WorldWideScience

Sample records for acoustic impedance tests

  1. Acoustic impedances of ear canals measured by impedance tube

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between...... two microphone locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the...

  2. Acoustic impedances of audiometric earphones coupled to different loads

    Ciric, Dejan; Hammershøi, Dorte

    The acoustic impedance of an audiometric earphone is one of the factors that can affect sound transmission through the ear during tests of hearing sensitivity. Similar situation exists during calibration of the earphone where its impedance can affect sound transmission through a coupler. The...... importance of this impedance is related to the contribution of other elements involved in transmission such as ear canal impedance or impedance of the coupler seen from outside. In order to determine the acoustic impedances of five audiometric earphones, the standardized method for measurement of complex......, audiometric earphones are coupled to different loads. Thus, they are placed on different terminations of the tube including metal plate, artificial rubber pinna and upper part of the standardized coupler. The results show that the impedances of earphones are different, but they also differ from radiation...

  3. Respiratory acoustic impedance in left ventricular failure.

    Depeursinge, F B; Feihl, F; Depeursinge, C; Perret, C H

    1989-12-01

    The measurement of respiratory acoustic impedance (Zrs) by forced pseudorandom noise provides a simple means of assessing respiratory mechanics in nonintubated intensive care patients. To characterize the lung mechanical alterations induced by acute vascular congestion of the lung, Zrs was measured in 14 spontaneously breathing patients hospitalized for acute left ventricular failure. The Zrs data in the cardiac patients were compared with those of 48 semirecumbent normal subjects and those of 23 sitting asthmatic patients during allergen-induced bronchospasm. In the patients with acute left ventricular failure, the Zrs abnormalities noted were an excessive frequency dependence of resistance from 10 to 20 Hz and an abnormally low reactance at all frequencies, abnormalities qualitatively similar to those observed in the asthmatic patients but of lesser magnitude. Acute lung vascular congestion modifies the acoustic impedance of the respiratory system. Reflex-induced bronchospasm might be the main mechanism altering respiratory acoustic impedance in acute left ventricular failure. PMID:2582846

  4. New methods of measuring normal acoustic impedance

    Wayman, James L.

    1984-01-01

    In recent years new methods based on signal processing technical have been developed to measure the normal acoustic impedance of materials. These methods proved to be considerably faster easier to implement than the SRW method rhey replace. Mathematical, hardware and software aspects of these techniques are discussed and results obtained over a frequency range of 200-4000 Hz for several architectural materials are presented. NPS Foundation Research Program http://archive....

  5. Ultrasonic flow measurement and wall acoustic impedance effects.

    Willatzen, M

    2004-03-01

    An examination of the influence of wall acoustic impedance effects on sound propagation in flowing liquids confined by cylindrical walls is presented. Special focus is given to the importance of the wall acoustic impedance value for ultrasonic flow meter performance. The mathematical model presented allows any radially-dependent axial flow profile to be examined in the linear flow acoustics regime where fluid flow speed is much smaller than the fluid sound speed everywhere in the fluid medium. PMID:14996531

  6. Modifying the acoustic impedance of polyurea-based composites

    Nantasetphong, Wiroj; Amirkhizi, Alireza V.; Jia, Zhanzhan; Nemat-Nasser, Sia

    2013-04-01

    Acoustic impedance is a material property that depends on mass density and acoustic wave speed. An impedance mismatch between two media leads to the partial reflection of an acoustic wave sent from one medium to another. Active sonar is one example of a useful application of this phenomenon, where reflected and scattered acoustic waves enable the detection of objects. If the impedance of an object is matched to that of the surrounding medium, however, the object may be hidden from observation (at least directly) by sonar. In this study, polyurea composites are developed to facilitate such impedance matching. Polyurea is used due to its excellent blast-mitigating properties, easy casting, corrosion protection, abrasion resistance, and various uses in current military technology. Since pure polyurea has impedance higher than that of water (the current medium of interest), low mass density phenolic microballoon particles are added to create composite materials with reduced effective impedances. The volume fraction of particles is varied to study the effect of filler quantity on the acoustic impedance of the resulting composite. The composites are experimentally characterized via ultrasonic measurements. Computational models based on the method of dilute-randomly-distributed inclusions are developed and compared with the experimental results. These experiments and models will facilitate the design of new elastomeric composites with desirable acoustic impedances.

  7. An Analysis of the Acoustic Input Impedance of the Ear

    Withnell, Robert H.; Gowdy, Lauren E.

    2013-01-01

    Ear canal acoustics was examined using a one-dimensional lossy transmission line with a distributed load impedance to model the ear. The acoustic input impedance of the ear was derived from sound pressure measurements in the ear canal of healthy human ears. A nonlinear least squares fit of the model to data generated estimates for ear canal radius, ear canal length, and quantified the resistance that would produce transmission losses. Derivation of ear canal radius has application to quantify...

  8. Acoustic Wavefront Manipulation: Impedance Inhomogeneity and Extraordinary Reflection

    Zhao, Jiajun; Chen, Zhining; Li, Baowen

    2013-01-01

    Optical wavefront can be manipulated by interfering elementary beams with phase inhomogeneity. Therefore a surface allowing huge, abrupt and position-variant phase change would enable all possibilities of wavefront engineering. However, one may not have the luxury of efficient abrupt-phase-changing materials in acoustics. This motivates us to establish a counterpart mechanism for acoustics, in order to empower the wide spectrum of novel acoustic applications. Remarkably, the proposed impedance-governed generalized Snell's law (IGSL) of reflection is distinguished from that in optics. Via the manipulation of inhomogeneous acoustic impedance, extraordinary reflection can be tailored for unprecedented wavefront manipulation while ordinary reflection can be surprisingly switched on or off. Our results may power the acoustic-wave manipulation and engineering. We demonstrate novel acoustic applications by planar surfaces designed with IGSL.

  9. Duct wall impedance control as an advanced concept for acoustic impression

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  10. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  11. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be

  12. Measuring the Acoustic Impedance of Pipes and Musical Instruments

    Jaeger, Herbert

    2007-05-01

    Using a small electret microphone and a piezo-buzzer we have constructed a simple impedance transducer to measure the input impedance of air columns, such as cylindrical pipes, as well as musical instruments. The input impedance of an air column is given as the ratio of the pressure to the volume flow of air at the input of the air column. The microphone serves as the pressure transducer, while the piezo-buzzer is controlled to provide a constant velocity amplitude. Therefore the microphone signal is proportional to the acoustical impedance and, if required, can be calibrated using a simple air column for which the impedance can be calculated. This impedance transducer is currently in use as demonstration equipment for a physical acoustics class. It is simple to use and robust, so that it is well-suited for an undergraduate introductory laboratory environment. This talk will discuss the function of the impedance transducer and show examples of the type of measurements that can be performed. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C1.1

  13. Effect of rib-cage structure on acoustic chest impedance

    Zimmermann, Niels Henrik; Møller, Henrik; Hansen, John; Hammershøi, Dorte; Rubak, Per

    When a stethoscope is placed on the surface of the chest, the coupler picks up sound from heart and lungs transmitted through the tissues of the ribcage and from the surface of the skin. If the acoustic impedance of the chest surface is known, it is possible to optimize the coupler for picking up...

  14. Effect of rib-cage structure on acoustic chest impedance

    Zimmermann, Niels Henrik; Møller, Henrik; Hansen, John;

    2011-01-01

    When a stethoscope is placed on the surface of the chest, the coupler picks up sound from heart and lungs transmitted through the tissues of the ribcage and from the surface of the skin. If the acoustic impedance of the chest surface is known, it is possible to optimize the coupler for picking up...

  15. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters. PMID:25920818

  16. Development of Adaptive Acoustic Impedance Control Technologies of Acoustic Duct Liner

    Hiroshi Kobayashi

    2011-01-01

    Full Text Available This paper describes the development of adaptive acoustic impedance control (AAC technologies to achieve a larger fan noise reduction, by adaptively adjusting reactance and resistance of the acoustic liner impedance. For the actual proof of the AAC technology III performance, the advanced fan noise absorption control duct liner II was made on trial basis, with the simple control system and the plain device. And, then, the duct liner II was examined for the AAC technology I, II, and III models, using the high speed fan test facility. The test results made clear that the duct liner II of the AAC technology III model could achieve the fan noise reduction higher than O.A. SPL 10 dB (A at the maximum fan speed 6000 rpm, containing the reduction of fundamental BPF tone of 18 dB and 2nd BPF tone of 10 dB in response to the fan peed change from 3000 to 6000 rpm.

  17. A new method to measure the acoustic surface impedance outdoors

    In the European countries noise pollution is considered to be one of the most important environmental problems. With respect to traffic noise, different researchers are working on the reduction of noise at the source, on the modelling of the acoustic absorption of the road structure and on the effects of the pavement on the propagation. The aim of this paper is to propose a new method to measure the acoustic impedance of surfaces located outdoors, which allows us to further noise propagation models, in order to evaluate exactly the noise exposure. (authors)

  18. Acoustics Noise Test Cell

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  19. Noise shielding using active acoustic metamaterials with electronically tunable acoustic impedance

    Mokrý, P.; Steiger, Kateřina; Václavík, J.; Psota, Pavel; Doleček, Roman; Márton, P.; Kodejška, M.; Černík, M.

    Toowong DC QLD 4066: The Australian Acoustical Society, 2014 - (Davy, J.; Don, C.; McMinn, T.; Dowsett, L.; Broner, N.; Burgess, M.), s. 1-9 ISBN 978-0-909882-04-4. [Internoise 2014 Conference. Melbourne (AU), 16.11.2014-19.11.2014] R&D Projects: GA MŠk(CZ) LO1206; GA ČR GA13-10365S Institutional support: RVO:61389021 Keywords : Active Acoustic Metamaterial * Noise Shielding * Electronic Control of Acoustic Impedance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p834.pdf

  20. Tunable acoustic radiation pattern assisted by effective impedance boundary

    Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-02-01

    The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  1. Fluid mechanical model of the acoustic impedance of small orifices

    Hersh, A. S.; Rogers, T.

    1976-01-01

    A fluid mechanical model of the acoustic behavior of small orifices is presented which predicts orifice resistance and reactance as a function of incident sound pressure level, frequency, and orifice geometry. Agreement between predicted and measured values is excellent. The model shows the following: (1) The acoustic flow in immediate neighborhood of the orifice can be modeled as a locally spherical flow. Within this near field, the flow is, to a first approximation, unsteady and incompressible. (2) At very low sound pressure levels, the orifice viscous resistance is directly related to the effect of boundary-layer displacement along the walls containing the orifice, and the orifice reactance is directly related to the inertia of the oscillating flow in the neighborhood of the orifice. (3) For large values of the incident acoustic pressure, the impedance is dominated by nonlinear jet-like effects. (4) For low values of the pressure, the resistance and reactance are roughly equal.

  2. Practical acoustic emission testing

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  3. A state feedback electro-acoustic transducer for active control of acoustic impedance

    Samejima, Toshiya

    2003-03-01

    In this paper, a new control system in which the acoustic impedance of an electro-acoustic transducer diaphragm can be actively varied by modifying design parameters is presented and its effectiveness is theoretically investigated. The proposed control system is based on a state-space description of the control system derived from an electrical equivalent circuit of an electro-acoustic transducer to which a differentiating circuit is connected, and is designed using modern control theory. The optimal quadratic regulator is used in the control system design, with its quadratic performance index formulated for producing desired acoustic impedance. Computer simulations indicate that the acoustic impedance of the diaphragm can be significantly varied over a wide frequency range that includes the range below the resonance frequency of the electro-acoustic transducer. A computer model of the proposed control system is used to illustrate its application to semi-active noise control in a duct. It is demonstrated that the proposed control system provides substantial reductions in the noise radiating from the outlet of the duct, both in the stiffness control range and in the mass control range.

  4. Absorption and impedance boundary conditions for phased geometrical-acoustics methods

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been...... reasonable results with some exceptions at low frequencies for acoustically soft materials....

  5. Planar acoustic metamaterials with the active control of acoustic impedance using a piezoelectric composite actuator

    Nováková, Kateřina; Mokrý, P.; Václavík, J.; Marton, P.; Cernik, M.; Psota, Pavel; Doleček, Roman; Lédl, Vít

    Prague: IEEE-UFFC, 2013 - (Kamba, S.), s. 317-320 ISBN 978-1-4673-5996-2. [2013 Joint UFFC, EFTF and PFM Symposium. Prague (CZ), 21.07.2013-25.07.2013] R&D Projects: GA ČR GA13-10365S; GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : Planar acoustic metamaterials * Active control of acoustic impedance * Piezoelectric composite actuator Subject RIV: JI - Composite Materials http://ieee2013.fzu.cz/

  6. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  7. Gas hydrate saturation from acoustic impedance and resistivity logs in the shenhu area, south china sea

    Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.

    2011-01-01

    During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.

  8. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube

    Doutres, Olivier; Atalla, Noureddine; Panneton, Raymond; 10.1016/j.apacoust.2010.01.007

    2010-01-01

    This paper presents a straightforward application of an indirect method based on a three-microphone impedance tube setup to determine the non-acoustic properties of a sound absorbing porous material. First, a three-microphone impedance tube technique is used to measure some acoustic properties of the material (i.e., sound absorption coefficient, sound transmission loss, effective density and effective bulk modulus) regarded here as an equivalent fluid. Second, an indirect characterization allows one to extract its non-acoustic properties (i.e., static airflow resistivity, tortuosity, viscous and thermal characteristic lengths) from the measured effective properties and the material open porosity. The procedure is applied to four different sound absorbing materials and results of the characterization are compared with existing direct and inverse methods. Predictions of the acoustic behavior using an equivalent fluid model and the found non-acoustic properties are in good agreement with impedance tube measureme...

  9. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices

    Su, J.; Rupp, J.; Garmory, A.; Carrotte, J. F.

    2015-09-01

    The response of orifices to incident acoustic waves, which is important for many engineering applications, is investigated with an approach combining both experimental measurements and numerical simulations. This paper presents experimental data on acoustic impedance of orifices, which is subsequently used for validation of a numerical technique developed for the purpose of predicting the acoustic response of a range of geometries with moderate computational cost. Measurements are conducted for orifices with length to diameter ratios, L/D, of 0.5, 5 and 10. The experimental data is obtained for a range of frequencies using a configuration in which a mean (or bias) flow passes from a duct through the test orifices before issuing into a plenum. Acoustic waves are provided by a sound generator on the upstream side of the orifices. Computational fluid dynamics (CFD) calculations of the same configuration have also been performed. These have been undertaken using an unsteady Reynolds averaged Navier-Stokes (URANS) approach with a pressure based compressible formulation with appropriate characteristic based boundary conditions to simulate the correct acoustic behaviour at the boundaries. The CFD predictions are in very good agreement with the experimental data, predicting the correct trend with both frequency and orifice L/D in a way not seen with analytical models. The CFD was also able to successfully predict a negative resistance, and hence a reflection coefficient greater than unity for the L / D = 0.5 case.

  10. Acoustic emission testing

    Grosse, Christian U

    2008-01-01

    Acoustic Emission (AE) techniques have been studied in civil engineering for a long time. The techniques are recently going to be more and more applied to practical applications and to be standardized in the codes. This is because the increase of aging structures and disastrous damages due to recent earthquakes urgently demand for maintenance and retrofit of civil structures in service for example. It results in the need for the development of advanced and effective inspection techniques. Thus, AE techniques draw a great attention to diagnostic applications and in material testing. The book covers all levels from the description of AE basics for AE beginners (level of a student) to sophisticated AE algorithms and applications to real large-scale structures as well as the observation of the cracking process in laboratory specimen to study fracture processes.

  11. Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory

    Tubular acoustic metamaterials with negative densities composed of periodical membranes set up along pipes are studied with the fluid impedance theory. In addition to the conventional forbidden bands induced by the Bragg-scattering due to the periodic distributions of different acoustic impedances, the low-frequency forbidden band (LFB) with the low-frequency limit of zero Hertz is studied, in which the LFB is explained with acoustic impedance matching and the Bloch theory. Furthermore, the influences of the structural parameters of the tubular acoustic metamaterials on the transmission characteristics, such as the transmission coefficients, dispersion curves, widths of forbidden and pass bands, fluctuations in pass bands, etc., are evaluated, which can be used in the optimization of the acoustic insulation ability of the metamaterials. (fundamental areas of phenomenology (including applications))

  12. Cryogenic Acoustic Suppression Testing Project

    National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...

  13. Reverberant Acoustic Test Facility (RATF)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  14. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  15. Characterization of electro-acoustics impedance and its application to active noise control

    HOU Hong; YANG Jianhua

    2004-01-01

    Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed.Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.

  16. Contribution to classification of buried objects based on acoustic impedance matching.

    Stepanić, J; Wüstenberg, H; Krstelj, V; Mrasek, H

    2003-03-01

    Determination of material the buried objects are made of could contribute significantly to their recognition, or classification. This is important in detecting buried antipersonnel landmines within the context of humanitarian demining, as well as in a variety of other applications. In this article the concept has been formulated of the approach to buried object's material determination starting with ultrasonic impulse propagation analysis in a particular testing set configuration. The impulse propagates through a characterized transfer material in such a way that a part of it, a reflected wave, carries the information about the buried object's surface material acoustic impedance. The limit of resolution capability is theoretically analyzed and experimentally evaluated and the influencing factors described. Among these, the contact between clean surfaces of the transfer material and buried object is emphasized. PMID:12565075

  17. Comparison of Computed and Measured Acoustic Input Impedance of the Human Vocal Tract Models

    Radolf, Vojtěch; Horáček, Jaromír

    Salt Lake City : National Center for Voice and Speech, University of Utah, 2014. s. 68-68. [International Conference on Voice Physiology and Biomechanics /9./. 10.04.2014-12.04.2014, Salt Lake City] R&D Projects: GA ČR GPP101/12/P579 Institutional support: RVO:61388998 Keywords : biomechanics of voice * human vocal tract * acoustic input impedance * phonation into tubes Subject RIV: BI - Acoustics

  18. Measurement of acoustic input impedance of the human vocal tract models

    Radolf, Vojtěch; Dlask, P.; Otčenášek, Z.

