, we present an example of proxy signature scheme that can be proven secure in the standard model.

  14. Acoustic characterization of rehabilitated cloisters

    A. P. O. Carvalho; S. R. C. Vilela

    2008-01-01

    This paper presents the results of field measurements in eight rehabilitated cloisters of old monasteries in Portugal (length: 20 to 35 m and height: 3.3 to 6.3 m) regarding their acoustic behavior to two objective parameters: RT and RASTI. The goal is to characterize the acoustic effect of the rehabilitation done on theses spaces to adapt them to new uses. All these cloisters had recently their galleries#8217; openings to the central yard closed with glass panels. Simple formulas were obtain...

  15. Physical foundations of technical acoustics

    Malecki, I

    1969-01-01

    Physical Foundations of Technical Acoustics discusses theoretical foundations of acoustical engineering. It is not so much a technical compendium as a systematic statement of physical laws so conceived that technologists might find in it all the information they need to become acquainted with the physical meaning and mathematical expression of phenomena they encounter in their work. To facilitate the acquirement of notions, which lie beyond a layman's grasp, the plan of narration adopted consists in beginning with the simplest idealized cases and then gradually moving on to the truest possibl

  16. Acoustic concerns related to multi cultural societies

    Gade, Anders Christian

    2001-01-01

    Immigration has increased cultural diversity in western societies. The process of integrating immigrants into their host countries can be smoothed if acousticians learn to recognize (1) the acoustic traditions of immigrant cultures and (2) the specific acoustic needs of the new society members. Two related projects are discussed. The ``Cahrisma'' project (Conservation of Acoustical Heritage by the Revival and Identification of the Sinan's Mosque Acoustics) is sponsored by the European Commiss...

  17. Absorption boundary conditions for geomertical acoustics

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  18. Characterization of granular collapse onto hard substrates by acoustic emissions

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien

    2013-04-01

    Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what

  19. Fusion of Multiple Matchers using SVM for Offline Signature Identification

    Kisku, Dakshina Ranjan; Sing, Jamuna Kanta

    2010-01-01

    This paper uses Support Vector Machines (SVM) to fuse multiple classifiers for an offline signature system. From the signature images, global and local features are extracted and the signatures are verified with the help of Gaussian empirical rule, Euclidean and Mahalanobis distance based classifiers. SVM is used to fuse matching scores of these matchers. Finally, recognition of query signatures is done by comparing it with all signatures of the database. The proposed system is tested on a signature database contains 5400 offline signatures of 600 individuals and the results are found to be promising.

  20. Calculating room acoustic parameters from pseudo-impulsive acoustic sources

    San Martin, Maria L.; Vela, Antonio; San Martin, Ricardo; Arana, Miguel A.

    2002-11-01

    The impulse response function provides complete information to predict the acoustic response of a room to an acoustic input of arbitrary characteristics. At this job study, small explosions of firecrackers are proposed to be used as pseudo-impulsive acoustics sources to determine some acoustic parameters of a room such as reverberation time, definition, and clarity, comparing these results to those obtained with other techniques. A previous characterization of these sources allows us to state that they can be used for this purpose because they are, in practice, omnidirectional, their temporary pattern is highly repetitive and their spectral power is, as well, repetitive and with enough power in octave bands from 125 Hz to 8 kHz. If the linear time-invariant system impulse response h(t) is known, output signal s(t) regarding any arbitrary signal s(t) can be obtained. For our pseudo-impulsive sources, the output signal s(t) has been taken as impulse response h(t). Using the integrated impulse response method suggested by Schroeder, it has been stated that both the mean values and standard deviations for some parameters are practically identical to results obtained with other usual techniques. (To be presented in Spanish.)

  1. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  2. Untraceable partially blind signature based on DLOG problem

    HUANG Zheng(黄征); CHEN Ke-fei(陈克非); KOU Wei-dong(寇卫东)

    2004-01-01

    This paper proposes a new untraceable Partially Blind Signature scheme which is a cross between the traditional signature scheme and the blind signature scheme. In this proposed scheme, the message M that the signer signed can be divided into two parts. The first part can be known to the signer (like that in the traditional signature scheme) while the other part cannot be known to the signer (like that in the blind signature scheme). After having signed M, the signer cannot determine if he has made the signature of M except through the part that he knows. We draw ideas from Brands' "Restricted Blind Signature" to solve the Untraceable Partially Blind Signature problem. Our scheme is a probabilistic signature scheme and the security of our Untraceable Partially Blind Signature scheme relies on the difficulty of computing discrete logarithm.

  3. Untraceable partially blind signature based on DLOG problem.

    Huang, Zheng; Chen, Ke-fei; Kou, Wei-dong

    2004-01-01

    This paper proposes a new untraceable Partially Blind Signature scheme which is a cross between the traditional signature scheme and the blind signature scheme. In this proposed scheme, the message M that the signer signed can be divided into two parts. The first part can be known to the signer (like that in the traditional signature scheme) while the other part cannot be known to the signer (like that in the blind signature scheme). After having signed M, the signer cannot determine if he has made the signature of M except through the part that he knows. We draw ideas from Brands' "Restricted Blind Signature" to solve the Untraceable Partially Blind Signature problem. Our scheme is a probabilistic signature scheme and the security of our Untraceable Partially Blind Signature scheme relies on the difficulty of computing discrete logarithm. PMID:14663850

  4. On ULF Signatures of Lightning Discharges

    Bösinger, T.; Shalimov, S. L.

    2008-06-01

    Recent works on magnetic signatures due to distant lightning discharges are reviewed. Emphasis is laid on magnetic signatures in the ULF range (in the old definition from less than 1 mHz up to 1 Hz), that is in the frequency range below the Schumann resonance. These signatures are known to be of importance for the excitation of the ionospheric Alfvén resonator (IAR) which works only at night time conditions. This emphasizes the difference between night and day time ULF signatures of lightning. The IAR forms a link between the atmosphere and magnetosphere. Similarities and differences of this link in the VLF (Trimpi effect) and ULF range are worked out. A search for a unique signature of sprite-associated positive cloud-to-ground (+CG) lightning discharges ended with a negative result. In this context, however, a new model of lightning-associated induced mesospheric currents was built. Depending on mesospheric condition it can produce magnetic signatures in the entire frequency range from VLF, ELF to ULF. In the latter case it can explain signatures known as the Ultra Slow Tail of +CG lightning discharges. A current problem on the magnetic background noise intensity has been solved by taking more seriously the contribution of +CG lightning discharges to the overall background noise. Their low occurrence rate is more than compensated by their large and long lasting continuing currents. By superposed epoch analysis it could be shown that the ULF response to -CG is one to two orders smaller that in case of +CG with similar peak current values of the return stroke.

