WorldWideScience

Sample records for acoustic leak detection

  1. Application of acoustic leak detection technology for the detection and location of leaks in light water reactors

    This report presents the results of a study to evaluate the adequacy of leak detection systems in light water reactors. The sources of numerous reported leaks and methods of detection have been documented. Research to advance the state of the art of acoustic leak detection is presented, and procedures for implementation are discussed. 14 refs., 70 figs., 10 tabs

  2. Recent experiments on acoustic leak detection

    In the ASB-sodium loop a series of injection experiments with water, helium, argon and nitrogen was performed. The aim of these tests was to get: a comparison of the acoustic signals, generated by water and gas injections with regard to intensity and frequency content; an experimental basis for the design of an acoustic calibration source. The experimental set-up, the variation parameters and first results will be discussed. The principal design of an acoustic calibration source and its range of application will be given. (author)

  3. Acoustic leak-detection system for railroad transportation security

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  4. New methods for leaks detection and localisation using acoustic emission

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes

  5. Acoustic leak detection at complicated topologies using neural netwoks

    Considering the shortcomings of all the existing leak detecting principles, a new method again based on the measurement of the leak induced sound but also applying pattern recognition is being developed. The capability of neural networks to localize leaks at the reactor pressure vessel (RPV) head of VVER-440 reactors is discussed. (orig./DG)

  6. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  7. Acoustic Leak Detection Requirements for a SFR Steam Generator Protection

    A large volume of fast reactor research has been executed in Russia, Japan, France, India and the United Kingdom. At present, an unique fast reactor named BN- 600 is operating in Russia. Also, the operation of research reactors such as Phenix (France), JOYO (Japan), BOR-60 (Russia) and FBTR (India) proceeds. The last project to be completed was the reactor Monju (Japan) which is now stopped. In addition activities for the development of fast reactors are being conducted in China, India, and South Korea. Fast reactors are a choice for the subsequent nuclear power generation in Korea, and their increased safety is one of the basic requirements. The basis for a tightening of the requirements on safety is the emergencies in NPPs in Russia, USA, France, Japan and other countries. These emergencies testify that the existing monitoring systems do not fully provide a well-timed detection of the distresses arising in a NPP, because of a poor sensitivity and response, thus the necessity for a better diagnostic system is obvious. In accordance with the USA GNEP initiative in Obninsk, Russia, 2007 the main efforts should be directed toward a sodium-water steam generator safety increase due to improvement of the hydrogen monitoring system and the acoustic leak detection system

  8. Acoustic leak detection at complicated geometrical structures using fuzzy logic and neural networks

    An acoustic method based on pattern recognition is being developed. During the learning phase, the localization classifier is trained with sound patterns that are generated with simulated leaks at all locations endangered by leak. The patterns are extracted from the signals of an appropriate sensor array. After training unknown leak positions can be recognized through comparison with the training patterns. The experimental part is performed at an acoustic 1:3 model of the reactor vessel and head and at an original VVER-440 reactor in the former NPP Greifswald. The leaks were simulated at the vessel head using mobile sound sources driven either by compressed air, a piezoelectric transmitter or by a thin metal blade excited through a jet of compressed air. The sound patterns of the simulated leaks are simultaneously detected with an AE-sensor array and with high frequency microphones measuring structure-borne sound and airborne sound, respectively. Pattern classifiers based on Fuzzy Pattern Classification (FPC) and Artificial Neural Networks (ANN) are currently tested for validation of the acoustic emission-sensor array (FPC), leak localization via structure-borne sound (FPC) and the leak localization using microphones (ANN). The initial results show the used classifiers principally to be capable of detecting and locating leaks, but they also show that further investigations are necessary to develop a reliable method applicable at NPPs. (orig./HP)

  9. Detection and localization of leak of pipelines of RBMK reactor. Methods of processing of acoustic noise

    For realization of leak detection of input pipelines and output pipelines of RBMK reactor the method, based on detection and control of acoustic leak signals, was designed. In this report the review of methods of processing and analysis of acoustic noise is submitted. These methods were included in the software of the leak detection system and are used for the decision of the following problems: leak detection by method of sound pressure level in conditions of powerful background noise and strong attenuation of a signal; detection of a small leak in early stage by high-sensitivity correlation method; determination of a point of a sound source in conditions of strong reflection of a signal by a correlation method and sound pressure method; evaluation of leak size by the analysis of a sound level and point of a sound source. The work of considered techniques is illustrated on an example of test results of a fragment of the leak detection system. This test was executed on a Leningrad NPP, operated at power levels of 460, 700, 890 and 1000 MWe. 16 figs

  10. Acoustic monitoring of safety/relief valves for leak detection

    The results presented here indicate that there is a high probability of confidentially detecting pilot stage leakage in safety/relief valves through the use of acoustic monitoring, especially in the frequency range 30-60 kHz. This should be particularly true if the sensors and signal processing equipment are designed for sensitivity to this range, and if routine or continuous monitoring is performed so that trends can be recognized

  11. Amplified leak detection

    Mahony, James

    2011-12-15

    Leaks are one of the major concerns for oil and gas producers. But recently, a Calgary-based company developed a tool that can find natural gas leaks in wellbores. This has relieved the oil and gas producers because the optics of finding downhole leaks just got a little brighter. Since then, there have been continuous efforts to broaden and refine fiber optics based methods. This paper presents amplified leak detection using fiber optics to identify even the smallest liquid leaks downhole. At high volumes, detection of downhole leaks in liquids is not a problem but at lower flow rates, the leaks become harder to detect, and at very low flow rates, they might not be detected at all. Hifi Engineering Inc. has developed the LeakSonar fiber optic acoustic sensor array that is specifically designed to detect and locate fluid migration in wellbores, even through multiple strings of casing.

  12. Development of an acoustic steam generator leak detection system using delay-and-sum beamformer

    A new acoustic steam generator leak detection system using delay-and-sum beamformer is proposed. The major advantage of the delay-and-sum beamformer is it could provide information of acoustic source direction. An acoustic source of a sodium-water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the delay-and-sum beamformer could distinguish the acoustic source of the sodium-water reaction from steam generator background noise. In this paper, results from numerical analyses are provided to show fundamental feasibility of the new method. (author)

  13. Water experiment on phased array acoustic leak detection system for sodium-heated steam generator

    Highlights: • An acoustic leak detection system for sodium heated steam generator is proposed. • The new system can separate leak source from steam generator background noise. • Performance of the new system has been confirmed in water experiments. - Abstract: A phased array acoustic leak detection system for sodium heated steam generator has been proposed. The major advantage of the new system is it could provide information of acoustic source direction. An acoustic source of a sodium–water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the new system could separate the target leak source from steam generator background noise. In the previous study, the methodology was proposed and basic performance was confirmed by numerical analysis. However, in the numerical analysis, acoustic transportation through the SG tube bundle was not modeled. In the present study, performance the proposed system has been confirmed in water experiments with mockup tube bundles

  14. Development of leak detection system of heat exchanger using acoustic emission technique

    Acoustic Emission(AE) technique has been applied to not only mechanical property testing but also on-line monitoring of the entire structure or a limit zone only. Although several AE devices have already been developed for on-line monitoring, the price of these systems is very high and it is difficult for the field to apply yet. In this study, we developed a specially designed PC-based leak detection system using A/D board. In this paper, AE technique has been applied to detect leak for heat exchanger by analyzing the characteristics of signal obtained from leak. It was confirmed that the characteristics of the signal generated by the turbulence of gas in the heat exchanger is narrow band signal having between 130-250kHz. Generally, the amplitude of leak signal is increased as the leak size increasing, but showed no significant change at frequency characteristic. Leak source location can be found by determining for the point of highest signal amplitude by comparing with several fixed sensors. In this paper, AE results are compared with the PC-based leak detection system using A/D board

  15. Leak detection in gas pipeline by acoustic and signal processing - A review

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.

    2015-12-01

    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  16. Experimental results of passive vibro-acoustic leak detection in SFR steam generator mock-up

    Regarding to GEN 4 context, it is necessary to fulfil the high safety standards for sodium fast reactors (SFR), particularly against water-sodium reaction which may occur in the steam generator units (SGU) in case of leak. This reaction can cause severe damages in the component in a short time. Detecting such a leak by visual in-sodium inspection is impossible because of sodium opacity. Hydrogen detection is then used but the time response of this method can be high in certain operating conditions. Active and passive acoustic leak detection methods were studied before SUPERPHENIX plant shutdown in 1997 to detect a water-into-sodium leak with a short time response. In the context of the new R and D studies for SFR, an innovative passive vibro-acoustic method is developed in the framework of a Ph.D. thesis to match with GEN 4 safety requirements. The method consists in assuming that a small leak emits spherical acoustic waves in a broadband frequency domain, which propagate in the liquid sodium and excite the SGU cylindrical shell. These spatially coherent waves are supposed to be buried by a spatially incoherent background noise. The radial velocities of the shell is measured by an array of accelerometers positioned on the external envelop of the SGU and a beam forming treatment is applied to increase the signal-to-noise ratio (SNR) and to detect and localize the acoustic source. Previous numerical experiments were achieved and promising results were obtained. In this paper, experimental results of the proposed passive vibro-acoustic leak detection are presented. The experiment consists in a cylindrical water-filled steel pipe representing a model of SGU shell without tube bundle. A hydro-phone emitting an acoustic signal is used to simulate an acoustic monopole. Spatially uncorrelated noise or water-flow induced shell vibrations are considered as the background noise. The beam-forming method is applied to vibration signals measured by a linear array of

  17. Detection of steam leaks into sodium in fast reactor steam generators by acoustic techniques - An overview of Indian programme

    Realising the potential of acoustic leak detection technique, an experimental programme was initiated a few years back at Indira Gandhi Centre for Atomic Research (IGCAR) to develop this technique. The first phase of this programme consists of experiments to measure background noise characteristics on the steam generator modules of the 40 MW (thermal) Fast Breeder Test Reactor (FBTR) at Kalpakkam and experiments to establish leak noise characteristics with the help of a leak simulation set up. By subjecting the measured data from these experiments to signal analysis techniques, a criterion for acoustic leak detection for FBTR steam generator will be evolved. Second phase of this programme will be devoted to developing an acoustic leak detection system suitable for installation in the 500 MWe Prototype Fast Breeder Reactor (PFBR). This paper discusses the first phase of the experimental programme, results obtained from measurements carried out on FBTR steam generators and results obtained from leak simulation experiments. Acoustic leak detection system being considered for PFBR is also briefly described. 4 refs, 8 figs, 1 tab

  18. Leak detection evaluation of boiler tube for power plant using acoustic emission

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.

  19. Prospects of Frequency-Time Correlation Analysis for Detecting Pipeline Leaks by Acoustic Emission Method

    In the current work the relevance of nondestructive test method development applied for pipeline leak detection is considered. It was shown that acoustic emission testing is currently one of the most widely spread leak detection methods. The main disadvantage of this method is that it cannot be applied in monitoring long pipeline sections, which in its turn complicates and slows down the inspection of the line pipe sections of main pipelines. The prospects of developing alternative techniques and methods based on the use of the spectral analysis of signals were considered and their possible application in leak detection on the basis of the correlation method was outlined. As an alternative, the time-frequency correlation function calculation is proposed. This function represents the correlation between the spectral components of the analyzed signals. In this work, the technique of time-frequency correlation function calculation is described. The experimental data that demonstrate obvious advantage of the time-frequency correlation function compared to the simple correlation function are presented. The application of the time-frequency correlation function is more effective in suppressing the noise components in the frequency range of the useful signal, which makes maximum of the function more pronounced. The main drawback of application of the time- frequency correlation function analysis in solving leak detection problems is a great number of calculations that may result in a further increase in pipeline time inspection. However, this drawback can be partially reduced by the development and implementation of efficient algorithms (including parallel) of computing the fast Fourier transform using computer central processing unit and graphic processing unit

  20. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  1. The design and calibration of particular geometry piezoelectric acoustic emission transducer for leak detection and localization

    Yalcinkaya, Hazim; Ozevin, Didem

    2013-09-01

    Pipeline leak detection using an acoustic emission (AE) method requires highly sensitive transducers responding to less attenuative and dispersive wave motion in order to place the discrete transducer spacing in an acceptable approach. In this paper, a new piezoelectric transducer geometry made of PZT-5A is introduced to increase the transducer sensitivity to the tangential direction. The finite element analysis of the transducer geometry is modeled in the frequency domain to identify the resonant frequency, targeting 60 kHz, and the loss factor. The numerical results are compared with the electromechanical characterization tests. The transducer response to wave motion generated in different directions is studied using a multiphysics model that couples mechanical and electrical responses of structural and piezoelectric properties. The directional dependence and the sensitivity of the transducer response are identified using the laser-induced load function. The transducer response is compared with a conventional thickness mode AE transducer under simulations and leak localization in a laboratory scale steel pipe.

  2. Aspects of leak detection

    Chivers, T.C. [Berkeley Technology Centre, Glos (United Kingdom)

    1997-04-01

    A requirement of a Leak before Break safety case is that the leakage from the through wall crack be detected prior to any growth leading to unacceptable failure. This paper sets out to review some recent developments in this field. It does not set out to be a comprehensive guide to all of the methods available. The discussion concentrates on acoustic emission and how the techniques can be qualified and deployed on operational plant.

  3. Experimental studies on acoustic detection of sodium-water steam generator leaks in the USSR

    The paper reports that the acoustic leak indicators have been developed in two versions. The first one is based upon using the immersible acoustic hydrophones and the parallel frequency analysis of their signals. The second one uses the waveguide sensors with microprocessor system of noise signals processing. Brief description of both versions is given. The result of these systems tests at the experimental facilities, BN-600 and BOR-60 reactors are also provided. 4 refs, 15 figs

  4. Acoustic detection of seabed gas leaks, with application to Carbon Capture and Storage (CCS), and leak prevention for the oil and gas industry

    Berges, B.J.P.

    2015-01-01

    The acoustic remote sensing of subsea gas leakage, applied to the monitoring of underwater gas discharges from anthropogenic and natural sources, is becoming increasingly important. First, as the oil and gas industry is facing increasing regulation, there is a need to put more control in the industrial process and to assess the impact on the marine environment. The applications are diverse, including: early warnings of "blow-out" from offshore installations, detection of leaks from underwater...

  5. Acoustic leak detector in Monju steam generator

    Acoustic leak detectors are equipped with the Monju steam generators for one of the R and D activities, which are the same type of the detectors developed in the PNC 50MW Steam Generator Test Facility. Although they are an additional leak detection system to the regular one in Monju SG, they would also detect the intermediate or large leaks of the SG tube failures. The extrapolation method of a background noise analysis is expected to be verified by Monju SG data. (author). 4 figs

  6. Acoustic detection of water leaks in sodium-heated steam generators using methods of the statistical decision theory

    Acoustic signals measured in normal state and during simulated H2O-microleaks in a sodium-heated steam generator are of random nature. This signal property is the starting-point for the derivation of a leak detection conception based on the statistical decision theory. By means of experimental results the statistical properties of acoustic signals are determined and suitable detection characteristics are proposed. A signal-theoretical model of the detection characteristic ''pulserate'' is presented and experimentally verified. The detection parameters are optimized by means of this model and by the use of a modified Neyman-Pearson-criterion providing minimum detection time. The limits of the proposed detection method are discussed

  7. On-line low and high frequency acoustic leak detection and location for an automated steam generator protection system

    Two on-line acoustic leak detection systems were operated and installed on a 76 MW hockey stick steam generator in the Sodium Components Test Installation (SCTI) at the Energy Technology Engineering Center (ETEC) in Southern California. The low frequency system demonstrated the capability to detect and locate leaks, both intentional and unintentional. No false alarms were issued during the two year test program even with adjacent blasting activities, pneumatic drilling, shuttle rocket engine testing nearby, scrams of the SCTI facility, thermal/hydraulic transient testing, and pump/control valve operations. For the high frequency system the capability to detect water into sodium reactions was established utilizing frequencies as high as 300 kHz. The high frequency system appeared to be sensitive to noise generated by maintenance work and system valve operations. Subsequent development work which is incomplete as of this date showed much more promise for the high frequency system. (author). 13 figs

  8. Developing works to detect fatigue cracks (small sodium leak detector and acoustic emission

    Continuous monitoring of fatigue cracks was performed (using both sodium leak detector and AE measuring system) through the creep-fatigue test of 304 stainless steel long elbow as part of the test series to establish the structural reliability of the Prototype FBR primary heat transport piping system. The sodium leak detector was a system composed mainly of SID (Sodium Ionization Detector) and DPD (Deferential Pressure Detector), that was developed by HITACHI Ltd. under a contract with PNC. The AE system was Synthetic AE Measuring and Analyzing system that was developed at FBR Safety Section to measure and analyze AE at various piping component tests. The test was continued until a sodium leakage was detected by the contact-type sodium leak detector attached to the test assembly, after about 4 weeks operation under cyclic loading at 600 deg. C. The following conclusions were obtained: (1) The sodium leak detector, both SID and DPD, indicated sodium leakage clearly, some hours before the contact-type detector did, even under an environment of air that contains ordinary humidity (Leaked sodium was estimated to be less than 15 grams after completion of the test); (2) The AE method indicated location and seriousness of the fatigue cracks, apparently before the crack penetration occurred. (author)

  9. Leak detection/verification

    Krhounek, V.; Zdarek, J.; Pecinka, L. [Nuclear Research Institute, Rez (Czech Republic)

    1997-04-01

    Loss of coolant accident (LOCA) experiments performed as part of a Leak Before Break (LBB) analysis are very briefly summarized. The aim of these experiments was to postulate the leak rates of the coolant. Through-wall cracks were introduced into pipes by fatigue cycling and hydraulically loaded in a test device. Measurements included coolant pressure and temperature, quantity of leaked coolant, displacement of a specimen, and acoustic emission. Small cracks were plugged with particles in the coolant during testing. It is believed that plugging will have no effect in cracks with leak rates above 35 liters per minute. The leak rate safety margin of 10 is sufficient for cracks in which the leak rate is more than 5 liters per minute.

  10. Leak detection/verification

    Loss of coolant accident (LOCA) experiments performed as part of a Leak Before Break (LBB) analysis are very briefly summarized. The aim of these experiments was to postulate the leak rates of the coolant. Through-wall cracks were introduced into pipes by fatigue cycling and hydraulically loaded in a test device. Measurements included coolant pressure and temperature, quantity of leaked coolant, displacement of a specimen, and acoustic emission. Small cracks were plugged with particles in the coolant during testing. It is believed that plugging will have no effect in cracks with leak rates above 35 liters per minute. The leak rate safety margin of 10 is sufficient for cracks in which the leak rate is more than 5 liters per minute

  11. Acoustic emission leak monitoring system LMS-96

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  12. Evaluation of advanced and current leak detection systems

    The objective of this project is to assess the reliability of leak detection technology for LWRs and evaluate advanced acoustic leak detection concepts for detection, location, and characterization of leaks. The FY 1987 scope includes: (1) Completing update of review of reliability of leak detection systems; (2) Completing evaluation of acoustic leak detection for in-reactor detection, discrimination, and location of leaks through laboratory testing of valves and cracks (including integranular stress corrosion cracks (IGSCCs)) with leak rates of 1-10 gal/min; (3) Completing evaluation of techniques to discriminate crack leaks from valve and seal leaks; and (4) Prepare draft document (guidance manual) for acoustic leak monitoring of reactor primary systems

  13. New methods for leaks detection and localisation using acoustic emission; Nouvelles methodes de detection et de localisation de fuites par emission acoustique

    Boulanger, P.

    1993-12-08

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes.

  14. Active acoustic leak detection for LMFBR steam generator. Pt. 5. Experiment for detection of bubbles using the SG full sector model

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, it being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles and influence of background noise are investigated experimentally by using an SG full sector model (diameter ratio about 1/1, height ratio about 1/7) simulating the actual SG. As an experimental result, the received sound attenuation for ten seconds was more than 10 dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s). The attenuation of sound are least affected by bubble injection position of heat exchanger tube bunch department. And the time was about 25 seconds till the sound attenuation became 10 dB in case of quantity of air bubble 1 l/s (equivalent water leak rate about 1 g/s). It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  15. Leak detection of KNI seals

    In Unit 3 and 4 of the Paks Nuclear Power Plant, Hungary, KNI type seals are used as lead-throughs with conical nickel sealing rings. Their failure can be critical for the operation of the reactor. An Acoustical Leak Detection System (ALDS) was constructed and tested for the operational testing of the seals. Some individual papers are presented in this collection on the calibration and testing of the ALDS intended to be placed on the top of the reactor vessels. The papers include simulation measurements of Unit 3 of NPP, laboratory experiments, evaluation of measurements, and further development needs with the ALDS. (R.P.) 50 figs.; 19 tabs

  16. Final evaluation of advanced and current leak detection systems

    This report presents the results of a study to evaluate the adequacy of leak detection systems in light water reactors. The sources of numerous reported leaks and methods of detection have been documented. Research to advance the state of the art of acoustic leak detection is presented, and procedures for implementation are discussed

  17. Evaluation of advanced and current leak detection systems

    Differences between PWRs and BWRs with regard to leak detection have now been analyzed. With regard to detection methods, the greatest differences between reactor types are as follows: (a) the sump pump is reported as the detection method more frequently in BWRs than in PWRs (64% vs. 35%); (b) the radiation monitor is reported as the detection method (excluding false alarms) more frequently in PWRs. Current efforts at Argonne National Laboratory (ANL) to evaluate advanced acoustic leak detection methods are directed toward the generation and analysis of acoustic data from large (0.5 to 10 gal/min) leaks and modification of the software of the GARD/ANL advanced acoustic leak detection system. In order to reach the goal of 10 gal/min leaks, the Steam Generator Test Facility at ANL has been modified to carry out the leak testing. Tests were carried out with water at 5250F and 1100 psi leaking through a fatigue crack in a 4-in. schedule 80 pipe. The crack opening can be varied and was set to generate 0.6- to 8.5-gal/min leaks. Acoustic signals were analyzed with respect to rms values, frequency content, and cross-correlation functions. The GARD/ANL advanced acoustic leak detection system software has been modified to permit intelligent continuous acoustic leak monitoring of reactor components. In the monitor mode the computer continually evaluates the rms signal output of acoustic leak detection sensors placed on the primary circuit. If a leak is suspected, acoustic signals are captured and analyzed to determine the source of the leak, the location and estimated leak rate

  18. Laser Schlieren System Detects Sounds Of Leaks

    Shakkottai, Parthasarathy P.; Alwar, A. Vijayaragavan

    1990-01-01

    Hostile environments monitored safely and noninvasively. Modified laser schlieren system acts as microphone to detect sounds of leaks remotely. Sensitive to acoustical frequencies above audible range and especially suited for monitoring leaks of high-pressure steam from boilers or chemical vapors from processing equipment. Does not require placement of delicate equipment in harsh environment monitored, and no contact needed with boiler or other unit being monitored. Detects sound waves via variation of index of refraction of air at acoustical frequencies. Used to monitor sound frequencies beyond range of human hearing.

  19. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  20. Fundamental study on leak detection of underground gas pipeline using passive acoustic method; Judogata onkyo keisoku ni yoru maisetsu gas dokan hason kasho no kenshutsu ni kansuru kenkyu

    Jinguji, M.; Imaizumi, H.; Kunimatsu, S.; Isei, T. [National Institute for Resources and Environment, Tsukuba (Japan)

    1997-05-27

    With an objective to detect gas leaking from an underground gas pipeline, discussions have been given on a method which utilizes acoustic characteristics of leakage. On leaking sound generated from damaged portions, the form of damaging was hypothesized as pinholes, and spectra of leaking sounds from holes with different diameters were measured. The dominant frequency decreases as the hole diameter increases, while it is in a region of relatively high frequency of 1 kHz or higher. However, detection from the ground surface was impossible when cover soil has thickness from 0.5 to 1.5 m. In an experiment to measure leaking sound inside the pipe, pressure in the pipe was adjusted to 0.02 atm which is a standard pressure for a low-pressure pipe, and the sound was measured when the hole diameters were varied. In any of the results obtained by varying the hole diameter, spectra having the dominant frequency in the region of 1 kHz or higher were measured. In addition, it was found that sound pressure difference of as much as 50 dB at maximum is generated as compared with a case of no sound leakage. The above results verified that monitoring the high frequency of 1 kHz or higher is effective in detecting leakage from small damages. 2 refs., 4 figs.

  1. Evaluation of advanced and current leak detection systems

    U.S. Nuclear Regulatory Commission Guide 1.45 recommends the use of at least three different detection methods in reactors to detect leakage. Monitoring of both sump-flow and airborne particulate radioactivity is mandatory. A third method can involve either monitoring of condensate flow rate from air coolers or monitoring of airborne gaseous radioactivity. Although the methods currently used for leak detection reflect the state of the art, other techniques may be developed and used. Since the recommendations of Regulatory Guide 1.45 are not mandatory, Licensee Event Report Compilations have been reviewed to help establish actual capabilities for leak detection. The review of event reports, which had previously covered the period of June 1985 to August 1986 has been extended, and now covers events to June 1987. The total number of significant events is now 83. These reports have provided documented, sometimes detailed, summaries of reactor leaks. They have helped establish the capabilities of existing systems to detect and locate leaks. Differences between PWRs and BWRs with regard to leak detection have now been analyzed. With regard to detection methods, the greatest differences between reactor types are as follows: (a) The sump pump is reported as the detection method more frequently in BWRs than in PWRs (64% vs. 35%). (b) The radiation monitor is reported as the detection method (excluding false alarms) more frequently in PWRs. Current efforts at Argonne National Laboratory (ANL) to evaluate advanced acoustic leak detection methods are directed toward the generation and analysis of acoustic data from large (0.5 to 10 gal/min) leaks and modification of the software of the GARD/ANL advanced acoustic leak detection system. In order to reach the goal of 10 gal/min leaks, the Steam Generator Test Facility at ANL has been modified to carry out the leak testing. Tests were carried out with water at 525 deg. F and 1100 psi leaking through a fatigue crack in a 4-in

  2. Detection of primary coolant leaks in NPP

    The thermo-hydraulic analyses of the SG box behaviour of Kozloduy NPP units 3 and 4 in case of small primary circuit leaks and during normal operation of the existing ventilation systems in order to determine the detectable leakages from the primary circuit by analysing different parameters used for the purposes of 'Leak before break' concept, performed by ENPRO Consult Ltd. are presented. The following methods for leak detection: measurement of relative air humidity in SG box (can be used for detection of leaks with flow rate 3.78 l/min within one hour at ambient parameters - temperature 400 - 600C and relative humidity form 30% to 60%); measurement of water level in SG box sumps (can not be used for reliable detection of small primary circuit leakages with flow rate about 3.78 l/min); measurement of gaseous radioactivity in SG box( can be used as a general global indication for detection of small leakages from the primary circuit); measurement of condensate flow after the air coolers of P-1 venting system (can be used for primary circuit leak detection) are considered. For determination of the confinement behaviour, a model used with computer code MELCOR has been developed by ENPRO Consult Ltd. A brief summary based on the capabilities of the different methods of leak detection, from the point of view of the applicability of a particular method is given. For both Units 3 and 4 of Kozloduy NPP a qualified complex system for small leak detection is planned to be constructed. Such a system has to unite the following systems: acoustic system for leak detection 'ALUS'; system for control of the tightness of the main primary circuit pipelines by monitoring the local humidity; system for primary circuit leakage detection by measuring condensate run-off in collecting tank after ventilation system P-1 air coolers

  3. Hermetic Seal Leak Detection Apparatus

    Kelley, Anthony R. (Inventor)

    2013-01-01

    The present invention is a hermetic seal leak detection apparatus, which can be used to test for hermetic seal leaks in instruments and containers. A vacuum tight chamber is created around the unit being tested to minimize gas space outside of the hermetic seal. A vacuum inducing device is then used to increase the gas chamber volume inside the device, so that a slight vacuum is pulled on the unit being tested. The pressure in the unit being tested will stabilize. If the stabilized pressure reads close to a known good seal calibration, there is not a leak in the seal. If the stabilized pressure reads closer to a known bad seal calibration value, there is a leak in the seal. The speed of the plunger can be varied and by evaluating the resulting pressure change rates and final values, the leak rate/size can be accurately calculated.

  4. Acoustic system of small leak indication of large-modulus sodium-water steam generator of reactor installation BN-1200

    The testing results of the mockup of acoustic system for leak indication on improved mockup of small leaks simulation are under consideration. The mockup consists of two types of measuring channels: two low-frequency channels (on the base of vibration inverters AP34) and two high-frequency ones (on the base of high-frequency sensors of acoustic emission GT350). The use of pattern recognition techniques for analysis of acoustic noises of steam generator leak is considered. It is pointed out that occurrence of the leak effect considerably on the form of acoustic spectra and that when leak flow increases acoustic spectra power grows. The results of experiments show the possibility of construction of acoustic system which is able to register the leak from 0.1 g/s and more with delay time for detection and leak characteristics measuring not more than 1 s

  5. Schlieren optics for leak detection

    Peale, Robert E.; Ruffin, Alranzo B.

    1995-01-01

    The purpose of this research was to develop an optical method of leak detection. Various modifications of schlieren optics were explored with initial emphasis on leak detection of the plumbing within the orbital maneuvering system of the space shuttle (OMS pod). The schlieren scheme envisioned for OMS pod leak detection was that of a high contrast pattern on flexible reflecting material imaged onto a negative of the same pattern. We find that the OMS pod geometry constrains the characteristic length scale of the pattern to the order of 0.001 inch. Our experiments suggest that optical modulation transfer efficiency will be very low for such patterns, which will limit the sensitivity of the technique. Optical elements which allow a negative of the scene to be reversibly recorded using light from the scene itself were explored for their potential in adaptive single-ended schlieren systems. Elements studied include photochromic glass, bacteriorhodopsin, and a transmissive liquid crystal display. The dynamics of writing and reading patterns were studied using intensity profiles from recorded images. Schlieren detection of index gradients in air was demonstrated.

  6. Hydrogen Leak Detection Sensor Database

    Baker, Barton D.

    2010-01-01

    This slide presentation reviews the characteristics of the Hydrogen Sensor database. The database is the result of NASA's continuing interest in and improvement of its ability to detect and assess gas leaks in space applications. The database specifics and a snapshot of an entry in the database are reviewed. Attempts were made to determine the applicability of each of the 65 sensors for ground and/or vehicle use.

  7. Leak detection and location in MONJU steam generators

    Leak detection system of MONJU steam generator depends mostly on in-sodium hydrogen detectors. The requirements on leak detector performance are determined from the point of view of protecting tube leak propagation due to wastage, and the process of determining the performance is shown briefly. Research and development activities on in-sodium hydrogen detectors are described and the specifications of leak detectors for MONJU are also presented. In-cover-gas hydrogen detector and acoustic detector are under development. Research and development activities on the leak location after steam generator shutdown by such methods as an electromagnetic method and ultrasonic method are described. The results of the research and development work on inserting the test probes into tubes are described also. An idea for finding the condition of tubes in the neighbourhood of the leak is also presented. (author)

  8. Results of acoustic measurements during leak simulation experiments on a sodium-heated modular steam generator

    After a short description of the experimental arrangement at the micro-modular steam generator of the BOR-60 LMFBR Power Plant the acoustic measuring chains and their main properties are introduced. Acoustic signals of the background as well as the leak-induced noise have been analysed in frequency and time domain, respectively. One essential result is that frequency analysis of acoustic signals cannot be recommended as leak detection method. On the other hand, certain signal characteristics derived from signal analysis in time domain have been shown to meet the expectation of a considerable change in magnitude, even if a small water-to-sodium leak is occurring. Besides direct sound emitted in the leak region a secondary sound initiated in the vicinity of the acoustic transducer by reaction products of the sodium-water-reaction has been measured. Both of them have been used for acoustic detection of small leaks. The acoustic response of the modular steam generator to a large leak is characterized by a sudden considerable increase in sound level. Finally, some conclusions drawn from experimental results are presented. (author)

  9. Leak injection/detection input for B and W prototype steam generator test request

    The goal of the leak injection/detection phase of the test program on the prototype steam generator is to obtain data that can be used to specify the leak protection system for the plant unit steam generators. Both chemical and two acoustic leak detection methods (by GE and Rockwell International) are to be considered. The chemical system has been selected as the reference based on its more developed state. The acoustic methods have potential both as small leak detection systems and as intermediate leak protection/automatic shutdown systems. Simulated leak injections will be made at various locations within the steam generator to determine the performance of the chemical system as specifically applied to the B and W helical coil steam generator geometry. Acoustic tests will be made to characterize the various steam generator background noise sources and to record acoustic signals during smulated leak injections, in order to predict the performance of both systems

  10. Calibration of a leak detection spectrometer

    This paper describes a study of the possible methods for calibrating a leak detection spectrometer, and the estimation of outputs from the leaks is considered. With this in mind the question of sensitivity of leak detection is tackled on a very general level; first the sensitivity of the isolated instrument is determined, and then the sensitivity of an instrument connected to an installation where leaks may be suspected. Finally, practical solutions are proposed. (author)

  11. Leak detection capability in CANDU reactors

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis

  12. Leak detection capability in CANDU reactors

    Azer, N.; Barber, D.H.; Boucher, P.J. [and others

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  13. Detection and location of leaks in district heating steam systems: Survey and review of current technology and practices

    Kupperman, D.S.; Raptis, A.C.; Lanham, R.N.

    1992-03-01

    This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.

  14. Microwave Radar Detection of Gas Pipeline Leaks

    Gopalsami, N.; Kanareykin, D. B.; Asanov, V.; Bakhtiari, S.; Raptis, A. C.

    2003-03-01

    We are developing a microwave radar sensing and imaging system to detect and locate gas leaks in natural gas pipelines. The underlying detection principle is radar backscattering from the index-of-refraction inhomogeneities introduced by the dispersion of methane in air. An essential first step in the development effort is modeling to estimate the radar cross section. This paper describes the modeling results and the experimental efforts underway to validate the model. For the case of leaks from small holes in a pressurized gas pipeline, we modeled the gas dynamics of the leak jet to determine the plume geometry and the variation of methane concentration in air as a function of distance from the leak source. From the static and dynamic changes in the index of refraction in the turbulent plume, the radar backscatter cross sections were calculated. The results show that the radar cross sections of the leak plumes should be detectable by special-purpose radars.

  15. Specialists meeting on leak detection and location in LMFBR steam generators. Summary report

    The following topics covered at the meeting were: with leak detection and location methods and equipment, including concentration measurements, helium tests, and electromagnetic methods; acoustic leak detection and related equipment; techniques and experiences in ensuring and measuring steam generator tightness during manufacturing, installation and repair, tube inspection methods for periodic control and damage assessment following leaks, influence of these methods on design of steam generators for LMFBR type reactors

  16. Leak detection using the pattern of sound signals in water supply systems

    Sato, Toshitaka; Mita, Akira

    2007-04-01

    Water supply systems in Japan contribute significantly to improve public health. Unfortunately, there are many age-deteriorated pipes of various sizes and leaks frequently occur. Particularly devastating are hidden leaks occurring underground because when left undetected for years these leaks result in secondary damage. Thus, early detection and treatment of leaks is an important civil engineering challenge. At present the acoustic method is the most popular leak detection method. The purpose of this study is to propose an easy and stable leak detection method using the acoustic method assisted by pattern recognition techniques. In the proposed method we collect in the form of digital signals sound and pseudo-sound samples of underground leaking pipes. Principal component analysis (PCA) of the power spectrum of one leak sound is made, and a new coordinate system is constructed. We project the other sounds in the coordinate system, and evaluate if the sounds are similar to the sample sound or not by comparing the residual between the original and the projection. Next, we evaluate the DSF (Damage Sensitive Feature), which is a function of the first three AR model. At last, the feature vectors are created by combining the residuals, the DSF, and the damping ratio of the AR model, and a leak detection method is proposed using the Support Vector Machine (SVM) based upon them. In this study, it is shown that the residual and DSF are useful indices for leak detection. Furthermore, the proposed method shows high accuracy in recognizing leaks.

  17. Wireless sensor network for sodium leak detection

    Highlights: ► Early detection of sodium leak is mandatory in any reactor handling liquid sodium. ► Wireless sensor networking technology has been introduced for detecting sodium leak. ► We designed and developed a wireless sensor node in-house. ► We deployed a pilot wireless sensor network for handling nine sodium leak signals. - Abstract: To study the mechanical properties of Prototype Fast Breeder Reactor component materials under the influence of sodium, the IN Sodium Test (INSOT) facility has been erected and commissioned at Indira Gandhi Centre for Atomic Research. Sodium reacts violently with air/moisture leading to fire. Hence early detection of sodium leak if any is mandatory for such plants and almost 140 sodium leak detectors are placed throughout the loop. All these detectors are wired to the control room for data collection and monitoring. To reduce the cost, space and maintenance that are involved in cabling, the wireless sensor networking technology has been introduced in the sodium leak detection system of INSOT. This paper describes about the deployment details of the pilot wireless sensor network and the measures taken for the successful deployment.

  18. Leak detection and location for natural gas pipelines based on acoustic waves%基于音波法的输气管道泄漏检测与定位

    刘翠伟; 李雪洁; 李玉星; 刘光晓; 钱昊铖; 曹鹏飞

    2014-01-01

    In order to study the principle and technologies of acoustic leak detection for natural gas pipelines, an acoustic method is applied. A simulation model is established based on the field conditions to analyze and verify the generation mechanism of leakage acoustics. The field experiments are carried out based on the simulation results and measured signals are processed by joint time-frequency analyses including short time Fourier transform, wavelet transform, Hilbert-Huang transform and Generalized S transform to extract the characteristics that propagate a long distance. The characteristics are applied to detect the leak of long distance pipeline with satisfactory results. Finally the characteristics are used to locate leakages. The results show that the characteristics extracted by signal-processing from leakage acoustic signals can be applied to leak detection for long-distance natural gas pipelines.%为研究输气管道音波法泄漏检测技术的基本原理和应用方法,从而为音波法泄漏检测技术在输气管道上的推广使用提供理论和实践基础,首先根据现场实验工况建立仿真模拟模型,对泄漏音波产生机理进行分析与验证;其次根据仿真模拟结果完成现场实验,并对现场实验数据进行了时频联合分析,包括短时傅里叶变换、小波变换、Hilbert-Huang变换和广义S变换,提取可用于远距离传播的音波信号特征;然后应用可远距离传播的信号特征,对长距离输气管道的泄漏进行检测,取得了较好的效果;最后采用提取的音波特征量进行泄漏定位,定位精度高。研究结果表明,通过信号处理得到泄漏音波信号特征可以用于长距离输气管道泄漏检测。

  19. ACOUSTIC LOCATION OF LEAKS IN PRESSURIZED UNDER- GROUND PETROLEUM PIPELINES

    Experiments were conducted at the Underground Storage Tank (UST) Test Apparatus Pipeline in which three acoustic sensors separated by a maximum distance of 38.1 m (125 ft) were used to monitor signals produced by 11.4-, 5.7-, and 3.8-L/h (3.0-, 1.5-, and 1.0-gal/h) leaks in th...

  20. Recent Progress in Technology of Leak detection

    It is very important to check for leakage points of fluids and gases on primary pressure boundary of nuclear power plants in order to maintain and manage various structures safely. Even though much investigation has been performed by a number of researchers, there are a lot of problems to detect the leakage under some areas to which people can not approach. In particular, it is certainly necessary to find the leakage point in order to repair and replace the pressure boundaries. In this report, the basic principle and application situations for the development of the leak detection system which can detect micro-leaks are introduced. As the technologies and performances of recent sensors have been improving, the application range of leak detection has been increasing steadily. Therefore the sensor technologies written in this report will be able to contribute to nuclear safety to detect the leakage rate and the leakage point with an on-line monitoring system in the near future

  1. Recent Progress in Technology of Leak detection

    Jung, H. K.; Kim, S. H.; Cho, J. W.; Joo, Y. S.; Yang, D. J

    2005-07-15

    It is very important to check for leakage points of fluids and gases on primary pressure boundary of nuclear power plants in order to maintain and manage various structures safely. Even though much investigation has been performed by a number of researchers, there are a lot of problems to detect the leakage under some areas to which people can not approach. In particular, it is certainly necessary to find the leakage point in order to repair and replace the pressure boundaries. In this report, the basic principle and application situations for the development of the leak detection system which can detect micro-leaks are introduced. As the technologies and performances of recent sensors have been improving, the application range of leak detection has been increasing steadily. Therefore the sensor technologies written in this report will be able to contribute to nuclear safety to detect the leakage rate and the leakage point with an on-line monitoring system in the near future.

