WorldWideScience

Sample records for acoustic field produced

  1. Visualization of acoustic streaming produced by lithotripsy field using a PIV method

    We visualized the acoustic streaming produced in water by an experimental lithotripter using a particle image velocimetry (PIV) method. Streaming generated around the beam focus has been optically visualized using light scattering particles and was easily noticeable even with naked eye for all electrical settings of the lithotripter. Spatial distributions of velocity vectors are complicated and several local peaks and vortices are observed. Measured streaming velocities are found to be in ranges of 1.5 - 3 cm/s. It should be noted that the measured velocity was averaged over 1/30 sec, the time resolution limited by video frame rate, and the true velocity is expected to be at least 10 times higher. Despite such an underestimation, it was shown that the streaming velocity increased with voltage settings and, as predicted by theory, is proportional to intensity and closely related to the shock-wave pressures generated. In particular, the velocity has almost a linear correlation with peak-negative pressures (r = 0.98683, p = 0.0018). This suggests that the streaming velocity measured using the PIV technique can be used to estimate the generated peak-pressures without disturbing the field

  2. Experimental Study to Produce Multiple Focal Points of Acoustic Field for Active Path Selection of Microbubbles through Multi-bifurcation

    Koda, Ren; Koido, Jun; Ito, Takumi; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito; Miyamoto, Yoshitaka; Chiba, Toshio

    2013-07-01

    We previously reported our attempt to propel microbubbles in a flow by a primary Bjerknes force, which is a physical phenomenon where an acoustic wave pushes an obstacle along its direction of propagation. However, when ultrasound was emitted from the surface of the body, controlling bubbles in an against-flow was necessary. It is unpractical to use multiple transducers to produce the same number of focal points because single-element transducers cannot produce more than two focal points. In this study, we introduced a complex artificial blood vessel according to a capillary model and a two-dimensional (2D) array transducer to produce multiple focal points for the active control of microbubbles in an against-flow. From the results, about 15% more microbubbles were led to the desired path with multiple focal points of ultrasound relative to the no-emission case.

  3. Visualizing underwater acoustic matched-field processing

    Rosenblum, Lawrence; Kamgar-Parsi, Behzad; Karahalios, Margarida; Heitmeyer, Richard

    1991-06-01

    Matched-field processing is a new technique for processing ocean acoustic data measured by an array of hydrophones. It produces estimates of the location of sources of acoustic energy. This method differs from source localization techniques in other disciplines in that it uses the complex underwater acoustic environment to improve the accuracy of the source localization. An unexplored problem in matched-field processing has been to separate multiple sources within a matched-field ambiguity function. Underwater acoustic processing is one of many disciplines where a synthesis of computer graphics and image processing is producing new insight. The benefits of different volume visualization algorithms for matched-field display are discussed. The authors show how this led to a template matching scheme for identifying a source within the matched-field ambiguity function that can help move toward an automated source localization process.

  4. Aerosol behaviour in an acoustic field

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...)

  5. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    Nakamura, Satoshi; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  6. The acoustic force density acting on inhomogeneous fluids in acoustic fields

    Karlsen, Jonas T; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  7. Study of aerosol behaviour in an acoustic field

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finer particles on the larger ones. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Consequently, we experimentally evaluated the turbulent properties of the system. A granular bed submitted to an acoustic field and set downstream an agglomerator constitutes an almost absolute filter for an usually penetrating aerosol

  8. Acoustic field effects on a negative corona discharge

    For a negative corona discharge under atmospheric pressure in different regimes, we investigated the effects of an acoustic field both on its electrical parameters and on the change in its visual appearance. We found that the application of an acoustic field on the true corona discharge, for particular currents, decreases the discharge voltage. The application of an acoustic field on the discharge in the filamentary streamer regime substantially extends the range of currents for which the discharge voltage remains more or less constant, i.e. it allows a substantial increase in the power delivered to the discharge. The application of an acoustic field on the discharge causes the discharge to spread within the discharge chamber and consequently, a highly reactive non-equilibrium plasma is created throughout the inter-electrode space. Finally, our experimental apparatus radiates almost no acoustic energy from the discharge chamber. (paper)

  9. Acoustic field effects on a negative corona discharge

    Bálek, R.; Červenka, M.; Pekárek, S.