    Prague : Institute of Thermomechanics ASCR, v. v. i., 2013 - (Zolotarev, I.), s. 51-58 ISBN 978-80-87012-49-9. [Interaction and Feedbacks 2013 /20./. Prague (CZ), 26.11.2013-27.11.2013] R&D Projects: GA ČR GPP101/12/P579 Institutional support: RVO:61388998 Keywords : biomechanics of voice * human vocal tract * acoustic impedance Subject RIV: BI - Acoustics

  19. Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance

    Bo, Hu; Jie, Shi; Sheng-Guo, Shi; Yu, Sun; Zhong-Rui, Zhu

    2016-02-01

    We propose an underwater asymmetric acoustic transmission structure comprised of two media each with a gradient change of acoustic impedance. By gradually increasing the acoustic impedances of the media, the propagating direction of the acoustic wave can be continuously bent, resulting in allowing the acoustic wave to pass through along the positive direction and blocking acoustic waves from the negative one. The main advantages of this structure are that the asymmetric transmission effect of this structure can be realized and enhanced more easily in water. We investigate both numerically and experimentally the asymmetric transmission effect. The experimental results show that a highly efficient asymmetric acoustic transmission can be yielded within a remarkable broadband frequency range, which agrees well with the numerical prediction. It is of potential practical significance for various underwater applications such as reducing vibration and noise. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204049 and 11204050), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1228), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20122304120023 and 20122304120011).

  20. Analogy electromagnetism-acoustics: Validation and application to local impedance active control for sound absorption

    Nicolas, Laurent; Furstoss, M.; Galland, Marie-Annick

    1998-01-01

    An analogy between electromagnetism and acoustics is presented in 2D. The propagation of sound in presence of absorbing material is modeled using an open boundary microwave package. Validation is performed through analytical and experimental results. Application to local impedance active control for free field sound absorption is finally described.

  1. The sound power emitted by a source of low acoustic impedance

    Jacobsen, Finn; Verholt, Lars M.

    1998-01-01

    Several authors have maintained that a source of low acoustic impedance (which includes standardised reference sources of the aerodynamic type) would radiate less than the free field power in a reverberation room. However, neither computer simulations nor experiments have confirmed this assertion....

  2. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume–velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. (paper)

  3. Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts

    Jones, Michael G.; Howerton, Brian M.; Ayle, Earl

    2012-01-01

    Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.

  4. Acoustic impedance variations at burn--nonburn interfaces in porcine skin

    The success of the ultrasonic pulse-echo technique for measurement of the depth of burn necrosis in porcine skin [Med. Phys. 4, 259--263 (1977)] has led to the present investigation of the specific acoustic impedance difference between the necrotic (burn) tissue and the underlying viable (nonburn) tissue. Experimental results show that the ultrasonic group velocities and mass densities are approximately the same in these tissues yielding average values of (1.72 +- 0.12) x 105 cm/s for group velocity and (1.093 x 0.009) g/cm3 for the density. The characteristic impedance (density times velocity) differs by at most 3% between necrotic and viable tissues. Measurements of acoustic attenuation show a difference of approximately 70% between these tissues. porcine skin is due primarily to the difference in acoustic attenuation

  5. Phase of acoustic impedance and performance of standing wave thermoacoustic coolers

    Investigations on the relations between the phase angle of the acoustic impedance at the driver piston and the system performance of a standing wave thermoacoustic cooler were performed. The system performance measured at a fixed acoustic power showed that the coefficient of performance of the standing wave thermoacoustic cooler increases as the phase angle increases when the stack temperature span is relatively low. The results were consistent with the simulation results obtained from DELTAE, a computer code based on linear thermoacoustic theory. Analysis on the temperature profiles along the stack showed that the cooling efficiency (COP) of the system could be decreased or increased as the phase angle of the acoustic impedance at the driver piston changes depending on the stack temperature spans

  6. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  7. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces.

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-01-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634

  8. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.

  9. Influence of exit impedance on finite difference solutions of transient acoustic mode propagation in ducts

    Baumeister, K. J.

    1981-01-01

    The cutoff mode instability problem associated with a transient finite difference solution to the wave equation is explained. The steady-state impedance boundary condition is found to produce acoustic reflections during the initial transient, which cause finite instabilities in the cutoff modes. The stability problem is resolved by extending the duct length to prevent transient reflections. Numerical calculations are presented at forcing frequencies above, below, and nearly at the cutoff frequency, and exit impedance models are presented for use in the practical design of turbofan inlets.

  10. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  11. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  12. Finite volume time domain room acoustics simulation under general impedance boundary conditions

    Bilbao, Stefan; Hamilton, Brian; Botts, Jonathan; Savioja, Lauri

    2016-01-01

    In room acoustics simulation and virtualization applications, accurate wall termination is a perceptually crucial feature. It is particularly important in the setting of wave-based modeling of 3D spaces, using methods such as the finite difference time domain method or finite volume time domain method. In this article, general locally reactive impedance boundary conditions are incorporated into a 3D finite volume time domain formulation, which may be specialized to the various types of finite...

  13. Investigation of the thickness effect to impedance analysis results AlGaN acoustic sensor

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensors were deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method, for the first time. Impedance analyses of the fabricated acoustic sensors were investigated for the determining of effect of the nano layer thickness. Thickness values are very close to each others. Fabricated sensors have been fabricated from AlGaN deposited on aluminum substrates. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. TVA production parameters and some properties of the deposited layers were investigated. TVA is the fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results that AlGaN layer are very promising material for an acoustic sensor but also TVA is proper fast technology for the production.

  14. Nuclear EMP: stripline test method for measuring transfer impedance

    A method for measuring the transfer impedance of flat metal joints for frequencies to 100 MHz has been developed which makes use of striplines. The stripline method, which has similarities to the quadraxial method used for cylindrical components, is described and sets of test results are given. The transfer impedance of a simple joint is modeled as a spurious hyperbolic curve, and a close curve fit to transfer impedance test data from various samples is demonstrated for both the stripline and the quadraxial methods. Validity checks of the test data are discussed using the curve model and other criteria. The method was developed for testing riveted joints which form the avionics bays on B-1s. The joints must provide shielding from EMP currents

  15. Controllable transmission and total reflection through an impedance-matched acoustic metasurface

    A general design paradigm for a novel type of acoustic metasurface is proposed by introducing periodically repeated supercells on a rigid thin plate, where each supercell contains multiple cut-through slits that are filled with materials possessing different refractive indices but the same impedance as that of the host medium. When the wavelength of the incident wave is smaller than the periodicity, the direction of the transmitted wave with nearly unity transmittance can be chosen by engineering the phase discontinuities along the transverse direction. When the wavelength is larger than the periodicity, even though the metasurface is impedance matched to the host medium, most of the incident energy is reflected back and the remaining portion is converted into a surface-bound mode. We show that both the transmitted wave control and the high reflection with the surface mode excitation can be interpreted by a unified analytic model based on mode-coupling theory. Our general design principle not only supplies the functionalities of reflection-type acoustic metasurfaces, but also exhibits unprecedented flexibility and efficiency in various domains of wave manipulation for possible applications in fields like refracting, collimating, focusing or absorbing wave energy. (paper)

  16. Controllable transmission and total reflection through an impedance-matched acoustic metasurface

    Mei, Jun

    2014-12-02

    A general design paradigm for a novel type of acoustic metasurface is proposed by introducing periodically repeated supercells on a rigid thin plate, where each supercell contains multiple cut-through slits that are filled with materials possessing different refractive indices but the same impedance as that of the host medium. When the wavelength of the incident wave is smaller than the periodicity, the direction of the transmitted wave with nearly unity transmittance can be chosen by engineering the phase discontinuities along the transverse direction. When the wavelength is larger than the periodicity, even though the metasurface is impedance matched to the host medium, most of the incident energy is reflected back and the remaining portion is converted into a surface-bound mode. We show that both the transmitted wave control and the high reflection with the surface mode excitation can be interpreted by a unified analytic model based on mode-coupling theory. Our general design principle not only supplies the functionalities of reflection-type acoustic metasurfaces, but also exhibits unprecedented flexibility and efficiency in various domains of wave manipulation for possible applications in fields like refracting, collimating, focusing or absorbing wave energy.

  17. Reconstruction of time-domain impedance boundary condition considering the incident intensity effect on perforated-plate acoustic liner

    Based on impedance prediction methods for a perforated plate acoustic liner, time-domain impedance boundary conditions are enhanced with consideration of incident intensity. The impedance coefficient of the time-domain boundary condition is re-derived using parameters of the liner structure, and is classified by physical characteristics. To show the capability of the reconstructed impedance boundary condition, two numerical calculations are performed with comparison to analytical results. The first considers the one dimensional wave propagation problem to account for the reflection wave due to an incident intensity variation on the acoustic liner. The second considers the excess attenuation of impedance surface. The numerical simulation is performed using the linearized Euler equations (LEEs). Dispersion-relation-preserving finite difference scheme and optimized Adams-Bashforth time-integration method are used spatial discretization / time integration, respectively. The numerical results show excellent agreement with analytical results. Moreover, a reconstruction method of impedance boundary condition can easily obtain the impedance coefficients under environments of variant magnitudes of incident waves

  18. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962

  19. Airflow Test of Acoustic Board Samples

    Jensen, Rasmus Lund; Jensen, Lise Mellergaard

    In the laboratory of Indoor Environmental Engineering, Department of Civil Engineering, Aalborg University an airflow test on 2x10 samples of acoustic board were carried out the 2nd of June 2012. The tests were carried out for Rambøll and STO AG. The test includes connected values of volume flow...

  20. Effects of grazing flow on the steady-state flow resistance and acoustic impedance of thin porous-faced liners

    Hersh, A. S.; Walker, B.

    1978-01-01

    The effects of grazing flow on the steady state flow resistance and acoustic impedance of seven Feltmetal and three Rigimesh thin porous faced liners were studied. The steady-state flow resistance of the ten specimens was measured using standard fluid mechanical experimental techniques. The acoustic impedance was measured using the two microphone method. The principal findings of the study are that the effects of grazing flow were measured and found to be small; small differences were measured between steady-state and acoustic resistance, and a semi-empirical model was derived that correlated the steady-state resistance data of the seven Feltmetal liners and the face sheet reactance of both the Feltmetal and Rigimesh liners.

  1. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  2. Time reversal signal processing in acoustic emission testing

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan

    Brno: University of Technology, 2014. s. 10-11. ISBN 978-80-214-5019-6. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. 06.10.2014-10.10.2014, Praha] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustics * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustics

  3. Multiscale analysis of the acoustic scattering by many scatterers of impedance type

    Challa, Durga Prasad; Sini, Mourad

    2016-06-01

    We are concerned with the acoustic scattering problem, at a frequency {κ}, by many small obstacles of arbitrary shapes with impedance boundary condition. These scatterers are assumed to be included in a bounded domain {Ω} in R^3 which is embedded in an acoustic background characterized by an eventually locally varying index of refraction. The collection of the scatterers {D_m, m=1,ldots,M} is modeled by four parameters: their number M, their maximum radius a, their minimum distance d and the surface impedances {λ_m, m=1,ldots,M}. We consider the parameters M, d and {λ_m}'s having the following scaling properties: {M:=M(a)=O(a^{-s}), d:=d(a)≈ a^t} and {λ_m:=λ_m(a)=λ_{m,0}a^{-β}}, as {a→ 0}, with non negative constants s, t and {β} and complex numbers {λ_{m, 0}}'s with eventually negative imaginary parts. We derive the asymptotic expansion of the far-fields with explicit error estimate in terms of a, as {a→ 0}. The dominant term is the Foldy-Lax field corresponding to the scattering by the point-like scatterers located at the centers {z_m}'s of the scatterers {D_m}'s with {λ_m \\vert partial D_m\\vert} as the related scattering coefficients. This asymptotic expansion is justified under the following conditions a ≤ a_0, \\vert Re (λ_{m,0})\\vert ≥ λ_-,quad \\vertλ_{m,0}\\vert ≤ λ_+,quad β < 1,quad 0 ≤ s ≤2-β,quads/3 ≤ t and the error of the approximation is {C a^{3-2β-s}}, as {a → 0}, where the positive constants {a_0, λ_-,λ_+} and C depend only on the a priori uniform bounds of the Lipschitz characters of the obstacles {D_m}'s and the ones of {M(a)a^s} and {d(a)/a^t}. We do not assume the periodicity in distributing the small scatterers. In addition, the scatterers can be arbitrary close since t can be arbitrary large, i.e., we can handle the mesoscale regime. Finally, for spherical scatterers, we can also allow the limit case {β=1} with a slightly better error of the approximation.

  4. Automated robust test framework for electrical impedance tomography.

    Gaggero, Pascal O; Adler, Andy; Waldmann, Andreas D; Mamatjan, Yasin; Justiz, Jörn; Koch, Volker M

    2015-06-01

    An automated test system and procedure is proposed, designed to enable systematic testing of electrical impedance tomography (EIT) devices. The system is designed to calculate reliable, repeatable and accurate performance figures of merit of an EIT system using a saline phantom and an industrial robot arm. Applications of the test system are to compare EIT devices against requirements, or to help optimize a device for its operating parameters. A test methodology and sample test results are presented to illustrate its use. The system is used to compare image quality and contrast detection for a range of stimulation and measurement patterns, and results show the best images when the pair of current injection electrodes is spaced between 45 and 170 degrees on a tank. Finally, we propose a classification of the object detection errors, which can facilitate comparison of EIT instrument specifications. PMID:26009262

  5. The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering

    Erhard, Klaus; Potthast, Roland

    2003-10-01

    We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.

  6. Nonlinear acoustic nondestructive testing for concrete durability

    Wu, Hwai-Chung; Warnemuende, Kraig

    2000-06-01

    Several nondestructive testing methods can be used to determine the damage in a concrete structure. Linear ultrasonic techniques, e.g. pulse-velocity and amplitude attenuation, are very common in nondestructive evaluation. Velocity of propagation is not very sensitive to the degrees of damage unless a great deal of micro-damage having evolving into localized macro-damage. This transition typically takes place around 80% of the ultimate compressive strength. Amplitude attenuation is potentially more sensitive than pulse-velocity. However, this method depends strongly on the coupling conditions between transducers and concrete, hence unreliable. A baseline test of the linear acoustics of several mortar samples was conducted. These mortar samples have been previously damaged to different levels. Several other testing methods were also performed on the same samples to form a comparison. The focus is in comparing the sensitivity of a new testing method (Non-linear Acoustic NDE) with several more traditional testing methods. Non-linearity of the material stiffness is expressed in non-linear acoustics as the effect that damage and flaws have on the modulation of a signal as it propagates through the material. Spectral (non-linear) analysis is much more sensitive to lower damage states and less dependent on the repeatability of the coupling of the transducers.

  7. Impedance analysis of nano thickness layered AlGaN acoustic sensor deposited by thermionic vacuum arc

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensor was deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method for the first time. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. The thickness of the acoustic sensor is in deposited as nano layer. Impedance analyses were realized. Also, TVA production parameters and some properties of the deposited layers were investigated. TVA is a fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results show that AlGaN materials are very promising materials. Moreover, these acoustic sensors have been produced by TVA technology.

  8. Femoral Test Bed for Impedance Controlled Surgical Instrumentation

    Christian Brendle

    2012-01-01

    Full Text Available The risk for patients during the standard procedure of revision of cemented artificial hip joints is unsatisfactorily highdue to its high level of invasiveness and limited access to the operative field. To reduce this risk we are developing anImpedance Controlled Surgical Instrumentation (ICOS system, which aims to establish real-time control during a BoneCement (BC milling process. For this, the relationship between the thickness of the BC and its frequency-dependentelectrical impedance is used to estimate the residual BC thickness. The aim is to avoid unintended cutting of boneby detecting the passage of the BC/bone boundary layer by the milling head. In a second step, an estimation of theresidual BC thickness will be used to improve process control. As a first step towards demonstrating the feasibility ofour approach, presented here are experimental studies to characterize the BC permittivity and to describe the process indetail. The results show that the permittivity properties of BC are dominated by its polymethyl methacrylate (PMMAfraction. Thus, PMMA can be used as a substitute for future experiments. Furthermore, a Femoral Test Bed (FTB wasdesigned. Using this setup we show it is feasible to accurately distinguish between slightly different thicknesses of BC.

  9. Subscale Acoustic Testing: Comparison of ALAT and ASMAT

    Houston, Janice D.; Counter, Douglas

    2014-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option. This paper compares the acoustic measurements of two different subscale tests: the 2% Ares Liftoff Acoustic Test conducted at Stennis Space Center and the 5% Ares I Scale Model Acoustic Test conducted at Marshall Space Flight Center.

  10. Time reversal signal processing in acoustic emission testing

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan; Dos Santos, S.

    2014-01-01

    Roč. 19, č. 12 (2014). ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustics * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/637_Prevorovsky.pdf

  11. Mechanical impedance

    Couroussé, Damien

    2007-01-01

    Mechanical impedance is a transposition to mechanics of the term impedance that is used and defined in circuit theory. The theory of circuit (theory of Kirchhoff networks) is basically applicable to electric networks but can be considered more generally as a unifying simplified theory of physics available in several domains like mechanics, electromagnetism, aero-acoustics and fluids mechanics.

  12. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  13. Acoustic emission monitoring of HFIR vessel during hydrostatic testing

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results

  14. Measurement of longitudinal impedance for a KAON test pipe model with TSD-calibration method

    The authors report measurements of longitudinal impedances for a KAON factory beam pipe model by means of the TSD-calibration method. The experimental method and the results are discussed. The frequency band is from 48 MHz up to 900 MHz, within which range the method produces measured impedances accurate enough to be useful in indicating whether a test pipe will have a suitably low impedance

  15. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  16. Absorption boundary conditions for geomertical acoustics

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  17. [Evaluation of orthostatic regulation by saddle support test using thoracic impedance].

    Gugova, F K; Lapin, V V

    2002-01-01

    We investigated 21 healthy volunteers (10 males and 11 females, mean age 23 +/- 4 years). All the subjects have undergone two 20 min head-up tilt tests using tilt table "TRI W.G. inc." (USA): the first with footplate support and the second with bicycle saddle. Thoracic electrical impedance was measured using impedance cardiography according to Kubicek et al. The protocols included an initial period of 20 min of supine rest while baseline thoracic impedance, blood pressure and heart rate were recorded and then followed by a tilt to 65 degrees. Changes of impedance were measured at min 1, 2, 3, 5, 7, 10, 15, 20 after the procedure. Women had higher values of thoracic impedance both at rest and during the tilt test than men. The value of impedance of the chest negatively correlated with the body mass index. We suppose that an increase of impedance more than 15% may be related with pathological venous pooling. Thoracic impedance may be used to monitor changes of thoracic fluid volumes with posture and possibly to assess orthostatic regulation. The contribution of leg muscles in orthostatic regulation does not reflect values of thoracic impedance. PMID:12152425

  18. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling

    2013-01-01

    absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections and...... acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection...