  5. Does Twitter trigger bursts in signature collections?

    Rui Yamaguchi

    Full Text Available INTRODUCTION: The quantification of social media impacts on societal and political events is a difficult undertaking. The Japanese Society of Oriental Medicine started a signature-collecting campaign to oppose a medical policy of the Government Revitalization Unit to exclude a traditional Japanese medicine, "Kampo," from the public insurance system. The signature count showed a series of aberrant bursts from November 26 to 29, 2009. In the same interval, the number of messages on Twitter including the keywords "Signature" and "Kampo," increased abruptly. Moreover, the number of messages on an Internet forum that discussed the policy and called for signatures showed a train of spikes. METHODS AND FINDINGS: In order to estimate the contributions of social media, we developed a statistical model with state-space modeling framework that distinguishes the contributions of multiple social media in time-series of collected public opinions. We applied the model to the time-series of signature counts of the campaign and quantified contributions of two social media, i.e., Twitter and an Internet forum, by the estimation. We found that a considerable portion (78% of the signatures was affected from either of the social media throughout the campaign and the Twitter effect (26% was smaller than the Forum effect (52% in total, although Twitter probably triggered the initial two bursts of signatures. Comparisons of the estimated profiles of the both effects suggested distinctions between the social media in terms of sustainable impact of messages or tweets. Twitter shows messages on various topics on a time-line; newer messages push out older ones. Twitter may diminish the impact of messages that are tweeted intermittently. CONCLUSIONS: The quantification of social media impacts is beneficial to better understand people's tendency and may promote developing strategies to engage public opinions effectively. Our proposed method is a promising tool to explore

  6. Acoustically swept rotor. [helicopter noise reduction

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  7. Predicting and auralizing acoustics in classrooms

    Christensen, Claus Lynge

    2005-01-01

    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  8. Aero-acoustic Computations of Wind Turbines

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...

  9. Design of acoustic devices by topology optimization

    Sigmund, Ole; Jensen, Jakob Søndergaard

    The goal of this study is to design and optimize structures and devices that are subjected to acoustic waves. Examples are acoustic lenses, sound walls, waveguides and loud speakers. We formulate the design problem as a topology optimization problem, i.e. distribute material in a design domain such...... that the acoustic response is optimized....

  10. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    Nakamura, Satoshi; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  11. Characteristics of Constrained Handwritten Signatures: An Experimental Investigation

    Donato, Impedovo; Pirlo, Giuseppe; Rizzi, Fabrizio

    2015-01-01

    Handwritten signatures are considered one of the most useful biometric traits for personal verification. In the networked society, in which a multitude of different devices can be used for signature acquisition, specific research is still needed to determine the extent to which features of an input signature depend on the characteristics of the signature apposition process. In this paper an experimental investigation was carried out on constrained signatures, which were acquired using writing...

  12. The signature package on Witt spaces

    Albin, Pierre; Mazzeo, Rafe; Piazza, Paolo

    2011-01-01

    In this paper we prove a variety of results about the signature operator on Witt spaces. First, we give a parametrix construction for the signature operator on any compact, oriented, stratified pseudomanifold X which satisfies the Witt condition. This construction, which is inductive over the `depth' of the singularity, is then used to show that the signature operator is essentially self-adjoint and has discrete spectrum of finite multiplicity, so that its index -- the analytic signature of X -- is well-defined. This provides an alternate approach to some well-known results due to Cheeger. We then prove some new results. By coupling this parametrix construction to a C*_r\\Gamma-Mishchenko bundle associated to any Galois covering of X with covering group \\Gamma, we prove analogues of the same analytic results, from which it follows that one may define an analytic signature index class as an element of the K-theory of C*_r\\Gamma. We go on to establish in this setting and for this class the full range of conclusi...

  13. Observational signatures of binary supermassive black holes

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ n at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λn16/3; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  14. Aliasing Errours in Parallel Signature Analyzers

    闵应骅; YashwantK.Malaiya

    1990-01-01

    A Linear Feedback Shift Register(LFSR)can be used to compress test response data as a Signature Analyzer(SA).Parallel Signature Analyzers(PSAs)implemented as multiple input LFSRs are faster and require less hardware overhead than Serial Signature Analyzers(SSAs) for compacting test response data for Built-In Self-Test(BIST)in IC of boare-testing environments.However,the SAs are prone to aliasing errors because of some specific types of error patterns.An alias is a faulty output signature that is identical to the fault-free signature.A penetrating analysis of detecting capability of SAs depends strongly on mathematical manipulations,instead of being aware of some special cases of examples.In addition,the analysis should not be restricted to a particular structure of LFSR,but be appropriate for various structures of LFSRs.This paper presents necessary and sufficient conditions for aliasing errors based on a complete mathematical description of various types of SAs.An LFSR reconfiguration scheme is suggested which will prevent any aliasing double errors.Such a prevention cannot be obtained by any extension of an LFSR.

  15. Calculated NWIS signatures for enriched uranium metal

    Nuclear Weapons Identification System (NWIS) signatures have been calculated using a Monte Carlo transport code for measurement configurations of a 252Cf source, detectors, and a uranium metal casting. NWIS signatures consist of a wide variety of time-and frequency-analysis signatures such as the time distribution of neutrons after californium fission, the time distribution of counts in a detector after a previous count, the number of times n pulses occur in a time interval, and various frequency-analysis signatures, such as auto-power and cross-power spectral densities, coherences, and a ratio of spectral densities. This ratio is independent of detection efficiency. The analysis presented here, using the MCNP-DSP code, evaluates the applicability of this method for measurement of the 235U content of 19-kg castings of depleted uranium and uranium with enrichments of 20, 40, 60, 80, 90, and 93.2 wt % 235U. The dependence of the wide variety of NWIS signatures on 235U content and possible configurations of a measurement system are presented. These preliminary calculations indicate short measurement times. Additional calculations are being performed to optimize the source-detector-moderator-casting configuration for the shortest measurement time. Although the NWIS method was developed for nuclear weapons identification, the development of a small processor now allows it to be also applied in a practical way to subcriticality measurements, nuclear fuel process monitoring and qualitative nondestructive assay of special nuclear material

  16. Nonlinear acoustic-gravity waves

    Stenflo, Lennart; Shukla, P. K.

    2009-01-01

    Previous results on nonlinear acoustic-gravity waves are reconsidered. It turns out that the mathematical techniques used are somewhat similar to those already adopted by the plasma physics community. Consequently, a future interaction between physicists On different fields, e.g in meteorology and plasma physics, can be very fruitful.

  17. Acoustics in the Martian Atmosphere

    Williams, J.-P.