    2014-06-01

    For a negative corona discharge under atmospheric pressure in different regimes, we investigated the effects of an acoustic field both on its electrical parameters and on the change in its visual appearance. We found that the application of an acoustic field on the true corona discharge, for particular currents, decreases the discharge voltage. The application of an acoustic field on the discharge in the filamentary streamer regime substantially extends the range of currents for which the discharge voltage remains more or less constant, i.e. it allows a substantial increase in the power delivered to the discharge. The application of an acoustic field on the discharge causes the discharge to spread within the discharge chamber and consequently, a highly reactive non-equilibrium plasma is created throughout the inter-electrode space. Finally, our experimental apparatus radiates almost no acoustic energy from the discharge chamber.

  10. ACOUSTO-OPTIC IMAGING IN DIFFERENT FIELDS OF ACOUSTICS

    Mayer, W.

    1990-01-01

    A very short introduction of the principles of light diffraction by ultrasonic waves is followed by a discussion of acousto-optic imaging (schlieren) techniques. This method is often useful to obtain qualitative results of various acoustic phenomena in ultrasonics, underwater sound, material characterization, transducer performance and other areas of acoustics. Examples from different fields of acoustics and some scale model studies will be given, illustrating under what conditions this metho...

  11. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  12. Transient cavitation and acoustic emission produced by different laser lithotripters.

    Zhong, P; Tong, H L; Cocks, F H; Pearle, M S; Preminger, G M

    1998-08-01

    Transient cavitation and shockwave generation produced by pulsed-dye and holmium:YAG laser lithotripters were studied using high-speed photography and acoustic emission measurements. In addition, stone phantoms were used to compare the fragmentation efficiency of various laser and electrohydraulic lithotripters. The pulsed-dye laser, with a wavelength (504 nm) strongly absorbed by most stone materials but not by water, and a short pulse duration of approximately 1 microsec, induces plasma formation on the surface of the target calculi. Subsequently, the rapid expansion of the plasma forms a cavitation bubble, which expands spherically to a maximum size and then collapses violently, leading to strong shockwave generation and microjet impingement, which comprises the primary mechanism for stone fragmentation with short-pulse lasers. In contrast, the holmium laser, with a wavelength (2100 nm) most strongly absorbed by water as well as by all stone materials and a long pulse duration of 250 to 350 microsec, produces an elongated, pear-shaped cavitation bubble at the tip of the optical fiber that forms a vapor channel to conduct the ensuing laser energy to the target stone (Moss effect). The expansion and subsequent collapse of the elongated bubble is asymmetric, resulting in weak shockwave generation and microjet impingement. Thus, stone fragmentation in holmium laser lithotripsy is caused primarily by thermal ablation (drilling effect). PMID:9726407

  13. Strongly driven ion acoustic waves in laser produced plasmas

    This paper present an experimental study of ion acoustic waves with wavenumbers corresponding to stimulated Brillouin scattering. Time resolved Thomson scattering in frequency and wavenumber space, has permitted to observe the dispersion relation of the waves as a function of the laser intensity. Apart from observing ion acoustic waves associated with a strong second component is observed at laser intensities above 1013Wcm-2

  14. Properties of the Acoustic Vector Field in Underwater Waveguides

    Dall'Osto, David R.

    This thesis focuses on the description and measurement of the underwater acoustic field, based on vector properties of acoustic particle velocity. The specific goal is to interpret vector sensor measurements in underwater waveguides, in particular those measurements made in littoral (shallow) waters. To that end, theoretical models, which include the effects of reflections from the waveguide boundaries, are developed for the acoustic intensity, i.e. the product of acoustic pressure and acoustic particle velocity. Vector properties of acoustic intensity are shown to correspond to a non-dimensional vector property of acoustic particle velocity, its degree of circularity, which describes the trajectory of particle motion. Both experimental measurements and simulations of this non-dimensional vector property are used to analyze characteristics of sound propagation in underwater waveguides. Two measurement techniques are utilized in the experiments described in this thesis. In the first, particle velocity is obtained indirectly by time integration of the measured pressure gradient between two closely spaced (with respect to an acoustic wavelength) conventional pressure sensitive hydrophones. This method was used in ocean experiments conducted with vertical line arrays of hydrophones. In the second technique, particle velocity is measured directly by time integration of the signal generated by an accelerometer. An additional pressure measurement from a co-located hydrophone forms what is known as a "combined sensor" in the Russian literature, which allows for estimation of the vector acoustic intensity. This method was utilized mainly in laboratory experiments.