  19. Construction of reservoir flow models using deterministic and stochastic methods and driven by seismic acoustic impedance--a Gulf of Mexico example

    Meanley, E.; Guderjahn, C.; Litvak, M. [BP Exploration, Houston, TX (United States)] [and others

    1995-08-01

    Rapid and accurate subsurface descriptions and flow predictions contribute to profitable field development, particularly for deep water fields of modest size. This paper shows how 3-D seismic acoustic impedance played an essential roll in that process. This Tertiary field example exhibits a classic Gulf of Mexico {open_quotes}bright{close_quotes} seismic response. The slope channel deposits yielded reflections from stacked pay zones that were often interfering vertically and laterally variable. Seismic acoustic impedance inversion for volume estimation, well placement and flow model construction. Flow model construction was facilitated using Stratamodel, where reservoir boundaries, porosity and permeability were estimated from seismic acoustic impedance. This provided a {open_quotes}deterministic{close_quotes} flow model with which well choices and development economics were explored. Alternate flow models were developed in which the effect of fine scale (sub-seismic) heterogeneities were investigated. A 3-D {open_quotes}stochastic{close_quotes} model was developed that honored geostatistical parameters as well as seismic acoustic impedance. This gave insight to permeability distributions and confirmed that connectivity between scattered sand bodies would not significantly degrade the field performance predicted by deterministic models.

  20. Simple analytic formula for the period of the nonlinear pendulum via the Struve function: connection to acoustical impedance matching

    An approximate formula for the period of pendulum motion beyond the small amplitude regime is obtained based on physical arguments. Two different schemes of different accuracy are developed: in the first less accurate scheme, emphasis is given on the non-quadratic form of the potential in connection to isochronism, and a specific form of a generic formula that is met in many previous works is produced, while the second and main result contains the Struve function which is further approximated by a simple sinusoidal expression based on its maximum value. The accuracy of the final formula gives a relative error of less than 0.2% for angles up to 140°. In addition, a simple relation between the Struve function and the complete elliptic integral of the first kind is produced, since they both constitute solutions of the pendulum period. This relation makes it possible for someone to connect different areas in physics and solve a difficult task by comparison with another much more simple one. As an example, a connection between the pendulum period and the acoustical radiation impedance is proposed through impedance matching and some interesting relations are produced. This paper is intended for undergraduate students to be useful for analysing pendulum experiments in introductory physics labs and it is also believed to offer valuable insight into some properties of the simple pendulum in undergraduate courses on general physics. (paper)

  1. Effect of grazing flow on the acoustic impedance of Helmholtz resonators consisting of single and clustered orifices

    Hersch, A. S.; Walker, B.

    1979-01-01

    A semiempirical fluid mechanical model is derived for the acoustic behavior of thin-walled single orifice Helmholtz resonators in a grazing flow environment. The incident and cavity sound fields are connected in terms of an orifice discharge coefficient whose values are determined experimentally using the two-microphone method. Measurements show that at high grazing flow speeds, acoustical resistance is almost linearly proportional to the grazing flow speed and almost independent of incident sound pressure. The corresponding values of reactance are much smaller and tend towards zero. For thicker-walled orifice plates, resistance and reactance were observed to be less sensitive to grazing flow as the ratio of plate thickness to orifice diameter increased. Loud tones were observed to radiate from a single orifice Helmholtz resonator due to interaction between the grazing flow shear layer and the resonator cavity. Measurements showed that the tones radiated at a Strouhal number equal to 0.26. The effects of grazing flow on the impedance of Helmholtz resonators consisting of clusters of orifices was also studied. In general, both resistance and reaction were found to be virtually independent of orifice relative spacing and number. These findings are valid with and without grazing flow.

  2. Acoustic emission generated during scratch test of various thin films

    Boháč, Petr; Tomáštík, J.; Čtvrtlík, R.; Dráb, M.; Koula, V.; Cvrk, K.; Jastrabík, Lubomír

    2014-01-01

    Roč. 19, č. 12 (2014), s. 16635. ISSN 1435-4934 R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : acoustic emission * scratch test * thin films * AE data analysis * mechanical toughness Subject RIV: BI - Acoustic s

  3. Validation of a Numerical Method for Determining Liner Impedance

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1996-01-01

    This paper reports the initial results of a test series to evaluate a method for determining the normal incidence impedance of a locally reacting acoustically absorbing liner, located on the lower wall of a duct in a grazing incidence, multi-modal, non-progressive acoustic wave environment without flow. This initial evaluation is accomplished by testing the methods' ability to converge to the known normal incidence impedance of a solid steel plate, and to the normal incidence impedance of an absorbing test specimen whose impedance was measured in a conventional normal incidence tube. The method is shown to converge to the normal incident impedance values and thus to be an adequate tool for determining the impedance of specimens in a grazing incidence, multi-modal, nonprogressive acoustic wave environment for a broad range of source frequencies.

  4. Effect of grazing flow on the acoustic impedance of interacting cavity-backed orifices

    Hersh, A. S.; Walker, B.

    1977-01-01

    The two-microphone method was used to investigate the impedance of interacting cavity-backed orifices in the presence of a grazing flow; the investigation has relevance for the control of turbomachinery noise generated within jet engines. The number (varied from one to 16), the diameter, and the spacing of the orifices were the chief parameters studied in the experimental program. It was found that interactions between adjacent orifices, while increasing reactance, do not significantly alter resistance. In addition, the grazing flow appears to reduce the rate of increase of the reactance.

  5. Application of acoustic emission in pressure vessel testing

    Materials of the CrMoV and the NiCrMoV types were tested for integrity using an acoustic emission method developed by SKODA Trust. The materials are used for the production of reactor pressure vessels. The acoustic emission method is employed for determining the beginning of crack formation and crack proliferation. The objective of the tests was to obtain information necessary for evaluating acoustic emission sources in actual components. The use is discussed of a 24-channel system by Trodyne (USA) for testing the integrity of WWER type pressure vessels manufactured by SKODA. (B.S.)

  6. Permeability, electrical impedance, and acoustic velocities on reservoir rocks from the Geysers field

    Boitnott, G.N.; Boyd, P.J. [New England Research, Inc., White River Junction, VT (United States)

    1996-12-31

    Previous measurements of acoustic velocities on NEGU-17 cores indicate that saturation effects are significant enough to cause V{sub p}/V{sub s}, anomalies observed in the field. In this study we report on the results of new measurements on core recently recovered from SB-15-D along with some additional measurements on the NEGU-17 cores. The measurements indicate correlations between mechanical, transport, and water storage properties of the matrix which may prove useful for reservoir assessment and management. The SB-15-D material is found to be similar to the NEGU-17 material in terms of acoustic velocities, being characterized by a notably weak pressure dependence on the velocities and a modest V{sub p}/V{sub s} signature of saturation. The effect of saturation on V{sub p}/V{sub s} appears to result in part from a chemo-mechanical weakening of the shear modulus due to the presence of water. Electrical properties of SB-15-D material are qualitatively similar to those of the NEGU-17 cores, although resistivities of SB-15-D cores are notably lower and dielectric permittivities higher than in their NEGU-17 counterparts. While some limited correlations of measured properties with depth are noted, no clear change in character is observed within SB-15-D cores which can be associated with the proposed caprock/reservoir boundary.

  7. High-temperature acoustic test facilities and methods

    Pearson, Jerome

    1994-09-01

    The Wright Laboratory is the Air Force center for air vehicles, responsible for developing advanced technology and incorporating it into new flight vehicles and for continuous technological improvement of operational air vehicles. Part of that responsibility is the problem of acoustic fatigue. With the advent of jet aircraft in the 1950's, acoustic fatigue of aircraft structure became a significant problem. In the 1960's the Wright Laboratory constructed the first large acoustic fatigue test facilities in the United States, and the laboratory has been a dominant factor in high-intensity acoustic testing since that time. This paper discusses some of the intense environments encountered by new and planned Air Force flight vehicles, and describes three new acoustic test facilities of the Wright Laboratory designed for testing structures in these dynamic environments. These new test facilities represent the state of the art in high-temperature, high-intensity acoustic testing and random fatigue testing. They will allow the laboratory scientists and engineers to test the new structures and materials required to withstand the severe environments of captive-carry missiles, augmented lift wings and flaps, exhaust structures of stealth aircraft, and hypersonic vehicle structures well into the twenty-first century.

  8. Applications of Lorentz force in medical acoustics: Lorentz force hydrophone, Lorentz Force Electrical Impedance Tomography, Imaging of shear waves induced by Lorentz force

    Grasland-Mongrain, Pol

    2014-01-01

    The ability of the Lorentz force to link a mechanical displacement to an electrical current presents a strong interest for medical acoustics, and three applications were studied in this thesis. In the first part of this work, a hydrophone was developed for mapping the particle velocity of an acoustic field. This hydrophone was constructed using a thin copper wire and an external magnetic field. A model was elaborated to determine the relationship between the acoustic pressure and the measured electrical current, which is induced by Lorentz force when the wire vibrates in the acoustic field of an ultrasound transducer. The built prototype was characterized and its spatial resolution, frequency response, sensitivity, robustness and directivity response were investigated. An imaging method called Lorentz Force Electrical Impedance Tomography was also studied. In this method, a biological tissue is vibrated by ultrasound in a magnetic field, which induces an electrical current by Lorentz force. The electrical imp...

  9. Metal oxide semiconductor gas sensor self-test using Fourier-based impedance spectroscopy

    Schüler, M.; T. Sauerwald; Schütze, A

    2014-01-01

    For the self-test of semiconductor gas sensors, we combine two multi-signal processes: temperature-cycled operation (TCO) and electrical impedance spectroscopy (EIS). This combination allows one to discriminate between irreversible changes of the sensor, i.e., changes caused by poisoning, as well as changes in the gas atmosphere. To integrate EIS and TCO, impedance spectra should be acquired in a very short time period, in which the sensor can be considered time invariant, i...

  10. Verification of Ares I Liftoff Acoustic Environments via the Ares Scale Model Acoustic Test

    Counter, Douglas D.; Houston, Janice D.

    2012-01-01

    Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.

  11. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    Counter, Douglas D.; Houston, Janice D.

    2012-01-01

    Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.

  12. Cardiorespiratory Mechanical Simulator for In Vitro Testing of Impedance Minute Ventilation Sensors in Cardiac Pacemakers.

    Marcelli, Emanuela; Cercenelli, Laura

    2016-01-01

    We developed a cardiorespiratory mechanical simulator (CRMS), a system able to reproduce both the cardiac and respiratory movements, intended to be used for in vitro testing of impedance minute ventilation (iMV) sensors in cardiac pacemakers. The simulator consists of two actuators anchored to a human thorax model and a software interface to control the actuators and to acquire/process impedance signals. The actuators can be driven separately or simultaneously to reproduce the cardiac longitudinal shortening at a programmable heart rate and the diaphragm displacement at a programmable respiratory rate (RR). A standard bipolar pacing lead moving with the actuators and a pacemaker case fixed to the thorax model have been used to measure impedance (Z) variations during the simulated cardiorespiratory movements. The software is able to discriminate the low-frequency component because of respiration (Z(R)) from the high-frequency ripple because of cardiac effect (Z(C)). Impedance minute ventilation is continuously calculated from Z(R) and RR. From preliminary tests, the CRMS proved to be a reliable simulator for in vitro evaluation of iMV sensors. Respiration impedance recordings collected during cardiorespiratory movements reproduced by the CRMS were comparable in morphology and amplitude with in vivo assessments of transthoracic impedance variations. PMID:26501915

  13. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  14. Comparison of Two High Intensity Acoustic Test Facilities

    Launay, A.; Tadao Sakita, M.; Kim, Youngkey K.

    2004-08-01

    In two different countries, at the same period of time, the institutes in charge of the development of space activities have decided to extend their satellite integration and test center, and to implement a reverberant acoustic chamber. In Brazil the INPE laboratory (LIT : Laboratorio de Integracao e Testes) and in South Korea the KARI laboratory (SITC : Satellite Integration and Test Center) started their projects in July 2000 for the RATF (Reverberant Acoustic Test Facility) and in May 2001 for the HIAC (High Intensity Acoustic Chamber) respectively, writing the technical specifications. The kick-off meetings took place in December 2000 and in February 2002 and the opening ceremonies in December 19, 2002 in Brazil and in August 22, 2003 in Korea. This paper compares the two projects in terms of design choices, manufacturing processes, equipment installed and technical final characteristics.

  15. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  16. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing

    Prasad, Abhishek; Sanchez, Justin C.

    2012-04-01

    Long-term acquisition of high-quality neural recordings is a cornerstone of neuroprosthetic system design. Mitigating the experimental variability of chronically implanted arrays has been a formidable task because the sensor recording sites can be influenced by biotic and abiotic responses. Several studies have implicated changes in electrical interface impedance as a preliminary marker to infer electrode viability. Microelectrode impedance plays an important role in the monitoring of low amplitude and high-resolution extracellular neural signals. In this work, we seek to quantify long-term microelectrode array functionality and derive an impedance-based predictor for electrode functionality that correlates the recording site electrical properties with the functional neuronal recordings in vivo. High temporal resolution metrics of this type would allow one to assess, predict, and improve electrode performance in the future. In a large cohort of animals, we performed daily impedance measurements and neural signal recordings over long periods (up to 21 weeks) of time in rats using tungsten microwire arrays implanted into the somatosensory cortex. This study revealed that there was a time-varying trend in the modulation of impedance that was related to electrode performance. Single units were best detected from electrodes at time points when the electrode entered into the 40-150 KΩ impedance range. This impedance trend was modeled across the full cohort of animals to predict future electrode performance. The model was tested on data from all animals and was able to provide predictions of electrode performance chronically. Insight from this study can be combined with knowledge of electrode materials and histological analysis to provide a more comprehensive predictive model of electrode failure in the future.

  17. How Null Hypothesis Significance Testing May Impede Further Progress Within Psychology

    Tveit, Håvard

    2014-01-01

    In 2005, Ioannidis revitalised a long-lasting debate concerning whether or not null hypothesis significance testing may serve to uphold accessibility related biases, and in effect the file drawer problem as well. Though several authors have argued that significance testing may consequentially impede further progress within the medical and behavioural sciences, it has had little impact on the general consensus, and significance testing is still the most common approach to analyze and interpret...

  18. Early diagnosis of acoustic neuroma by the vestibular test

    Haid, T.; Rettinger, G.; Berg, M.; Wigand, M.E.

    1981-11-01

    In a series of 390 cases with suspicion of acoustic neurinomas 78 such tumors could be diagnosed, including 12 early stage neurinomas. This relatively high detection quote of small neurinomas is due to a special diagnostical programme: Every patient with unilateral and sensoneural hearingloss, independent of vertigo anamnesis or of the result of X-rays must be further examined by a vestibular test. All 78 patients with acoustic neuroma had pathological vestibular findings. The positional test turned out to be the most sensitive examination in the early diagnosis of acoustic neuromas and yields a still higher incidence than the thermic test: 95% of the patients with a neuroma showed pathological findings in the positional test. Every patient suffering from an unidentified unilateral and sensoneural hearingloss combined with a pathological result in the positional test must be further checked by a cisternomeatography or computerized tomography using airinsufflation. Every fifth of these patients showed typical signs of an acoustic neuroma in the neuroradiological tests. 68 neuromas are operated today and verfied histologically, 10 patients are still waiting for surgical treatment.

  19. Acoustic-structure coupling scaling laws for model test based steam dryer acoustic fatigue derivations

    Background: In recent years some reactors have experienced significant steam dryer cracking. In some cases, this cracking has necessitated unplanned outages to implement steam dryer repairs and has also resulted in de-rated operation of the affected units. Initial inspection showed it was likely that steam dryer had been damaged by high cycle fatigue due to flow-induced acoustic resonance in the main steam lines. Because of the complexity and acoustic-structure coupling effect, scale model test is adopted to research the mechanism of acoustic fatigue. Purpose: This paper describes the derivations of scaling laws observed to control the system response for phenomena considered to be significant in the real plants. Methods: Basic governing equations of elasticity and acoustics are written in non-dimensional form, non-dimensional groups are defined and derived. Results: Using the reference values in the real plants, the scaling laws and scaling relationships are derived and recognized to enable conversion of model data into real plant predictions. Conclusions: Successful model testing can be achieved if these significant parameters are preserved in the model scale. (author)

  20. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Article's Absorption during Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    The exposure of a customers aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facilitys available acoustic power capability becomes maximized with the test-article installed during the actual test then the customers environment requirement may become compromised. In order to understand the risk of not achieving the customers in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Stations Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.

  1. Design, implementation and testing of an implantable impedance-based feedback-controlled neural gastric stimulator

    Functional neural gastrointestinal electrical stimulation (NGES) is a methodology of gastric electrical stimulation that can be applied as a possible treatment for disorders such as obesity and gastroparesis. NGES is capable of generating strong lumen-occluding local contractions that can produce retrograde or antegrade movement of gastric content. A feedback-controlled implantable NGES system has been designed, implemented and tested both in laboratory conditions and in an acute animal setting. The feedback system, based on gastric tissue impedance change, is aimed at reducing battery energy requirements and managing the phenomenon of gastric tissue accommodation. Acute animal testing was undertaken in four mongrel dogs (2 M, 2 F, weight 25.53 ± 7.3 kg) that underwent subserosal two-channel electrode implantation. Three force transducers sutured serosally along the gastric axis and a wireless signal acquisition system were utilized to record stimulation-generated contractions and tissue impedance variations respectively. Mechanically induced contractions in the stomach were utilized to indirectly generate a tissue impedance change that was detected by the feedback system. Results showed that increasing or decreasing impedance changes were detected by the implantable stimulator and that therapy can be triggered as a result. The implantable feedback system brings NGES one step closer to long term treatment of burdening gastric motility disorders in humans

  2. Acoustic Emission Defects Localized by Means of Geodetic Iterative Procedure - Algorithms, Tests, AE Experiment

    Kůs, V.; Záveský, M.; Převorovský, Zdeněk

    Granada : University of Granada, 2012 - (Gallego, A.; Ono, K.), s. 1-12 ISBN 978-84-615-9941-7. [Europen Conference on Acoustic Emission Testing/30./ & International Conference on Acoustic Emission/7./. Granada (ES), 12.09.2012-15.09.2012] Institutional support: RVO:61388998 Keywords : acoustic emissio * geodesic * Newton -Raphson method * iterative source localization Subject RIV: BI - Acoustics

  3. Could Acoustic Emission Testing Show a Pipe Failure in Advance?

    Soares, S. D.; Teixeira, J. C. G.

    2004-02-01

    During the last 20 years PETROBRAS has been attempting to use Acoustic Emission (AE) as an inspection tool. In this period the AE concept has changed from a revolutionary method to a way of finding areas to make a complete inspection. PETROBRAS has a lot of pressure vessels inspected by AE and with other NDTs techniques to establish their relationship. In other hand, PETROBRAS R&D Center has conducted destructive hydrostatic tests in pipelines samples with artificial defects made by milling. Those tests were monitored by acoustic emission and manual ultrasonic until the complete failure of pipe sample. This article shows the results obtained and a brief proposal of analysis criteria for this environment of test.