    2000-10-01

    With the advent of the first attempt to deliver an acoustic microphone to the Martian surface aboard the failed Mars Polar Lander, there has been growing interests in the development of acoustic sensors to compliment scientific payloads on future spacecraft. Terrestrial scientist have been very successful in using infrasound (sound at frequencies below human detection, detect and monitor atmospheric phenomena related to weather, tornadoes, mountain waves, microbaroms, ionospheric and auroral disturbances, and meteror/fireballs, as well as anthropogenic sources such as aircraft and nuclear explosions. Sounds on Mars at the audible frequencies (20 Hz to 20 kHz) will be severely attenuated due to viscous relaxation and thermal diffusion (collectively referred to as classical attenuation) which will be much more severe in the colder, less dense Martian atmosphere. Molecular relaxation of carbon dioxide will also contribute to the sound absorption in the lower audible frequencies. Since classical attenuation increases as a function of the frequency squared, at low infrasonic frequencies ( < 10 Hz), classical attenuation becomes less significant and sound absorption in the Martian atmosphere becomes more similar to that of the terrestrial atmosphere for the same frequencies. At these longer wavelengths, geometric spreading will dominate as the source of attenuation as the acoustic energy is spread out over an ever increasing spherical wave front. This implies that infrasound (10 to 0.01 Hz) will be a useful frequency range for future acoustic sensors developed for scientific payloads delivered to the Martian surface.

  18. Satellite and acoustic tracking device

    Berumen, Michael L.

    2014-02-20

    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  19. Digitization of acoustic sounder data

    A method of archiving acoustic sounder data in a format compatible with a computer is used development. The collected data will be used to compile a climatology of the atmospheric surface boundary layer to predict the transport and diffusion of atmospheric pollutants

  20. SES and Acoustics at GSFC

    Hogue, Patrick

    2008-01-01

    This paper presents air and surface cleanliness characterization of the acoustics test facility and large (SES) thermal vacuum chamber at Goddard Space flight Center in Greenbelt, MD during the New Horizons Pluto probe program. It is shown that slow back-fill of the SES chamber is necessary to prevent excessive particle redistribution.

  1. Topology optimization for acoustic problems

    Dühring, Maria Bayard

    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 designs...

  2. Acoustic optic hybrid (AOH) sensor

    Matthews; Arrieta

    2000-09-01

    The ability of laser vibrometers to receive and process acoustic echoes from the water surface above a submerged target is established and evaluated. Sonar echoes from a submerged target are collected from the water surface by a laser vibrometer. Feasibility of this approach to sensing underwater sound is demonstrated. If the acoustic excitation at an otherwise undisturbed water surface is 195 to 168 dB re: 1 microPa, signal-to-noise ratio (SNR), at the vibrometer output, is shown to range from about 46 to 6 dB. Capillary waves and gravity waves at the water surface are expected and shown to have some destructive effect on the process of echo retrieval. A series of experiments to quantify the surface wave effects is described. The wave experiment results are reported. A successful attempt to acquire echoes from a submerged target over a grid of points for further processing into a three-dimensional image is made and described. The data acquisition and beamforming techniques constitute a three-dimensional, acoustic optic, synthetic aperture sonar (SAS). Beamformed images are included. For an aircraft towing acoustic sensors through the water with a mechanical link, this technique holds the promise of increased safety and improved fuel efficiency. PMID:11008811

  3. Acoustics SIMOPS: managing the unnecessary

    Hanton, Samuel John [Nautronix Marine Technology Solutions, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Time is money, and offshore operations are expensive. The desire therefore, is to increase efficiency through the condensing of schedules. This inevitably leads to SIMOPS of some degree, and this paper discusses SIMOPS along with, more specifically, the challenges they provide to acoustic positioning. (author)

  4. Longitudinal bulk acoustic mass sensor

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...

  5. Multiuser sonar watermarking and detection in an underwater acoustic channel

    Mobasseri, Bijan G.; Lynch, Robert S.; Andiario, David

    2013-06-01

    Sonar watermarking is the practice of embedding low-power, secure digital signatures in the time frequency space of a waveform. The algorithm is designed for a single source/receiver configuration. However, in a multiuser environment, multiple sources broadcast sonar waveforms that overlap in both time and frequency. The receiver can be configured as a filter bank where each bank is dedicated to detecting a specific watermark. However, a filter bank is prone to mutual interference as multiple sonar waveforms are simultaneously present at the detector input. To mitigate mutual interference, a multiuser watermark detector is formulated as a decorrelating detector that decouples detection amongst the watermark signatures. The acoustic channel is simulated in software and modeled by an FIR filter. This model is used to compensate for the degradation of spreading sequences used for watermark embedding. The test statistic generated at the output of the decorrelating detector is used in a joint maximum likelihood ratio detector to establish the presence or absence of the watermark in each sonar waveform. ROC curves are produced for multiple sources positioned at varying ranges subject to ambient ocean noise controlled by varying sea states.

  6. Analysis of Acoustic Emission Signals using WaveletTransformation Technique

    S.V. Subba Rao

    2008-07-01

    Full Text Available Acoustic emission (AE monitoring is carried out during proof pressure testing of pressurevessels to find the occurrence of any crack growth-related phenomenon. While carrying out AEmonitoring, it is often found that the background noise is very high. Along with the noise, thesignal includes various phenomena related to crack growth, rubbing of fasteners, leaks, etc. Dueto the presence of noise, it becomes difficult to identify signature of the original signals related to the above phenomenon. Through various filtering/ thresholding techniques, it was found that the original signals were getting filtered out along with noise. Wavelet transformation technique is found to be more appropriate to analyse the AE signals under such situations. Wavelet transformation technique is used to de-noise the AE data. The de-noised signal is classified to identify a signature based on the type of phenomena.Defence Science Journal, 2008, 58(4, pp.559-564, DOI:http://dx.doi.org/10.14429/dsj.58.1677

  7. An examination of quantitative methods for Forensic Signature Analysis and the admissibility of signature verification system as legal evidence.

    Chatzisterkotis, Thomas

    2015-01-01

    The experiments described in this thesis deal with handwriting characteristics which are involved in the production of forged and genuine signatures and complexity of signatures. The objectives of this study were (1) to provide sufficient details on which of the signature characteristics are easier to forge, (2) to investigate the capabilities of the signature complexity formula given by Found et al. based on a different signature database provided by University of Kent. This database includes ...

  8. Aerosol behaviour in an acoustic field

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...)