  15. Simulation on 3D acoustic fields on a concurrent computer

    1996-01-01

    In this paper. we present a method used to calculate the acoustic field created by a transducer. A parallel computer network was used to elaborate the effectiveness of the direct calculation of the Rayleigh Integral.

  16. Non-contact transportation using near-field acoustic levitation

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described. PMID:10829622

  17. Acoustics forces on a solid sphere in focused sound fields and their use for acoustical traps

    Cutanda Henriquez, Vicente; Juhl, Peter Møller; Kristensen, Søren H.;

    2009-01-01

    It is known that stationary sound fields can be used to levitate small objects in air; this phenomenon has potential applications in containerless processing of materials. Recently the use of acoustic forces have been considered for the manipulation of small samples, which offers several advantages...... in the cases of hazardous substances, processing of materials under pure conditions, handling of fragile or sticky objects, for instance. Several theoretical investigations on the use of focused Gaussian and Bessel acoustic beams have been reported in literature. In those papers, water has been assumed...... as the medium for the propagation of the acoustic waves. The objective of the work to be presented has been to study the extent to which it is possible to use focused sound fields for the manipulation of a rigid sphere in air. The possibility of developing acoustical tweezers has been the main motivation...

  18. Acoustic experience shapes female mate choice in field crickets

    Bailey, Nathan W.; Zuk, Marlene

    2008-01-01

    Female choice can drive the evolution of extravagant male traits. In invertebrates, the influence of prior social experience on female choice has only recently been considered. To better understand the evolutionary implications of experience-mediated plasticity in female choice, we investigated the effect of acoustic experience during rearing on female responsiveness to male song in the field cricket Teleogryllus oceanicus. Acoustic experience has unique biological relevance in this species: ...

  19. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated

  20. Signal processing and field measurements for underwater acoustic communications

    Zhang, Guosong

    2013-01-01

    The present dissertation presents new developments in the signal processing of receiver structures for high-rate underwater acoustic communications, and describes the field measurements that test the structures in real oceanic environments. The signalling methods of spectrally efficient spread spectrum are also investigated to achieve long range underwater acoustic communications. The digital signal processing is of significance in recovering distorted information, and compensating waveform d...

  1. Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes.

    Fan, Li; Ge, Huan; Zhang, Shu-yi; Gao, Hai-fei; Liu, Yong-hui; Zhang, Hui

    2013-06-01

    Nonlinear acoustic fields in transmission-line acoustic metamaterials based on a cylindrical pipe with periodically arranged side holes are studied, in which the dispersions and characteristic parameters of the nonlinear acoustic waves are obtained with the Bloch theory, and meanwhile the distributions of the fundamental wave (FW) and second harmonic wave (SHW) in the metamaterial are simulated. Three characteristic frequency bands are defined according to the relations between the frequencies of the FW, SHW, and the low-frequency forbidden band (LFB) in the metamaterial. Especially, when the FW is in the LFB while the SHW is outside the LFB, the SHW can transmit through the metamaterial although the FW is blocked, which exhibits the possibility to extract the information from the SHW instead of the FW. In addition, experiments are carried out to measure the distributions of the acoustic pressures for the FW and SHW along the metamaterial and the experimental results are in agreement with the theory. PMID:23742339

  2. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  3. Acoustic field measurements in austenitic welds and dissimilar welds

    Acoustic field measurements were performed in identical specimen geometries of NPP components, in order to contribute the results to the interpretation of US testing results and evaluation of the testing reliability. With an electrodynamic probe of type T, the sonic fields were scanned by scanning heads at 45 T, 45 L, 60 L, and 70 L. The following selected groups of measured data are discussed in the paper: (a) acoustic fields in a narrow-gap weld and a dissimilar weld; (b) longitudinal sound impact testing of welds for detection of transverse defects; (c) variation of transmissibility of acoustic waves along a welded seam; (d) strength and range of the secondary creep wave; (e) multiply reflected sonic modes. (orig./CB)