  4. Electrical impedance spectroscopy-based nondestructive testing for imaging defects in concrete structures

    Ammari, Habib; Seo, Jin Keun; Zhang, Tingting; Zhou, Liangdong

    2014-01-01

    An electrical impedance spectroscopy-based nondestructive testing (NDT) method is proposed to image both cracks and reinforcing bars in concrete structures. The method utilizes the frequency-dependent behavior of thin insulating cracks: low-frequency electrical currents are blocked by insulating cracks, whereas high-frequency currents can pass through the conducting bars without being blocked by thin cracks. Rigorous mathematical analysis relates the geometric structures of the cracks and bar...

  5. Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis

    Liu Shuyi

    2016-01-01

    Full Text Available The hardware design of tuber electrical resistance tomography (TERT system is one of the key research problems of TERT data acquisition system. The TERT system can be applied to the tuber growth process monitoring in agriculture, i.e., the TERT data acquisition system can realize the real imaging of tuber plants in soil. In TERT system, the imaging tuber and soil multiphase medium is quite complexity. So, the impedance test and analysis of soil multiphase medium is very important to the design of sensitive array sensor subsystem and signals processing circuits. In the paper, the soil impedance test experimental is described and the results are analysed. The data acquisition hardware system is designed based on the result of soil medium impedance test and analysis. In the hardware design, the switch control chip ADG508, the instrumentation amplifier AD620 and programmable amplifier AD526 are employed. In the meantime, the phase locked loop technique for signal demodulation is introduced. The initial data collection is given and discussed under the conditions of existing plant tuber and no existing plant tuber. Conclusions of the hardware design of TERT system are presented.

  6. Acoustic tests of Lorentz symmetry using Bulk Acoustic Wave quartz oscillators

    Goryachev, M; Haslinger, Ph; Mizrachi, E; Anderegg, L; Müller, H; Hohensee, M; Tobar, M E

    2016-01-01

    A new method of probing Lorentz invariance in the neutron sector is described. The method is baed on stable quartz bulk acoustic wave oscillators compared on a rotating table. Due to Lorentz-invariance violation, the resonance frequencies of acoustic wave resonators depend on the direction in space via a corresponding dependence of masses of the constituent elements of solids. This dependence is measured via observation of oscillator phase noise built around such devices. The first such experiment now shows sensitivity to violation down to the limit $\\tilde{c}^n_Q=(-1.8\\pm2.2)\\times 10^{-14}$ GeV. Methods to improve the sensitivity are described together with some other applications of the technology in tests of fundamental physics.

  7. Status of the South Pole Acoustic Test Setup

    Due to the low flux of ultra-high energetic neutrinos induced in interactions of cosmic rays with the cosmic microwave background, very large instrumented volumes and new registration techniques are necessary for their detection. The south polar ice offers the unique opportunity to implement existing Cherenkov techniques as well as registration of radio and acoustic waves from the neutrino interaction. A simulation of a ∼ 120 km3 hybrid optical/radio/acoustic detector showed that event rates of ∼ 10 per year can be achieved. In this simulation the ultrasonic parameters of antarctic ice regarding absorption, scattering and environmental noise pose the key uncertainty. To evaluate the acoustic properties in-situ, the South Pole Acoustic Test Setup (SPATS) has been created. An array of custom-made ultrasonic sensors and transmitters will be deployed on three strings in the upper 400 m of the holes of the IceCube experiment. The status of the experiment and a first evaluation of its performance are presented here

  8. Acoustic events during fatigue test of structural steels

    Acoustic emission sensors were applied recording noises during low cycle fatigue tests in steel materials. The test specimens were machined from the base metal (15H2MFA) and the anticorrosive cladding metal (08H18N10T) of the VVER-440/V-213 (Russian designed PWR) reactor pressure vessel. During the first period, the measurements were carried out with isothermal condition at 260 C on GLEEBLE 3800 servo-hydraulic thermal-mechanical simulator. The tests were run under uniaxial tension-compression loading with total strain control. The programmed waveform was triangular for all the fatigue tests with the frequency of 0.08 Hz. The cyclic loading was started from the compressed side. It was observed that besides rare acoustic emission events regular 10 msec Acoustic Barkhausen Noise (ABN) burst were recorded due to 50Hz AC current drive for heating and maintaining the constant temperature. The amplitude of MABN was higher under pressure than during relaxing and drawing-out by a factor of 2-5. We have carried out also thermo-mechanical fatigue experiment with the same strain-controlled mechanical cycle and simultaneous thermal cycle between 150 C and 270 C. The total number of cycles was terminated, when the force level necessary for the original elongation had been reduced to 75% of its original value. Visual examination showed always some at least surface cracks after stopping the fatigue test. ABN events registered during the beginning cycle exhibited different spectra from the middle and especially from the last cycles before the end of the test, where also double ABN bursts could be recorded. At the end of the test explicit AE events could be found by a new technique. The most interesting result is the possibility to use ABN for testing reactor materials, which could have practical application for fatigue testing.

  9. Utilization of acoustic emission in scratch test evaluation

    Tomáštík, J.; Čtvrtlík, Radim; Boháč, Petr; Dráb, M.; Koula, V.; Cvrk, K.; Jastrabík, Lubomír

    Pfafficon: Trans Tech Publications Ltd, 2015 - (Kovalčíková, A.; Lofaj, F.), s. 119-122 ISBN 978-3-03835-555-7. ISSN 1662-9795. [Conference on Local Mechanical Properties (LMP 2014) /11./. Stará Lesná (SK), 12.11.2014-14.11.2014] R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : acoustic emission * scratch test * thin films Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  10. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  11. Technological insights: Combined impedance manometry for esophageal motility testing-current results and further implications

    Huan Nam Nguyen; Gerson Ricardo Souza Domingues; Frank Lammert

    2006-01-01

    This review focuses on current aspects of the novel technology of combined impedance manometry for esophageal motility testing. It presents methodological features, summarizes current results and discusses implications for further research. The combined technique assesses simultaneously bolus transport and associated peristalsis, thus allowing detailed analysis of the relationships between bolus transit and esophageal motility. Recent studies demonstrate that combined impedance manometry provides important additional information about esophageal motility as compared to conventional manometry: (1) monitoring of bolus transport patterns, (2) calculation of bolus transit parameters, (3) evaluation of bolus clearance,(4) monitoring of swallow associated events such as air movement and reflux, and (5) investigation of the relationships between bolus transit and LES relaxation.Studies with healthy subjects have identified several useful parameters for comprehensive assessment of eosphageal function. These parameters were found to be pathological in patients with classical achalasia,mild GERD, and ineffective esophageal motility. The technology of combined impedance manometry provides an important new tool for esophageal function testing,advancing both clinical and basic research. However,several important issues remain to be standardized to make the technique suitable for widely clinical use.

  12. NASA Glenn Research Center Acoustical Testing Laboratory: Five year retrospective

    Cooper, Beth A.; Akers, James C.; Passe, Paul J.

    2005-09-01

    In the five years since the NASA Glenn Research Center Acoustical Testing Laboratory (ATL) opened its doors in September, 2000, it has developed a comprehensive array of services and products that support hearing conservation goals within NASA and industry. The ATL provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL aggressively supports the vision of a low-noise on-orbit environment, which facilitates mission success as well as crew health, safety, and comfort. In concert with these goals, the ATL also produces and distributes free educational resources and low-noise advocacy tools for hearing conservation education and awareness. Among these are two compact discs of auditory demonstrations (of phenomena in acoustics, hearing conservation, and communication), and presentations, software packages, and other educational materials for use by engineers, audiologists, and other hearing conservation stakeholders. This presentation will highlight ATL's construction, history, technical capabilities, and current projects and will feature demonstrations of some of the unique educational resource materials that are distributed by the ATL.

  13. Quality Testing of Gaseous Helium Pressure Vessels by Acoustic Emission

    Barranco-Luque, M; Hervé, C; Margaroli, C; Sergo, V

    1998-01-01

    The resistance of pressure equipment is currently tested, before commissioning or at periodic maintenance, by means of normal pressure tests. Defects occurring inside materials during the execution of these tests or not seen by usual non-destructive techniques can remain as undetected potential sources of failure . The acoustic emission (AE) technique can detect and monitor the evolution of such failures. Industrial-size helium cryogenic systems employ cryogens often stored in gaseous form under pressure at ambient temperature. Standard initial and periodic pressure testing imposes operational constraints which other complementary testing methods, such as AE, could significantly alleviate. Recent reception testing of 250 m3 GHe storage vessels with a design pressure of 2.2 MPa for the LEP and LHC cryogenic systems has implemented AE with the above-mentioned aims.

  14. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide

    Fantasia, Peter M.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  15. Acoustic Treatment Design Scaling Methods. Volume 4; Numerical Simulation of the Nonlinear Acoustic Impedance of a Perforated Plate Single-Degree-of-Freedom Resonator Using a Time-Domain Finite Difference Method

    Kraft, R. E.

    1999-01-01

    Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.

  16. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Articles Absorption During Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    It is important to realize that some test-articles may have significant sound absorption that may challenge the acoustic power capabilities of a test facility. Therefore, to mitigate this risk of not being able to meet the customers target spectrum, it is prudent to demonstrate early-on an increased acoustic power capability which compensates for this test-article absorption. This paper describes a concise method to reduce this risk when testing aerospace test-articles which have significant absorption. This method was successfully applied during the SpaceX Falcon 9 Payload Fairing acoustic test program at the NASA Glenn Research Center Plum Brook Stations RATF.

  17. Application of acoustic emission to the testing pressure tubing materials

    Acoustic emission is one of the promising techniques for the detection of embrittlement. The Zr-2.5 Nb alloy used as pressure tubing material shows slightly low stress intensity factor when it absorbs hydrogen. In this paper, the relationship between acoustic emission count N and stress intensity factor K in the tensile test of edge-notched specimens is described. The K value is proportional to the square root of crack opening displacement phi in the elastic region. The double-notched specimens were cut from pressure tubes, and the single-notched specimens were cut from extruded bars. The crack opening displacement was measured with a clip gauge recommended by ASTM STP 410 Appendix, and the acoustic emission was measured with a Nortec AEMS-4 system and PZT-5 type sensors. The sensors were bonded on the surfaces of the specimens with epoxy adhesive or rubber contact. A peak of the acoustic emission count rate was observed at the yield point of each specimen similarly to many other metals. The N values and the size of plastic zone showed the theoretical relationship following 4th power law, on the other hand, the size of plastic zone depended linearly on the K values in elastic region. The slope and the intersection point of the regression curves for the total N count vs the square root of phi corresponding to the elastic field of stress-strain curves showed almost same values for the specimens of same shape. The influence of the bonding methods was not observed. (Kako, I.)

  18. The Effect of Acoustic Impedance on Subsurface Absorber Geometry Reconstruction using 1D Frequency-Domain Photoacoustics

    Natalie Baddour

    2015-12-01

    Full Text Available This paper considers the effect of an impedance mismatch between the absorber and its surroundings on the aborber reconstructions from the photoacoustic signal profile, in particular when a non-delta input pulse is used. A transfer function approach is taken, demonstrating in the case of impedance mismatch how the total response can be modeled using the sum of the mismatch-free response and its time-delayed, time-reversed replicas, which may or may not overlap. It is shown how this approach can be exploited to accommodate the effects of non-delta pulses and/or pulse-equivalent waveforms such as linear-frequency-modulated (LFM chirps, and impedance mismatches in any inversion algorithms, even in the presence of large reflection coefficients. As a consequence, for simple-absorber reconstruction algorithms that assume impulses or ‘short enough’ pulses, the compressive portion of the measured response may be used in reconstruction formulas that do not model the impedance mismatch, regardless of the size of the mismatch. For longer-duration input waveforms, it is demonstrated how existing reconstruction methods can be successfully adapted to include the effect of the impedance mismatch. Simulations are used to illustrate these ideas. The gained physical insight into how components of the generated pressure wave carry absorber information is then exploited for signal inversion and absorber reconstruction in the frequency domain when multi-frequency modulation chirps are used for photoacoustic radar pressure measurements. The foundational theoretical developments ultimately address impendance mismatch issues germane to the major photoacoustic frequency-domain imaging modality to-date, which is the photoacoustic radar.

  19. Potential of acoustic emissions from three point bending tests as rock failure precursors

    Agioutantis Z.; Kaklis K.; Mavrigiannakis S.; Verigakis M.; Vallianatos F.; Saltas V.

    2016-01-01

    Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. This paper presents results from acoustic emission mea-surements obtained during three point bending tests on Nestos marble under laboratory conditions. Acoustic emission activity was monitored using piezoelectric acoustic emission sensors, and the potential for accurate prediction of rock damage based on acoustic emission data was investigated. Damage local-ization was determined based on acoustic emissions generated from the critically stressed region as scat-tered events at stresses below and close to the strength of the material.

  20. Objective research and application of multi-channel human meridian impedance dynamic testing system

    Li, Bo; Zhang, Jun; Jiao, Jianling

    2008-10-01

    This paper is an in-depth study on the basis of the passed summary of relevant technologies. Multi-channel ring electrode has been developed to point impedance testing of the human body for the first time. Here, we build such a system, which bases on the hardware platform of AT89C52 combined with M82C54-2, besides, the integrated software development tools micro-soft visual c++ and the technical advantages such as multi-threading, databases, serial communication and the characteristics of real-time supported by Windows XP are used in here too. Except for the point impedance testing of the human body, the conductive volume of the human meridian and infrared-photoelectric absorption properties of physical quantities can also be detected by such an on-site data acquisition, analysis, display, record and communicate with the PC portable System. Currently, the system was being in the testing phase, we have collected some real data of human body with this vehicle, whose results are expected to be more satisfactory in the near future.

  1. Quality control of graphite mold by acoustic emission testing

    The brittleness of the graphite used for producing uranium tubes by gravity casting is monitored by acoustic test. Ancillary units, around a central data processing unit, also have a data processing function (micro-informatics) enabling the three following essential functions to be met: (1) control of the movement of integrating waves to five degrees of freedom, (2) control of the monitoring appliance and (3) pre-processing acquisition and presentation of the data. Mention is made of the facilities being used and of the progress of some research work

  2. Acoustic monitoring systems tests at Indian Point Unit 1. Final report

    This report describes the results of a program to test acoustic monitoring systems on Indian Point Unit No. 1 under actual plant operating conditions, less the reactor core. The two types of systems evaluated were the monitoring of acoustic emissions generated by growing flaws and the monitoring of acoustic signals from leaks

  3. Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM and atomic force microscopy.

    Abbott, Andrew P; Nandhra, Satvinder; Postlethwaite, Stella; Smith, Emma L; Ryder, Karl S

    2007-07-28

    In this paper, we describe the first example of a sustained galvanic coating deposited on a surface from a non-aqueous liquid. We present the surface characterization of electroless silver deposits on copper substrates from a solution of Ag(+) ions in an ionic liquid based on a choline chloride (ChCl) eutectic. Through a study of these deposits and the mechanism of formation using acoustic impedance spectroscopy (QCM), probe microscopy (AFM) and electron microscopy (SEM/EDX), we demonstrate that sustained growth of the silver deposit is facilitated by the porous nature of the silver. This is in contrast to the dip-coating reaction of silver ions in aqueous media, where the reaction stops when surface coverage is reached. Electroless silver deposits of up to several microns have been obtained by dip coating in ionic liquids without the use of catalysts of strong inorganic acids. PMID:17622408

  4. A method to separate process contributions in impedance spectra by variation of test conditions

    Jensen, Søren Højgaard; Hauch, Anne; Hendriksen, Peter Vang; Mogensen, Mogens Bjerg; Bonanos, Nikolaos; Jacobsen, Torben

    2007-01-01

    Many processes contribute to the overall impedance of an electrochemical cell, and these may be difficult to separate in the impedance spectrum. Here, we present an investigation of a solid oxide fuel cell based on differences in impedance spectra due to a change of operating parameters and present...... the result as the derivative of the impedance with respect to ln(f). The method is used to separate the anode and cathode contributions and to identify various types of processes....

  5. Noise-rejection techniques for impedance and dielectric spectrometers using ubiquitous test and measurement equipment.

    Lukacs, Stephen J

    2007-03-01

    This work encompassed the development for a frequency-domain impedance and dielectric spectrometer using ubiquitous test and measurement equipment, i.e., signal generators and digital oscilloscopes. Various methods of amplification, noise rejection, and computations were employed to achieve the desired goals. The frequency range of 100 mHz-1 MHz was tested using air capacitors of 3.7 and 14.5 pF and an applied voltage range of 10-300 mV. The multichannel instrument produced a stable and reproducible dual-phase (real and imaginary or magnitude and phase) current sensitivity of 250 fA with an average phase stability of less than 0.5 degrees (tan delta<10(-2)) and a single-phase (magnitude only) current sensitivity of 60 fA. PMID:17411206

  6. Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials

    Li, Yong; Yu, Gaokun; Liang, Bin; Zou, Xinye; Li, Guangyun; Cheng, Su; Cheng, Jianchun

    2014-01-01

    Acoustic lenses find applications in various areas ranging from ultrasound imaging to nondestructive testing. A compact-size and high-efficient planar acoustic lens is crucial to achieving miniaturization and integration, and should have deep implication for the acoustic field. However its realization remains challenging due to the trade-off between high refractive-index and impedance-mismatch. Here we have designed and experimentally realized the first ultrathin planar acoustic lens capable ...

  7. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  8. Empirical Modeling of Lithium-ion Batteries Based on Electrochemical Impedance Spectroscopy Tests

    Highlights: • Two commercial Lithium-ion batteries are studied through HPPC and EIS tests. • An equivalent circuit model is developed for a range of operating conditions. • This model improves the current battery empirical models for vehicle applications • This model is proved to be efficient in terms of predicting HPPC test resistances. - ABSTRACT: An empirical model for commercial lithium-ion batteries is developed based on electrochemical impedance spectroscopy (EIS) tests. An equivalent circuit is established according to EIS test observations at various battery states of charge and temperatures. A Laplace transfer time based model is developed based on the circuit which can predict the battery operating output potential difference in battery electric and plug-in hybrid vehicles at various operating conditions. This model demonstrates up to 6% improvement compared to simple resistance and Thevenin models and is suitable for modeling and on-board controller purposes. Results also show that this model can be used to predict the battery internal resistance obtained from hybrid pulse power characterization (HPPC) tests to within 20 percent, making it suitable for low to medium fidelity powertrain design purposes. In total, this simple battery model can be employed as a real-time model in electrified vehicle battery management systems

  9. Validation of an Impedance Education Method in Flow

    Watson, Willie R.; Jones, Michael G.; Parrott, Tony L.