  9. Determining Equilibrium Position For Acoustical Levitation

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  10. Detecting acoustic events during thermal and mechanical loading

    Por, Gabor; Bereczki, Peter; Danka, Zsolt; Trampus, Peter [College of Dunaujvaros (Hungary)

    2014-11-01

    We examined Acoustic Emission (AE) events during combined heat and tensile test carried out in different steels (S235JRG2, TRIP and TWIP steels) on Gleeble simulator. The simulator enabled us to control parameters for fast heating and cooling parallel with pressing and tensile the sample until its real break. The aim was to investigate the structural change of the material, phase transformation in the steel at different temperatures, and connect them to signatures measured by acoustic emission sensors. During testing we noticed characteristics of Barkhausen noise. We demonstrate and prove definitely that we were facing Acoustic Barkhausen Noise (ABN) due to AC current used to heating and to maintaining the temperature in the cylindrical ferritic sample. It was observed, that the magnitude of the ABN dropped suddenly to the half when the tensile test started after preheating, and it was growing back when the tensile test went to plastic deformation with elongation of the tested sample. Localization of the ABN sources has been done showing the distribution of the sources along the whole material. ABN sources were observed all along the sample with interesting density growth in the section where the diameter was smaller, thus the tension was higher. Nevertheless, this was not the only observation, since the place of the densest sources was displaced from one position to another position until the break occurred near to the densest place of ANB and AE source. Off-line examination of the structure of material afterward using destructive test proved that we could register those cooling periods, where phase transition took place in the material. Ferrite-bainite and magnetite-bainite transitions were connected to some higher distribution of ANB and AE signals during the test. Rate of hits and sum of hit were connected to material transition during cooling. The first results of AE measurements during tensile test in TWIP materials showed that AE events are connected with

  11. Detection and tracking of drones using advanced acoustic cameras

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  12. Explosives Detection: Exploitation of the Physical Signatures

    Atkinson, David

    2010-10-01

    Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.

  13. A Methodology for Calculating Radiation Signatures

    Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  14. Animal Models of Interferon Signature Positive Lupus.

    Zhuang, Haoyang; Szeto, Christopher; Han, Shuhong; Yang, Lijun; Reeves, Westley H

    2015-01-01

    Human lupus is strongly associated with a gene expression signature characterized by over-expression of Type I interferon-regulated genes. A strong interferon signature generally is not seen in the standard mouse models of lupus, despite considerable evidence for the involvement of toll-like receptor-driven interferon production. In contrast, pristane-induced lupus exhibits a prominent TLR7-dependent interferon signature. Importantly, genetic disorders with dysregulated interferon production in both human beings and mice cause severe autoinflammatory diseases but not the typical manifestations of lupus, suggesting that interferon over-production is insufficient to cause systemic lupus erythematosus itself. Single-gene models in mice suggest that lupus-like disease may result from abnormalities in B-cell activation and the clearance of dead cells. Pristane may mimic human systemic lupus erythematosus by causing synergistic abnormalities in interferon production along with defective clearance of apoptotic cells and over-active B-cell signaling. PMID:26097482

  15. Geometry of Killing spinors in neutral signature

    Klemm, Dietmar

    2015-01-01

    We classify the supersymmetric solutions of minimal $N=2$ gauged supergravity in four dimensions with neutral signature. They are distinguished according to the sign of the cosmological constant and whether the vector field constructed as a bilinear of the Killing spinor is null or non-null. In neutral signature the bilinear vector field can be spacelike, which is a new feature not arising in Lorentzian signature. In the $\\Lambda0$ non-null case, the manifold is a fibration over a Lorentzian Gauduchon-Tod base space. Finally, in the $\\Lambda>0$ null class, the metric is contained in the Kundt family, and it turns out that the holonomy is reduced to ${\\rm Sim}(1)\\times{\\rm Sim}(1)$. There appear no self-dual solutions in the null class for either sign of the cosmological constant.

  16. Fluorescent taggants with temporally coded signatures.

    Wang, Siyang; Vyas, Raul; Dwyer, Chris

    2016-07-11

    In this paper, resonance energy transfer (RET) networks between chromophores are used to implement fluorescent taggants with temporally coded signatures. Because the temporal signature of such a fluorescent taggant is a phase-type distribution defined by the geometry of its RET network, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the detection process becomes highly efficient when the signatures are coded in the time domain. The taggant identification method is based on the multinomial distribution of detected photons and Maximum Likelihood Estimation, which guarantees high accuracy even with only a few hundred photons and also applies to a mixture of taggants in multiplex detection. Therefore, these temporally coded fluorescent taggants have great potential for both in situ and Lidar applications. PMID:27410827

  17. Cryptanalysis of the arbitrated quantum signature protocols

    Gao, Fei; Guo, Fen-Zhuo; Wen, Qiao-Yan

    2011-01-01

    As a new model for signing quantum message, arbitrated quantum signature (AQS) has recently received a lot of attention. In this paper we study the cryptanalysis of previous AQS protocols from the aspects of forgery and disavowal. We show that in these protocols the receiver Bob can realize existential forgery of the sender's signature under known message attack. Bob can even achieve universal forgery when the protocols are used to sign a classical message. Furthermore, the sender Alice can successfully disavow any of her signatures by simple attack. The attack strategies are described in detail and some discussions about the potential improvements of the protocols are given. Finally we also present several interesting topics in future study on AQS protocols.

  18. Temporal shape analysis via the spectral signature.

    Bernardis, Elena; Konukoglu, Ender; Ou, Yangming; Metaxas, Dimitris N; Desjardins, Benoit; Pohl, Kilian M

    2012-01-01

    In this paper, we adapt spectral signatures for capturing morphological changes over time. Advanced techniques for capturing temporal shape changes frequently rely on first registering the sequence of shapes and then analyzing the corresponding set of high dimensional deformation maps. Instead, we propose a simple encoding motivated by the observation that small shape deformations lead to minor refinements in the spectral signature composed of the eigenvalues of the Laplace operator. The proposed encoding does not require registration, since spectral signatures are invariant to pose changes. We apply our representation to the shapes of the ventricles extracted from 22 cine MR scans of healthy controls and Tetralogy of Fallot patients. We then measure the accuracy score of our encoding by training a linear classifier, which outperforms the same classifier based on volumetric measurements. PMID:23286031

  19. Trace element ink spiking for signature authentication

    Signature authentication is a critical question in forensic document examination. Last years the evolution of personal computers made signature copying a quite easy task, so the development of new ways for signature authentication is crucial. In the present work a commercial ink was spiked with many trace elements in various concentrations. Inorganic and organometallic ink soluble compounds were used as spiking agents, whilst ink retained its initial properties. The spiked inks were used for paper writing and the documents were analyzed by a non destructive method, the energy dispersive X-ray fluorescence. The thin target model was proved right for quantitative analysis and a very good linear relationship of the intensity (X-ray signal) against concentration was estimated for all used elements. Intensity ratios between different elements in the same ink gave very stable results, independent on the writing alterations. The impact of time both to written document and prepared inks was also investigated. (author)

  20. Handbook of Signal Processing in Acoustics

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  1. Peripheral blood signatures of lead exposure.