  2. A Study on the Evaluation of Valve Leak Rates Using Acoustic Emission Technique

    Lee, Sang Guk; Lee, Jun Shin; Lee, Sun Ki; Shon, Seok Man; Lee, Wook Ryun; Kim, Tae Ryong [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lim, Yong Jae; Choo, Kee Young [Hana Evertech Co., Seongnam (Korea, Republic of)

    2005-07-01

    The objective of this study is to estimate the feasibility of acoustic emission method for the internal leak from the valves. In this study, two types of valve(a 3 1/2 inch glove valve for 600 psi steam and a 4 inch ball valve water ) leak tests using three different leak path and numerous leak rates were performed in order to analyze acoustic emission properties when leaks arise in valve seat. As a result of leak test for specimens simulated valve seat, we conformed that leak sound amplitude increased in proportion to the increase of leak rate, and leak rates were plotted versus peak acoustic amplitudes recorded within those two narrow frequency bands on each spectral plot. The resulting plots of leak rate versus peak acoustic amplitude were the primary basis for determining the feasibility of quantifying leak acoustically. The large amount of data collected also allowed a grief investigation of the effects of different leak paths, leakage rates, pressure differentials and transducers on the acoustic amplitude spectra. From the experimental results, it was suggested that the acoustic emission method for monitoring of leak was feasible.

  3. Hydrogen detection systems leak response codes

    A loss in tightness of a water tube inside a Steam Generator Unit of a Fast Reactor is usually monitored by hydrogen detection systems. Such systems have demonstrated in the past their ability to detect a leak in a SGU. However, the increase in size of the SGU or the choice of ferritic material entails improvement of these systems in order to avoid secondary leak or to limit damages to the tube bundle. The R and D undertaken in France on this subject is presented. (author). 11 refs, 10 figs

  4. Hydrocarbon Leak Detection Sensor Project

    National Aeronautics and Space Administration — FTT is proposing the development of a sensor to detect the presence of hydrocarbons in turbopump Inter-Propellant Seals (IPS). The purpose of the IPS is to prevent...

  5. Proceedings of the specialists' meeting on acoustic/ultrasonic detection of in sodium water leaks on steam generators, held in Aix-en-Provence, France, 1-3 October 1990

    23 officially nominated persons and 8 observers from 7 countries operating fast breeder reactors in the world, Mr. Arkhipov, IAEA Scientific Secretary of IWGFR and Mr. Cambillard, French member of IWGFR attended the specialists meeting. 25 papers were presented in the national status session and in 3 technical sessions devoted to methods, theoretical approach and real steam generator experience. A separate abstract was prepared for each of these papers. Since the last meetings in Dimitrovgrad and Petten it is clear that acoustic/ultrasonic monitoring of in-sodium water leaks is now considered by all countries as a major topic for commercial fast reactor steam generator unit protection. At this time the detection of leakage events is thought to be possible in the leak range from 1 to about 100 g/s in a time period of a few seconds to a few tens of seconds. Future work should aim at a more precise definition of the attainable limits, taking into account the particular requirements of actual plant design. Refs, figs and tabs

  6. Dynamic pressure measures for long pipeline leak detection

    Likun Wang; Hongchao Wang; Min Xiong; Bin Xu; Dongjie Tan; Hengzhang Zhou [PetroChina Pipeline Company, Langfang (China). R and D Center

    2009-07-01

    Pipeline leak detection method based on dynamic pressure is studied. The feature of dynamic pressure which is generated by the leakage of pipeline is analyzed. The dynamic pressure method is compared with the static pressure method for the advantages and disadvantages in pipeline leak detection. The dynamic pressure signal is suitable for pipeline leak detection for quick-change of pipeline internal pressure. Field tests show that the dynamic pressure method detects pipeline leak rapidly and precisely. (author)

  7. Developments in steam generator leak detection at Ontario Hydro

    A method for locating small tube leaks in steam generators has been developed and implemented at Ontario Hydro. The technique utilizes both helium leak detection and moisture leak detection. The combination of these two methods allows tube leaks to be detected in any part of the tube bundle, including those submerged below water near the tubesheet. The estimated detection limits for the helium and moisture leak detection systems are 0.001 kg/hr and 0.05 kg/hr respectively, expressed as leak rates measured at typical boiler operating conditions. This technology is best utilized in situations where the leak rate under operating conditions is smaller than the practical limit for fluorescein dye techniques (∼2 kg/hour). Other novel techniques have been utilized to increase the reliability and speed of the boiler leak search process. These include the use of argon carrier gas to stabilize the buoyant helium gas in the boiler secondary. (author)

  8. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    Regulatory Guide 1.45, open-quotes Reactor Coolant Pressure Boundary Leakage Detection Systems,close quotes was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, open-quotes Leak Before Break Evaluation Proceduresclose quotes where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break

  9. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    Rahman, S.; Ghadiali, N.; Paul, D.; Wilkowski, G. [Battelle, Columbus, OH (United States)

    1995-04-01

    Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.

  10. Leak Detection in Offshore Pipelines of Conveying Fluid

    李俊花; 崔莉

    2004-01-01

    Leakage from pipelines has caused serious environmental pollution and economic losses. Usually, leak detection can reduce the damage. The paper mainly discusses a hydraulic gradient-based leak detection method. The basic idea is outlined first, followed by a description of a laboratory experiment in a water pipeline. Several pressure curves are established based on different leak locations under the condition of a constant total flow rate. It is demonstrated that the leak of a large leak quantity can be detected reliably by the hydraulic gradient method.

  11. Steam generator leak detection at Bruce A Unit 1

    A new steam generator leak detection system was recently developed and utilized at Bruce A. The equipment is based on standard helium leak detection, with the addition of moisture detection and several other capability improvements. All but 1% of the Unit 1 Boiler 03 tubesheet was inspected, using a sniffer probe which inspected tubes seven at a time and followed by individual tube inspections. The leak search period was completed in approximately 24 hours, following a prerequisite period of several days. No helium leak indications were found anywhere on the boiler. A single water leak indication was found, which was subsequently confirmed as a through-wall defect by eddy current inspection. (author)

  12. 1999 Leak Detection, Monitoring, and Mitigation Strategy Update

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented

  13. 1999 Leak Detection and Monitoring and Mitigation Strategy Update

    OHL, P.C.

    1999-09-23

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

  14. Environmental risk comparisons with internal methods of UST leak detection

    The past five years have seen a variety of advances in how leaks can be detected from within underground storage tanks. Any leak-detection approach employed within a storage tanks must be conducted at specific time intervals and meet certain leak-rate criteria according to federal and state regulations. Nevertheless, the potential environmental consequences of leak detection approaches differ widely. Internal, volumetric UST monitoring techniques have developed over time including: (1) inventory control with stick measurements, (2) precision tank testing, (3) automatic tank gauging (ATG), (4) statistical inventory reconciliation (SIR), and (5) statistical techniques with automatic tank gauging. An ATG focuses on the advantage of precise data but measured for only a brief period. On the other hand, stick data has less precision but when combined with SIR over extended periods it too can detect low leak rates. Graphs demonstrate the comparable amounts of fuel than can leak out of a tank before being detected by these techniques. The results indicate that annual tank testing has the greatest potential for large volumes of fuel leaking without detection while new statistical approaches with an ATG have the least potential. The environmental implications of the volumes of fuel leaked prior to detection are site specific. For example, if storage tank is surrounded by a high water table and in a sole-source aquifer even small leaks may cause problems. The user must also consider regulatory risks. The level of environmental and regulatory risk should influence selection of the UST leak detection method

  15. Acoustic detection of pneumothorax

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  16. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    Boomer, Kayle D. [Washington River Protection Solutions, LLC (United States); Engeman, Jason K. [Washington River Protection Solutions, LLC (United States); Gunter, Jason R. [Washington River Protection Solutions, LLC (United States); Joslyn, Cameron C. [Washington River Protection Solutions, LLC (United States); Vazquez, Brandon J. [Washington River Protection Solutions, LLC (United States); Venetz, Theodore J. [Washington River Protection Solutions, LLC (United States); Garfield, John S. [AEM Consulting (United States)

    2014-01-20

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line.

  17. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line

  18. Commercial Grade Item (CGI) Dedication for Leak Detection Relays

    This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping Instrumentation and Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis

  19. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  20. Whole new ball game : pipeline leak detection system undergoes first field trial

    Marsters, S.

    2007-07-15

    This article described an innovative and portable technology that detects leaks in oil and gas pipelines. Pure Technologies Ltd. completed the first field trial of its SoundPrint SmartBall, a free-swimming foam ball with an embedded sensor in an aluminum core that detects leaks as the ball moves through the pipe. The technology is based on the premise that sound is released when a pressurized fluid is escaping. The field trial was performed over 18 kilometres of a 10-inch crude oil pipeline in Texas. The SmartBall was first sent through a pipeline without any artificial leaks. It was then sent through a pipeline with an artificial leak constructed at one of the block valves. The SmartBall was able to detect the artificial leak from hundreds of metres away. The device was deployed and retrieved without incident by pipeline operations personnel using existing pigging infrastructure. It was determined that the device can detect leaks of less than 3.78 litres per minute at an operating pressure of 8.6 bars. The size of the SmartBall is generally between 50 to 80 per cent of the diameter of the pipeline and depends on other factors such as location of in-line vales, the size of the appurtenances through which the ball is inserted and retrieved and the presence of other lateral lines. The device records acoustic information as it travels in the pipe. Alternatively, transducers that emit an acoustic pulse can be installed on pipe appurtenances. The leaks can be located by analyzing the relative arrival time of pulses. The device can operate for up to 40 hours, enough to travel 100 kilometres in a single deployment. Pure Technologies is now working on getting this new technology accepted by the industry. 2 figs.

  1. SmartBall™: Free Swimming Leak Detection System

    ECT Team, Purdue

    2008-01-01

    Leak detection systems measure ultrasonic noise, infrared temperature variances or electrical flux to detect leakage in structures like, pipes, tanks, geo-membrane retaining structures etc. SmartBall® is a free flowing leak detection system developed by Pure Technologies. It consists of a foam ball that has a smaller aluminum ball at its core. This aluminum core houses an ultrasonic device that sends ultrasonic signals and also collects the reflected sound waves.

  2. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  3. Distributed Leak Detection System Using Structure-Borne Noise Project

    National Aeronautics and Space Administration — Manned spacecraft are vulnerable to air leaks caused by micrometeorite and space debris impact. The ability to detect and quickly locate and mitigate a pressure...

  4. Distributed Leak Detection System Using Structure-Borne Noise Project

    National Aeronautics and Space Administration — Manned spacecraft are vulnerable to air leaks caused by micrometeoroid and space debris impact. The ability to detect and quickly locate and mitigate a pressure...

  5. The detection of leaks on sodium pipes in a 'leak before break' approach

    The operation of circuits containing liquid sodium requires, given the chemical affinity of this fluid for air and water, a reliable detection of possible leaks. This system of detection should alert the operators to the occurrence of a leak in sufficient time to limit the potential consequences of a discharge of sodium in the building, leading to a severe sodium fire or at least to an extended corrosion of the pipe system. From a design point of view, the most likely event leading to this situation can be the consequence. of an initial undetected defect which develops under the effect of thermo-mechanical loadings, produces a sodium. leak below the dejection threshold remains undetectable white progressing and finally leads to a guillotine-type rupture when an incidental loading is superimposed to the normal one. The 'leak before break' approach which is now currently introduced in design considerations consists of insuring the detection of incipient leaks corresponding to through-the-wall cracks well below instability of the pipe. Under this short statement, lies a considerable and still necessary effort of research broadly presented in the present paper

  6. Detection of ground water leak points and water sampling technique

    Harada, Kazuyuki (Tokyo Gas Co., Ltd., Tokyo, (Japan))

    1989-09-10

    In order to realize effective survey for ground water leak points in city gas pipelines and to reduce the repairing period and its cost, development on the survey method and devices were carried out. Then the process to detect ground water leak points and water sampling technique were developed for mainly easily available device and jig. The object of the process is low pressure main and branch pipelines of 50-300mm in diameter, and the process detect ground water leak points without excavation, finds drainage and water sampling is done. It investigates the range of ground water leak points by gas moisture gaze, and specifies ground water leak points by television camera of fiberscope. Water in the pipeline is absorbed by electric motor driven water vacuum pump, applying the hoses provided with water sensor to detect water leak points. The device to be inserted into in-service pipelines was developed so as to safely and surely insert device into in-service pipeline by way of conventional drilling device and coupler. The effective survey for ground leak water is able to realized which was depended upon sixth sense and experience. 1 ref., 5 figs., 1 tab.

  7. Detection of gas leaks in the subsurface environment

    Ghandehari, Masoud; Khalil, Gamal; Kimura, Fletcher

    2005-05-01

    Leaking valves, connections and distribution pipelines are significant sources of fugitive gas and volatile chemical emissions in chemical manufacturing, gas production, transmission, and oil refineries. A gas leak detection method has been developed based on continuous monitoring of the oxygen concentration surrounding a natural gas pipeline. The method utilizes optical fibers coated with an oxygen permeable polymeric film containing a luminescent sensor molecule. When the specialty fiber is illuminated by a light source that excites the luminophor, the functional cladding compound has the ability to detect and quantify leaks by measuring small changes in oxygen concentrations in the surrounding environment. Key features of the technology include long-term performance based on well understood platinum porphyrin chemistry, in addition to the capability of distributed sensing using fiber optic evanescent field spectroscopy. Results of leak detection in various environments namely atmospheric conditions, dry sand as well as saturated sand is reported, along with test results on long term system performance.

  8. Single rod leak detection and repair of leaking or damaged fuel assemblies

    In some circumstances, it is necessary to perform rework operations on some fuel assemblies in order to make them reusable in reactors, movable, transportable or consistent with fuel reprocessor specifications, depending on the plant utility policy. These rework operations are of two types: - Those which consist in restoring the leak tightness of the fuel assemblies. They are made after a series of tests allowing the localization of the failed fuel rods: at first, overall leak detection is provided by monitoring primary coolant activity during reactor operation; then, during refuelling, leaking assemblies are identified by subjecting each of the assemblies scheduled for reloading to a sipping test; finally individual leaking fuel rods are singled out before the defective assemblies can be repaired, i.e. failed rods can be replaced. - Those which involve replacement of part of or the whole assembly structure (combined or not with replacement of failed fuel rods). In order to meet these two needs for rework operations, FRAGEMA has developed a full range of test and tooling systems for detecting single leaking rods in irradiated fuel assemblies and for restoring fuel assemblies to be used in PWR nuclear power plants. As an illustration of the means available, two of these systems are described

  9. Basic test of acoustic emission sensor as a leak detector from pressure vessels and piping of nuclear power plant

    Basic tests of AE (Acoustic Emission) sensor that measures elastic wave of solid caused by leak of high pressure vessels, pipes or valves have been performed. The relation of leak flow rate and AE sensor's signal level, and the characteristics of AE signal attenuation vs. distance have been obtained experimentally as basic data. The test system consists of a pipe that can contain gas, water or steam whose maximum temperature is 275degC and maximum pressure is 6 MPa. A small scale crack is simulated by a small circular hole or a slit type rectangular shaped hole. It is observed that the AE signal level generated from leak part is proportional to the density of leaking fluid, to the fourth power of the velocity and to the cross sectional area of simulated crack. It is also observed that AE signal attenuation against distance on uniform cross section pipe is negligible small. This basic technology can be applied to detect leak from pressure vessels and piping in a nuclear power plant. (author)

  10. Review of nuclear power reactor coolant system leakage events and leak detection requirements

    In response to the vessel head event at the Davis-Besse reactor, the U.S. Nuclear Regulatory Commission (NRC) formed a Lessons Learned Task Force (LLTF). Four action plans were formulated to respond to the recommendations of the LLTF. The action plans involved efforts on barrier integrity, stress corrosion cracking (SCC), operating experience, and inspection and program management. One part of the action plan on barrier integrity was an assessment to identify potential safety benefits from changes in requirements pertaining to leakage in the reactor coolant system (RCS). In this effort, experiments and models were reviewed to identify correlations between crack size, crack-tip-opening displacement (CTOD), and leak rate in the RCS. Sensitivity studies using the Seepage Quantification of Upsets In Reactor Tubes (SQUIRT) code were carried out to correlate crack parameters, such as crack size, with leak rate for various types of crack configurations in RCS components. A database that identifies the leakage source, leakage rate, and resulting actions from RCS leaks discovered in U.S. light water reactors was developed. Humidity monitoring systems for detecting leakage and acoustic emission crack monitoring systems for the detection of crack initiation and growth before a leak occurs were also considered. New approaches to the detection of a leak in the reactor head region by monitoring boric-acid aerosols were also considered. (authors)

  11. EBR-II water-to-sodium leak detection system

    The water-to-sodium leak detection system installed at EBR-II in April, 1975, is described in detail. Topics covered include operational characteristics, maintenance problems, alarm functions, background hydrogen level data, and future plans for refinements to the system. Particular emphasis is given to the failures of eight of the ten leak detectors due to sodium-to-vacuum leakage, and the program anticipated for complete recovery of the system

  12. Pipe fracture evaluations for leak-rate detection: Deterministic models

    Regulatory Guide 1.45, Reactor Coolant Pressure Boundary Leakage Detection Systems was published by Nuclear Regulatory Commission (NRC) in May 1973, and its update is being considered. Updating this procedure can involve accounting for the current leak-detection instrumentation capabilities, experience from the accuracy of leak-detection systems in the past, and current analysis methods to assess the significance of the detectable leakage relative to the structural integrity of the plant. In this study, a three-phase effort was undertaken to conduct circumferentially cracked pipe fracture evaluations for applications to leak-rate detection requirement. Results from these probabilistic analyses can be used as a technical basis for future changes to leak-rate detection criterion. In this paper, a state-of-the-art review was conducted to evaluate the adequacy of current deterministic models for thermal-hydraulic analysis for estimation of leak rates, crack-opening area analysis for determination of crack geometry, and elastic-plastic fracture mechanics for prediction of maximum load-carrying capacity of circumferentially cracked piping systems (Phase 1). The results predicted from the above deterministic models were compared with experimental data obtained from the past NRC research programs. Based on the comparisons, it was concluded that the models considered in this study provide reasonably accurate estimates of leak rates, area of crack opening, and maximum load-carrying capacity of circumferentially cracked pipes. These validated deterministic models will be used for subsequent development of novel probabilistic models to evaluate structural reliability of degraded piping systems (Phase 2). Using these models, stochastic pipe fracture evaluation will be conducted for applications to leak-rate detection of piping in boiling water reactor and pressurized water reactor plants (Phase 3)

  13. 340 Facility secondary containment and leak detection

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4

  14. Correlative imaging in detecting post renal transplant urine leak

    Post transplant urinary leak is a common complication after kidney transplantation. There is no consensus on its most appropriate diagnostic and therapeutic methods. The objective of this study is to evaluate multiple imaging modalities in detecting symptomatic and asymptomatic urine leak. Seventeen cases of proven urine leak after renal transplantation were encountered and treated in our institution between November 1993 and September 2001. Diagnosis was made 7 to 41 days post transplantation. Ten cases were symptomatic and seven asymptomatic. Ultrasonography and radionuclide renography were performed for all patients. Contrast cystography was also performed in 7 patients. Radionuclide renography was obtained after injection of 10 mCi (370 MBq) of Tc99m-MAG-3. Flow study was acquired every one second for 60 seconds followed by sequential images obtained every 30 seconds for 29 minutes. Post void static image was then obtained. All studies were obtained while the urethral catheter is clamped to enhance the yield of the studies. Sixteen out of the 17 cases of leak were detected by radionuclide renography while only 8 were detected by ultrasonography. Among the 7 cases who had cystography leak was diagnosed in only 3. The case that was not detected by renography, was not detected by ultrasonography, was diagnosed by analyzing the wound leaky fluid in the laboratory and was further confirmed when treated surgically. Among the 7 asymptomatic cases only 3 had positive ultrasound findings while all were positive by radionuclide renography. Additionally, the findings of peri graft- fluid collections on ultrasonography were not as specific as those of the radionuclide renography for urine leak.Our experience suggests that radionuclide renography with clamping the urethral catheter is the modality of choice to detect both symptomatic and asymptomatic post renal transplant urine leak. (authors)

  15. 输气管道泄漏音波产生机理研究%Leak-acoustics generation mechanism for natural gas pipelines

    刘翠伟; 李玉星; 王武昌; 付俊涛; 方丽萍

    2013-01-01

    In order to study the law and use of leak detection for gas pipelines based on acoustic method, a study was made for leak-acoustics generation mechanism of natural gas pipelines. Firstly, the aero-acoustics generation mechanism was studied in theory so that the wave equation of sources could be derived when gas pipelines were leaking. Secondly, the leak-acoustics generated by quadrupole sonic sources and dipole sonic sources were simulated to analyze the law of their characteristics. Thirdly, the leak-acoustics were acquired with tests under the same conditions as those for the simulation. The leak-acoustics simulated were compared with those obtained from tests to testify the simulation method. And then, the comparative analyses were accomplished between the leak-acoustics simulated and those acquired with tests under variable operating conditions. At last, the law and use of leak detection for gas pipelines based on acoustic method were concluded after analyzing the leak-acoustics generation mechanism and the working principle of dynamic pressure sensors. The results indicated that the quadrupoles and dipoles generated by turbulent fluctuations cause the leak-acoustics ; the main components of pressure perturbations acquired by dynamic pressure sensors are acoustic perturbations generated by sonic sources; both the simulation method and the experiment method can be used to study the leak-acoustics generation mechanism for natural gas pipelines.%为研究输气管道音波法泄漏检测技术基本原理及应用方法,对输气管道中泄漏音波产生机理进行研究,理论上确定输气管道气动噪声产生机理;将仿真模拟所得四极子声源和偶极子声源产生的泄漏音波进行分析并总结规律;将音波传感器测得泄漏音波与仿真模拟所得泄漏音波对比验证;分析多工况条件下仿真模拟与实验方法得到的泄漏音波;通过分析仿真模拟中泄漏音波产生机理和实验中所用音波传

  16. Wide-band gas leak imaging detection system using UFPA

    Jin, Wei-qi; Li, Jia-kun; Dun, Xiong; Jin, Minglei; Wang, Xia

    2014-11-01

    The leakage of toxic or hazardous gases not only pollutes the environment, but also threatens people's lives and property safety. Many countries attach great importance to the rapid and effective gas leak detection technology and instrument development. However, the gas leak imaging detection systems currently existing are generally limited to a narrow-band in Medium Wavelength Infrared (MWIR) or Long Wavelength Infrared (LWIR) cooled focal plane imaging, which is difficult to detect the common kinds of the leaking gases. Besides the costly cooled focal plane array is utilized, the application promotion is severely limited. To address this issue, a wide-band gas leak IR imaging detection system using Uncooled Focal Plane Array (UFPA) detector is proposed, which is composed of wide-band IR optical lens, sub-band filters and switching device, wide-band UFPA detector, video processing and system control circuit. A wide-band (3µm~12µm) UFPA detector is obtained by replacing the protection window and optimizing the structural parameters of the detector. A large relative aperture (F#=0.75) wide-band (3μm~12μm) multispectral IR lens is developed by using the focus compensation method, which combining the thickness of the narrow-band filters. The gas leak IR image quality and the detection sensitivity are improved by using the IR image Non-Uniformity Correction (NUC) technology and Digital Detail Enhancement (DDE) technology. The wide-band gas leak IR imaging detection system using UFPA detector takes full advantage of the wide-band (MWIR&LWIR) response characteristic of the UFPA detector and the digital image processing technology to provide the resulting gas leak video easy to be observed for the human eyes. Many kinds of gases, which are not visible to the naked eyes, can be sensitively detected and visualized. The designed system has many commendable advantages, such as scanning a wide range simultaneously, locating the leaking source quickly, visualizing the gas

  17. Evaluation of an acoustic leak analyser for use on PWR valves in sub-cooled water

    This Report describes the work carried out to evaluate the performance of a commercial acoustic leak analyser for use on valves isolating pipework sections containing sub-cooled water. The investigation was carried out in 3 parts: (1) linking the analyser to a micro-computer to facilitate data storage, high resolution plotting and mathematical manipulation. (2) production of calibration curves of leakage noise versus known leak rate in cold water for different valve designs. (3) a review of the fundamental mechanisms causing noise in fluids and a comparison with the experimental data. (author)

  18. External detection and localization of well leaks in aquifer zones

    Haas, Allan K.

    This dissertation presents a new methodology for monitoring, detecting, and localizing shallow, aquifer zone leaks in oil and gas wells. The rationale for this type of leak detection is to close the knowledge gap associated with public claims of subsurface water resource contamination caused by the oil and gas industry. A knowledge gap exists because there is no data, one way or the other, that can definitively prove or deny the existence of subsurface leakage pathways in oil and gas wells, new, old or abandoned. This dissertation begins with an overview of existing and future oil and gas well leak detection methods, and then presents three published papers, each describing a different phenomena that can be exploited for leak monitoring, detection, localization, and damage extent determination. The first paper describes the direct detection and localization of a leak that was discovered during a laboratory based hydraulic fracturing experiment. The second paper describes the laboratory measured electrical response that occurs during two phase flow inside of porous media. The third paper describes the detection and tracking of a gravity driven salt plume leak in a freshwater test tank in the laboratory. the three geophysical approaches that are presented, when combined together, provide a new, powerful, external to the well method to monitor, detect, localize, and assess the damage from leaks in the drinking water protection zone of oil and gas wells. This is a capability that is not available in any other leak detection and localization method. This dissertation also presents a chapter of Science, Technology and Society (STS), and Science, and Technology Policy (STP) as a final fulfillment requirement of the SmartGeo Fellowship program, and the Science, Technology, Engineering, and Policy minor. This chapter introduces a new STS/STP concept concerning the after effects of knowledge boundary disputes. This new concept is called the residual footprints of knowledge

  19. An electrical method for the early detection of sodium leaks

    The development and performance of a simple electrical method for the early detection of sodium leaks is described. The basis of the method is to wrap the pipework or vessel in sections with a current-carrying electric cable insulated from the pipework by a material pervious to sodium. The pipework is earthed and the earth leakage current is continuously monitored using a conventional earth leakage circuit breaker. In the event of a leak sodium will encounter the conductor and a current with flow to earth. The current trips the detector and operates a relay which can sound an alarm and indicate the section of the rig where the fault is located on a mimic diagram. The system, which has been in use on experimental facilities for several years, is capable of detecting a leak of 2g Na in 20 sec. The same cable can be used for trace-heating. (U.K.)

  20. High Altitude Aerial Natural Gas Leak Detection System

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  1. Detection of leaking actinide hexafluoride storage cylinders

    Beltz, James V.; Williams, Clayton W.

    2000-07-01

    Our spectroscopy and photophysics measurements on solid hydrated uranyl fluorides have shown that luminescence is a powerful method for detecting their presence. We report here the results of those studies and the development of a prototype luminescence imaging system that provides high sensitivity and is optimized for signature detection of hydrated uranyl fluorides. This system provides a high degree of selectivity in that its pulsed excitation source is variable as to wavelength and intensity, and detected luminescence is time-resolved using a spatial light modulator as a fast shutter and wavelength-resolved via bandpass optical filters. The features aid in signature detection of uranyl fluoride hydrates.

  2. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    John L Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-04-01

    The West Virginia University natural gas transmission line leak detection research is only considering using readily available 1/2 inch pipeline access ports for the detection of leak generated signals. The main problem with leak signals is the low signal to noise ratio. One of the acoustic signals associated with gas escaping through a leak is only temporary and is in the form of a rarefaction wave originating when the leak is formed. Due to pipeline friction, over distance such a step function transitions to a ramp function. The ability to identify a leak by pipeline monitoring and signal processing depends a great deal on the quality and signal to noise ratio of the characteristics of the detectors used. Combinations of sensing devices are being used for the WVU sensor package and are contained in a removable sensor housing. The four sensors currently installed are a 1/2 inch 3 Hz-40 Khz microphone, an audible range moving coil sensor, a piezo-electric pressure transducer, and the WVU designed floating 3 inch diameter diaphragm to detect flow transient induced pressure ramp type signals. The WVU diaphragm sensor, which is currently under development, uses the same diaphragm principle as a high quality capacitance type microphone, but utilizes aerodynamic signal amplification. This type of amplification only amplifies the ramp-signal itself, not the random pipeline noise.

  3. T Plant secondary containment and leak detection upgrades

    The W-259 project will provide upgrades to the 2706-T/TA Facility to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. The project provides decontamination activities supporting the environmental restoration mission and waste management operations on the Hanford Site

  4. CEGB research on boiler leaks and their detection in service

    The penalty in loss of output to an electricity generation organisation as a consequence of failure to deal effectively with small LMFBR boiler leaks would be large. There is therefore a considerable incentive for these organisations to satisfy themselves that proper provisions are made to ensure that both the incidence and the severity of boiler leaks are minimised. In the UK, responsibility for the research, development and design work for this and indeed for most aspects of future nuclear power plant rests with the UKAEA and NPC; nevertheless as a consequence of its 'informed operator' policy the Central Electricity Generating Board has devoted some research effort to this field in recent years. o date, research work has been put in hand with the objective of achieving an understanding of the basic behaviour of boiler leaks. In addition, attention has been given to leak detection by monitoring the sodium for increases in oxygen and hydrogen levels. In both cases leaks into liquid sodium rather than into the gas space have been considered. In the course of the work hydrogen and oxygen meters based on the galvanic cell principle have been constructed and evaluated. The former is a new device which is comparable in performance with hydrogen meters based on the ion pump. The present state of the work is briefly described in this paper

  5. Acoustic detection for hydraulic research

    Three distinct physical effects are discussed, each of which is used for a particular method of detecting and locating minor leaks. The principle, considered phenomena and equipment requirements for each method are discussed, together with results of laboratory tests with calibrated leakage orifices varying between 20 μm and 180 μm in diameter. Two of the methods are being tested in industry and one is still at the laboratory development stage

  6. Leak detection in pipelines through spectral analysis of pressure signals

    Souza A.L.; Cruz S.L.; Pereira J.F.R.

    2000-01-01

    The development and test of a technique for leak detection in pipelines is presented. The technique is based on the spectral analysis of pressure signals measured in pipeline sections where the formation of stationary waves is favoured, allowing leakage detection during the start/stop of pumps. Experimental tests were performed in a 1250 m long pipeline for various operational conditions of the pipeline (liquid flow rate and leakage configuration). Pressure transients were obtained by four tr...

  7. Towards aerial natural gas leak detection system based on TDLAS

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong

    2014-11-01

    Pipeline leakage is a complex scenario for sensing system due to the traditional high cost, low efficient and labor intensive detection scheme. TDLAS has been widely accepted as industrial trace gas detection method and, thanks to its high accuracy and reasonable size, it has the potential to meet pipeline gas leakage detection requirements if it combines with the aerial platform. Based on literature study, this paper discussed the possibility of applying aerial TDLAS principle in pipeline gas leak detection and the key technical foundation of implementing it. Such system is able to result in a high efficiency and accuracy measurement which will provide sufficient data in time for the pipeline leakage detection.

  8. 75 FR 4134 - Pipeline Safety: Leak Detection on Hazardous Liquid Pipelines

    2010-01-26

    ... leak detection process. Currently, there are 421 hazardous liquid pipeline operators. Two hundred and... required to comply with API RP 1130. Pipeline operators who do not employ computerized leak detection...

  9. Liquid metal-to-gas leak-detection instruments

    It is desirable for liquid-metal-cooled reactors that small liquid metal-to-gas leaks be reliably detected. Testing has been performed on a number of detection systems to evaluate their sensitivity, response time, and performance characteristics. This testing has been scheduled in three phases. The first phase was aimed at screening out the least suitable detectors and optimizing the performance of the most promising. In the second phase, candidates were tested in a 1500 ft3 walk-in type enclosure in which leaks were simulated on 24-in. and 3-in. piping. In the third phase of testing, selected type detectors were tested in the 1500-ft3 enclosure with Clinch River Breeder Reactor Plant (CRBRP) pipe insulation configurations and detector tubing configuration with cell gas recirculation simulated. Endurance testing of detection equipment was also performed as part of this effort. Test results have been shown that aerosol-type detectors will reliably detect leaks as small as a few grams per hour when sampling pipe insulation annuli

  10. Leak detection technologies for oil and gas pipelines; Tecnologias para deteccao e localizacao de vazamento em dutos de oleo e ou gas

    Alonso, Julio R. [MTT Aselco Automacao Ltda., Sao Paulo, SP (Brazil)

    2005-07-01

    Two concepts are available for leak detection in oil and/or gas pipelines: On-line leak detection system and off-line leak detection technique. The off-line leak detection technique is, usually, portable and does net configure a 'system'. This technique includes hydro-test, acoustic emission of high frequency, tracer of chemical substances, ultrasonic flow meter (UT), thermographic infra-red mapping, electromagnetic offset registration, etc. Since most of those methods requests stop of the system or depend on direct and detailed inspection of the whole monitored piping they are limited to the off-line inspection. In the current days there are only two technologies applied to detect and locate leaks on-line: The acoustic Leak Detection System and the modeling of computerized simulation also called as RTM (Real Time Modeling), RTTM or Mass Balance. There are still other techniques in the market, as acoustic emission, pressure analysis (PPA) beyond other rough techniques, without good results. Even some of these techniques are working without success, they are still used to accomplish with government standards. (author)

  11. Leak detection, monitoring, and mitigation technology trade study update

    HERTZEL, J.S.

    1998-11-10

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  12. Leak detection, monitoring, and mitigation technology trade study update

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful

  13. In service monitoring and servicing after leak detection for the LMFBR steam generators of Phenix and Superphenix

    Great care must be taken to minimize the probability of leaks within LMFBR steam generators. In this paper, the following topics are discussed: leak prevention; description of monitoring devices (hydrogen monitoring, acoustic monitoring) and protection devices; automatic and manual actions; leak localization (with or without sodium dumping); post-leak inspection and repair

  14. Pipe fracture evaluations for leak-rate detection: Probabilistic models

    This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications

  15. PRACTICAL IMPLICATIONS OF USING INDUCED TRANSIENTS FOR LEAK DETECTION

    Marko V. Ivetic

    2007-06-01

    Full Text Available This paper deals with practical problems of leak detection by methods based on hydraulic transient analysis. Controlled and safe transients can be generated and the response of the network, with the relevant information, can be monitored and analysed. Information about leaks, contained in the monitored pressure signal, cannot be easily retrieved, due to reflections, noise etc. On the basis of numerical experiments on a simple network, merits and limitations of several methods for signal analysis (time domain analysis, spectral density function and wavelet transform have been examined. Certain amount of information can be extracted from the time history of the pressure signal, assuming the first reflection of the pressure wave is captured with very high time resolution and accuracy. Only relatively large leaks can be detected using this methodology. As a way to increase the sensitivity of this method it is suggested that transforms in frequency domain and, especially, wavelet transforms, are used. The most promising method for leakage location and quantification seems to be based on wavelet analysis.

  16. Electrical detection of liquid lithium leaks from pipe joints

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW

  17. Electrical detection of liquid lithium leaks from pipe jointsa)

    Schwartz, J. A.; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R.

    2014-11-01

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  18. Electrical detection of liquid lithium leaks from pipe joints.

    Schwartz, J A; Jaworski, M A; Mehl, J; Kaita, R; Mozulay, R

    2014-11-01

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW. PMID:25430389

  19. Pipeline leak detection method and control device therefor

    Leaks may be located in a pipeline by introducing into the pipeline an assembly that includes a pipe-sealing packer unit, a control unit, and a radioactive source shielded from the control unit. The control unit includes a gamma ray detector that controls the sealing and unsealing of the pipe by the packer in response to the detection of radiation exceeding a preset threshold - a detection event. The assembly is pushed through the pipeline by a relatively low fluid pressure behind it. The progress of the assembly through the pipeline may be monitored externally by a gamma ray detector

  20. Nuclear waste tank and pipeline external leak detection systems

    The development of two external waste tank and pipeline leak detection systems based on the electrical potential fields is reviewed. The Boeing system measured the distortion of an imposed ac potential field. The Battelle--Northwest system measured the change in the magnitude of the existing dc potential field generated by the cathodic protection system and the local electrochemical potential near the electrodes in the sediment. It was found that in a dry area the systems can detect as low as 200 liters of leakage. The engineering assistance to the tank farm management in assessing the suspected leakers is also presented

  1. Leaked fuel detection device for nuclear power plant

    The present invention provides an inexpensive fuel leak detection device at a good detection sensitivity and of a simple structure. Specifically, the device of the present invention comprises (1) a sampling means for sampling water from a nuclear fuel mast tube, (2) a gas separation means for introducing sampled water to a separation chamber, jetting and stirring it in the separation chamber to separate gases, (3) a gas recycling means for delivering the gases in the separation chamber and returning them again, and (4) a measuring means for measuring radiation dose of the gases circulated by the gas circulation means. Since the device thus constituted has a simple gas separation means, the structure of the nuclear fuel mast tube is not complicated. Since the gas is recycled, the volume for the gas portion is reduced, so that the amount of the fission products per a predetermined volume is increased and the sensitivity for the leaked fuel detection is increased. Since the structure is simple, the cost can be reduced. (I.S.)

  2. Golden Gate and Pt. Reyes Acoustic Detections

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  3. Acoustic detection of manatee vocalizations

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-09-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disk. The detection method that provides the best overall performance is able to correctly identify ~96% of the manatee vocalizations. However, the system also results in a false alarm rate of ~16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  4. Corrosion Evaluation of Tank 40 Leak Detection Box

    Mickalonis, J.I.

    1999-07-29

    'Leak detection from the transfer lines in the tank farm has been a concern for many years because of the need to minimize exposure of personnel and contamination of the environment. The leak detection box (LDB) is one line of defense, which must be maintained to meet this objective. The evaluation of a failed LDB was one item from an action plan aimed at minimizing the degradation of LDBs. The Tank 40 LDB, which failed in service, was dug up and shipped to SRTC for evaluation. During a video inspection while in service, this LDB was found to have black tubercles on the interior, which suggested possible microbial involvement. The failure point, however, was believed to have occurred in the drain line from the transfer line jacket. Visual, metallurgical, and biological analyses were performed on the LDB. The analysis results showed that there was not any adverse microbiological growth or significant localized corrosion. The corrosion of the LDB was caused by exposure to aqueous environments and was typical of carbon steel pipes in soil environments.'

  5. Tank S-102 waste retrieval leak detection and monitoring and mitigation strategy

    This paper presents a proactive and mitigative strategy for the identification and management of potential S-102 waste leaks during the S-102 Waste Retrieval and the basis for this approach. The strategy is based on preventing leakage, minimizing leak volumes if a lead should occur, and providing the best available leak detection and monitoring technologies. Ex-tank leak detection will use the baseline borehole gamma and neutron drywell logging trucks, supplemented with manually deployed neutron moisture measurements. Waste mitigation includes management of the retrieval fluids in a manner that limits the risk for a potential leak

  6. Acoustic detection of electron spin resonance

    Coufal, H.

    1981-07-01

    The ESR-signal of DPPH was recorded by detecting the modulation of the absorbed microwave power with a gas-coupled microphone. This photo-acoustic detection scheme is compared with conventional ESR-detection. Applications of the acoustical detection method to other modulation spectroscopic techniques, particularly NMR, are discussed.

  7. Quantitative risk assessment & leak detection criteria for a subsea oil export pipeline

    Zhang, Fang-Yuan; Bai, Yong; Badaruddin, Mohd Fauzi; Tuty, Suhartodjo

    2009-06-01

    A quantitative risk assessment (QRA) based on leak detection criteria (LDC) for the design of a proposed subsea oil export pipeline is presented in this paper. The objective of this QRA/LDC study was to determine if current leak detection methodologies were sufficient, based on QRA results, while excluding the use of statistical leak detection; if not, an appropriate LDC for the leak detection system would need to be established. The famous UK PARLOC database was used for the calculation of pipeline failure rates, and the software POSVCM from MMS was used for oil spill simulations. QRA results revealed that the installation of a statistically based leak detection system (LDS) can significantly reduce time to leak detection, thereby mitigating the consequences of leakage. A sound LDC has been defined based on QRA study results and comments from various LDS vendors to assist the emergency response team (ERT) to quickly identify and locate leakage and employ the most effective measures to contain damage.