  4. Diving with microparticles in acoustic fields

    Marin, Alvaro; Barnkob, Rune; Augustsson, Per; Muller, Peter; Bruus, Henrik; Laurell, Thomas; Kaehler, Christian

    2012-01-01

    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales. In this fluid dynamics video, submitted to the 30th Annual Gallery of Fluid Motion, we show the basic mechanism of the technique and a simple way of visualize it. Since acoustophoretic phenomena is essentially a three-dimensional effect, we employ a simple technique to visualize the particles in 3D. The technique is called Astigmatism Particle Tracking Velocimetry and it consists in the use of cylindrical lenses to induce a deformation in the particle shape, which will be then correlated with its distance from the observer. With this method we are able to dive with the particles and observe in detail particle motion that would otherwise be missed. The technique not only permits visualization but also precise quantitat...

  5. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  6. Patch near-field acoustic holography: The influence of acoustic contributions from outside the source

    Fernandez Grande, Efren; Jacobsen, Finn; Zhang, Yong-Bin

    2009-01-01

    to the patch. The purpose of this paper is to investigate how the acoustic radiation from outside the patch area influences the reconstruction of the sound field close to the source. The reconstruction is based on simulated measurements of sound pressure and particle velocity. The methods used in this paper...

  7. On noninvasive assessment of acoustic fields acting on the fetus

    Antonets, V. A.; Kazakov, V. V.

    2014-05-01

    The aim of this study is to verify a noninvasive technique for assessing the characteristics of acoustic fields in the audible range arising in the uterus under the action of maternal voice, external sounds, and vibrations. This problem is very important in view of actively developed methods for delivery of external sounds to the uterus: music, maternal voice recordings, sounds from outside the mother's body, etc., that supposedly support development of the fetus at the prenatal stage psychologically and cognitively. However, the parameters of acoustic signals have been neither measured nor normalized, which may be dangerous for the fetus and hinder actual assessment of their impact on fetal development. The authors show that at frequencies below 1 kHz, acoustic pressure in the uterus may be measured noninvasively using a hydrophone placed in a soft capsule filled with liquid. It was found that the acoustic field at frequencies up to 1 kHz arising in the uterus under the action of an external sound field has amplitude-frequency parameters close to those of the external field; i.e., the external field penetrates the uterus with hardly any difficulty.

  8. Investigation on acoustic holography reconstruction of scattering field of target

    BAO Xuemei; HE Zuoyong

    2000-01-01

    The BEM-based (Boundary EIement Method) scattering near field acoustic holography technique, which can be used to reconstruct the scattering sound field on the surface of a target and predict the whole scattering field from measured scattering near field, is described.First, the fundamental equations of this method and the related separation method for scattering field are brought forward. Then the problems such as the affect of different hologram to reconstructed result, the availability of singular value filter method and the applicability of separation method for scattering field are analyzed by means of numerical simulation.

  9. Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes

    Christensen, J; García de Abajo, F. Javier

    2010-01-01

    We present a theoretical study on the amplification of evanescent sound waves produced by coupling to trapped modes hosted by a fluidic planar waveguide. Total internal reflection at interfaces of different refractive indexes can be frustrated by the introduction of a slow slab waveguide which is leading to a gigantic field enhancement, useful for sensitive transducers and acoustic shock lithotripsy. The mechanism behind the evanescent field coupling that is also known as tunnelling barrier p...

  10. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  11. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  12. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    and circulating energy in the near-field of the source. This quantity is of concern because it makes it possible to identify the regions of a source that contribute to the far field radiation, which is often the ultimate concern in noise control. Therefore, this is a very useful analysis tool complementary......The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...