    Heather G LaBreche

    Full Text Available BACKGROUND: Current evidence indicates that even low-level lead (Pb exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway.

  2. Self-Similarity Limits of Genomic Signatures

    Wu, Z B

    2002-01-01

    It is shown that metric representation of DNA sequences is one-to-one. By using the metric representation method, suppression of nucleotide strings in the DNA sequences is determined. For a DNA sequence, an optimal string length to display genomic signature in chaos game representation is obtained by eliminating effects of the finite sequence. The optical string length is further shown as a self- similarity limit in computing information dimension. By using the method, self-similarity limits of bacteria complete genomic signatures are further determined.

  3. Electronic Seal Stamping Based on Group Signature

    Girija Srikanth

    2011-05-01

    Full Text Available This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted by CNBAB platform since Mar., 2008

  4. Transient aspects of stream interface signatures

    Crooker, N.U.; Shodhan, S. [Boston Univ., MA (United States). Center for Space Physics; Forsyth, R.J. [Imperial Coll., London (United Kingdom). Blackett Lab.; Burton, M.E. [Jet Propulsion Lab., Pasadena, CA (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States); Fitzenreiter, R.J.; Lepping, R.P. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Lab. for Extraterrestrial Physics

    1999-06-01

    Although stream interfaces are steady-state, corotating boundaries between slow and fast solar wind, their signatures are sometimes associated with transient features. Here the authors illustrate two modes of association: interfaces trailing interplanetary coronal mass ejections (ICMEs) at 1 AU and interfaces within ICMEs in the range 4--5 AU. The former are readily understood as boundaries between transient slow wind and steady-state fast wind, where the ICMEs add variability to the interface signatures. The latter are puzzling and may be related to evolution of interfaces.

  5. LHC Signatures Of Scalar Dark Energy

    Brax, Philippe; Englert, Christoph; Spannowsky, Michael

    2016-01-01

    Scalar dark energy fields that couple to the Standard Model can give rise to observable signatures at the LHC. In this work we show that $t\\bar t+$missing energy and mono-jet searches are suitable probes in the limit where the dark energy scalar is stable on collider distances. We discuss the prospects of distinguishing the dark energy character of new physics signals from dark matter signatures and the possibility of probing the self-interactions of the dark energy sector.

  6. Security problem on arbitrated quantum signature schemes

    Choi, Jeong Woon; Hong, Dowon

    2011-01-01

    Until now, there have been developed many arbitrated quantum signature schemes implemented with a help of a trusted third party. In order to guarantee the unconditional security, most of them take advantage of the optimal quantum one-time encryption method based on Pauli operators. However, we in this paper point out that the previous schemes only provides a security against total break and actually show that there exists a simple existential forgery attack to validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover the security against the proposed attack.

  7. Plasma signatures of radial field power dropouts

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events. copyright 1999 American Institute of Physics

  8. Plasma Signatures of Radial Field Power Dropouts

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events

  9. Threshold Signature Scheme Based on Discrete Logarithm and Quadratic Residue

    FEI Ru-chun; WANG Li-na

    2004-01-01

    Digital signature scheme is a very important research field in computer security and modern cryptography.A(k,n) threshold digital signature scheme is proposed by integrating digital signature scheme with Shamir secret sharing scheme.It can realize group-oriented digital signature, and its security is based on the difficulty in computing discrete logarithm and quadratic residue on some special conditions.In this scheme, effective digital signature can not be generated by any k-1 or fewer legal users, or only by signature executive.In addition, this scheme can identify any legal user who presents incorrect partial digital signature to disrupt correct signature, or any illegal user who forges digital signature.A method of extending this scheme to an Abelian group such as elliptical curve group is also discussed.The extended scheme can provide rapider computing speed and stronger security in the case of using shorter key.

  10. USE OF SCALE MODELING FOR ARCHITECTURAL ACOUSTIC MEASUREMENTS

    ERÖZ, Ferhat

    2013-01-01

    In recent years, acoustic science and hearing has become important. Acoustic design used in tests of acoustic devices is crucial. Sound propagation is a complex subject, especially inside enclosed spaces. From the 19th century on, the acoustic measurements and tests were carried out using modeling techniques that are based on room acoustic measurement parameters.In this study, the effects of architectural acoustic design of modeling techniques and acoustic parameters were studied. In this con...

  11. Acoustic habitat and shellfish mapping and monitoring in shallow coastal water - Sidescan sonar experiences in The Netherlands

    van Overmeeren, Ronnie; Craeymeersch, Johan; van Dalfsen, Jan; Fey, Frouke; van Heteren, Sytze; Meesters, Erik

    2009-11-01

    Sidescan sonar has been applied in a number of shallow water environments along the Dutch coast to map and monitor shellfish and seabed habitats. The littoral setting of these surveys may hamper data acquisition flying the towfish in zones of turbulence and waves, but also offers valuable opportunities for understanding, interpreting and validating sidescan sonar images because of the ability to ground-truth during low water periods, enabling easy identification and validation. Acoustical images of some of the mussel banks on the tidal flats of the Wadden Sea, recorded at high tide, show a marked resemblance with optical Google Earth images of the same banks. These sonar images may thus serve as ' acoustic type signatures' for the interpretation of sonar patterns recorded in deeper water where ground-truthing is more difficult and more expensive. Similarly, acoustic type signatures of (Japanese) oyster banks were obtained in the estuaries in the southwest of the Netherlands. Automated acoustic pattern recognition of different habitats and acoustical estimation of faunal cover and density are possible applications of sidescan sonar. Both require that the backscattering observed on the sidescan sonar images is directly caused by the biological component of the seafloor. Filtering offers a simple and effective pre-processing technique to separate the faunal signals from linear trends such as emanating from wave ripples or the central tracks of the towfish. Acoustically estimating the faunal density is approached by in-situ counting peaks in backscattering in unit squares. These counts must be calibrated by ground-truthing. Ground-truthing on littoral mussel banks in the Wadden Sea has been carried out by measuring their cover along lines during low tide. Due to its capacity of yielding full-cover, high resolution images of large surfaces, sidescan sonar proves to be an excellent, cost-effective tool for quantitative time-lapse monitoring of habitats.

  12. APPLICATION OF DOMAIN DECOMPOSITION IN ACOUSTIC AND STRUCTURAL ACOUSTIC ANALYSIS

    2007-01-01

    Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.