  8. Small Teleoperated Robot for Nuclear Radiation and Chemical Leak Detection

    Kui Qian

    2012-09-01

    Full Text Available In order to meet the actual requirements of nuclear radiation and chemical leak detection, and emergency response, a new small teleoperated robot for nuclear radiation and chemical detection is proposed. A small‐size robot is manufactured according to technical requirements and the overall structure and control system is described. Meanwhile, based on the principles of human‐robot interaction, a user‐friendly human‐robot interaction interface is designed to provide a good telepresence for the operator, helping the operator to perceive and judge the robot’s situation to better assist in making the right decisions and in giving timely operation instructions. The experiment results show the robot system operates reliably and meets the technical requirements.

  9. Leak detection in turbo group condensers using helium

    This method allows a rapid location of leaks (small or not) in the pipelines of a turbo group condenser, before opening the condenser boxes and no need of stooping the turbo group operation. This operation can last two hours maximum depending on the volume of the box or semi box. The technique consists of injecting helium into the water side and detecting it in the steam side, in the outlet of not condensable gases of the ejector. In the same way, probable air inlet to the condenser can be proved (auxiliary systems, turbo group joints to the condenser, etc.) in order to improve the vacuum and/or reduce the quantity of oxygen dissolved in the water of the steam side. (author)

  10. Temperature monitoring and leak detection in sodium circuits of FBR using Raman distributed fiber optic sensor

    This paper discusses the fiber optic temperature sensor based leak detection in the coolant circuits of fast breeder reactor. These sensors measure the temperature based on spontaneous Raman scattering principle and is not influenced by the electromagnetic interference. Various experiments were conducted to evaluate the performance of the fiber optic sensor based leak detection using Raman distributed Temperature Sensor (RDTS). This paper also deals with the details of fiber optic sensor type leak detector layout for the coolant circuit of FBR, performance requirement of leak detection system, description of the test facility, experimental procedure and test results of various experiments conducted. (author)

  11. Experimental investigation of the utilisation of ionisation gauges for leak detection

    Benvenuti, C

    1972-01-01

    A description is given of a method of leak detecting applicable to the ISR (CERN) vacuum system after bakeout. This method, based on the enhanced indication of an ionisation gauge obtained when replacing the air around the leak by Argon, affords a detection efficiency not lower than that obtainable by means of a traditional leak detector; furthermore it does not introduce contamination risks after bakeout. (4 refs).

  12. Acoustic resonance for nonmetallic mine detection

    Kercel, S.W.

    1998-04-01

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  13. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING and EVALUATION MEHTODS and REQUIREMENTS

    This document has two purposes: (smbullet) Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. (smbullet) Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals

  14. New alarm system approach for detection and location of small leaks from pipelines

    Vapor Monitoring Wells are an accepted method to monitor for leaks from underground storage tanks and pipe. This paper discusses a method that is similar to well leak detection technique, yet superior for pipelines for reasons to be defined. Vapors from a leak source migrate through the soil. The time required for a leak to migrate a known distance is dependent on the vapor pressure of the leaking substance, the leak rate, and finally, soil type, compaction, and collection device is to the leak source the shorter the time required for the premise that the sensor tube acts as a continuous row of wells that can all be automatically sampled with one central pump/detector. The system precisely locates the leak. The benefit of this system is earlier detection and location of small leaks to minimize product loss to the environment. Dr. Wolfgang Issel developed Leak Alarm System for Pollutants, LASP, with the support of the German Ministry of Research and Technology to protect groundwater and other environmentally sensitive zones

  15. Integration of Acoustic Detection Equipment into ANTARES

    Lahmann, R; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Naumann, C; Salomon, K

    2005-01-01

    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.

  16. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  17. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  18. Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems

    Suresh, M. Agumbe

    2014-05-01

    Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, we propose a solution whereby mobile sensors (i.e., their movement aided only by the inherent water flow in the system) detect leaks/backflow. Information about the leaks/backflow is collected from the sensors either by physically capturing them, or through wireless communication. Specifically, we propose models to maximize leak/backflow detection given a cost constraint (a limit on the number of sensors). Through extensive simulations, we demonstrate the superior performance of our proposed solution when compared with the state of the art solutions (e.g., algorithms/protocols and analysis).

  19. Design of oil pipeline leak detection and communication system based on optical fiber technology

    Tu, Yaqing; Chen, Huabo

    1999-08-01

    The integrity of oil pipeline is always a major concern of operators. Pipeline leak not only leads to loss of oil, but pollutes environment. A new pipeline leak detection and communication system based on optical fiber technology to ensure the pipeline reliability is presented. Combined direct leak detection method with an indirect one, the system will greatly reduce the rate of false alarm. According, to the practical features of oil pipeline,the pipeline communication system is designed employing the state-of-the-art optic fiber communication technology. The system has such feature as high location accuracy of leak detection, good real-time characteristic, etc. which overcomes the disadvantages of traditional leak detection methods and communication system effectively.

  20. An optical sensor for the detection of leaks from subsea pipelines and risers

    An optical sensor for the rapid detection of detect leaks of oil, hydraulic fluids or leak detection chemicals from underwater pipelines and risers is reported. The sensor is designed to be deployed on ROVs or AUVs for the rapid survey of underwater pipelines and risers. The system employs ultra-bright LEDs to project a sensing light beam into the water to allow real time detection of ppm concentration plumes of material leaking from pipelines or riser in real time. Typically the system is deployed on an ROV which inspects a pipeline at a height of 2-3m

  1. Analysis and application of the methods of halogen-containing substance detection in leak detection technique

    Gasoanalytical methods of halogen-containing substance detection, which are used or can be used for tightness control, are considered. Methods realized in modern leak detectors are mentioned, their specific features, drawbacks are pointed out. The importance of the tightness control automation is emphasized. The conclusion is made that the principle of halogen-containing substance detection, based on the effect of thermoionic emission current increase, is the most perspective

  2. Leak before break detection-annulus gas monitoring system evolution and operating experience at KGS

    Full text: Pressurised heavy water reactors (PHWR) at RAPS 1 and 2 and MAPS have provision for detection of pressure tube leak by indirect method. The reactor vessel (calandria) is housed in calandria vault (C/V) filled with air and C/V moisture element indicates the water leak from calandria tube or pressure tube. Further, detection of leak is a cumbersome process. From NAPS onwards, calandria is housed in C/V filled with water, annulus between calandria tube and pressure tube is filled with CO2 and annulus gas monitoring system (AGMS) is provided by design for detection of any pressure tube leak. The design was improved and AGMS for Kaiga 1 and 2 and RAPS 3 and 4 is having re-circulation mode of operation. The design provides for monitoring dew point of annulus gas (CO2) for indicating the leak and later to identify the pressure tube/calandria tube having leak. The paper deals with operating experience of AGMS at Kaiga generating station (KGS). During the commissioning and initial power operation at KGS, problems were encountered in re-circulation mode. These problems were high radiation field near AGMS piping, high temperature on blower body, blower bearing failure and system leaks. Design modifications were carried out for effective performance of the system for detecting leak before break

  3. Space Shuttle Main Engine Propellant Path Leak Detection Using Sequential Image Processing

    Smith, L. Montgomery; Malone, Jo Anne; Crawford, Roger A.

    1995-01-01

    Initial research in this study using theoretical radiation transport models established that the occurrence of a leak is accompanies by a sudden but sustained change in intensity in a given region of an image. In this phase, temporal processing of video images on a frame-by-frame basis was used to detect leaks within a given field of view. The leak detection algorithm developed in this study consists of a digital highpass filter cascaded with a moving average filter. The absolute value of the resulting discrete sequence is then taken and compared to a threshold value to produce the binary leak/no leak decision at each point in the image. Alternatively, averaging over the full frame of the output image produces a single time-varying mean value estimate that is indicative of the intensity and extent of a leak. Laboratory experiments were conducted in which artificially created leaks on a simulated SSME background were produced and recorded from a visible wavelength video camera. This data was processed frame-by-frame over the time interval of interest using an image processor implementation of the leak detection algorithm. In addition, a 20 second video sequence of an actual SSME failure was analyzed using this technique. The resulting output image sequences and plots of the full frame mean value versus time verify the effectiveness of the system.

  4. Leak detection systems for uranium mill tailings impoundments with synthetic liners

    This study evaluated the performance of existing and alternative leak detection systems for lined uranium mill tailings ponds. Existing systems for detecting leaks at uranium mill tailings ponds investigated in this study included groundwater monitoring wells, subliner drains, and lysimeters. Three alternative systems which demonstrated the ability to locate leaks in bench-scale tests included moisture blocks, soil moisture probes, and a soil resistivity system. Several other systems in a developmental stage are described. For proper performance of leak detection systems (other than groundwater wells and lysimeters), a subgrade is required which assures lateral dispersion of a leak. Methods to enhance dispersion are discussed. Cost estimates were prepared for groundwater monitoring wells, subliner drain systems, and the three experimental systems. Based on the results of this report, it is suggested that groundwater monitoring systems be used as the primary means of leak detection. However, if a more responsive system is required due to site characteristics and groundwater quality criteria, subliner drains are applicable for ponds with uncovered liners. Leak-locating systems for ponds with covered liners require further development. Other recommendations are discussed in the report

  5. An Evaluation of liquid metal leak detection methods for the Clinch River Breeder Reactor Plant

    Morris, C.J.; Doctor, S.R.

    1977-12-01

    This report documents an independent review and evaluation of sodium leak detection methods described in the Clinch River Breeder Reactor Preliminary Safety Analysis Report. Only information in publicly available documents was used in making the assessments.

  6. Using Decision Trees to Detect and Isolate Leaks in the J-2X

    National Aeronautics and Space Administration — Full title: Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine Mark Schwabacher, NASA Ames Research Center Robert Aguilar, Pratt...

  7. 77 FR 6857 - Pipeline Safety: Notice of Public Meetings on Improving Pipeline Leak Detection System...

    2012-02-09

    ... Capabilities and Research 12:30 p.m. Lunch 1:30 p.m. Panel 3: Considerations for Natural Gas Pipeline Leak Detection Systems 3:30 p.m. Break 3:45 p.m. Panel 4: Natural Gas Pipeline Leak Detection System Capabilities... Liquid Pipelines 10:10 a.m. Break 10:25 a.m. Panel 2: Valve Considerations for Natural Gas......

  8. New statistical features for leak noise detection in steam generator units of liquid metal fast breeder reactors

    New statistical features have been constructed from the covariance matrix generated from the power spectral density of noise signals. The new features have been found much more sensitive to leak noise signals than the conventional features. It is established that while conventional features fail to detect leak signals in data less than a few decibels, the new features can detect signals in data with signal to noise ratio of -24 dB. The results are reported for leak detection in data synthesised from PFR SGU background noise and Russian leak signals (leak rate 0.05 g/s.) and PFR SGU background noise and German ASB loop leak signals (leak rate 3.8 g/s) up to signal to noise ratio of -22 dB and -24 dB in the respective two cases. The reliability of the leak detection is also reported. (authors)

  9. ANALYSIS OF FIRST TRANSIENT PRESSURE OSCILLATION FOR LEAK DETECTION IN A SINGLE PIPELINE

    GUO Xin-lei; YANG Kai-lin; LI Fu-tian; WANG Tao; FU hui

    2012-01-01

    The leak detection is of great importance in the reliable operation and management of a pipeline system.Recently,attention is shifted to the use of the time domain or frequency domain methods based on the transient analysis.These methods sometimes require accurate pressure signals obtained during the transient period or by creating ideal conditions in testing.This paper proposes a method that does not require transient simulations over the whole or an extended period of time,but uses the first transient pressure oscillation to detect leaks.The method considers the propagation of the pressure oscillation wave created from a tast valve closure and the reflected damp wave from the leak.A leak in the pipe gives rise to reflected waves which in turn create discontinuities in the observed signal at the measurement section.The timing of the reflected damp wave and the magnitude represent the location and the size of the leak,respectively.An analytical expression is derived based on the Method Of Characteristic (MOC) for the relationship between the leakage and the reflected magnitude.The leak detection procedure based on the method is also given.Then the reliability of the method is tested on numerically simulated pressure signals and experimental pressure signals with calibrated leak parameters,and the results indicate a successful application and the promising features of the method.

  10. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  11. Software for neutrino acoustic detection and localization

    Bouhadef, B.

    2009-06-01

    The evidence of the existing of UHE (E>10eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  12. Software for neutrino acoustic detection and localization

    The evidence of the existing of UHE (E>1019eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  13. Software for neutrino acoustic detection and localization

    Bouhadef, B. [INFN Sezione Pisa, Polo Fibonacci, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, ' E. Fermi' University of Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)], E-mail: bouhadef@df.unipi.it

    2009-06-01

    The evidence of the existing of UHE (E>10{sup 19}eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  14. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  15. Rapid Hydrogen and Methane Sensors for Wireless Leak Detection Project

    National Aeronautics and Space Administration — Under NASA STTR NNK07EA39C, ASR&D developed passive surface acoustic wave (SAW) based hydrogen sensors that utilize Pd nanocluster films on self-assembled...

  16. Humanitarian mine detection by acoustic resonance

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  17. Improving Accuracy in Detecting Acoustic Onsets

    Duyck, Wouter; Anseel, Frederik; Szmalec, Arnaud; Mestdagh, Pascal; Tavernier, Antoine; Hartsuiker, Robert J.

    2008-01-01

    In current cognitive psychology, naming latencies are commonly measured by electronic voice keys that detect when sound exceeds a certain amplitude threshold. However, recent research (e.g., K. Rastle & M. H. Davis, 2002) has shown that these devices are particularly inaccurate in precisely detecting acoustic onsets. In this article, the authors…

  18. Sodium and steam generator leak detection for prototype fast breeder reactor (PFBR)

    The construction of the Prototype Fast Breeder Reactor (PFBR) a 500 MWe pool type sodium cooled breeder reactor with MOX fuel has started at Kalpakkam. The Instrumentation and Control of PFBR is designed for safe, reliable and economic operation of the plant. Special feature of breeder reactors is sodium instrumentation. Leaks in sodium systems have the possibility of being exceptionally hazardous due to the reaction of liquid sodium with oxygen and water vapour in the air. In addition, leakage from primary systems can cause radioactive contamination. Potential regions of leakage are near welds and high stress areas. Sodium also reacts with concrete releasing hydrogen and leading to damage and loss of strength of concrete structures. Leaking sodium catches fire depending on its temperature. Sodium temperature in the plant ranges from 423 K at filling condition to 820 K at reactor nominal power operating condition. Leak detectors are provided on pipelines, tanks and other capacities. Sodium leak detection systems are designed to meet requirements of ASME section XI- division 3 which specifies that sodium leak at the rate of 100 g/h are to be detected in 20 h for air filled vaults and 250 h for inert vaults. Diverse leak detection methods are employed for active and non-active sodium equipment and pipes. For detection of water leaks into Sodium in steam generators, Hydrogen in Sodium Detectors (HSD) are used. Hydrogen in Argon Detectors (HAD) are used for sodium temperatures below 623 K as HSD is not effective below this temperature due to non-dissolution of hydrogen formed. Choice and challenges posed in implementation of above leak detection requirements are discussed in this paper. (authors)

  19. New Sensor Cable for the Detection and Location of Leaks in Pipelines for Transportation of Hydrocarbons

    E.Orduña-Reyes

    2012-08-01

    Full Text Available At present, hydrocarbon leaks, generated mainly by corrosion of pipelines, cause large economic losses for Mexico.These leaks constitute a problem of serious consequences in Mexico and in other countries in the world. This workdescribes the results of the tests conducted on a new sensor cable for the detection and location of leaks in pipelinesfor transportation of hydrocarbons. When a liquid or gas enters in contact with the wall of the sensor cable, it causes ashort circuit in the wires; changing the measurement of the resistance may detect and locate the leak. The new sensorcable that is presented in this article has advantages over cables with similar characteristic made in other countries.The use of this sensor cable in pipelines of PEMEX will avoid economic losses, environmental damage and risks ofpossible explosions to the population. The experimental results demonstrate these advantages.

  20. Detection of a leaking boron-carbide control rod in a TRIGA Mark I reactor

    During a routine quarterly inspection of the boron-carbide control rods of the Omaha Veterans Administration Hospital 18 kW Triga Mark I reactor, a pin hole leak was detected approximately 3 mm from the chamfered edge. The leak was found by observing bubbles when the rod was withdrawn from the reactor tank for visual observation, and could not be seen with the naked eye. This suggests that pin hole leaks could occur and not be visually detected in control rods and fuel elements examined underwater. A review of the rod calibrations showed that the leak had not caused a loss in rod worth. Slides will be presented showing the bubbles observed during the inspection, together with an unmagnified and magnified view of the pin hole. (author)

  1. Mobile platform for acoustic mine detection applications

    Libbey, Brad; Fenneman, Douglas; Burns, Brian

    2005-06-01

    Researchers in academia have successfully demonstrated acoustic landmine detection techniques. These typically employ acoustic or seismic sources to induce vibration in the mine/soil system, and use vibration sensors such as laser vibrometers or geophones to measure the resultant surface motion. These techniques exploit the unique mechanical properties of landmines to discriminate the vibration response of a buried mine from an off-target measurement. The Army requires the ability to rapidly and reliably scan an area for landmines and is developing a mobile platform at NVESD to meet this requirement. The platform represents an initial step toward the implementation of acoustic mine detection technology on a representative field vehicle. The effort relies heavily on the acoustic mine detection cart system developed by researchers at the University of Mississippi and Planning Systems, Inc. The NVESD platform consists of a John Deere E-gator configured with a robotic control system to accurately position the vehicle. In its present design, the E-gator has been outfitted with an array of laser vibrometers and a bank of loudspeakers. Care has been taken to ensure that the vehicle"s mounting hardware and data acquisition algorithms are sufficiently robust to accommodate the implementation of other sensor modalities. A thorough discussion of the mobile platform from its inception to its present configuration will be provided. Specific topics to be addressed include the vehicle"s control and data acquisition systems. Preliminary results from acoustic mine detection experiments will also be presented.

  2. Detecting Well Casing Leaks in Bangladesh Using a Salt Spiking Method

    Stahl, M.O.; Ong, J.B.; Harvey, C. F.; Johnson, C. D.; Badruzzaman, A.B.M.; Tarek, M.H.; van Geen, A.; J. A. Anderson; Lane, J. W.

    2014-01-01

    We apply fluid-replacement logging in arsenic-contaminated regions of Bangladesh using a low-cost, down-well fluid conductivity logging tool to detect leaks in the cased section of wells. The fluid-conductivity tool is designed for the developing world: it is lightweight and easily transportable, operable by one person, and can be built for minimal cost. The fluid-replacement test identifies leaking casing by comparison of fluid conductivity logs collected before and after spiking the wellbor...

  3. Robustness analysis of sensor placement for leak detection and location under uncertain operating conditions

    Blesa, Joaquim; Nejjari, Fatiha; Sarrate, Ramon

    2014-01-01

    Some pressure sensor placement methods for leak detection and location in water distribution networks are based on the pressure sensitivity matrix analysis. This matrix depends on the network demands, which are nondeterministic, and the leak magnitudes, which are unknown. In this paper, the robustness of a sensor placement methodology against the fault sensitivity matrix uncertainty is studied. The robustness study is illustrated by means of a small academic network as well as a district mete...

  4. Model-based leak detection and location in water distribution networks considering an extended-horizon analysis of pressure sensitivities

    Myrna V. Casillas; Garza-Castañón, Luis E.; Puig, Vicenç

    2014-01-01

    In this paper, we propose a new approach for model-based leak detection and location in water distribution networks (WDN), which considers an extended time-horizon analysis of pressure sensitivities. Five different ways of using the leak sensitivity matrix to isolate the leaks are described and compared. The first method is based on the binarization approach. The second, third and fourth methods are based on the comparison of the measured pressure vectors with the leak sensitivity matrix usin...

  5. Detecting SF6 insulating gas leaks with an IR imaging camera

    Madding, R.; Benson, R. [FLIR Systems Inc., Boston, MA (United States)

    2007-11-15

    Sulfur hexafluoride (SF6) is an insulating gas used by electric utilities in high-voltage circuit breakers to prevent arcing. This article presented the new GasFindIR camera, and IR imaging camera that can detect SF6 leaks in very small amounts. Previous detection systems were cumbersome and required specific conditions which limited their practicality. The IR camera is a completely passive system and does not require an infrared laser except for the smallest leaks. This article also presented a brief history of SF6 as an insulating gas, problems caused by leaks, the theory behind the IR camera, and why it works so well. Some sample findings from both laboratory and actual operating circuit breakers in high-voltage system that use SF6 were also presented. In 2000, electric utilities in the United States used over 1.5 million pounds of SF6 as refill for leaks. At a current price of $10 per pound, this translates to a $15,000,000 annual cost to electric utilities. Since SF6 is 22,200 times more potent than carbon dioxide, finding and fixing SF6 leaks is desirable from an environment perspective. The new battery-operated GasFindIR camera is small, portable and extremely sensitive to SF6. It can find leaks as close as a few feet away or as far away as tens of yards. Tips and environmental conditions that optimize SF6 gas leak detection were also presented. The GasFindIR camera was shown to work very well for finding SF6 leaks in both 500 KV and 230 KV substations. 6 figs.

  6. Leak detection in steam generators with hydrogen monitors using diffusion membranes

    Large water leaks in steam-generators give rise to violent chemical reactions which can only be controlled by a pressure relief system. Smaller leaks do not pose direct safety hazards but wastage of pipes surrounding the leak should be prevented. Leak detection is best carried out by monitors recording the hydrogen in sodium content. For large leaks the specification of these monitors causes no problems, contrary to those for the timely detection of small leaks. Essential parameters are sensitivity and speed of response, specificity is less important. But apart from the instrument specification, a number of factors, related to the construction and operation of the steam-generator, determine the performance of the leak detection system. A discussion of these factors is given, with a view to the design of the SNR-300. Although tile results of many theoretical studies and experimental work are available, there seems to be room for further investigations on the growths of minor leaks. Also lacking a sufficient experience concerning the level and fluctuations of the hydrogen background in the sodium. A description is given of the hydrogen monitor developed at TNO, which is based on a combination of a nickel membrane and an ion getter pump. The parameters of this instrument have been evaluated in a test rig. Operational experience with the monitor is available from the 50 MW Test Facility at Hengelo. Especially for further studies the need for a calibrated instrument has become apparent. Test are going on with a modified design of a monitor meeting this requirement. (author)

  7. Use of sulfur hexafluoride and perfluorocarbon tracers in plutonium storage containers for leak detection

    This study involves an investigation of the feasibility of a tracer-based leak detection system for long-term interim plutonium storage. In particular, a protocol has been developed based on the use of inert tracers with varying concentrations in order to open-quotes fingerprintclose quotes or open-quotes tagclose quotes specific containers. A particular combination of tracers at specific ratios could be injected into the free volume of each container, allowing for the detection of leaks as well as determination of the location of leaking containers. Based on plutonium storage considerations, sulfur hexafluoride and four perfluorocarbon tracers were selected and should allow a wide range of viable fingerprinting combinations. A open-quotes high-lowclose quotes protocol which uses two distinct chromatographic peak areas or concentration levels, is recommended. Combinations of air exchange rates, detection durations, and detectability limits are examined in order to predict minimum tracer concentrations required for injection in storage containers

  8. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm

    Tao, Wang; Dongying, Wang; Yu, Pei; Wei, Fan

    2015-09-01

    To resolve the measured target position to determine and locate leak problems with current gas leak detection and localization systems based on ultrasonic technology, this paper presents an improved multi-array ultrasonic gas leak TDOA (time difference of arrival) localization and detection method. This method involves arranging ultrasonic transducers at equal intervals in a high-sensitivity detector array, using small differences in ultrasonic sound intensity to determine the scope of the leak and generate a rough localization, and then using an array TDOA localization algorithm to determine the precise leak location. This method is then implemented in an ultrasonic leak detection and localization system. Experimental results showed that the TDOA localization method, using auxiliary sound intensity factors to avoid dependence on a single sound intensity to determine the leak size and location, achieved a localization error of less than 2 mm. The validity and correctness of this approach were thus verified.

  9. Acoustic detectability of Rhynchophorus cruentatus (Coleoptera: Dryophthoridae)

    The palmetto weevil, Rhynchophorus cruentatus Fabricius, native to Florida, attacks palm trees. Like its economically destructive relatives, R. ferrugineus (Olivier) and R. palmarum L., it feeds internally and often is not detected until irreparable damage occurs. Acoustic methods previously used su...

  10. Infrared-thermography-based pipeline leak detection systems

    Weil, Gary J.; Graf, Richard J.

    1991-03-01

    Computerized Infrared Thermographic pipeline inspection is now a refined and accurate process having been thoroughly proven to be an accurate, cost effective, and efficient technology during a 10 year development and testing process. The process has been used to test pipelines in chemical plants, water supply systems, steam lines, natural gas pipelines and sewer systems. Its non-contact, nondestructive ability to inspect large areas from above ground with 100% coverage and to locate subsurface leaks as well as the additional capability to locate voids and erosion surrounding pipelines make its testing capabilities unique. This paper will detail the development of computerized infrared thermographic pipeline testing along with case histories illustrating its implementation problems and successes and innovations anticipated for the future.

  11. Infrared thermographic pipeline leak detection systems for pipeline rehabilitation programs

    Weil, Gary J.

    1998-03-01

    Computerized infrared thermographic pipeline inspection is now a refined and accurate process having been thoroughly proven to be an accurate, cost effective, and efficient technology for pipeline rehabilitation programs, during a 10 year development and testing process. The process has been used to test pipelines in chemical plants, water supply systems, steam lines, natural gas pipelines and sewer systems. Its non- contact, non-destructive ability to inspect large areas, from above ground, with 100% coverage and to locate subsurface leaks as well as the additional capability to locate voids and erosion areas surrounding pipelines, make its testing capabilities unique and highly desirable. This paper details the development of computerized infrared thermographic pipeline testing along with case histories illustrating its implementation problems and successes during various rehabilitation programs involving pipelines carrying water, gas, petroleum, and sewage.

  12. Laser-based sensor for a coolant leak detection in a nuclear reactor

    Kim, T.-S.; Park, H.; Ko, K.; Lim, G.; Cha, Y.-H.; Han, J.; Jeong, D.-Y.

    2010-08-01

    Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.

  13. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  14. Sound propagation tests for acoustic detection of simulated sodium-water reaction

    The characteristics of sound propagation in a steam generator were tested in order to investigate the feasibility of an acoustic leak detection by small leak sodium-water reactions. The test model was composed of the vessel filled with water, the inner pipe, the shroud, and two heat transfer coils. Transducers, gas leak nozzles and an underwater speaker were set up for the simulated sound source. The results indicate that the acoustic signal detected at the vessel wall has a comparable SN ratio to the guide pipe or the heat transfer tubes, and that the difference of the RMS values depend on the standing wave, rather than the attenuation by distance or diffractions, Therefore, it was estimated that the sound field in the vessel was reverberant, and the difference between one and two helical coils depends on the sound energy absorption by them. The RMS values in the high frequency range (more than 50 kHz) do not increase in proportion to the gas leak rate, more than about 200 cc/s, because of the attenuation by gas bubbles. (author)

  15. Leak detection on the DIII-D tokamak using helium entrainment techniques

    The entrainment of helium in a viscous gas flow was utilized first to compartmentalize, and then to pinpoint a leak across the inner skin of the double-walled DIII-D vacuum vessel. Inaccessible from the outside, the leak connected the cooling channels in the wall interspace with the primary vacuum chamber. By entraining helium in the pressurized flow from the single-pass DIII-D gas circulation system, it was possible to expose well-defined portions of the wall to helium without disassembly of the poorly accessible cooling channel manifolds. Varying the point on the gas inlet manifold at which helium was injected permitted the localization of the leak to a single 300 toroidal sector of the vessel. The exact location of the leak was found from inside the vessel by spraying helium on suspect regions of the armor-clad skin, while sweeping the contents of the small-bore cooling channels to the foreline of a Varian Contraflow/T leak detector with a 0.1 Pa-m3/s flow of nitrogen. Model calculations of the cooling tube geometry were used to predict the response time to entrained helium of the actual leak detection setup

  16. EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS

    Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

    2005-05-01

    This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

  17. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs

  18. Improvement of the composite materials used for detecting liquid metal leaks

    The main specification application concerns a composite material employed for detecting liquid metal leaks. This metal includes a fabric of refractory and electrically insulating mineral thread in to which conducting electric wires, electrically insulated in relation to the external surfaces of the fabric, are inserted at regular intervals. When this material is used for detecting liquid metal leaks, in particular along a pipe in which this metal is flowing, a strip of this material is placed under the pipe so as to form a trough, or else is wrapped right round it, particularly where the leaks are likely to be greater. The conducting electric wires inserted in the fabric are connected to an electric insulation fault detector enabling the changes in electric resistance between each continuous conducting wire component and its neighbour to be monitored and possibly between each component of the continuous conducting wire and the earth

  19. Algorithms for near real-time detection of gas leaks from buried pipelines using hyperspectral imagery

    Hoffmann, G. D.; Silver, E. A.; Pickles, W.; Male, E.

    2009-12-01

    Gas leaks from buried pipelines can directly impact the health of overlying vegetation. The leak can produce patches of highly stressed or dead vegetation. Plant health can be assessed remotely by measuring the depth of the chlorophyll absorption, which is located between 550 nm and 700 nm in reflectance imagery. Chlorophyll absorption is readily recognizable in multispectral and hyperspectral imagery as a strong absorption band centered on red light (typically 680 nm wavelength). We have examined several methods of measuring chlorophyll absorption with the goal of automating vegetation stress detection above underground pipelines in order to facilitate same-day detection of potential pipeline leak locations. One method, in which we measure vegetation stress as the ratio of the measured reflectance at peak absorption to the spectral continuum, was particularly successful. We compare the results of this measurement with a manual analysis of 0.18 m resolution imagery of several controlled CO2 leaks, finding the automatic analysis to be robust. High spatial resolution is shown to greatly increase the quality of the results, however, we show that this method works in even 3 m resolution imagery of an underground pipeline methane leak. This algorithm runs very quickly for large images. We are developing the image analysis algorithm to operate in real-time while flying buried pipeline right of way with hyperspectral sensors.

  20. Signal Classification for Acoustic Neutrino Detection

    Neff, M; Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; Richardt, C

    2011-01-01

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of one percent is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  1. Report: Suitability of Leak Detection Technology for Use In Ethanol-Blended Fuel Service

    As the use of biofuels has increased in the last decade, there has been a level of concern over the effect that ethanol blends have on the material compatibility and operability of existing infrastructure. The focus of this research is to determine whether leak detection (LD) te...

  2. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford

  3. New method of leak detecting in diagnostic of gas pipeline system

    This report describes new directions in gas transmission pipelines diagnostics as well as new methods and equipment used to detect leaks. It was also shown that efficient and functional diagnostics system is the necessary condition to keep the exploitation of transmission systems safe. (author)

  4. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    2010-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  5. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    Ning Yu

    2011-12-01

    Full Text Available In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  6. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464

  7. Research and development of a high-temperature helium-leak detection system (joint research). Part 1 survey on leakage events and current leak detection technology

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In High Temperature Gas-cooled Reactors (HTGR), the detection of leakage of helium at an early stage is very important for the safety and stability of operations. Since helium is a colourless gas, it is generally difficult to identify the location and the amount of leakage when very little leakage has occurred. The purpose of this R and D is to develop a helium leak detection system for the high temperature environment appropriate to the HTGR. As the first step in the development, this paper describes the result of surveying leakage events at nuclear facilities inside and outside Japan and current gas leakage detection technology to adapt optical-fibre detection technology to HTGRs. (author)

  8. Sensor development and calibration for acoustic neutrino detection in ice

    Karg, Timo; Bissok, Martin; Laihem, Karim; Semburg, Benjamin; Tosi, Delia; Collaboration, for the IceCube

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been ...

  9. Acoustic metamaterial for subwavelength edge detection

    Molerón, Miguel; Daraio, Chiara

    2015-08-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ~5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions.

  10. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Pookongchai Kritsada; Nakornrat Prasit; Sookananta Bongkoj; Buasri Panhathai

    2015-01-01

    This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point...

  11. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    Ning Yu; Renjian Feng; Jiangwen Wan; Yinfeng Wu; Yang Yu

    2011-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initia...

  12. Detection and Classification of Whale Acoustic Signals

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  13. Acoustic signal detection of manatee calls

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-04-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  14. Fiber optic hydrophones for acoustic neutrino detection

    Buis, E. J.; Doppenberg, E. J. J.; Lahmann, R.; Toet, P. M.; de Vreugd, J.

    2016-04-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order of magnitude larger than what has presently been realized. With a large detection volume and a large number of hydrophones, there is a need for technology that is cheap and easy to deploy. Fiber optics provide a natural way for distributed sensing. In addition, a sensor has been designed and manufactured that can be produced cost-effectively on an industrial scale. Sensitivity measurements show that the sensor is able to reach the required sea-state zero level. For a proper interpretation of the expected bipolar signals, filtering techniques should be applied to remove the effects of the unwanted resonance peaks.

  15. Crucial technologies of oil-transporting pipe leak detection and location based on wavelet and chaos

    Zhang, S. Q.; Jin, S. J.; Yang, F. L.; Wang, X. Q.; Bai, Q. Y.

    2006-03-01

    By detecting pressure and flux simultaneously, the leak of an oil-transporting pipe can be found and diagnosed synthetically. The flux of pipes is measured by an ultrasonic flow meter; considering the precision of the flux measured, a method based on the character of intermittent chaos of the Duffing system to detect weak signals under strong noise is introduced. The ultrasonic signals with a certain frequency could be extracted accurately from the complicated strong noise. So the flux of pipes can be computed precisely by an accurate ultrasonic signal. The location of a leak position is mainly determined by the time difference between the negative pressure waves measured by the pressure sensors located at both ends of the oil-transporting pipe. A singular point of a negative pressure wave can be judged accurately by a coefficient feature of the local extreme values of the wavelet transform. So, the precise location of the leak position of the oil-transporting pipe can be found. It can be shown by results of experiments that the precision of the leak location has been improved effectively, which can be about 1%.

  16. Engineering Sensitivity Improvement of Helium Mass Spectrometer Leak Detection System by Means Global Hard Vacuum Test

    The engineering sensitivity improvement of Helium mass spectrometer leak detection using global hard vacuum test configuration has been done. The purpose of this work is to enhance the sensitivity of the current leak detection of pressurized method (sniffer method) with the sensitivity of 10-3 ∼ 10-5 std cm3/s, to the global hard vacuum test configuration method which can be achieved of up to 10-8 std cm3/s. The goal of this research and development is to obtain a Helium leak test configuration which is suitable and can be used as routine bases in the quality control tests of FPM capsule and AgInCd safety control rod products. The result is an additional instrumented vacuum tube connected with conventional Helium mass spectrometer. The pressure and temperature of the test object during the leak measurement are simulated by means of a 4.1 kW capacity heater and Helium injection to test object, respectively. The addition of auxiliary mechanical vacuum pump of 2.4 l/s pumping speed which is directly connected to the vacuum tube, will reduce 86 % of evacuation time. The reduction of the measured sensitivity due to the auxiliary mechanical vacuum pump can be overcome by shutting off the pump soon after Helium mass spectrometer reaches its operating pressure condition. (author)

  17. Detection of Water Leaks in Beni-Haroun Dam (Algeria)

    The main objective of this work was to detect water leakage origin combining conventional, tracing and isotope techniques. The investigation was performed by a research team from the 'Algiers Nuclear Research Centre' in collaboration with engineers from the 'National Agency for Dams'. The chemical and isotopic results have shown no influence of dam water on the water sampled at the piezometers and drains that are present in the close neighbourhood of the dam. However, the water flowing at drain D15 has exhibited the nearest quality to that dam. Dye tracing has shown a water circulation through complex pathways for the left bank. (author)

  18. Survey of technologies available to detect small leaks on the Trans Alaska Pipeline

    This paper discussed the types of systems that are currently used to detect any major leaks in the Trans Alaska Pipeline System (TAPS) and presented some facts about the pipeline to demonstrate the problems facing leak detection in a region with temperature extremes and reduced sunlight during half of the year. In particular, this paper described the operation of the 1290 kilometer section of pipeline belonging to the Alyeska Pipeline Service Company and their inquiries regarding the feasibility of using sensor technologies developed for space exploration. The Jet Propulsion Laboratory (JPL) examined the possibility of using remote chemical and thermal sensors, airborne light detection and ranging (LIDAR) sensors, ground penetrating radar, and in situ chemical sensing. It was determined that these space-based remote sensing techniques are not suitable for detecting small leaks. The best option appeared to be in a simple in situ system of mass-produced, tiny sensors capable of one-time or multi-use detection of hydrocarbons through BTEX (benzene, toluene, ethylbenzene and xylene) vapours. It was emphasized, however, that some technical and economic difficulties must still be solved before these sensors can be put into commercial use for TAPS. 5 refs., 1 tab

  19. An Evaluation of the Acoustic Signal processing Techniques for Sodium-Water Reaction Detection in KALIMER-600

    Hur, Seop; Seong, S. H.; Kim, T. J.; Kim, S. O. [KAERI, Daejeon (Korea, Republic of); Lee, M. K. [Hannam Univ., Daejeon (Korea, Republic of)

    2005-02-15

    KALIMER-600 is a pool type fast breeder reactor using liquid sodium as a coolant. Although it has the several advantages such as long-term fuel cycle and enhanced safety concepts, it is possible to leak the secondary side water/steam into sodium boundary. This event could make the plant abnormal condition. One of the major design issues in KALIMER-600 is, therefore, to develop the system which can early detect the sodium-water reaction to protect the sodium-water reaction event. After evaluating the various signal processing techniques for passive acoustic leak detection, we have proposed the early leak detection logics. the signal processing techniques for evaluation were the spectral estimation using the linear modeling, the estimation error of linear modeling, the system adaptation rate using an adaptive signal processing, and the background noise cancellation using adaptive and fixed filtering. As the analysis results regarding the stationary and the cross-correlation of leak signals and background noises, the two signal systems met a wide-dense stationary process and there was only the week cross correlation relationship between two signals. It is ,therefore, possible to use the linear/harmonic modeling of signal systems, and the leak signal in sensor outputs can be discriminated. As the results of the evaluation of the various spectral estimation methods, the spectral estimation method based on autoregressive modeling was more practical comparing with other methods in the sodium-water reaction detection. The passive acoustic leak detection logics were suggested based on above evaluations. the logics consist of 3 levels; transient identification, leak determination and leak symptom identification. The simulation results using sodium-water reaction signals showed that it was possible to determine the leak at above -3dB of SNR, while between -3 dB and -10 dB of SNR the logics determined the leak symptom identification. The detection sensitivity can be enhanced

  20. Detailed leak detection test plan and schedule for the Oak Ridge National Laboratory LLLW active pipelines

    This document provides a detailed leak detection test plan and schedule for leak testing many of the pipelines that comprise the active portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement (FFA) between the US Department of Energy (DOE) and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC). The LLLW system is an interconnected complex of tanks and pipelines. The FFA distinguishes four categories of tank and pipeline systems within this complex: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems. This plan and schedule addresses leak testing of the Category C pipelines and those doubly contained pipelines that do not fully meet the requirements for secondary containment as listed in the FFA

  1. A Fiber-Optic Sensor for Leak Detection in a Space Environment

    Sinko, John E.; Korman, Valentin; Hendrickson, Adam; Polzin, Kurt A.

    2009-01-01

    A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves.

  2. Probabilistic design of a near-surface CO2 leak detection system.

    Yang, Ya-Mei; Small, Mitchell J; Ogretim, Egemen O; Gray, Donald D; Bromhal, Grant S; Strazisar, Brian R; Wells, Arthur W

    2011-08-01

    A methodology is developed for predicting the performance of near-surface CO(2) leak detection systems at geologic sequestration sites. The methodology integrates site characterization and modeling to predict the statistical properties of natural CO(2) fluxes, the transport of CO(2) from potential subsurface leakage points, and the detection of CO(2) surface fluxes by the monitoring network. The probability of leak detection is computed as the probability that the leakage signal is sufficient to increase the total flux beyond a statistically determined threshold. The methodology is illustrated for a highly idealized site monitored with CO(2) accumulation chamber measurements taken on a uniform grid. The TOUGH2 code is used to predict the spatial profile of surface CO(2) fluxes resulting from different leakage rates and different soil permeabilities. A response surface is fit to the TOUGH2 results to allow interpolation across a continuous range of values of permeability and leakage rate. The spatial distribution of leakage probability is assumed uniform in this application. Nonlinear, nonmonotonic relationships of network performance to soil permeability and network density are evident. In general, dense networks (with ∼10-20 m between monitors) are required to ensure a moderate to high probability of leak detection. PMID:21732603

  3. Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259

    The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades

  4. Leak detection and isolation in water distribution networks using principal components analysis and structured residuals

    Gertler, Janos; Romera Formiguera, Juli; Puig Cayuela, Vicenç; Quevedo Casín, Joseba Jokin

    2010-01-01

    Leaks are present to some extent in all water-distribution systems. This paper proposes a leakage localization method based on pressure measurements and the application of principal component analysis to the fault diagnosis in water distribution systems. First, some theoretical basics are introduced, from model building and modeling the fault effects to monitoring. Then a simple hydraulic case study is presented to illustrate the proposed methodology, its particularities and the detection res...