    2004-01-01

    This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable amplitude-dependent impedance nonlinearities or flow effects. Baseline impedance spectra for these liners were therefore established from measurements in a conventional normal incidence impedance tube. A key feature of the method is the expansion of the unknown impedance function as a piecewise continuous polynomial with undetermined coefficients. Stewart's adaptation of the Davidon-Fletcher-Powell optimization algorithm is used to educe the normal incidence impedance at each Mach number by optimizing an objective function. The method is shown to reproduce the measured normal incidence impedance spectrum for each of the test liners, thus validating its usefulness for determining the normal incidence impedance of test liners for a broad range of source frequencies and flow Mach numbers. Nomenclature

  10. Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing

    Stephens, David, B.

    2013-01-01

    Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.

  11. Numerical simulation of the tip aerodynamics and acoustics test

    Tejero E, F.; Doerffer, P.; Szulc, O.; Cross, J. L.

    2016-04-01

    The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators (RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor (without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA (Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test (TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.

  12. Ultrasonic testing device for pipes with an acoustic coupling liquid

    System for the ultrasonic testing of tubes comprising: a probe consisting of an ultrasonic transducer integral with a mirror receiving the ultrasonic wave emitted by the transducer and centred according to the axis of the probe, a mechanism to move the probe inside the tube under inspection, facilities for detecting ultrasonic echoes returned by the tube. It also features facilities for introducing an acoustic coupling liquid in the capacity included between the tube, the transducer and the mirror when the probe enters the tube being tested as well as for drawing off this liquid when the probe is withdrawn from the tube. These facilities mainly include a soft bag tank filled with the liquid and located at the lower part of the probe and communicating with the capacity to be filled with the liquid. This bag becomes flat when entering the tube after the probe and thus pushes part of the liquid it contains towards this capacity. This liquid assembles again by gravity in the bag when it leaves the tube being tested and returns to its usual shape

  13. A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow

    Rice, E. J.

    1976-01-01

    An analysis of the oscillatory fluid flow in the vicinity of a circular orifice with a steady grazing flow is presented. The study is similar to that of Hersh and Rogers but with the addition of the grazing flow. Starting from the momentum and continuity equations, a considerably simplified system of partial differential equations is developed with the assumption that the flow can be described by an oscillatory motion superimposed upon the known steady flow. The equations are seen to be linear in the region where the grazing flow effects are dominant, and a solution and the resulting orifice impedance are presented for this region. The nonlinearity appears to be unimportant for the usual conditions found in aircraft noise suppressors. Some preliminary conclusions of the study are that orifice resistance is directly proportional to grazing flow velocity (known previously from experimental data) and that the orifice inductive (mass reactance) end correction is not a function of grazing flow. This latter conclusion is contrary to the widely held notion that grazing flow removes the effect of the orifice inductive end correction. This conclusion also implies that the experimentally observed total inductance reduction with grazing flow might be in the flow within the orifice rather than in the end correction.

  14. Impedance Tuning: A Method for Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs

    Bothien, Mirko Ruben

    2009-01-01

    Eine der größten Herausforderungen für die Entwicklung zukünftiger schadstoffarmer Gasturbinenkraftwerke ist die Gewährleistung eines stabilen Verbrennungsprozesses. Um die immer strikter werdenden Emissionsrichtlinien, vor allem hinsichtlich NOx, zu erfüllen, führte die Gasturbinenindustrie die Mager-Vormisch-Verbrennung ein. Zwar kann so den Regierungsvorgaben entsprochen werden, jedoch ist diese Art der Verbrennung anfälliger für das Auftreten selbsterregter Verbrennungsschwingungen. Diese...

  15. Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature.

    Zhang, K; Feng, X J; Gillis, K; Moldover, M; Zhang, J T; Lin, H; Qu, J F; Duan, Y N

    2016-03-28

    Relative primary acoustic gas thermometry (AGT) determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T. Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for AGT at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 Kacoustic frequencies increased from 2×10(-6) at 295 K to 5×10(-6) at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R. The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10(-6) for T<600 K to 57 × 10(-6) at 1000 K. We observed similar inconsistencies in a previous study. PMID:26903106

  16. Estimation of uncertainty of impedance function of SSI system based on existing comprehensive block-shaking test data

    Study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MTTI) of Japan. Considerable number of soil-structure interaction (SSI) tests shaking large concrete block (block-shaking tests) have been carried out in various places in Japan to obtain soil-structure interaction data. The researchers compared their test results with analytical results in their papers. They have reached various conclusions reflecting their own test results. So, it is necessary to gather the data altogether and to have common knowledge as to the uncertainty between tests and analyses. This paper evaluates the uncertainty of impedance functions of SSI system based on the comprehensive existing block-shaking data. It also estimates the uncertainty of responses of reactor buildings due to the uncertainty of impedance functions

  17. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma.

    Frerichs, I; Zhao, Z; Becher, T; Zabel, P; Weiler, N; Vogt, B

    2016-06-01

    The measurement of rapid regional lung volume changes by electrical impedance tomography (EIT) could determine regional lung function in patients with obstructive lung diseases during pulmonary function testing (PFT). EIT examinations carried out before and after bronchodilator reversibility testing could detect the presence of spatial and temporal ventilation heterogeneities and analyse their changes in response to inhaled bronchodilator on the regional level. We examined seven patients suffering from chronic asthma (49  ±  19 years, mean age  ±  SD) using EIT at a scan rate of 33 images s(-1) during tidal breathing and PFT with forced full expiration. The patients were studied before and 5, 10 and 20 min after bronchodilator inhalation. Seven age- and sex-matched human subjects with no lung disease history served as a control study group. The spatial heterogeneity of lung function measures was quantified by the global inhomogeneity indices calculated from the pixel values of tidal volume, forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak flow and forced expiratory flow between 25% and 75% of FVC as well as histograms of pixel FEV1/FVC values. Temporal heterogeneity was assessed using the pixel values of expiration times needed to exhale 75% and 90% of pixel FVC. Regional lung function was more homogeneous in the healthy subjects than in the patients with asthma. Spatial and temporal ventilation distribution improved in the patients with asthma after the bronchodilator administration as evidenced mainly by the histograms of pixel FEV1/FVC values and pixel expiration times. The examination of regional lung function using EIT enables the assessment of spatial and temporal heterogeneity of ventilation distribution during bronchodilator reversibility testing. EIT may become a new tool in PFT, allowing the estimation of the natural disease progression and therapy effects on the regional and not only global level. PMID

  18. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    This paper describes an automatic flaw detection equipment and heat-resistant ultrasonic transducer for plate thickness measurement. The automatic flaw detection equipment is used during in-service inspection. It comprises an angle-beam electromagnetic acoustic transducer (EMAT), mounted on a vehicle, for scanning the pipe surface to be inspected. The EMAT functions without direct contact with the pipe surface through a coupling liquid, the vehicle does not require a guide track installed on the pipe surface, since it is equipped with magnetic wheels that adhere to the pipe, permitting it to travel along the circumferential weld joint of a carbon steel pipe. Another heat-resistant ultrasonic transducer is a normal beam EMAT and is used during plant operation. As a result, the automatic flaw detection equipment could detect a 1 mm deep notch cut on a test piece of 25 mm thick carbon steel plate. The vehicle location accuracy on the piping was ±2 mm. The normal beam EMAT could measure the plate thickness, within ±0.3 mm accuracy for the range of plate thickness 4 mm to 12 mm at 300degC. (author)

  19. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development

    Putnam, G. C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  20. Early diagnosis of acoustic neuroma by quantitative neurootological and neuroradiological tests

    Haid, C.T.

    1983-02-01

    Every patient with unilateral and sensoneural loss of hearing, independent of vertigo anamnesis or X-rays must be further examined by a vestibular test. Between 1974 and 1980, 80 acoustic neuromas could be diagnosed, including 12 early stage neuromas. This relatively high detection quote of small neuromas is due to a special diagnostical program: All 80 patients with acoustic neuroma had a pathological vestibular result. The positional test turned out to be the most sensitive examination in the early diagnosis of acoustic neuromas and yields a still higher incidence than the caloric test: 95% of the patients with a neurinoma showed a pathological result in the positional test. So every patient suffering from an unidentified unilateral and sensoneural hearing loss combined with a pathological result in the positional test must be further examined by a cisternomeatography or computerized tomography (using air-insufflation). Every fifth of these patients showed unique hints of an acoustic neuroma in the neuroradiological test.

  1. Is reverberation time adequate for testing the acoustical quality of unroofed auditoriums?

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger

    2006-01-01

    Especially during summertime, public squares, stadiums and other kinds of open spaces, are frequently used for live concerts (pop, jazz, classical, etc.) - both with and without amplification. Based on the first author’s PhD thesis, this paper aims at illustrating whether reverberation time (EDT, T......30) and other acoustical parameters normally used to test the acoustical quality of closed auditoria, such as concert halls, theatres, opera houses, are suitable and sufficient for testing the acoustical quality of open performance spaces. Simulations as well as measurements were carried out to study...... the acoustics of open squares surrounded by hard, vertical, reflecting building facades. Especially when concerts are amplified, echoes or flutter echoes are often found to be the most important characteristic – and problem! Therefore, emphasis was given to finding an acoustical parameter – or a set...

  2. On the Use of Experimental Methods to Improve Confidence in Educed Impedance

    Jones, Michael G.; Watson, Willie R.

    2011-01-01

    Results from impedance eduction methods developed by NASA Langley Research Center are used throughout the acoustic liner community. In spite of recent enhancements, occasional anomalies persist with these methods, generally at frequencies where the liner produces minimal attenuation. This investigation demonstrates an experimental approach to educe impedance with increased confidence over a desired frequency range, by combining results from successive tests with different cavity depths. A series of tests is conducted with three wire-mesh facesheets, for which the results should be weakly dependent on source sound pressure level and mean grazing flow speed. First, a raylometer is used to measure the DC flow resistance of each facesheet. These facesheets are then mounted onto a frame and a normal incidence tube is used to determine their respective acoustic impedance spectra. A comparison of the acoustic resistance component with the DC flow resistance for each facesheet is used to validate the measurement process. Next, each facesheet is successively mounted onto three frames with different cavity depths, and a grazing flow impedance tube is used to educe their respective acoustic impedance spectra with and without mean flow. The no-flow results are compared with those measured in the normal incidence tube to validate the impedance eduction method. Since the anti-resonance frequency varies with cavity depth, each sample provides robust results over a different frequency range. Hence, a combination of results can be used to determine the facesheet acoustic resistance. When combined with the acoustic reactance, observed to be weakly dependent on the source sound pressure level and grazing flow Mach number, the acoustic impedance can be educed with increased confidence. Representative results of these tests are discussed, and the complete database is available in electronic format upon request.

  3. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code[1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package[2] to study the effects of in-plane modes and to evaluate

  4. Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings

    Choudhary, R. K.; Mishra, P.

    2016-06-01

    In this work, acoustic emission during scratch testing of the aluminum nitride coatings formed on stainless steel substrate by reactive magnetron sputtering was analyzed to assess the coating failure. The AlN coatings were formed under the variation of substrate temperature, substrate bias potential, and discharge power. The coatings deposited in the temperature range of 100 to 400 °C showed peak acoustic emission less than 1.5%, indicating ductile nature of the coating. However, for coatings formed with substrate negative bias potential of 20 to 50 V, numerous sharp acoustic bursts with maximum emission approaching 80% were observed, indicating brittle nature of the coatings with large number of defects present. The shift in the intensity of the first major acoustic peak toward higher load, with the increasing bias potential, confirmed improved adhesion of the coating. Also, the higher discharge power resulted in increased acoustic emission.

  5. Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings

    Choudhary, R. K.; Mishra, P.

    2016-04-01

    In this work, acoustic emission during scratch testing of the aluminum nitride coatings formed on stainless steel substrate by reactive magnetron sputtering was analyzed to assess the coating failure. The AlN coatings were formed under the variation of substrate temperature, substrate bias potential, and discharge power. The coatings deposited in the temperature range of 100 to 400 °C showed peak acoustic emission less than 1.5%, indicating ductile nature of the coating. However, for coatings formed with substrate negative bias potential of 20 to 50 V, numerous sharp acoustic bursts with maximum emission approaching 80% were observed, indicating brittle nature of the coatings with large number of defects present. The shift in the intensity of the first major acoustic peak toward higher load, with the increasing bias potential, confirmed improved adhesion of the coating. Also, the higher discharge power resulted in increased acoustic emission.

  6. Status and recent results of the South Pole Acoustic Test Setup

    Karg, Timo

    2010-01-01

    The South Pole Acoustic Test Setup (SPATS) has been deployed to study the feasibility of acoustic neutrino detection in Antarctic ice around the South Pole. An array of four strings equipped with acoustic receivers and transmitters, permanently installed in the upper 500 m of boreholes drilled for the IceCube neutrino observatory, and a retrievable transmitter that can be used in the water filled holes before the installation of the IceCube optical strings are used to measure the ice acoustic properties. These include the sound speed and its depth dependence, the attenuation length, the noise level, and the rate and nature of transient background sources in the relevant frequency range from 10 kHz to 100 kHz. SPATS is operating successfully since January 2007 and has been able to either measure or constrain all parameters. We present the latest results of SPATS and discuss their implications for future acoustic neutrino detection activities in Antarctica.

  7. Blood Pressure and Impedance Cardiography duríng Tilt Table Test

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Plachý, M.; Fráňa, P.; Leinveber, Pavel

    2009-01-01

    Roč. 36, - (2009), s. 429-432. ISSN 0276-6574 R&D Projects: GA AV ČR IAA200650801 Institutional research plan: CEZ:AV0Z20650511 Keywords : blood pressure * heart rate * thoracic impedance cardiography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://cinc.mit.edu/archives/2009/pdf/0429.pdf

  8. Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report

    Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.

    2014-01-01

    A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.

  9. Impedance analysis of acupuncture points and pathways

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  10. A Split Hopkinson Bar Method for Testing Materials with Low Characteristic Impedance

    Buchar, J.; Řídký, R.; Drdlová, M.; Trnka, Jan

    Prague: CTU Faculta of Civil Engineering, 2015, s. 27-33. ISBN 978-80-01-05734-6. [EAN 2015 /53./. Český Krumlov (CZ), 01.06.2015-04.06.2015] Institutional support: RVO:61388998 Keywords : stress wave propagation * viscoelasticity * reflection * transmission Subject RIV: BI - Acoustics

  11. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  12. Testing of welded clad pipelines using acoustic emission method

    Recording of signals of acoustic emission (AE) on structure loading enables not only to determine the location of defects, but also to evaluate conditions, which occur in materials in defect neighbourhood, that is to approach to evaluation of a dauger degree of one or another defect. Results of AE recording and analysis on loading of pipelines sections with welded joints on 22 K steel were considered. The behaviour of preliminarily grown fatigue cracks and natural defects of welding origin was compared

  13. Intensity modification of acoustic emission signals under thermocyclic tests of high-temperature steel EP33

    With the help of the acoustic emission (AE) method a study is made into structural and phase transformations in a heat resistant austenitic steel Kh12N22T3MR under conditions of cyclic heating up to 600 deg C and constant tensile loading. Based on the analysis of acoustic emission data the temperature dependence of AE signal intensity on thermal cycling is built and regularities of its variation are established for every test cycle

  14. Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)

    Burley, Casey L.; Smith, Charles D.; Conner, David A.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  15. Flight Acoustic Testing and Data Acquisition For the Rotor Noise Model (RNM)

    Conner, David A.; Burley, Casey L.; Smith, Charles D.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  16. Acoustic emission non-destructive testing of structures using source location techniques.

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  17. Acoustic Method for Testing the Quality of Sterilized Male Tsetse Flies Glossina Pallidipes

    Tsetse flies are able to emit different acoustic signals. An acoustic method to test the quality of sterilized male tsetse flies was developed. Differences in the sound characteristics between males and females, between sterilized and unsterilized males, and between males sterilized in air and nitrogen, were determined. Also, the acoustic parameters (frequency, time, sound pressure level) of the sounds that are useful as criteria for quality control were determined. It was demonstrated that only the so-called 'feeding sounds' can be used as a quality criterion. Both sexes emitted feeding sounds while feeding on a host. These sounds were also used to find sexual partners, and had an effect on male copulation success. An acoustic sound analysis programme was developed; it automatically measured sound activity (only feeding sounds) under standard conditions (random sample, relative humidity, temperature, light intensity). (author)

  18. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  19. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  20. Aerodynamic and Acoustic Flight Test Results for the Stratospheric Observatory for Infrared Astronomy

    Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.

    2013-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.

  1. Aerodynamic and Acoustic Flight Test Results and Results for the Stratospheric Observatory for Infrared Astronomy

    Cumming, Stephen B.; Smith, Mark S.; Cliatt, Larry J.; Frederick, Michael A.

    2014-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy program, a 747SP airplane was modified to carry a 2.5-m telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the operating envelope of the airplane for astronomical observations, planned to be performed between the altitudes of 35,000 ft and 45,000 ft. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight-test results in the areas of cavity acoustics, stability and control, and air data.

  2. Acoustic emission testing on an F/A-18 E/F titanium bulkhead

    Martin, Christopher A.; Van Way, Craig B.; Lockyer, Allen J.; Kudva, Jayanth N.; Ziola, Steve M.

    1995-04-01

    An important opportunity recently transpired at Northrop Grumman Corporation to instrument an F/A - 18 E/F titanium bulkhead with broad band acoustic emission sensors during a scheduled structural fatigue test. The overall intention of this effort was to investigate the potential for detecting crack propagation using acoustic transmission signals for a large structural component. Key areas of experimentation and experience included (1) acoustic noise characterization, (2) separation of crack signals from extraneous noise, (3) source location accuracy, and (4) methods of acoustic transducer attachment. Fatigue cracking was observed and monitored by strategically placed acoustic emission sensors. The outcome of the testing indicated that accurate source location still remains enigmatic for non-specialist engineering personnel especially at this level of structural complexity. However, contrary to preconceived expectations, crack events could be readily separated from extraneous noise. A further dividend from the investigation materialized in the form of close correspondence between frequency domain waveforms of the bulkhead test specimen tested and earlier work with thick plates.

  3. Characterization of acoustic lenses with the Foucault test by confocal laser scanning microscopy

    Ahmed Mohamed, E. T.; Abdelrahman, A.; Pluta, M.; Grill, W.

