WorldWideScience

Sample records for acoustic noise

  1. Acoustics Noise Test Cell

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  2. Noise Shielding Using Acoustic Metamaterials

    We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamaterials. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Acoustically swept rotor. [helicopter noise reduction

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  4. Cardiorespiratory Responses to Acoustic Noise in Belugas.

    Lyamin, Oleg I; Korneva, Svetlana M; Rozhnov, Viatcheslav V; Mukhametov, Lev M

    2016-01-01

    To date, most research on the adverse effects of anthropogenic noise on marine mammals has focused on auditory and behavioral responses. Other responses have received little attention and are often ignored. In this study, the effect of acoustic noise on heart rate was examined in captive belugas. The data suggest that (1) heart rate can be used as a measure of physiological response (including stress) to noise in belugas and other cetaceans, (2) cardiac response is influenced by parameters of noise and adaptation to repeated exposure, and (3) cetacean calves are more vulnerable to the adverse effect of noise than adults. PMID:26611017

  5. Identification of Turbomachinery Noise Sources Using Acoustical Holography Project

    National Aeronautics and Space Administration — Evaluation and enhancement of the acoustical performance of turbomachinery requires knowledge of the acoustic sources. However, the noise generation mechanisms...

  6. Aero-acoustic noise of wind turbines. Noise prediction models

    Maribo Pedersen, B. [ed.

    1997-12-31

    Semi-empirical and CAA (Computational AeroAcoustics) noise prediction techniques are the subject of this expert meeting. The meeting presents and discusses models and methods. The meeting may provide answers to the following questions: What Noise sources are the most important? How are the sources best modeled? What needs to be done to do better predictions? Does it boil down to correct prediction of the unsteady aerodynamics around the rotor? Or is the difficult part to convert the aerodynamics into acoustics? (LN)

  7. Airframe Noise Prediction by Acoustic Analogy: Revisited

    Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.

    2006-01-01

    The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not

  8. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved...

  9. Acoustics of Jet Surface Interaction - Scrubbing Noise

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  10. Prediction of Acoustic Noise in Switched Reluctance Motor Drives

    Lin, CJ; Fahimi, B

    2014-03-01

    Prediction of acoustic noise distribution generated by electric machines has become an integral part of design and control in noise sensitive applications. This paper presents a fast and precise acoustic noise imaging technique for switched reluctance machines (SRMs). This method is based on distribution of radial vibration in the stator frame of the SRM. Radial vibration of the stator frame, at a network of probing points, is computed using input phase current and phase voltage waveforms. Sequentially, the acceleration of the probing network will be expanded to predict full acceleration on the stator frame surface, using which acoustic noise emission caused by the stator can be calculated using the boundary element method.

  11. MONITORING OF THE METAL STRUCTURAL STATE BY ACOUSTICAL STRUCTURAL NOISE

    V. V. Muraviev

    2015-03-01

    Full Text Available To determine the structural state of the metal as an informative parameter the structural acoustic noise is proposed. The paper represents the experimental results of the use at acoustical structural noise for the determination at the structural state of carbon pipe steels exposed by heat treatment, corrosion and tensile loads. The effect of grain size, corrosion and tensile loads on the level of structural noise is discussed.

  12. Performances and Acoustic Noise of Micro Multi-blade Fan

    Ryotaro Hidaka; Toshiaki Kanemoto; Tetsuya Sunada

    2008-01-01

    In this paper, the performances and the acoustic noise of the traditional type micro multi-blade fan were investi-gated experimentally and numerically, to optimize the specifications of the fan for the resident circumstances. The acoustic noise level decreases but the efficiency deteriorates slightly with the increase of the blade number of the impeller. Besides, the acoustic noise decreases with the increase of the distance between the impeller outlet and the volute tongue, in accompanying with the increase of the input and the deterioration of the fan efficiency.

  13. Acoustic noise in magnetic resonance imaging: An ongoing issue

    Purpose: Acoustic noise creates a problem for both patients and staff within the magnetic resonance (MR) environment. This study qualitatively and quantitatively investigates the acoustic noise levels from two MR systems in one clinical department and demonstrates the adverse effects that the acoustic noise generated in magnetic resonance imaging (MRI) has on a patient's experience of an MRI examination. Methods: A questionnaire was distributed to consenting patients undergoing one of two specific MR examinations on two MR systems (System A and System B) of varying age and technology in one clinical department. These evaluated the patient's experience during the MRI examination. Physical measurements of the maximum acoustic noise levels produced by each system for various pulse sequences were also recorded using a sound level meter. Results: The results of the questionnaire survey demonstrated significantly greater tolerance of the acoustic noise levels of System B (mean noise level rating of 2.45 on LIKERT scale) in comparison to System A (mean noise level rating of 3.71 on LIKERT scale) (P = 0.001). Significantly lower noise level descriptions were also demonstrated (P = 0.01). The maximum recorded sound levels also confirmed that System B was quieter than the System A. Conclusion: It is has been demonstrated that the acoustic noise generated during an MRI examinations has an adverse effect on the patient experience during the examination. However, new technology has significantly reduced these effects and is improving patient comfort in MRI. It was shown quantitatively that the newer system's advanced gradient technology was quieter than the older system, in terms of the acoustic noise levels associated with a range of common pulse sequences.

  14. Adaptive Drainage Slots for Acoustic Noise Attenuation Project

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG), proposes to demonstrate feasibility in the reduction of noise attributed to drainage slots in jet engine acoustic liners....

  15. Adaptive Drainage Slots for Acoustic Noise Attenuation Project

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG) demonstrated feasibility in the reduction of noise attributed to drainage slots in jet engine acoustic liners. This was...

  16. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    Morris, Philip J.; Farassat, F.; Morris, Philip J.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k-epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  17. Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    Morris, Philip J.; Farassat, F.

    2002-01-01

    Several methods for the prediction of jet noise are described. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy, whereas the other is the jet noise generation model recently proposed by Tam and Auriault. In all of the approaches, some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier-Stokes equation using a kappa-sigma turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach, but instead is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. In conclusion, a proposal is presented for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms, as is a discussion of noise prediction issues that remain to be resolved.

  18. Acoustic noise radiated by PWM-controlled induction machine drives

    Lo, W.C.; Chan, C.C.; Zhu, Z Q; Xu, L.; Howe, D.; Chau, K. T.

    2000-01-01

    This paper investigates the acoustic noise radiated from two nominally identical induction motors when fed from sinusoidal, and asymmetric regular sampling subharmonic and space-vector pulsewidth modulation (PWM) converters. The theory for analyzing the noise spectrum is developed further to account for the interaction between the motor and the drive. It is shown that manufacturing tolerances can result in significant differences in the noise level emitted from nominally identical motors, and...

  19. High Temperature Acoustic Noise Reduction Materials Project

    National Aeronautics and Space Administration — The proposed innovation is to use combustion synthesis techniques to manufacture ceramic-based acoustic liners capable of withstanding temperatures up to 2500?C....

  20. Noise shielding using active acoustic metamaterials with electronically tunable acoustic impedance

    Mokrý, P.; Steiger, Kateřina; Václavík, J.; Psota, Pavel; Doleček, Roman; Márton, P.; Kodejška, M.; Černík, M.

    Toowong DC QLD 4066: The Australian Acoustical Society, 2014 - (Davy, J.; Don, C.; McMinn, T.; Dowsett, L.; Broner, N.; Burgess, M.), s. 1-9 ISBN 978-0-909882-04-4. [Internoise 2014 Conference. Melbourne (AU), 16.11.2014-19.11.2014] R&D Projects: GA MŠk(CZ) LO1206; GA ČR GA13-10365S Institutional support: RVO:61389021 Keywords : Active Acoustic Metamaterial * Noise Shielding * Electronic Control of Acoustic Impedance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p834.pdf

  1. Use of acoustic analogy for marine propeller noise characterisation

    Lidtke, Artur; Turnock, Stephen; Humphrey, Victor

    2015-01-01

    Being able to predict shipborne noise is of significant importance to international maritime community. Porous Ffowcs-Williams Hawkings acoustic analogy is used with cavitation model by Sauer & Schnerr in order to predict the noise signature of the Potsdam Propeller operating in open water. The radiation pattern is shown to be predominantly affected by a dipole source, in addition to less prominent sources at the propeller plane and in the wake. It is shown that the predicted sound pressure l...

  2. Perceptual learning of acoustic noise by individuals with dyslexia

    Agus, T.; Carrion Castillo, A.; Pressnitzer, D.; Ramus, F.

    2014-01-01

    Purpose: A phonological deficit is thought to affect most individuals with developmental dyslexia. The present study addresses whether the phonological deficit is caused by difficulties with perceptual learning of fine acoustic details. Method: A demanding test of nonverbal auditory memory, “noise learning,” was administered to both adults with dyslexia and control adult participants. On each trial, listeners had to decide whether a stimulus was a 1-s noise token or 2 abutting presentations o...

  3. An improved probe noise approach for acoustic feedback cancellation

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    The perhaps most challenging problem in acoustic feedback cancellation using adaptive filters is the bias problem. It is well-known that a probe noise approach can effectively prevent this problem. However, when the probe noise must be inaudible and the steady-state error of the adaptive filter...... must be unchanged, this approach causes a significantly decreased convergence rate of the adaptive filter, and might thereby be less useful in practical applications. In this work, we propose a new probe noise approach which significantly increases the convergence rate while maintaining the steady......-state error of the adaptive algorithm in a multiple-microphone and single-loudspeaker audio system. This is obtained through a specifically designed probe noise signal and a corresponding probe noise enhancement strategy. We show the effects of the proposed probe noise approach by deriving analytical...

  4. Perceptual Learning of Acoustic Noise by Individuals with Dyslexia

    Agus, Trevor R.; Carrión-Castillo, Amaia; Pressnitzer, Daniel; Ramus, Franck

    2014-01-01

    Purpose: A phonological deficit is thought to affect most individuals with developmental dyslexia. The present study addresses whether the phonological deficit is caused by difficulties with perceptual learning of fine acoustic details. Method: A demanding test of nonverbal auditory memory, "noise learning," was administered to both…

  5. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  6. Near-field acoustical holography of military jet aircraft noise

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  7. Novel Acoustic Feedback Cancellation Approaches In Hearing Aid Applications Using Probe Noise and Probe Noise Enhancement

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    . In many cases, this bias problem causes the cancellation system to fail. The traditional probe noise approach, where a noise signal is added to the loudspeaker signal can, in theory, prevent the bias. However, in practice, the probe noise level must often be so high that the noise is clearly audible...... and annoying; this makes the traditional probe noise approach less useful in practical applications. In this work, we explain theoretically the decreased convergence rate when using low-level probe noise in the traditional approach, before we propose and study analytically two new probe noise....... This makes the proposed approaches much more attractive in practical applications. We demonstrate this through a simulation experiment with audio signals in a hearing aid acoustic feedback cancellation system, where the convergence rate is improved by as much as a factor of 10....

  8. Energy Trapping in Low Phase Noise Bulk Acoustic Wave Oscillators

    In the design of resonators in low phase noise bulk acoustic wave (BAW) oscillators, maximization of quality factor is the primary target while energy trapping is not typically of concern. Analysis shows that although energy-trapping mode energy outside the electroded region decreases exponentially with distance away from the electrode edge of the wafer, the decaying wave will reflect at the wafer edge to the electroded region and generate a wave with same frequency but different phase which generates mutual modulation with resonant frequency. It is a source of phase noise and mainly affects the near-carrier-frequency phase noise. Two 120 MHz SC-cut 5th overtone UM-1 crystals with similar dynamic equivalent parameters and different shunt capacitances are compared using the same circuit. Experimental results show that energy trapping also needs to be considered in the design of resonators in low phase noise BAW oscillators

  9. Subwavelength acoustic metamaterial panels for underwater noise isolation.

    Hicks, Ashley J; Haberman, Michael R; Wilson, Preston S

    2015-09-01

    Acoustically thin metamaterial underwater noise isolation panels have been developed that provide as much as 16 dB of noise isolation for a panel with a thickness just 160th of the wavelength in the host medium (fresh water) at 2.5 kHz. The panels are composed of thin layers of neoprene rubber and polyoxymethylene containing air-filled voids. The level of isolation provided by the panels is shown to correlate positively with the volume fraction of air voids within the panel. PMID:26428822

  10. Minimizing vehicle noise and weight using panel acoustic contribution analysis

    Brown, Gordon M.

    1998-05-01

    Panel acoustic contribution analysis (PACA) is an advanced engineering tool to improve noise, vibration, and harshness quality and minimize weight of vehicles. It is a technique to categorize areas of vehicle body panels as positive (sound level increases as vibration amplitude increases), negative or neutral according to their contribution to the total sound. PACA is a hybrid of computer aided engineering and experimental methods. Computer aided holometry, scanning laser velocimetry, or an accelerometer net is used to experimentally measure structure vibration complex velocities. These velocities are the boundary conditions for a boundary element model of the acoustic cavity. Boundary element analysis is then used to predict the vehicle interior sound and calculate panel acoustic contributions. Experimental results for a welded steel box (validation) and vehicle application are presented.

  11. Analysis of acoustic ambient noise in Monterey Bay, California.

    Elles, Christopher Jacob.

    1982-01-01

    Approved for public release; distribution is unlimited Magnetic tape recordings, made in 1980 and 1981 by previous investigators using sonobuoys, of acoustic ambient noise in the south-eastern parts of Monterey Bay for various stations under various surf conditions, were analyzed. A computer program was developed and used with sonobuoy calibration data to correct :raw-data" to absolute sound pressure levels. The variation of omnidirectional levels with range from the beach as a function ...

  12. Topography and biological noise determine acoustic detectability on coral reefs

    Cagua, Edgar F.

    2013-08-19

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Structural Acoustic Prediction and Interior Noise Control Technology

    Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)

    2001-01-01

    This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.

  14. Low Frequency Noise Reduction Using Novel Poro-Elastic Acoustic Metamaterials

    Slagle, Adam Christopher

    2014-01-01

    Low frequency noise is a common problem in aircraft and launch vehicles. New technologies must be investigated to reduce this noise while contributing minimal weight to the structure. This thesis investigates passive and active control methods to improve low frequency sound absorption and transmission loss using acoustic metamaterials. The acoustic metamaterials investigated consist of poro-elastic acoustic heterogeneous (HG) metamaterials and microperforated (MPP) acoustic metamaterials. HG ...

  15. Acoustic noise production of wind turbines in practice

    Within the framework of national and European projects ECN has conducted various acoustic noise measurements on wind turbines. The measurements can be divided into the following two categories: (1) measurements of the total noise emitted by the turbine ('standard measurements') and (2) measurement of the noise emitted by different blades on the same rotor ('research measurements'). The applied procedures for the 'standard measurements' are given in IEA and IEC documents on wind turbine noise measurements. The applied procedures for the 'research measurements' are given in this paper. General results obtained with both kind of measurements are presented. The 'research measurements' have been performed on a limited number of turbines: the UNIWEX turbine in Germany and a commercial turbine in The Netherlands. The turbines were equipped with differently shaped blade tips or trailing edges on the same rotor. The experiments showed no large differences in the sound production of the different blades on the same rotor. The detailed information on the commercial wind turbine in The Netherlands is confidential. 9 figs., 2 tabs., 3 refs

  16. Acoustic confort at home: Noise emitted by house installations. Recommendations in order to avoid such noise

    Jimenez, Santiago

    2002-11-01

    The present survey consists of the analysis and the study of the solutions used at present in the installations of water supply and elevators. It has been carried out from the acoustic point of view. In order to achieve a thorough study a pilot plant was built in the Laboratory of Acoustics of the School of Industrial Engineering of Terrassa. This pilot plant reproduced different kinds of installations of the water supply in houses. And it has allowed us to systematize the measures and also to determine the optimum solutions from the acoustic perspective. In accordance with the objectives and the process of the survey, the solutions regularly employed in the facilities of water supply and elevators in houses have been analyzed, and levels of noise associated to these facilities have been also presented. A summary of the results obtained in the plant has been included, according to diverse variables. Both the conclusions of the analysis of the data obtained in the laboratory and those of the installations of the houses have been also compared, which has allowed us to describe a series of suggestions with the purpose of reducing the acoustic emission of this type of installations, and increase the acoustic comfort at home. (To be presented in Spanish.)

  17. A Low-Cost System for Measurement and Spectral Analysis of Motor Acoustic Noise

    Kumar, Binoj; Narayanan, G.

    2001-01-01

    Workplace noise has become one of the major issues in industry not only because of workers’ health but also due to safety. Electric motors, particularly, inverter fed induction motors emit objectionably high levels of noise. This has led to the emergence of a research area, concerned with measurement and mitigation of the acoustic noise. This paper presents a lowcost option for measurement and spectral analysis of acoustic noise emitted by electric motors. The system consists of an electre...

  18. Applied acoustics concepts, absorbers, and silencers for acoustical comfort and noise control alternative solutions, innovative tools, practical examples

    Fuchs, Helmut V

    2013-01-01

    The author gives a comprehensive overview of materials and components for noise control and acoustical comfort. Sound absorbers must meet acoustical and architectural requirements, which fibrous or porous material alone can meet. Basics and applications are demonstrated, with representative examples for spatial acoustics, free-field test facilities and canal linings. Acoustic engineers and construction professionals will find some new basic concepts and tools for developments in order to improve acoustical comfort. Interference absorbers, active resonators and micro-perforated absorbers of different materials and designs complete the list of applications.

  19. Effects of Classroom Acoustics and Self-Reported Noise Exposure on Teachers' Well-Being

    Kristiansen, Jesper; Persson, Roger; Lund, Soren Peter; Shibuya, Hitomi; Nielsen, Per Moberg

    2013-01-01

    Beyond noise annoyance and voice problems, little is known about the effects that noise and poor classroom acoustics have on teachers' health and well-being. The aim of this field study was therefore to investigate the effects of perceived noise exposure and classroom reverberation on measures of well-being. Data on self-reported noise exposure,…

  20. Acoustic and electromagnetic noise from lighting in classrooms

    Laszlo, Charles A.; Lashin, Jonathan; Hodgson, Murray R.