  5. CALM: cascading system with leaking detection mechanism for medical image segmentation

    Liu, Jiang; Lim, Joo Hwee; Li, Huiqi

    2008-03-01

    Medical image segmentation is a challenging process due to possible image over-segmentation and under-segmentation (leaking). The CALM medical image segmentation system is constructed with an innovative scheme that cascades threshold level-set and region-growing segmentation algorithms using Union and Intersection set operators. These set operators help to balance the over-segmentation rate and under-segmentation rate of the system respectively. While adjusting the curvature scalar parameter in the threshold level-set algorithm, we observe that the abrupt change in the size of the segmented areas coincides with the occurrences of possible leaking. Instead of randomly choose a value or use the system default curvature scalar values, this observation prompts us to use the following formula in CALM to automatically decide the optimal curvature values γ to prevent the occurrence of leaking : δ2S/δγ2 >= M, where S is the size of the segmented area and M is a large positive number. Motivated for potential applications in organ transplant and analysis, the CALM system is tested on the segmentation of the kidney regions from the Magnetic Resonance images taken from the National University Hospital of Singapore. Due to the nature of MR imaging, low-contrast, weak edges and overlapping regions of adjacent organs at kidney boundaries are frequently seen in the datasets and hence kidney segmentation is prone to leaking. The kidney segmentation accuracy rate achieved by CALM is 22% better compared with those achieved by the component algorithms or the system without leaking detection mechanism. CALM is easy-to-implement and can be applied to many applications besides kidney segmentation.

  6. Steel Casing Resistivity Technology (SCRT): Innovative Applications of Electrical Methods for Buried Tank Leak Detection

    Fink, J. B.; Levitt, M. T.; Gee, G. W.

    2002-12-01

    The need for non-invasive leak detection methods is extremely important for monitoring cleanup efforts of nuclear waste contained in underground storage tanks at the Hanford Nuclear Facility in Washington. Drilling is both very expensive and undesirable in the tank farms. Various geophysical imaging methods were evaluated over the past two years at two "cold" sites but within geologic conditions similar to the tank farms. The "cold" sites consisted of 1. a dense array of 32 steel casings, and 2. a "mock tank" in which various controlled leaks (injections) of a saturated aqueous solution of Na2S2O35H20 were metered. Nearly all methods required invasive drilling for subsurface placement of sensors. An innovative direct-current electrical method using existing infrastructure as grounding electrodes, such as steel casings and steel tanks, has shown very promising results and is undergoing further testing. The most useful results have been obtained by using multiple grounding points for spatial determinations and continuous time-series monitoring for temporal variations. Although the large size of tanks and lengths of casings make discrete volume estimations difficult, data acquired for test leaks to date have shown a surprising correlation between leak rates and the rate-of-change of specific electrical measurements. First order volume approximations can be made based on existing knowledge of the geologic environment and hydraulic parameters. Spatial data provide general leak location and gross flow characteristics, whereas temporal data indicate test leak commencement, cessation, and approximate leak rates. On-going testing is providing quantitative calibration information that is expected to transfer to the tank farm environments. Procedures are being developed that will simplify the installation and operation of the system in the tank-farm environments. Implementation of the technology necessitated remote operation and monitoring of the electrical system

  7. Characteristic Extraction of Acoustic Leak Signals and Interfering Signals for Natural Gas Pipeline%输气管道泄漏音波与干扰信号特征提取

    付俊涛; 李玉星; 孟令雅; 刘超

    2012-01-01

    When acoustic method was used to leak detection, external interference (operation of compressor and valve, pipeline knocking, etc. ) should be distinguished with acoustic leak signals to improve the accuracy of leak detection and reduce false alarm. The technologies of extracting wave characteristics were summarized. The acoustic leak signals and interfering signals were gathered by a high pressure and long distance leak test loop to analyze characteristics of time domain, frequency domain and time -frequency domain. The main characteristics of time domain were mean value, root mean square value, kurtosis, skewness and correlation function, etc. Frequency spectrum analysis and power spectrum density were adopted to analyze the feature of frequency domain, while short time Fourier transform was used to process time - frequency analysis. The results show that the external interference can be removed effectively by the characteristics of time domain, frequency domain and time-frequency domain.%在总结分析音波泄漏检测特征量提取方法的基础上,利用高压泄漏检测实验装置,分别采集泄漏及各种干扰音波信号,对其进行时域、频域及时频域结合的综合分析,并提取时域、频域及时频域结合的特征量.时域特征量主要有均值、均方根值、峰度、偏度、相关函数及协方差函数,频域特征量主要信号的频谱分析和功率谱密度估计分析,时频联合分析采用短时傅里叶变换来实现.分析结果显示,整体峰度可以用来区分泄漏及干扰信号,信号均值和相关函数、协方差函数可以作为敲击信号的特征,信号波形和均方根值可将压缩机信号区分出来,信号偏度、相关函数及协方差函数可以作为阀门动作的特征量,并且结合频域及时频域特征,可以排除各种外界干扰影响,从而降低音波泄漏检测的误报率.

  8. detection of buried objects using acoustic waves

    Many obstacles are faced in removing the buried landmines such as the loss or absence of maps or information about these mines and the high financial costs needed to remove these mines. So that many techniques were designed and developed for demining (detecting and clearing) these buried mines. Each technique has some strengths and drawbacks. This thesis presents a survey on the landmine detection techniques, the strengths and limitations of these techniques are highlighted and compared to show the ideal conditions and the challenges facing each technique. Furthermore, a comparison between these techniques from the points of view of cost, complexity, speed, safety, false alarms in detection and the effect of the environmental conditions is presented. one of the reliable and powerful landmine detection techniques is the Laser Doppler Vibrometer (LDV)-based Acoustic to Seismic (A/S) landmine detection system. The interpretation of the LDV-based A/S data is performed off-line manually, depending heavily on the skills, experience, alertness and consistency of a trained operator. This requires a significantly long time. Results typically suffer from inconsistency and errors, particularly when dealing with large volumes of data. This thesis proposes several image processing techniques to automate the process of landmine detection from the data scanned by the LDV-based A/S system. The obtained results are so far promising in terms of accuracy, consistency, reliability and processing speed. The previously proposed techniques for landmine detection give high false alarm rates. This thesis proposes some techniques to improve the performance of the automatic object detection techniques. These techniques are based on segmentation, masking, morphology image processing and the wavelet transform. These techniques have achieved a high detection rate.

  9. Acoustic monitoring method and device

    The present invention provides a method of eliminating resonance noises upon acoustically monitoring the operation state of power plants and plant equipments whether they are normal or not, to improve sensitivity for detecting abnormalities. Namely, a microphone detects acoustic signals including leaking sounds and converts them into electric signals. An amplifier amplifies the electric signals to an appropriate level. A noise eliminating section eliminates resonance noises other than the leaking sounds. An abnormality judging section judges presence of abnormality based on the level of the acoustic signals of the leaking sounds. With such a constitution, a plurality of resonance noises generated also during normal plant operation are automatically eliminated. Since resonance noises as a factor of lowering the sensitivity for abnormal sound detection are not included in the acoustic signals, the sensitivity for the abnormal sound detection is improved. Accordingly, the performance of the acoustic monitoring device is improved. (I.S.)

  10. Evaluation of an Interferometric Sensor for In-Space Detection of Gas Leaks

    Polzin, Kurt A.; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2009-01-01

    Space mission planning often involves long-term storage of volatile liquids or high-pressure gases. These may include cryogenic fuels and oxidizers, high-pressure gases, and life-support-critical consumables. The risk associated with the storage of fluids and gases in space systems has long been an issue and the ability to retain these fluids is often tied to mission success. A leak in the storage or distribution system can cause many different problems, including a simple, but mission endangering, loss of inventory or, in severe cases, unbalanced thrust loads on a flight vehicle. Cryogenic propellants are especially difficult to store, especially over a long duration. The propellant can boil off and be lost through the insulating walls of the tank or simple thermal cycling of the fittings, valves, and propellant feed lines may unseat seals allowing the fluid to escape. Current NASA missions call for long-duration in-space storage of propellants, oxidizers, and life support supplies. Leaks of a scale detectable through a pressure drop in the storage tank are often catastrophic and have long been the focus of ground-based mitigation efforts where redundant systems are often employed. However, there is presently no technology available for detecting and monitoring low-level, but still mission-endangering, gas leaks in space. Standard in-space gas detection methods either have a very limited pressure range over which they operate effectively or are limited to certain gases. Mass spectrometer systems are able to perform the detection tasks, but their size, mass and use of high voltage, which could potentially lead to an arc that ignites a combustible propellent, severely limit their usefulness in a space system. In this paper, we present results from testing of the light-based interferometric gas monitoring and leak detection sensor shown in Fig. 1. The output of the sensor is an interference fringe pattern that is a function of the gas density, and commensurate index

  11. Detection of gas leaks along pipelines by spectrally tuned infrared imaging

    Gross, Werner; Hierl, Thomas; Scheuerpflug, H.; Schirl, U.; Schulz, Max J.

    1998-12-01

    We present a novel method developed for the localization of leaks along natural gas pipelines. Methane distributions in the atmosphere around the leaky pipeline are detected and visualized by spectrally tuned IR imaging. In contrast to conventional techniques which utilize laser radiation sources or scanning, we irradiate the overall region under investigation by 1 kW halogen lamps. The scene background is subtracted by a real-time computer evaluation of the image. The methane gas emitted from the leak creates a flickering cloud in the image which is easily recognized. Methane concentrations as low as 0.03 percent by volume are visible. The method was successfully tested under realistic conditions on a buried pipeline by a natural gas provider.

  12. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting

    Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David

    2013-05-01

    Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).

  13. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  14. Gas Leak Inspection Using Thermal, Visual and Depth Images and a Depth-Enhanced Gas Detection Strategy

    Johannes Rangel

    2015-04-01

    Full Text Available Advanced gas leak detection methods in industrial environments are of vital importance as they may translate into a reduction of accidents and increased economic efficiency. This paper proposes the use of different sensors for detecting and localizing leakages remotely, based on the measurement of variables involved when a leak is present. The processing and fusing of thermal, depth and visual images, as well as gas concentration scanning technique, is the proposed method in this article.

  15. Detecting Methane From Leaking Pipelines and as Greenhouse Gas in the Atmosphere

    Riris, Haris; Numata, Kenji; Li, Steven; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha

    2012-01-01

    Laser remote sensing measurements of trace gases from orbit can provide unprecedented information about important planetary science and answer critical questions about planetary atmospheres. Methane (CH4) is the second most important anthropogenically produced greenhouse gas. Though its atmospheric abundance is much less than that of CO2 (1.78 ppm vs. 380 ppm), it has much larger greenhouse heating potential. CH4 also contributes to pollution in the lower atmosphere through chemical reactions, leading to ozone production. Atmospheric CH4 concentrations have been increasing as a result of increased fossil fuel production, rice farming, livestock, and landfills. Natural sources of CH4 include wetlands, wild fires, and termites, and perhaps other unknown sources. Important sinks for CH4 include non-saturated soils and oxidation by hydroxyl radicals in the atmosphere. Remotely measuring CH4 and other biogenic molecules (such as ethane and formaldehyde) on Mars also has important implications on the existence of life on Mars. Measuring CH4 at very low (ppb) concentrations from orbit will dramatically improve the sensitivity and spatial resolution in the search for CH4 vents and sub-surface life on other planets. A capability has been developed using lasers and spectroscopic detection techniques for the remote measurements of trace gases in open paths. Detection of CH4, CO2, H2O, and CO in absorption cells and in open paths, both in the mid- IR and near-IR region, has been demonstrated using an Optical Parametric Amplifier laser transmitter developed at GSFC. With this transmitter, it would be possible to develop a remote sensing methane instrument. CH4 detection also has very important commercial applications. Pipeline leak detection from an aircraft or a helicopter can significantly reduce cost, response time, and pinpoint the location. The main advantage is the ability to rapidly detect CH4 leaks remotely. This is extremely important for the petrochemical industry

  16. Acoustic emission

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  17. ALIBABA, an assistance system for the detection of confinement leaks in a PWR reactor

    The objective of the Crisis Technical Center (CTC) of the French Institute for Nuclear Protection and Safety (IPSN) is to estimates the consequences of a given nuclear accident on the populations and the environment. ALIBABA is a data processing tool available at the CTC and devoted to the detection of confinement leaks in 900 MWe PWR reactors using the activity values measured by the captors of the installation. The heart of this expert system is a structural and functional representation of the different components directly involved in the leak detection (isolating valves, ventilation systems, electric boards etc..). This tool can manage the availability of each component to make qualitative and quantitative balance-sheets. This paper presents the ALIBABA software, an industrial prototype realized with the SPIRAL knowledge base systems generator at the CEA Reactor Studies and Applied Mathematics Service (SERMA) and commercialized by CRIL-Ingenierie Society. It describes the techniques used for the modeling of PWR systems and for the visualization of the survey. The functionality of the man-machine interface is discussed and the means used for the validation of the software are summarized. (J.S.). 6 refs

  18. A New Method of Detecting Leaks in Reservoirs or Canals Using Labelled Bitumen Emulsions

    The paper describes a method of detecting and localizing leaks in natural or artificial stored-water bodies such as lakes, canals, basins, reservoirs or wells. The method consists of injecting into the stored water an emulsion labelled with a radioactive tracer. The labelled emulsion is entrained into the leakage areas where emulsion particles separate from the water and accumulate. The distribution of these particles, which can be considered as proportional to the specific infiltration flow for structures with interstitial permeability, is then determined ''in situ'' simply by measuring the radioactivity. Where the labelled emulsion is an emulsion of bitumen, the plastic properties of this product are useful in promoting the agglomeration of the particles and their adhesion to the materials of the revetment or wall to be studied. The paper describes the preparation of an emulsion of bitumen labelled with iodine-131 and its application in determining permeability gradients and detecting leaks in canal revetments. It is pointed out in conclusion that this original method has a vast range of applications. It can, for example, be successfully used to study the relative permeabilities of strata in which wells, pits or boreholes have been drilled, and to distinguish between areas of varying permeabilities. (author)

  19. A new method of detecting leaks in reservoirs or canals using labelled bitumen emulsions

    The paper describes a method of detecting and localizing leaks in natural or artificial stored-water bodies such as lakes, canals, basins, reservoirs or wells. The method consists of injecting into the stored water an emulsion labelled with a radioactive tracer. The labelled emulsion is entrained into the leakage areas where emulsion particles separate from the water and accumulate. The distribution of these particles, which can be considered as proportional to the specific infiltration flow for structures with interstitial permeability, is then determined 'in situ' simply by measuring the radioactivity. Where the labelled emulsion is an emulsion of bitumen, the plastic properties of this product are useful in promoting the agglomeration of the particles and their adhesion to the materials of the revetment or wall to be studied. The paper describes the preparation of an emulsion of bitumen labelled with iodine-131 and its application in determining permeability gradients and detecting leaks in canal revetments. It is pointed out in conclusion that this original method has a vast range of applications. It can, for example, be successfully used to study the relative permeabilities of strata in which wells, pits or boreholes have been drilled, and to distinguish between areas of varying permeabilities. (author)

  20. Leak detection in medium density polyethylene (MDPE) pipe using pressure transient method

    Amin, M. M.; Ghazali, M. F.; PiRemli, M. A.; Hamat, A. M. A.; Adnan, N. F.

    2015-12-01

    Water is an essential part of commodity for a daily life usage for an average person, from personal uses such as residential or commercial consumers to industries utilization. This study emphasizes on detection of leaking in medium density polyethylene (MDPE) pipe using pressure transient method. This type of pipe is used to analyze the position of the leakage in the pipeline by using Ensemble Empirical Mode Decomposition Method (EEMD) with signal masking. Water hammer would induce an impulse throughout the pipeline that caused the system turns into a surge of water wave. Thus, solenoid valve is used to create a water hammer through the pipelines. The data from the pressure sensor is collected using DASYLab software. The data analysis of the pressure signal will be decomposed into a series of wave composition using EEMD signal masking method in matrix laboratory (MATLAB) software. The series of decomposition of signals is then carefully selected which reflected intrinsic mode function (IMF). These IMFs will be displayed by using a mathematical algorithm, known as Hilbert transform (HT) spectrum. The IMF signal was analysed to capture the differences. The analyzed data is compared with the actual measurement of the leakage in term of percentage error. The error recorded is below than 1% and it is proved that this method highly reliable and accurate for leak detection.

  1. Modeling of leak detection system for high pressure transmission system of natural gas

    Gas Industry can be considered as one of the most important industries in the economy of any country. Safe Transportation of Gas is thus considered to be vital because interruption of Supply of Gas to consumers not only causes domestic problems but also loss of revenue to country. Now most of power generation Sector has switched over their system to Natural Gas. So, interruption of supply to this sector can cause a lot of problems. This paper has provided assessment of technology approach and formulated this approach for Leak Detection Model in High Pressure Transmission system for current and future operations, which will improve the efficiency of any transmission company to a great extent. This model can be extremely helpful in conditions of Rupture Emergencies or Leakage because of corrosive conditions of Pipeline to manage the situation of resources in pipeline network. Any exceptional readings or messages should alert the user to the fact that something is wrong with the system. Such a system helps a lot in the safe and efficient management of pipeline network. The data and information provided by the Leak Detection System applications will allow for efficient and safe pipeline operation maximizing profitability over the pipeline's service lifetime. (author)

  2. Integration of Acoustic Neutrino Detection Methods into ANTARES

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure

  3. Integration of Acoustic Neutrino Detection Methods into ANTARES

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure.

  4. Leak detection system with distributed microprocessor in the primary containment vessel

    Responding to the demand for greater improvements of the safety monitoring system, less public radiation exposure, and increase of plant availability, measuring and control systems in nuclear power plants have undergone many improvements. Leak detection systems are also required to give earlier warning, additional accuracy, and continuous monitoring function. This paper describes the drywell sump leakage detection system utilizing a distributed microprocessor, which is a successful application owing to its versatile function and ease of installation. The microprocessor performs various functions such as a rate of level change computation, conversion to leakage flow rate, initiation of alarm, and sump pump control. This system has already been applied to three operating BWR plants that demonstrate its efficiency. (auth)

  5. Acoustic detection of air shower cores

    Gao, X.; Liu, Y.; Du, S.

    1985-01-01

    At an altitude of 1890m, a pre-test with an Air shower (AS) core selector and a small acoustic array set up in an anechoic pool with a volume of 20x7x7 cu m was performed, beginning in Aug. 1984. In analyzing the waveforms recorded during the effective working time of 186 hrs, three acoustic signals which cannot be explained as from any source other than AS cores were obtained, and an estimation of related parameters was made.

  6. Experience on failed moderator heat exchangers tube leak detection at Narora Atomic Power Station

    Nuclear side various heat exchangers of the station which handle radioactive fluids are cooled by a close loop cooling water system, known as active process water system (APW). Active process water system transfers its heat to tertiary cooling water system known as active process water cooling system which in turn is cooled with the help of an induced draft cooling tower. Use of two cooling water loops provide double barrier to radioactivity release to the environment. On line sampling facility for tritium activity detection in all heat exchangers on their cooling water side provides indication of regarding failure of a particular heat exchanger. During September, 1995, NAPS Unit-1 active process water system showed gradual increase in tritium activity. Individual heat exchanger sample results could not provide confirmatory information regarding the leaky heat exchanger because of minor nature of leak. As the global tritium activity of active process water system kept on increasing, unit was shutdown to identify and repair the leaky heat exchanger. Sampling from isolated heat exchangers were done after putting fresh water to it. Sample results (tritium activity) indicated leak from moderator system HX ≠ 1. Detection of the leaky tube was experienced to extremely difficult task, because of size, location and nature of failure. All conventional methods of tube leak detection were applied but without success. These methods involved helium leak test from either side, vacuum drop test, pressure drop test, eddy current testing and fluorescent dye method. Having found no indication of failed tube moderator heat exchanger was reverted back to normal configuration with increase in process water flow through shell side in steps and parallel monitoring of tritium activity trend. Beyond 50% of PW flow, tritium activity level in active process water started increasing. Process water was throttled back and about 40% flow, tritium activity in process water got stabilised. Thus

  7. Acoustic Event Detection Based on MRMR Selected Feature Vectors

    VOZARIKOVA Eva; Juhar, Jozef; CIZMAR Anton

    2012-01-01

    This paper is focused on the detection of potentially dangerous acoustic events such as gun shots and breaking glass in the urban environment. Various feature extraction methods can be used forrepresenting the sound in the detection system based on Hidden Markov Models of acoustic events. Mel – frequency cepstral coefficients, low - level descriptors defined in MPEG-7 standard and another time andspectral features were considered in the system. For the selection of final subset of features Mi...

  8. Low-cost multispectral vegetation imaging system for detecting leaking CO₂ gas.

    Hogan, Justin A; Shaw, Joseph A; Lawrence, Rick L; Larimer, Randal M

    2012-02-01

    As a component of a multisensor approach to monitoring carbon sequestration sites for possible leaks of the CO₂ gas from underground reservoirs, a low-cost multispectral imaging system has been developed for indirect detection of gas leaks through observations of the resulting stress in overlying vegetation. The imager employs front-end optics designed to provide a full 50° field of view with a small, low-cost CMOS detector, while still maintaining quasi-collimated light through the angle-dependent interference filters used to define the spectral bands. Red and near-infrared vegetation reflectances are used to compute the normalized difference vegetation index (NDVI) and spatial and temporal patterns are analyzed statistically to identify regions of anomalous stress, which are then flagged for closer inspection with in-situ CO₂ sensors. The system is entirely self-contained with an onboard compact computer and is housed in a weather-proof housing to enable extended outdoor deployment. PMID:22307130

  9. Designing a reliable leak bio-detection system for natural gas pipelines

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece.

  10. Designing a reliable leak bio-detection system for natural gas pipelines.

    Batzias, F A; Siontorou, C G; Spanidis, P-M P

    2011-02-15

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece. PMID:21177031

  11. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Pookongchai Kritsada

    2015-01-01

    Full Text Available This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point with high accuracy, fast, and precise processes was proposed. In a preprocessing procedure to detect the air bubbles, threshold and median filter techniques have been used. Connected component labeling technique is used to detect the air bubbles while blob analysis is searching technique to analyze group of the air bubbles in sequential images. The experiments are tested with proposed algorithm to determine the leakage point of an air conditioning compressor. The location of the leakage point was presented as coordinated point. The results demonstrated that leakage point during process could be accurately detected. The estimation point had error less than 5% compared to the real leakage point.

  12. HADES - Hydrophone for Acoustic Detection at South Pole

    Semburg, Benjamin

    2008-01-01

    The South Pole Acoustic Test Setup (SPATS) is located in the upper part of the optical neutrino observatory IceCube, currently under construction. SPATS consists of four strings at depths between 80 m and 500 m below the surface of the ice with seven stages per string. Each stage is equipped with an acoustic sensor and a transmitter. Three strings (string A-C) were deployed in the austral summer 2006/07. SPATS was extended by a fourth string (string D) with second generation sensors and transmitters in 2007/08. One second generation sensor type HADES (Hydrophone for Acoustic Detection at South Pole) consists of a ring-shaped piezo-electric element coated with polyurethane. The development of the sensor, optimization of acoustic transmission by acoustic impedance matching and first in-situ results will be discussed.

  13. Probabilistic pipe fracture evaluations for applications to leak-rate detection

    Stochastic pipe fracture evaluations are conducted for applications to leak-rate detection. A state-of-the-art review was first conducted to evaluate the adequacy of current deterministic models for thermo-hydraulic and elastic-plastic fracture analyses. Then a new probabilistic model was developed with the above deterministic models for structural reliability analysis of cracked piping systems and statistical characterization of crack morphology parameters, material properties of pipe, and crack location. The proposed models are then applied for computing conditional probability of failure for various nuclear piping systems in BWR and PWR plants. The PRAISE code was not used, and the probabilistic model is based on modern methods of stochastic mechanics, computationally far superior to Monte Carlo and Stratified Sampling methods used in PRAISE. 10 refs., 9 figs., 1 tab

  14. Detection of water leaks in Foum-El-Gherza dam (Algeria)

    The dam model project was designed in 1946 by the Algerian Hydraulics Laboratory (Neyrpic). The completion of the construction phase was in 1952 and the exploitation showed immediately leaks at the downstream part of the dam. The maximum leak value (20.7 Mm3) was recorded from 1981 to 1982. The main objective of this work consisted to detect water leakage combining conventional and nuclear techniques (isotopic and radiotracer). Classical methods concerned the follow up physico-chemical parameters (conductivity, temperature and chemical composition). Isotopic and radiotracer techniques concerned the determination of the isotopic composition of water (oxygen-18 and tritium) and the labelling of the reservoir (Rhodamine fluorescent tracer), respectively. The results obtained from temperature and conductivity profiles that were drawn for the sampled piezometers have shown the presence of very complex vertical and horizontal flows. Horizontal flows are also present within the piezometers. This could be due to the geological characteristics of the site. With regard to the chemical composition, a Piper diagram showed that there is no relationship between lake water and groundwater that is occurring in the immediate vicinity of the reservoir. These results were confirmed by the isotopic method through oxygen-18 and tritium contents as summarized. An interconnection experiment using a Rhodamine-WT fluorescent tracer was performed afterwards. It consisted of labelling the reservoir water at a distance of 2 m from the shores. The tracer monitoring at the springs showed that Rhodamine was detected after two days at the right bank and one week at the left bank, respectively. The investigation described in this paper allow us to conclude that the implementation of this pilot study and its associated preliminary results seems to be satisfactory. However, according to the complexity of the geological site, more experiments need to be performed in order to understand and assess the

  15. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    Marchevsky, M; Sabbi, G; Prestemon, S

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01 [1], we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed.

  16. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and fossi

  17. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks o

  18. Project DUMAND and the tradeoffs between acoustic and optical detection

    The Deep Underseas Muon and Neutrino Detection (DUMAND) Project is briefly described, with emphasis upon the trade-offs between optical and acoustic detection in the proposed cubic kilometer detector. The status of the program, which is nearing the detector design study and testing stage, is discussed

  19. Acoustic Helicopter and FW Aircraft Detection and Classification

    Koersel, A.C. van

    2001-01-01

    The possibility to detect the passage of aircraft (either propeller or jet) with one or more mechanical wave sensors (acoustic or seismic) is investigated. An existing algorithm-sensor demonstator can detect and classify helicopter targets. In its current form it is developed to reject other targets

  20. Leaking Chaotic Systems

    Altmann, Eduardo G; Tél, Tamás

    2013-01-01

    There are numerous physical situations in which a hole or leak is introduced in an otherwise closed chaotic system. The leak can have a natural origin, it can mimic measurement devices, and it can also be used to reveal dynamical properties of the closed system. In this paper we provide an unified treatment of leaking systems and we review applications to different physical problems, both in the classical and quantum pictures. Our treatment is based on the transient chaos theory of open systems, which is essential because real leaks have finite size and therefore estimations based on the closed system differ essentially from observations. The field of applications reviewed is very broad, ranging from planetary astronomy and hydrodynamical flows, to plasma physics and quantum fidelity. The theory is expanded and adapted to the case of partial leaks (partial absorption/transmission) with applications to room acoustics and optical microcavities in mind. Simulations in the lima .con family of billiards illustrate...

  1. Sensor development and calibration for acoustic neutrino detection in ice

    Karg, Timo; Laihem, Karim; Semburg, Benjamin; Tosi, Delia

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been deployed in the upper 500 m of drill holes for the IceCube neutrino observatory at the geographic South Pole. In-situ calibration of sensors under the combined influence of low temperature, high ambient pressure, and ice-sensor acoustic coupling is difficult. We discuss laboratory calibrations in water and ice. Two new laboratory facilities, the Aachen Acoustic Laboratory (AAL) and the Wuppertal Water Tank Test Facility, have been set up. They offer large volumes of bubble free ice (3 m^3) and water (11 m^3) for the devel...

  2. Passive acoustic detection of deep-diving beaked whales

    Zimmer, W.M.X.; Harwood, J.; Tyack, P.L.;

    2008-01-01

    clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range at...... receiver close to the surface should be able to detect acoustically Cuvier's beaked whales with a high probability at distances up to 0.7  km, provided the listening duration exceeds the deep dive interval, about 2.5  h on average. Detection ranges beyond 4  km are unlikely and would require low ambient...

  3. A survey of existing and emerging technologies for external detection of liquid leaks at the Hanford Site

    During the history of the Hanford Site, many structures were built that stored and transported liquids used for the production mission; some of these structures are still active. Active structures include underground storage tanks retention basins, and pipes and pipelines. Many of the liquids stored and transported in these structures are potentially hazardous to human health and the environment. Any leakage of liquids from active structures, has the added potential to mobilize contaminants in the unsaturated zone. Therefore, it is beneficial to monitor these structures for leaks. The purpose of tills report is to catalog existing and emerging technologies that have potential for the external monitoring of liquid leaks. The report will focus primarily on the needs at the Hanford Site tank farms that are located in the 200 Areas, but will also be relevant to other Hanford Site facilities. Leak detection systems, both external and internal, are currently used at some Hanford facilities. This report focuses on the detection of leaks as they migrate into the soils surrounding the facilities

  4. Applications of a morphological scene change detection (MSCD) for visual leak and failure identification in process and chemical engineering

    Tickle, Andrew J.; Harvey, Paul K.; Smith, Jeremy S.

    2010-10-01

    Morphological Scene Change Detection (MSCD) is a process typically tasked at detecting relevant changes in a guarded environment for security applications. This can be implemented on a Field Programmable Gate Array (FPGA) by a combination of binary differences based around exclusive-OR (XOR) gates, mathematical morphology and a crucial threshold setting. The additional ability to set up the system in virtually any location due to the FPGA makes it ideal for insertion into an autonomous mobile robot for patrol duties. However, security is not the only potential of this robust algorithm. This paper details how such a system can be used for the detection of leaks in piping for use in the process and chemical industries and could be deployed as stated in the above manner. The test substance in this work was water, which was pumped either as a liquid or as low pressure steam through a simple pipe configuration with holes at set points to simulate the leaks. These holes were situated randomly at either the center of a pipe (in order to simulate an impact to it) or at a joint or corner (to simulate a failed weld). Imagery of the resultant leaks, which were visualised as drips or the accumulation of steam, which where analysed using MATLAB to determine their pixel volume in order to calibrate the trigger for the MSCD. The triggering mechanism is adaptive to make it possible in theory for the type of leak to be determined by the number of pixels in the threshold of the image and a numerical output signal to state which of the leak situations is being observed. The system was designed using the DSP Builder package from Altera so that its graphical nature is easily comprehensible to the non-embedded system designer. Furthermore, all the data from the DSP Builder simulation underwent verification against MATLAB comparisons using the image processing toolbox in order to validate the results.

  5. Background studies for acoustic neutrino detection at the South Pole

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdrmann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Denger, T; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schönwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stössl, A; Stoyanov, S; Strahler, E A; Straszheim, T; Stür, M; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-01-01

    The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the tiny flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to 50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic pulse-like events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to localize acoustic e...

  6. Fiber optic microsensor hydrogen leak detection system on Aerospike X-33

    Kazemi, Alex A.; Goepp, John W.; Larson, David B.; Wuestling, Mark E.

    2007-09-01

    Commercial and military launch vehicles are designed to use cryogenic hydrogen as the main propellant, which is very volatile, extremely flammable, and highly explosive. Current detection system uses Teflon transfer tubes at small number of vehicle location through which gas samples are drawn and stream analyzed by a mass spectrometer. A concern with this approach is the high cost of the system. Also, the current system does not provide leak location and is not in real time. This system is very complex and cumbersome for production and ground support measurement personnel. This paper describes the successful test of a multipoint fiber optic hydrogen microsensors system on the Linear Aerospike X-33 rocket engine at NASA's Stennis Flight Center. The system consisted of a reversible chemical interaction causing a change in reflective of a thin film of coated Palladium. The sensor using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor to perform the data analysis and storage, as well as trending and set alarm function. The paper illustrates the sensor design and performance data under field deployment conditions.

  7. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  8. ISS Leak Detection and Astrophysics with Lobster-Eye X-Ray Detector Project

    National Aeronautics and Space Administration — Demonstrate angular resolution and sensitivity. Successful lab demonstration of ISS leak checking, using nitrogen, electron beam, and Lobster x-ray optic. 

  9. Theoretical detection ranges for acoustic based manatee avoidance technology.

    Phillips, Richard; Niezrecki, Christopher; Beusse, Diedrich O

    2006-07-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. To reduce the number of collisions, warning systems based upon detecting manatee vocalizations have been proposed. One aspect of the feasibility of an acoustically based warning system relies upon the distance at which a manatee vocalization is detectable. Assuming a mixed spreading model, this paper presents a theoretical analysis of the system detection capabilities operating within various background and watercraft noise conditions. This study combines measured source levels of manatee vocalizations with the modeled acoustic properties of manatee habitats to develop a method for determining the detection range and hydrophone spacing requirements for acoustic based manatee avoidance technologies. In quiet environments (background noise approximately 70 dB) it was estimated that manatee vocalizations are detectable at approximately 250 m, with a 6 dB detection threshold, In louder environments (background noise approximately 100dB) the detection range drops to 2.5 m. In a habitat with 90 dB of background noise, a passing boat with a maximum noise floor of 120 dB would be the limiting factor when it is within approximately 100 m of a hydrophone. The detection range was also found to be strongly dependent on the manatee vocalization source level. PMID:16875213

  10. Leaked water detection device for control rod drive and BWR type reactor

    The device of the present invention can specify a control rod drive causing great amount of water leakage among a large number of control rod drives. Namely, water leaked from the control rod drives is introduced to each of leaked water pipelines. Further, it is introduced from the leaked water pipelines to flow glasses at which leaked water can visually be recognized individually, and then discharged through a drain pipeline. With such procedures, the amount of leaked water from the leaked water pipelines can visually be recognized at the flow glasses. As a result, the control rod drives which cause a great amount of leakage can be specified among large number of control rod drives. Accordingly, an accurate inspection schedule for a shaft-sealing portion of the control rod drives can be formed. The shaft-sealing portion degradated in the sealing property can reliably be inspected and repaired. Purge water can be ensured to improve reliability of the operation of equipments. (I.S.)

  11. Development of a compact transmitter array for the acoustic neutrino detection calibration

    Adrián-Martínez, S; Bou-Cabo, M; Larosa, G; Llorens, C D; Martínez-Mora, J A

    2011-01-01

    Parametric acoustic sources technique has been widely used in several fields of acoustics, especially in underwater acoustics with the aim to obtain very directive transducers. In this paper we present different studies and developments done during last years to develop a compact acoustic calibrator that allows emitting acoustic neutrino like signal with the goal to calibrate arrays of acoustic receiver sensors to detect ultra-high energy neutrinos.

  12. On Marine Mammal Acoustic Detection Performance Bounds

    Xian, Yin; Nolte, Loren; Tantum, Stacy; Liao, Xuejun; Zhang, Yuan

    2015-01-01

    Since the spectrogram does not preserve phase information contained in the original data, any algorithm based on the spectrogram is not likely to be optimum for detection. In this paper, we present the Short Time Fourier Transform detector to detect marine mammals in the time-frequency plane. The detector uses phase information for detection. We evaluate this detector by comparing it to the existing spectrogram based detectors for different SNRs and various environments including a known ocea...

  13. Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Salomon, K; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C

    2005-01-01

    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.

  14. Development of a fiber-optic sensor for hydrogen leak detection

    Benson, D.K.; Tracy, C.E. [National Renewable Energy Lab., Golden, CO (United States)

    1995-09-01

    The real and perceived risks of hydrogen fuel use, particularly in passenger vehicles, will require extensive safety precautions including hydrogen leak detection. Conventional hydrogen gas sensors require electrical wiring and may be too expensive for deployment in multiple locations within a vehicle. In this recently initiated project, we are attempting to develop a reversible, thin-film, chemochromic sensor that can be applied to the end of a polymer optical fiber. The presence of hydrogen gas causes the film to become darker. A light beam transmitted from a central instrument in the vehicle along the sensor fibers will be reflected from the ends of the fiber back to individual light detectors. A decrease in the reflected light signal will indicate the presence and concentration of hydrogen in the vicinity of the fiber sensor. The typical thin film sensor consists of a layer of transparent, amorphous tungsten oxide covered by a very thin reflective layer of palladium. When the sensor is exposed to hydrogen, a portion of the hydrogen is dissociated, diffuses through the palladium and reacts with the tungsten oxide to form a blue insertion compound, H{sub X}WO{sub 3}- When the hydrogen gas is no longer present, the hydrogen will diffuse out of the H{sub X}WO{sub 3} and oxidize at the palladium/air interface, restoring the tungsten oxide film and the light signal to normal. The principle of this detection scheme has already been demonstrated by scientists in Japan. However, the design of the sensor has not been optimized for speed of response nor tested for its hydrogen selectivity in the presence of hydrocarbon gases. The challenge of this project is to modify the basic sensor design to achieve the required rapid response and assure sufficient selectivity to avoid false readings.

  15. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  16. The use of acoustic emission to detect stress relief cracking

    Stress rupture tests have been carried out on CrMoV steel specimens containing weld heat affected zone structures. An acoustic emission technique is described which has been used to detect cracking in these tests. Cavitational damage is associated with bursts of acoustic output and these results have been supported by fractograpic examination. The features of progressive cavitational damage are described for materials of different cracking susceptibility. It is implied that cavity formation can occur in the heat affected zone of CrMoV welds when heating to the stress relieving temperature. (orig.)

  17. Conceptual design report for the project to install leak detection in FAST-FT-534/548/549

    This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which is already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur

  18. Wavelet-based acoustic emission detection method with adaptive thresholding

    Menon, Sunil; Schoess, Jeffrey N.; Hamza, Rida; Busch, Darryl

    2000-06-01

    Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. One such technology, the use of acoustic emission for the early detection of helicopter rotor head dynamic component faults, has been investigated by Honeywell Technology Center for its rotor acoustic monitoring system (RAMS). This ambitious, 38-month, proof-of-concept effort, which was a part of the Naval Surface Warfare Center Air Vehicle Diagnostics System program, culminated in a successful three-week flight test of the RAMS system at Patuxent River Flight Test Center in September 1997. The flight test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. This paper presents the results of stress wave data analysis of the flight-test dataset using wavelet-based techniques to assess background operational noise vs. machinery failure detection results.

  19. Passive acoustic detection of deep-diving beaked whales.

    Zimmer, Walter M X; Harwood, John; Tyack, Peter L; Johnson, Mark P; Madsen, Peter T

    2008-11-01

    Beaked whales can remain submerged for an hour or more and are difficult to sight when they come to the surface to breathe. Passive acoustic detection (PAD) not only complements traditional visual-based methods for detecting these species but also can be more effective because beaked whales produce clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range at which beaked whale clicks can be detected involves their high frequencies, which attenuate rapidly, resulting in limited ranges of detection, especially in adverse environmental conditions. Given current knowledge of source parameters and in good conditions, for example, with a wind speed of 2 ms, a receiver close to the surface should be able to detect acoustically Cuvier's beaked whales with a high probability at distances up to 0.7 km, provided the listening duration exceeds the deep dive interval, about 2.5 h on average. Detection ranges beyond 4 km are unlikely and would require low ambient noise or special sound propagation conditions. PMID:19045770

  20. Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs

    Bermudez, Edgar F.

    2012-05-01

    Acoustic telemetry is an important tool for studying the movement patterns, behaviour, and site fidelity of marine organisms; however, its application is challenged in coral reef environments where complex topography and intense environmental noise interferes with acoustic signals, and there has been less study. Therefore, it is particularly critical in coral reef telemetry studies to first conduct a long-term range test, a tool that provides informa- tion on the variability and periodicity of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs in the central Red Sea. During this range test we determined the effect of the following factors on transmitter detection efficiency: distance from receiver, time of day, depth, wind, current, moon-phase and temperature. The experiment showed that biological noise is likely to be responsible for a diel pattern of -on average- twice as many detections during the day as during the night. Biological noise appears to be the most important noise source in coral reefs overwhelming the effect of wind-driven noise, which is important in other studies. Detection probability is also heavily influenced by the location of the acoustic sensor within the reef structure. Understanding the effect of environmental factors on transmitter detection probability allowed us to design a more effective receiver array for the large-scale tagging study.