    2010-03-01

    In this work, the Foucault knife-edge test, which has traditionally been known as the classic test for optical imaging devices, is used to characterize an acoustic lens for operation at 1.2 GHz. A confocal laser scanning microscope (CLSM) was used as the illumination and detection device utilizing its pinhole instead of the classical knife edge that is normally employed in the Foucault test. Information about the geometrical characteristics, such as the half opening angle of the acoustic lens, were determined as well as the quality of the calotte of the lens used for focusing. The smallest focal spot size that could be achieved with the examined lens employed as a spherical reflector was found to be about 1 μm. By comparison to the idealized resolution a degradation of about a factor of 2 can be deduced. This limits the actual quality of the acoustic focus.

  4. Cellular impedance measurement as a new tool for poxvirus titration, antibody neutralization testing and evaluation of antiviral substances

    Research highlights: → Real-time data acquisition by RT-CES requires low operative effort. → Time to result is reduced by using RT-CES instead of conventional methods. → RT-CES enables quantification of virus titers in unknown samples. → RT-CES is a useful tool for high-throughput characterization of antiviral agents. → An RT-CES-based virus neutralization test was established. -- Abstract: Impedance-based biosensing known as real-time cell electronic sensing (RT-CES) belongs to an emerging technology for analyzing the status of cells in vitro. In the present study protocols were developed for an RT-CES-based system (xCELLigenceTM, Roche Applied Science, ACEA Biosciences Inc.) to supplement conventional techniques in pox virology. First, proliferation of cells susceptible to orthopoxviruses was monitored. For virus titration cells were infected with vaccinia virus and cell status, represented by the dimensionless impedance-based cell index (CI), was monitored. A virus-dose dependent decrease in electrical impedance could be shown. Calculation of calibration curves at a suitable CI covering a dynamic range of 4 log enabled the quantification of virus titers in unknown samples. Similarly, antiviral effects could be determined as shown for anti-poxviral agents ST-246 and Cidofovir. Published values for the in vitro concentration that inhibited virus replication by 50% (IC50) could be confirmed while cytotoxicity in effective concentrations was excluded in long-term incubation experiments. Finally, an RT-CES-based virus neutralization test was established. Various poxvirus-specific antibodies were examined for their neutralizing activity and a calculation mode for the neutralizing antibody titer was introduced. In summary, the presented RT-CES-based methods outmatch end-point assays by observing the cell population throughout the entire experiment while workload and time to result are reduced.

  5. Cellular impedance measurement as a new tool for poxvirus titration, antibody neutralization testing and evaluation of antiviral substances

    Witkowski, Peter T. [Robert Koch-Institut, Zentrum fuer Biologische Sicherheit 1, Nordufer 20, 13353 Berlin (Germany); Charite Universitaetsmedizin, CCM, Institut fuer Virologie, Helmut Ruska Haus, Chariteplatz 1, 10117 Berlin (Germany); Schuenadel, Livia, E-mail: SchuenadelL@rki.de [FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Takustrasse 3, 14195 Berlin (Germany); Robert Koch-Institut, Zentrum fuer Biologische Sicherheit 1, Nordufer 20, 13353 Berlin (Germany); Wiethaus, Julia; Bourquain, Daniel R.; Kurth, Andreas; Nitsche, Andreas [Robert Koch-Institut, Zentrum fuer Biologische Sicherheit 1, Nordufer 20, 13353 Berlin (Germany)

    2010-10-08

    Research highlights: {yields} Real-time data acquisition by RT-CES requires low operative effort. {yields} Time to result is reduced by using RT-CES instead of conventional methods. {yields} RT-CES enables quantification of virus titers in unknown samples. {yields} RT-CES is a useful tool for high-throughput characterization of antiviral agents. {yields} An RT-CES-based virus neutralization test was established. -- Abstract: Impedance-based biosensing known as real-time cell electronic sensing (RT-CES) belongs to an emerging technology for analyzing the status of cells in vitro. In the present study protocols were developed for an RT-CES-based system (xCELLigence{sup TM}, Roche Applied Science, ACEA Biosciences Inc.) to supplement conventional techniques in pox virology. First, proliferation of cells susceptible to orthopoxviruses was monitored. For virus titration cells were infected with vaccinia virus and cell status, represented by the dimensionless impedance-based cell index (CI), was monitored. A virus-dose dependent decrease in electrical impedance could be shown. Calculation of calibration curves at a suitable CI covering a dynamic range of 4 log enabled the quantification of virus titers in unknown samples. Similarly, antiviral effects could be determined as shown for anti-poxviral agents ST-246 and Cidofovir. Published values for the in vitro concentration that inhibited virus replication by 50% (IC{sub 50}) could be confirmed while cytotoxicity in effective concentrations was excluded in long-term incubation experiments. Finally, an RT-CES-based virus neutralization test was established. Various poxvirus-specific antibodies were examined for their neutralizing activity and a calculation mode for the neutralizing antibody titer was introduced. In summary, the presented RT-CES-based methods outmatch end-point assays by observing the cell population throughout the entire experiment while workload and time to result are reduced.

  6. Design of crude oil storage tank for acoustic emission testing

    The integrity of crude oil storage tank needs to be well managed because they can contain a large inventory of hazardous material and because of the high cost such as cleaning and waste disposal prior to disposal and maintenance. Costs involved in cleaning and inspection can be up to several hundreds thousand Malaysian Ranting. If the floor then proves to be in good condition, these costs have been wasted. Acoustic Emission (AE) is proposed to be use for monitoring the floor of the storage tank on line without doing cleaning and waste disposal. A storage tank will be fabricated for storing the crude oil and then the corrosion process will be monitor using AE method. This paper will discuss the background, material and is technical specification, design and also the difficulties faced during design and fabrication process. (Author)

  7. Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

    Roadman, J.; Huskey, A.

    2013-07-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the Viryd CS8 is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and binning by wind speed instead of regression analysis.

  8. Acoustic Noise Test Report for the SWIFT Wind Turbine in Boulder, CO

    Roadman, J.; Huskey, A.

    2013-04-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the SWIFT is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and utilized binning by wind speed instead of regression analysis.

  9. Application of acoustic emission testing as a non-destructive quality control of conrete

    The time dependence of texture changes in concrete is studied in short-time pressure experiments, using the method of acoustic emission testing. These investigations have been performed as a function of strength and composition of the material under study. As a result, the method of acoustic emission testing is shown to be an adequate method to evaluate the evolution and the character of the structural changes. In the case where only the time developement is of interest, a simple electronic method, the pulse-sum-method or pulse rate method can be applied. However only a signal evaluation procedure can give information on the character of the structure changes. (orig./RW)

  10. Flow and density testing ceramic nuclear fuel by an acoustic method

    Some problems of development and application of the acoustic method for nuclear fuel pellet quality assurance and testing the technology of their fabrication are considered. Dependences of frequences of intrinsic mechanical oscillations of pellets on their geometrical sizes are determined. A nomogram is developed for calculation of the specimen spectra of pellets. The method of hydrostatic weighing in mercury and the acoustic method are stated to have practically the same accuracy of density determination, while the accuracy of the method of hydrostatic weighing in water is more than three times less. It is shown that the acoustic method permits to exercise quality assurance fuel pellets by flaw and density testing, and at the corresponding arrangement of the control only the imaginary density at the relativistic error of 0.4%

  11. Development and Evaluation of an Improved Technique for Pulmonary Function Testing Using Electrical Impedance Pneumography Intended for the Diagnosis of Chronic Obstructive Pulmonary Disease Patients

    Myeong Heon Sim; Min Yong Kim; In Cheol Jeong; Sung Bin Park; Suk Joong Yong; Won Ky Kim; Hyung Ro Yoon

    2013-01-01

    Spirometry is regarded as the only effective method for detecting pulmonary function test (PFT) indices. In this study, a novel impedance pulmonary function measurement system (IPFS) is developed for directly assessing PFT indices. IPFS can obtain high resolution values and remove motion artifacts through real-time base impedance feedback. Feedback enables the detection of PFT indices using only both hands for convenience. IPFS showed no differences in the sitting, supine, and standing postur...

  12. Impedance Measurements of Polyester-Coated Galvanised Mild Steel in 10xAcid Rainwater After an Accelerated Wet-Dry Test

    DEHRİ, İlyas

    2000-01-01

    The variation of defective polyester-coated performance with time in 10xacid rain solution was investigated using electrochemical impedance spectroscopy. Measurements were carried out on samples after an accelerated atmospheric corrosion test. The impedance diagrams (Nyquist plots) were simulated using the EQUIVCRT program which was elaborated by Boukamp and the semi-ellipse model which was developed by Erbil. It has been shown that the defective coating resistance changes with time for the s...

  13. The measurement of peripheral blood volume reactions to tilt test by the electrical impedance technique after exercise in athletes

    We have investigated the distribution of peripheral blood volumes in different regions of the body in response to the tilt-test in endurance trained athletes after aerobic exercise. Distribution of peripheral blood volumes (ml/beat) simultaneously in six regions of the body (two legs, two hands, abdomen, neck and ECG) was assessed in response to the tilt-test using the impedance method (the impedance change rate (dZ/dT). Before and after exercise session cardiac stroke (CSV) and blood volumes in legs, arms and neck were higher in athletes both in lying and standing positions. Before exercise the increase of heart rate and the decrease of a neck blood volume in response to tilting was lower (p <0.05) but the decrease of leg blood volumes was higher (p<0.001) in athletes. The reactions in arms and abdomen blood volumes were similar. Also, the neck blood volumes as percentage of CSV (%/CSV) did not change in the control but increased in athletes (p <0.05) in response to the tilt test. After (10 min recovery) the aerobic bicycle exercise (mean HR = 156±8 beat/min, duration 30 min) blood volumes in neck and arms in response to the tilting were reduced equally, but abdomen (p<0.05) and leg blood volumes (p <0.001) were lowered more significantly in athletes. The neck blood flow (%/CSV) did not change in athletes but decreased in control (p<0.01), which was offset by higher tachycardia in response to tilt-test in controls after exercise. The data demonstrate greater orthostatic tolerance in athletes both before and after exercise during fatigue which is due to effective distribution of blood flows aimed at maintaining cerebral blood flow.

  14. Statistical fracture of E-glass fibres using a bundle tensile test and acoustic emission monitoring

    R'Mili, M.; Moevus, M.; Godin, N.

    2009-01-01

    Statistical fracture of E-glass fibres using a bundle tensile test and acoustic emission monitoring correspondance: Corresponding author.Tel.: +33472436127; fax: +33472438528. (R?Mili, M.) (R?Mili, M.) Universite de Lyon--> , INSA-Lyon--> , MATEIS--> , 7 Avenue Jean Capelle--> , 69621 Villeurbanne Cedex--> - FRANCE (R?Mili, M.) Universite de Lyon--> , INSA-Lyo...

  15. Analysis of acoustic data from UK sodium/water reaction test facilities

    This paper describes acoustic measurements made during a number of sodium/water reaction experiments in the UK. The tests have included water and steam injections through both realistic (fatigue crack) defects and machined orifices and have covered a range of experimental conditions including those appropriate to the inlet and outlet regions of the EFR steam generators. Injection rates were typically in the range 0.1 to 30 g/s. Where possible, gas injections were also included in the test programme for comparison, since it is anticipated that a practical SGU acoustic leak detection system would include a facility for gas injections to allow system calibration, and to confirm transmission properties within the SGU. The test sections were instrumented with accelerometers on waveguides and in some cases included an under-sodium microphone situated about 300mm above the reaction zone. Tape recordings were made during the tests and used for detailed analysis off-line, although an audible output from one of the acoustic channels was used to monitor the progress of the injections and provide information for the rig operators. A comparison of the signal amplitudes measured during the experiments with typical reactor background noise was made and an estimate of the detection sensitivity of an acoustic monitoring system was deduced. 3 refs, 5 figs, 1 tab

  16. Baryon Acoustic Oscillation Intensity Mapping as a Test of Dark Energy

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2007-01-01

    The expansion of the universe appears to be accelerating, and the mysterious anti-gravity agent of this acceleration has been called ``dark energy''. To measure the dynamics of dark energy, Baryon Acoustic Oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as $10^9$ individual galaxies, by observing the 21cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the ...

  17. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  18. Acoustic measurements of the boiling stability tests on THORS sodium loop

    Acoustic data of boiling stability tests on the THORS (Thermal-Hydraulic Out-of-Reactor Safety) facility were obtained using three sodium-immersible high temperature microphones. The data was analyzed in both the time and frequency domains and provides the following information: (1) the acoustic signal due to sodium boiling was clearly observed; (2) the signal level and the repetition rate of boiling pulses are directly proportional to the applied heat flux; (3) a typical boiling pulse consists of a high frequency signal due mainly to the bubble collapses and a low frequency void oscillation; (4) the frequency spectra of the boiling and background pulses can be mostly assigned to various acoustic resonance frequencies of the THORS loop

  19. Investigating oboe manufacturing consistency by comparing the acoustical properties of five nominally identical instruments

    MAMOU-MANI, Adrien; Sharp, David; Meurisse, Thibaut; Ring, William

    2010-01-01

    For large-scale musical instrument makers, the ability to produce instruments with exactly the same playing characteristics is a constant aim. Modern acoustical measurement techniques (such as acoustic pulse reflectometry and input impedance measurement methods) together with psychoacoustical testing, can help this goal be reached. This paper investigates the issue of instrument manufacturing consistency by comparing the acoustical properties and the perceptual qualities of five Howarth S10 s...

  20. Virtual Acoustic Testing of Spacecraft Over a Broad Frequency Range Using FEM, BEM and Sea

    Vansant, K.; Borello, G.; De Langhe, K.; Courjal, A.

    2012-07-01

    During launch, a spacecraft is exposed to high levels of structural and acoustical loading. Acceptance tests are carried out before actual launch mimicking these loading conditions to validate that vibration, force and stress levels, which could damage the payload and lead to mission failure, remain below the design envelopes. The acceptance tests themselves, carried out on the actual payload, imply a risk of overtesting. Simulation models make it possible to carry out these tests in the virtual world. They can be used to derive specifications for the desired shaker, loudspeaker or horn excitation signals and to upfront quantify the risk of overtesting. Simulation also allows to uncover and rectify flaws or sensitivities in the spacecraft design rather quickly and at a low cost. This paper will discuss several simulation models (FEM, BEM and SEA) which can be used to mimic an acoustic acceptance test for different frequency ranges of interest.

  1. Application of acoustic emission analysis as a non-destructive test method for production control

    The application of acoustic emission measurements with a bandpass of 50 kHz - 1,5 MHz for the detection of fatigue-crack propagation in pressure vessels and to the perception of welding cracks is investigated. The method can also be used in laboratory tests for the determination of structural transformations of metals, for examinations in connection with stress-corrosion cracking and for tests of laminated materials. Some possibilities of application and the limits of the methode are shown. (orig.)

  2. Free jet feasibility study of a thermal acoustic shield concept for AST/VCE application-dual flow. Comprehensive data report. Volume 1: Test nozzles and acoustic data

    Janardan, B. A.; Brausch, J. F.; Price, A. O.

    1984-01-01

    Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles The tested nozzles included baseline (unshielded), 180 deg shielded, and 360 deg shielded dual flow coannular plug configurations. The baseline configurations include a high radius ratio unsuppressed coannular plug nozzle and a coanuular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor. The tests were conducted at nozzle temperatures and pressure typical of operating conditions of variable cycle engine.

  3. 3D geostatistic modelling of the acoustic impedance for the characterization of Namorado oil field, Brazil; Modelagem geoestatistica 3D da impedancia acustica para a caracterizacao do Campo de Namorado

    Vidal, Alexandre Campane; Sancevero, Sergio Sacani; Remacre, Armando Zaupa; Costanzo, Caetano Pontes [UNICAMP, Instituto de Geociencias, Dept. de Geologia e Recursos Naturais, Campinas, SP (Brazil)], E-mails: vidal@ige.unicamp.br, sacani@ige.unicamp.br, geden@ige.unicamp.br, caetano.costanzo@gmail.com

    2007-07-15

    The aim of this work is analyze the vertical seismic resolution of the turbidity reservoir of Namorado Field. In this work the seismic modeling was accomplished using the convolution method. The wavelet used was the Ricker type with dominant frequency of 20 hz, 35 hz and 50 hz. The results show that wavelet with frequencies of 35 hz and 50 hz have better seismic resolution than wavelets of 20 hz, however all frequencies delimit top and base of the reservoir. From the acoustic impedance model, obtained from the synthetic seismogram, was possible, knowing the correlation of this variable with reservoir rocks, determine the distribution of reservoir facies. For that was used the geostatistical analysis that still enabled the studies regarding to the scenarios analysis by means of the application of stochastic methods. (author)

  4. Flat acoustic lens by acoustic grating with curled slits

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating

  5. The role of inversion for acoustic impedance in the seismic characterization process of reservoirs; O papel da inversao para a impedancia acustica no processo de caracterizacao sismica de reservatorios

    Sancevero, Sergio Sacani; Remacre, Armando Zaupa; Portugal, Rodrigo de Souza [Dept. de Geologia e Recursos Naturais (DGRN), Inst. de Geociencias, Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mails: sacani@ige.unicamp.br, armando@ige.unicamp.br, portugal@ige.unicamp.br

    2006-10-15

    The reservoir characterization process can be defined as the three-dimensional and quantitative determination of structure and petrophysical properties of the oil field. The use of 3D seismic data in the reservoir characterization process has become more frequent mainly in the identification of the shape and the size of the sand bodies that constitute the reservoir. However, in some situations as the deep water turbidity reservoirs of Campos Basin, that are characterized by a complex distribution of sand bodies and sub seismic thickness, the use of the conventional seismic amplitude data can result in serious mistakes in the definition of reservoir model. To solve the problem of the vertical seismic resolution limitation, is necessary to build an integrated model that use all information available about the reservoir. The most effective way to integrate the seismic data in the reservoir characterization process is by using acoustic impedance models, obtained by seismic inversion. The aim of this work is to show how the seismic inversion to acoustic impedance can support and improve the characterization of the reservoirs, when comparing the results obtained by the application of two seismic inversion methods, the recursive inversion and the constrained sparse-spike inversion. The seismic inversion methods are applied in a wedge synthetic reference model, that represent some features find in the deep water turbidity reservoir, like stratigraphic thinning and pinch-outs. Based on these results we can see the advantages in use the seismic inversion methods in the determination of geometry of sand bodies and in the calculation of petrophysical properties, and as a consequence more accuracy models can be generated and the forecasts about the behavior of the field can be done in most effective way. (author)

  6. Design of High Current Low Impedance Short-Circuit Testing Transformer%大电流低阻抗短路试验变压器的设计

    田颢亮

    2013-01-01

    A design method of high current low impedance short-circuit testing transformer is introduced,that includes power calculation,winding structure,impedance correction and temperature rise test etc.The method is proved to be right by sample calculation.%介绍了一种大电流低阻抗短路试验变压器的设计方法,包括容量计算、绕组结构、阻抗的修正及温升试验等.并通过实例验证了该方法的正确性.