    2005-04-01

    Following complaints by hard-of-hearing students using assistive-listening devices, and their teachers, the hum-like noise generated by fluorescent lighting was investigated in classrooms and the school library in a typical school. This hum is caused by vibrations in the core of the magnetic ballasts. Measurements were made in several rooms without students present. Noise levels increased between 7 and 15 dB when fixtures using magnetic ballasts were switched on. Spectral analysis showed the presence of 30, 60, 120, and 240 Hz components. In rooms where electronic ballasts were installed, there was no increase in noise level when the lights were switched on. Since hearing aids and assistive-listening devices worn by students may also be influenced by magnetic fields, these were also surveyed in these classrooms. The magnetic fields generated by the lights were not significant, but near some wiring and electrical panels the interference was strong. In rooms with electronic ballasts some infrared assistive-listening devices picked up strong high-frequency hum. It is recommended that the effect of lighting fixtures and the electrical-distribution system be taken into account in the acoustical and communication design of classrooms.

  1. Effects of noise and acoustics in schools on vocal health in teachers

    L.C.C. Cutiva (Lady Catherine Cantor); A. Burdorf (Alex)

    2015-01-01

    textabstractPrevious studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustic

  2. The effects of acoustical refurbishment of classrooms on teachers’ perceived noise exposure and noise-related health symptoms

    Kristiansen, Jesper; Lund, Søren Peter; Persson, Roger;

    2015-01-01

    Objectives: To investigate whether acoustical refurbishment of classrooms for elementary and lower secondary grade pupils affected teachers’ perceived noise exposure during teaching and noise-related health symptoms. Methods: Two schools (A and B) with a total of 102 teachers were subjected to an...... reports of disturbance from equipment in the classroom decreased. There was no significant effect of the refurbishment on the teachers’ voice symptoms or fatigue after work....... classrooms were associated with lower perceived noise exposure and lower ratings of disturbance attributed to noise from equipment in the class compared with unrefurbished classrooms. No associations between the classroom refurbishment and health symptoms were observed. Before acoustical refurbishment, the...

  3. Kibble-Zurek Mechanism in Microscopic Acoustic Cracking Noises

    Ghaffari, H O; Xia, K; Young, R P

    2014-01-01

    The fast evolution of microstructure is key to understanding crackling phenomena. It has been proposed that formation of a nonlinear zone around a moving crack tip controls the crack tip velocity. Progress in understanding the physics of this critical zone has been limited due to the lack of hard data describing the detailed complex physical processes that occur within. For the first time, we show that the signature of the non-linear elastic zone around a microscopic dynamic crack maps directly to generic phases of acoustic noises, supporting the formation of a strongly weak zone [2-3,5] near the moving crack tips. We additionally show that the rate of traversing to non-linear zone controls the rate of weakening, i.e. speed of global rupture propagation. We measure the power-law dependence of nonlinear zone size on the traversing rate, and show that our observations are in agreement with the Kibble-Zurek mechanism (KZM) .

  4. Acoustic Array Development for Wind Turbine Noise Characterization

    Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

    2013-11-01

    This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

  5. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  6. Automatic classification of urban traffic noise onboard an acoustic monitoring system

    Wessels, P.W.; Zon, A.T. van; Basten, T.G.H.

    2013-01-01

    Recent developments in acoustic monitoring systems make it possible to measure complex noise situations, like urban traffic noise, continuously. Monitoring provides more insight in the noise situation, from which more specific and (cost) effective measures can be taken. Monitoring also allows direct

  7. The effect of human activity noise on the acoustic quality in open plan office

    Dehlbæk, Tania Stenholt; Jeong, Cheol-Ho; Brunskog, Jonas;

    2016-01-01

    A disadvantage of open plan offices is the noise annoyance. Noise problems in open plan offices have been dealt with in several studies, and standards have been set up. Still, what has not been taken into account is the effect of human activity noise on acoustic conditions. In this study......, measurements of the general office noise levels and the room acoustic conditions according to ISO 3382-3 have been carried out in five open plan offices. Probability density functions of the sound pressure level have been obtained, and the human activity noise has been identified. Results showed a decrease in...... D2,S have an impact on the variation in the activity noise. At 1 kHz, the technical background noise influences human activity noise positively. In both octave bands, the human activity noise level varies significantly with the office type, from a call center to a lawyer’s office....

  8. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  9. On Acoustic Feedback Cancellation Using Probe Noise in Multiple-Microphone and Single-Loudspeaker Systems

    Guo, Meng; Elmedyb, Thomas Bo; Jensen, Søren Holdt;

    2012-01-01

    acoustic feedback cancellation is carried out using a probe noise signal. The derived results show how different system parameters and signal properties affect the cancellation performance, and the results explain theoretically the decreased convergence rate. Understanding this is important for making......A probe noise signal can be used in an acoustic feedback cancellation system to prevent biased adaptive estimation of acoustic feedback paths. However, practical experiences and simulation results indicate that when-ever a low-level and inaudible probe noise signal is used, the convergence rate of...

  10. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations.

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2015-12-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  11. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  12. Listening to the Deep: Live monitoring of ocean noise and cetacean acoustic signals

    André, Michel; Van der Schaar, Mike Connor Roger Malcolm; Zaugg, Serge Alain; Houégnigan, Ludwig; A..M. Sánchez; Castell, Joan

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO(Listening to the Deep Ocean Environment) is an international project that is allowing the real-time longterm monitoring of marine ambient noise as well as marine mammal sounds at cabled and...

  13. Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)

    Burley, Casey L.; Smith, Charles D.; Conner, David A.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  14. Flight Acoustic Testing and Data Acquisition For the Rotor Noise Model (RNM)

    Conner, David A.; Burley, Casey L.; Smith, Charles D.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  15. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  16. Assessment of aircraft noise sources variability using an acoustic camera

    Snellen, M.; Merino Martinez, R.; Simons, D.G.

    2015-01-01

    Noise assessment around airports is hampered due to the observed large variability in noise levels for fly-overs of the same aircraft type, which is not considered by the current models. This paper assumes that the noise variability is due to variations in the aircraft emitted noise, neglecting the

  17. Acoustical and Perceptual Comparison of Noise Reduction and Compression in Hearing Aids

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A.

    2015-01-01

    Purpose: Noise reduction and dynamic-range compression are generally applied together in hearing aids but may have opposite effects on amplification. This study evaluated the acoustical and perceptual effects of separate and combined processing of noise reduction and compression. Design: Recordings of the output of 4 hearing aids for speech in…

  18. A First Look at the DGEN380 Engine Acoustic Data from a Core-Noise Perspective

    Hultgren, Lennart S.

    2015-01-01

    This work is a first look at acoustic data acquired in the NASA Glenn Research Center Aero-Acoustic Propulsion Laboratory using the Price Induction DGEN380 small turbofan engine, with particular emphasis on broadband combustor (core) noise. Combustor noise is detected by using a two-signal source separation technique employing one engine-internal sensor and one semi-far-field microphone. Combustor noise is an important core-noise component and is likely to become a more prominent contributor to overall airport community noise due to turbofan design trends, expected aircraft configuration changes, and advances in fan-noise-mitigation techniques. This work was carried out under the NASA Fundamental Aeronautics Program, Fixed Wing Project, Quiet Performance Subproject

  19. Implementation of Adaptive Filter Structures on a Fixed Point Signal Processor for Acoustical Noise Reduction

    Chunduri, Krishna Chaitanya; Gutti, Chalapathi

    2005-01-01

    The problem of controlling the noise level in the environment has been the focus of a tremendous amount of research over the years. Active Noise Cancellation (ANC) is one such approach that has been proposed for reduction of steady state noise. ANC refers to an electromechanical or electro acoustic technique of canceling an acoustic disturbance to yield a quieter environment. The basic principle of ANC is to introduce a canceling “anti-noise” signal that has the same amplitude but the exact o...

  20. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings.

    Wisniewska, Danuta M; Teilmann, Jonas; Hermannsen, Line; Johnson, Mark; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz. PMID:26611092

  1. Vessel Noise Affects Beaked Whale Behavior: Results of a Dedicated Acoustic Response Study

    Pirotta, Enrico; Milor, Rachel; Quick, Nicola Jane; Moretti, David; DiMarzio, Nancy; Tyack, Peter Lloyd; Boyd, Ian; Hastie, Gordon Drummond

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville’s beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A milit...

  2. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  3. Acoustic Fan Noise Cancellation in a Laptop Microphone System

    Chokkarapu, Anil

    2012-01-01

    Speech communication involving audio conferencing, video conferencing, teleconferencing via laptops became greatly influenced in office environments i.e. between employer and employee, and also influenced in personal life meetings between friends or in-between parents and children. These meeting conversations will mostly disturbs by annoying noise, i.e. fan noise which is produced by laptop cooling fan, which suffers at the both ends of communication due to this noise. With this noise effect ...

  4. Assessment of aircraft noise sources variability using an acoustic camera

    Snellen, M.; Merino Martinez, R.; Simons, D.G.

    2015-01-01

    Noise assessment around airports is hampered due to the observed large variability in noise levels for fly-overs of the same aircraft type, which is not considered by the current models. This paper assumes that the noise variability is due to variations in the aircraft emitted noise, neglecting the effect of the variable atmosphere, as previous work showed that its contribution is maximally 2 dB. In order to quantify and investigate the variability of noise levels during aircraft fly-overs, 1...

  5. Aero-Acoustics of Modern Transonic Fans—Fan Noise Reduction from Its Sources

    L. Xu; J.D. Denton

    2003-01-01

    The noise of aerodynamics nature from modern transonic fan is examined from its sources with the perspective of noise reduction through aero-acoustics design using advanced Computational Fluid Dynamics (CFD) tools.In particular the problems associated with the forward propagating noise in the front is addressed. It is identified that the shock wave spillage from the leading edge near the fan tip is the main source of the tone noise. Two different approaches have been studied to reduce the forward arc tone noise and two state-of-art transonic fans are designed using the strategies developed. The following rig tests show that while the fans exhibit other noise problems,the primary goals of noise reduction have been achieved through both fans and the novel noise reduction concept vindicated.

  6. Phase-Sensitive Noise Suppression in a Photoacoustic Sensor based on Acoustic Circular Membrane Modes

    Lassen, Mikael; Balslev-Harder, David; Petersen, Jan C

    2014-01-01

    A photoacoustic (PA) sensor based on higher order acoustic modes is demonstrated. The PA sensor is designed to enhance the gas-detection performance and simultaneously suppress ambient noise sources (e.g. flow noise, electrical noise and external acoustic noise). Two microphones are used and positioned such that the PA signals are ($\\pi$) out of phase. Ambient acoustic noise are approximately in the same phase and will be subtracted and thus improve the SNR. In addition, by placing the gas in- and outlets so that the gas flows through the node of the first higher order membrane mode the coupling of flow noise is approximately 20 dB lower compared with flow through the fundamental mode at 5 L/min. The noise reduction and thus the increase in sensitivity is demonstrated by measuring vibrational lines of methanol and methane using a broadband interband cascade laser emitting radiation at 3.38 $\\mu$m. A signal-to-noise improvement of 20 (26 dB) using higher order modes are demonstrated compared with the fundament...

  7. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  8. Structural and acoustic noise radiated by CD drives

    Nijhof, Marten J.J.; Beltman, Willem M.

    2005-01-01

    Optical drives inside PCs operate at high speed, which may result in significant noise. These drives function both as airborne and structural vibration sources. Three main paths can be distinguished through which noise is emitted to the surroundings: (1) the vibrations of the front of the drive emit

  9. Noise Impact and Improvement on Indoors Acoustic Comfort for the Building Adjacent to Heavy Traffic Road

    Li Zhisheng; Li Dongmei; Mei Sheng; Zhang Guoqiang; Liu Jianlong

    2007-01-01

    A good acoustic environment is absolutely essential to maintaining a high level satisfaction and moral health among residents. Noise and other boresome sounds come from both indoor and outdoor sources. For the residential buildings adjacent to heavy traffic roads, outdoors traffic noise is the main source that affects indoor acoustic quality and health. Ventilation and outdoor noise prevention become a pair of contradictions for the residents in China nowadays for those buildings adjacent to heavy traffic roads. It is investigated that traffic noise emission is mainly constituted by the motors of trucks, buses and motorcycles as well as brake. In this paper, two methods of traffic noise reduction on the indoor sound environment and comfort are carried out to study and compare the residential buildings adjacent to heavy traffic roadway in a city. One is to install noise barriers on the two sides of the roadway, which consist of sound-proof glass and plastic materials. The effect of sound-insulation of this method is heavily dependent on the relative distance between the noise barrier and indoors. A reduction of sound with an average pressure level of 2-15dB is achieved on the places behind and under the noise barrier. However, for the equivalent of noise barrier height,the noise reduction effect is little. As for the places of higher than the noise barrier, the traffic noise will be even strengthened by 3-7 dB. Noise increment can be seen at the points of distance farther than 15m and height more than noise barrier; the noise reduction effect is not satisfactory or even worsened. In addition,not every location is appropriate to install the noise barrier along the heavy traffic roads. The other method of noise reduction for the buildings adjacent to heavy traffic is to install the airproof and soundproof windows, which is the conversion from natural ventilation to mechanical ventilation. A reduction of sound with an average pressure level of 5dB to 17dB can be

  10. Identification and reduction of acoustic-noise influence on focused ion beam (FIB)

    The use of focused ion beam (FIB) for research or processing of nanostructures requires very accurate beam positioning. However, numerous reasons for beam-position fluctuations exist. When FIB is used for specimen imaging, then these beam fluctuations cause the image jitter, blur or specimen-edge deformation. Similarly, beam fluctuations decrease the spatial resolution of FIB-based technological processes of milling or deposition. The sources of fluctuations are electromagnetic interference (EMI), floor vibrations and airborne acoustic noise. Our work concerns acoustic noise impact on focused ion beam fluctuations. The measurements were carried out on Helios NanoLab 600 DualBeam system with ion and electron beam columns. Reference specimens were imaged by electron or ion beam while acoustic waves of different frequency, magnitude and direction were intentionally generated nearby the system. It was found that while EMI-related distortions are caused by a wide and continuous spectrum of frequencies, for acoustic noise the strong deformations of image occur only at several resonant frequencies (mainly in the range 100–400 Hz). Comparison of results obtained for either electron or ion beam allowed to attribute different resonant peaks to various FIB-system components (ion column, electron column, specimen stage). Spectral analysis showed that resonant components of the acoustic noise surrounding the system cause beam-position fluctuations in the range of several nanometers, highly unfavourable for nanotechnological works on FIB. The noise is generated mainly by various parts of the system itself. A method was also developed to identify whether the observed beam-position fluctuations originate from acoustic noise or from electromagnetic interference. It was possible because electromagnetic field impacts charged particles along their entire path while the acoustic vibrations act only on the mechanic elements of the system. Therefore the electromagnetic fluctuations are

  11. Identification and reduction of acoustic-noise influence on focused ion beam (FIB)

    Pluska, M.; Czerwinski, A.; Wzorek, M.; Juchniewicz, M.; Kątcki, J.

    2015-04-01

    The use of focused ion beam (FIB) for research or processing of nanostructures requires very accurate beam positioning. However, numerous reasons for beam-position fluctuations exist. When FIB is used for specimen imaging, then these beam fluctuations cause the image jitter, blur or specimen-edge deformation. Similarly, beam fluctuations decrease the spatial resolution of FIB-based technological processes of milling or deposition. The sources of fluctuations are electromagnetic interference (EMI), floor vibrations and airborne acoustic noise. Our work concerns acoustic noise impact on focused ion beam fluctuations. The measurements were carried out on Helios NanoLab 600 DualBeam system with ion and electron beam columns. Reference specimens were imaged by electron or ion beam while acoustic waves of different frequency, magnitude and direction were intentionally generated nearby the system. It was found that while EMI-related distortions are caused by a wide and continuous spectrum of frequencies, for acoustic noise the strong deformations of image occur only at several resonant frequencies (mainly in the range 100–400 Hz). Comparison of results obtained for either electron or ion beam allowed to attribute different resonant peaks to various FIB-system components (ion column, electron column, specimen stage). Spectral analysis showed that resonant components of the acoustic noise surrounding the system cause beam-position fluctuations in the range of several nanometers, highly unfavourable for nanotechnological works on FIB. The noise is generated mainly by various parts of the system itself. A method was also developed to identify whether the observed beam-position fluctuations originate from acoustic noise or from electromagnetic interference. It was possible because electromagnetic field impacts charged particles along their entire path while the acoustic vibrations act only on the mechanic elements of the system. Therefore the electromagnetic fluctuations are

  12. Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

    Roadman, J.; Huskey, A.

    2013-07-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the Viryd CS8 is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and binning by wind speed instead of regression analysis.

  13. Acoustic Noise Test Report for the SWIFT Wind Turbine in Boulder, CO

    Roadman, J.; Huskey, A.

    2013-04-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the SWIFT is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and utilized binning by wind speed instead of regression analysis.

  14. Extraction and application of the low dimensional dynamical component from underwater acoustic target radiating noise

    LIANG Juan; LU Jiren

    2001-01-01

    Signal processing in phase space based on nonlinear dynamics theory is a new method for underwater acoustic signal processing. One key problem when analyzing actual acoustic signal in phase space is how to reduce the noise and lower the embedding dimension. In this paper, local-geometric-projection method is applied to obtain low dimensional element from various target radiating noise and the derived phase portraits show obviously low dimensional attractors. Furthermore, attractor dimension and cross prediction error are used for classification. It concludes that combining these features representing the geometric and dynamical properties respectively shows effects in target classification.