  1. Knowledge Discovery of Gas Pipeline Leak Detection%天然气管道泄漏检测中的知识发现

    王秀芳; 王岩; 岳茂兴

    2012-01-01

    As rapid development of foreign and domestic natural gas pipeline construction, the safe operation of pipeline is particularly important in the current. Based on analyzing the cause of gas pipeline leak and using modal acoustic emission method and negative pressure wave method to detect the pipeline,to get pipeline detection information, through the pretreatment leak signal data, according to data mining algorithm realize natural gas potential information mining. Based on that use decision tree classification, DBSCN cluster analysis, K-nearest neighbor algorithm to realize the knowledge discovery process, looking for internal relations, development trend and potential rules, controlling the natural gas transmission beforehand and intelligent monitoring.%随着国内外天然气管道建设的迅速发展,管道的安全运行在当前尤为重要.通过对天然气管线泄漏原因的分析,采用模态声发射法和负压波法对管线进行检测,目的是获取管道检测信息,通过预处理泄露信号数据,针对数据通过预处理以取消数据差异和冗余,采取挖掘算法实现天然气潜信息挖掘,在此采用了决策树分类、DBSCN聚类分析、K近邻算法完成知识发现,寻找管道传输的内在联系、发展趋势及潜在规则,实现天然气传输的事前控制和智能监测.

  2. Proposed strategy for leak detection, monitoring, and mitigation (LDMM) during Hanford single-shell tank waste retrieval

    Iwatate, D.F., Westinghouse Hanford

    1996-07-08

    This document proposes a strategy to address issues related to leakage from single-shell tanks (SSTs) during sluicing. A set of criteria are proposed to capture the relevant issues pertaining to leak detection, monitoring, and mitigation (LDMM), and allow DOE-RL, the Contractor, Ecology, and Hanford Stakeholders to reach consensus on allowable leakage volumes (ALVs). Technical studies and findings that support the proposed strategy, and ALV criteria, are summarized and referenced. This document specifically addresses LDMM for SSTs at Hanford, Washington.

  3. Layout of CCS monitoring infrastructure with highest probability of detecting a footprint of a CO2 leak in a varying marine environment

    Hvidevold, Hilde Kristine; Alendal, Guttorm; Johannessen, Truls; Ali, Alfatih Omer Mohammed Ahmed; Mannseth, Trond; Avlesen, Helge

    2015-01-01

    Highlights • A way to design a grid of sensor along the seafloor, with the purpose of detecting a leak, is presented. • The method relies site characterization, on local environmental statistics and on a detection threshold. • The method quantifies the probability of detecting a leak, and through an optimization procedure finds the optimal layout. • The cost function can be extended to include other constraints, such as cost or need to cover vulnerable areas. Abst...

  4. Results of Performance Evaluation Testing of Electrical Leak-Detection Methods at the Hanford Mock Tank Site--FY 2002-2003

    Application of two electrical resistivity methods at the Hanford Site Mock Tank during 2002, indicate the viability of the methods as possible leak-detection tools for SST retrieval operations. Electrical Resistivity Tomography and High-Resolution Resistivity were used over a 109-day period to detect leakage of a waste simulant beneath the tank. The results of the test indicate that both of these two methods, and subset methods may be applicable to SST leak detection

  5. Leak detection in the primary reactor coolant piping of nuclear power plant by applying beam-microphone technology

    A microphone leak detection method was applied to the inlet piping of the ATR-prototype reactor, Fugen. Statistical analysis results showed that the cross-correlation method provided the effective results for detection of a small leakage. However, such a technique has limited application due to significant distortion of the signals on the reactor site. As one of the alternative methods, the beam-microphone provides necessary spatial selectivity and its performance is less affected by signal distortion. A prototype of the beam-microphone was developed and then tested at the O-arai Engineering Center of the Japan Nuclear Cycle Development Institute (JNC). On-site testing of the beam-microphone was carried out in the inlet piping room of an RBMK reactor of the Leningrad Nuclear Power Plant (LNPP) in Russia. A leak sound imitator was used to simulate the leakage sound under the leakage flow condition of 1-3 gpm (0.23-0.7 m3/h). Analysis showed that signal distortion does not seriously affect the performance of this method, and that sound reflection may result in the appearance of ghost sound sources. The test results showed that the influences of sound reflection and background noise were smaller at the high frequencies where the leakage location could be estimated with an angular accuracy of 5deg which is the range of localization accuracy required for the leak detection system. (author)

  6. Electrical resistivity tomography for early vadose leak detection under single shell storage tanks

    This document describes planned testing with Electrical Resistivity Tomography (ERT). It is prepared in support of TTP RL46WT51 Rev. 1, funded by the Tank Focus Area through the Office of Technology Integration. The primary goal of the testing for fiscal year 1996 (FY96) is to develop and demonstrate the ability to place vertical electrode arrays (VEA) with the cone penetrometer technology (CPT) to depths below existing single shell tanks (SST) at the DOE Hanford Site. It is desirable to have the capability to use CPT for this application for obvious reasons. First, current methods of emplacement, drilled boreholes, are expensive with respect to the rest of the ERT operation. Cone penetrometer VEA emplacements offer the opportunity to significantly reduce installation costs. Second, use of CPT will reduce emplacement time from weeks or months to just several days depending on the number of VEAs and the depth of placement. ERT is preferable to other monitoring methods since operation costs and turn around time are less than the current baselines of either groundwater sampling networks or borehole logging techniques. ERT cost savings can be substantial and will continue into the future. ERT can also provide complete coverage under a tank or other facility which is an important supplement to existing monitoring methods. Groundwater sampling provides one data point per well and borehole logging provides data along a line in the ground. Neither provide information from beneath a facility and thus, are not able to locate release points. These electrode arrays are used to acquire subsurface electrical resistance data in a manner appropriate for tomographic inversion. The resulting tomograms can then be used to detect, monitor and track contaminated moisture plumes leaking from underground storage tanks during waste retrieval operations

  7. On Marine Mammal Acoustic Detection Performance Bounds

    Xian, Yin; Tantum, Stacy; Liao, Xuejun; Zhang, Yuan

    2015-01-01

    Since the spectrogram does not preserve phase information contained in the original data, any algorithm based on the spectrogram is not likely to be optimum for detection. In this paper, we present the Short Time Fourier Transform detector to detect marine mammals in the time-frequency plane. The detector uses phase information for detection. We evaluate this detector by comparing it to the existing spectrogram based detectors for different SNRs and various environments including a known ocean, uncertain ocean, and mean ocean. The results show that this detector outperforms the spectrogram based detector. Simulations are presented using the polynomial phase signal model of the North Atlantic Right Whale (NARW), along with the bellhop ray tracing model.

  8. Topography and biological noise determine acoustic detectability on coral reefs

    Cagua, Edgar F.

    2013-08-19

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs. © 2013 Springer-Verlag Berlin Heidelberg.

  9. Study of leak detection using tracers in a bottling plant in Mexico

    The Instituto Nacional de Investigaciones Nucleares (ININ), Mexico, promoted the application of different techniques, involving the use of radioactive materials. Among them is the use of radioactive material as a medium tracer in the industry. Below is a study of locating leaks in ducts collectors of process water of a bottling plant which had several problems, one was not able to stop production, and most important, having to disassemble a large amount of machinery and equipment, in order to open the floor and locate the leak

  10. Implementation of leak detection techniques in ducts with critical regimen multiphase flow; Implementacao de tecnicas de deteccao de vazamentos em dutos em regime de escoamento multifasico critico

    Martins, Rodrigo S.; Maitelli, Andr L.; Doria Neto, Adriao D.; Salazar, Andres O. [Rio Grande do Norte Univ., Natal, RN (Brazil)

    2005-07-01

    This paper presents signals processing techniques and artificial neural networks to identify leaks in multiphase flow pipeline. The greatest difficulty on traditional methods of leak detection (volume balance, pressure point analysis, etc) is that they are insufficient to design an adequate profile for the real conditions of oil pipeline transport. These difficult conditions goes since unevenly soil, that cause columns or vacuum throughout pipelines, until the presence of multi phases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network multilayer perceptron (MLP) to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from 1/2'' to 1'' of diameter to simulate leaks and, this way, it was possible to detect leaks with a time window of two minutes. The result show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks. (author)

  11. Acoustic detection of ultra-high energy cascades in ice

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  12. Acoustic detection of ultra-high energy cascades in ice

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km3 scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km3 will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and transmitters was

  13. Acoustic metamaterial for subwavelength edge detection

    Molerón, Miguel; Daraio, Chiara

    2015-01-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the ima...

  14. DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA

    SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

    2010-12-02

    Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

  15. A survey and description of candidate technologies to support single shell tank waste retrieval, leak detection, monitoring, and mitigation

    This report was initially designed to provide a comprehensive review of potential leak detection technologies (LDTs). To this end, the report would contain several sections outlining the selection process. The purpose was twofold:(l) the reader would have a clear understanding of why specific technologies were recommended or not recommended, and (2) the reader could apply the same process in the future as new LDTs become available. Curtailment of project scope has prevented the development of the requisite judging criteria. The report has been modified accordingly. Section 2 of this report presents the baseline and guiding assumptions that were used to judge the LDTs. These assumptions include the environment where the technologies would be employed, the potential leak detection targets, and anticipated leak mechanisms. Section 3 presents a brief review of the methods used to arrive at the recommended LDTs. It also includes a description of the different technology families considered. Section 4 presents the recommended LDTs along with detailed descriptions of each that include sensitivities, operating parameters, and costs

  16. Airborne detection of natural gas leaks from transmission pipelines by using a laser system operating in visual, near-IR, and mid-IR wavelength bands

    Ershov, Oleg V.; Klimov, Alexey G.; Vavilov, Vladimir P.

    2006-04-01

    An airborne gas detection IR system which includes a laser, infrared imager and video-recorder is described. The sensitivity of the system to leaks from ground pipelines by the laser channel is about 100 ppm*m at 100 m (by methane). The IR thermographic channel plays an auxiliary role and the video channel allows better coordinate positioning of detected gas leaks in conjunction with a built-in GPS device.

  17. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    Marchevsky, M.; Wang, X.; Sabbi, G.; Prestemon, S.

    2014-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01 [...

  18. Resonance and Nonlinear Seismo-Acoustic Land Mine Detection

    Donskoy, Dimitri M.

    2008-01-01

    We have presented an overview of our team’s (at Stevens Institute of Technology) contribution in development of resonance and nonlinear Seismo-Acoustic Mine Detection (SAMD) techniques. Among our major accomplishments are the discovery and quantitative characterization of mine resonances; the discovery of a very strong nonlinear dynamics of the buried mines manifesting itself through the combination and intermodulation frequencies; the development of a physical model describing the linear a...

  19. DETECTION OF EPR USING A PULSED MICROWAVE ACOUSTIC TECHNIQUE

    Netzelmann, U.; Lerchner, H.; Pelzl, J.; Sigrist, M.

    1983-01-01

    A new pulsed microwave acoustic method is shown to be suited for the detection of EPR. Pressure amplitudes obtained for DPPH in n-hexane agree with theoretical predictions. Our calculations clearly demonstrate that temperature gradients within the sample are important for generating large signal amplitudes. Hence this technique is of special interest for samples with an inhomogeneous distribution of paramagnetic centers or for the study of interfaces.

  20. Detecting baryon acoustic oscillations by 3d weak lensing

    Grassi, Alessandra; Schaefer, Bjoern Malte

    2013-01-01

    We investigate the possibility of detecting baryon acoustic oscillation features in the cosmic matter distribution by 3d weak lensing. Baryon oscillations are inaccessible even to weak lensing tomography because of wide line-of-sight weighting functions and require a specialized approach via 3d shear estimates. We quantify the uncertainty of estimating the matter spectrum amplitude at the baryon oscillations wave vectors by a Fisher-matrix approach with a fixed cosmology and show in this way ...

  1. Towards an Automated Acoustic Detection System for Free Ranging Elephants

    Zeppelzauer, Matthias; Hensman, Sean; Stoeger, Angela S

    2015-01-01

    The human-elephant conflict is one of the most serious conservation problems in Asia and Africa today. The involuntary confrontation of humans and elephants claims the lives of many animals and humans every year. A promising approach to alleviate this conflict is the development of an acoustic early warning system. Such a system requires the robust automated detection of elephant vocalizations under unconstrained field conditions. Today, no system exists that fulfills these requirements. In t...

  2. Underwater acoustic detection of ultra high energy neutrinos in Antares

    We investigate the possibility to detect ultra high energy neutrinos (UHE, 1018+ eV) by the mean of underwater acoustic methods. This study is based on experimental measurements and, when none of those are available, on numerical simulations. The sea water acts as a target for neutrinos of cosmic origin. The electroweak interaction of high energy neutrinos with water molecules leads to a cascade of secondary particles resulting in the emission of an ultra-sonic impulse by a thermo-acoustic coupling mechanism. This mechanism is little efficient, however the generated signal has good propagation properties. Ambient sea noise, as well as the self noise of the ceramic transducers used for the detection, restrict the method to UHE. In addition, the strong directivity of the signal implies that location methods, by the detection in coincidence on multiple detectors, are little efficient. At extremely high energies (1020+ eV) and for a single detector we estimate the sensitivity limit of this acoustic method to be of the order of E2*φ 106 GeV cm-2 sr-1*s-1, for an astrophysical flux 0 falling as 1/E2. (author)

  3. Acoustic detection of astrophysical neutrinos in South Pole ice

    Vandenbroucke, Justin

    2012-01-01

    When high-energy particles interact in dense media to produce a particle shower, most of the shower energy is deposited in the medium as heat. This causes the medium to expand locally and emit a shock wave with a medium-dependent peak frequency on the order of 10 kHz. In South Pole ice in particular, the elastic properties of the medium have been theorized to provide good coupling of particle energy to acoustic energy. The acoustic attenuation length has been theorized to be several km, which could enable a sparsely instrumented large-volume detector to search for rare signals from high-energy astrophysical neutrinos. We simulated a hybrid optical/radio/acoustic extension to the IceCube array, specifically intended to detect cosmogenic (GZK) neutrinos with multiple methods simultaneously in order to achieve high confidence in a discovered signal and to measure angular, temporal, and spectral distributions of GZK neutrinos. This work motivated the design, deployment, and operation of the South Pole Acoustic Te...

  4. High-performance air acoustic detection and classification sensor

    Porter, Richard; Raines, Robert; Jones, Barry

    2009-05-01

    Acoustic signals are a principal detection modality for unattended sensor systems. However, the performance of these systems is frequently suboptimal due to insufficient dynamic range in small systems or excess power consumption in larger systems. This paper discusses an approach to developing an unattended ground sensor (UGS) system that has the best features of both worlds. This system, developed by McQ Inc., has exceptional dynamic range (> 100 dB) while operating at power levels of 1.5-5 watts. The system also has a user definable signal parameter library and automated detection methodology that will be described.

  5. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines

    Ali M. Sadeghioon; Nicole Metje; David N. Chapman; Carl J. Anthony

    2014-01-01

    Asset monitoring, specifically infrastructure monitoring such as water distribution pipelines, is becoming increasingly critical for utility owners who face new challenges due to an aging network. In the UK alone, during the period of 2009–2010, approximately 3281 mega litres (106) of water were wasted due to failure or leaks in water pipelines. Various techniques can be used for the monitoring of water distribution networks. This paper presents the design, development and testing of a smart ...

  6. Leaking chaotic systems

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-04-01

    There are numerous physical situations in which a hole or leak is introduced in an otherwise closed chaotic system. The leak can have a natural origin, it can mimic measurement devices, and it can also be used to reveal dynamical properties of the closed system. A unified treatment of leaking systems is provided and applications to different physical problems, in both the classical and quantum pictures, are reviewed. The treatment is based on the transient chaos theory of open systems, which is essential because real leaks have finite size and therefore estimations based on the closed system differ essentially from observations. The field of applications reviewed is very broad, ranging from planetary astronomy and hydrodynamical flows to plasma physics and quantum fidelity. The theory is expanded and adapted to the case of partial leaks (partial absorption and/or transmission) with applications to room acoustics and optical microcavities in mind. Simulations in the limaçon family of billiards illustrate the main text. Regarding billiard dynamics, it is emphasized that a correct discrete-time representation can be given only in terms of the so-called true-time maps, while traditional Poincaré maps lead to erroneous results. Perron-Frobenius-type operators are generalized so that they describe true-time maps with partial leaks.

  7. Detection and tracking of drones using advanced acoustic cameras

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  8. Acoustic monitoring of BWR main steam safety relief valves

    Main steam safety relief valves (SRVs) are important equipment in boiling water reactor plants, so monitoring of leakage and valve opening of SRVs is also important. To detect leakage and valve opening, thermocouples are installed on exhaust pipes and limit switches or position sensors on valve stems. The acoustic detection technique with AE sensors and accelerometers is adopted not only to increase the accuracy and response speed of leak detection, but also to estimate leak rate and to detect valve opening. The acoustic leak detection technique was found effective by the mock-up experiment in which an actual SRV and steam under the same condition as the actual use were used to measure the signals from AE sensors and accelerometers attached to the SRV with artificial cuttings on its thermal disk. The acoustic monitoring tests of SRVs have been carried out at a nuclear power plant to prove the acoustic leak detection technique to be effective. The results of the acoustic monitoring tests at the plant are discussed. As a result of the on-site test, the acoustic leak monitoring system was found effective in the plant

  9. Understanding Piezo Based Sensors for Acoustic Neutrino Detection

    The ANTARES collaboration is currently installing a neutrino telescope off the French Mediterranean coast to measure diffuse fluxes and point sources of high energy cosmic neutrinos. The complete detector will consist of 900 photomultipliers on 12 detector lines, using 0.01km3 of sea water as target material. As part of the ANTARES deep-sea research infrastructure, the Erlangen group is planning to modify several ANTARES storeys by fitting them with acoustic receivers to study the feasibility of acoustic neutrino detection in the deep sea. In this paper, studies of the electromechanical properties of piezoelectric sensors are presented, based on an equivalent circuit diagram for the coupled mechanical and electrical oscillations of a piezoelectric element. A method for obtaining the system parameters as well as derivations of sensor properties like pressure sensitivity and intrinsic noise are treated and results compared to measurements. Finally, a possible application of these results for simulating system response and optimising reconstruction algorithms is discussed

  10. Crack detection in lap-joints using acoustic emission

    Experiments have been performed to assess the feasibility of crack growth detection in an aircraft lap-joint using acoustic emission (AE). Fatigue tests were conducted in both simple geometry specimens and lap-joint specimens. A high fidelity, wide band transient recording system was used to capture the acoustic emission due to defect growth. The simple specimens were used to determine crack growth signal characteristics, while the complex lap-joint provided a more realistic specimen. Representative waveforms from these two specimens are presented, along with a discussion of wave propagnation for the particular media. A self-organizing map was investigated as a means of automatically identify crack signals. Results and suggestions for future work are presented

  11. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    Leeuwen van, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks of CO2 in the atmosphere is, however, difficult due to the rapid mixing of the emitted CO2 with the surroundings and the high natural variability of the CO2 concentration. In this thesis we present ...

  12. Laser-induced acoustic landmine detection with experimental results on buried landmines

    Heuvel, J.C. van den; Putten, F.J.M. van; Koersel, A.C. van; Schleijpen, H.M.A.

    2004-01-01

    Acoustic landmine detection (ALD) is a technique for the detection of buried landmines including non-metal mines. Since it gives complementary results with GPR or metal detection, sensor fusion of these techniques with acoustic detection would give promising results. Two methods are used for the aco

  13. Leak rate assessment in the leak before break analysis of a PWR piping system

    In order to validate predictive models used in the L.B.B. (Leak Before Break) procedure for PWR, a cooperation program between CEA, EDF and FRAMATOME is carried out. One item concerns water leak rate assessment through a real fatigue crack under representative thermal hydraulic conditions of a PWR primary loop. In the framework of this cooperation program, experimental tests are carried out at CEA Cadarache. These tests are dedicated to the validation of two-phase flow rate models. For this, a pipe mock up, with a scale factor of two compared to the primary loop, is tested under representative pressure and temperature of 155 bars and 320 Celsius degrees. The real through wall crack is obtained from an initial surface notch pre-cycled under a fatigue loading. The steam flowing out of the pipe from the crack is condensed and weighed to have an experimental measurement of the leak rate. Crack opening area is measured with an optical device coupled to a post processing software. Acoustic gages are also located on the test pipe in order to qualify a detection system based on an acoustic measurement. The aim of the paper is to present the experimental program and results obtained in the first campaign. The validation of a two-phase leak rate model with experimental results is also discussed in this paper, as well as the comparison of crack opening area assessment, as proposed in the L.B.B. procedure, with experimental results. (authors)

  14. Development of evaluation method of long-term confinement performance for canister. Part 1. Fundamental study of analyses method for helium leak detection

    The storage management of spent nuclear fuel for ageing degradation is becoming a global issue, so we researched the present status and measures of the management in each country. In particular, for the concrete cask storage, a leak detecting method that detects the leak from the change in canister surface temperature has been proposed. We performed thermal hydraulics analysis to clarify the phenomenon and to work toward practical use of the detecting method. For analyzing the leak phenomenon with high accuracy, it is necessary to stably solve the low-Mach number flow problem considering compressibility of gas. Therefore, we originally modified the conventional compressible flow solution method and proposed a new method which is applicable to thermo-hydraulics phenomenon and satisfies the mass conservation law with high accuracy. For the cavity natural convection analysis, the mass conservation in a calculating area was satisfied with high accuracy. As for the analysis of leak from the cavity, a helium leak phenomenon could be calculated stably by using the proposed method. The pressure in the cavity and the change of the mass could be also analyzed validly. As for the temperature distribution in the cavity, it was confirmed that the temperature changes before and after the leak. (author)

  15. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  16. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  17. Elevation profile influence at key contractual performance parameters for LDS (Leak Detection Systems) based on compensated volume balance

    Liebenberg, Lieb [TRANSNET Pipeline, Durban (South Africa); Bueno, David; Passos, Rafaela [KANOPUS Consulting, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper describes and discusses procedures and correlations to estimate performance parameters for Leak Detection Systems based on Compensation Volume Balance, at the portions not usually covered by international standards (like, API RP 1130). These parameters include: minimum acceptable leakage to be detected, under steady state conditions, based on flow measurement uncertainty, observed for both pipeline head and tail; an actual flow rate uncertainty against the one informed by the flow meter manufacturer documentation; the reference flow rate for steady state conditions; and the sensitivity one may expect for the system against a given probability of false alarms (i.e., the ways to correlate reliability, the main performance parameter as per API RP 1130 and sensitivity, the second one). A question usually not considered is: how the elevation profile may affect some of these parameters. That is the second main objective addressed herein, with actual examples employed in a South African multi product pipeline. (author)

  18. Gravitational Wave Detection with High Frequency Phonon Trapping Acoustic Cavities

    Goryachev, Maxim

    2014-01-01

    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency ($10^6-10^9$~Hz) Gravitation Waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultra-high quality factor quartz Bulk Acoustic Wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at $20$~mK. We show that spectral strain sensitivities reaching $10^{-22}$ per $\\sqrt{\\text{Hz}}$ per mode is possible, which in principle can cover the frequency range with multiple ($>100$) modes with quality factors varying between $10^6-10^{10}$ allowing wide bandwidth detection. Due to its compactness and well established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.

  19. Development of sodium leak detection technology using laser resonance ionization mass spectrometry. Design and functional test using prototype sodium detection system

    In a sodium-cooled fast reactor, highly sensitive technology is required to detect small amounts of sodium leaking from the cooling system piping or components. The conventional sodium leak detectors have a fundamental difficulty in improving the detection sensitivity for a sodium leak because of the presence of salinity (23NaCl) in the atmosphere around the components and piping of cooling systems. In order to overcome this problem, an innovative technology has been developed to selectively detect the radioactive sodium (22Na) produced by a neutron reaction in the primary cooling system using Laser Resonance Ionization Mass Spectrometry (RIMS). In this method, sodium ions produced with the two processes of (1) atomization of sodium aerosols and (2) resonance ionization of sodium atom, are detected selectively using a time-of-flight mass spectrometer. The 22Na can be distinguished from the stable isotope (23Na) by mass spectrometry, which is the advantage of RIMS comparing to the other methods. The design and the construction of the prototype system based on fundamental experiments are shown in the paper. The aerodynamic lens was newly introduced, which can transfer aerosols at atmospheric pressure into a vacuum chamber while increasing the aerosol density at the same time. Furthermore, the ionization process was applied by using the external electric field after resonance exciting from the ground level to the Rydberg level in order to increase the ionization efficiency. The preliminary test results using the stable isotope (23Na) showed that prototype system could easily detect sodium aerosol of 100 ppb, equivalent to the sensitivity of the conventional detectors. (author)

  20. Identification of sewage leaks by active remote-sensing methods

    Goldshleger, Naftaly; Basson, Uri

    2016-04-01

    The increasing length of sewage pipelines, and concomitant risk of leaks due to urban and industrial growth and development is exposing the surrounding land to contamination risk and environmental harm. It is therefore important to locate such leaks in a timely manner, to minimize the damage. Advances in active remote sensing Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic (FDEM) technologies was used to identify leaking potentially responsible for pollution and to identify minor spills before they cause widespread damage. This study focused on the development of these electromagnetic methods to replace conventional acoustic methods for the identification of leaks along sewage pipes. Electromagnetic methods provide an additional advantage in that they allow mapping of the fluid-transport system in the subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of water, but enable detecting leaks of tens of liters per hour, because they can locate increases in environmental moisture content of only a few percentage along the pipes. The importance and uniqueness of this research lies in the development of practical tools to provide a snapshot and monitoring of the spatial changes in soil moisture content up to depths of about 3-4 m, in open and paved areas, at relatively low cost, in real time or close to real time. Spatial measurements performed using GPR and FDEM systems allow monitoring many tens of thousands of measurement points per hectare, thus providing a picture of the spatial situation along pipelines and the surrounding. The main purpose of this study was to develop a method for detecting sewage leaks using the above-proposed geophysical methods, since their contaminants can severely affect public health. We focused on identifying, locating and characterizing such leaks in sewage pipes in residential and industrial areas.

  1. Detection of Oil and Gas Pipeline Leak%油气管道泄漏检测技术

    许旺松

    2011-01-01

    Pipeline transport was a rapidly developing field in oil and natural gas transmission because of its economical and convenient,but the leakage problem became a hazard to safe operation of pipelines,and was the main factor causing a variety of accidents.The pipeline leak detection technology was an important pipeline management techniques to prevent the leakage occurred(or after the timely detection of the leak).Therefore,the research pipeline leak detection technology for the safe operation of the pipeline was important.A systematic description of this technology,classification and comparison,and its development prospects were predicted.%管道输送因其经济方便,正在石油天然气等输送领域迅速发展,但泄漏问题已经成为危害管道安全运行、造成各种事故的主要因素。借助管道泄漏检测技术防止泄漏发生(或在泄漏发生后及时发现)是管道管理采取的重要技术手段。因此,研究管道泄漏检测技术对管道安全运行具有重要意义,本文对油气管道泄露技术进行了系统性介绍、分类和比较,并对其发展前景进行了预测。

  2. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  3. Towards Acoustic Detection of UHE Neutrinos in the Mediterranean Sea - The AMADEUS Project in ANTARES

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The acoustic detection method is a promising option for future neutrino telescopes operating in the ultra-high energy regime. It utilises the effect that a cascade evolving from a neutrino interaction generates a sound wave, and is applicable in different target materials like water, ice and salt. Described here are the developments in and the plans for the research on acoustic particle detection in water performed by the ANTARES group at the University of Erlangen within the framework of the ANTARES experiment in the Mediterranean Sea. A set of acoustic sensors will be integrated into this optical neutrino telescope to test acoustic particle detection methods and perform background studies.

  4. Flame photometric detection of sodium leaks: Tests on a fullscale model for the control gear sodium rig

    The proposed arrangement for detecting sodium leaks from the large flanges of the Control Gear Sodium Rig (Test Section No. 8, MCTR) at REML is to jacket then in a secondary containment from which air samples will be continuously pumped. Pipework feeds the air to a flame photometer which responds if soditun is present. To prove that sodium smoke could be transferred through the system, tests were performed on a fullscale model by burning small amounts of sodium in different jackets. Large signals free from fluctuations were obtained in all tests, peak response occurring in 2 1/4 minutes or less. The signal quickly cleared after isolating the appropriate vessel. A waiting period of several hours was sufficient to reduce the signal to zero, no cleaning of pipework, etc being necessary. In contrast, samples of two lagging materials heated to 400 °C gave no response with the photometer at maximum sensitivity. (author)

  5. Accuracy improvement in leak detection of charcoal adsorbers by halide pulse integration method

    Kovach, B.J.; Banks, E.M. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    Due to the phaseout of the supply of R-11, which is used as a charcoal adsorber leak-testing agent, several new substitutes have been suggested and tested. Pulse testing using agents with higher boiling points produced longer response times (due to prolonged evaporation and dispersion times). This longer evaporation time alters the pulse shape and lowers the peak concentration. Since the dispersion and evaporation time under different ambient condition are unpredictable, the peak concentration becomes unpredictable as well. One way to eliminate this unpredictability is to determine the area under the curve (of concentration versus time) after test-agent injection rather than the peak concentration (height). This value should be independent of the injection time and evaporation rate as long as the volume of the test agent injected remains constant. Thus, tests were performed with a constant volume injection of test agent but with different injection times and evaporation rates. The area under the curve of concentration versus time was then compared with the peak concentration for each injection. 4 refs., 1 fig.

  6. Leak finder : new twist on fibre optics promises well-operators an ear for downhole gas leaks

    Mahony, J.

    2010-04-15

    Alberta's Energy Resources Conservation Board (ERCB) requires that well operators report downhole gas leaks. Leaks fall into two groups, notably gas migration, where gas works its way to surface, usually outside the wellbore, through holes in the concrete around the casing; and surface casing vent flow, where gas moves up the wellbore, usually between the production casing and surface casing. The ERCB gauges the seriousness of the leak through a formula that considers well depth, gas pressure and flow rate. If deemed serious, a leak must be repaired within 90 days. If deemed non-serious, the operator need only monitor the casing vent flow for changes in pressure, volume or both. The greatest challenge is finding the leak. Until recently, the tools for the job were a microphone on a wireline. However, a new method that provides a faster, more accurate way of finding downhole gas leaks has been developed by Alberta-based HiFi Engineering. The method uses fibre optics as a sensor and as a transmission medium. The fibre is treated to effectively transform it into an acoustic sensor. After treatment, the fibre itself becomes the microphone and is highly sensitive to acoustics. The fibre can move data at the speed of light and can also sense very faint sounds in the wellbore, making it useful for tracing casing vent flows or gas migration through the noise produced. HiFi's soon to be commercialized fibre optic technology has been extensively tested in the laboratory. The distributed fibre optic acoustic sensors have also been tested on 4 Cenovus natural gas wells in Alberta. The signal-to-noise ratio is key to the usefulness of any sound-detection device. The sensitivity of the tool increases as the signal-to-noise ratio increases. 1 refs., 3 figs.

  7. Detection of water leaks in the dam Joumine and study of sedimentation in the dam Ghezela by nuclear method

    The objective of this study is to determinate the paths of leaks observed in the dam Joumine and to identify the origin of salinity in the drain D2. In addition, the evaluation of the sedimentation measurement of suspended elements in the dam Ghezela is our second objective. The Joumine dam located in the North-east of Tunisia (governorate of Bizerte), was built in 1983 has an upstream watershed area of 418 km2. The reservoir capacity is 130 Mm3. This dam observed a water leakage from its implementation at the two drains D1 and D2 with a emerging flow rate reached a value close to 500 l/s, about 16 pour cent of its capacity. The injection of an insulating material in Karsts networks reduces the leakage rate to a value of 120 l / s in 1993 and 88 l / s in 2013, but this decrease was accompanied by an increase in salinity level in D2. The results from a multidisciplinary approach showed that the leakage path from the left bank of the reservoir where the leak was first detected, heading both D1 and D2 drains and the salinity in drain D2 due to the dissolution of the gypsum layer downstream of the dam and the contribution of brackish water from the left bank. The Ghezela dam located in the same area, was built in 1984 has an upstream watershed area of 48 km2. This dam has been an increase in sedimentation of 0.3 million m3 in 1994 to 1.7 million m3 in 2010. In this study, the suspended elements were measured with a nuclear probe composed by a radioactive source of americium 241 and a NaI detector trained by a boat at different depth in the reservoir.

  8. Project W-314 acceptance test report HNF-4651 for HNF-4650 SN-268 encasement leak detection ANA-WT-LDSTA-335 for project W-314

    The purpose of the test was to verify that the AN Tank Farm Encasement Leak Detector components are functionally integrated and operate in accordance with engineering design specifications The Acceptance Test Procedure HNF-4650, SN-268 Encasement Leak Detection ANA-W-LDSTA-335, was conducted between 22 June and 01 July 1999 at the 200E AN Tank Farm. The test has been completed with no open test exceptions The test was conducted prior to final engineering ''as built'' activities being completed this had no impact on the procedure or test results. All components, identified in the procedure, were found to be labeled and identified as written in the procedure

  9. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system

  10. Detection of active bile leak with Gd-EOB-DTPA enhanced MR cholangiography: Comparison of 20–25 min delayed and 60–180 min delayed images

    Cieszanowski, Andrzej, E-mail: andrzej.cieszanowski@wum.edu.pl [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Stadnik, Anna, E-mail: aniaws@yahoo.com [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Lezak, Aleksandra, E-mail: aleksandralezak@gmail.com [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Maj, Edyta, E-mail: em26@wp.pl [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Zieniewicz, Krzysztof, E-mail: krzysztof.zieniewicz@wum.edu.pl [Chair and Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Rowinska-Berman, Katarzyna, E-mail: kasiarowinska@wp.pl [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Grudzinski, Ireneusz P., E-mail: ireneusz.grudzinski@wum.edu.pl [Department of Toxicology, Medical University of Warsaw, Faculty of Pharmacy, ul. Banacha 1, 02-097 Warsaw (Poland); Krawczyk, Marek, E-mail: marek.krawczyk@wum.edu.pl [Chair and Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Rowiński, Olgierd, E-mail: olgierd.rowinski@wum.edu.pl [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland)

    2013-12-01

    Objectives: The purpose of this study was to assess the value of contrast-enhanced magnetic resonance cholangiography (MRC) performed in different time delays after injection of gadoxetic acid disodium (Gd-EOB-DTPA) for the diagnosis of active bile leak. Methods: This retrospective analysis included Gd-EOB-DTPA enhanced MR images of 34 patients suspected of bile leak. Images were acquired 20–25 min after Gd-EOB-DTPA injection. If there was inadequate contrast in the bile ducts then delayed images after 60–90 min and 150–180 min were obtained. Results were correlated with intraoperative findings, ERCP results, clinical data, laboratory tests, and follow-up examinations. Results: Gd-EOB-DTPA enhanced MRC yielded an overall sensitivity of 96.4%, specificity of 100% and accuracy of 97.1% for the diagnosis of an active bile leak. The sensitivity of 20–25 min delayed MR images was 42.9%, of combined 20–25 min and 60–90 min delayed images was 92.9% and of combined 20–25 min, 60–90 min and 150–180 min delayed images was 96.4%. Conclusions: Gd-EOB-DTPA enhanced MRC utilizing delayed phase images was effective for detecting the presence and location of active bile leaks. The images acquired 60–180 min post-injection enabled identification of bile leaks even in patients with a dilated biliary system or moderate liver dysfunction.

  11. Damage detection in wind turbine blades using acoustic techniques

    Juengert, A., E-mail: anne.juengert@mpa.uni-stuttgart.de [Univ. of Stuttgart, Materialpruefungsanstalt Stuttgart, Stuttgart (Germany)

    2013-05-15

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  12. Damage detection in wind turbine blades using acoustic techniques

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  13. Multiuser sonar watermarking and detection in an underwater acoustic channel

    Mobasseri, Bijan G.; Lynch, Robert S.; Andiario, David

    2013-06-01

    Sonar watermarking is the practice of embedding low-power, secure digital signatures in the time frequency space of a waveform. The algorithm is designed for a single source/receiver configuration. However, in a multiuser environment, multiple sources broadcast sonar waveforms that overlap in both time and frequency. The receiver can be configured as a filter bank where each bank is dedicated to detecting a specific watermark. However, a filter bank is prone to mutual interference as multiple sonar waveforms are simultaneously present at the detector input. To mitigate mutual interference, a multiuser watermark detector is formulated as a decorrelating detector that decouples detection amongst the watermark signatures. The acoustic channel is simulated in software and modeled by an FIR filter. This model is used to compensate for the degradation of spreading sequences used for watermark embedding. The test statistic generated at the output of the decorrelating detector is used in a joint maximum likelihood ratio detector to establish the presence or absence of the watermark in each sonar waveform. ROC curves are produced for multiple sources positioned at varying ranges subject to ambient ocean noise controlled by varying sea states.

  14. A prototype device for acoustic neutrino detection in Lake Baikal

    Budnev, N M

    2007-01-01

    In April 2006, a 4-channel acoustic antenna has been put in long-term operation on Lake Baikal. The detector was installed at a depth of about 100 m on the instrumentation string of Baikal Neutrino Telescope NT200+. This detector may be regarded as a prototype of a subunit for a future underwater acoustic neutrino telescope. We describe the design of acoustic detector and present first results obtained from data analysis.

  15. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  16. Development of Novel Optical Fiber Interferometric Sensors with High Sensitivity for Acoustic Emission Detection

    Deng, Jiangdong

    2004-01-01

    For the purpose of developing a new highly-sensitive and reliable fiber optical acoustic sensor capable of real-time on-line detection of acoustic emissions in power transformers, this dissertation presents the comprehensive research work on the theory, modeling, design, instrumentation, noise analysis, and performance evaluation of a diaphragm-based optical fiber acoustic (DOFIA) sensor system. The optical interference theory and the diaphragm dynamic vibration analysis form the two fou...

  17. Leak Detection in Heat Exchangers and Underground Pipelines Using Radiotracers. Material for Education and On-The-Job Training for Practitioners of Radiotracer Technology

    The International Atomic Energy Agency plays a major role in facilitating the transfer of radiotracer technology to developing Member States. The use of radiotracer techniques is well established in many Member States; some hundred radiotracer and end user specialists have been trained in radiotracer techniques and their applications; nearly 50 radiotracer laboratories have been working in this field. The training of radiotracer practitioners is vital for the provision of quality services to industry. Leak detection using radiotracer techniques is probably one of the most widespread applications of radiotracers in industrial troubleshooting. Radiotracer techniques are the most competitive for online leak inspection of heat exchangers and buried pipelines. Radiotracers help in early detection of leaks in heat exchangers and underground transporting pipelines, thus saving money, reducing shutdown time, ensuring safe operation and protecting the environment from pollution. The training course series on leak detection in heat exchangers and underground pipelines using radiotracers addresses the needs of the radiotracer groups and their end users. Besides training purposes, this material will assist radiotracer groups in establishing their quality control and accreditation systems. This training course material is based on lecture notes and practical work delivered by many experts in IAEA-supported activities. In particular, the Technical Cooperation Projects implemented under the Regional Cooperative Agreement (RCA) of the IAEA Member States in the Asia and the Pacific Region have been successful in transferring and implementing radiotracer techniques for leak detection to many end users from oil and gas production, oil refineries and the petrochemical industry. The experience obtained in the RCA Region is presented in the training material illustrated with many case studies carried out in several RCA Member States. Lectures and case studies were reviewed by a number

  18. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  19. Natural gas leaks detection by spatial-resolvable-CW-laser-based remote monitoring

    Agishev, R.R.; Bajazitov, R.A.; Galeyev, M.M.; Ismagilow, Z.B. [Kazan State Technical Univ., Tatarstan (Russian Federation). Dept. of Radioelectronic and Quantum Systems

    1996-12-31

    The opportunities of spatial-resolvable atmosphere monitoring and atmospheric pollutions remote chemical analysis based on the CW-laser radiants are investigated. A frequency-responsive processing peculiarities of atmosphere remote sensing signals are described. Application of the mentioned approach for the limited hydrocarbons remote detection and sensing is discussed. The requirements to the CW-LIDAR receiving and radiating systems parameters are formulated. The evaluations of the system sensitivity limit, measurement accuracy and accuracy increase ways are presented.