  7. Lateral mode coupling to reduce the electrical impedance of small elements required for high power ultrasound therapy phased arrays

    Hynynen, Kullervo; Yin, Jianhua

    2009-01-01

    A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially-polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (average...

  8. A Two-Dimensional Post-Stack Seismic Inversion for Acoustic Impedance of Gas and Hydrate Bearing Deep-Water Sediments Within the Continental Slope of the Ulleung Basin, East Sea, Korea

    Keumsuk Lee

    2013-01-01

    Full Text Available A post-stack inversion of 2D seismic data was conducted to estimate the spatial distribution of acoustic impedance associated with gas and hydrates in the Ulleung Basin, East Sea, Korea constrained by logs from three boreholes drilled on its continental margin. A model-based inversion was applied to a Plio-Quaternary succession composed of alternations of unconsolidated mass-flow deposits/turbidites. A comparison of seismic reflections and synthetic data computed from impedance logs is shown for two zones. An upper (steep slope zone contains a moderately continuous, possibly bottom-simulating reflector feature along the corresponding section. This feature may be associated with a lithology boundary near a drill site in addition to, or instead of, a stability boundary of gas hydrates (i.e., gas below and hydrates above. The lower (gentle slope zone has locally cross-cutting reflection patterns that are more likely to be attributed to gas- and hydrate-related physical phenomena than to spatiotemporal changes in lithology. This seismic inversion is informative and useful, making a contribution to enhance the interpretability of the seismic profiles for a potential hydrate recovery.

  9. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  10. Hydrophone spatial directivity and the induced difference in HIFU acoustic field test

    Hydrophone has been widely used in testing ultrasonic field distribution. But the hydrophone has a certain directivity, which may bring error in the actual acoustic field measurements. So it is necessary to meet some requirements about the directivity of hydrophone. In the measurement, the spatial directivities of needle hydrophone, membrane hydrophone and robust hydrophone is measured and a comparison about measured data of HIFU acoustic field with them is given. Experimental results indicate that the asymmetric special directivity of hydrophone is due to manufacturing processes and other reasons. As a result, it is not sufficient to test the directivity of hydrophone along one axis. It is necessary to adjust the direction of the hydrophone when characterizing the HIFU field.

  11. Hydrophone spatial directivity and the induced difference in HIFU acoustic field test

    Chen, T; Zhang, D [Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Hu, J M; Huang, W; Zhang, W, E-mail: Chent_qxs@jsfda.gov.cn [Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012 (China)

    2011-02-01

    Hydrophone has been widely used in testing ultrasonic field distribution. But the hydrophone has a certain directivity, which may bring error in the actual acoustic field measurements. So it is necessary to meet some requirements about the directivity of hydrophone. In the measurement, the spatial directivities of needle hydrophone, membrane hydrophone and robust hydrophone is measured and a comparison about measured data of HIFU acoustic field with them is given. Experimental results indicate that the asymmetric special directivity of hydrophone is due to manufacturing processes and other reasons. As a result, it is not sufficient to test the directivity of hydrophone along one axis. It is necessary to adjust the direction of the hydrophone when characterizing the HIFU field.

  12. The Alcock Paczy\\'nski test with Baryon Acoustic Oscillations: systematic effects for future surveys

    Lepori, Francesca; Di Dio, Enea; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth

    2016-01-01

    We investigate the Alcock Paczy\\'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, c...

  13. Impedance and component heating

    Métral, E; Mounet, N; Pieloni, T; Salvant, B

    2015-01-01

    The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.

  14. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Jan Gimsa

    2014-11-01

    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  15. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  16. The 2.5D MST for sound propagation through an array of acoustically rigid cylinders perpendicular to an impedance surface

    In this work a study of sound propagation through arrays of semi-infinitely long cylinders placed perpendicular to an impedance surface has been carried out. The cross sections of the structures are assumed to be invariant along the main axis of the cylinders, and the cylinders are considered rigid. It is further assumed that the structures are insonified by a monopole source placed above the impedance surface. To study such configurations, we introduce the two-and-a-half-dimensional multiple scattering theory (2.5D MST), which essentially solves the pressure in a three-dimensional domain by post-processing a set of precomputed solutions obtained in a two-dimensional domain. The total pressure can then be obtained by complex addition of four contributions: source-to-receiver, source-to-array-to-receiver, image source-to-receiver, and image source-to-array-to-receiver. The proposed method is validated using both analytical and numerical tools, showing very good agreement for all studied cases. Among other things, we show that a cylinder array placed on top of flat rigid ground can deteriorate the ground interference dips that exist without the array. In addition, we show that the characteristic response of the cylinder array, i.e. in terms of pass and stop bands, may be shifted up in frequency due to a projection phenomenon, which happens when the source or receiver is elevated along the main axis of the cylinders. (paper)

  17. Development of nuclear thermal hydraulic verification tests and evaluation technology - Development of a sensor for two-phase flow measurement using impedance method

    Kim, Moo Whan; Kang, Hie Chan; Kwon, Jung Tae; Huh, Deok; Yang, Hoon Cheul [Pohang University of Science and Technology, Pohang (Korea)

    2000-04-01

    Impedance method was carried out to design the electrode that can measure the void fraction of the bubbly flow in pool reservoir. To find out the optimum electrode shape, Styrofoam-Simulator tests were performed in a specially designed acrylic reservoir. Three kinds of electrodes were designed to compare the measuring characteristics of water-air flow. The resistance increased with the increase of the void fraction and the capacitance decreased with the increase of the void fraction. The resistance is a main parameter to express the nature of the water-air flow in impedance method. Almost of impedance values come out from the resistance. The degree of deviation from the mean-resistance values showed reasonable results. Electrode type-I expressed excellent results among the three electrode shapes. The sensor developed can simultaneously measure the void fraction and the water level. 7 refs., 51 figs., 4 tabs. (Author)

  18. Acoustic emission measurement in a 20MJ superconducting magnet system of the cluster test coil

    This paper describes acoustic emission (AE) results which were measured during the second major experiment on the Cluster Test Coil at JAERI. This is the largest superconducting magnet system to date on which acoustic emission measurement has been carried out. The amplitudes and the counting rates of AE are shown as functions of coil operating current on three full current excursions. The amplitude results show the on-going process of emission and reduction during successive runs. A strong tendency of the AE counting rate to increase was observed at high currents after successive runs. The phenomenon of amplitude reduction and counting rate increase is attributed to an energy release change from larger single events to numerous smaller events. (author)

  19. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  20. Acoustic emission for on-line reactor monitoring: results of intermediate vessel test monitoring and reactor hot functional testing

    The objective of the acoustic emission (AE)/flaw characterization program is to provide an experimental feasibility evaluation of using the AE method on a continuous basis (during operation and during hydrotest) to detect and analyze flaw growth in reactor pressure vessels and primary piping. This effort is based on earlier results showing that AE has potential for being a valuable addition to nondestructive evaluation (NDE) methods with the added unique capability for continuous monitoring, high sensitivity and remote flaw location. Results are reported for the ZB-1 vessel test and the Watts Bar-1 hot functional test

  1. Structural damage claims resulting from acoustic environments developed during static test firing of rocket engines

    Guest, S. H.; Slone, R. M., Jr.

    1972-01-01

    During static testing of multi-million pound thrust rocket engines areas adjacent to the test site have been subjected to the noise generated by rocket engines. Structural damage claims and subjective complaints were filed by those who alleged that the noise levels were excessive. The statistical analysis of these claims and complaints which were filed during these rocket engine development programs led to the determination of a relationship between claims and overall sound pressure level. Community exposure criteria are then assessed based on what can be considered allowable acoustic environments from large rocket engines.

  2. Assessment of the Acoustic Properties of Common Tissue-mimicking Test Phantoms

    Browne, Jacinta; Ramnarine, K.; Watson, A; Hoskins, P

    2003-01-01

    Ultrasound (US) test phantoms incorporating tissue-mimicking materials (TMMs) play an important role in the quality control (QC) and performance testing of US equipment. Three commercially available TMMs (ZerdineTM from CIRS Inc.; condensed-milk-based gel from Gammex RMI; urethane-rubber-based from ATS Labs) and a noncommercial agar-based TMM, were investigated. Acoustic properties were measured over the frequency range 2.25 to 15 MHz at a range of ambient temperatures (10 to 35°C). The acous...

  3. Application of Acoustic Emission Testing for the Assessment of Wind Turbine Blade

    Lee, Sang Il; Yun, Dong Jin; Hur, Yong Jin; Kim, Dong Jin [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2006-11-15

    The purpose of this study was to verify the applicability of acoustic emission (AE) to detect damage in wind turbine blade. Nondestructive behavior of a GFRP wind turbine blade (WTB) was evaluated using AE analysis under stepwise cyclic loading. AE hits of the blade were correspondence with strain change within 80% of the maximum load. From the analysis of AE signals, the low energy signals due to electrical/mechanical noise were well distinguished from the signals of the blade delamination with higher amplitude or energy. When the AE test is performed with full blade test, AE will play an important role as a major nondestructive technique to assess damages of the WTB.

  4. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    William J Murphy

    2015-01-01

    Full Text Available Impulse peak insertion loss (IPIL was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF. Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB, 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs ® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL.

  5. Acoustic source for generating an acoustic beam

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  6. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease.

    Vogt, Barbara; Zhao, Zhanqi; Zabel, Peter; Weiler, Norbert; Frerichs, Inéz

    2016-07-01

    Patients with obstructive lung diseases commonly undergo bronchodilator reversibility testing during examination of their pulmonary function by spirometry. A positive response is defined by an increase in forced expiratory volume in 1 s (FEV1). FEV1 is a rather nonspecific criterion not allowing the regional effects of bronchodilator to be assessed. We employed the imaging technique of electrical impedance tomography (EIT) to visualize the spatial and temporal ventilation distribution in 35 patients with chronic obstructive pulmonary disease at baseline and 5, 10, and 20 min after bronchodilator inhalation. EIT scanning was performed during tidal breathing and forced full expiration maneuver in parallel with spirometry. Ventilation distribution was determined by EIT by calculating the image pixel values of FEV1, forced vital capacity (FVC), tidal volume, peak flow, and mean forced expiratory flow between 25 and 75% of FVC. The global inhomogeneity indexes of each measure and histograms of pixel FEV1/FVC values were then determined to assess the bronchodilator effect on spatial ventilation distribution. Temporal ventilation distribution was analyzed from pixel values of times needed to exhale 75 and 90% of pixel FVC. Based on spirometric FEV1, significant bronchodilator response was found in 17 patients. These patients exhibited higher postbronchodilator values of all regional EIT-derived lung function measures in contrast to nonresponders. Ventilation distribution was inhomogeneous in both groups. Significant improvements were noted for spatial distribution of pixel FEV1 and tidal volume and temporal distribution in responders. By providing regional data, EIT might increase the diagnostic and prognostic information derived from reversibility testing. PMID:27190067

  7. Evaluation of corrosion damage of aluminum alloy using acoustic emission testing

    GENG Rongsheng; FU Gangqiang

    2004-01-01

    Current studies are aiming at monitoring corrosion damage of aircraft main structures by using acoustic emission (AE) technique and at supplying useful data for determining calendar life of the aircraft. The characteristics of AE signals produced during accelerating corrosion process are described, and methods for evaluating corrosion damages and determining remaining life of main structures of aircraft using AE testing are outlined. Experimental results have shown that AE technique can detect corrosion damage of aluminum alloy much earlier than conventional non-destructive testing means, such as ultrasonic testing and eddy current testing. Relationship between corrosion damage and AE parameters was obtained through investigating corrosion damage extent and changes of AE signals during accelerating corrosion test, and showing that AE technique can be used to detect early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  8. Test method of frequency response based on diamond surface acoustic wave devices

    CHEN Xi-ming; YANG Bao-he; WU Xiao-guo; WU Yi-zhuo

    2011-01-01

    In order to reduce the noises affixed to the signals when testing high frequency devices, a single-port test mode (S11) is used to test frequency response of high frequency (GHz) and dual-port surface acoustic wave devices (SAWDs) in this paper.The feasibility of the test is proved by simulating the Fabry-Perot model. The frequency response of the high-frequency dual-port resonant-type diamond SAWD is measured by S11 and the dual-port test mode (S21), respectively. The results show that the quality factor of the device is 51.29 and the 3 dB bandwidth is 27.8 MHz by S11 -mode measurement, which is better than the S21 mode, and is consistent with the frequency response curve by simulation.

  9. Spin Start Line Effects on the J2X Gas Generator Chamber Acoustics

    Kenny, R. Jeremy

    2011-01-01

    The J2X Gas Generator engine design has a spin start line connected near to the turbine inlet vanes. This line provides helium during engine startup to begin turbomachinery operation. The spin start line also acts as an acoustic side branch which alters the chamber's acoustic modes. The side branch effectively creates 'split modes' in the chamber longitudinal modes, in particular below the first longitudinal mode and within the frequency range associated with the injection-coupled response of the Gas Generator. Interaction between the spin start-modified chamber acoustics and the injection-driven response can create a higher system response than without the spin start attached to the chamber. This work reviews the acoustic effects of the spin start line as seen throughout the workhorse gas generator test program. A simple impedance model of the spin start line is reviewed. Tests were run with no initial spin start gas existing in the line, as well as being initially filled with nitrogen gas. Tests were also run with varying spin start line lengths from 0" to 40". Acoustic impedance changes due to different spin start gas constituents and line lengths are shown. Collected thermocouple and static pressure data in the spin start line was used to help estimate the fluid properties along the line length. The side branch impedance model was coupled to a chamber impedance model to show the effects on the overall chamber response. Predictions of the spin start acoustic behavior for helium operation are shown and compared against available data.

  10. Study of the performances of acoustic emission testing for glass fibre reinforced plastic pipes containing defects

    Glass fibre reinforced plastic pipes are more and more often used, in nuclear power plants, for building or replacement of water pipings classified 'nuclear safety'. Tests have been performed to evaluate the performances of acoustic emission testing for in service inspection of these components. The tests were focused on glass fibre reinforced polyester and vinyl-ester pipes, in as received conditions or containing impacts, and intentionally introduced defects. They have been carried out by CETIM, following the ASTM Standard E 1118 (code CARP), to a maximum pressure lever of 25 Bar The results show that the CARP procedure can be used for detection of defects and evaluation of their noxiousness towards internal pressure: most of the tubes containing low energy impacts could not be distinguished from tubes without defect; on the other hand the important noxiousness of lacks of impregnation of roving layer appeared clearly. Complementary tests have been performed on some tubes at a more important pressure lever, for which the damage of the tubes in enough to deteriorate there elastic properties. The results showed that CARP procedure give valuable informations on damage level. It would be interesting to evaluate acoustic emission on tubes containing realistic in-service degradations. (author). 11 refs., 15 figs., 6 tabs., 2 appends

  11. A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes

    Watson, Willie R.; Jones, Michael G.

    2016-01-01

    A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.

  12. Characterisation and testing of the KM3NeT acoustic positioning system

    Viola S.

    2016-01-01

    Full Text Available In underwater neutrino telescopes, the search of point-like sources through the Cherenkov detection technique requires a precise knowledge of the positions of thousands of optical sensors, spread in a volume of a few cubic kilometres. In KM3NeT the optical sensors are hosted in 700 m high semi-rigid structures, called detection units, which move under the effects of underwater currents. These movements are continuously monitored through an underwater positioning system based on acoustic emitters and receivers. In this work, the tests performed on the key elements of the positioning system are presented.

  13. Testing the neutrality of matter by acoustic means in a spherical resonator

    Bressi, G; Della Valle, F; Galeazzi, G; Ruoso, G; Sartori, G

    2011-01-01

    New measurements to test the neutrality of matter by acoustic means are reported. The apparatus is based on a spherical capacitor filled with gaseous SF$_6$ excited by an oscillating electric field. The apparatus has been calibrated measuring the electric polarizability. Assuming charge conservation in the $\\beta$ decay of the neutron, the experiment gives a limit of $\\epsilon_\\text{p-e}\\lesssim1\\cdot10^{-21}$ for the electron-proton charge difference, the same limit holding for the charge of the neutron. Previous measurements are critically reviewed and found incorrect: the present result is the best limit obtained with this technique.

  14. Statistical Test of Distance-Duality Relation with Type Ia Supernovae and Baryon Acoustic Oscillations

    Ma, Cong; Corasaniti, Pier-Stefano

    2016-01-01

    We use cosmological luminosity distance ($d_L$) from the JLA Type Ia supernovae compilation and angular-diameter distance ($d_A$) based on BOSS and WiggleZ baryon acoustic oscillation measurements to test the distance-duality relation $\\eta \\equiv d_L / [ (1 + z)^2 d_A ] = 1$. The $d_L$ measurements are matched to $d_A$ redshift by a statistically-motivated compression procedure. By means of Monte Carlo methods, non-trivial and correlated distributions of $\\eta$ can be explored in a straightf...

  15. Acoustic emission monitoring of preservice testing at Watts Bar Unit 1 Nuclear Reactor

    Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Plant in the US during hot functional preservice testing is described. Background, methodology, and results are included. The work discussed here is a major milestone in a program supported by the US NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing to AE monitoring during reactor operation. 3 refs., 6 figs

  16. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance

    Chen, Robert T. N.; Hindson, William S.; Mueller, Arnold W.

    1995-01-01

    This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.

  17. Microwave Impedance Measurement for Nanoelectronics

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  18. Acoustic emission for on-line reactor monitoring: results of intermediate vessel test monitoring and reactor hot functional testing

    This article discusses a program designed to develop the use of acoustic emission (AE) methods for continuous surveillance to detect and evaluate flaw growth in reactor pressure boundaries. Technology developed in the laboratory for identifying AE from crack growth and for using AE information to estimate flaw severity is now being evaluated on an intermediate vessel test and on a reactor facility. A vessel, designated ZB-1, has been tested under fatigue loadings with simulated reactor conditions at Mannheim, West Germany, in collaboration with the German Materialpruefungsanstalt (MPA), Stuttgart. Fatigue cracking from machined flaws and in a fabrication weld were both detected clearly by AE. AE data were measured on a US nuclear reactor (Watts Bar, Unit 1) during hot functional preservice testing. This demonstrated that coolant flow noise is a manageable problem and that AE can be detected under operational coolant flow and temperature conditions. (author)

  19. The Alcock Paczy\\'nski test with Baryon Acoustic Oscillations: systematic effects for future surveys

    Lepori, Francesca; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth

    2016-01-01

    We investigate the Alcock Paczy\\'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifies the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction t...