  15. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  16. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  17. High levels of sound pressure: acoustic reflex thresholds and auditory complaints of workers with noise exposure

    Alexandre Scalli Mathias Duarte

    2015-08-01

    Full Text Available INTRODUCTION: The clinical evaluation of subjects with occupational noise exposure has been difficult due to the discrepancy between auditory complaints and auditory test results. This study aimed to evaluate the contralateral acoustic reflex thresholds of workers exposed to high levels of noise, and to compare these results to the subjects' auditory complaints.METHODS: This clinical retrospective study evaluated 364 workers between 1998 and 2005; their contralateral acoustic reflexes were compared to auditory complaints, age, and noise exposure time by chi-squared, Fisher's, and Spearman's tests.RESULTS: The workers' age ranged from 18 to 50 years (mean = 39.6, and noise exposure time from one to 38 years (mean = 17.3. We found that 15.1% (55 of the workers had bilateral hearing loss, 38.5% (140 had bilateral tinnitus, 52.8% (192 had abnormal sensitivity to loud sounds, and 47.2% (172 had speech recognition impairment. The variables hearing loss, speech recognition impairment, tinnitus, age group, and noise exposure time did not show relationship with acoustic reflex thresholds; however, all complaints demonstrated a statistically significant relationship with Metz recruitment at 3000 and 4000 Hz bilaterally.CONCLUSION: There was no significance relationship between auditory complaints and acoustic reflexes.

  18. The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance

    This paper is concerned with the electrical properties of an electromagnetic acoustic transducer (EMAT) formed of a flat spiral coil coupled to steel sheet components and operating over a narrow band of frequencies around 50 kHz, well below significant resonances. The electromagnetic skin effect is a significant contributor to the terminal impedance of the EMAT and hence to signal sensitivity, Johnson noise generation and the achievable signal-to-noise ratios (SNR). A transformer model is developed to simulate these effects and to assist in the optimization of the SNR. In this analysis Johnson noise in the system is compared to the unknown emf generated in the eddy current path by an incident acoustic wave to yield a fundamental SNR. The attainable SNR of the whole system is normalized to this in the form of a noise figure. (paper)

  19. Acoustic Noise of MRI Scans of the Internal Auditory Canal and Potential for Intracochlear Physiological Changes

    Busada, M A; Ibrahim, G; Huckans, J H

    2012-01-01

    Magnetic resonance imaging (MRI) is a widely used medical imaging technique to assess the health of the auditory (vestibulocochlear) nerve. A well known problem with MRI machines is that the acoustic noise they generate during a scan can cause auditory temporary threshold shifts (TTS) in humans. In addition, studies have shown that excessive noise in general can cause rapid physiological changes of constituents of the auditory within the cochlea. Here, we report in-situ measurements of the acoustic noise from a 1.5 Tesla MRI machine (GE Signa) during scans specific to auditory nerve assessment. The measured average and maximum noise levels corroborate earlier investigations where TTS occurred. We briefly discuss the potential for physiological changes to the intracochlear branches of the auditory nerve as well as iatrogenic misdiagnoses of intralabyrinthine and intracochlear schwannomas due to hypertrophe of the auditory nerve within the cochlea during MRI assessment.

  20. Energy-Based Acoustic Measurement System for Rocket Noise Project

    National Aeronautics and Space Administration — Accurate estimates of the vibroacoustic loading placed on space vehicles and payloads during launch require knowledge of the rocket noise source properties. Given...

  1. VOCALISATIONS AND ACOUSTIC PARAMETERS OF FLOCK NOISE FROM FEATHER PECKING AND NON-FEATHER PECKING FLOCKS

    Bright, Ashleigh

    2008-01-01

    Abstract ABSTRACT 1. In this study, the calling rates of vocalisations known to indicate distress and aversive events (Alarm calls, Squawks, Total vocalisations) and acoustic parameters of flock noise were quantified from feather and non-feather pecking flocks. 2. One hour of flock noise (background machinery and hen vocalisations) was recorded from 21 commercial free-range laying hen flocks aged ≥35 weeks. Ten of the flocks were classified as feather pecking (based ...

  2. Analysis And Experimental Validation Of Structure-Borne Noise From Acoustic Enclosure Of Compressor

    Deshmukh, Satish Konderao; Madhekar, Onkar Sunil

    2014-01-01

    Reduction of noise in a compressor is a complex criterion as many factors of machine enclosure contribute its effect on noise. When a panel of enclosure is acoustically excited, its vibrational response comprises both forced vibrational response at the excitation frequencies, and resonant response of all the relevant structural natural frequencies. These are excited due to the interactions of the forced bending waves with the panel boundaries. The non-resonant, forced modes tend to transmit m...

  3. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation

    Hu, Yi

    2010-01-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining n...

  4. Local-linear-prediction analysis for underwater acoustic target radiated noise

    LIANG Juan; LU Jiren

    2002-01-01

    Local-linear-prediction in phase space is performed for the underwater acoustic target radiated noise. Relation curve of average prediction error versus neighboring points' number is calculated. The result is used in judging the nonlinearity of radiated noise time series, and obtaining the appropriate form and coefficients of predicting model. The line and continuous spectral component are predicted respectively. Choice of some model parameters minimizing the prediction error is also discussed.

  5. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  6. Background noise cancellation for improved acoustic detection of manatee vocalizations

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .

  7. Relationships between non-acoustic factors and subjective reactions to floor impact noise in apartment buildings.

    Park, Sang Hee; Lee, Pyoung Jik; Yang, Kwan Seop; Kim, Kyoung Woo

    2016-03-01

    The aim of this study was to provide an understanding of how residents in apartment buildings perceive and react to impact sounds coming from the upstairs neighbours' dwellings. Based on existing theoretical and empirical studies on environmental noise, a conceptual model was developed to explain relationships among noise annoyance and non-acoustic factors. The model was then tested using structural equation modelling with survey data from residents living in apartment buildings (N = 487). The findings showed that the conceptual model was consistent with other models developed for environmental noises. The results indicated that annoyance induced by floor impact noise was associated with perceived disturbance, coping, and self-reported health complaints. Noise sensitivity had a direct impact on perceived disturbance and an indirect impact on annoyance, and moderating variables affected the non-acoustic factors. Exposure to footstep noises increased the impact size of noise sensitivity to disturbance. Predictability, marital status, and house ownership were found to influence the relationship between attitudes towards authorities and coping. In addition, a negative attitude towards neighbours (i.e., the noise source) moderated the positive relationship between annoyance and coping. PMID:27036252

  8. Workers' exposure to noise inside complex acoustic environments in Canada : a qualitative analysis

    Hertil, S. [Inst. of Noise Control Engineers, Calgary, AB (Canada)

    2007-07-01

    Occupational noise regulations in Canada have limits on the permissible exposure of a worker to noise in the workplace. These limits are set in terms of an 8-hour average sound level of 85 dBA, with limits of 135 dBC on peak sound pressure levels. However, these noise regulations do not specify any qualitative limits on noise levels and are not clear enough for providing adequate protection of workers against low-frequency noise and inaudible air vibrations and infrasound commonly found in heavy industrial sites and power generation plants. This paper presented actual sound level data that was collected at various power plants in Canada during the period 1995 - 2005. It was shown that noise in the work place includes inaudible low-frequency noise and air vibrations that are impossible to detect by dosimeters or type 1 and type 2 hand held sound level meters. The paper described exposure to noise inside a small, gas-fired generator hall; exposure to noise inside a large steam processing plant; exposure to noise in the area of roller ball mills; noise quality inside a steam processing plant; noise quality inside a coal ball mill building; noise quality inside a large water feed pump area; and quality of noise inside a steam turbine hall. The frequencies that are harmful to workers were identified in an effort to design noise control features for machinery or equipment and to develop abatement measures to protect workers operating in complex acoustic environments. It was concluded that noise control is a collective task that should be undertaken by many professionals from all the fields related to health, safety, hearing and hearing conservation. 3 refs., 2 tabs., 6 figs.

  9. A scalable acoustic sensor network for model based monitoring of urban traffic noise

    Basten, T.G.H.; Wessels, P.W.; Eerden, F.J.M. van der

    2012-01-01

    A good understanding of the acoustic environment due to traffic in urban areas is very important. Long term monitoring within large areas provides a clear insight in the actual noise situation. This is needed to take appropriate and cost efficient measures; to asses the effect of measures by compari

  10. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  11. Flap Side-Edge Noise: Acoustic Analysis of Sen's Model

    Hardin, Jay C.; Martin, James E.

    1996-01-01

    The two-dimensional flap side-edge flow model developed by Sen is analyzed to reveal the noise production potential of the proposed mechanism. The model assumes that a vortex will form at the equilibrium position off the side edge of the flap. The vortex is then perturbed away from the equilibrium position by incoming turbulence causing it to oscillate and thus radiate sound. The noise field is calculated three-dimensionally by taking the flap to have a finite chord. Spectra and directivity of the farfield sound are presented. In addition, the effect of retarded time differences is evaluated. The parameters in the model are related to typical aircraft parameters and noise reduction possibilities are proposed.

  12. The effect of structural-acoustic coupling on the active control of noise in vehicles

    Cheer, Jordan; Elliott, Stephen J.

    2011-01-01

    Active noise control systems offer a potential method of reducing the weight of passive acoustic treatment and, therefore, increasing vehicles’ fuel ef?ciency. These can be particularly cost-ef?cient if integrated with the entertainment system. A combined system is presented employing feedforward control of engine noise and feedback control of road noise, using a‘modal’ error signal. Due to the dependence of the feedback system on the modal response of the vehicle cabin, and the in?uence of s...

  13. Acoustic noise analysis of echo planar imaging. Multi-center trial and comparison with other pulse sequences

    The purpose of this study was to evaluate acoustic noise in echo planar imaging (EPI) at various magnetic resonance imaging (MRI) centers, and to compare EPI acoustic noise with that in other principal pulse sequences. We measured the maximum clinical acoustic noise (A-weighted root-mean-square sound pressure levels (Leq) and peak impulse sound pressure levels (Lpeak)) for EPI under the same conditions in five clinical superconducting MRI systems (0.5-1.5 T). We also compared the sound pressure levels for EPI and nine different pulse sequences, and analyzed the acoustic noise spectra. There was no significant difference between acoustic noise levels in EPI and other pulse sequences, and these values were within Occupational Safety and Health Administration guidelines at all centers. However, of all the pulse sequences, EPI had the greatest proportion of high-frequency acoustic noise (>1,000 Hz). Single-shot EPI was subject to higher-pitched noise than multi-shot EPI. Even among centers using the same magnet and gradient coil systems, there was considerable difference in acoustic noise levels (maximum differences in Leq and Lpeak were 7.0 dBA and 7.7 dB, respectively). (author)

  14. Improved jet noise modeling using a new acoustic time scale

    Azarpeyvand, M.; Self, R.H.; Golliard, J.

    2006-01-01

    To calculate the noise emanating from a turbulent flow (such as a jet flow) using Lighthill's analogy, knowledge concerning the unsteady characteristics of the turbulence is required. Specifically, the form of the turbulent correlation tensor together with various time and length-scales and convecti

  15. Effects of noise and acoustics in schools on vocal health in teachers

    Lady Catherine Cantor Cutiva

    2015-01-01

    Full Text Available Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotα, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12-2.99 and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88-3.53 were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health.

  16. Effects of noise and acoustics in schools on vocal health in teachers.

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotα, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12-2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88-3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health. PMID:25599754

  17. The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function

    Miller, Steven A. E.

    2013-01-01

    An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.

  18. Reduction of gradient acoustic noise in MRI using SENSE-EPI.

    de Zwart, Jacco A; van Gelderen, Peter; Kellman, Peter; Duyn, Jeff H

    2002-08-01

    A new approach to reduce gradient acoustic noise levels in EPI experiments is presented. Using multichannel RF receive coils, combined with SENSE data acquisition and reconstruction, gradient slew-rates in single-shot EPI were reduced fourfold for rate-2 and ninefold for rate-3 SENSE. Multislice EPI experiments were performed on three different scanner platforms. With 3.4 mm in-plane resolution, measuring 6 slices per second (12 slices with 2000 ms TR), this resulted in average sound pressure level reductions of 11.3 dB(A) and 16.5 dB(A) for rate-2 and rate-3 SENSE, respectively. BOLD fMRI experiments, using visually paced finger-tapping paradigms, showed no detrimental effect of the acoustic noise reduction strategy on temporal noise levels and t scores. PMID:12202101

  19. The ecological and evolutionary consequences of noise-induced acoustic habitat loss

    Tennessen, Jennifer Beissinger

    Anthropogenic threats are facilitating rapid environmental change and exerting novel pressures on the integrity of ecological patterns and processes. Currently, habitat loss is the leading factor contributing to global biodiversity loss. Noise created by human activities is nearly ubiquitous in terrestrial and marine systems, and causes acoustic habitat loss by interfering with species' abilities to freely send and receive critical acoustic biological information. My dissertation investigates how novel sounds from human activities affect ecological and evolutionary processes in space and time in marine and terrestrial systems, and how species may cope with this emerging novel pressure. Using species from both marine and terrestrial systems, I present results from a theoretical investigation, and four acoustic playback experiments combining laboratory studies and field trials, that reveal a range of eco-evolutionary consequences of noiseinduced acoustic habitat loss. First, I use sound propagation modeling to assess how marine shipping noise reduces communication space between mother-calf pairs of North Atlantic right whales (Eubalaena glacialis ), an important unit of an endangered species. I show that shipping noise poses significant challenges for mother-calf pairs, but that vocal compensation strategies can substantially improve communication space. Next, in a series of acoustic playback experiments I show that road traffic noise impairs breeding migration behavior and physiology of wood frogs (Lithobates sylvaticus ). This work reveals the first evidence that traffic noise elicits a physiological stress response and suppresses production of antimicrobial peptides (a component of the innate immune response) in anurans. Further, wood frogs from populations with a history of inhabiting noisy sites mounted reduced physiological stress responses to continuous traffic noise exposure. This research using wood frogs suggests that chronic traffic noise exposure has

  20. Ocean acoustic remote sensing using ambient noise: results from the Florida Straits

    Brown, M. G.; Godin, O. A.; Zang, X.; Ball, J. S.; Zabotin, N. A.; Zabotina, L. Y.; Williams, N. J.

    2016-07-01

    Noise interferometry is the process by which approximations to acoustic Green's functions, which describe sound propagation between two locations, are estimated by cross-correlating time series of ambient noise measured at those locations. Noise-interferometry-based approximations to Green's functions can be used as the basis for a variety of inversion algorithms, thereby providing a purely passive alternative to active-source ocean acoustic remote sensing. In this paper we give an overview of results from noise interferometry experiments conducted in the Florida Straits at 100 m depth in December 2012, and at 600 m depth in September/October 2013. Under good conditions for noise interferometry, estimates of cross-correlation functions are shown to allow one to perform advanced phase-coherent signal processing techniques to perform waveform inversions, estimate currents by exploiting non-reciprocity, perform time-reversal/back-propagation calculations and investigate modal dispersion using time-warping techniques. Conditions which are favourable for noise interferometry are identified and discussed.

  1. Acoustical characterization and parameter optimization of polymeric noise control materials

    Homsi, Emile N.

    2003-10-01

    The sound transmission loss (STL) characteristics of polymer-based materials are considered. Analytical models that predict, characterize and optimize the STL of polymeric materials, with respect to physical parameters that affect performance, are developed for single layer panel configuration and adapted for layered panel construction with homogenous core. An optimum set of material parameters is selected and translated into practical applications for validation. Sound attenuating thermoplastic materials designed to be used as barrier systems in the automotive and consumer industries have certain acoustical characteristics that vary in function of the stiffness and density of the selected material. The validity and applicability of existing theory is explored, and since STL is influenced by factors such as the surface mass density of the panel's material, a method is modified to improve STL performance and optimize load-bearing attributes. An experimentally derived function is applied to the model for better correlation. In-phase and out-of-phase motion of top and bottom layers are considered. It was found that the layered construction of the co-injection type would exhibit fused planes at the interface and move in-phase. The model for the single layer case is adapted to the layered case where it would behave as a single panel. Primary physical parameters that affect STL are identified and manipulated. Theoretical analysis is linked to the resin's matrix attribute. High STL material with representative characteristics is evaluated versus standard resins. It was found that high STL could be achieved by altering materials' matrix and by integrating design solution in the low frequency range. A suggested numerical approach is described for STL evaluation of simple and complex geometries. In practice, validation on actual vehicle systems proved the adequacy of the acoustical characterization process.

  2. Subharmonics and noise excitation in transmission of acoustic wave through unconsolidated granular medium

    First laboratory-scale experimental observation of both subharmonics excitation and significant increase in noise level caused by propagation of the acoustic wave in unconsolidated granular material is reported. The bifurcation phenomenon, taking place above a critical level of acoustic excitation (and opening the subharmonics route to chaos) is attributed to the interaction of acoustic wave with distributed system of highly nonlinear inter-grain contacts. The estimates demonstrated that these are weak contacts (loaded at least two orders of magnitude weaker than in average) that might be responsible for the observed nonlinear effects. The additional intermittent contacts created by the acoustic wave (which are open in the absence of acoustic loading) can also contribute. In the clapping (tapping) regime, each of these contacts individually is similar to an impact oscillator, for which the scenario of period doubling cascade and the transition to chaotic behavior has been predicted theoretically and observed experimentally earlier. The experiments confirm that the nonlinear interactions of acoustic waves in granular assemblages are highly sensitive to the fraction of weakly loaded (and unloaded) contacts, information on which is difficult to access by any other experimental methods

  3. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    M.R. Mofakhami

    2008-01-01

    Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.