  20. Review of German activities in the field of acoustic boiling detection

    The potential and the feasibility of acoustic boiling detection systems in LMFBRs are mainly determined by the four following items: The availability of radiation and temperature resistant acoustic transducers; Kind and intensity of the noise source; The acoustic transfer behaviour of the core structure and the coolant; The acoustic background noise. Although these four elements are more or less present in any practical case, this differentiation is useful for several reasons. It helps to analyse the .problem, to define appropriate theoretical and experimental investigations, and finally to synthesize the single results to an overall judgement. This paper reviews the German (KfK and Interatom) activities in the four areas

  1. Acoustic detection, tracking, and characterization of three tornadoes.

    Frazier, William Garth; Talmadge, Carrick; Park, Joseph; Waxler, Roger; Assink, Jelle

    2014-04-01

    Acoustic data recorded at 1000 samples per second by two sensor arrays located at ranges of 1-113 km from three tornadoes that occurred on 24 May 2011 in Oklahoma are analyzed. Accurate bearings to the tornadoes have been obtained using beamforming methods applied to the data at infrasonic frequencies. Beamforming was not viable at audio frequencies, but the data demonstrate the ability to detect significant changes in the shape of the estimated power spectral density in the band encompassing 10 Hz to approximately 100 Hz at distances of practical value from the sensors. This suggests that arrays of more closely spaced sensors might provide better bearing accuracy at practically useful distances from a tornado. Additionally, a mathematical model, based on established relationships of aeroacoustic turbulence, is demonstrated to provide good agreement to the estimated power spectra produced by the tornadoes at different times and distances from the sensors. The results of this analysis indicate that, qualitatively, an inverse relationship appears to exist between the frequency of an observed peak of the power spectral density and the reported tornado intensity. PMID:25234974

  2. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  3. 输气管道泄露检测技术进展%Research Progress in Leaking Detection Technology for Gas Transmission Pipelines

    宫克; 冷俊; 潘一; 曹成龙; 王彦博; 康超男; 段元蒙

    2014-01-01

    Gas pipeline leak detection technology is a detection technology of discovering and making detection alarm reaction when the pipeline is becoming aging, corrosion, man-made destruction and its defects. The leakage from gas pipelines will not only bring huge economic loss, but also the leakage of natural gas is serious and hidden security danger. If the leakage cannot be found in time, it is easy to cause a major accident. Therefore, pipeline leak detection technology is a guarantee of the security of oil and gas transportation. In this paper, the leak detection technologies were classified, and principle analysis and adaptability evaluation of nine types of indirect detection techniques were carried out, including the infrared imaging detection technology, the negative pressure wave detection technology, the magnetic flux leakage detection technology, the distributed optical fiber leak detection technology and so on. Finally, the development prospect of the pipeline leak detection technology was discussed.%输气管道泄露检测技术是在管道出现老化、腐蚀、人为破坏和自身缺陷等问题时,及时发现并做出报警反应的检测技术。输气管道泄漏不仅会带来巨大的经济损失,而且外漏后的天然气也存在严重的安全隐患,如不及时发现,容易造成重大事故。因此管道检漏技术就是油气安全运输的保障。首先对检漏技术进行了分类,并着重对红外线成像检漏技术、负压波检测技术、漏磁检漏技术、分布式光纤检漏技术等9种新型的间接检漏技术进行了原理分析、进展介绍和适应性评价,最后对管道检漏技术的发展前景做出了展望。

  4. Multi-Spectral imaging of vegetation for detecting CO2 leaking from underground

    Rouse, J.H.; Shaw, J.A.; Lawrence, R.L.; Lewicki, J.L.; Dobeck, L.M.; Repasky, K.S.; Spangler, L.H.

    2010-06-01

    Practical geologic CO{sub 2} sequestration will require long-term monitoring for detection of possible leakage back into the atmosphere. One potential monitoring method is multi-spectral imaging of vegetation reflectance to detect leakage through CO{sub 2}-induced plant stress. A multi-spectral imaging system was used to simultaneously record green, red, and near-infrared (NIR) images with a real-time reflectance calibration from a 3-m tall platform, viewing vegetation near shallow subsurface CO{sub 2} releases during summers 2007 and 2008 at the Zero Emissions Research and Technology field site in Bozeman, Montana. Regression analysis of the band reflectances and the Normalized Difference Vegetation Index with time shows significant correlation with distance from the CO{sub 2} well, indicating the viability of this method to monitor for CO{sub 2} leakage. The 2007 data show rapid plant vigor degradation at high CO{sub 2} levels next to the well and slight nourishment at lower, but above-background CO{sub 2} concentrations. Results from the second year also show that the stress response of vegetation is strongly linked to the CO{sub 2} sink-source relationship and vegetation density. The data also show short-term effects of rain and hail. The real-time calibrated imaging system successfully obtained data in an autonomous mode during all sky and daytime illumination conditions.

  5. System for detecting acoustic emissions in multianvil experiments: Application to deep seismicity in the Earth

    One of the major goals in the experimental study of deep earthquakes is to identify slip instabilities at high pressure and high temperature (HPHT) that might be responsible for the occurrence of earthquakes. Detecting acoustic emissions from a specimen during faulting provides unique constraints on the instability process. There are few experimental studies reporting acoustic emissions under HPHT conditions, due to technical challenges. And those studies have used only one or at most two acoustic sensors during the experiments. Such techniques preclude the accurate location of the acoustic emission source region and thus the ability to distinguish real signal from noise that may be coming from outside the sample. We have developed a system for detecting acoustic emissions at HPHT. Here we present a four-channel acoustic emission detecting system working in the HPHT octahedral multianvil apparatus. Each channel has high resolution (12 bits) and a sampling rate of 30 MHz. In experiments at the pressures up to 6 GPa and temperatures up to 770 deg. C, we have observed acoustic emissions under various conditions. Analyzing these signals, we are able to show that this system permits us to distinguish between signal and noise, locate the source of the acoustic emission, and obtain reliable data on the radiation pattern. This system has greatly improved our ability to study faulting instabilities under high pressure and high temperature

  6. Detection of leaks in underground storage tanks using electrical resistance methods: 1996 results

    This document provides a summary of a field experiment performed under a 15m diameter steel tank mockup located at the Hanford Reservation, Washington. The purpose of this test was to image a contaminant plume as it develops in soil under a tank already contaminated by previous leakage and to determine whether contaminant plumes can be detected without the benefit of background data. Measurements of electrical resistance were made before and during a salt water release. These measurements were made in soil which contained the remnants of salt water plumes released during previous tests in 1994 and in 1995. About 11,150 liters of saline solution were released along a portion of the tank's edge in 1996. Changes in electrical resistivity due to release of salt water conducted in 1996 were determined in two ways: (1) changes relative to the 1996 pre-spill data, and (2) changes relative to data collected near the middle of the 1996 spill after the release flow rate was increased. In both cases, the observed resistivity changes show clearly defined anomalies caused by the salt water release. These results indicate that when a plume develops over an existing plume and in a geologic environment similar to the test site environment, the resulting resistivity changes are easily detectable. Three dimensional tomographs of the resistivity of the soil under the tank show that the salt water release caused a region of low soil resistivity which can be observed directly without the benefit of comparing the tomograph to tomographs or data collected before the spill started. This means that it may be possible to infer the presence of pre-existing plumes if there is other data showing that the regions of low resistivity are correlated with the presence of contaminated soil. However, this approach does not appear reliable in defining the total extent of the plume due to the confounding effect that natural heterogeneity has on our ability to define the margins of the anomaly

  7. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  8. Acoustic neutrino detection investigations within ANTARES and prospects for KM3NeT

    Lahmann Robert

    2016-01-01

    Full Text Available The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of cosmogenic neutrinos at energies exceeding 1 EeV. It suggests itself to investigate this technique in the context of underwater Cherenkov neutrino telescopes, in particular KM3NeT, because acoustic sensors are present by design to allow for the calibration of the positions of the optical sensors. For the future, the KM3NeT detector in the Mediterranean Sea will provide an ideal infrastructure for a dedicated array of acoustic sensors. In this presentation results from the acoustic array AMADEUS of the ANTARES detector will be discussed with respect to the potential and implications for acoustic neutrino detection with KM3NeT and beyond.

  9. Research and development for the high-temperature helium-leak detection system (Joint research). Part 2. Development of temperature sensors using optical fibre for the HTTR

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In the second stage of the research and development for a high-temperature helium-leak detection system, the temperature sensor using optical fibres was studied. The sensor detects the helium leakage by the temperature increase surrounded optical fibre with or without heat insulator. Moreover, the applicability of high temperature equipments as the HTTR system was studied. With the sensor we detected 5.0-20.0 cm{sup 3}/s helium leakages within 60 minutes. Also it was possible to detect earlier when the leakage level is at 20.0 cm {sup 3}/s. (author)

  10. NRC Job Code V6060: Extended in-situ and real time monitoring. Task 4: Detection and monitoring of leaks at nuclear power plants external to structures

    Sheen, S. H. (Nuclear Engineering Division)

    2012-08-01

    In support of Task 4 of the NRC study on compliance with 10 CFR part 20.1406, minimization of contamination, Argonne National Laboratory (ANL) conducted a one-year scoping study, in concert with a parallel study performed by NRC/NRR staff, on monitoring for leaks at nuclear power plants (NPPs) external to structures. The objective of this task-4 study is to identify and assess those sensors and monitoring techniques for early detection of abnormal radioactive releases from the engineered facility structures, systems and components (SSCs) to the surrounding underground environment in existing NPPs and planned new reactors. As such, methods of interest include: (1) detection of anomalous water content of soils surrounding SSCs, (2) radionuclides contained in the leaking water, and (3) secondary signals such as temperature. ANL work scope includes mainly to (1) identify, in concert with the nuclear industry, the sensors and techniques that have most promise to detect radionuclides and/or associated chemical releases from SSCs of existing NPPs and (2) review and provide comments on the results of the NRC/NRR staff scoping study to identify candidate technologies. This report constitutes the ANL deliverable of the task-4 study. It covers a survey of sensor technologies and leak detection methods currently applied to leak monitoring at NPPs. The survey also provides a technology evaluation that identifies their strength and deficiency based on their detection speed, sensitivity, range and reliability. Emerging advanced technologies that are potentially capable of locating releases, identifying the radionuclides, and estimating their concentrations and distributions are also included in the report along with suggestions of required further research and development.

  11. NRC Job Code V6060: Extended in-situ and real time monitoring. Task 4: Detection and monitoring of leaks at nuclear power plants external to structures

    In support of Task 4 of the NRC study on compliance with 10 CFR part 20.1406, minimization of contamination, Argonne National Laboratory (ANL) conducted a one-year scoping study, in concert with a parallel study performed by NRC/NRR staff, on monitoring for leaks at nuclear power plants (NPPs) external to structures. The objective of this task-4 study is to identify and assess those sensors and monitoring techniques for early detection of abnormal radioactive releases from the engineered facility structures, systems and components (SSCs) to the surrounding underground environment in existing NPPs and planned new reactors. As such, methods of interest include: (1) detection of anomalous water content of soils surrounding SSCs, (2) radionuclides contained in the leaking water, and (3) secondary signals such as temperature. ANL work scope includes mainly to (1) identify, in concert with the nuclear industry, the sensors and techniques that have most promise to detect radionuclides and/or associated chemical releases from SSCs of existing NPPs and (2) review and provide comments on the results of the NRC/NRR staff scoping study to identify candidate technologies. This report constitutes the ANL deliverable of the task-4 study. It covers a survey of sensor technologies and leak detection methods currently applied to leak monitoring at NPPs. The survey also provides a technology evaluation that identifies their strength and deficiency based on their detection speed, sensitivity, range and reliability. Emerging advanced technologies that are potentially capable of locating releases, identifying the radionuclides, and estimating their concentrations and distributions are also included in the report along with suggestions of required further research and development.

  12. Development of high sensitive and reliable FFD and sodium leak detection technique for fast reactor using RIMS

    performed the experiments using stable isotope 23Na to evaluate the detection sensitivity of the prototype system as shown in FIG. 2. Sodium aerosols of 10-2 ∼ 102 ppb were introduced into the aerodynamic lens from sodium aerosol generator, and aerosols were accumulated on the surface of the titanium tetrachloride plate for the set time using a chopper. After accumulation of aerosols, the plate was turned 180o and atomization laser was irradiated to its surface. After a delay, the resonance excitation laser was irradiated, and pulsed voltage was applied to ionize sodium atom. 23Na+ ions were counted by means of the time of flight mass spectrometer. The preliminary test results using the stable isotope (23Na) showed that prototype system could easily detect sodium aerosol of 100 ppb, equivalent to the sensitivity of the conventional detectors RIMS system will be an innovative system to improve the reliability FFDL system and Sodium leak detection system for the safety of fast reactor. Present study includes the result of 'the study of highly sensitivity technique for sodium leak detection using laser resonance ionization mass spectrometry to improve fast reactor plant safety' performed in JFY 2005 to 2008 entrusted to the Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT.)

  13. Detection of respiratory compromise by acoustic monitoring, capnography, and brain function monitoring during monitored anesthesia care.

    Tanaka, Pedro P; Tanaka, Maria; Drover, David R

    2014-12-01

    Episodes of apnea in sedated patients represent a risk of respiratory compromise. We hypothesized that acoustic monitoring would be equivalent to capnography for detection of respiratory pauses, with fewer false alarms. In addition, we hypothesized that the patient state index (PSI) would be correlated with the frequency of respiratory pauses and therefore could provide information about the risk of apnea during sedation. Patients undergoing sedation for surgical procedures were monitored for respiration rate using acoustic monitoring and capnography and for depth of sedation using the PSI. A clinician blinded to the acoustic and sedation monitor observed the capnograph and patient to assess sedation and episodes of apnea. Another clinician retrospectively reviewed the capnography and acoustic waveform and sound files to identify true positive and false positive respiratory pauses by each method (reference method). Sensitivity, specificity, and likelihood ratio for detection of respiratory pause was calculated for acoustic monitoring and capnography. The correlation of PSI with respiratory pause events was determined. For the 51 respiratory pauses validated by retrospective analysis, the sensitivity, specificity, and likelihood ratio positive for detection were 16, 96 %, and 3.5 for clinician observation; 88, 7 %, and 1.0 for capnography; and 55, 87 %, and 4.1 for acoustic monitoring. There was no correlation between PSI and respiratory pause events. Acoustic monitoring had the highest likelihood ratio positive for detection of respiratory pause events compared with capnography and clinician observation and, therefore, may provide the best method for respiration rate monitoring during these procedures. PMID:24420342

  14. NDE of stainless steel and on-line leak monitoring of LWRs. Annual report, October 1983-September 1984

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Results of a workshop on NDE of stainless steel pipes with weld overlays are presented. No currently available, single leak-detection method for reactor cooling systems combines optimal leakage detection sensitivity, leak-locating ability, and leakage measurement accuracy. Current practice with regard to leak detection has been reviewed and assessed for 74 operating plants, including both BWRs and PWRs. Seven cracks, including three field-induced IGSCC specimens and two thermal-fatigue cracks, have been installed in the acoustic leak detection (ALD) facility at ANL. Cross-correlation techniques to improve leak location capabilities have been successfully demonstrated on the laboratory pipe run by use of 375-kHz transducers on waveguides and an electronically simulated leak signal. Preliminary leak detection and location tests have also been run at ANL with a breadboard ALD system. In addition to ALD experiments, laboratory tests have been carried out to help assess the effectiveness of moisture-sensitive tape

  15. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones.

    Helble, Tyler A; D'Spain, Gerald L; Hildebrand, John A; Campbell, Gregory S; Campbell, Richard L; Heaney, Kevin D

    2013-09-01

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. A common mistake in the analysis of marine mammal acoustic data is formulating conclusions about these animals without first understanding how environmental properties such as bathymetry, sediment properties, water column sound speed, and ocean acoustic noise influence the detection and character of vocalizations in the acoustic data. The approach in this paper is to use Monte Carlo simulations with a full wave field acoustic propagation model to characterize the site specific probability of detection of six types of humpback whale calls at three passive acoustic monitoring locations off the California coast. Results show that the probability of detection can vary by factors greater than ten when comparing detections across locations, or comparing detections at the same location over time, due to environmental effects. Effects of uncertainties in the inputs to the propagation model are also quantified, and the model accuracy is assessed by comparing calling statistics amassed from 24,690 humpback units recorded in the month of October 2008. Under certain conditions, the probability of detection can be estimated with uncertainties sufficiently small to allow for accurate density estimates. PMID:23968053

  16. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  17. A Four-Quadrant PVDF Transducer for Surface Acoustic Wave Detection

    Zhi Chen

    2012-08-01

    Full Text Available In this paper, a polyvinylidene fluoride (PVDF piezoelectric transducer was developed to detect laser-induced surface acoustic waves in a SiO2-thin film–Si-substrate structure. In order to solve the problems related to, firstly, the position of the probe, and secondly, the fact that signals at different points cannot be detected simultaneously during the detection process, a four-quadrant surface acoustic wave PVDF transducer was designed and constructed for the purpose of detecting surface acoustic waves excited by a pulse laser line source. The experimental results of the four-quadrant piezoelectric detection in comparison with the commercial nanoindentation technology were consistent, the relative error is 0.56%, and the system eliminates the piezoelectric surface wave detection direction deviation errors, improves the accuracy of the testing system by 1.30%, achieving the acquisition at the same time at different testing positions of the sample.

  18. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  19. Neutrino detection, position calibration and marine science with acoustic arrays in the deep sea

    Lahmann, R., E-mail: robert.lahmann@physik.uni-erlangen.de [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2013-10-11

    Arrays of acoustic receivers are an integral part of present and potential future Cherenkov neutrino telescopes in the deep sea. They measure the positions of individual detector elements which vary with time as an effect of undersea currents. At the same time, the acoustic receivers can be employed for marine science purposes, in particular for monitoring the ambient noise environment and the signals emitted by the fauna of the sea. And last but not least, they can be used for studies towards acoustic detection of ultra-high-energy neutrinos. Measuring acoustic pressure pulses in huge underwater acoustic arrays with an instrumented volume of the order of 100 km{sup 3} is a promising approach for the detection of cosmic neutrinos with energies exceeding 1 EeV. Pressure signals are produced by the particle cascades that evolve when neutrinos interact with nuclei in water, and can be detected over large distances in the kilometre range. In this article, the status of acoustic detection will be reviewed and plans for the future – most notably in the context of KM3NeT – will be discussed. The connection between neutrino detection, position calibration and marine science will be illustrated.

  20. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  1. Detection of large acoustic energy flux in the solar atmosphere

    González, N Bello; Pillet, V Martínez; Bonet, J A; Solanki, S K; Iniesta, J C del Toro; Schmidt, W; Gandorfer, A; Domingo, V; Barthol, P; Berkefeld, T; Knölker, M

    2010-01-01

    We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/Sunrise provides a total energy flux of ~ 6400--7700 Wm$^{-2}$ at a height of ~ 250 km in the 5.2-10 mHz range, i.e. at least twice the largest energy flux found in previous works. Our estimate lies within a factor of 2 of the energy flux needed to balance radiative losses from the chromosphere according to Anderson & Athay (1989) and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly-evolving granules and at the bright borders, forming dark dots and lanes of splitting granules.

  2. Acoustic wave detection of chemical species electrokinetically transported within a capillary tube.

    Li, Paul C H; Prasad, Ronald

    2003-06-01

    For the first time, we report the acoustic wave detection of chemical species being transported in a capillary tube to a region where acoustic coupling occurs. The measured parameter was a change in phase, which was originally only attributed to a change in solution density as the analyte passed by the detection region. Accordingly, we report the detection of change in phase as various chemical species (e.g. Cy5 dye, Cy5-derivatized glycine and underivatized glycine) were introduced into and migrated along a capillary tube through electrokinetic processes. To improve detection sensitivity, we modified various experimental parameters, such as run buffer concentration, capillary wall thickness and transducer frequency. Although acoustic wave detection was feasible, the peak width and detection limit were inadequate as compared to conventional detection methods for HPLC or CE. Nevertheless, the effects of various physical and chemical relaxation processes on acoustic wave absorption were discussed, and this has shed some light on explaining some observations, which cannot be explained by density differences alone. Accordingly, the acoustic wave method is suggested to investigate these processes, as studied in ultrasonic relaxation spectroscopy, in a flow system. PMID:12866892

  3. Neutrino Detection, Position Calibration and Marine Science with Acoustic Arrays in the Deep Sea

    Lahmann, Robert

    2013-01-01

    Arrays of acoustic receivers are an integral part of present and potential future Cherenkov neutrino telescopes in the deep sea. They measure the positions of individual detector elements which vary with time as an effect of undersea currents. At the same time, the acoustic receivers can be employed for marine science purposes, in particular for monitoring the ambient noise environment and the signals emitted by the fauna of the sea. And last but not least, they can be used for studies towards acoustic detection of ultra-high-energy neutrinos. Measuring acoustic pressure pulses in huge underwater acoustic arrays with an instrumented volume of the order of 100 km^3 is a promising approach for the detection of cosmic neutrinos with energies exceeding 1 EeV. Pressure signals are produced by the particle cascades that evolve when neutrinos interact with nuclei in water, and can be detected over large distances in the kilometre range. In this article, the status of acoustic detection will be reviewed and plans for...

  4. Development of sodium leak detectors for PFBR

    Highlights: ► Sodium leak detection system developed for PFBR using diverse principle. ► Miniature, remotely locatable diverse leak detector developed for Main Vessel. ► Mutual inductance type leak detectors designed and adapted for different locations. ► Sodium Ionisation detectors used for area monitoring. ► Crosswire type leak detector designed, developed and tested. - Abstract: The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam near Chennai in India. The wide and high operating temperature, highly chemically active nature of sodium and its reaction with air make the sodium instrumentation complex over the conventional instrumentation. Over the years, traditional instruments such as wire type leak detectors, spark plug type leak detectors were developed and used in different sodium systems. The redundant and diverse leak detection method calls for development of special instrumentation for sodium systems which include sodium ionization (leak) detector for detecting minute sodium leak in addition to those systems based on mutual inductance principle. For detection of sodium leak from reactor Main Vessel (MV), diverse methods are used such as miniature, remotely locatable, Mutual Inductance type Leak Detector(MILD) and specially modified spark plug type leak detector. The design of MILD is suitably modified for detecting leak in double wall pipes and Diverse Safety Rod drive Mechanism (DSRDM). Steam/water leak in steam generator produces hydrogen and leads to high pressure and temperature in the system. Rupture disc is used as a safety device which punctures itself due to sudden pressure rise. To detect the discharge of sodium and its reaction products at the downstream of the rupture disc due to bursting of the rupture disc, cross wire type leak detector has been designed, developed and tested. The selection of the leak detection system depends on the location where leak has to be detected. This paper

  5. AMADEUS - The Acoustic Neutrino Detection Test System of the ANTARES Deep-Sea Neutrino Telescope

    Aguilar, J A; Albert, A; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Auer, R; Barbarito, E; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cassano, B; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, Ph; Chiarusi, T; Sen, N Chon; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyle, P; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J-P; Escoffier, S; Fehr, F; Fiorello, C; Flaminio, V; Fritsch, U; Fuda, J-L; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Heine, E; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; de Jong, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Keller, P; Kooijman, P; Kopper, C; Kouchner, A; Kretschmer, W; Lahmann, R; Lamare, P; Lambard, G; Larosa, G; Laschinsky, H; Le Provost, H; Lefèvre, D; Lelaizant, G; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Ostasch, R; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Radu, A; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Ruppi, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Shanidze, R; Simeone, F; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J; 10.1016/j.nima.2010.09.053

    2010-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1V/muPa (including preamplifier). Completed in May 2008, AMADEUS consists of six "acoustic clusters", each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on...

  6. Project W-314 updated acceptance test report HNF-4649 for HNF-4648 241-A pit leak detection ANA-WT-LDSTA-331 for project W-314

    The purpose of the test was to verify that the AN Tank Farm AN-A Pit Leak Detector components are functionally integrated and operate in accordance with engineering design specifications. The Acceptance Test Procedure HNF-4648,24l-AN-A-Pit Leak Detection ANA-WT-LDSTA-331 was conducted between 23 June and 01 July 1999 at the 200E AN Tank Farm. The test has been completed with no open test exceptions. The test was conducted prior to final engineering ''as built'' activities being completed this had no impact on the procedure or test results. All components, identified in the procedure were found to be labeled and identified as written in the procedure

  7. Project W-314 acceptance test report HNF-4647 for HNF-4646 241-B pit leak detection ANB-WT-LDSTA-231 for project W-314

    The purpose of the test was to verify that the AN Tank Farm B Pit Leak Detector components are functionally integrated and operate in accordance with engineering design specifications. The Acceptance Test Procedure HNF-4646,241-AN-B-Pit Leak Detection ANB-WT-LDSTA-231 was conducted between 26 June and 02 July 1999 at the 200E AN Tank Farm. The test has been completed with no open test exceptions. The test was conducted prior to final engineering ''as built'' activities being completed this had no impact on the procedure or test results. All components, identified in the procedure were found to be labeled and identified as written in the procedure

  8. NATO TG-53: acoustic detection of weapon firing joint field experiment

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  9. Automatic Music Boundary Detection Using Short Segmental Acoustic Similarity in a Music Piece

    Tanaka Kazuyo; Lee Shi-Wook; Itoh Yoshiaki; Iwabuchi Akira; Kojima Kazunori; Ishigame Masaaki

    2008-01-01

    The present paper proposes a new approach for detecting music boundaries, such as the boundary between music pieces or the boundary between a music piece and a speech section for automatic segmentation of musical video data and retrieval of a designated music piece. The proposed approach is able to capture each music piece using acoustic similarity defined for short-term segments in the music piece. The short segmental acoustic similarity is obtained by means of a new algorithm called segmen...

  10. Field tests and commercialization of natural gas leak detectors

    Choi, D.S.; Jeon, J.S.; Kim, K.D.; Cho, Y.A. [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-09-01

    Objectives - (1) fields test of industrial gas leak detection monitoring system. (2) commericialization of residential gas leak detector. Contents - (1) five sets of gas leak detection monitoring system were installed at natural gas transmition facilities and tested long term stability and their performance. (2) improved residential gas leak detector was commercialised. Expected benefits and application fields - (1) contribution to the improvement of domestic gas sensor technology. (2) localization of fabrication technology for gas leak detectors. 23 refs., 126 figs., 37 tabs.

  11. Inclusion of video information for detection of acoustic events using the fuzzy integral

    Butko, Taras; Temko, Andrey A.; Nadeu Camprubí, Climent; Canton Ferrer, Cristian

    2008-01-01

    When applied to interactive seminars, the detection of acoustic events from only audio information shows a large amount of errors, which are mostly due to the temporal overlaps of sounds. Video signals may be a useful additional source of information to cope with that problem for particular events. In this work, we aim at improving the detection of steps by using two audio-based Acoustic Event Detection (AED) systems, with SVM and HMM, and a video-based AED system, which employs the output of...

  12. Experiment Observation on Acoustic Forward Scattering for Underwater Moving Object Detection

    LEI Bo; MA Yuan-Liang; YANG Kun-De

    2011-01-01

    The problem of detecting an object in shallow water by observing changes in the acoustic field as the object passes between an acoustic source and receiver is addressed. A signal processing scheme based on forward scattering is proposed to detect the perturbed field in the presence of the moving object. The periodic LFM wideband signal is transmitted and a sudden change of field is acquired using a normalized median filter. The experimental results on the lake show that the proposed scheme is successful for the detection of a slowly moving object in the bistatic blind zone.

  13. Underwater acoustic detection of UHE neutrinos with the ANTARES experiment

    Simeone, Francesco; collaboration, for the ANTARES

    2009-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector composed of an array of approximately 900 photomultiplier tubes in 12 vertical strings, spread over an area of about 0.1 km^2 with an instrumented height of about 350 metres. ANTARES, built in the Mediterranean Sea, is the biggest neutrino Telescope operating in the northern hemisphere. Acoustic sensors (AMADEUS project) have been integrated into the infrastructure of ANTARES, grouped in small arrays, to evaluate the feasibility of ...

  14. A Summary Comparison of Active Acoustic Detections and Visual Observations of Marine Mammals in the Canadian Beaufort Sea.

    Pyć, Cynthia D; Geoffroy, Maxime; Knudsen, Frank R

    2016-01-01

    Fisheries sonar was used to determine the applicability of active acoustic monitoring (AAM) for marine mammal detection in the Canadian Beaufort Sea. During 170 h of simultaneous observation by marine mammal observers and active acoustic observation, 119 Balaena mysticetus (bowheads) and 4 Delphinapterus leucas (belugas) were visually sighted, while 59 acoustic signals of bowheads were detected by AAM operators. Observations and detection of seals were also recorded. Comparative results indicate that commercially available active acoustic systems can detect seals at distances up to 500 m and large baleen whales at distances up to 2 km. PMID:26611045

  15. Signal Filtering and Processing During Leak Detection and Positioning%泄漏检测和定位中的信号滤波和处理

    刘洁莹

    2012-01-01

    Leak is a serious accident during the operation of long-distance pipeline. Pipeline breaking and leaking are caused by corrosion, paroxysmal natural disasters and man-made sabotage, which threaten the security of the operation of long-distance pipeline, even cause a substantial economic losses. For years of study, we have formed a system of pipeline leak detection and positioning utilizing modern control theory and signal processing technology. It has the merits to meet the uncertainty of pipeline network and is convenient to on-line monitor.%泄漏是长输管道运行中的重要事故.管道的腐蚀、突发性的自然灾害以及人为的破坏都会造成管道的破裂乃至泄漏,威胁到长输管道的安全运行,甚至造成巨大的经济损失.并经过多年的研究,已形成一套利用现代控制理论和信号处理技术进行管道泄漏检测和定位的方法.其突出的优点是能够适应管道系统的各种不确定性,并且便于在线实时监测.

  16. JavaScript 中的内存泄漏检测方法研究磁%An Approach to Detection Memory Leak in JavaScript

    孙琳; 洪玫; 詹聪; 杜伊; 张琼宇

    2015-01-01

    As a mainstream front‐end script language ,JavaScript is widely used in WEB applications .Although dynam‐ic memory management for JavaScript is to use automatic management methods ,it still has memory leak problem because of the use of all kinds of libraries .In this paper ,11 kinds of memory leak patterns are analyzed and summarized ,it put forward combining the dynamic and static detection methods ,which implements the 11 kinds of memory leak detection .For static de‐tection ,abstract syntax tree is created based on JavaScript program ,relationship between class and event is analyzed and ab‐stracted ,object execution trajectory is tracked ,the suspected leak objects are found .For dynamic detection ,according to the result of static detection ,test cases are generated and ran ,dynamic heap information is gotten ,type points‐from graph is cre‐ated ,memory leaks is judged by analyzing rising trend of memory usage rate .This memory leak detection method is feasible by experimental verification ,performing well ,which reduces false positives compared with static detection and increases cov ‐erage rate compared with dynamic detection .%JavaScript 作为一种主流的前端脚本语言,广泛运用于 Web 应用中。虽然 JavaScript 语言具有垃圾回收机制动态管理内存,但用于各类程序库的的运用,仍然存在内存泄漏的问题。论文分析和归纳了十一种内存泄漏的模式,并提出静态和动态的检测方法的结合,实现对十一种内存泄漏的检测。在静态检测中,基于 JavaScript 程序的抽象语法树,分析和抽象类和事件之间的关系,跟踪对象执行轨迹,发现疑似泄漏的对象。在动态检测阶段,依据静态检测结果,生成测试用例并运行,获取动态堆信息,构建类型指向图,通过分析内存占用率上升的趋势判断内存泄漏。实验验证本内存泄漏检测方法是可行性的,并有较好的检测能力,比较

  17. A mathematical model for leak location and leak area determination in pipeline networks

    Oyedokun O.I.; Oke S.A.; Ighravwe D.E.

    2013-01-01

    Prompt leak location and leak area determination in oil and gas pipeline installations is an indispensable approach to controlling petroleum products wastages in pipes. However, there is an evident lack of literature information on this subject. In this paper, we modelled leak location detection and leak area determination in pipes by applying two methodologies and gave an illustrative example using simulated data with the aid of Matlab. A comparison of the...

  18. Detecting acoustic events during thermal and mechanical loading

    Por, Gabor; Bereczki, Peter; Danka, Zsolt; Trampus, Peter [College of Dunaujvaros (Hungary)

    2014-11-01

    We examined Acoustic Emission (AE) events during combined heat and tensile test carried out in different steels (S235JRG2, TRIP and TWIP steels) on Gleeble simulator. The simulator enabled us to control parameters for fast heating and cooling parallel with pressing and tensile the sample until its real break. The aim was to investigate the structural change of the material, phase transformation in the steel at different temperatures, and connect them to signatures measured by acoustic emission sensors. During testing we noticed characteristics of Barkhausen noise. We demonstrate and prove definitely that we were facing Acoustic Barkhausen Noise (ABN) due to AC current used to heating and to maintaining the temperature in the cylindrical ferritic sample. It was observed, that the magnitude of the ABN dropped suddenly to the half when the tensile test started after preheating, and it was growing back when the tensile test went to plastic deformation with elongation of the tested sample. Localization of the ABN sources has been done showing the distribution of the sources along the whole material. ABN sources were observed all along the sample with interesting density growth in the section where the diameter was smaller, thus the tension was higher. Nevertheless, this was not the only observation, since the place of the densest sources was displaced from one position to another position until the break occurred near to the densest place of ANB and AE source. Off-line examination of the structure of material afterward using destructive test proved that we could register those cooling periods, where phase transition took place in the material. Ferrite-bainite and magnetite-bainite transitions were connected to some higher distribution of ANB and AE signals during the test. Rate of hits and sum of hit were connected to material transition during cooling. The first results of AE measurements during tensile test in TWIP materials showed that AE events are connected with

  19. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six 'acoustic clusters', each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  20. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE - Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit BP 50568, 68008 Colmar (France); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC) - Universitat Politecnica de Valencia. C/ Paranimf 1., 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [FOM Instituut voor Subatomaire Fysica Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Aubert, J.-J. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Barbarito, E. [INFN - Sezione di Bari, Via E. Orabona 4, 70126 Bari (Italy); Baret, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, 13388 Marseille Cedex 13 (France)

    2011-01-21

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/{mu}Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six 'acoustic clusters', each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  1. Detection of acoustic signal emitted during corrosion of 304 stainless steel

    In this work, corrosion of 304 stainless steel was evaluated by using acoustic emission(AE) technique. AE measurement system was set for detecting acoustic signal during accelerated corrosion test of the specimen. AE signal started to be detected after the time of pitting corrosion initiation was evaluated by anodic polarization curve. Pitting corrosion damage was confirmed by optical microscopic observation of the surface morphology. AE cumulative counts and amplitude according to corrosion time could be divided into three stages. These trends were discussed in relation with changing pitting corrosion mechanism. Feasibilities of AE technique for evaluation of corrosion damage and mechanism were suggested.

  2. The Timing of Change Detection and Change Perception in Complex Acoustic Scenes

    Jaunmahomed, Zahrah; Chait, Maria

    2012-01-01

    We investigated how listeners perceive the temporal relationship of a light flash and a complex acoustic signal. The stimulus mimics ubiquitous events in busy scenes which are manifested as a change in the pattern of on-going fluctuation. Detecting pattern emergence inherently requires integration over time; resulting in such events being detected later than when they occurred. How does delayed detection time affect the perception of such events relative to other events in the scene? To model...

  3. Detection of ultra high energy neutrinos with an underwater very large volume array of acoustic sensors: A simulation study

    Karg, Timo

    2006-01-01

    This thesis investigates a new approach towards the detection of ultra high energy (E > 1 EeV) cosmic neutrinos using acoustic sensors immersed in water. The method is based on the thermoacoustic model describing the production of microsecond acoustic pulses from neutrino-induced particle cascades. These cascades locally heat the medium which leads to rapid expansion and a short sonic pulse detectable in water with hydrophones over distances of several kilometres. This makes acoustic detectio...

  4. Leak testing plan for the Oak Ridge National Laboratory liquid low-level waste systems (active tanks): Revision 2. Volume 1: Regulatory background and plan approach; Volume 2: Methods, protocols, and schedules; Volume 3: Evaluation of the ORNL/LT-823DP differential pressure leak detection method; Appendix to Revision 2: DOE/EPA/TDEC correspondence

    This document, the Leak Testing Plan for the Oak Ridge National Laboratory Liquid Low-Level Waste System (Active Tanks), comprises three volumes. The first two volumes address the component-based leak testing plan for the liquid low-level waste system at Oak Ridge, while the third volume describes the performance evaluation of the leak detection method that will be used to test this system. Volume 1, describes that portion of the liquid low-level waste system at that will be tested; it provides the regulatory background, especially in terms of the requirements stipulated in the Federal Facilities Agreement, upon which the leak testing plan is based. Volume 1 also describes the foundation of the plan, portions of which were abstracted from existing federal documents that regulate the petroleum and hazardous chemicals industries. Finally, Volume 1 gives an overview the plan, describing the methods that will be used to test the four classes of components in the liquid low-level waste system. Volume 2 takes the general information on component classes and leak detection methods presented in Volume 1 and shows how it applies particularly to each of the individual components. A complete test plan for each of the components is presented, with emphasis placed on the methods designated for testing tanks. The protocol for testing tank systems is described, and general leak testing schedules are presented. Volume 3 describes the results of a performance evaluation completed for the leak testing method that will be used to test the small tanks at the facility (those less than 3,000 gal in capacity). Some of the details described in Volumes 1 and 2 are expected to change as additional information is obtained, as the viability of candidate release detection methods is proven in the Oak Ridge environment, and as the testing program evolves

  5. Leak testing plan for the Oak Ridge National Laboratory liquid low-level waste systems (active tanks): Revision 2. Volume 1: Regulatory background and plan approach; Volume 2: Methods, protocols, and schedules; Volume 3: Evaluation of the ORNL/LT-823DP differential pressure leak detection method; Appendix to Revision 2: DOE/EPA/TDEC correspondence

    Douglas, D.G.; Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr. [Vista Research, Inc., Mountain View, CA (United States)

    1994-11-01

    This document, the Leak Testing Plan for the Oak Ridge National Laboratory Liquid Low-Level Waste System (Active Tanks), comprises three volumes. The first two volumes address the component-based leak testing plan for the liquid low-level waste system at Oak Ridge, while the third volume describes the performance evaluation of the leak detection method that will be used to test this system. Volume 1, describes that portion of the liquid low-level waste system at that will be tested; it provides the regulatory background, especially in terms of the requirements stipulated in the Federal Facilities Agreement, upon which the leak testing plan is based. Volume 1 also describes the foundation of the plan, portions of which were abstracted from existing federal documents that regulate the petroleum and hazardous chemicals industries. Finally, Volume 1 gives an overview the plan, describing the methods that will be used to test the four classes of components in the liquid low-level waste system. Volume 2 takes the general information on component classes and leak detection methods presented in Volume 1 and shows how it applies particularly to each of the individual components. A complete test plan for each of the components is presented, with emphasis placed on the methods designated for testing tanks. The protocol for testing tank systems is described, and general leak testing schedules are presented. Volume 3 describes the results of a performance evaluation completed for the leak testing method that will be used to test the small tanks at the facility (those less than 3,000 gal in capacity). Some of the details described in Volumes 1 and 2 are expected to change as additional information is obtained, as the viability of candidate release detection methods is proven in the Oak Ridge environment, and as the testing program evolves.

  6. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  7. Effect of passive acoustic sampling methodology on detecting bats after declines from white nose syndrome

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    Concomitant with the emergence and spread of white-nose syndrome (WNS) and precipitous decline of many bat species in North America, natural resource managers need modified and/or new techniques for bat inventory and monitoring that provide robust occupancy estimates. We used Anabat acoustic detectors to determine the most efficient passive acoustic sampling design for optimizing detection probabilities of multiple bat species in a WNS-impacted environment in New York, USA. Our sampling protocol included: six acoustic stations deployed for the entire duration of monitoring as well as a 4 x 4 grid and five transects of 5-10 acoustic units that were deployed for 6-8 night sample durations surveyed during the summers of 2011-2012. We used Program PRESENCE to determine detection probability and site occupancy estimates. Overall, the grid produced the highest detection probabilities for most species because it contained the most detectors and intercepted the greatest spatial area. However, big brown bats (Eptesicus fuscus) and species not impacted by WNS were detected easily regardless of sampling array. Endangered Indiana (Myotis sodalis) and little brown (Myotis lucifugus) and tri-colored bats (Perimyotis subflavus) showed declines in detection probabilities over our study, potentially indicative of continued WNS-associated declines. Identification of species presence through efficient methodologies is vital for future conservation efforts as bat populations decline further due to WNS and other factors.   