  20. Acoustic sensor array extracts physiology during movement

    Scanlon, Michael V.

    2001-08-01

    An acoustic sensor attached to a person's neck can extract heart and breath sounds, as well as voice and other physiology related to their health and performance. Soldiers, firefighters, law enforcement, and rescue personnel, as well as people at home or in health care facilities, can benefit form being remotely monitored. ARLs acoustic sensor, when worn around a person's neck, picks up the carotid artery and breath sounds very well by matching the sensor's acoustic impedance to that of the body via a gel pad, while airborne noise is minimized by an impedance mismatch. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that obscure the meaningful physiology. To exacerbate signal extraction, these interfering signals are usually covariant with the heart sounds, in that as a person walks faster the heart tends to beat faster, and motion noises tend to contain low frequency component similar to the heart sounds. A noise-canceling configuration developed by ARL uses two acoustic sensor on the front sides of the neck as physiology sensors, and two additional acoustic sensor on the back sides of the neck as noise references. Breath and heart sounds, which occur with near symmetry and simultaneously at the two front sensor, will correlate well. The motion noise present on all four sensor will be used to cancel the noise on the two physiology sensors. This report will compare heart rate variability derived from both the acoustic array and from ECG data taken simultaneously on a treadmill test. Acoustically derived breath rate and volume approximations will be introduced as well. A miniature 3- axis accelerometer on the same neckband provides additional noise references to validate footfall and motion activity.

  1. Acoustic interactions between an altitude test facility and jet engine plumes: Theory and experiments

    Ahuja, K. K.; Jones, R. R., III; Tam, C. K.; Massey, K. C.; Fleming, A. J.

    1992-01-01

    The overall objective of the described effort was to develop an understanding of the physical mechanisms involved in the flow/acoustic interactions experienced in full-scale altitude engine test facilities. This is done by conducting subscale experiments and through development of a theoretical model. Model cold jet experiments with an axisymmetric convergent nozzle are performed in a test setup that stimulates a supersonic jet exhausting into a cylindrical diffuser. The measured data consist of detailed flow visualization data and acoustic spectra for a free and a ducted plume. It is shown that duct resonance is most likely responsible by theoretical calculations. Theoretical calculations also indicate that the higher discrete tones observed in the measurements are related to the screech phenomena. Limited experiments on the sensitivity of a free 2-D, C-D nozzle to externally imposed sound are also presented. It is shown that a 2-D, C-D nozzle with a cutback is less excitable than a 2-D C-D nozzle with no cutback. At a pressure ratio of 1.5 unsteady separation from the diverging walls of the nozzle is noticed. This separation switches from one wall to the opposite wall thus providing an unsteady deflection of the plume. It is shown that this phenomenon is related to the venting provided by the cutback section.

  2. Sound propagation tests for acoustic detection of simulated sodium-water reaction

    The characteristics of sound propagation in a steam generator were tested in order to investigate the feasibility of an acoustic leak detection by small leak sodium-water reactions. The test model was composed of the vessel filled with water, the inner pipe, the shroud, and two heat transfer coils. Transducers, gas leak nozzles and an underwater speaker were set up for the simulated sound source. The results indicate that the acoustic signal detected at the vessel wall has a comparable SN ratio to the guide pipe or the heat transfer tubes, and that the difference of the RMS values depend on the standing wave, rather than the attenuation by distance or diffractions, Therefore, it was estimated that the sound field in the vessel was reverberant, and the difference between one and two helical coils depends on the sound energy absorption by them. The RMS values in the high frequency range (more than 50 kHz) do not increase in proportion to the gas leak rate, more than about 200 cc/s, because of the attenuation by gas bubbles. (author)

  3. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  4. Testing the effectiveness of an acoustic deterrent for gray whales along the Oregon coast

    Lagerquist, Barbara [Oregon State University Marine Mammal Institute; Winsor, Martha [Oregon State University Marine Mammal Institute; Mate, Bruce [Oregon State University Marine Mammal Institute

    2012-12-31

    This study was conducted to determine whether a low-powered sound source could be effective at deterring gray whales from areas that may prove harmful to them. With increased interest in the development of marine renewal energy along the Oregon coast the concern that such development may pose a collision or entanglement risk for gray whales. A successful acoustic deterrent could act as a mitigation tool to prevent harm to whales from such risks. In this study, an acoustic device was moored on the seafloor in the pathway of migrating gray whales off Yaquina Head on the central Oregon coast. Shore-based observers tracked whales with a theodolite (surveyor’s tool) to accurately locate whales as they passed the headland. Individual locations of different whales/whale groups as well as tracklines of the same whale/whale groups were obtained and compared between times with the acoustic device was transmitting and when it was off. Observations were conducted on 51 d between January 1 and April 15, 2012. A total of 143 individual whale locations were collected for a total of 243 whales, as well as 57 tracklines for a total of 142 whales. Inclement weather and equipment problems resulted in very small sample sizes, especially during experimental periods, when the device was transmitting. Because of this, the results of this study were inconclusive. We feel that another season of field testing is warranted to successfully test the effectiveness of the deterrent, but recommend increasing the zone of influence to 3 km to ensure the collection of adequate sample sizes. Steps have been taken to acquire the necessary federal research permit modification to authorize the increased zone of influence and to modify the acoustic device for the increased power. With these changes we are confident we will be able to determine whether the deterrent is effective at deflecting gray whales. A successful deterrent device may serve as a valuable mitigation tool to protect gray whales, and

  5. HADES - Hydrophone for Acoustic Detection at South Pole

    Semburg, Benjamin

    2008-01-01

    The South Pole Acoustic Test Setup (SPATS) is located in the upper part of the optical neutrino observatory IceCube, currently under construction. SPATS consists of four strings at depths between 80 m and 500 m below the surface of the ice with seven stages per string. Each stage is equipped with an acoustic sensor and a transmitter. Three strings (string A-C) were deployed in the austral summer 2006/07. SPATS was extended by a fourth string (string D) with second generation sensors and transmitters in 2007/08. One second generation sensor type HADES (Hydrophone for Acoustic Detection at South Pole) consists of a ring-shaped piezo-electric element coated with polyurethane. The development of the sensor, optimization of acoustic transmission by acoustic impedance matching and first in-situ results will be discussed.

  6. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses

  7. Acoustic emission testing and estimation of the damage of wind turbine blades

    Wind turbines experience long term fluctuating variable amplitude fatigue loads with occasional large amplitude stochastic peak loads. A methodology for wind turbine blade monitoring using acoustic emission (AE) detection of damage processes in the structure has been developed by the AEGIS consortium, supported by the European Commission. Characteristic results are presented of AE activity during peak loading events and fatigue blade tests to failure in the laboratory. The results presented indicate the kind of results, which could be obtained from monitoring in-service machines. In particular, a dedicated pattern recognition software has been developed which could identify differences from turbine to turbine and help target preventative maintenance. Validation of the software from laboratory tests on blades is presented. (authors)

  8. Three-dimensional ultrathin planar lenses by acoustic metamaterials.

    Li, Yong; Yu, Gaokun; Liang, Bin; Zou, Xinye; Li, Guangyun; Cheng, Su; Cheng, Jianchun

    2014-01-01

    Acoustic lenses find applications in various areas ranging from ultrasound imaging to nondestructive testing. A compact-size and high-efficient planar acoustic lens is crucial to achieving miniaturization and integration, and should have deep implication for the acoustic field. However its realization remains challenging due to the trade-off between high refractive-index and impedance-mismatch. Here we have designed and experimentally realized the first ultrathin planar acoustic lens capable of steering the convergence of acoustic waves in three-dimensional space. A theoretical approach is developed to analytically describe the proposed metamaterial with hybrid labyrinthine units, which reveals the mechanism of coexistence of high refractive index and well-matched impedance. A hyperbolic gradient-index lens design is fabricated and characterized, which can enhance the acoustic energy by 15 dB at the focal point with very high transmission efficiency. Remarkably, the thickness of the lens is only approximately 1/6 of the operating wavelength. The lens can work within a certain frequency band for which the ratio between the bandwidth and the center frequency reaches 0.74. By tailoring the structure of the metamaterials, one can further reduce the thickness of the lens or even realize other acoustic functionalities, opening new opportunity for manipulation of low-frequency sounds with versatile potential. PMID:25354997

  9. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  10. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates

    Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu

    2014-03-01

    The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.

  11. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.

    Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H

    2016-01-01

    This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities. PMID:27023147

  12. Acoustic Emission and Ultrasonic Characterization of Jurassic Navajo Formation Deformation During Axisymmetric Compression Testing

    Rinehart, A. J.; Dewers, T. A.; Holcomb, D. J.; Broome, S. T.

    2011-12-01

    Linking continuum-scale and microscale brittle damage in rock remains a challenge impacting CO2 sequestration, secondary recovery, structural monitoring, and other geotechnical engineering applications. We examine if the mode of micromechanical failure scales directly up to continuum-scale damage-induced velocity anisotropy. Axisymmetric drained lab-dry compression experiments are performed on facies of moderately cemented finely laminated quartz arenite from the Jurassic Navajo Formation, a target reservoir rock for CO2 sequestration in Utah. The tests are 1 unconfined uniaxial compression test, 1 hydrostatic compression test, and 3 triaxial compression tests. Microscale damage is monitored using acoustic emissions (AE) and continuum scale damage is monitored with ultrasonic velocity scans. During the non-hydrostatic tests, three to five unload loops are performed pre-failure, with one unload loop performed post-failure. While stresses are increasing, AEs are monitored continuously using 1.6-mm diameter, 0.5-mm thick PZT-5A pins attached circumferentially around the cylindrical sample, and with 6-mm diameter, 2-mm thick PZT-5A discs at the ends of the sample. Before and after each unload loop, the test is paused and the AE transducers sequentially emit an ultrasonic pulse to measure wave speeds. The resulting elastic wave is detected by the other AE transducers. Post-test, the changing anisotropic velocity structure of the rock during compression and failure is compared to the locations, frequency, and relative moment tensors of the AEs measured between ultrasonic scans. Pre- and post-test visual and x-ray CT scan observations of the sample are compared to the acoustic metrics. These tiered observations of rock damage will further elucidate the scaling of microscale brittle failure to the continuum-scale This work was supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of

  13. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  14. Experimental study on the detection of free fluids and gases in waste packages by acoustic methods

    The objective of the project was to evaluate the potential and the limits of various nondestructive methods for testing the contents of 200-litre drums filled with radioactive waste. The following test problems were to be studied: 1. Detection of free water on the surface of the waste matrix (concrete); 2. Determination of the waste matrix level; 3. Determination of internal gas pressure. The following methods were found to be suitable: For Test problem 1: Measurement of Lamb wave attenuation, Acoustic impedance measurement (AIM) and Analysis of swash sound; For Test problem 2: Acoustic impedance measurement (AIM) and Measurement of Lamb wave attenuation; For Test problem 3: A method of pressure compensation and Analysis of cover resonances after striking the cover. It was not possible, however, to detect the concrete level by localisation of friction points using acoustic emission methods. 53 figs

  15. Acoustic Treatment Design Scaling Methods. Phase 2

    Clark, L. (Technical Monitor); Parrott, T. (Technical Monitor); Jones, M. (Technical Monitor); Kraft, R. E.; Yu, J.; Kwan, H. W.; Beer, B.; Seybert, A. F.; Tathavadekar, P.

    2003-01-01

    The ability to design, build and test miniaturized acoustic treatment panels on scale model fan rigs representative of full scale engines provides not only cost-savings, but also an opportunity to optimize the treatment by allowing multiple tests. To use scale model treatment as a design tool, the impedance of the sub-scale liner must be known with confidence. This study was aimed at developing impedance measurement methods for high frequencies. A normal incidence impedance tube method that extends the upper frequency range to 25,000 Hz. without grazing flow effects was evaluated. The free field method was investigated as a potential high frequency technique. The potential of the two-microphone in-situ impedance measurement method was evaluated in the presence of grazing flow. Difficulties in achieving the high frequency goals were encountered in all methods. Results of developing a time-domain finite difference resonator impedance model indicated that a re-interpretation of the empirical fluid mechanical models used in the frequency domain model for nonlinear resistance and mass reactance may be required. A scale model treatment design that could be tested on the Universal Propulsion Simulator vehicle was proposed.

  16. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  17. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  18. Statistical Test of Distance-Duality Relation with Type Ia Supernovae and Baryon Acoustic Oscillations

    Ma, Cong

    2016-01-01

    We use cosmological luminosity distance ($d_L$) from the JLA Type Ia supernovae compilation and angular-diameter distance ($d_A$) based on BOSS and WiggleZ baryon acoustic oscillation measurements to test the distance-duality relation $\\eta \\equiv d_L / [ (1 + z)^2 d_A ] = 1$. The $d_L$ measurements are matched to $d_A$ redshift by a statistically-motivated compression procedure. By means of Monte Carlo methods, non-trivial and correlated distributions of $\\eta$ can be explored in a straightforward manner without resorting to a particular evolution template $\\eta(z)$. Assuming Planck cosmological parameter uncertainty, we find 5% constraints in favor of $\\eta = 1$, consistent with the weaker 7--10% constraints obtained using WiggleZ data. These results stand in contrast to previous claims that $\\eta < 1$ has been found close to or above $1\\sigma$ level.

  19. Test charge potential in the presence of electron acoustic waves in multispecies dusty plasma

    An expression for the test charge potential is obtained in a multispecies dusty plasma, whose constituents are the Boltzmann distributed hot electrons, mobile cold electrons, immobile cold ions, and charge fluctuating isolated dust grains. The plasma response function involving the electron-acoustic waves becomes modified due to the inclusion of the dust-charge perturbations. The analytical and numerical investigations reveal that the Debye-Hueckel screening and wakefield potentials are significantly affected by the plasma parameters such as the equilibrium dust number density, the dust grain radius, and the hot electron temperature. The relevance of the results to laboratory plasma, where the two distinct groups of electrons exist besides the static ions and isolated dust grains, is discussed.

  20. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  1. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  2. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  3. Multiple Exhaust Nozzle Effects on J-2X Gas Generator Outlet Impedance

    Kenny, R. Jeremy; Muss, Jeffrey; Hulka, James R.; Casiano, Matthew

    2010-01-01

    The current test setup of the J-2X gas generator system uses a multiple nozzle configuration to exhaust hot gases to drive the propellant supply turbines. Combustion stability assessment of this gas generator design requires knowledge of the impedance effects the multiple nozzle configuration creates on the combustion chamber acoustic modes. Parallel work between NASA and Sierra Engineering is presented, showing two methods used to calculate the effective end impedance resulting from multiple nozzle configurations. The NASA method is a simple estimate of the effective impedance using the long wavelength approximation. Sierra Engineering has developed a more robust numerical integration method implemented in ROCCID to accommodate for multiple nozzles. Analysis using both methods are compared to J-2X gas generator test data collected over the past year.

  4. Graphical Acoustic Liner Design and Analysis Tool

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  5. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat.

    Selby, Thomas H; Hart, Kristen M; Fujisaki, Ikuko; Smith, Brian J; Pollock, Clayton J; Hillis-Starr, Zandy; Lundgren, Ian; Oli, Madan K

    2016-07-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0-73.0%) and dropped to 26.0% (95% CI: 11.4-39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment

  6. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  7. The application of the acoustic emission technique to stone decay by sodium sulphate in laboratory tests

    Grossi, C. M.

    1997-03-01

    Full Text Available Acoustic emission was monitored during salt crystallisation cycles in order to study the mechanisms of rock deterioration by sodium sulphate in laboratory tests. Some porous carbonate stones used in Spanish monuments (Cathedral of Oviedo, Murcia and Seo Vella of Lérida were selected for this study. The acoustic emission detected during the different stages of the cycles (immersion, drying and cooling was interpreted to be the result of the salt behaviour inside the stone. The use of this technique has confirmed that this behaviour depends on salt characteristics (solubility, hydration state and polymorphism of anhydrous sodium sulphate and stone porosity and pore network.

    Para determinar los mecanismos de deterioro de las rocas debidos a la acción del sulfato de sodio, se ha registrado la emisión acústica durante ensayos de cristalización de sales en el laboratorio. Para ello, se han seleccionado tres piedras porosas carbonatadas utilizadas como materiales de construcción en monumentos españoles (Catedrales de Oviedo, Murcia y Seo Vella de Lérida. La emisión acústica detectada durante las diferentes etapas de los ciclos (inmersión, secado y enfriamiento se ha interpretado como debida al comportamiento de la sal en el interior de la piedra. Mediante esta técnica se ha confirmado que este comportamiento depende de las características de la sal (solubilidad, diferentes estados de hidratación y el polimorfismo del sulfato de sodio anhidro y de la porosidad y configuración del sistema poroso de las rocas.

  8. Acoustic emission monitoring of a fatigue test of an F/A-18 bulkhead

    Scala, C. M.; McCardle, J. F.; Bowles, S. J.

    This paper describes the application of acoustic emission (AE) to identify cracking in several fatigue-critical regions on the port and starboard sides of an l/A-18 aircraft bulkhead undergoing fatigue testing. AE data acquisition was carried out using an array of three sensors on each side of the bulkhead. AE features stored by each array included relative arrival times of AE events at the three sensors, event rise time at the first-hit sensor, and the load level and the position on the load cycle of event occurrence. AE data processing involved a comparison between the features of those AE events stored during the fatigue testing and predicted features for cracking in the complex-shaped bulkhead. Feature prediction was based on wave propagation characteristics obtained by Pentel-lead calibration, and the known load cycle dependence of crack-related AE events. The AE processing was completed following failure of the bulkhead, and gave the correct locations of all cracks, greater than about 1 mm in depth, present in the bulkhead during the fatigue testing. The study shows that AE associated with cracking can be distinguished, even when many extraneous sources are present, and demonstrates that AE is a promising technique for nondestructive evaluation of a complex structure such as the F/A-18 bulkhead.

  9. Active elastic metamaterials with applications in acoustics

    POPE, Simon; Laalej, Hatim; Daley, Steve

    2012-01-01

    Elastic metamaterials provide a new approach to solving existing problems in acoustics. They have also been associated with novel concepts such as acoustic invisibility and subwavelength imaging. To be applied to many of the proposed applications a metamaterial would need to have the desired mass density and elastic moduli over a wide frequency band. To minimise scatter in acoustics applications the impedance of solid elastic metamaterials also need to be matched to the impedance of the surro...

  10. Testing of containers made of glass-fiber reinforced plastic with the aid of acoustic emission analysis

    Wolitz, K.; Brockmann, W.; Fischer, T.

    1979-01-01

    Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.