  4. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  5. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  6. Robust Distributed Noise Reduction in Hearing Aids with External Acoustic Sensor Nodes

    Bertrand, Alexander; Moonen, Marc

    2009-12-01

    The benefit of using external acoustic sensor nodes for noise reduction in hearing aids is demonstrated in a simulated acoustic scenario with multiple sound sources. A distributed adaptive node-specific signal estimation (DANSE) algorithm, that has a reduced communication bandwidth and computational load, is evaluated. Batch-mode simulations compare the noise reduction performance of a centralized multi-channel Wiener filter (MWF) with DANSE. In the simulated scenario, DANSE is observed not to be able to achieve the same performance as its centralized MWF equivalent, although in theory both should generate the same set of filters. A modification to DANSE is proposed to increase its robustness, yielding smaller discrepancy between the performance of DANSE and the centralized MWF. Furthermore, the influence of several parameters such as the DFT size used for frequency domain processing and possible delays in the communication link between nodes is investigated.

  7. Robust Distributed Noise Reduction in Hearing Aids with External Acoustic Sensor Nodes

    Marc Moonen

    2009-01-01

    Full Text Available The benefit of using external acoustic sensor nodes for noise reduction in hearing aids is demonstrated in a simulated acoustic scenario with multiple sound sources. A distributed adaptive node-specific signal estimation (DANSE algorithm, that has a reduced communication bandwidth and computational load, is evaluated. Batch-mode simulations compare the noise reduction performance of a centralized multi-channel Wiener filter (MWF with DANSE. In the simulated scenario, DANSE is observed not to be able to achieve the same performance as its centralized MWF equivalent, although in theory both should generate the same set of filters. A modification to DANSE is proposed to increase its robustness, yielding smaller discrepancy between the performance of DANSE and the centralized MWF. Furthermore, the influence of several parameters such as the DFT size used for frequency domain processing and possible delays in the communication link between nodes is investigated.

  8. A New Probe Noise Approach For Acoustic Feedback Cancellation In Hearing Aids

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    systems is the biased adaptive filter estimation problem, especially when tonal signals such as music and alarm tones enter the hearing aid microphones. The consequences of this biased estimation might be significant sound distortion or even worse, howling. In principle, unbiased adaptive filter...... is not possible with the tradi-tional probe noise approach. We show simulation results of a challenging situation for AFC sys-tems, where the acoustic feedback path changes momentarily while the hearing aid user is listen-ing to music. The traditional AFC system fails completely with significant......Acoustic feedback is a big challenge in hearing aids. If not appropriately treated, the feedback limits the maximum possible amplification and may lead to significant sound distortions. In a state-of-the-art hearing aid, an acoustic feedback cancellation (AFC) system is used to compensate the...

  9. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object's reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel's color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  10. Effect of MRI Acoustic Noise on Cerebral FDG Uptake in Simultaneous MR-PET Imaging

    Chonde, Daniel B.; Abolmaali, Nasreddin; Arabasz, Grae; Guimaraes, Alexander R.; Catana, Ciprian

    2013-01-01

    Integrated scanners capable of simultaneous PET and MRI data acquisition are now available for human use. Although the scanners’ manufacturers have made substantial efforts to understand and minimize the mutual electromagnetic interference between the two modalities, the potential physiological inference has not been evaluated. In this work, we have studied the influence of the acoustic noise produced by the MR gradients on brain FDG uptake in the Siemens MR-BrainPET prototype. While particul...

  11. Cogging Torque and Acoustic Noise Reduction in High Torque BLDC Motors by Teeth Pairings

    Lee, Sang Min [Halla Climate Control Co. (Korea, Republic of); Hwang, Sang Moon [Pusan National University (Korea, Republic of)

    1999-03-01

    This paper investigates reduction of acoustic noise and cogging torque in a BLDC motor with larger stator slot open width. Using energy method, cogging torque is analytically determined with airgap MMF function and airgap permeance function and confirmed by FEM analysis. It show that the cogging torque is firstly governed by N{sub L} G{sub NL} B{sub NL} with the fundamental period of N{sub L}, where N{sub L} is the least common multiple of the number of slots and the number of poles, G{sub NL}, airgap permeance function and B{sub NL}, airgap MMF function. It also shows that there exist several tooth width which minimizes the cogging torque, for the motors that smaller slot open width or stator teeth notching is not available. And it proposes a teeth pairing with two different tooth width which can effectively eliminate the cogging torque and thus the acoustic noise. Experimental results show that the proposed teeth pairing reduces the cogging torque by 85% and the acoustic noise by 3.1 dB. (author). 9 refs., 13 figs., 1 tab.

  12. An active structural acoustic control approach for the reduction of the structure-borne road noise

    Douville, Hugo; Berry, Alain; Masson, Patrice

    2002-11-01

    The reduction of the structure-borne road noise generated inside the cabin of an automobile is investigated using an Active Structural Acoustic Control (ASAC) approach. First, a laboratory test bench consisting of a wheel/suspension/lower suspension A-arm assembly has been developed in order to identify the vibroacoustic transfer paths (up to 250 Hz) for realistic road noise excitation of the wheel. Frequency Response Function (FRF) measurements between the excitation/control actuators and each suspension/chassis linkage are used to characterize the different transfer paths that transmit energy through the chassis of the car. Second, a FE/BE model (Finite/Boundary Elements) was developed to simulate the acoustic field of an automobile cab interior. This model is used to predict the acoustic field inside the cabin as a response to the measured forces applied on the suspension/chassis linkages. Finally, an experimental implementation of ASAC is presented. The control approach relies on the use of inertial actuators to modify the vibration behavior of the suspension and the automotive chassis such that its noise radiation efficiency is decreased. The implemented algorithm consists of a MIMO (Multiple-Input-Multiple-Output) feedforward configuration with a filtered-X LMS algorithm using an advanced reference signal (width FIR filters) using the Simulink/Dspace environment for control prototyping.

  13. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC Brain Potential Changes

    Karin Trimmel

    2014-09-01

    Full Text Available Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes. This study investigated brain direct current (DC potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  14. Characterization of the Acoustic Field in Marine Environments with Anthropogenic Noise

    Guan, Shane

    Most animals inhabit the aquatic environment are acoustical-oriented, due to the physical characteristics of water that favors sound transmission. Many aquatic animals depend on underwater sound to navigate, communicate, find prey, and avoid predators. The degradation of underwater acoustic environment due to human activities is expected to affected these animals' well-being and survival at the population level. This dissertation presents three original studies on the characteristics and behavior of underwater sound fields in three unique marine environments with anthropogenic noises. The first study examines the soundscape of the Chinese white dolphin habitat in Taiwan. Acoustic recordings were made at two coastal shallow water locations, Yunlin and Waisanding, in 2012. Results show that croaker choruses are dominant sound sources in the 1.2--2.4 kHz frequency band for both locations at night, and noises from container ships in the 150--300 Hz frequency band define the relative higher broadband sound levels at Yunlin. Results also illustrate interrelationships among different biotic, abiotic, and anthropogenic elements that shape the fine-scale soundscape in a coastal environment. The second study investigates the inter-pulse sound field during an open-water seismic survey in coastal shallow waters of the Arctic. The research uses continuous acoustic recordings collected from one bottom-mounted hydrophone deployed in the Beaufort Sea in summer 2012. Two quantitative methods were developed to examine the inter-pulse sound field characteristics and its dependence on source distances. Results show that inter-pulse sound field could raise the ambient noise floor by as much as 9 dB, depending on ambient condition and source distance. The third study examines the inter-ping sound field of simulated mid-frequency active sonar in deep waters off southern California in 2013 and 2014. The study used drifting acoustic recorder buoys to collect acoustic data during sonar

  15. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance

    Chen, Robert T. N.; Hindson, William S.; Mueller, Arnold W.

    1995-01-01

    This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.

  16. Effect of scanner acoustic background noise on strict resting-state fMRI

    C. Rondinoni

    2013-04-01

    Full Text Available Functional MRI (fMRI resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state' fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs. Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal, while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.

  17. Effect of scanner acoustic background noise on strict resting-state fMRI

    C. Rondinoni

    2013-12-01

    Full Text Available Functional MRI (fMRI resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state' fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs. Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal, while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.

  18. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz. PMID:24116520

  19. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the

  20. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  1. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  2. Effects of acoustic hood on noise, CFC-11, and particulate matter in a recycling system for waste refrigerator cabinet.

    Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2014-11-01

    The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system. PMID:24965005

  3. Vessel noise affects beaked whale behavior: results of a dedicated acoustic response study.

    Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville's beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022

  4. A multi-band spectral subtraction-based algorithm for real-time noise cancellation applied to gunshot acoustics

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.

  5. Aerodynamic noise prediction of a Horizontal Axis Wind Turbine using Improved Delayed Detached Eddy Simulation and acoustic analogy

    Highlights: • The noise predictions are performed by Ffowcs Williams and Hawkings method. • There is a direct relation between the radiated noise and the wind speed. • The tonal peaks in the sound spectra match with the blade passing frequency. • The quadrupole noises have negligible effect on the low frequency noises. - Abstract: This paper presents the results of the aerodynamic and aero-acoustic prediction of the flow field around the National Renewable Energy Laboratory Phase VI wind turbine. The Improved Delayed Detached Eddy Simulation turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is carried out using the Ffowcs Williams and Hawkings acoustic analogy. Simulations are performed for three different inflow conditions, U = 7, 10, 15 m/s. The capability of the Improved Delayed Detached Eddy Simulation turbulence model in massive separation is verified with available experimental data for pressure coefficient. The broadband noises of the turbulent boundary layers and the tonal noises due to the blade passing frequency are predicted via flow field noise simulation. The contribution of the thickness, loading and quadrupole noises are investigated, separately. The results indicated that there is a direct relation between the strength of the radiated noise and the wind speed. Furthermore, the effect of the receiver location on the Overall Sound Pressure Level is investigated

  6. Long-term measurements of acoustic background noise in very deep sea

    Riccobene, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy)], E-mail: riccobene@lns.infn.it

    2009-06-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km{sup 3}-scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.

  7. Detection and localization of leak of pipelines of RBMK reactor. Methods of processing of acoustic noise

    For realization of leak detection of input pipelines and output pipelines of RBMK reactor the method, based on detection and control of acoustic leak signals, was designed. In this report the review of methods of processing and analysis of acoustic noise is submitted. These methods were included in the software of the leak detection system and are used for the decision of the following problems: leak detection by method of sound pressure level in conditions of powerful background noise and strong attenuation of a signal; detection of a small leak in early stage by high-sensitivity correlation method; determination of a point of a sound source in conditions of strong reflection of a signal by a correlation method and sound pressure method; evaluation of leak size by the analysis of a sound level and point of a sound source. The work of considered techniques is illustrated on an example of test results of a fragment of the leak detection system. This test was executed on a Leningrad NPP, operated at power levels of 460, 700, 890 and 1000 MWe. 16 figs

  8. Symbol Estimation Algorithm for MIMO Underwater Acoustic Communication System Based on Multiplicative Noise Model

    Ling Zhang

    2015-01-01

    Full Text Available The stochastic and time-varying underwater acoustic (UWA channels are usually affected by serious multipath delays, energy loss and distortion factors, thus making the modeling and estimation of the UWA channel challenging problems in the research community. Based on the analysis of the UWA channel, the system with multiplicative noise (SMN model is established to characterize the complicated factors such as random time-variation, nonlinearity, and energy attenuation. As to the multiple-input multiple-output (MIMO UWA communication, the complicated SMN model is established for MIMO UWA channels; based on which, the transmitted symbols are estimated according to the optimal recursive filtering algorithm. The algorithm is derived based on the projection theorem, which is optimal in the sense of linear minimum variance, and can overcome the intersymbol interference and noise pollution efficiently. The optimal algorithm is computed recursively, which has the advantage of computation-efficiency and can track the random variation of the fast time-varying channel gain dynamically. Simulation results have validated the effectiveness of the algorithm. The model and the algorithm can be extended flexibly to certain practical problems, such as the joint channel and symbol estimation in underwater acoustic communication systems.

  9. Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure

    A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon microperforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of silicon micro-electro-mechanical systems (MEMS) technology. The silicon MPP has dense and accurate micro-holes. This noise reduction structure has the advantages of wide band and higher absorption coefficients. The vibration energy harvesting part is formed by square piezoelectric membranes arranged in rows. ZnO material is used as it has a good compatibility with the fabrication process. The MPP, piezoelectric membranes, and metal bracket are assembled into a hybrid device with multifunctions. The device exhibits good performances of acoustic noise absorption and acoustic–electric conversion. Its maximum open circuit voltage achieves 69.41 mV. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Voice Conversion Using LSF Modification Algorithm in Harmonic and Noise Speech Model of Acoustical Processor in Embedded TTS

    Sawicki, A.

    2009-01-01

    This article presents new approach to embedded Text To Speech system. We present algorithms for TTS synthesis based on Harmonic and Noise speech model. Acoustical Processor, as a part of speech synthesizer, for voice conversion is presented. Speech parameters are modified in Acoustical Processor module , in order to voice conversion codebooks. Offline text dependent voice conversion algorithm creates target voice database codebook using analysis fragment of recorded speech. It allow to quickl...

  11. Observation of the fundamental Nyquist noise limit in an ultra-high Q-factor cryogenic bulk acoustic wave cavity

    Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Ivanov, Eugene N.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Kann, Frank van [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000 Besançon (France)

    2014-10-13

    Thermal Nyquist noise fluctuations of high-Q bulk acoustic wave cavities have been observed at cryogenic temperatures with a DC superconducting quantum interference device amplifier. High Q modes with bandwidths of few tens of milliHz produce thermal fluctuations with a signal-to-noise ratio of up to 23 dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high (Q > 10{sup 8} at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  12. Observation of the Fundamental Nyquist Noise Limit in an Ultra-High $Q$-Factor Cryogenic Bulk Acoustic Wave Cavity

    Goryachev, Maxim; van Kann, Frank; Galliou, Serge; Tobar, Michael E

    2014-01-01

    Thermal Nyquist noise fluctuations of high-$Q$ Bulk Acoustic Wave (BAW) cavities have been observed at cryogenic temperatures with a DC Superconducting Quantum Interference Device (SQUID) amplifier. High $Q$ modes with bandwidths of few tens of milliHz produce thermal fluctuations with a Signal-To-Noise ratio of up to 23dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high ($Q>10^8$ at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  13. Acoustic Echo and Noise Cancellation System for Hand-Free Telecommunication using Variable Step Size Algorithms

    V. K. Gupta

    2013-04-01

    Full Text Available In this paper, acoustic echo cancellation with doubletalk detection system is implemented for a hand-free telecommunication system using Matlab. Here adaptive noise canceller with blind source separation (ANC-BSS system is proposed to remove both background noise and far-end speaker echo signal in presence of double-talk. During the absence of double-talk, far-end speaker echo signal is cancelled by adaptive echo canceller. Both adaptive noise canceller and adaptive echo canceller are implemented using LMS, NLMS, VSLMS and VSNLMS algorithms. The normalized cross-correlation method is used for double-talk detection. VSNLMS has shown its superiority over all other algorithms both for double-talk and in absence of double-talk. During the absence of double-talk it shows its superiority in terms of increment in ERLE and decrement in misalignment. In presence of double-talk, it shows improvement in SNR of near-end speaker signal.

  14. Comparing the effects of reverberation and of noise on speech recognition in simulated electric-acoustic listening

    Helms Tillery, Kate; Brown, Christopher A; Bacon, Sid P.

    2012-01-01

    Cochlear implant users report difficulty understanding speech in both noisy and reverberant environments. Electric-acoustic stimulation (EAS) is known to improve speech intelligibility in noise. However, little is known about the potential benefits of EAS in reverberation, or about how such benefits relate to those observed in noise. The present study used EAS simulations to examine these questions. Sentences were convolved with impulse responses from a model of a room whose estimated reverbe...

  15. Acoustical and noise redesign considerations when trying to increase patient privacy while ensuring comfort

    Klavetter, Eric

    2005-09-01

    An internal assessment was undertaken to understand the flow of patients to ensure comfort and privacy during their health care experience at Mayo Clinic. A number of different prototypes, work flows, and methodologies were utilized and assessed to determine the ``best experience for our patients.'' A number of prototypes ranging from self-check in to personal pagers were assessed along with creating environments that introduced ``passive distractions'' for acoustical and noise management, which can range from fireplaces, to coffee shops to playgrounds to ``tech corridors.'' While a number of these designs are currently being piloted, the over-reaching goal is to make the patient experience ``like no other'' when receiving their care at Mayo Clinic.

  16. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  17. Detection of simulated pitting corrosion and noises in crude oil storage tank by acoustic emission

    The damage mechanisms associated with crude oil storage tanks can be complex and varied and include pitting corrosion due to presence of species such as sulphate reducing bacteria. Acoustic Emission (AE) could be used to characterise the pitting corrosion signal in crude oil storage tanks but it is extremely difficult to simulate the pitting corrosion in the laboratory using crude oil as electrolyte because crude oil is considered as non corrosive medium. In this study, induced current have been introduced onto a surface ASTM 516 steel as an electrical source to simulate the electrical noise produced during pitting corrosion process and AE sensor have been used to detect this current. It is found that AE system could detect AE signal release during current induction this current and is expected that if the exact simulation of the current magnitude produced during pitting corrosion process is made available, AE characterisation of pitting corrosion in such tank could be made possible. (Author)

  18. Characterization of acoustic noise in a neonatal intensive care unit MRI system

    To eliminate the medical risks and logistical challenges of transporting infants from the neonatal intensive care unit (NICU) to the radiology department for magnetic resonance imaging, a small-footprint 1.5-T MRI scanner has been developed for neonatal imaging within the NICU. MRI is known to be noisy, and exposure to excessive acoustic noise has the potential to elicit physiological distress and impact development in the term and preterm infant. To measure and compare the acoustic noise properties of the NICU MRI system against those of a conventional 1.5-T MRI system. We performed sound pressure level measurements in the NICU MRI scanner and in a conventional adult-size whole-body 1.5-T MRI system. Sound pressure level measurements were made for six standard clinical MR imaging protocols. The average sound pressure level value, reported in unweighted (dB) and A-weighted (dBA) decibels for all six imaging pulse sequences, was 73.8 dB and 88 dBA for the NICU scanner, and 87 dB and 98.4 dBA for the conventional MRI scanner. The sound pressure level values measured on the NICU scanner for each of the six MR imaging pulse sequences were consistently and significantly (P = 0.03) lower, with an average difference of 14.2 dB (range 10-21 dB) and 11 dBA (range 5-18 dBA). The sound pressure level frequency response of the two MR systems showed a similar harmonic structure above 200 Hz for all imaging sequences. The amplitude, however, was appreciably lower for the NICU scanner, by as much as 30 dB, for frequencies below 200 Hz. The NICU MRI system is quieter than conventional MRI scanners, improving safety for the neonate and facilitating siting of the unit within the NICU. (orig.)