  13. Theoretical and experimental examination of near-field acoustic levitation.

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense. PMID:12002842

  14. Acoustic spectroscopy: A powerful analytical method for the pharmaceutical field?

    Bonacucina, Giulia; Perinelli, Diego R; Cespi, Marco; Casettari, Luca; Cossi, Riccardo; Blasi, Paolo; Palmieri, Giovanni F

    2016-04-30

    Acoustics is one of the emerging technologies developed to minimize processing, maximize quality and ensure the safety of pharmaceutical, food and chemical products. The operating principle of acoustic spectroscopy is the measurement of the ultrasound pulse intensity and phase after its propagation through a sample. The main goal of this technique is to characterise concentrated colloidal dispersions without dilution, in such a way as to be able to analyse non-transparent and even highly structured systems. This review presents the state of the art of ultrasound-based techniques in pharmaceutical pre-formulation and formulation steps, showing their potential, applicability and limits. It reports in a simplified version the theory behind acoustic spectroscopy, describes the most common equipment on the market, and finally overviews different studies performed on systems and materials used in the pharmaceutical or related fields. PMID:26976503

  15. Ion acoustic waves in large radio-frequency electric fields

    The propagation of ion acoustic waves (IAW) in high-frequency fields is experimentally studied. The resulting phase-velocity shift and enhanced damping are observed for RF-field amplitudes up to α/sub e/ approximately equal to .5, where α/sub e/ = eE/(m/sub e/ω0v/sub e/) is the normalized amplitude. Good agreement with the theory of Albright is found. (auth)

  16. Sound field simulation and acoustic animation in urban squares

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  17. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  18. Acoustic Radiation Force on a Finite-Sized Particle due to an Acoustic Field in a Viscous Compressible Fluid

    Annamalai, Subramanian; Parmar, Manoj; Balachandar, S.

    2013-11-01

    Particles when subjected to acoustic waves experience a time-averaged second-order force known as the acoustic radiation force, which is of prime importance in the fields of microfluidics and acoustic levitation. Here, the acoustic radiation force on a rigid spherical particle in a viscous compressible medium due to progressive and standing waves is considered. The relevant length scales include: particle radius (a), acoustic wavelength (λ) and viscous penetration depth (δ). While a / λ and a / δ are arbitrary, δ acoustic radiation force. Subsequently, the monopole and dipole strengths are represented in terms of the particle surface and volume averages of the incoming velocity. This generalization allows one to evaluate the radiation force for an incoming wave of any functional form. However acoustic streaming effects are neglected.

  19. Acoustic tomographic imaging of temperature and flow fields in air

    Acoustic travel-time tomography is a remote sensing technique that uses the dependence of sound speed in air on temperature and wind speed along the sound propagation path. Travel-time measurements of acoustic signals between several sound sources and receivers travelling along different paths through a measuring area give information on the spatial distribution of temperature and flow fields within the area. After a separation of the two influences, distributions of temperature and flow can be reconstructed using inverse algorithms. As a remote sensing method, one advantage of acoustic travel-time tomography is its ability to measure temperature and flow field quantities without disturbing the area under investigation due to insertion of sensors. Furthermore, the two quantities—temperature and flow velocity—can be recorded simultaneously with this measurement method. In this paper, an acoustic tomographic measurement system is introduced which is capable of resolving three-dimensional distributions of temperature and flow fields in air within a certain volume (1.3 m × 1.0 m × 1.2 m) using 16 acoustic transmitter–receiver pairs. First, algorithms for the 3D reconstruction of distributions from line-integrated measurements are presented. Moreover, a measuring apparatus is introduced which is suited for educational purposes, for demonstration of the method as well as for indoor investigations. Example measurements within a low-speed wind tunnel with different incident flow situations (e.g. behind bluff bodies) using this system are shown. Visualizations of the flow illustrate the plausibility of the tomographically reconstructed flow structures. Furthermore, alternative individual measurement methods for temperature and flow speed provide comparable results

  20. A System for Acoustic Field Measurement Employing Cartesian Robot

    Szczodrak Maciej

    2016-09-01

    Full Text Available A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar and particle velocity(vector quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