  8. Experimental study on the detection of free fluids and gases in waste packages by acoustic methods

    The objective of the project was to evaluate the potential and the limits of various nondestructive methods for testing the contents of 200-litre drums filled with radioactive waste. The following test problems were to be studied: 1. Detection of free water on the surface of the waste matrix (concrete); 2. Determination of the waste matrix level; 3. Determination of internal gas pressure. The following methods were found to be suitable: For Test problem 1: Measurement of Lamb wave attenuation, Acoustic impedance measurement (AIM) and Analysis of swash sound; For Test problem 2: Acoustic impedance measurement (AIM) and Measurement of Lamb wave attenuation; For Test problem 3: A method of pressure compensation and Analysis of cover resonances after striking the cover. It was not possible, however, to detect the concrete level by localisation of friction points using acoustic emission methods. 53 figs

  9. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  10. Robotic vehicle uses acoustic array for detection and localization in urban environments

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  11. RAP: acoustic detection of particles in ultracryogenic resonant antenna

    Bertolucci, S.; Coccia, E.; D' Antonio, S.; Waard, A. de; Delle Monache, G.; Di Gioacchino, D.; Fafone, V.; Fauth, A.; Frossati, G.; Ligi, C. E-mail: carlo.ligi@inf.infn.it; Marini, A.; Mazzitelli, G.; Modestino, G.; Pizzella, G.; Quintieri, L.; Raffone, G.; Ronga, F.; Tripodi, P.; Valente, P

    2004-03-11

    The resonant-mass gravitational wave detector NAUTILUS has recently recorded signals due to cosmic rays crossing. Very large signals have been observed in the superconductive state of the antenna. In order to investigate this anomalous response at low temperatures, the Rivelazione Acustica di Particelle experiment has been approved. Its purpose is the measurement of the mechanical vibrations in a superconducting (T{approx}100 mK) cylindrical aluminium bar when hit by 10{sup 5} electrons at 510 MeV from the DAPHINE Beam Test Facility, corresponding to the energies released by extensive air showers in the NAUTILUS antenna. The results of this measurement are crucial to understand the interaction of ionizing particles with bulk superconductors and to confirm the results on the thermo-acoustic model of the past experiments.

  12. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range

  13. Object Detection and Tracking Method of AUV Based on Acoustic Vision

    ZHANG Tie-dong; WAN Lei; ZENG Wen-jing; XU Yu-ru

    2012-01-01

    This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation,underwater acoustic images segmentation and underwater objects tracking.This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor.First,the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image,and the relevant position information of objects is extracted and determined.An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method.Second,a representation of region information is created in light of the Gaussian particle filter.The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness.Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed.They show that the proposed method can detect and track the moving objects underwater online,and it is effective and robust.

  14. Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-05-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.

  15. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  16. AUTOMATICALLY DETECTING PRIVACY LEAKS OF ANDROID APPLICATIONS%Android 应用隐私泄露的自动化检测

    刘涛; 唐祝寿; 沈备军

    2015-01-01

    When Android becomes the smartphone operating system with largest global market share,the malicious applications is booming on its platform.In particular,privacy leak problems in Android applications are getting worsening.With the development of technology,the concealment of privacy leaks in Android applications grows high increasingly,and its detection becomes more and more difficult as well,for instance,using reflection technique to hide the privacy leak operations.Facing such challenge,in this paper we detect and analyse the pseu-do-code of Android applications and propose a new analysis approach for detecting the reflection callings occurring in pseudo-code.Through re-constructing the reflection calling’s arguments and restoring it to the standard calling,we make the reflection calling explicit,so that those privacy leak behaviours which cannot be found and confirmed previously are detected.Based on this work,we design and implement a static detection tool for Android applications privacy leak.At last,the effectiveness of the proposed approach and tool is validated by the experi-ments and analyses on benign applications from Android market and the malicious applications collected from Internet.%随着 Android 成为全球市场占有率第一的智能手机操作系统,其平台上的恶意程序也呈爆发趋势,尤其是 Android 应用的隐私泄露问题日趋严重。随着技术的发展,Android 应用隐私泄露的隐蔽性越来越高,检测难度越来越大,例如使用反射技术来隐藏隐私泄露的操作。面对这一挑战,对 Android 应用程序的伪代码进行检测分析,并对伪代码中出现的反射调用检测提出新的分析方法,通过将反射调用的参数进行组合还原为标准的函数调用,使得反射调用显式化,从而检测出原本没法检测确认的隐私泄露行为。在此基础上设计实现了 Android 应用隐私泄露的静态检测工具,并通过对市场上的普通

  17. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  18. Theoretical detection threshold of the proton-acoustic range verification technique

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5847 (United States); Xiang, Liangzhong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019-1101 (United States)

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  19. Theoretical detection threshold of the proton-acoustic range verification technique

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range

  20. Design and experimentation of a bell-mouthed spray gun with two channels for helium leak detection%一种氦质谱检漏用双流道喷枪的设计及实验

    冯晓; 廖旭东; 胡茂中; 白国云; 陈涛

    2012-01-01

    To solve the problem of inaccurate positioning of leak by usual spray gun during the leak detection, a bell-mouthed spay gun with two channels was designed and the corresponding experiment was also carried out. The results show that the bell-mouthed spray gun with two channels can differentiate the two leaks 15mm apart and the positioning range of single leak is Φ20mm, which improves the accuracy of leak positioning during helium leak detection.%为解决普通喷枪在检漏时对漏孔定位能力低的问题,设计了一种钟罩式双流道喷枪,并对其开展了测试实验.结果表明:喷氦法检漏时,利用钟罩式双流道喷枪可分辨出相距15mm的相邻漏孔,对单一漏孔定位范围为Φ20 mm,较大的提高了喷氦法检漏时对漏孔的定位能力.

  1. Leak test fitting

    Pickett, P.T.

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  2. Variable leak gas source

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  3. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called ''equivalent circuit diagram (=ECD) model'' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/μPa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/√(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with exemplary results for

  4. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    Naumann, C.L.

    2007-09-17

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called 'equivalent circuit diagram (=ECD) model' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/{mu}Pa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/{radical}(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with

  5. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  6. A method for compressor stations' leak detection and methane emission monitoring; Une methode pour la detection des fuites et la surveillance des emissions de methane dans les stations de compression

    Suomilammi, A. [Gasum Oy (Finland)

    2000-07-01

    Reduction of methane emissions has been a topic of high interest in the gas industry. Several different methods for leak detection and emission measurement has been introduced in recent years with various methods. Gasum Oy, a Finnish gas transmission company, installed in 1997 to the compressor stations of the gas transmission network, a methane leak detection and emission measurement system, which utilizes the existing station instrumentation, control and reporting systems. The method in this system, to detect the leaks and measure the emissions, is based on the pressure levels in the station pipework sections and the station valve statuses. When the station or unit is stopped the station or unit valves are closed and the pipework remain pressurised. Pressure levels are recorded and at the next time when the station or unit is started, the pressure drop is calculated and the methane emission from that pipework section is calculated and reported. The reported data is available for all operators in the dispatching centre and compressor stations' maintenance staff The method is commonly known, but in Gasum's application, the whole system is automated for 3 different compressor stations having total of 9 compressor units. The experience until today shows a clear decrease of methane emissions from compressor stations due to better monitoring and as a consequence, due to the fast response to perform the corrective actions. (author)

  7. Dual-frequency acoustic droplet vaporization detection for medical imaging.

    Arena, Christopher B; Novell, Anthony; Sheeran, Paul S; Puett, Connor; Moyer, Linsey C; Dayton, Paul A

    2015-09-01

    Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and -0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and was independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a standalone diagnostic system to monitor the physical properties of the surrounding environment. PMID:26415125

  8. Background noise cancellation for improved acoustic detection of manatee vocalizations

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .

  9. Research on power-law acoustic transient signal detection based on wavelet transform

    Han, Jian-hui; Yang, Ri-jie; Wang, Wei

    2007-11-01

    Aiming at the characteristics of acoustic transient signal emitted from antisubmarine weapon which is being dropped into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc.), such as short duration, low SNR, abruptness and instability, based on traditional power-law detector, a new method to detect acoustic transient signal is proposed. Firstly wavelet transform is used to de-noise signal, removes random spectrum components and improves SNR. Then Power- Law detector is adopted to detect transient signal. The simulation results show the method can effectively extract envelop characteristic of transient signal on the condition of low SNR. The performance of WT-Power-Law markedly outgoes that of traditional Power-Law detection method.

  10. Experimental and numerical study on microcrack detection using contact nonlinear acoustics

    Xiaojia CHEN; Yuanlin WANG

    2009-01-01

    This paper introduces a non-classical nonlinear acoustic theory for microcrack detection in materials,comparing contact nonlinearity with material nonlinearity.The paper's main work concentrates on the experimental and numerical verification of the effectivity of contact nonlinear acoustic detection by using the contact nonlinear parameter fl', which can be represented by the ratio of the second-harmonic amplitude to the square of the firstharmonic amplitude. Both experiments and numerical tests are performed. The results show that fl' is sensitive to the initiation of microcracks and varies with the development of the microcracks. The numerical test illustrates the decline offl' when microcracks penetrate each other.Kcywords microcrack detection, contact nonlinearity,numerical analysis

  11. Acoustic detection of DNA conformation in genetic assays combined with PCR.

    Papadakis, G; Tsortos, A; Kordas, A; Tiniakou, I; Morou, E; Vontas, J; Kardassis, D; Gizeli, E

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  12. A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals

    Jing-jing WANG; Wei-hui LIU; Da CHEN; Yan XU; Lu-yin ZHANG

    2014-01-01

    Increasing awareness concerning food safety problems has been driving the search for simple and efficient bio-chemical analytical methods. In this paper, we develop a portable electro-acoustic biosensor based on a film bulk acoustic reso-nator for the detection of pesticide residues in agricultural products. A shear mode ZnO film bulk acoustic resonator with a mi-cro-machining structure was fabricated as a mass-sensitive transducer for the real-time detection of antibody-antigen reactions in liquids. In order to obtain an ultra-low detection level, the artificial antigens were immobilized on the sensing surface of the resonator to employ a competitive format for the immunoassays. The competitive immunoreactions can be observed clearly through monitoring the frequency changes. The presence of pesticides was detected through the diminution of the frequency shift compared with the level without pesticides. The limit of detection for carbaryl (a widely used pesticide for vegetables and crops) is 2´10-10 M. The proposed device represents a potential alternative to the complex optical systems and electrochemical methods that are currently being used, and represents a significant opportunity in terms of simplicity of use and portability for on-site food safety testing.

  13. Reliability of scanning laser acoustic microscopy for detecting internal voids in structural ceramics

    Roth, D.J.; Baaklini, G.Y.

    1986-01-01

    The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.

  14. Reliability of scanning laser acoustic microscopy for detecting internal voids in structural ceramics

    Roth, D.J.; Baaklini, G.Y.

    1986-07-01

    The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics. 28 references.

  15. Passive vibro-acoustic detection of a sodium-water reaction in a steam generator of a sodium-cooled fast neutrons nuclear reactor by beam forming

    This thesis deals with a new method to detect a sodium-water reaction in a steam generator of a fast sodium-cooled nuclear reactor. More precisely, the objective is to detect a micro-leak of water (flow ≤ 1 g/s) in less than 10 seconds by measuring the external shell vibrations of the component. The strong background noise in operation makes impossible the use of a detection system based on a threshold overrun. A beam forming method applied to vibrations measured by a linear array of accelerometers is developed in this thesis to increase the signal-to-noise ratio and to detect and locate the leak in the steam generator. A numerical study is first realized. Two models are developed in order to simulate the signals measured by the accelerometers of the array. The performances of the beam forming are then studied in function of several parameters, such as the source location and frequency, the damping factor, the background noise considered. The first model consists in an infinite plate in contact with a heavy fluid, excited by an acoustic monopole located in this fluid. Analyzing the transverse displacements in the wavenumber domain is useful to establish a criterion to sample correctly the vibration field of the plate. A second model, more representative of the system is also proposed. In this model, an elastic infinite cylindrical shell, filled with a heavy fluid is considered. The finite dimensions in the radial and circumferential directions lead to a modal behavior of the system which impacts the beam forming. Finally, the method is tested on an experimental mock-up which consists in a cylindrical pipe made in stainless steel and filled with water connected to hydraulic circuit. The water flow speed can be controlled by varying the speed of the pump. The acoustic source is generated by a hydro-phone. The performances of the beam forming are studied for different water flow speeds and different amplitude and frequencies of the source. (author)

  16. Acoustic detection of steam-water in a model of steam generator with a helicoidal tube bundle

    The study of mechanical vibrations of the wall of a simulated steam generator allows the detection of steam-water injection in sodium. Measurements carried out in this test showed that it is possible to reveal this injection and secondary leaks created by wastage

  17. Analysis of acoustic to seismic coupling technique for buried landmines detection

    WANG Chi; XIE Yulai; LI Xingfei; SUN Fei; ZHANG Guoxiong

    2009-01-01

    The mechanical interaction between the induced seismic waves and landmines was analyzed according to acoustic-to-seismic coupling theory. And a geophone array based exper-imental system for landmine detection was developed. By modeling a compliant mine and the soil on top of the mine as a mass-spring system, analytic method was adopted to study the resonance mechanism of the system. A loudspeaker was employed as energy source to excite a swept sine tone over the soil. We also used a geophone array to measure the vibration velocity of the ground surface. In order to analysis the landmine effect on the surface vibration, the magnitude spectra curves of the measured velocity values on-and-off mine were plotted. The results showed that the data measured on mine is much bigger than that off target and the proposed system can be applied to further investigation of acoustic landmines detection.

  18. Study on leak rate evaluation

    The Leak Before Break (LBB) concept is widely used in the nuclear industry to eliminate protective components previously accounting for dynamic effects of pipe rupture. A computer program LRCPC (Leak Rate Calculation of Pipe Crack) has been developed here to show detectable leak rates prior to crack growth instability. The program evaluates the LBB hypothesis for the pipe loads, material, crack length, and pipe geometry. The input stagnation conditions include subcooled or saturated liquid where the uncritical flow as well as the critical flow at the exit plane is considered, two-phrase mixture or saturated steam and superheated steam discharge at the exit plane. Calculation results are compared to the published calculating data. Effects of flow parameters such as friction on the critical mass flow rate are investigated. (author)

  19. Detection of internal quality in seedless watermelon by acoustic impulse response

    Diezma Iglesias, Belen; Ruiz-Altisent, Margarita; Barreiro Elorza, Pilar

    2004-01-01

    Recent commercialisation of seedless watermelon varieties relies on the guarantee of a high quality product. Several internal defects may deteriorate greatly this fruit: (a) creases and/or large voids in the flesh, (b) overripeness and (c) bruises due to impact. The objective of this research was to develop a feasible non-destructive procedure for detecting these defects in individual fruits, based on acoustic impulse response. A device consisting of a microphone, structural elements and a...

  20. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background.

    Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen

    2015-08-28

    The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum. PMID:26371637

  1. Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy

    Zhang, Xin; Feng, Naizhang; Wang, Yan; Shen, Yi

    2015-03-01

    In order to detect cracks in railroad tracks, various experiments have been examined by Acoustic Emission (AE) method. However, little work has been done on studying rail defect detection at high speed. This paper presents a study on AE detection of rail defect at high speed based on rail-wheel test rig. Meanwhile, Wavelet Transform and Shannon entropy are employed to detect defects. Signals with and without defects are acquired, and characteristic frequencies from them at different speeds are analyzed. Based on appropriate decomposition level and Energy-to-Shannon entropy ratio, the optimal wavelet is selected. In order to suppress noise effects and ensure appropriate time resolution, the length of time window is investigated. Further, the characteristic frequency of time window is employed to detect defect. The results clearly illustrate that the proposed method can detect rail defect at high speed effectively.

  2. The timing of change detection and change perception in complex acoustic scenes

    MariaChait

    2012-10-01

    Full Text Available We investigated how listeners perceive the temporal relationship of a light-flash and a complex acoustic signal. The stimulus mimics ubiquitous events in busy scenes which are manifested as a change in the pattern of on-going fluctuation. Detecting pattern emergence inherently requires integration over time; resulting in such events being detected later than when they occurred. How does delayed detection-time affect the perception of such events relative to other events in the scene? To model these situations, we use rapid sequences of tone-pips with a time-frequency pattern that changes from random to regular (‘REG-RAND’ or vice versa (‘RAND-REG’. REG-RAND transitions are detected rapidly, but RAND-REG take longer to detect (~880ms post nominal-transition. Using a Temporal Order Judgment task, we instructed subjects to indicate whether the flash appeared before or after the acoustic transition. The point of subjective simultaneity between the flash and RAND-REG does not occur at the point of detection (~880ms post nominal-transition but ~470ms closer to the nominal acoustic-transition. In a second experiment we halved the tone-pip duration. The resulting pattern of performance was qualitatively similar to that in Experiment 1, but scaled by half. Our results indicates that the brain possesses mechanisms that survey the proximal history of an on-going stimulus and automatically adjust perception so as to compensate for prolonged detection time, thus producing more accurate representations of scene dynamics. However, this re-adjustment is not complete.

  3. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  4. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Ardid M.

    2016-01-01

    Full Text Available Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino “signature” that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  5. Acoustic properties of glacial ice for neutrino detection and the Enceladus Explorer

    Helbing, K; Naumann, U; Eliseev, D; Heinen, D; Scholz, F; Wiebusch, C; Zierke, S

    2016-01-01

    Ultra high energy neutrinos may be observed in ice by the emission of acoustic signals. The SPATS detector has investigated the possibility of observing GZK-neutrinos in the clear ice near the South Pole at the IceCube detector site. To explore other potential detection sites glacial ice in the Alps and in Antarctica has been surveyed for its acoustical properties. The purpose of the Enceladus Explorer (EnEx), on the other hand, is the search for extraterrestrial life on the Saturn moon Enceladus. Here acoustics is used to maneuver a subsurface probe inside the ice by trilateration of signals. A system of acoustic transducers has been developed to study both applications. In the south polar region of the moon Enceladus there are secluded crevasses. These are filled with liquid water, probably heated by tidal forces due to the short distance to Saturn. We intend to take a sample of water from these crevasses by using a combination of a melt down and steering probe called IceMole (IM). Maneuvering IM requires a...

  6. Detection of acoustic resonance effects on the ground and in the ionosphere at the total eclipses

    Complete text of publication follows. The ground - lower atmosphere - thermosphere (ionosphere) coupling effects through acoustic resonance have been observed, for example, for the Mt. Pinatubo eruption in 1991 (Kanamori and Mori, 1992) and the great 2004 Sumatra earthquake (Iyemori et al., 2005). In the Mt. Pinatubo case, it was assumed that the acoustic wave (i.e., pressure variation) caused a very low frequency oscillation of the ground observed worldwide. However, a volcanic eruption or earthquake can also cause the ground oscillation directly. The ground oscillation may cause atmospheric oscillations but with a complicated causality. In the case of typhoons when the resonance effects have been detected, the ocean waves also make the situation complicated. When a total eclipse occurs, the rapid pressure variations, caused by the rapid decrease of temperature may also generate the acoustic resonance, however, in this case, the situation is expected to be simpler than for volcanic eruptions. This situation provides better conditions for quantitative modeling of the acoustic resonance effects. On July 22, 2009, a total eclipse will be observed along a band from China, Iwo Island, and through the Tokara Islands, south of Japan. We plan to make barometric, geomagnetic, GPS-TEC and HF Doppler observations at several points along the eclipse path. In this paper, we show some results of analysis of the data obtained from the total eclipses in the past and preliminary results of the observations from the July 22, 2009 event.

  7. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling.

    Xiang, Ning; Sabatier, James M

    2003-03-01

    An acoustic-to-seismic system to detect buried antipersonnel mines exploits airborne acoustic waves penetrating the surface of the ground. Acoustic waves radiating from a sound source above the ground excite Biot type I and II compressional waves in the porous soil. The type I wave and type II waves refract toward the normal and cause air and soil particle motion. If a landmine is buried below the surface of the insonified area, these waves are scattered or reflected by the target, resulting in distinct changes to the acoustically coupled ground motion. A scanning laser Doppler vibrometer measures the motion of the ground surface. In the past, this technique has been employed with remarkable success in locating antitank mines during blind field tests [Sabatier and Xiang, IEEE Trans. Geosci. Remote Sens. 39, 1146-1154 (2001)]. The humanitarian demining mission requires an ability to locate antipersonnel mines, requiring a surmounting of additional challenges due to a plethora of shapes and smaller sizes. This paper describes an experimental study on the methods used to locate antipersonnel landmines in recent field measurements. PMID:12656368

  8. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    Roth, D.J.; Klima, S.J.; Kiser, J.D.; Baaklini, G.Y.

    1986-05-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics. 20 references.

  9. Using of acoustic technologies for detection of explosives in gas, liquid and solid medium

    Full text: Some industrial nuclear power objects are very attractive for the realization of radiological and chemical terrorism acts with using of explosives. Although up today this type of terrorism is not revealed itself, but the problem of detection of explosives at these objects is becoming very actual one, for example, in connection with the implementation of the urgent decommissioning of nuclear powered vessels. Such decommissioning includes the utilization the dangerous radioactive and chemical elements, contained in submarines and vessels. This actual problem is existed not only in Russia, but also in abroad. It is noticed that catastrophes at these objects will have in addition the great negative mental effect on population of all over the world, as it was after the Chernobyl accident. The using of the modern nuclear physics methods for detection and analysis of explosives is connected with the following difficulties: (1) we have to have the unique and the expensive equipment; (2) the special preparation of sample probes; (3) a long time is often necessary for analysis; (4) the high qualification of service personal is needed. We proposed to use for these purposes the complex of acoustic techniques, that are based on the high sensitivity of acoustic characteristics of any matter to their physical and chemical properties.Any acoustic signal has the following main parameters: (1) frequency (ω); (2) amplitude of pressure (ρ); (3) wave and amplitude bands; (4) velocity of acoustic wave propagation (sound velocity) (C); (5) space and temporal signal evolution, that is determined by the values of coefficients of temporal attenuation (α), space adsorption (β) and sound dispersion on obstacles and impurities. Our acoustic analysis is included the determination of C, α and β values for solid and liquid explosives. The exact measurements of these parameters and their dependences from frequency and temperature are conducted in the special acoustic cells, that

  10. Linear and Nonlinear Acoustic Measurements of Buried Landmines: Detection Schemes Near Resonance

    Sabatier, James M.

    2003-03-01

    Measurements of the acoustic impedance of an anti-personnel and anti-tank plastic, blast-hardened landmines reveal resonances in the frequency range between 100 and 1000 Hz. The top surface resonances are due to its complicated mechanical structure vibrating in air. The lowest mode results from the blast hardened design of the landmine. Typically, a portion or cavity of the landmine is designed to absorb the shock from an explosion that is intended to detonate the landmine but still allow the landmine to trigger its explosive device when a slow steady pressure is applied. The mechanical design of the blast hardened aspects results in a high Q simple harmonic oscillator resonance of the top surface. At higher frequencies the top surface behaves like thin circular plate acoustic modes. When these landmines are buried in soils, the modes are mass loaded. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity are used for detection schemes. Since the interface between the top plate and the soil responds to pressure fluctuations nonlinearly, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for new methods of landmine detection not previously exploited.

  11. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  12. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor

  13. Detecting acoustic emission during cyclic crack growth in simulated BWR environment

    An attempt is made to detect and analyze acoustic emissions from cyclic crack growth in SA 533 grade B steel in the simulated BWR water environment. Significant levels of signals caused by the environment-enhanced crack growth were obtained through appropriate noise reduction techniques. By reducing the frictional noises between the loading pins and the specimen, as well as characterizing the spectrum of signals emitted from various sources, discrete signal identification was made possible. The following empirical relationship was obtained between the energy of emission and the crack growth rate: da/dN = C(dΣE sub(AE)/mm/dN)sup(n) where C and n are material constant and exponent respectively. The possibility of utilizing this type of acoustic emission technique was also discussed in relation to future continuous monitoring of operating nuclear plants. (author)

  14. 基于声波技术的管道泄漏检测与定位系统的研究%Research on detection and location system of pipeline leakage based on acoustic wave technology

    付光杰; 赵丹; 赵庆峰; 王士勇

    2015-01-01

    The online real-time leakage detection and location system of natural gas pipeline leak source makes the leakage can be discovered in time,which can confirm leak source location accurately. The economic losses caused by natural gas leakage can be reduced,and it has profound significance for improving automated management level of natural gas transportation pipe-line. By studying and comparative analyzing to pipeline detection technology at home and abroad,acoustic wave technology is ap-plied to leakage detection of gas pipeline. The real-time acoustic wave monitoring and location system for natural gas line leakage was designed by virtual instrument software to proceed signal processing. The leaked acoustic wave signal is proceeded with waveform real-time display,digital filtering,correlated calculation,leakage location and other operations. The automation of pipeline leakage detection was realized.%天然气管道漏点在线实时泄漏监测与定位系统的研究与应用,使得泄漏能够被及时发现并确定泄漏点的位置,从而降低因天然气泄漏造成的经济损失,同时对提高天然气输送管线的自动化管理水平有着深远的意义.通过对国内外各种管道泄漏检测技术的研究和分析比较,采用声波检测方法应用于输气管道的泄漏检测策略,在信号处理方面采用虚拟仪器软件设计了天然气管线声波泄漏实时监测定位系统,对泄漏声波信号进行波形实时显示、数字滤波、相关运算以及泄漏点定位等操作,实现了管线泄漏检测的自动化.

  15. Detection of ultra high energy neutrinos with an underwater very large volume array of acoustic sensors: A simulation study

    Karg, T

    2006-01-01

    This thesis investigates the detection of ultra high energy (E > 1 EeV) cosmic neutrinos using acoustic sensors immersed in water. The method is based on the thermoacoustic model describing the production of microsecond bipolar acoustic pulses by neutrino-induced particle cascades. These cascades locally heat the medium which leads to rapid expansion and a short sonic pulse detectable in water with hydrophones over distances of several kilometres. This makes acoustic detection an approach complementary to todays optical Cerenkov and radio Cerenkov detectors, and could help to reduce the respective systematic uncertainties. In this work a complete simulation / reconstruction chain for a submarine acoustic neutrino telescope is developed, and the sensitivity of such a detector to a diffuse flux of ultra highenergy cosmic neutrinos is estimated.

  16. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean.

    Stafford, K M; Fox, C G; Clark, D S

    1998-12-01

    Analysis of acoustic signals recorded from the U.S. Navy's SOund SUrveillance System (SOSUS) was used to detect and locate blue whale (Balaenoptera musculus) calls offshore in the northeast Pacific. The long, low-frequency components of these calls are characteristic of calls recorded in the presence of blue whales elsewhere in the world. Mean values for frequency and time characteristics from field-recorded blue whale calls were used to develop a simple matched filter for detecting such calls in noisy time series. The matched filter was applied to signals from three different SOSUS arrays off the coast of the Pacific Northwest to detect and associate individual calls from the same animal on the different arrays. A U.S. Navy maritime patrol aircraft was directed to an area where blue whale calls had been detected on SOSUS using these methods, and the presence of vocalizing blue whale was confirmed at the site with field recordings from sonobuoys. PMID:9857519

  17. Uncertainty quantification of relative acoustic nonlinearity parameter of guided waves for damage detection in composite structures

    Hong, Ming; Mao, Zhu; Todd, Michael D.; Su, Zhongqing; Qing, Xinlin

    2015-03-01

    Nonlinear guided waves have been studied extensively for the characterization of micro-damage in plate-like structures, such as early-stage fatigue and thermal degradation in metals. Meanwhile, an increasing number of studies have reported the use of nonlinear acoustic techniques for detection of impact damage, fatigue, and thermal fatigue in composite structures. Among these techniques, the (relative) acoustic nonlinearity parameter, extracted from acousto-ultrasonic waves based on second-harmonic generation, has been considered one of the most popular tools for quantifying the detection of nonlinearity in inspected structures. Considering the complex nature of nonlinearities involved in composite materials (even under healthy conditions), and operational/environmental variability and measurement noise, the calculation of the relative acoustic nonlinearity parameter (RANP) from experimental data may suffer from considerable uncertainties, which may impair the quality of damage detection. In this study, we aim to quantify the uncertainty of the magnitude of the RANP estimator in the context of impact damage identification in unidirectional carbon fiber laminates. First, the principles of nonlinear ultrasonics are revisited briefly. A general probability density function of the RANP is then obtained through numerical evaluation in a theoretical setting. Using piezoelectric wavers, continuous sine waves are generated in the sample. Steady-state responses are acquired and processed to produce histograms of the RANP estimates before and after the impact damage. These observed histograms are consistent with the predicted distributions, and examination of the distributions demonstrates the significance of uncertainty quantification when using the RANP for damage detection in composite structures.

  18. 次声波法输气管道泄漏检测系统的信号处理%Infrasound wave method-bated signal processing of leak detection system of gas pipeline

    武伟强; 赵会军; 王克华; 王小兵; 周宁; 王树立

    2012-01-01

    When the infrasound wave signals from leakage of gas pipelines are collected, signal tips detected by infrasound wave sensors are abandoned due to the frequency domain limit of the sensor, while the ambient noise in the natural world produces a strong interference on the acoustic signal. To reduce false positive rates of infrasound wave detection, it is necessary to make a tip compensation for detection signal through a special algorithm, quickly separate the real leak signals from interference signals, and select the wavelet transform method to process signals after compensation to make collected signals have good local features in time domain and frequency domain and have different resolution) in different position of time-frequency plane, so as to form better inhibitory effect of the noise and more accurately extract signal mutation point. Through the above tip compensation and wavelet transform signal processing, false positive rates and false negative rates can be reduced more thoroughly.%对输气管道泄漏产生的次声波信号进行采集时,受传感器的频域限制,次声波传感器检测到的信号尖端被舍弃,同时自然界中的环境噪声亦对次声波信号产生强烈的干扰.为了降低次声波检测误报率,通过特殊算法对检测信号进行尖端补偿,将真正的泄漏信号与干扰信号快速分离,并选用小波变换的方法对补偿后的信号进行处理,使采集的信号在时域和频域两方面都具有良好的局部特性,且在时频平面的不同位置具有不同的分辨率,对噪声具有更好的抑制作用,同时较精确地提取信号的突变点.通过以上尖端补偿和小波变换信号处理,可以明显地降低误报率和漏报率.

  19. Thermal hydraulic design of a double wall tube steam generator with an on-line leak detection system

    As one way to improve the reliability of a steam generator for a sodium-cooled fast reactor, a double-wall tube steam generator is being developed. To improve the heat transfer capability of a double wall tube, it is preferable to form the inner tube with a material having a thermal expansion coefficient about 10 to 15% greater than that of the outer tube. And for on-line and real-time detection of whether the heat transfer tube is damaged or not, a detection method was developed by comprising the heat transfer tube gaps and the detection holes meeting with a one to one correspondence in the lower tubesheet. A helical coil type double wall tube steam generator having a capacity of 375 MWth was designed thermal-hydraulically by applying the above methods. The steam generator has an on-line and real-time tube failure detection method, and its heat transfer efficiency was improved beyond that of other double wall tube steam generators. (author)

  20. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  1. Acoustic tumour detection with early auditory evoked potentials and neuroradiological methods

    A total of 43 patients with surgically identified acoustic neuromas were tested. Results of early auditory evoked potentials (EAEP) and of neuroradiological methods were analysed. Abnormal EAEPs were observed in all patients. In 73% of the cases the EAEP indicated the retrocochlear site of the lesion; in 27%, however, the results did not localize the exact site of the lesion owing to a lack of waves I, II and III due to a pronounced hearing loss. Neuroradiological procedures provided an indication of the site and extent of the tumour. The number of true positives was 21 of 29 cases with polytomography of the petrous bone, 23 of 28 with computed tomography and in all cases when pontine angle cisternography and computed tomography combined with gas cisternography were performed. The EAEPs provide a screening-test for acoustic tumour detection at an early stage. Wave abnormalities indicative of a lesion at the acoustic nerve should lead to a neuroradiological investigation and are particularly valuable in cases with small intracanalicular tumours. (orig.)

  2. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  3. Dual fiber Bragg gratings configuration-based fiber acoustic sensor for low-frequency signal detection

    Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming

    2014-11-01

    We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.

  4. ALIBABA, an assistance system for the detection of confinement leaks in a PWR reactor; ALIBABA, un systeme d`aide a la detection des voies de fuites du confinement sur un reacteur a eau sous pression

    Bedier, P.O.; Libmann, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    1995-12-31

    The objective of the Crisis Technical Center (CTC) of the French Institute for Nuclear Protection and Safety (IPSN) is to estimates the consequences of a given nuclear accident on the populations and the environment. ALIBABA is a data processing tool available at the CTC and devoted to the detection of confinement leaks in 900 MWe PWR reactors using the activity values measured by the captors of the installation. The heart of this expert system is a structural and functional representation of the different components directly involved in the leak detection (isolating valves, ventilation systems, electric boards etc..). This tool can manage the availability of each component to make qualitative and quantitative balance-sheets. This paper presents the ALIBABA software, an industrial prototype realized with the SPIRAL knowledge base systems generator at the CEA Reactor Studies and Applied Mathematics Service (SERMA) and commercialized by CRIL-Ingenierie Society. It describes the techniques used for the modeling of PWR systems and for the visualization of the survey. The functionality of the man-machine interface is discussed and the means used for the validation of the software are summarized. (J.S.). 6 refs.

  5. Creation of an Exergetic Based Leak Detection and Diagnosis Methodology for Automotive Carbon Dioxide Air Conditioning Systems

    M. B. Bailey

    2010-03-01

    Full Text Available

    Carbon dioxide automotive air conditioning (AC systems have been under development for over a decade. Although the AC system construction is important, a reliable refrigerant leakage detection system is also vital. A detailed thermodynamic simulation model and fault detection and diagnosis (FDD system, with proposed validation plans, has been developed at Rochester Institute of Technology. A discussion of simulation models that have been developed for various compressors and heat exchangers is presented; they are compared to actual AC systems to develop a realistic experimental setup. Assumptions from previous work are examined and improved.

    • Portions of this paper were previously published in the ECOS'05 and ECOS'07 conference proceedings.

  6. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  7. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  8. Combined optical fiber interferometric sensors for the detection of acoustic emission

    LIANG Yi-jun; MU Lin-lin; LIU Jun-feng; YU Xiao-tao

    2008-01-01

    A type of combined optical fiber interferometric acoustic emission sensor is proposed.The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure.Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy.PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid.The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of intefferometer and using Fourier transform technique.The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.

  9. A First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background

    Follin, Brent; Millea, Marius; Pan, Zhen

    2015-01-01

    The freestreaming of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the Cosmic Microwave Background (CMB) temperature power spectrum. The magnitude of the shift is proportional to the fraction of the total radiation density in neutrinos. Parameterizing the shift via an effective number of neutrino species we find $1.9 < N_\

  10. Generation and detection of gigahertz surface acoustic waves using an elastomeric phase-shift mask

    Li, Dongyao; Zhao, Peng; Zhao, Ji-Cheng; Cahill, David G.

    2013-10-01

    We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements. The method has a lateral spatial resolution of elastomeric polydimethylsiloxane phase-shift mask which is fabricated using a commercially available Si grating as a mold. Time-domain electromagnetics calculations show, in agreement with experiment, that the efficiency of the phase-shift mask for generating and detecting SAWs decreases rapidly as the periodicity of the mask decreases below the optical wavelength. We validate the experimental approach using bulk and thin film samples with known elastic constants.

  11. Low power underwater acoustic DPSK detection: Theoretical prediction and experimental results

    Dunne, Andrew

    This thesis presents two methods of analyzing the effectiveness of a prototype differential phase-shift keying (DPSK) detection circuit. The first method is to make modifications to the existing hardware to reliably output and record the cross-correlation values of the DPSK detection process. The second method is to write a MATLAB detection algorithm which accurately simulates the detection results of the hardware system without the need of any electronics. These two systems were tested and verified with a bench test using computer generated DPSK signals. The hardware system was tested using real acoustic data from shallow and deep water at-sea tests to determine the effectiveness of the DPSK detection circuit in different ocean environments. The hydrophone signals from the tests were recorded so that the cross-correlation values could be verified using the MATLAB detector. As a result of this study, these two systems provided more insight into how well the DPSK detection prototype works and helped to identify ways of improving the detection reliability and overall performance of the prototype DPSK detection circuit.

  12. Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08

    DEFIGH PRICE, C.

    2000-09-25

    Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initial retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.

  13. Acoustic signal detection through the cross-correlation method in experiments with different signal to noise ratio and reverberation conditions

    Adrián-Martínez, S; Bou-Cabo, M; Felis, I; Llorens, C; Martínez-Mora, J A; Saldaña, M

    2015-01-01

    The study and application of signal detection techniques based on cross-correlation method for acoustic transient signals in noisy and reverberant environments are presented. These techniques are shown to provide high signal to noise ratio, good signal discernment from very close echoes and accurate detection of signal arrival time. The proposed methodology has been tested on real data collected in environments and conditions where its benefits can be shown. This work focuses on the acoustic detection applied to tasks of positioning in underwater structures and calibration such those as ANTARES and KM3NeT deep-sea neutrino telescopes, as well as, in particle detection through acoustic events for the COUPP/PICO detectors. Moreover, a method for obtaining the real amplitude of the signal in time (voltage) by using cross correlation has been developed and tested and is described in this work.

  14. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    The Black Thunder Coal Mine (BTCM) near Gillette, Wyoming was used as a test bed to determine the feasibility of detecting explosion-induced geomagnetic disturbances with ground-based induction magnetometers. Two magnetic observatories were fielded at distances of 50 km and 64 km geomagnetically north from the northernmost edge of BTCM. Each observatory consisted of three separate but mutually orthogonal magnetometers, Global Positioning System (GPS) timing, battery and solar power, a data acquisition and storage system, and a three-axis seismometer. Explosions with yields of 1 to 3 kT of TNT equivalent occur approximately every three weeks at BTCM. We hypothesize that explosion-induced acoustic waves propagate upward and interact collisionally with the ionosphere to produce ionospheric electron density (and concomitant current density) perturbations which act as sources for geomagnetic disturbances. These disturbances propagate through an ionospheric Alfven waveguide that we postulate to be leaky (due to the imperfectly conducting lower ionospheric boundary). Consequently, wave energy may be observed on the ground. We observed transient pulses, known as Q-bursts, with pulse widths about 0.5 s and with spectral energy dominated by the Schumann resonances. These resonances appear to be excited in the earth-ionosphere cavity by Alfven solitons that may have been generated by the explosion-induced acoustic waves reaching the ionospheric E and F regions and that subsequently propagate down through the ionosphere to the atmosphere. In addition, we observe late time (> 800 s) ultra low frequency (ULF) geomagnetic perturbations that appear to originate in the upper F region ({approximately}300 km) and appear to be caused by the explosion-induced acoustic wave interacting with that part of the ionosphere. We suggest that explosion-induced Q-bursts may be discriminated from naturally occurring Q-bursts by association of the former with the late time explosion-induced ULF

  15. Cortex—M3的次声波输气管道泄漏检测系统%Subsonic Gas Pipeline Leak Detection System of Cortex-M3

    王秀芳; 姜金海; 姜春雷

    2012-01-01

    With the rapid development of foreign and domestic natural gas pipeline construction, the safe operation of pipeline is partieu larly important in the current. High-performance STM32 processor based on Cortex-M3 core is used to collect and analyze sound waves in the pipeline, so as to determine whether the pipeline leaks or not. If the leak is detected,the leak signal is transfered to the data cen- ter, and the system can locate the leak point precisely in the ease of ms-class time synchronization at the both ends of the pipeline. The system achieves the gas pipeline leak rapid detection and alarm, and digital intelligent monitoring of sub pipeline network.%随着国内外天然气管道建设的迅速发展,管道的安全运行在当前尤为重要。采用基于Cortex—M3内核的高性能STM32处理器对管线中的声波进行采集和分析,从而判断出管道是否泄漏。在检测到泄漏之后,把泄漏信号远传到数据中心,在管道两端ms级时间同步的情况下能对泄漏点进行精确定位,实现了输气管道泄漏快速检测和报警的功能,以及管网的数字化智能监控。

  16. Design of detection system for household natural gas pipeline leak%家庭天然气管道泄露监测系统的设计

    陈菁; 刘然

    2015-01-01

    这里设计了一种结构简单且具有较强实用意义的家庭天然气管道泄漏检测系统。该系统基于AT82S52单片机收集信号,并针对天然气的特征进行各类气敏传感器的对比选择。使用MQ⁃2型半导体气敏传感器,用C语言进行程序编程,最终制作出的监测系统实物可以通过按键设定报警浓度上限。当空气中天然气的浓度超过预定值时会出现声光双重报警,且制作成本较低。%A detection system for household natural gas pipeline leak was designed ,which has simple structure and ob⁃servable practicability. This system is based on the AT82S52 to collect signals. Several gas sensitive sensors were compared for a the most proper one according to the characteristics of natural gas. MQ⁃2 semiconductor gas sensitive sensor was used to detect natural gas pipeline leakage. System software is programmed by C language. The upper limit of alarm concentration can be set by a simple keyboard. Both sound and light alarm appears by the system when the gas concentration in the air is beyond the preset value. The cost to make the system is low.