  19. Characterization of acoustic noise in a neonatal intensive care unit MRI system

    Tkach, Jean A.; Li, Yu; Pratt, Ronald G.; Loew, Wolfgang; Daniels, Barret R.; Giaquinto, Randy O.; Dumoulin, Charles L. [Cincinnati Children' s Hospital Medical Center, Imaging Research Center, Department of Radiology, Cincinnati, OH (United States); Baroch, Kelly A. [Cincinnati Children' s Hospital Medical Center, Division of Audiology, Cincinnati, OH (United States); Merhar, Stephanie L. [Cincinnati Children' s Hospital Medical Center, Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati, OH (United States); Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2014-08-15

    To eliminate the medical risks and logistical challenges of transporting infants from the neonatal intensive care unit (NICU) to the radiology department for magnetic resonance imaging, a small-footprint 1.5-T MRI scanner has been developed for neonatal imaging within the NICU. MRI is known to be noisy, and exposure to excessive acoustic noise has the potential to elicit physiological distress and impact development in the term and preterm infant. To measure and compare the acoustic noise properties of the NICU MRI system against those of a conventional 1.5-T MRI system. We performed sound pressure level measurements in the NICU MRI scanner and in a conventional adult-size whole-body 1.5-T MRI system. Sound pressure level measurements were made for six standard clinical MR imaging protocols. The average sound pressure level value, reported in unweighted (dB) and A-weighted (dBA) decibels for all six imaging pulse sequences, was 73.8 dB and 88 dBA for the NICU scanner, and 87 dB and 98.4 dBA for the conventional MRI scanner. The sound pressure level values measured on the NICU scanner for each of the six MR imaging pulse sequences were consistently and significantly (P = 0.03) lower, with an average difference of 14.2 dB (range 10-21 dB) and 11 dBA (range 5-18 dBA). The sound pressure level frequency response of the two MR systems showed a similar harmonic structure above 200 Hz for all imaging sequences. The amplitude, however, was appreciably lower for the NICU scanner, by as much as 30 dB, for frequencies below 200 Hz. The NICU MRI system is quieter than conventional MRI scanners, improving safety for the neonate and facilitating siting of the unit within the NICU. (orig.)

  20. Testing Time and Frequency Fiber-Optic Link Transfer by Hardware Emulation of Acoustic-Band Optical Noise

    Lipiński Marcin

    2016-06-01

    Full Text Available The low-frequency optical-signal phase noise induced by mechanical vibration of the base occurs in field-deployed fibers. Typical telecommunication data transfer is insensitive to this type of noise but the phenomenon may influence links dedicated to precise Time and Frequency (T&F fiber-optic transfer that exploit the idea of stabilization of phase or propagation delay of the link. To measure effectiveness of suppression of acoustic noise in such a link, a dedicated measurement setup is necessary. The setup should enable to introduce a low-frequency phase corruption to the optical signal in a controllable way. In the paper, a concept of a setup in which the mechanically induced acoustic-band optical signal phase corruption is described and its own features and measured parameters are presented. Next, the experimental measurement results of the T&F transfer TFTS-2 system’s immunity as a function of the fibre-optic length vs. the acoustic-band noise are presented. Then, the dependency of the system immunity on the location of a noise source along the link is also pointed out.

  1. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  2. Active Structural Acoustic Control of Interior Noise on a Raytheon 1900D

    Palumbo, Dan; Cabell, Ran; Sullivan, Brenda; Cline, John

    2000-01-01

    An active structural acoustic control system has been demonstrated on a Raytheon Aircraft Company 1900D turboprop airliner. Both single frequency and multi-frequency control of the blade passage frequency and its harmonics was accomplished. The control algorithm was a variant of the popular filtered-x LMS implemented in the principal component domain. The control system consisted of 21 inertial actuators and 32 microphones. The actuators were mounted to the aircraft's ring frames. The microphones were distributed uniformly throughout the interior at head height, both seated and standing. Actuator locations were selected using a combinatorial search optimization algorithm. The control system achieved a 14 dB noise reduction of the blade passage frequency during single frequency tests. Multi-frequency control of the first 1st, 2nd and 3rd harmonics resulted in 10.2 dB, 3.3 dB and 1.6 dB noise reductions respectively. These results fall short of the predictions which were produced by the optimization algorithm (13.5 dB, 8.6 dB and 6.3 dB). The optimization was based on actuator transfer functions taken on the ground and it is postulated that cabin pressurization at flight altitude was a factor in this discrepancy.

  3. Extraction of Stoneley and acoustic Rayleigh waves from ambient noise on ocean bottom observations

    Tonegawa, T.; Fukao, Y.; Takahashi, T.; Obana, K.; Kodaira, S.; Kaneda, Y.

    2013-12-01

    In the interferometry, the wavefield propagating between two positions can be retrieved by correlating ambient noise recorded on the two positions. This approach is useful for applying to various kinds of wavefield, such as ultrasonic, acoustic (ocean acoustic), and also seismology. Off the Kii Peninsula, Japan, more than 150 short-period (4.5 Hz) seismometers, in which hydrophone is also cosited, had been deployed for ~2 months on 2012 by Japan Agency for Marine-Earth Science and Technology (JAMSTEC) as a part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. In this study, correlating ambient noise recorded on the sensors and hydrophones, we attempt to investigate characteristics of wavefield relative to the ocean, sediment, and solid-fluid boundary. The observation period is from Sep. 2012 to Dec. 2012. Station spacing is around 5 km. For 5 lines off the Kii Peninsula, the 30-40 seismometers are distributed at each line. Sampling interval is 200 Hz for both seismometer and hydrophone. The vertical component is just used in this study for correlation analysis. The instruments are located at 100-4800 m in water depth. In the processing for the both records, we applied a bandpass filter of 1-3 Hz, replaced the amplitude to zero if it exceeds a value that was set in this study, and took one-bit normalization. We calculated cross-correlation function (CCF) by using continuous records with a time length of 600 s, stacked the CCFs over the whole observation period. As a result of the analysis for hydrophone, a strong peak can be seen in the CCF for pairs of stations where the separation distance is ~5 km. Although the peak emerges in the CCFs for the separation distance up to 10 km, it disappears in the case that two stations are greater than 15 km separated. As a next approach, along a line off the Kii Peninsula, we aligned CCFs for two stations with

  4. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  5. A geometric Model for the Spatial Correlation of an Acoustic Vector Field in Surface-generated Noise

    Yiwang Huang; Qunyan Ren; Ting Li

    2012-01-01

    Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated,with directional noise sources uniformly distributed on the ocean surface.In the evaluation of particle velocity,plane wave approximation was applied to each incident ray.Due to the equivalence of the sound source correlation property and its directivity,solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source.As a typical horizontally stratified media,surface noise in a perfect waveguide was investigated.Correlation coefficients given by normal mode and geometric models show satisfactory agreement.Also,the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient,while that of the surface noise in semi-infinitely homogeneous space is zero.

  6. Acoustic signal detection through the cross-correlation method in experiments with different signal to noise ratio and reverberation conditions

    Adrián-Martínez, S; Bou-Cabo, M; Felis, I; Llorens, C; Martínez-Mora, J A; Saldaña, M

    2015-01-01

    The study and application of signal detection techniques based on cross-correlation method for acoustic transient signals in noisy and reverberant environments are presented. These techniques are shown to provide high signal to noise ratio, good signal discernment from very close echoes and accurate detection of signal arrival time. The proposed methodology has been tested on real data collected in environments and conditions where its benefits can be shown. This work focuses on the acoustic detection applied to tasks of positioning in underwater structures and calibration such those as ANTARES and KM3NeT deep-sea neutrino telescopes, as well as, in particle detection through acoustic events for the COUPP/PICO detectors. Moreover, a method for obtaining the real amplitude of the signal in time (voltage) by using cross correlation has been developed and tested and is described in this work.

  7. Observation of the Kibble-Zurek Mechanism in Microscopic Acoustic Crackling Noises.

    Ghaffari, H O; Griffth, W A; Benson, P M; Xia, K; Young, R P

    2016-01-01

    Characterizing the fast evolution of microstructural defects is key to understanding "crackling" phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks, and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM. PMID:26876156

  8. Generation of desired signals from acoustic drivers. [for aircraft engine internal noise propagation experiment

    Ramakrishnan, R.; Salikuddin, M.; Ahuja, K. K.

    1982-01-01

    A procedure to control transient signal generation is developed for the study of internal noise propagation from aircraft engines. A simple algorithm incorporating transform techniques is used to produce signals of any desired waveform from acoustic drivers. The accurate driver response is then calculated, and from this the limiting frequency characteristics are determined and the undesirable frequencies where the driver response is poor are eliminated from the analysis. A synthesized signal is then produced by convolving the inverse of the response function with the desired signal. Although the shape of the synthesized signal is in general quite awkward, the driver generates the desired signal when the distorted signal is fed into the driver. The results of operating the driver in two environments, in a free field and in a duct, are presented in order to show the impedance matching effect of the driver. In addition, results using a high frequency cut-off value as a parameter is presented in order to demonstrate the extent of the applicability of the synthesis procedure. It is concluded that the desired signals can be generated through the signal synthesis procedure.

  9. Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises

    Ghaffari, H. O.; Griffth, W. A.; Benson, P.M.; Xia, K.; Young, R. P.

    2016-01-01

    Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks, and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM. PMID:26876156

  10. Characterization of electro-acoustics impedance and its application to active noise control

    HOU Hong; YANG Jianhua

    2004-01-01

    Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed.Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.

  11. Noise prevention

    Methods for noise abatement are discussed. Noise nuisance, types of noise (continuous, fluctuating, intermittent, pulsed), and types of noise abatement (absorption, vibration damping, isolation) are defined. Rockwool panels, industrial ceiling panels, baffles, acoustic foam panels, vibration dampers, acoustic mats, sandwich panels, isolating cabins and walls, ear protectors, and curtains are presented.

  12. Research status on aero-acoustic noise from wind turbine blades

    This paper describes the noise mechanisms and categories of modern large wind turbine and main noise sources. Then the latest progresses in wind turbine noise researches are described from three aspects: noise prediction model, detection of noise sources by microphone array technique and methods for noise reduction. Although the turbine is restricted to horizontal axis wind turbines, the noise prediction model and reduction methods also can be applied to other turbines when the noise mechanisms are similar. Microphone array technique can be applied to locate any kind of noise sources

  13. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  14. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  15. Active structural acoustic control of aircraft interior flow noise via the use of active trim panels

    Mahnken, Brian W.

    1996-01-01

    Modem jet aircraft interior noise can be categorized into two main types: tonal noise caused by engine imbalance or blade passage, and mid frequency broadband noise resulting from turbulent flow. This project addresses aircraft interior flow noise caused by a flow separation over the crown of the aircraft. The noise control approach is to mount piezoelectric actuators to the aircraft interior cockpit crown trim panel and use them to actively control aircraft interior noise with...

  16. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    Martin, Ruth M.

    1989-01-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  17. Modeling of the acoustic boiling noise of sodium during an assembly blockage in sodium-cooled reactors

    In the framework of the fourth generation of nuclear reactors safety requirements, the acoustic boiling detection is studied to detect subassembly blockages. Boiling, that might occur during subassembly blockages and that can lead to clad failure, generates hydrodynamic noise that can be related to the two-phase flow. A bubble dynamics study shows that the sound source during subassembly boiling is condensation. This particular phenomenon generates most noise as a high subcooling is present in the subassembly and because of the high thermal diffusivity of sodium. This result leads to an estimate of the form of the acoustic spectrum that will be filtered and amplified during propagation inside the liquid. And even though it is unlikely that bubbles will be present inside the subassembly, due to the very gradual temperature profile at the wall and due to the geometry that leads to a strong confinement of the vapor, the historical bubble dynamics approach gives some insight in previous measurements. Additionally, some hypotheses can be disproved. These theoretical ideas are validated with a small water experiment, yet it also shows that a simple experience in sodium doesn't lead to a better knowledge of the acoustic source. A theoretical analysis also revealed that a realistic experiment with a simulant fluid, such as water or mercury, isn't representative. A similar conclusion is obtained when studying cavitation as a simulant acoustic source. As such, the acoustic detection of boiling, in comparison with other detection systems, isn't sufficiently developed yet to be applied as a reactor protective system. (author)

  18. Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume

    Gordon, Grant

    2015-01-01

    were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.

  19. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F. [University of Seville, School of Industrial Engineering, Department of Chemical and Environmental Engineering, Camino de los Descubrimientos s/n, E-41092 Seville (Spain); Cifuentes, Héctor, E-mail: bulte@us.es [University of Seville, School of Industrial Engineering, Continuum Mechanics and Structural Analysis Department, Camino de los Descubrimientos s/n, E-41092 Seville (Spain)

    2013-11-15

    Highlights: • The particle size of bottom ash influenced the acoustic behavior of the barrier. • The best sound absorption coefficients were measured for larger particle sizes. • The maximum noise absorption is displaced to lower frequencies for higher thickness. • A noise barrier was designed with better properties than commercial products. • Recycling products from bottom ash no present leaching and radioactivity problems. - Abstract: The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk.

  20. Sine-wave and noise-vocoded sine-wave speech in a tone language: Acoustic details matter.

    Rosen, Stuart; Hui, Sze Ngar Catherine

    2015-12-01

    Sine-wave speech (SWS) is a highly simplified version of speech consisting only of frequency- and amplitude-modulated sinusoids representing the formants. That listeners can successfully understand SWS has led to claims that speech perception must be based on abstract properties of the stimuli far removed from their specific acoustic form. Here it is shown, in bilingual Cantonese/English listeners, that performance with Cantonese SWS is improved by noise vocoding, with no effect on English SWS utterances. This manipulation preserves the abstract informational structure in the signals but changes its surface form. The differential effects of noise vocoding likely arise from the fact that Cantonese is a tonal language and hence more reliant on fundamental frequency (F0) contours for its intelligibility. SWS does not preserve tonal information from the original speech but does have false tonal information signalled by the lowest frequency sinusoid. Noise vocoding SWS appears to minimise the tonal percept, which thus interferes less in the perception of Cantonese. It has no effect in English, which is minimally reliant on F0 variations for intelligibility. Therefore it is not only the informational structure of a sound that is important but also how its acoustic detail interacts with the phonological structure of a given language. PMID:26723325

  1. Development of Adjustable Absorption Acoustic Liner for Active Fan Noise Control

    小林, 紘; Kobayashi, Hiroshi

    2003-01-01

    Due to strong demands from communities adjacent to airports for the suppression aircraft noise, a new aircraft noise certification standard as set out in ICAO Chapter 4 was formulated and will come into effect in 2006 for new subsonic aircrafts. Currently, not only aircraft noise affecting communities surrounding airports but also aircraft noise at night, during climb and while cruising have become serious issues. In order to solve these issues, at NAL, new techniques and systems have been de...

  2. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  3. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  4. The noise environment of a school classroom due to the operation of utility helicopters. [acoustic measurements of helicopter noise during flight over building

    Hilton, D. A.; Pegg, R. J.

    1974-01-01

    Noise measurements under controlled conditions have been made inside and outside of a school building during flyover operations of four different helicopters. The helicopters were operated at a condition considered typical for a police patrol mission. Flyovers were made at an altitude of 500 ft and an airspeed of 45 miles per hour. During these operations acoustic measurements were made inside and outside of the school building with the windows closed and then open. The outside noise measurements during helicopter flyovers indicate that the outside db(A) levels were approximately the same for all test helicopters. For the windows closed case, significant reductions for the inside measured db(A) values were noted for all overflights. These reductions were approximately 20 db(A); similar reductions were noted in other subjective measuring units. The measured internal db(A) levels with the windows open exceeded published classroom noise criteria values; however, for the windows-closed case they are in general agreement with the criteria values.

  5. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control.

    Passero, Carolina Reich Marcon; Zannin, Paulo Henrique Trombetta

    2012-11-01

    Arranging office space into a single open room offers advantages in terms of easy exchange of information and interaction among coworkers, but reduces privacy and acoustic comfort. Thus, the purpose of this work was to evaluate the acoustic quality of a real open-plan office and to propose changes in the room to improve the acoustic conditioning of this office. The computational model of the office under study was calibrated based on RT and STI measurements. Predictions were made of the RT and STI, which generated the radius of distraction r(D), and the rate of spatial decay of sound pressure levels per distance doubling DL(2) in the real conditions of the office and after modifications of the room. The insertion of dividers between work stations and an increase in the ceiling's sound absorption improved the acoustic conditions in the office under study. PMID:22507599

  6. Baleen whale acoustic ecology with focus on minke whales (Balaenoptera acutorostrata) and reference to anthropogenic noise

    Risch, Denise

    2013-01-01

    Passive acoustic approaches for studying marine mammals have developed substantially over the past decade. Advances in technology now allow data collection in remote areas and over extended timescales. The first two chapters of this thesis focused on the application of passive acoustics for monitoring migratory baleen whales in the Northwest Atlantic Ocean. The development and application of new localization algorithms showed how small-scale arrays can be used to obtain base...

  7. Noise caused by cavitating Butterfly and Monovar Valves. Effects of cavitation on acoustic sources; numerical simulation

    An experimental study of the effects of cavitation was carried out through an analysis of cavitating Butterfly and Monovar valves. For each variation case, the nature of the dominant source is determined in relation to frequency. Once the parameters of the cavitation zone are identified, a three-zone model is used in order to pinpoint the acoustic sources with cavitation. In order to determine acoustic sources, we present a numerical simulation using a bubbles population. (authors)

  8. Predictive Acoustic Modelling Applied to the Control of Intake/exhaust Noise of Internal Combustion Engines

    Davies, P. O. A. L.; Harrison, M. F.