  13. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  14. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  15. A New Batch Verifying Scheme for Identifying Illegal Signatures

    Adrian Atanasiu

    2013-01-01

    The concept of batch verifying multiple digital signatures is to find a method by which multiple digital signatures can be verified simultaneously in a lower time complexity than separately verifying all the signatures.In this article,we analyze the complexity of the batch verifying schemes defined by Li,Hwang and Chen in 2010,and propose a new batch verifying multiple digital signature scheme,in two variants:one for RSA-by completing the Harn's schema with an identifying illegal signatures algorithm,and the other adapted for a modified Elliptic Curve Digital Signature Algorithm protocol.

  16. A group signature scheme based on quantum teleportation

    Wen Xiaojun; Tian Yuan; Ji Liping; Niu Xiamu, E-mail: wxjun36@gmail.co [Information Countermeasure Technique Research Institute, Harbin Institute of Technology, Harbin 150001 (China)

    2010-05-01

    In this paper, we present a group signature scheme using quantum teleportation. Different from classical group signature and current quantum signature schemes, which could only deliver either group signature or unconditional security, our scheme guarantees both by adopting quantum key preparation, quantum encryption algorithm and quantum teleportation. Security analysis proved that our scheme has the characteristics of group signature, non-counterfeit, non-disavowal, blindness and traceability. Our quantum group signature scheme has a foreseeable application in the e-payment system, e-government, e-business, etc.

  17. Feasibility analysis of two identity- based proxy ring signature schemes

    Wang Huaqun; Zhang Lijun; Zhao Junxi

    2007-01-01

    Recently , proxy ring signature schemes have been shown to be useful in various applications , such as electronic polling, electronic payment, etc. Although many proxy ring signature schemes have been proposed, there are only two identity- based proxy ring signature schemes have been proposed until now, I.e., Cheng's scheme and Lang's scheme. It's unlucky that the two identity- based proxy ring signature schemes are unfeasible . This paper points out the reasons why the two identity- based proxy ring signature schemes are unfeasible. In order to design feasible and efficient identity-based proxy ring signature schemes from bilinear pairings , we have to search for other methods .

  18. A group signature scheme based on quantum teleportation

    In this paper, we present a group signature scheme using quantum teleportation. Different from classical group signature and current quantum signature schemes, which could only deliver either group signature or unconditional security, our scheme guarantees both by adopting quantum key preparation, quantum encryption algorithm and quantum teleportation. Security analysis proved that our scheme has the characteristics of group signature, non-counterfeit, non-disavowal, blindness and traceability. Our quantum group signature scheme has a foreseeable application in the e-payment system, e-government, e-business, etc.

  19. Estimation of low-altitude moving target trajectory using single acoustic array.

    Tong, Jianfei; Xie, Wei; Hu, Yu-Hen; Bao, Ming; Li, Xiaodong; He, Wei

    2016-04-01

    An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. PMID:27106332

  20. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  1. Blend uniformity analysis of pharmaceutical products by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS).

    Fitzpatrick, Dara; Scanlon, Eoin; Krüse, Jacob; Vos, Bastiaan; Evans-Hurson, Rachel; Fitzpatrick, Eileen; McSweeney, Seán

    2012-11-15

    Blend uniformity analysis (BUA) is a routine and highly regulated aspect of pharmaceutical production. In most instances, it involves quantitative determination of individual components of a blend in order to ascertain the mixture ratio. This approach often entails the use of costly and sophisticated instrumentation and complex statistical methods. In this study, a new and simple qualitative blend confirmatory test is introduced based on a well known acoustic phenomenon. Several over the counter (OTC) product powder blends are analysed and it is shown that each product has a unique and highly reproducible acoustic signature. The acoustic frequency responses generated during the dissolution of the product are measured and recorded in real time. It is shown that intra-batch and inter-batch variation for each product is either insignificant or non-existent when measured in triplicate. This study demonstrates that Broadband Acoustic Resonance Dissolution Spectroscopy or BARDS can be used successfully to determine inter-batch variability, stability and uniformity of powder blends. This is just one application of a wide range of BARDS applications which are more cost effective and time efficient than current methods. PMID:22884840

  2. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  3. Signatures of black holes at the LHC

    Cavaglia, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.

    2007-01-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  4. New particles and their experimental signatures

    This report summarizes work done by our theoretical working group on exotic particles before, during and since the Lausanne meeting. We discuss the motivations, rates and experimental signatures for new physics and new particles in the 1 TeV mass range. (orig./HSI)

  5. Molecular signatures of thyroid follicular neoplasia

    Helweg-Larsen, Rehannah Holga Andrea; Rossing, Maria; Henao, Ricardo;

    2010-01-01

    The molecular pathways leading to thyroid follicular neoplasia are incompletely understood, and the diagnosis of follicular tumors is a clinical challenge. To provide leads to the pathogenesis and diagnosis of the tumors, we examined the global transcriptome signatures of follicular thyroid...

  6. Exploring Signature Pedagogies in Undergraduate Leadership Education

    Jenkins, Daniel M.

    2012-01-01

    This research explores the instructional strategies most frequently used by leadership educators who teach academic credit-bearing undergraduate leadership studies courses through a national survey and identifies signature pedagogies within the leadership discipline. Findings from this study suggest that class discussion--whether in the form of…

  7. SUSY with ATLAS Leptonic Signatures, Coannihilation Region

    Comune, G

    2004-01-01

    In this work we present an initial study on how leptonic signatures can be used at ATLAS to constrain SUSY particle masses combinations for the first time in the so called "coannihilation region''. The analysis is carried out in the framework of mSUGRA constrained SUSY model using fast detector simulation and reconstruction exploiting an invariant mass endpoint technique.

  8. An Arbitrated Quantum Signature with Bell States

    Liu, Feng; Qin, Su-Juan; Huang, Wei

    2014-05-01

    Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.

  9. Quantum Signature Scheme with Weak Arbitrator

    Luo, Ming-Xing; Chen, Xiu-Bo; Yun, Deng; Yang, Yi-Xian

    2012-07-01

    In this paper, we propose one quantum signature scheme with a weak arbitrator to sign classical messages. This scheme can preserve the merits in the original arbitrated scheme with some entanglement resources, and provide a higher efficiency in transmission and reduction the complexity of implementation. The arbitrator is costless and only involved in the disagreement case.

  10. The Pedagogic Signature of Special Needs Education

    Weiß, Sabine; Kollmannsberger, Markus; Lerche, Thomas; Oubaid, Viktor; Kiel, Ewald

    2014-01-01

    The goal of the following study is to identify a pedagogic signature, according to LS Shulman, for working with students who have special educational needs. Special educational needs are defined as significant limitations in personal development and learning which require particular educational measures beyond regular education. The development of…

  11. 76 FR 30542 - Adult Signature Services

    2011-05-26

    ... Signature labels are located in the Intelligent Mail Package Barcode Specification and the addendum to Publication 91, Addendum for Intelligent Mail Package Barcode (IMpb) and 3-digit Service Type Code, available... Intelligent Mail package barcode. * * * * * 3.0 Certified Mail * * * * * 3.2 Basic Information * * * * *...