  17. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  18. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S. [Los Alamos National Lab., NM (United States). Electronic Materials and Devices Group

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  19. Rayleigh and acoustic gravity waves detection on magnetograms during the Japanese Tsunami, 2011

    Klausner, Virginia; Muella, Marcio T A H; Mendes, Odim; Domingues, Margarete O; Papa, Andres R R

    2015-01-01

    The continuous geomagnetic field survey holds an important potential in future prevention of tsunami damages, and also, it could be used in tsunami forecast. In this work, we were able to detected for the first time Rayleigh and ionospheric acoustic gravity wave propagation in the Z-component of the geomagnetic field due to the Japanese tsunami, 2011 prior to the tsunami arrival. The geomagnetic measurements were obtained in the epicentral near and far-field. Also, these waves were detected within minutes to few hours of the tsunami arrival. For these reasons, these results are very encouraging, and confirmed that the geomagnetic field monitoring could play an important role in the tsunami warning systems, and also, it could provide additional information in the induced ionospheric wave propagation models due to tsunamis.

  20. Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection

    Lizhi Yi[1; Weihong Jiao[1; Ke Wu[1; Lihua Qian[1; Xunxing Yu[2; Qi Xia[2; Kuanmin Mao[2; Songliu Yuan[1; Shuai Wang[3; Yingtao Jiang[4

    2015-01-01

    The relatively poor dynamic response of current flexible strain gauges has prevented their wide adoption in portable electronics. In this work, we present a greatly improved flexible strain gauge, where one strip of Au nanoparticle (NP) monolayer assembled on a polyethylene terephthalate film is utilized as the active unit. The proposed flexible gauge is capable of responding to applied stimuli without detectable hysteresis via electron tunneling between adjacent nanoparticles within the Au NP monolayer. Based on experimental quantification of the time and frequency domain dependence of the electrical resistance of the proposed strain gauge, acoustic vibrations in the frequency range of 1 to 20,000 Hz could be reliably detected. In addition to being used to measure musical tone, audible speech, and creature vocalization, as demonstrated in this study, the ultrafast dynamic response of this flexible strain gauge can be used in a wide range of applications, including miniaturized vibratory sensors, safe entrance guard management systems, and ultrasensitive pressure sensors.

  1. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  2. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  3. Detection of simulated pitting corrosion and noises in crude oil storage tank by acoustic emission

    The damage mechanisms associated with crude oil storage tanks can be complex and varied and include pitting corrosion due to presence of species such as sulphate reducing bacteria. Acoustic Emission (AE) could be used to characterise the pitting corrosion signal in crude oil storage tanks but it is extremely difficult to simulate the pitting corrosion in the laboratory using crude oil as electrolyte because crude oil is considered as non corrosive medium. In this study, induced current have been introduced onto a surface ASTM 516 steel as an electrical source to simulate the electrical noise produced during pitting corrosion process and AE sensor have been used to detect this current. It is found that AE system could detect AE signal release during current induction this current and is expected that if the exact simulation of the current magnitude produced during pitting corrosion process is made available, AE characterisation of pitting corrosion in such tank could be made possible. (Author)

  4. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  5. DETECTION OF OIL POLLUTION HOTSPOTS AND LEAK SOURCES THROUGH THE QUANTITATIVE ASSESSMENT OF THE PERSISTENCE AND TEMPORAL REPETITION OF REGULAR OIL SPILLS IN THE CASPIAN SEA USING REMOTE SENSING AND GIS

    E. R. Bayramov; Buchroithner, M. F.; Bayramov, R. V.

    2015-01-01

    The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution Images acquired during 2006-2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2-10 (3471.04 sq. km....

  6. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features. PMID:24181982

  7. 基于负压波-流量法的管道泄漏检测试验系统%Pipeline Leak Detection Testing System Based on Negative Pressure Wave and Flow

    胡琼; 范世东

    2009-01-01

    构建了一套基于负压波和流量的管道泄漏检测试验系统.该系统利用研华PCI-1710HG数据采集卡实时采集管道的压力和流量数据,利用小波变换去除混杂在压力和流量数据中的噪声信号,采用连续小波变换检测压力和流量数据的奇异点从而实现泄漏的检测与定位.监测系统的软件部分采用NI公司的图形化编程语言LabVIEW开发.该系统能及时检测管道泄漏并进行定位.%To solve the problem of pipeline leak detection and meet the demand of student's learning,an experimental system of pipeline leak detection based on negative pressure wave and flow is estab-lished in the laboratory. Advantech DAQ board PCI-1710HG is used to acquire pressure and flow flux, wavelet transform is utilized to analyze the test data; the software of the monitoring system is developed by National Instruments' graphical programming language LabVIEW. It can detect and locate pipeline leak point in time. Finally, a set of testing results is provided.

  8. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  9. WRSS jumper leak assessment

    The purpose of this assessment is: (1) to assemble and document the facts associated with three recently installed jumpers which have leaked either during actual process operation or during post installation testing; (2) to describe the corrective actions taken and to identify any process improvements which need to be implemented in the Hanford jumper design and installation activities; and (3) to document WRSS jumper leak lessons learned for use by future projects and other jumper design, fabrication, and installation activities

  10. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.

    Kostarakos, Konstantinos; Römer, Heiner

    2015-07-22

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species

  11. An application of acoustic emission technique for detecting fatigue crack in steel bridge members

    The basic study about the application of acoustic emission technique was performed for detecting fatigue crack in steel bridge. The most serious problem of AE technique in steel bridge structure is the noise problem. The characteristics of crack signal and crack propagation should be identified to filter the noise effectively and to determine the crack detectability of the technique. Laboratory experiment was carried out to identify AE characteristics of real fatigue crack. Through all of tests, load amplitude of specimen affected significantly to the results such as the crack growth rate and the amount of generating AE signals. The straight curve obtained from theoretical calculation by Paris equation was well correlated to the experimental results. AE location events were not early detected although several AE hits from each sensor were generated in the early of the test. However the features of three parameters, that is, crack growth length, AE location events and cumulative AE events, shooed almost same trend in their increase with the number of cycles. Peak amplitude of AE signal which determining detectability increased in accordance with stress intensity factor. It implies that correlation between peak amplitude and stress intensity factor could be quantified. Although there were somewhat scattered location in the vicinity of upper flange, which were considered as environmental noises, good locations near the actual crack tip were obtained. Post filtering work was carried out to eliminate these unwanted location, good results were obtained from filtering work using AE parameters.

  12. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  13. Detection of Adult Beetles Inside the Stored Wheat Mass Based on Their Acoustic Emissions.

    Eliopoulos, P A; Potamitis, I; Kontodimas, D Ch; Givropoulou, E G

    2015-12-01

    The efficacy of bioacoustics in detecting the presence of adult beetles inside the grain mass was evaluated in the laboratory. A piezoelectric sensor and a portable acoustic emission amplifier connected with a computer were used. Adults of the most common beetle pests of stored wheat have been detected in varying population densities (0.1, 0.5, 1, and 2 adults per kilogram of wheat). The verification of the presence of the insect individuals was achieved through automated signal parameterization and classification. We tried out two different ways to detect impulses: 1) by applying a Hilbert transform on the audio recording and 2) by subtracting a noise estimation of the recording from the spectral content of the recording, thus allowing the frequency content of possible impulses to emerge. Prediction for infestation was rated falsely negative in 60-74%, 48-60%, 0-28%, and 0-4% of the cases when actual population density was 0.1, 0.5, 1, and 2 adults per kilogram, respectively, irrespective of pest species. No significant differences were recorded in positive predictions among different species in almost all cases. The system was very accurate (72-100%) in detecting 1 or 2 insects per kilogram of hard wheat grain, which is the standard threshold for classifying a grain mass "clean" or "infested." Our findings are discussed on the basis of enhancing the use of bioacoustics in stored-product IPM framework. PMID:26470377

  14. Strength and leak testing of plasma activated bonded interfaces

    Visser, M.M.; Weichel, Steen; Reus, Roger De; Hanneborg, A.B.

    detection of changes in membrane deflections. The detection limit for leak was 8E-13 mbar l/s. For comparison, strength and leak tests were also performed with regular fusion bonded wafers annealed at 1100 degreesC. The PAB was found to withstand post-processing steps such as RCA cleaning, 24 h in de...

  15. Evaluation of PTCa/PEKK composite sensors for acoustic emission detection

    Marin-Franch, P

    2002-01-01

    This thesis reports for the first time the fabrication and characterisation of novel electroactive ceramic/polymer composite films of calcium modified lead titanate (PTCa) and poly (ether ketone ketone). Composite sensors with different concentrations of ceramic were fabricated using a hot pressing technique. The PTCa ceramic was treated using titanate coupling agent in order to improve sample quality. Dielectric measurements have been performed to study sample characteristics. Piezoelectric and pyroelectric properties of the composites have been measured and the mixed connectivity cube model used to determine the relative amounts of 0-3 and 1-3 connectivity. The advantages and limitations of the model have been discussed. Additionally, some mechanical properties of the composites have been assessed to study their potential ability to detect acoustic emission (AE) in carbon fibre reinforced composites (CFRC). The composite sensors were placed on and inserted into different panels in order to compare their abi...

  16. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  17. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring

    Zhigang Sun

    2013-01-01

    Full Text Available Piezoelectric transducers have a long history of applications in nondestructive evaluation of material and structure integrity owing to their ability of transforming mechanical energy to electrical energy and vice versa. As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM technologies capable of providing on-demand diagnosis of the structure without interrupting the aircraft operation are attracting increasing R&D efforts. Piezoelectric transducers play an essential role in these endeavors. This paper is set forth to review a variety of ingenious ways in which piezoelectric transducers are used in today’s SHM technologies as a means of generation and/or detection of diagnostic acoustic waves.

  18. Acoustic detections of singing humpback whales (Megaptera novaeangliae) in the eastern North Pacific during their northbound migration.

    Norris, T F; McDonald, M; Barlow, J

    1999-07-01

    Numerous (84) acoustic detections of singing humpback whales were made during a spring (08 March-09 June 1997) research cruise to study sperm whales in the central and eastern North Pacific. Over 15,000 km of track-line was surveyed acoustically using a towed hydrophone array. Additionally, 83 sonobuoys were deployed throughout the study area. Detection rates were greatest in late March, near the Hawaiian Islands, and in early April, northeast of the islands. Only one detection was made after April. Detection rates for sonobuoys were unequal in three equally divided longitudinal regions of the study area. Two high density clusters of detections occurred approximately 1200-2000 km northeast of the Hawaiian Islands and were attributed to a large aggregation of migrating animals. The distribution of these detections corroborates findings of previous studies. It is possible that these animals were maintaining acoustic contact during migration. Two unexpected clusters of singing whales were detected approximately 900 to 1000 km west of central and southern California. The location of these detections may indicate a previously undocumented migration route between an offshore breeding area, such as the Revillagigedo Islands, Mexico, and possible feeding areas in the western North Pacific or Bering Sea. PMID:10420640

  19. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities

  20. Locating Small Leaks in Large Structures

    Lawler, W. F.

    1983-01-01

    Test tool for detecting minute leads in bimetal joints, welds, or other locations employs fine-control valve and hypodermic needle. Test item is connected in conventional manner to helium mass spectrometer tuned to read extremely small amounts of helium gas. Uniqueness of method is ability to detect tiny leaks, through surfaces, not discoverable by gross coverage of test structures by helium gas.

  1. Gas Pipeline Leakage Detection Based on the Acoustic Emission and Wavelet Packet Analysis%基于小波包分析的模拟天然气管道泄漏声发射定位

    周宁; 潘东; 赵会军; 赵仕浩; 陈黎

    2011-01-01

    This study carried out the leak detection and localization of the simulation natural gas pipeline. Acoustic emission technology was adopted to detect pipe leakage. First, wavelet packet decomposition methods were used to decompose and reduce acoustic noise emission data; then, effectively remedied the attenuated signal at different frequencies, correlation coefficients were compared and the time point corresponding with maximum correlation coefficient was selected as delay-time. This method effectively solves the problem that the existing acoustic emission system has difficulty detecting continuous signal, such as pipeline leakage, and that the leakage location error is larger. The method made pipeline leakage location error less than 8%.%开展了模拟天然气管道泄漏检测与定位研究,研究利用小波包分析技术,首先对声发射信号进行分解,再对衰减的信号在不同频率段内进行有效的补偿,然后对分解的信号进行小波包重构,利用互相关技术计算两个声发射传感器接收到的声发射信号的时差,进而进行声发射源定位.对模拟天然气管道泄漏的声发射信号的处理结果表明该方法能够有效实现管道泄漏检测与泄漏源定位,并且泄漏源的定位精度高,误差<8%.如能将这一技术改进并实现长距离管道泄漏检测与定位,将具有广阔的应用前景.

  2. AE (Acoustic Emission) for Flip-Chip CGA/FCBGA Defect Detection

    Ghaffarian, Reza

    2014-01-01

    C-mode scanning acoustic microscopy (C-SAM) is a nondestructive inspection technique that uses ultrasound to show the internal feature of a specimen. A very high or ultra-high-frequency ultrasound passes through a specimen to produce a visible acoustic microimage (AMI) of its inner features. As ultrasound travels into a specimen, the wave is absorbed, scattered or reflected. The response is highly sensitive to the elastic properties of the materials and is especially sensitive to air gaps. This specific characteristic makes AMI the preferred method for finding "air gaps" such as delamination, cracks, voids, and porosity. C-SAM analysis, which is a type of AMI, was widely used in the past for evaluation of plastic microelectronic circuits, especially for detecting delamination of direct die bonding. With the introduction of the flip-chip die attachment in a package; its use has been expanded to nondestructive characterization of the flip-chip solder bumps and underfill. Figure 1.1 compares visual and C-SAM inspection approaches for defect detection, especially for solder joint interconnections and hidden defects. C-SAM is specifically useful for package features like internal cracks and delamination. C-SAM not only allows for the visualization of the interior features, it has the ability to produce images on layer-by-layer basis. Visual inspection; however, is only superior to C-SAM for the exposed features including solder dewetting, microcracks, and contamination. Ideally, a combination of various inspection techniques - visual, optical and SEM microscopy, C-SAM, and X-ray - need to be performed in order to assure quality at part, package, and system levels. This reports presents evaluations performed on various advanced packages/assemblies, especially the flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. Both external and internal equipment was used for evaluation. The outside facility provided images of the key features

  3. Development and Evaluation of Real-time Acoustic Detection System of Harmful Red-tide Using Ultrasonic Sound

    Donhyug Kang

    2013-03-01

    Full Text Available The toxic, Harmful Algal Blooms (HABs caused by the Cochlodinium polykrikoides have a serious impact on the coastal waters of Korea. In this study, the acoustic detection system was developed for rapid HABs detection, based on the acoustic backscattering properties of the C. polykrikoides. The developed system was mainly composed of a pulser-receiver board, a signal processor board, a control board, a network board, a power board, ultrasonic sensors (3.5 and 5.0 MHz, an environmental sensor, GPS, and a land-based control unit. To evaluate the performance of the system, a trail was done at a laboratory, and two in situ trials were conducted: (1 when there was no red tide, and (2 when there was red tide. In the laboratory evaluation, the system performed well in accordance with the number of C. polykrikoides in the received level. Second, under the condition when there was no red tide in the field, there was a good correlation between the acoustic data and sampling data. Finally, under the condition when there was red tide in the field, the system successfully worked at various densities in accordance with the number of C. polykrikoides, and the results corresponded with the sampling data and monitoring result of NFRDI (National Fisheries Research & Development Institute. From the laboratory and field evaluations, the developed acoustic detection system for early detecting HABs has demonstrated that it could be a significant system to monitor the occurrence of HABs in coastal regions.

  4. The detection of multiple DNA targets with a single probe using a conformation-sensitive acoustic sensor.

    Tsortos, Achilleas; Grammoustianou, Aristea; Lymbouridou, Rena; Papadakis, George; Gizeli, Electra

    2015-07-21

    By using an acoustic wave methodology that allows direct sensing of biomolecular conformations, we achieved the detection of multiple target DNAs using a single probe, exploiting the fact that each bound target results in a hybridized product of a different shape. PMID:26097916

  5. A Urinary Bcl-2 Surface Acoustic Wave Biosensor for Early Ovarian Cancer Detection

    Nathan D. Gallant

    2012-05-01

    Full Text Available In this study, the design, fabrication, surface functionalization and experimental characterization of an ultrasonic MEMS biosensor for urinary anti-apoptotic protein B-cell lymphoma 2 (Bcl-2 detection with sub ng/mL sensitivity is presented. It was previously shown that urinary Bcl-2 levels are reliably elevated during early and late stages of ovarian cancer. Our biosensor uses shear horizontal (SH surface acoustic waves (SAWs on surface functionalized ST-cut Quartz to quantify the mass loading change by protein adhesion to the delay path. SH-SAWs were generated and received by a pair of micro-fabricated interdigital transducers (IDTs separated by a judiciously designed delay path. The delay path was surface-functionalized with monoclonal antibodies, ODMS, Protein A/G and Pluronic F127 for optimal Bcl-2 capture with minimal non-specific adsorption. Bcl-2 concentrations were quantified by the resulting resonance frequency shift detected by a custom designed resonator circuit. The target sensitivity for diagnosis and identifying the stage of ovarian cancer was successfully achieved with demonstrated Bcl-2 detection capability of 500 pg/mL. It was also shown that resonance frequency shift increases linearly with increasing Bcl-2 concentration.

  6. Detection of atmospheric acoustic-gravity waves through ionospheric measurements using dense GPS arrays

    Calais, E.; Haase, J. S.; Minster, B.

    2003-12-01

    The Global Positioning System (GPS) is now widely used to measure ionospheric electron content at both global and regional scales. It is also capable of detecting small-scale high-frequency ionospheric disturbances caused by atmospheric acoustic-gravity waves. We show examples of ionospheric perturbations caused by earthquakes, rocket launches, and large surface explosions. The neutral atmospheric waves triggered by these events couple with the motion of free electrons and ionized plasma at ionospheric heights and induce coherent fluctuations of electron densities and ionization layer boundaries that are detectable with GPS. In all cases, the ionospheric perturbations match fairly well observations made through other techniques as well as numerical models. The development of permanent networks of densely spaced and continuously recording GPS stations open up new opportunities for the study of infrasonic waves in the atmosphere and their coupling with small scale processes in the ionosphere. We show examples of infrasonic waves detected using the 250-station GPS network that covers the Los Angeles area (SCIGN). Although the signal-to-noise ratio of these perturbations is relatively small, we show that it can be considerably improved by multi-station array processing techniques derived from seismic array analysis. These techniques can also be used to determine the perturbation propagation azimuth and velocity and, eventually, to recover information about the sources of these perturbations.

  7. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy

    Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi

    2015-07-01

    In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.

  8. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    Caron, James N. [Research Support Instruments, Lanham, MD 20706, USA and Quarktet, Silver Spring, MD 20901 (United States); Kunapareddy, Pratima [Research Support Instruments, Lanham, MD 20706 (United States)

    2014-02-18

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content.

  9. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor.

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong; Yao, Da-Jeng

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers-wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order-wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119

  10. Classification of acoustic emission signals for drive systems coupling crack detection in semi-real time

    Early detection of mechanical failure in helicopter drive train components is a key safety and economical issue with both military and civil sectors of aviation. Of these components, couplings are particularly critical. The objective of this work is to demonstrate the feasibility of designing and developing a reliable, real time monitoring methodology based on Supervised Pattern Recognition (SPR) for early detection of cracks in couplings used in helicopter and engine drive systems. Within this framework, a portable Acoustic Emission (AE) system was used, equipped with a semi-real time SPR software package. Results from AE tests performed in a gearbox-testing bench at different speeds and different torque values are presented. These results indicate that the energy content of different frequency bands in the AE signals power spectra is strongly correlated with the introduction of EDM notches in the main gear. Further tests indicate that a strong shift in the frequency of the AE signals is observed after spalling occurred in the pinion gear. The variation of displacement and velocity between signal classes are discussed as a potential feature in characterizing crack severity. Finally, a scope of the work for optimizing the methodology in detecting and evaluating coupling cracking in real time will be presented. (author)

  11. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  12. Leak testing using helium leak detector

    Most of the equipment used in the industry and particularly in the nuclear activity need to be, vacuum or pressure tight, for operative and safety requirements. These devices have to satisfy particular regulations in order to be qualified by means of operating licences. One of the most efficient system to ensure leaktightnes is using a helium leak detector with a mass spectrometer. In this paper we show the equipment and the devices employed in fuel rods fabrication for CAREM project, and some typical material defects. Operating system and the sensitivity of this method is also described. (author)

  13. Standard practice for leaks using ultrasonics

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 Practice A, Pressurization—This practice covers procedures for calibration of ultrasonic instruments, location, and estimated measurements of gas leakage to atmosphere by the airborne ultrasonic technique. 1.2 In general practice this should be limited to leaks detected by two classifications of instruments, Class I and Class II. Class I instruments should have a minimum detectable leak rate of 6.7 × 10−7 mol/s (1.5 × 10−2 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Class II instruments should have a minimal detectable leak rate of 6.7 × 10−6 mol/s (1.5 × 10−1 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Refer to Guide E432 for additional information. 1.3 Practice B, Ultrasonic Transmitter—For object under test not capable of being pressurized but capable of having ultrasonic tone placed/injected into the test area to act as an ultrasonic leak trace source. 1.3.1 This practice is limited to leaks producing leaka...

  14. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments.

    Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G

    2016-06-01

    Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks. PMID:27023280

  15. A joint time-scale representation methodology for the detection of acoustic gravity wave induced by solar eclipses

    Roux, Stéphane; Sauli, Petra; Boska, Josef; Abry, Patrice

    2007-01-01

    We introduce a wavelet-based methodology to detect and characterize acoustic-gravity waves propagating through Ionosphere. It is based on data consisting of the time fluctuations of electron concentrations at different heights, collected from vertical Ionospheric sounding. First, we detect the local maxima of the continuous complex wavelet transforms, separately at each heights. Second, we connect the maxima that exist jointly within the same time-period neighborhood, over a continuous range ...

  16. PREFACE: ARENA 2006—Acoustic and Radio EeV Neutrino detection Activities

    Thompson, Lee

    2007-06-01

    The International Conference on Acoustic and Radio EeV Neutrino Activities, ARENA 2006 was jointly hosted by the Universities of Northumbria and Sheffield at the City of Newcastle Campus of the University of Northumbria in June 2006. ARENA 2006 was the latest in a series of meetings which have addressed, either separately or jointly, the use of radio and acoustic sensors for the detection of highly relativistic particles. Previous successful meetings have taken place in Los Angeles (RADHEP, 2000), Stanford (2003) and DESY Zeuthen (ARENA 2005). A total of 50 scientists from across Europe, the US and Japan attended the conference presenting status reports and results from a number of projects and initiatives spread as far afield as the Sweden and the South Pole. The talks presented at the meeting and the proceedings contained herein represent a `snapshot' of the status of the fields of acoustic and radio detection at the time of the conference. The three day meeting also included two invited talks by Dr Paula Chadwick and Dr Johannes Knapp who gave excellent summaries of the related astroparticle physics fields of high energy gamma ray detection and high energy cosmic ray detection respectively. As well as a full academic agenda there were social events including a Medieval themed conference banquet at Lumley Castle and a civic reception kindly provided by the Lord Mayor of Newcastle and hosted at the Mansion House. Thanks must go to the International Advisory Board members for their input and guidance, the Local Organising Committee for their hard work in bringing everything together and finally the delegates for the stimulating, enthusiastic and enjoyable spirit in which ARENA 2006 took place. Lee Thompson International Advisory Board G. Anton, ErlangenD. Besson, Kansas J. Blümer, KarlsruheA. Capone, Rome H. Falcke, BonnP. Gorham, Hawaii G. Gratta, StanfordF. Halzen, Madison J. Learned, HawaiiR. Nahnhauer, Zeuthen A. Rostovtzev, MoscowD. Saltzberg, Los Angeles L

  17. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection...

  18. Implementing wavelet packet transform for valve failure detection using vibration and acoustic emission signals

    The efficiency of reciprocating compressors relies heavily on the health condition of its moving components, most importantly its valves. Previous studies showed good correlation between the dynamic response and the physical condition of the valves. These can be achieved by employing vibration technique which is capable of monitoring the response of the valve, and acoustic emission technique which is capable of detecting the valves' material deformation. However, the relationship/comparison between the two techniques is rarely investigated. In this paper, the two techniques were examined using time-frequency analysis. Wavelet packet transform (WPT) was chosen as the multi-resolution analysis technique over continuous wavelet transform (CWT), and discrete wavelet transform (DWT). This is because WPT could overcome the high computational time and high redundancy problem in CWT and could provide detailed analysis of the high frequency components compared to DWT. The features of both signals can be extracted by evaluating the normalised WPT coefficients for different time window under different valve conditions. By comparing the normalised coefficients over a certain time frame and frequency range, the feature vectors revealing the condition of valves can be constructed. One way analysis of variance was employed on these feature vectors to test the significance of data under different valve conditions. It is believed that AE signals can give a better representation of the valve condition as it can detect both the fluid motion and material deformation of valves as compared to the vibration signals.

  19. Implementing wavelet packet transform for valve failure detection using vibration and acoustic emission signals

    Sim, H. Y.; Ramli, R.; Abdullah, M. A. K.

    2012-05-01

    The efficiency of reciprocating compressors relies heavily on the health condition of its moving components, most importantly its valves. Previous studies showed good correlation between the dynamic response and the physical condition of the valves. These can be achieved by employing vibration technique which is capable of monitoring the response of the valve, and acoustic emission technique which is capable of detecting the valves' material deformation. However, the relationship/comparison between the two techniques is rarely investigated. In this paper, the two techniques were examined using time-frequency analysis. Wavelet packet transform (WPT) was chosen as the multi-resolution analysis technique over continuous wavelet transform (CWT), and discrete wavelet transform (DWT). This is because WPT could overcome the high computational time and high redundancy problem in CWT and could provide detailed analysis of the high frequency components compared to DWT. The features of both signals can be extracted by evaluating the normalised WPT coefficients for different time window under different valve conditions. By comparing the normalised coefficients over a certain time frame and frequency range, the feature vectors revealing the condition of valves can be constructed. One way analysis of variance was employed on these feature vectors to test the significance of data under different valve conditions. It is believed that AE signals can give a better representation of the valve condition as it can detect both the fluid motion and material deformation of valves as compared to the vibration signals.

  20. Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms.

    Moilanen, Petro; Zhao, Zuomin; Karppinen, Pasi; Karppinen, Timo; Kilappa, Vantte; Pirhonen, Jalmari; Myllylä, Risto; Haeggström, Edward; Timonen, Jussi

    2014-03-01

    Photo-acoustic (PA) imaging was combined with skeletal quantitative ultrasound (QUS) for assessment of human long bones. This approach permitted low-frequency excitation and detection of ultrasound so as to efficiently receive the thickness-sensitive fundamental flexural guided wave (FFGW) through a coating of soft tissue. The method was tested on seven axisymmetric bone phantoms, whose 1- to 5-mm wall thickness and 16-mm diameter mimicked those of the human radius. Phantoms were made of a composite material and coated with a 2.5- to 7.5-mm layer of soft material that mimicked soft tissue. Ultrasound was excited with a pulsed Nd:YAG laser at 1064-nm wavelength and received on the same side of the coated phantom with a heterodyne interferometer. The FFGW was detected at 30-kHz frequency. Fitting the FFGW phase velocity by the FLC(1,1) tube mode provided an accurate (9.5 ± 4.0%) wall thickness estimate. Ultrasonic in vivo characterization of cortical bone thickness may thus become possible. PMID:24361218

  1. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation

  2. Margins in high temperature leak-before-break assessments

    Budden, P.J.; Hooton, D.G.

    1997-04-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  3. Vacuum leak problem in low energy of pelletron

    During unit wise conditioning of unit 8, the vacuum started deteriorating inside the tube after a spark. The RGA reading was taken and it was found out that residual gas inside tube was sulphur hexafluoride. A leak was detected in second tube of unit number eight in between electrode 6 to 8. Leak was sealed with the sealant. Again leak check was done and no leak was found. The tank was closed and conditioning was started again. During the same unit number eight conditioning, leak developed again followed by a spark. So the damaged tube was replaced with a new accelerator tube. During the installation time the alignment of the machine was taken care. Again leak checking was done and the tube was baked properly. The tank was closed again and this particular unit was conditioned for about four days. The maximum voltage it has attained was 1.1 MV. (author)

  4. INSTRUMENTATION FOR SURVEYING ACOUSTIC SIGNALS IN NATURAL GAS TRANSMISSION LINES

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-09-01

    In the U.S. natural gas is distributed through more than one million miles of high-pressure transmission pipelines. If all leaks and infringements could be detected quickly, it would enhance safety and U.S. energy security. Only low frequency acoustic waves appear to be detectable over distances up to 60 km where pipeline shut-off valves provide access to the inside of the pipeline. This paper describes a Portable Acoustic Monitoring Package (PAMP) developed to record and identify acoustic signals characteristic of: leaks, pump noise, valve and flow metering noise, third party infringement, manual pipeline water and gas blow-off, etc. This PAMP consists of a stainless steel 1/2 inch NPT plumbing tree rated for use on 1000 psi pipelines. Its instrumentation is designed to measure acoustic waves over the entire frequency range from zero to 16,000 Hz by means of four instruments: (1) microphone, (2) 3-inch water full range differential pressure transducer with 0.1% of range sensitivity, (3) a novel 3 inch to 100 inch water range amplifier, using an accumulator with needle valve and (4) a line-pressure transducer. The weight of the PAMP complete with all accessories is 36 pounds. This includes a remote control battery/switch box assembly on a 25-foot extension chord, a laptop data acquisition computer on a field table and a sun shield.

  5. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application. (paper)

  6. The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures

    Kim, Jong Hyun; Kim, Jae Seong; Lee, Bo Young [Korea Aerospace University, Goyang (Korea, Republic of); Lee, Jung; Kwag, No Gwon [SAEAN, Seoul (Korea, Republic of)

    2009-10-15

    The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection

  7. The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures

    The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection

  8. Leak-tightness technology

    In this chapter on the leak-tightness of welded joints a study is made of welding and bonding technology (metals, glass-metals, ceramic-metals), the welding of flanges and collars, the welding of end pieces, the welding of an electric crossover and a bellows

  9. A fast one-pass-training feature selection technique for GMM-based acoustic event detection with audio-visual data

    Butko, Taras; Nadeu Camprubí, Climent

    2010-01-01

    Acoustic event detection becomes a difficult task, even for a small number of events, in scenarios where events are produced rather spontaneously and often overlap in time. In this work, we aim to improve the detection rate by means of feature selection. Using a one-against-all detection approach, a new fast one-pass-training algorithm, and an associated highly-precise metric are developed. Choosing a different subset of multimodal features for each acoustic event class, the results obtain...

  10. Detection and localisation of very high energy particles in underwater acoustic; Detection et localisation de particules de tres hautes energies en acoustique sous-marine

    Juennard, N

    2007-12-15

    The theme of this thesis is included in the Antares international project whose object is to build a neutrino telescope located in a deep water environment in the Mediterranean sea. In deep water sea, a neutrino can interact with a water molecule. The collision generates a luminous flash and an acoustic wave. The goal of this work is to study this acoustic sound wave and develop a system able to detect the corresponding wave front and to estimate the initial direction of the particle. We first focus on the acoustic sound wave. Two different models are studied, and works made recently have led to a mathematical expression of both signal and wave front. Then, several detection methods are studied, from the most classical to the more recent ones. The experimental comparison in semi-real situation leads to the choice of a detection method: the Extended stochastic matched filter. Position and direction of the neutrino are now estimated with a Gauss-Newton inspired algorithm. This estimator is based on a wave front propagation model and on the time detection information given by the telescope hydro-phones. Performances of the system are then estimated. An antenna structure is then proposed and a global simulation finalizes this thesis. In this simulation, detection and estimation are based on the results found in the previous sections. Underwater sea noise is real and the results of the simulation valid our works. (author)

  11. Slew Bearings Damage Detection using Hilbert Huang Transformation and Acoustic Methods

    P. Nikolakopoulos

    2015-06-01

    Full Text Available Slow speed slew bearings are widely used in many applications such us radar, aviation and aerospace units, bogie bearings for vehicles, harbor and shipyard cranes. Slew bearings are design to carry out high axial and radial loads, they have high titling rigidity and they lubricated with grease. Slew bearings consist of the rollers, the inner and the outer ring and the gear in general. One of the most common problems arising in such equipments is the vibration levels due to wear of either regarding the rollers or the other components. Actually, it is very critical for his safe operation and reliability to know from where the vibrations come from, and how much severe are. In this article, the acoustic emission method is used in order to excite slew bearings either for laboratory tests or real naval application receiving the sound waves in the time domain. The Hilbert Huang Transformation (HHT with the empirical mode decomposition (EMD is used in order to detect the possible defect and to estimate the healthy state from the measured sound signals of the bearing, through to investigation of the statistical index kurtosis.

  12. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  13. Particle Filter with Integrated Voice Activity Detection for Acoustic Source Tracking

    Anders M. Johansson

    2007-01-01

    Full Text Available In noisy and reverberant environments, the problem of acoustic source localisation and tracking (ASLT using an array of microphones presents a number of challenging difficulties. One of the main issues when considering real-world situations involving human speakers is the temporally discontinuous nature of speech signals: the presence of silence gaps in the speech can easily misguide the tracking algorithm, even in practical environments with low to moderate noise and reverberation levels. A natural extension of currently available sound source tracking algorithms is the integration of a voice activity detection (VAD scheme. We describe a new ASLT algorithm based on a particle filtering (PF approach, where VAD measurements are fused within the statistical framework of the PF implementation. Tracking accuracy results for the proposed method is presented on the basis of synthetic audio samples generated with the image method, whereas performance results obtained with a real-time implementation of the algorithm, and using real audio data recorded in a reverberant room, are published elsewhere. Compared to a previously proposed PF algorithm, the experimental results demonstrate the improved robustness of the method described in this work when tracking sources emitting real-world speech signals, which typically involve significant silence gaps between utterances.

  14. Acoustic characteristics of voluntary expiratory sounds after swallow for detecting dysphagia.

    Yamashita, M; Yokoyama, K; Takei, Y; Furuya, N; Nakamichi, Y; Ihara, Y; Takahashi, K; Groher, M E

    2014-09-01

    This research was designed to investigate the acoustic characteristics of voluntary expiratory sounds after swallow for detecting dysphagia. Forty-nine patients with complaints of swallow difficulty received a videofluorographic (VF) examination. They were divided into three groups: nine who did not have any apparent disease (Group N), 22 patients with head and neck cancer (Group H&N) and 18 patients with other diseases including cerebrovascular disease (Group OD). After liquid barium swallows, they exhaled voluntarily without voicing. Videofluorographic findings were classified into four groups: normal (Normal), acceptable swallow (Acceptable), swallow with residue (Resid) and swallows with penetration or aspiration (Pen/Asp). The duration of expiratory sounds was measured on the time waveform. Frequency characteristics of expiratory sounds were obtained using one-third octave band analysis ranging from 62·5 to 2000·0 Hz of central frequency. The averaged level of the 1000·0-Hz band was chosen as the reference band level (RB level). The revised averaged level of each band was obtained by subtracting the RB level from the averaged level of each band. Zero decibel of the revised magnitude of the 125·0-Hz band was set as the critical value to differentiate dysphagia (Resid or Pen/Asp) from no dysphagia (Normal or Acceptable). Comparison of this assessment with VF findings showed a significant percentage agreement (85·4%). These results suggest that frequency characteristics of post-swallow expiratory sounds can differentiate dysphagia from no dysphagia among multiple dysphagic patient groups. PMID:24841831

  15. A Detection of Baryon Acoustic Oscillations from the Distribution of Galaxy Clusters

    Hong, Tao; Han, J. L.; Wen, Z. L.

    2016-08-01

    We calculate the correlation function of 79,091 galaxy clusters in the redshift region of z≤slant 0.5, selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of 3.7σ . By fitting the correlation function with a ΛCDM model curve, we find {D}v(z=0.331){r}d{fid}/{r}d=1261.5+/- 48 Mpc, which is consistent with the Planck 2015 cosmology. We find that the correlation function of the higher mass sub-sample shows a higher amplitude at small scales of r\\lt 80 {h}-1 {{Mpc}}, which is consistent with our previous result. The two-dimensional correlation function of this large sample of galaxy clusters shows a faint BAO ring with a significance of 1.8σ , from which we find that the distance scale parameters on directions across and along the line of sight are {α }σ =1.02+/- 0.06 and {α }π =0.94+/- 0.10, respectively.

  16. A detection of Baryon Acoustic Oscillations from the distribution of galaxy clusters

    Hong, Tao; Wen, Z L

    2015-01-01

    We calculate the correlation function of 79,091 galaxy clusters in the redshift region of $0.05 \\leq z \\leq 0.5$ selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of $3.9 \\sigma$. By fitting the correlation function with a $\\Lambda$CDM model curve, we find $D_v(z = 0.331) r_d^{fid}/r_d = 1269.4 \\pm 58$ Mpc which is consistent with the Planck 2015 cosmology. We find that the correlation functions of the higher mass sub-samples show a higher amplitude at small scales of $r < 80~h^{-1}{\\rm Mpc}$, which is consistent with our precious result. We find a clear signal of the `Finger-of-God' effect on the 2D correlation function of the whole sample, which indicates the random peculiar motion of central bright galaxies in the gravitation potential well of clusters.

  17. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  18. Detection of Oil Pollution Hotspots and Leak Sources Through the Quantitative Assessment of the Persistence and Temporal Repetition of Regular Oil Spills in the Caspian Sea Using Remote Sensing and GIS

    Bayramov, E. R.; Buchroithner, M. F.; Bayramov, R. V.

    2015-08-01

    The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution Images acquired during 2006-2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2-10 (3471.04 sq. km.), 11-20 (971.66 sq. km.), 21-50 (692.44 sq. km.), 51-128 (191.38 sq. km.). The most critical oil leak sources with the frequency range of 41-128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.

  19. Remote ballistic emplacement of an electro-optical and acoustic target detection and localization system

    West, Aaron; Mellini, Mark

    2015-05-01

    Near real time situational awareness in uncontrolled non line of sight (NLOS) and beyond line of sight (BLOS) environments is critical in the asymmetric battlefield of future conflicts. The ability to detect and accurately locate hostile forces in difficult terrain or urban environments can dramatically increase the survivability and effectiveness of dismounted soldiers, especially when they are limited to the resources available only to the small unit. The Sensor Mortar Network (SMortarNet) is a 60mm Intelligence, Surveillance, and Reconnaissance (ISR) mortar designed to give the Squad near real time situational awareness in uncontrolled NLOS environments. SMortarNet is designed to track targets both acoustically and electro optically and can fuse tracks between, the acoustic, EO, and magnetic modalities on board. The system is linked to other mortar nodes and the user via a masterless frequency hopping spread spectrum ad-hoc mesh radio network. This paper will discuss SMortarNet in the context of a squad level dismounted soldier, its technical capabilities, and its benefit to the small unit Warfighter. The challenges with ballistic remote emplacement of sensitive components and the on board signal processing capabilities of the system will also be covered. The paper will also address how the sensor network can be integrated with existing soldier infrastructure, such as the NettWarrior platform, for rapid transition to soldier systems. Networks of low power sensors can have many forms, but the more practical networks for warfighters are ad hoc radio-based systems that can be rapidly deployed and can leverage a range of assets available at a given time. The low power long life networks typically have limited bandwidth and may have unreliable communication depending on the network health, which makes autonomous sensors a critical component of the network. SMortarNet reduces data to key information features at the sensor itself. The smart sensing approach enables

  20. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).