    1997-05-01

    The application of validated acoustic models to intake/exhaust system acoustic design is described with reference to a sequence of specific practical examples. These include large turbocharged diesel generating sets, truck engines and high performance petrol engines. The discussion includes a comparison of frequency domain, time domain and hybrid modelling approaches to design methodology. The calculation of sound emission from open terminations is summarized in an appendix.

  9. Acoustic tags on wild harbour porpoises reveal context-specific reactions to ship noise

    Teilmann, Jonas; Wisniewska, Danuta Maria; Johnson, Mark;

    While cetacean auditory systems have evolved to cope with underwater noise from natural sources, there is a growing concern that anthropogenic noise may disrupt the behavior, impair the hearing or compromise the general health of cetaceans. Evaluation of the effect of anthropogenic sounds...... on harbour porpoises is primarily based on presence-absence studies before-during-after industrial activities. Little is known about the noise free-ranging animals are exposed to and how individuals react to specific noise sources. We deployed archival multi-sensor DTag3 tags on six wild harbour porpoises...... to study noise exposure and behaviour in the highly trafficked Danish Straits. The suction-cup attached tags provided continuous recordings for up to 24 hours, while logging stereo sound (500kHz), triaxial magnetometry, acceleration and depth (625Hz). The movement and noise exposure of the animals...

  10. Experimental and theoretical characterization of acoustic noise from a 7.6 m diameter yaw controlled teetered rotor wind turbine

    Moroz, E. [Univ. of Texas at El Paso, Dept. of Mechanical and Industrial Engineering, El Paso, TX (United States)

    1997-12-31

    An experimental investigation into the acoustic noise from a small (7.6 m diameter) teetered rotor wind turbine, set at various yaw angles up to 90 degrees of yaw, was conducted. The results revealed a 1/3 octave spectra which was dominated by a broad peak in the higher frequency range, at all yaw angles investigated. This prompted a theoretical investigation to reveal the mechanisms producing the dominant feature in the experimentally obtained noise spectra and resulted in the development of a wind turbine aerodynamic noise prediction coce, WTNOISE. The location near busy roads and the relatively rough terrain of the wind test site caused difficulties in obtaining useful noise spectral information below 500Hz. However, sufficiently good data was obtained above 500Hz to clearly show a dominant `hump` in the spectrum, centered between 3000 and 4000Hz. Although the local Reynolds number for the blade elements was around 500,000 and one might expect Laminar flow over a significant portion of the blade, the data did not match the noise spectra predicted when Laminar flow was assumed. Given the relatively poor surface quality of the rotor blades and the high turbulence of the test site it was therefore assumed that the boundary layer on the blade may have tripped relatively early and that the turbulent flow setting should be used. This assumption led to a much better correlation between experiment and predictions. The WTNOISE code indicated that the broad peak in the spectrum was most likely caused by trailing edge bluntness noise. Unfortunately time did not allow for modifications to the trailing edge to be investigated. (au)

  11. Noise

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  12. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants.

    Li, Xing; Nie, Kaibao; Imennov, Nikita S; Won, Jong Ho; Drennan, Ward R; Rubinstein, Jay T; Atlas, Les E

    2012-11-01

    Harmonic and temporal fine structure (TFS) information are important cues for speech perception in noise and music perception. However, due to the inherently coarse spectral and temporal resolution in electric hearing, the question of how to deliver harmonic and TFS information to cochlear implant (CI) users remains unresolved. A harmonic-single-sideband-encoder [(HSSE); Nie et al. (2008). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing; Lie et al., (2010). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing] strategy has been proposed that explicitly tracks the harmonics in speech and transforms them into modulators conveying both amplitude modulation and fundamental frequency information. For unvoiced speech, HSSE transforms the TFS into a slowly varying yet still noise-like signal. To investigate its potential, four- and eight-channel vocoder simulations of HSSE and the continuous-interleaved-sampling (CIS) strategy were implemented, respectively. Using these vocoders, five normal-hearing subjects' speech recognition performance was evaluated under different masking conditions; another five normal-hearing subjects' Mandarin tone identification performance was also evaluated. Additionally, the neural discharge patterns evoked by HSSE- and CIS-encoded Mandarin tone stimuli were simulated using an auditory nerve model. All subjects scored significantly higher with HSSE than with CIS vocoders. The modeling analysis demonstrated that HSSE can convey temporal pitch cues better than CIS. Overall, the results suggest that HSSE is a promising strategy to enhance speech perception with CIs. PMID:23145619

  13. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  14. Advanced numerical techniques for the acoustic modelling of materials and noise control devices in the exhaust system of internal combustion engines

    Sánchez Orgaz, Eva María

    2016-01-01

    [EN] This Thesis is focused on the development and implementation of efficient numerical methods for the acoustic modelling and design of noise control devices in the exhaust system of combustion engines. Special attention is paid to automotive perforated dissipative silencers, in which significant differences are likely to appear in their acoustic behaviour, depending on the temperature variations within the absorbent material. Also, material heterogeneities can alter the silencer attenuatio...

  15. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  16. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings

    Wisniewska, Danuta Maria; Teilmann, Jonas; Hermannsen, Line;

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic fi eld experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal’s orientation in the sound fi eld affect the reliability of on-animal rec......In recent years, several sound and movement recording tags have been developed to sample the acoustic fi eld experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal’s orientation in the sound fi eld affect the reliability of on...

  17. Acoustical topology optimization for Zwicker's loudness model - Application to noise barriers

    Kook, Junghwan; Koo, Kunmo; Hyun, Jaeyub;

    2012-01-01

    according to DIN45631 (ISO 532B). The main objective of this work is to minimize the main specific loudness of a target critical band rate by optimizing the distribution of the reflecting material in a design domain. The Helmholtz equation is used to model acoustic wave propagation and, it is solved using...

  18. System for Acquisition and Analysis of Energy-Based Acoustic Data for Rocket Noise Project

    National Aeronautics and Space Administration — Accurate estimates of the vibroacoustic loading placed on space vehicles and payloads during launch require knowledge of the rocket noise source properties. Given...

  19. Global noise score indicator for classroom evaluation of acoustic performances in LIFE GIOCONDA project

    Chetoni Marco; Ascari Elena; Bianco Francesco; Fredianelli Luca; Licitra Gaetano; Cori Liliana

    2016-01-01

    The LIFE GIOCONDA is an ongoing project that aims to provide an innovative methodology to the authorities for supporting the environment & health policies by involving the young people in the decision-making processes. The project suggests a web platform able to relate air and noise pollution data in the schools with the students’ pollution awareness. GIOCONDA aims to enhance the awareness of students, teachers and local administrations on the noise issues in schools, ...

  20. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  1. Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

    Marburg, Steffen

    2008-01-01

    Among numerical methods applied in acoustics, the Finite Element Method (FEM) is normally favored for interior problems whereas the Boundary Element Method (BEM) is quite popular for exterior ones. That is why this valuable reference provides a complete survey of methods for computational acoustics, namely FEM and BEM. It demonstrates that both methods can be effectively used in the complementary cases. The chapters by well-known authors are evenly balanced: 10 chapters on FEM and 10 on BEM. An initial conceptual chapter describes the derivation of the wave equation and supplies a unified approach to FEM and BEM for the harmonic case. A categorization of the remaining chapters and a personal outlook complete this introduction. In what follows, both FEM and BEM are discussed in the context of very different problems. Firstly, this comprises numerical issues, e.g. convergence, multi-frequency solutions and highly efficient methods; and secondly, solutions techniques for the particular difficulties that arise wi...

  2. Numerical and experimental investigation of noise from small scale axial fans focusing on inflow condition and acoustic source type

    Shin, Yoon Shik

    The objective of this work was to conduct an experimental and numerical investigation of the noise radiated by a small-scale axial fan from two different points-of-view: the development of an inflow treatment to compensate for unfavorable inflow conditions that result in excessive noise, and a consideration of installation effects for the acoustic source type of small axial fans. The effect of disturbed inflow on axial fans was experimentally investigated by intentionally placing a blockage plate at four different locations upstream of a fan. The blocked inflow made the axial fan perform very poorly; the severely decreased pressure performance introduced an overly strong dependence of flow performance on pressure load condition. An inflow diffuser made from aluminum foam was suggested to improve the aerodynamic and acoustic performance of the axial fan under such unfavorable inflow conditions. The inflow diffuser improved the stability of flow performance and reduced the blade passing tone by a small amount, but the levels of the high frequency harmonics of the blade passing tone were increased. A corresponding numerical model was built to model the flow change due to the inflow foam treatment. The inflow foam diffuser was approximated as a homogeneous porous zone to make the computational cost affordable, and it was shown that the model can predict the foam's influence on the pressure and flow performance of the fan. The aeroacoustic analogy model was applied to the solid surfaces of the fan and its housing to simulate the tonal noise at the blade passing frequency. The validity of the homogeneous foam model in terms of aeroacoustic predictions was also confirmed. As for the second aspect of the axial fan noise source, the dipole-like source behavior of an axial fan at the blade passing frequency was verified by directivity measurements. Thus, dipole modeling of an axial fan was justified. This result is associated with the problem of overestimated fan source

  3. A difference theory for noise propagation in an acoustically lined duct with mean flow.

    Baumeister, K. J.; Rice, E. J.

    1973-01-01

    A finite difference formulation is presented for sound propagation in a two-dimensional straight soft-walled duct with uniform flow. The difference analysis is developed in terms of complex notation. The governing acoustic difference equations and the appropriate displacement boundary conditions associated with uniform flow are presented. Example calculations are presented for the sound attenuation in straight hard and soft-walled ducts. At present the finite Mach number case is solved only for the one-dimensional hard walled duct.

  4. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    Roadman, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States); Huskey, Arlinda [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  5. Subjective evaluation of speech and noise in learning environments in the realm of classroom acoustics: Results from laboratory and field experiments

    Meis, Markus; Nocke, Christian; Hofmann, Simone; Becker, Bernhard

    2005-04-01

    The impact of different acoustical conditions in learning environments on noise annoyance and the evaluation of speech quality were tested in a series of three experiments. In Experiment 1 (n=79) the auralization of seven classrooms with reverberation times from 0.55 to 3.21 s [average between 250 Hz to 2 kHz] served to develop a Semantic Differential, evaluating a simulated teacher's voice. Four factors were found: acoustical comfort, roughness, sharpness, and loudness. In Experiment 2, the effects of two classroom renovations were examined from a holistic perspective. The rooms were treated acoustically with acoustic ceilings (RT=0.5 s [250 Hz-2 kHz]) and muffling floor materials as well as non-acoustically with a new lighting system and color design. The results indicate that pupils (n=61) in renovated classrooms judged the simulated voice more positively, were less annoyed from the noise in classrooms, and were more motivated to participate in the lessons. In Experiment 3 the sound environments from six different lecture rooms (RT=0.8 to 1.39 s [250 Hz-2 kHz]) in two Universities of Oldenburg were evaluated by 321 students during the lectures. Evidence found supports the assumption that acoustical comfort in rooms is dependent on frequency for rooms with higher reverberation times.

  6. Do public inquiries for noise control serve a useful purpose?--An acoustic consultant's view.

    Flindell, I H

    2003-01-01

    In the United Kingdom, before the introduction of the various town and country planning acts and associated regulations, landowners were free to use their land in any way they wished, subject only to limitations imposed by lease or covenant and the avoidance of nuisance or trespass against neighbours. Any disputes arising would be resolved by negotiation or via a court of law. Under current planning laws and regulations, local authorities are empowered to impose special conditions or even to refuse development to prevent excessive nuisance, but the resulting noise management solutions are not always optimum from either the noise maker's or the noise exposed's points of view. In addition, the planning system has almost no effect on existing noise. Public inquiries provide a useful mechanism for the investigation of appeals against local authority decisions, or where the government has decided that issues of strategic or national importance need to be fully explored in a public forum. In practice, and largely because of individual disagreement, public inquiries can result in excessive delays while all interested parties are allowed to have their say. There seems to be an increasing consensus that the general inadequacy of existing methods of assessing noise impact is at least partly to blame. The new European Environmental Noise Directive represents a step change towards the imposition of one-size-fits-all regulatory or administrative procedures which should eventually contribute towards the reduction of public inquiry delays, but on the other hand, any weakening of the general principle of basing decisions on 'informed flexibility' will probably have significant negative consequences over the longer term. PMID:12631434

  7. Numerical spatial marching techniques in duct acoustics. [noise source calculation from far field pressure measurements

    Baumeister, K. J.

    1979-01-01

    Direct calculation of the internal structure of a ducted noise source from farfield pressure measurements is regarded as an initial value problem, where the pressure and pressure gradient (farfield impedance) are assumed to be known along a line in the farfield. If pressure and impedance are known at the boundary of the farfield, the pressure can be uniquely determined in the vicinity of the inlet and inside the inlet ducting. A marching procedure is developed which, with this information obtained from measurements, enables a description of a ducted noise source. The technique uses a finite difference representation of the homogeneous Helmholtz equation.

  8. Changes in distortion product oto-acoustic emissions after exposure to continuous and impulsive noise

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    Temporary changes in hearing of the subjects were monitored with distortion product otoacoustic emissions (DPOAEs) after control sound exposures in a laboratory. The objectives of the experiment was to investigate whether the +5 dB penalty for impulsiveness used in international standards and...... legislation correlates to a higher risk of hearing damage. Subjects were exposed to two types of binaural recordings consisting of a continuous broad-band noise-exposure normalized to LEX,8h = 80 dBA and the interaction of the previous stimulus with a noise of impulsive character normalized to LEX,8h = 75 + 5...

  9. Changes in distortion product oto-acoustic emissions after exposure to continuous and impulsive noise

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    Temporary changes in the hearing of human subjects were monitored with distortion product otoacoustic emissions (DPOAEs) after control sound exposures in a laboratory. The objectives of the experiment were to investigate whether the +5~dB penalty for impulsiveness used in international standards...... and legislation correlates to a higher risk of hearing damage. Subjects were exposed to two types of binaural recordings consisting of a continuous broad-band noise-exposure normalized to LEX,8h = 80~dB and the interaction of the previous stimulus with a noise of impulsive character normalized to LEX...

  10. Assessment of an action against environmental noise: Acoustic durability of a pavement surface with crumb rubber.

    Vázquez, V F; Luong, J; Bueno, M; Terán, F; Paje, S E

    2016-01-15

    Environmental noise is a worldwide problem that has an adverse effect in the quality of life of urban population. Some work has shown that there is a correlation between environmental noise and health issues as sleep disturbance or annoyance. This study presents the time evolution of a test track fabricated with an asphalt mixture with 20% of crumb rubber by weight of bitumen, added by the wet process. A complete surface characterization has been performed by determining tire/pavement sound levels, road texture profiles, in-situ dynamic stiffness and sound absorption of compacted and extracted sample cores. Two measurement campaigns were performed: just after mixture laying and after 3 years in service. This study confirms that the use of crumb rubber as a modifier of bituminous binders (CRMB) can improve the pavement characteristics: gap-graded mixtures with crumb rubber can be used in the action plans as urban rehabilitation measure to fight noise pollution. However, this noise reduction seems to decrease with age at a rate of approximately 0.15 dB(A) per year. PMID:26519582

  11. The effect of acoustic forcing on an airfoil tonal noise mechanism.

    Schumacher, Karn L; Doolan, Con J; Kelso, Richard M

    2014-08-01

    The response of the boundary layer over an airfoil with cavity to external acoustic forcing, across a sweep of frequencies, was measured. The boundary layer downstream of the cavity trailing edge was found to respond strongly and selectively at the natural airfoil tonal frequencies. This is considered to be due to enhanced feedback. However, the shear layer upstream of the cavity trailing edge did not respond at these frequencies. These findings confirm that an aeroacoustic feedback loop exists between the airfoil trailing edge and a location near the cavity trailing edge. PMID:25096150

  12. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  13. Noise map

    Němcová, Michaela

    2015-01-01

    The aim of this paper is to introduce the measurement of noise and create a noise map in a geographic information system. The first part is focused on describing the physical properties of sound in space, atmospheric and physiological acoustics. It also deals with the physiological effects of noise on the human body and technology needed for measure and process noise. Other part describes the structure of a geographic information system and noise map. The last part is about the practical crea...

  14. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature

  15. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    Kanamori, Masashi, E-mail: kanamori.masashi@jaxa.jp; Takahashi, Takashi, E-mail: takahashi.takashi@jaxa.jp; Aoyama, Takashi, E-mail: aoyama.takashi@jaxa.jp [Japan Aerospace Exploration Agency, 7-44-1, Jindaijihigashi-machi, Chofu, Tokyo (Japan)

    2015-10-28

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  16. Lexico-semantic and acoustic-phonetic processes in the perception of noise-vocoded speech: implications for cochlear implantation.

    Carolyn eMcGettigan

    2014-02-01

    Full Text Available Noise-vocoding is a transformation which, when applied to speech, severely reduces spectral resolution and eliminates periodicity, yielding a stimulus that sounds like a harsh whisper (Scott, Blank et al. 2000. This process simulates a cochlear implant, where the activity of many thousand hair cells in the inner ear is replaced by direct stimulation of the auditory nerve by a small number of tonotopically-arranged electrodes. Although a cochlear implant offers a powerful means of restoring some degree of hearing to profoundly deaf individuals, the outcomes for spoken communication are highly variable (Moore and Shannon 2009. Some variability may arise from differences in peripheral representation (e.g. the degree of residual nerve survival but some may reflect differences in higher-order linguistic processing. In order to explore this possibility, we used noise-vocoding to explore speech recognition and perceptual learning in normal-hearing listeners tested across several levels of the linguistic hierarchy: segments (consonants and vowels, single words, and sentences. Listeners improved significantly on all tasks across two test sessions. In the first session, individual differences analyses revealed two independently varying sources of variability: one lexico-semantic in nature and implicating the recognition of words and sentences, and the other an acoustic-phonetic factor associated with words and segments. However, consequent to learning, by the second session there was a more uniform covariance pattern concerning all stimulus types. A further analysis of phonetic feature recognition allowed greater insight into learning-related changes in perception and showed that, surprisingly, participants did not make full use of cues that were preserved in the stimuli (e.g. vowel duration. We discuss these findings in relation cochlear implantation, and suggest auditory training strategies to maximise speech recognition performance in the absence of

  17. Psychophysiological acoustics of indoor sound due to traffic noise during sleep

    Tulen, J. H. M.; Kumar, A.; Jurriëns, A. A.