  12. Detection of signature volatiles for cariogenic microorganisms.

    Hertel, M; Preissner, R; Gillissen, B; Schmidt-Westhausen, A M; Paris, S; Preissner, S

    2016-02-01

    The development of a breath test by the identification of volatile organic compounds (VOCs) emitted by cariogenic bacteria is a promising approach for caries risk assessment and early caries detection. The aim of the present study was to investigate the volatile profiles of three major cariogenic bacteria and to assess whether the obtained signatures were species-specific. Therefore, the headspaces above cultures of Streptococcus mutans, Lactobacillus salivarius and Propionibacterium acidifaciens were analysed after 24 and 48 h of cultivation using gas chromatography and mass spectrometry. A volatile database was queried for the obtained VOC profiles. Sixty-four compounds were detected within the analysed culture headspaces and were absent (36) or at least only present in minor amounts (28) in the control headspace. For S. mutans 18, for L. salivarius three and for P. acidifaciens five compounds were found to be unique signature VOCs. Database matching revealed that the identified signatures of all bacteria were unique. Furthermore, 13 of the 64 detected substances have not been previously reported to be emitted by bacteria or fungi. Specific VOC signatures were found in all the investigated bacteria cultures. The obtained results encourage further research to investigate the transferability to in vivo conditions towards the development of a breath test. PMID:26610336

  13. Fully polarimetric analysis of weather radar signatures

    Galletti, Michele; Bebbington, David; Chandra, Madhukar; Börner, Thomas

    2008-01-01

    In this work the concept of depolarization response, namely the degree of polarization as a function of transmit polarization state, is investigated. Application examples are shown in the field of radar meteorology, namely for hydrometeor identification with fully polarimetric weather radar signatures. Data are from POLDIRAD, DLR research weather radar.

  14. Acoustic metamaterial design and applications

    Zhang, Shu

    The explosion of interest in metamaterials is due to the dramatically increased manipulation ability over light as well as sound waves. This material research was stimulated by the opportunity to develop an artificial media with negative refractive index and the application in superlens which allows super-resolution imaging. High-resolution acoustic imaging techniques are the essential tools for nondestructive testing and medical screening. However, the spatial resolution of the conventional acoustic imaging methods is restricted by the incident wavelength of ultrasound. This is due to the quickly fading evanescent fields which carry the subwavelength features of objects. By focusing the propagating wave and recovering the evanescent field, a flat lens with negative-index can potentially overcome the diffraction limit. We present the first experimental demonstration of focusing ultrasound waves through a flat acoustic metamaterial lens composed of a planar network of subwavelength Helmholtz resonators. We observed a tight focus of half-wavelength in width at 60.5 KHz by imaging a point source. This result is in excellent agreement with the numerical simulation by transmission line model in which we derived the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies. Our experiment shows the promise of designing compact and light-weight ultrasound imaging elements. Moreover, the concept of metamaterial extends far beyond negative refraction, rather giving enormous choice of material parameters for different applications. One of the most interesting examples these years is the invisible cloak. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. However, the cloak designed by transformation optics usually calls for a highly anisotropic metamaterial, which

  15. Cylindrical acoustic levitator/concentrator

    Kaduchak, Gregory (Los Alamos, NM); Sinha, Dipen N. (Los Alamos, NM)

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  16. Cooperative OFDM underwater acoustic communications

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  17. Sandia Helicopter Acoustic Detector (SHAD)

    Arlowe, H. D.

    1982-05-01

    The Sandia Helicopter Acoustic Detector was developed to provide a low cost alternative to radar for countering the helicopter threat at new DOE facilities. The main buildings of these new designs are generally hardened to provide significant delay to a helicopter borne adversary team. Under these circumstances the sensor is only required to detect helicopters that are in their final landing phase and at close range (less than 75 m). This short detection range allows the use of a fairly simple acoustic detection algorithm without making the system overly sensitive to wind noise, motor vehicles, and ventilation/heat exchange blowers. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the overall Sandia Fixed Facility Physical Protection Program.

  18. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  19. A First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background

    Follin, Brent; Millea, Marius; Pan, Zhen

    2015-01-01

    The freestreaming of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the Cosmic Microwave Background (CMB) temperature power spectrum. The magnitude of the shift is proportional to the fraction of the total radiation density in neutrinos. Parameterizing the shift via an effective number of neutrino species we find $1.9 < N_\

  20. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan; Rouhani, Bahram Djafari; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid

    2016-01-01

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defi...... standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes....

  1. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  2. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  3. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  4. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  5. Comparison of metagenomic samples using sequence signatures

    Jiang Bai

    2012-12-01

    Full Text Available Abstract Background Sequence signatures, as defined by the frequencies of k-tuples (or k-mers, k-grams, have been used extensively to compare genomic sequences of individual organisms, to identify cis-regulatory modules, and to study the evolution of regulatory sequences. Recently many next-generation sequencing (NGS read data sets of metagenomic samples from a variety of different environments have been generated. The assembly of these reads can be difficult and analysis methods based on mapping reads to genes or pathways are also restricted by the availability and completeness of existing databases. Sequence-signature-based methods, however, do not need the complete genomes or existing databases and thus, can potentially be very useful for the comparison of metagenomic samples using NGS read data. Still, the applications of sequence signature methods for the comparison of metagenomic samples have not been well studied. Results We studied several dissimilarity measures, including d2, d2* and d2S recently developed from our group, a measure (hereinafter noted as Hao used in CVTree developed from Hao’s group (Qi et al., 2004, measures based on relative di-, tri-, and tetra-nucleotide frequencies as in Willner et al. (2009, as well as standard lp measures between the frequency vectors, for the comparison of metagenomic samples using sequence signatures. We compared their performance using a series of extensive simulations and three real next-generation sequencing (NGS metagenomic datasets: 39 fecal samples from 33 mammalian host species, 56 marine samples across the world, and 13 fecal samples from human individuals. Results showed that the dissimilarity measure d2S can achieve superior performance when comparing metagenomic samples by clustering them into different groups as well as recovering environmental gradients affecting microbial samples. New insights into the environmental factors affecting microbial compositions in metagenomic samples

  6. : FMRI in acoustic trauma sequelae

    Job, Agnès; Pons, Yoann; Lamalle, Laurent; Jaillard, Assia; Buck, Karl; Segebarth, Christoph; Delon-Martin, Chantal

    2012-01-01

    International audience The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory "oddball" attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related...