    1986-10-01

    The relation between the physical characteristics of sound and an individual's perception of its as annoyance is complex and unclear. Sleep disturbance by sound is manifested in the physiological responses to the sound stimuli and the quality of sleep perceived in the morning. Both may result in deterioration of functioning during wakefulness. Therefore, psychophysiological responses to noise during sleep should be studied for the evaluation of the efficacy of sound insulation. Nocturnal sleep and indoor sound level were recorded in the homes of 12 subjects living along a highway with high traffic density. Double glazing sound insulation was used to create two experimental conditions: low insulation and high insulation. Twenty recordings were made per subject, ten recordings in each condition. During the nights with low insulation the quality of sleep was so low that both performance and mood were negatively affected. The enhancement of sound insulation was not effective enough to increase the restorative effects of sleep. The transient and peaky characteristics of traffic sound were also found to result in non-adaptive physiological responses during sleep. Sound insulation did have an effect on noise peak characteristics such as peak level, peak duration and slope. However, the number of sound peaks were found to be the same in both conditions. The relation of these sound peaks detected in the indoor recorded sound level signal to characteristics of passing vehicles was established, indicating that the sound peaks causing the psychophysiological disturbances during sleep were generated by the passing vehicles. Evidence is presented to show that the reduction in sound level is not a good measure of efficacy of sound insulation. The parameters of the sound peaks, as described in this paper, are a better representation of psychophysiological efficacy of sound insulation.

  18. A stator flux oriented current vector control of a sensorless 6/4 SRM for reduction of acoustic noise and vibration

    In this paper, a stator flux oriented current vector control of a sensorless three-phase 6/4 switched reluctance motor without position sensors is presented. Space current vector control technology based on torque angle estimation was used to reduce the acoustic noise and vibration of the motor drive system. The power converter for the 6/4 switched reluctance motor is three-phase full bridge inverter. The experimental results show that the maximum level of acoustic noises and vibration are 73 dB and 8 dB; m/s/s, respectively, and the steady speed error of the drive system is less than 0.1% operated at the rated load when the drive system was operated below 1500 rpm. In addition, the transient speed performance is also satisfactory

  19. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  20. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  1. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  2. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    P. Mokrý

    2015-02-01

    Full Text Available The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH. The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV. The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  3. Acoustic Emission Detection Applications in High Background Noise Environments%声发射技术在高噪声背景下的检测应用

    田亚团; 蒋仕良; 李杰; 李东

    2013-01-01

    This article describes the acoustic emission (AE) detection technology in high background noise environments.The AE technique was used for on-line detection and analysis of the reformed parts of a gasifier and the acoustic emission test results were re-inspected by conventional NDT methods.The results showed that acoustic emission testing technology could have good correspondence with conventional NDT methods in detecting the defects,which proved the feasibility and effectiveness of acoustic emission in high background noise.The results could provide reference for AE test of similar large-scale petrochemical equipment.%介绍了在高噪声背景下,对某台气化炉改造部位进行声发射检测分析的情况,并采用常规无损检测方法对声发射检测结果进行了复验.结果表明,声发射检测技术与常规无损检测方法发现的缺陷有良好的对应关系,证明声发射检测技术在高噪声背景下的可行性和有效性,为类似大型石化设备声发射检测提供了参考.

  4. Analysis of Ringing and Noise in FE and FDTD Calculated Acoustic Pulse Profiles

    Arthur Every

    2012-10-01

    Full Text Available Ringing, i.e. the emergence of an oscillatory tail behind a wave pulse as it propagates through a medium, is a pervasive artefact in FE and FDTD calculated waveforms. It is known to be a consequence of numerical dispersion arising from the discretization of the equations of motion. The use of an irregular mesh in a FE code has the further consequence of rendering the displacement field increasingly noisy with distance behind the wave front. In this paper these effects are illustrated using the commercial FE package ABAQUS with square and irregular triangular meshes to calculate the progress of a longitudinally polarized Ricker pulse along the axis of a cylindrically shaped aluminium specimen. We are able to give a precise analytical account of the evolution of ringing on the basis of a low order approximation for the dispersion relation of the discretized equations of motion. A qualitative account is provided of the generation of noise in the use of an irregular triangular mesh.

  5. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Yakunina, Natalia [Kangwon National University, Institute of Medical Science, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kang, Eun Kyoung [Kangwon National University Hospital, Department of Rehabilitation Medicine, Chuncheon (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of); Min, Ji-Hoon [University of Michigan, Department of Biopsychology, Cognition, and Neuroscience, Ann Arbor, MI (United States); Kim, Sam Soo [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Radiology, Chuncheon (Korea, Republic of); Nam, Eui-Cheol [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of)

    2015-10-15

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  6. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  7. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10–14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  8. Acoustic Noise Levels of Dental Equipments and Its Association with Fear and Annoyance Levels among Patients Attending Different Dental Clinic Setups in Jaipur, India

    Ganta, Shravani; Nagaraj, Anup; Pareek, Sonia; Atri, Mansi; Singh, Kushpal; Sidiq, Mohsin

    2014-01-01

    Background: Noise is a source of pervasive occupational hazard for practicing dentists and the patients. The sources of dental sounds by various dental equipments can pose as a potential hazard to hearing system and add to the annoyance levels of the patients. The aim of the study was to analyze the noise levels from various equipments and evaluate the effect of acoustic noise stimulus on dental fear and annoyance levels among patients attending different dental clinic setups in Jaipur, India. Methodology: The sampling frame comprised of 180 patients, which included 90 patients attending 10 different private clinics and 90 patients attending a Dental College in Jaipur. The levels of Acoustic Noise Stimulus originating from different equipments were determined using a precision sound level meter/decibulometer. Dental fear among patients was measured using Dental Fear Scale (DFS). Results: Statistical analysis was performed using chi square test and unpaired t-test. The mean background noise levels were found to be maximum in the pre-clinical setup/ laboratory areas (69.23+2.20). Females and the patients attending dental college setup encountered more fear on seeing the drill as compared to the patients attending private clinics (p<0.001). Conclusion: The sources of dental sounds can pose as a potential hazard to hearing system. It was analyzed that the environment in the clinics can directly have an effect on the fear and annoyance levels of patients. Hence it is necessary control the noise from various dental equipments to reduce the fear of patients from visiting a dental clinic. PMID:24959512

  9. High signal-to-noise ratio acoustic sensor using phase shifted gratings interrogated by the Pound-Drever-Hall technique

    Kung, Peter; Comanici, Maria I.

    2015-03-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  10. High signal-to-noise acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    Kung, Peter; Comanici, Maria I.

    2014-11-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  11. Study of Harmonics-to-Noise Ratio and Critical-Band Energy Spectrum of Speech as Acoustic Indicators of Laryngeal and Voice Pathology

    Niranjan U. Cholayya

    2007-01-01

    Full Text Available Acoustic analysis of speech signals is a noninvasive technique that has been proved to be an effective tool for the objective support of vocal and voice disease screening. In the present study acoustic analysis of sustained vowels is considered. A simple k-means nearest neighbor classifier is designed to test the efficacy of a harmonics-to-noise ratio (HNR measure and the critical-band energy spectrum of the voiced speech signal as tools for the detection of laryngeal pathologies. It groups the given voice signal sample into pathologic and normal. The voiced speech signal is decomposed into harmonic and noise components using an iterative signal extrapolation algorithm. The HNRs at four different frequency bands are estimated and used as features. Voiced speech is also filtered with 21 critical-bandpass filters that mimic the human auditory neurons. Normalized energies of these filter outputs are used as another set of features. The results obtained have shown that the HNR and the critical-band energy spectrum can be used to correlate laryngeal pathology and voice alteration, using previously classified voice samples. This method could be an additional acoustic indicator that supplements the clinical diagnostic features for voice evaluation.

  12. Acoustic noise reduction of a 6/4 SRM drive based on third harmonic real power cancellation and mutual coupling flux enhancement

    In this paper, an effective technology is presented for noise reduction and torque increase in a three-phase 6/4 switched reluctance motor (SRM) drive without position sensors. Using a three-phase full bridge inverter and Y-typed connection of winding configuration, three-phase sinusoidal currents in each commutation region can be controlled to form long and short-flux paths. Long main flux can be added by short mutual coupling flux to enhance the stator flux; the resulting current-oriented control scheme can obtain a higher electromagnetic torque and cancel the third harmonic real power. To verify the effectiveness of the proposed scheme, it was applied to a 350 W three-phase 6/4 SRM drive system operating below 1500 rpm. Experimental results yield maximal acoustic noise at 74 dB and maximal torque at 21 kg cm. Moreover, the 6th harmonic real power is found to be the dominant source of acoustic noises in the SRM system.

  13. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  14. Investigation into the response of the auditory and acoustic communications systems in the Beluga whale (Delphinapterus leucas) of the St. Lawrence River Estuary to noise, using vocal classification

    Scheifele, Peter Martin

    2003-06-01

    Noise pollution has only recently become recognized as a potential danger to marine mammals in general, and to the Beluga Whale (Delphinapterus leucas) in particular. These small gregarious Odontocetes make extensive use of sound for social communication and pod cohesion. The St. Lawrence River Estuary is habitat to a small, critically endangered population of about 700 Beluga whales who congregate in four different sites in its upper estuary. The population is believed to be threatened by the stress of high-intensity, low frequency noise. One way to determine whether noise is having an effect on an animal's auditory ability might be to observe a natural and repeatable response of the auditory and vocal systems to varying noise levels. This can be accomplished by observing changes in animal vocalizations in response to auditory feedback. A response such as this observed in humans and some animals is known as the Lombard Vocal Response, which represents a reaction of the auditory system directly manifested by changes in vocalization level. In this research this population of Beluga Whales was tested to determine whether a vocalization-as-a-function-of-noise phenomenon existed by using Hidden Markhov "classified" vocalizations as targets for acoustical analyses. Correlation and regression analyses indicated that the phenomenon does exist and results of a human subjects experiment along with results from other animal species known to exhibit the response strongly implicate the Lombard Vocal Response in the Beluga.

  15. 声学材料耦合声场模拟研究%Simulation Analysis of Vibro-noise Couple Characters of Acoustics Material

    赵树磊; 任伟伟

    2013-01-01

    本文根据阻尼声学材料声管测试环境的物理模型,采用Virtual lab-acoustics对常压下阻尼声学材料以及声性能测试环境——声管进行了模拟建模,建立了声振耦合的有限元模型,可以有效指导阻尼声学材料声学设计和性能预测.%According to the testing environment of the absorbing material in the normal pressure,a vibro-noise couple FEM model is established with Virtual lab-acoustics,which is helpful for acoustics design and property prediction.

  16. Arctic ocean long-term acoustic monitoring : ambient noise, environmental correlates, and transients north of Barrow, Alaska

    Roth, Ethan H.

    2008-01-01

    The Arctic Ocean has experienced wide-spread decreases in sea ice concentrations that may impact various marine ecosystems. This study analyzes yearlong ocean acoustic recordings from north of Barrow, Alaska, to provide baseline measurements prior to possible increases in anthropogenic activities. In September 2006, two autonomous High-frequency Acoustic Recording Packages (HARPs) were deployed to the seafloor (250m), where sound was continuously recorded by hydrophones for nine months. Ice c...

  17. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  18. Potential noise impact from proposed operations at the Davis Canyon, Utah site: Evaluation of atmospheric acoustic refractive index profiles: Task 1, Final report

    This study was motivated by the need to assess whether or not there would be significant noise impact from a proposed industrial operation to be sited in Davis Canyon, Utah. Completion of the study required improving several aspects of our fundamental understanding of atmospheric sound propagation and analysis of a diverse set of meteorological measurements which pertained specifically to the Davis Canyon location. The above two ''generic'' and ''specific'' objectives were sufficiently different that this final report has been divided into two parts. The first, generic, portion was prepared because neither existing noise standards nor standard field measurement techniques adequately recognize the importance of normal atmospheric boundary layer structure and processes on the magnitude and variations of noise propagated out-of-doors. The second, specific, part of the report summarizes a variety of acoustically-oriented analyses of meteorological measurements made near Davis Canyon. The results in both parts of the report are based on sophisticated atmospheric analysis, boundary layer and propagation models. The presentation of time dependent ''maps'' of predicted sound pressure levels (also as a function of frequency and source-surrounding topography) represents a significant advance in the state-of-the-art of environmental noise analysis and prediction

  19. Implications of the road traffic and aircraft noise exposure and children's cognition and health (RANCH) study results for classroom acoustics

    Stansfeld, Stephen A.; Clark, Charlotte

    2005-04-01

    Studies in West London have found associations between aircraft noise exposure and childrens' cognitive performance. This has culminated in the RANCH Study examining exposure-effect associations between aircraft and road traffic noise exposure and cognitive performance and health. The RANCH project, the largest cross-sectional study of noise and childrens health, examined 2844 children, 9-10 years old, from 89 schools around three major airports: in the Netherlands, Spain and the United Kingdom. Children were selected by external aircraft and road traffic noise exposure at school predicted from noise contour maps, modeling and on-site measurements. A substudy indicated high internal levels of noise within classrooms. Schools were matched for socioeconomic position within countries. Cognitive and health outcomes were measured by standardized tests and questionnaires administered in the classroom. A parental questionnaire collected information on socioeconomic position, parental education and ethnicity. Linear exposure-effect associations were found between chronic aircraft noise exposure and impairment of reading comprehension and recognition memory, maintained after adjustment for mothers education, socioeconomic factors, longstanding illness and classroom insulation. Road traffic noise exposure was linearly associated with episodic memory. The implications of these results for childrens' learning environments will be discussed. [Work supported by European Community (QLRT-2000-00197) Vth framework program.

  20. Designing acoustics for linguistically diverse classrooms: Effects of background noise, reverberation and talker foreign accent on speech comprehension by native and non-native English-speaking listeners

    Peng, Zhao Ellen

    The current classroom acoustics standard (ANSI S12.60-2010) recommends core learning spaces not to exceed background noise level (BNL) of 35 dBA and reverberation time (RT) of 0.6 second, based on speech intelligibility performance mainly by the native English-speaking population. Existing literature has not correlated these recommended values well with student learning outcomes. With a growing population of non-native English speakers in American classrooms, the special needs for perceiving degraded speech among non-native listeners, either due to realistic room acoustics or talker foreign accent, have not been addressed in the current standard. This research seeks to investigate the effects of BNL and RT on the comprehension of English speech from native English and native Mandarin Chinese talkers as perceived by native and non-native English listeners, and to provide acoustic design guidelines to supplement the existing standard. This dissertation presents two studies on the effects of RT and BNL on more realistic classroom learning experiences. How do native and non-native English-speaking listeners perform on speech comprehension tasks under adverse acoustic conditions, if the English speech is produced by talkers of native English (Study 1) versus native Mandarin Chinese (Study 2)? Speech comprehension materials were played back in a listening chamber to individual listeners: native and non-native English-speaking in Study 1; native English, native Mandarin Chinese, and other non-native English-speaking in Study 2. Each listener was screened for baseline English proficiency level, and completed dual tasks simultaneously involving speech comprehension and adaptive dot-tracing under 15 acoustic conditions, comprised of three BNL conditions (RC-30, 40, and 50) and five RT scenarios (0.4 to 1.2 seconds). The results show that BNL and RT negatively affect both objective performance and subjective perception of speech comprehension, more severely for non

  1. Structure-acoustic finite element analyses for noise reduction investigations of launcher payload compartment structures made of CFRP sandwich material

    Faust, M.; Schweickert, G.; Strobel, F.

    1991-10-01

    An investigation of the noise reduction properties of the Ariane 5 Speltra payload compartment structure is reported. The low frequency noise reduction was calculated by the Finite Element Method (FEM) with a formulation for fluid structure interaction (FE code PERMAS-FS). The results of the different analysis steps including uncoupled and coupled analysis are presented. The uncoupled structure and cavity dynamics results were compared to closed form solutions with good agreement. The introduction of external field effects, i.e. radiation damping and scattering, was performed by using closed form solutions for cylinder type structures. The analyses were performed for 2 different test cylinders and the Speltra cylindrical part. The test cylinder results were compared with the measured noise reductions and good agreement was obtained.

  2. Springer Handbook of Acoustics

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  3. Small-Scale Trial for Evaluating Directional Resolution of Single Spherical Biconcave Acoustic Lens in Designing of Ambient Noise Imaging System

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki

    2008-05-01

    Ambient noise imaging (ANI) is the revolutionary idea of detecting objects by using natural ocean background noise. From the analysis results obtained by the finite difference time domain (FDTD) method in our previous studies, it was supposed that a spherical biconcave lens with an aperture diameter of 2.0 m has a sufficient directional resolution (for example, the beam width is 1° at 60 kHz) for realizing an ANI system. In this study, to confirm the analysis results, we performed a small-scale trial of one-fifth space in a water tank. The lens, made of acrylic resin, has an aperture diameter of 400 mm and a radius of curvature of 500 mm. A burst pulse of 25 cycles at 300 kHz, whose frequency increases 5 times, was radiated from the sound source. The sound pressure after passage through the acoustic lens was measured by moving the receiver around the image point. Results show that the shapes of -3 dB areas are similar to the FDTD analysis results at small incidence angles. It was verified that this lens has a sufficient directional resolution for use in the ANI system, because -3 dB areas do not overlap each other.