  7. Virtual Reality for Architectural Acoustics

    Vorländer, Michael; Schröder, Dirk; PELZER, Sönke; Wefers, Frank

    2014-01-01

    Over the last decades, powerful prediction models have been developed in architectural acoustics, which are used for the calculation of sound propagation in indoor and/or outdoor scenarios. Sound insulation is predicted rather precisely by using direct and flanking transmission models of sound and vibration propagation. These prediction tools are already in use in architectural design and consulting. For the extension towards virtual reality (VR) systems, it is required to accelerate the pred...

  8. Acoustic streaming in superfluid helium

    Quantitative measurements of acoustic streaming velocity in liquid helium as a function of sound intensity (up to the cavitation threshold), frequency (1, 3, and 10 MHz), and temperature (1.43 K< or =T< or =2.19 K) are reported. A transition to superfluid turbulence, several flow regions and flow fluctuations are observed. Comparison with the predictions of the second-order Khalatnikov two- fluid hydrodynamic equations indicates good functional and quantitative agreement

  9. Tunable acoustic double negativity metamaterial

    Z. Liang; Willatzen, M.; Li, J.; Christensen, J

    2012-01-01

    Man-made composite materials called “metamaterials” allow for the creation of unusual wave propagation behavior. Acoustic and elastic metamaterials in particular, can pave the way for the full control of sound in realizing cloaks of invisibility, perfect lenses and much more. In this work we design acousto-elastic surface modes that are similar to surface plasmons in metals and on highly conducting surfaces perforated by holes. We combine a structure hosting these modes together with a gap ma...

  10. Acoustic radiation stress in solids

    Cantrell, John H.; Yost, William T.

    1986-01-01

    It is shown that the radiation-induced static strains associated with acoustic waves propagating in solids are obtained directly from the virial theorem for an elastic continuum and that the radiation stresses result from combining the virial theorem with the Boltzmann-Ehrenfest principle of adiabatic invariance. The experimental confirmation of critical theoretical predictions in solids is reported. The implications of the results for the fundamental thermal properties of crystals are addressed.

  11. Software defined acoustic underwater modem

    Lindgren, Jakob

    2011-01-01

      Today many types of communication are employed on seagoing vessels, such as radio, satellite and Wi-Fi but only one type of communication is practical for submerged vessels, the acoustic underwater modem. The "off-the-shelf" modems are sometimes difficult to update and replace, especially on a large submarine. But by separating the hardware from the signal processing and making the software modular more versatility can be achieved.   The questions that this thesis are asking are: is it poss...

  12. Acoustical coupling of lizard eardrums.

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-12-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct and indirect sound components on the eardrum. The ensuing pressure-difference characteristics generate the highest directionality of any similar-sized terrestrial vertebrate ear. The aim of the present study was to measure the gain of the direct and indirect sound components in three lizard species: Anolis sagrei and Basiliscus vittatus (iguanids) and Hemidactylus frenatus (gekkonid) by laser vibrometry, using either free-field sound or a headphone and coupler for stimulation. The directivity of the ear of these lizards is pronounced in the frequency range from 2 to 5 kHz. The directivity is ovoidal, asymmetrical across the midline, but largely symmetrical across the interaural axis (i.e., front-back). Occlusion of the contralateral ear abolishes the directionality. We stimulated the two eardrums with a coupler close to the eardrum to measure the gain of the sound pathways. Within the frequency range of maximal directionality, the interaural transmission gain (compared to sound arriving directly) is close to or even exceeds unity, indicating a pronounced acoustical transparency of the lizard head and resonances in the interaural cavities. Our results show that the directionality of the lizard ear is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit. PMID:18648878

  13. Observational signatures of binary supermassive black holes

    Roedig, Constanze; Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2014-04-20

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  14. A new threshold proxy signature scheme from bilinear pairings

    QIAN Haifeng; CAO Zhenfu; XUE Qingshui

    2004-01-01

    Based on the GDH signature (short signature scheme) a probabilistic signature scheme is proposed in this paper with security proof. Then a new threshold proxy signature from bilinear pairings is proposed as well by using the new probabilistic signature scheme and the properties of the Gap Diffie-Hellman (GDH) group (where the Computational Diffie-Hellman problem is hard but the Decisional Diffie-Hellman problem is easy to solve). Our constructions are based on the recently proposed GDH signature scheme of Bonel et al.'s article. Bilinear pairings could be built from Weil pairing or Tate pairing. So most our constructions would be simpler, but still with high security. The proposed threshold proxy signature is the first one which is built from bilinear pairings. At the end of this paper security and performance of the threshold proxy signature scheme is also analyzed.

  15. A New Proxy Blind Signature Scheme based on ECDLP

    Daniyal M Alghazzawi

    2011-05-01

    Full Text Available A proxy blind signature scheme is a special form of blind signature which allows a designated person called proxy signer to sign on behalf of two or more original signers without knowing the content of the message or document. It combines the advantages of proxy signature, blind signature and multi-signature scheme and satisfies the security properties of both proxy and blind signature scheme. Most of the exiting proxy blind signature schemes were developed based on the mathematical hard problems integer factorization (IFP and simple discrete logarithm (DLP which take sub-exponential time to solve. This paper describes an secure simple proxy blind signature scheme based on Elliptic Curve Discrete Logarithm Problem (ECDLP takes fully-exponential time. This can be implemented in low power and small processor mobile devices such as smart card, PDA etc. Here also we describes implementation issues of various scalar multiplication for ECDLP.

  16. OFFLINE HANDWRITTEN SIGNATURE IDENTIFICATION USING ADAPTIVE WINDOW POSITIONING TECHNIQUES

    Ghazali Sulong

    2014-10-01

    Full Text Available The paper presents to address this challenge, we have proposed the use of Adaptive Window Positioning technique which focuses on not just the meaning of the handwritten signature but also on the individuality of the writer. This innovative technique divides the handwritten signature into 13 small windows of size nxn (13x13. This size should be large enough to contain ample information about the style of the author and small enough to ensure a good identification performance. The process was tested with a GPDS datasetcontaining 4870 signature samples from 90 different writers by comparing the robust features of the test signature with that of the user’s signature using an appropriate classifier. Experimental results reveal that adaptive window positioning technique proved to be the efficient and reliable method for accurate signature feature extraction for the identification of offline handwritten signatures .The contribution of this technique can be used to detect signatures signed under emotional duress.

  17. Acoustic Measurements of Small Solid Rocket Motor

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  18. Acoustic effects of single electrostatic discharges

    Orzech, Łukasz

    2015-10-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(pa) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details.

  19. Acoustic levitation of a large solid sphere

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  20. Coupling between plate vibration and acoustic radiation

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.