  4. Research on Nonlinear Feature Translation of Ship Noises in Acoustic Channel%舰船噪声非线性特征的信道传播研究

    苏晓乐; 张明敏; 李猛

    2011-01-01

    Multi-path parameters of underwater acoustic channel based on ray theory are got firstly.Next,similar sequence repeatability(RPT) feature of ship-noise is extracted based on RPT theory.At last the affection of multi-path channel is added to ship noise and%文章首先针对信道的相干多途特性,基于射线理论,利用MATLAB仿真得到了信道的多途参数;接着基于相似序列重复度理论,提取了舰船辐射噪声的非线性特征—序列重复度RPT;最后将舰船辐射噪声通过多途信道作用,提取不同信道作用后的RPT特征并进行对比分析。研究表明,当舰船辐射噪声在不同传播距离和海深的信道里传播时,RPT特征的幅值缓慢变化,且其特征曲线的形状也发生改变,即舰船辐射噪声的RPT特征在多途信道里传播时是不稳定的。

  5. Sounds and Noises. A Position Paper on Noise Pollution.

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  6. Mechanics of underwater noise

    Ross, Donald

    1976-01-01

    Mechanics of Underwater Noise elucidates the basic mechanisms by which noise is generated, transmitted by structures and radiated into the sea. Organized into 10 chapters, this book begins with a description of noise, decibels and levels, significance of spectra, and passive sonar equation. Subsequent chapters discuss sound waves in liquids; acoustic radiation fundamentals; wind-generated ocean ambient noise; vibration isolation and structural damping; and radiation by plate flexural vibrations. Other chapters address cavitation, propeller cavitation noise, radiation by fluctuating-force (dipo

  7. 基于SαS的水声信号噪声统计分布建模%Statistical Noise Distribution Modelling for Underwater Acoustic Signals Based on SαS

    林伟; 王汗青; 苑秉成; 王平波

    2012-01-01

    To accurately describe statistical noise distribution of underwater acoustic signal, we established a statistical noise distribution model of the acoustic signal based on relevant features of symmetric a-stable(SaS) distribution. Firstly, the model configuration for describing noise characteristics of underwater acoustic signal with reverberation was designed by considering the features of noise probability distribution of acoustic signal. Then, the range of index a was determined by trials in tank, lake and sea, respectively, in different acoustic environments. The analysis of the test data shows that the proposed SaS distribution-based model is applicable.%针对水声信号噪声统计分布难以准确描述的问题,在α稳定分布相关特性基础上,提出了一种基于对称α稳定分布(SαS)的水声信号噪声统计分布模型.首先结合水声信号噪声概率分布的特征,建立了用于描述水声信号噪声统计分布的SαS模型,再根据各种水声环境实际试验数据,对不同水声环境下特征指数α的取值范围进行了水池、湖试和海试试验统计.试验数据分析结果表明,SαS分布模型可用于水声噪声信号统计描述.

  8. Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in guinea pigs.

    Sendowski, Isabelle; Abaamrane, Loubna; Raffin, Florent; Cros, A.; Clarençon, Didier

    2006-01-01

    The therapeutic efficacy of cochlear infusion of methylprednisolone (MP) after an impulse noise trauma (170dB SPL peak) was evaluated in guinea pigs. The compound action potential threshold shifts were measured over a 14 days recovery period after the gunshot exposure. For each animal, one of the cochlea was perfused directly into the scala tympani with MP during 7 days via a mini-osmotic pump, whereas the other cochlea was not pump-implanted. The functional study of hearing was supplemented ...

  9. Noise Control in Space Shuttle Orbiter

    Goodman, Jerry R.

    2009-01-01

    Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

  10. Vibro-acoustics

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  11. 舰船结构声学设计及噪声预报技术探讨%Research on acoustic design of warship structure and prediction of underwater noise

    王国治; 胡玉超; 仇远旺

    2012-01-01

    To research the acoustic design and noise prediction of the warship, three keys are analyzed based on the theory of vibration transmission and underwater noise, namely the excitation characteristics of the power e-quipment, the vibration transmission of ship's structure and the radiation of underwater noise from the hull structure. A foreign warship is chosen as the research object with typical diesel engines as excitation sources. By u-sing the finite element method and the boundary element method, the vibration distribution on the ship's outer plate and the underwater noise are obtained. Through the simulation of both the structure and materials, the technique of acoustic design and the prediction of underwater noise of the warship are discussed, and some important aspects of the acoustic design are put forward.%为了探索舰船结构声学设计及噪声预报技术,根据振动传递及水下噪声原理,分析了舰船噪声预报的3个重要环节:机械设备的激励特性、舰船结构的振动传递特性以及船体的水下声辐射特性.以国外某舰船为背景,选择典型柴油主机作为激励源,采用有限元/边界元方法,得到基座与船体外板的振动分布与水下噪声.通过模拟各种结构与材料方案,研究了舰船的水下噪声,提出了舰船结构声学设计中的若干重要方面.

  12. Aero-acoustic Computations of Wind Turbines

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...

  13. Acoustic monitoring method and device

    The present invention provides a method of eliminating resonance noises upon acoustically monitoring the operation state of power plants and plant equipments whether they are normal or not, to improve sensitivity for detecting abnormalities. Namely, a microphone detects acoustic signals including leaking sounds and converts them into electric signals. An amplifier amplifies the electric signals to an appropriate level. A noise eliminating section eliminates resonance noises other than the leaking sounds. An abnormality judging section judges presence of abnormality based on the level of the acoustic signals of the leaking sounds. With such a constitution, a plurality of resonance noises generated also during normal plant operation are automatically eliminated. Since resonance noises as a factor of lowering the sensitivity for abnormal sound detection are not included in the acoustic signals, the sensitivity for the abnormal sound detection is improved. Accordingly, the performance of the acoustic monitoring device is improved. (I.S.)

  14. ACOUSTICAL STANDARDS NEWS.

    Blaeser, Susan B; Struck, Christopher J

    2016-03-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Susan B. Blaeser.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27036268

  15. Analysis on the mechanism of aero-acoustic noise generated by gas flow through valves of natural gas pipelines%输气管道气体流经阀门气动噪声产生机理分析

    刘翠伟; 李玉星; 王武昌; 谢祝祝

    2014-01-01

    为区分输气管道泄漏音波与阀门噪声,为输气管道音波法泄漏检测提供理论依据及数据库、控制阀门噪声提供解决办法,从音波产生机理角度采用CFD软件耦合专业声学软件方法对输气管道气体流经阀门产生的气动噪声进行研究,建立气动噪声模型,探究气动噪声产生机理及传播、衰减规律。在CFD(Computational Fluid Dynamics)软件中采用大涡湍流模型对气体流经阀门时的瞬态流场求解分析,获得流场分布如脉动压力、脉动速度数据;将CFD计算所得数据导入专业声学软件进行联合仿真,生成气动噪声源项,包括偶极子声源及四极子声源,建立气动噪声产生传播模型,求解输气管道气体流经阀门的气动噪声。%In order to distinguish leakage noise and valve noise,a theoretical basis and a database for leak detection and location based on acoustic method were provided and the method to control valve noise was introduced.The aero-noise induced by gas flow through valves in gas pipelines was studied from the view point of sound generation mechanism and an aero-noise model was built from which the rules governing the aero-noise generation,transmission and attenuation were concluded.The transient flow field with fluctuating pressure and fluctuating velocity was obtained with the help of large eddy simulation model by using computational fluid dynamics software when gas flows through valves in gas-pipelines.Then the data were imported into acoustic BEM software SYSNOISE to carry through numerical analysis,to generate noise source terms,including the dipole source and quadrupole source,to build the aero-noise model and finally to solve the aero-acoustics problems.

  16. Analysis of Acoustic Environment Index of Aircraft Noise and Planning and Selection of the Location of Airport%机场飞机噪声声环境指标分析及规划选址分析

    田瑞丽; 李洪波; 冯海波; 马丽霞

    2014-01-01

    The location of different sizes of airport is different, and the impact degree of the aircraft noise is different. Rational utilization of the land surrounding the airport can reduce the impact of aircraft noise. This article lists acoustic environmental indicators of aircraft noise of the different scale domestic airport, and analyzes the land use planning around the airport.%不同规模的机场,选址不同,飞机噪声影响程度不同,对机场周边土地进行合理利用,以降低飞机噪声影响,本文列出了国内不同规模机场飞机噪声的声环境指标,并对机场周围土地利用规划进行了分析。

  17. Handbook of Engineering Acoustics

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  18. 某型飞机起落架结构件气动噪声仿真与试验研究%Simulation and Experiment Study on Aero-acoustic Noise of an Aircraft's Landing Gear Structure

    许远; 龙双丽; 薛彩军; 聂宏

    2012-01-01

    起落架噪声是飞机着陆阶段噪声的主要组成部分。以某型飞机前起落架为研究对象,通过分离涡模拟方法对其支柱及扭力臂结构件简化模型的周围流场进行非定常计算,利用Fw—H方程积分法对各部件表面产生的声场进行求解,分析缓冲支柱及扭力臂结构件气动噪声的产生机制、声源特性。对该飞机起落架支柱及扭力臂结构件进行声学风洞试验,通过麦克风对噪声的测量获得结构件噪声频谱特性。仿真及试验结果均表明:支柱及扭力臂结构件气动噪声包含支柱和扭力臂引起的钝体扰流噪声和两者相对位置引起的干扰噪声,支柱噪声对总噪声的贡献大于扭力臂噪声,噪声辐射特性具有偶极子声源的辐射特性。%Aircrafts' noise produced by landing gears is the main noise in the landing stage. Simulation analysis using Detached Eddy Simulation is performed to simulate the flow field around the simplified structure including the strut and torque link of an aircraft's nose landing gear. The acoustic field radiated from different model parts and total model are calculated via FW-H equation. The noise mechanism and acoustic characteristics of the noise from the structure are analyzed. Wind tunnel test is performed to measure the noise spectra of the structure by microphones. The simulation and experiment results show that the noise of the assembly of strut and torque link include bluff body and interaction noise. Noise from the strut has greater contribution to total noise than that from the torque link. The whole model noise radiation direetivity is similar to the dipole characteristics.

  19. High signal-to-noise ratio acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices

  20. The battle against noise in industry

    Iudin, E. Ia.

    The physiological effects of noise in manufacturing plants and other industrial facilities are discussed, and several common noise abatement methods are described. Consideration is given to the acoustic properties of three types of noise which are present in industrial plants: aerohydrodynamic noise; mechanical noise; and electromagnetic noise. Among the specific noise abatement techniques discussed are: sound isolation by means of noise-absorbant screens; insulation or noise-emitting media; and acoustic interference. The use of earplugs and external ear protectors for protection of individual workers in noisy work environments is also considered.

  1. Limiar e latência do reflexo acústico sob efeito de estimulação contralateral Threshold and latency of acoustic reflex under effect of contralateral noise

    Isabella Elias Burjato Raposo do Amaral

    2008-03-01

    Full Text Available OBJETIVO: Investigar o efeito inibitório da via eferente auditiva na variação do limiar e da latência do reflexo acústico ipsilateral com estimulação contralateral. MÉTODOS: Foram avaliados 17 pacientes entre 18 e 30 anos, com audição dentro dos padrões de normalidade submetidos à pesquisa de limiar e de latência do reflexo acústico, com e sem estimulação contralateral. RESULTADOS: Foram observadas médias de latência sem ruído contralateral para as freqüências de 500, 1000 e 2000 Hz respectivamente em 234,48, 214,96 e 236,71 milissegundos. Os valores de latência com ruído nas mesmas freqüências foram 230,74, 214,00 e 232,15 milissegundos. CONCLUSÃO: Houve diminuição da latência e aumento dos limiares do reflexo acústico quando apresentado estímulo supressor na orelha contralateral.PURPOSE: To investigate the inhibitory effect of the efferent auditory path in the variation of the threshold and the latency of ipsilateral acoustic reflex with contralateral stimulation. METHODS: Seventeen male and female patients, with ages between 18 and 30 years and with average normal hearing, were evaluated. After verification of inclusion criteria, the subjects were submitted to acoustic reflex threshold and latency testings, with and without contralateral masking. RESULTS: The latency average rates without contralateral noise at the frequencies 500 Hz, 1000 Hz and 2000 Hz were, respectively, 234,48, 214,96 and 236,71 milliseconds. The latency rates with noise at the same frequencies were 230,74, 214,00 and 232,15 milliseconds. CONCLUSION: The results showed latency decrease and increase on the acoustic reflex thresholds with contralateral white noise suppressor stimulus.

  2. Project of an online information system for monitoring and diagnosing neutron and acoustic fluctuations in fast reactors. Use of artificial intelligence in the design of a detection and diagnostic system based on noise analysis

    The objective of the project is the development of an information system for on-line surveillance and primary diagnostics of a fast reactor nuclear power plant, this on the bsis of neutron and acoustic noise. The system will be modular and will use real time signal processing methods and pattern recognition methods. The basic steps are described of both stages and implementation criteria are listed. The entire project is scheduled for 3 years and should be finished in 1986. (A.K.) 3 figs

  3. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…

  4. 声学超材料在低频减振降噪中的应用评述%Application of Acoustic Metamaterials in Low-frequency Vibration and Noise Reduction

    吴九汇; 马富银; 张思文; 沈礼

    2016-01-01

    The low-frequency mechanical wave has stronger penetration capability in dissemination process, so it is hard to be attenuated. Especially in infrasound range, the mechanical wave could resonance with body organs easily, and causing harm to health. In order to effectivly control the low-frequency mechanical wave, the solution for noise pollution problems in modern industrial production and daily life is given, by combining with the phononic crystals and acoustic metamaterials that have been developed in last decade. New methods for low-frequency vibration and noise reduction based on phononic crystals and acoustic metamaterials are systematically summarized and discussed.Typical sources of low-frequency vibration and noise, the existence difficulties to control it, and the harms to human body are summarized. The related works that passively control the low-frequency vibration and noise based on acoustic band gap characteristics of photonic crystal are summarized. Particularly, the specific methods and effects to achieve low-frequency vibration and noise attenuation by rod, plate and membrane structures with subwavelength size characteristics are reviewed. In the framework of the acoustic metamaterials, the applications of membrane-type structures in low-frequency vibration and noise attenuation, its advantages and disadvantages are discussed. Through a combination of practical engineering and the latest research developments, the problems still exist in this field and future trends are summarized. The result has some guiding value to promot the application of phononic crystals and acoustic metamaterials in engineering practice.%低频机械波在传播过程中穿透力强,难以衰减,特别是次声频段的机械波易与机体器官发生共振,对身体造成危害。为了实现对低频机械波的有效控制,解决现代工业生产和生活中普遍存在的噪声污染问题,结合最近十几年发展起来的声子晶体和声学超材料,

  5. The autonomous acoustic buoy

    Pellicer, Francisco; Reitsma, Robert; Agüera, Joaquín; Marinas, Alexandra

    2013-01-01

    The Acoustic Buoy is a project between the Laboratory of Applied Bioacoustics (LAB) and the Universitat Politècnica de Catalunya (UPC). In areas that the human activities produce high noise levels, such as oil exploration or construction, there is a need to monitor the environment for the presence of cetaceans. Another need is for fishing, to prevent endangered species from being killed. This can be done with an Autonomous Acoustic Buoy (AAB). Mooring or anchoring at to the seaflo...

  6. Structural Acoustics and Vibrations

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  7. Tunable acoustic metamaterials

    Babaee, Sahab; Viard, Nicolas; Fang, Nicholas; Bertoldi, Katia

    2015-03-01

    We report a new class of active and switchable acoustic metamaterials composed of three-dimensional stretchable chiral helices arranged on a two-dimensional square lattice. We investigate the propagation of sounds through the proposed structure both numerically and experimentally and find that the deformation of the helices can be exploited as a novel and effective approach to control the propagation of acoustic waves. The proposed concept expands the ability of existing acoustic metamaterials since we demonstrate that the deformation can be exploited to turn on or off the band gap, opening avenues for the design of adaptive noise-cancelling devices.

  8. 测量船水下噪声预报及减振降噪技术研究%Research on underwater acoustic forecast and reduction of noise and vibration for a survey ship

    王国治; 唐曾艳; 胡玉超

    2012-01-01

    以某测量船为背景,通过有限元建模以及模拟实船动力系统的激励,在流固耦合条件下对整船进行谐响应分析.结合声学边界元软件以及统计能量分析思想,对低、中、高频段的水下辐射噪声特性进行研究及预报.在此基础上,研究控制船舶结构振动和降低水下噪声的途径.%A survey ship was taken as the research object. The harmonic vibration responses caused by the main exciting source were analyzed through the modeling and simulation with the fluid-structure interaction by means of the finite element analysis software. Underwater acoustic forecast in low frequency band was carried out with the help of the acoustic BEM( boundary elemant method) software. The research and prediction of underwater acoustic radiation characteristics in mid and high frequency band were conducted through the statistical energy analysis (SEA). On this basis, the methods to reduce vibration and underwater noise of the ship structure were researched. In accordance with engineering requirements, the secondary development of commercial software has been made for the harmonic response analysis.

  9. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control

    Hubbard, Harvey H. (Editor)

    1991-01-01

    Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.

  10. Flow noise source-resonator coupling

    This paper investigates the coupling mechanism between flow noise sources and acoustic resonators. Analytical solutions are developed for the classical cases of monopole and dipole types of flow noise sources. The effectiveness of the coupling between the acoustic resonator and the noise source is shown to be dependent on the type of noise source as well as its location on the acoustic pressure mode shape. For a monopole source, the maximum coupling occurs when the noise source is most intense near an acoustic pressure antinode (i.e., location of maximum acoustic pressure). A numerical study with the impedance method demonstrates this effect. A dipole source couples most effectively when located near an acoustic pressure node