  1. Integrating Acoustic Imaging of Flow Regimes With Bathymetry: A Case Study, Main Endeavor Field

    Bemis, K. G.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2003-12-01

    A unified view of the seafloor and the hydrothermal flow regimes (plumes and diffuse flow) is constructed for three major vent clusters in the Main Endeavour Field (e.g., Grotto, S&M, and Salut) of the Endeavour Segment, Juan de Fuca Ridge. The Main Endeavour Field is one of RIDGE 2000's Integrated Study Sites. A variety of visualization techniques are used to reconstruct the plumes (3D) and the diffuse flow field (2D) based on our acoustic imaging data set (July 2000 cruise). Plumes are identified as volumes of high backscatter intensity (indicating high particulate content or sharp density contrasts due to temperature variations) that remained high intensity when successive acoustic pings were subtracted (indicating that the acoustic targets producing the backscatter were in motion). Areas of diffuse flow are detected using our acoustic scintillation technique (AST). For the Grotto vent region (where a new Doppler technique was used to estimate vertical velocities in the plume), we estimate the areal partitioning between black smoker and diffuse flow in terms of volume fluxes. The volumetric and areal regions, where plume and diffuse flow were imaged, are registered over the bathymetry and compared to geologic maps of each region. The resulting images provide a unified view of the seafloor by integrating hydrothermal flow with geology.

  2. Aero-acoustic Measurement and Monitoring of Dynamic Pressure Fields Project

    National Aeronautics and Space Administration — This innovative and practical measurement and monitoring system optimally defines dynamic pressure fields, including sound fields. It is based on passive acoustic...

  3. Measurement of incident sound power using near field acoustic holography

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse and the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit area; and it...... has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH). The...

  4. Acoustic source localization in mixed field using spherical microphone arrays

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  5. The near-field acoustic levitation of high-mass rotors

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  6. The near-field acoustic levitation of high-mass rotors

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  7. The near-field acoustic levitation of high-mass rotors.

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope. PMID:25362441

  8. An Acoustic and Perceptual Study of Final Stops Produced by Profoundly Hearing Impaired Adolescents

    Khouw, Edward; Ciocca, Valter

    2006-01-01

    Purpose: This study investigated formant frequencies for their role as acoustic and perceptual correlates to the place of articulation of Cantonese final stops produced by profoundly hearing impaired speakers. Method: Speakers were 10 Cantonese adolescents (mean age = 13;5 [years;months]) who were profoundly hearing impaired (HI). Control speakers…

  9. The spatial context of free-ranging Hawaiian spinner dolphins (Stenella longirostris) producing acoustic signals

    Lammers, MO; Schotten, M; Au, WWL

    2006-01-01

    To improve our understanding of how dolphins use acoustic signals in the wild, a three-hydrophone towed array was used to investigate the spatial occurrence of Hawaiian spinner dolphins (Stenella longirostris) relative to each other as they produced whistles, burst pulses, and echolocation clicks. G

  10. Field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket

    It was developed a physical model, which allowed calculating a field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket. For space launching site Baikonur it is shown that the nearest horizontal distance from launching site of rocket up to which arrive infrasound waves, produced by supersonic flight of a rocket, is 56 km. Amplitude of acoustic impulse decreases in 5 times on distance of 600 km. Duration of acoustic impulse increases from 1.5 to 3 s on the same distance. Values of acoustic field parameters on the earth surface, practically, do not depend from season of launching of rocket. (author)

  11. Fast computation of the acoustic field for ultrasound elements.

    Güven, H Emre; Miller, Eric L; Cleveland, Robin O

    2009-09-01

    A fast method for computing the acoustic field of ultrasound transducers is presented with application to rectangular elements that are cylindrically focused. No closed-form solutions exist for this case but several numerical techniques have been described in the ultrasound imaging literature. Our motivation is the rapid calculation of imaging kernels for physics-based diagnostic imaging for which current methods are too computationally intensive. Here, the surface integral defining the acoustic field from a baffled piston is converted to a 3-D spatial convolution of the element surface and the Green's function. A 3-D version of the overlap-save method from digital signal processing is employed to obtain a fast computational algorithm based on spatial Fourier transforms. Further efficiency is gained by using a separable approximation to the Green's function through singular value decomposition and increasing the effective sampling rate by polyphase filtering. The tradeoff between accuracy and spatial sampling rate is explored to determine appropriate parameters for a specific transducer. Comparisons with standard tools such as Field II are presented, where nearly 2 orders of magnitude improvement in computation speed is observed for similar accuracy. PMID:19811993

  12. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    Bulanov, Alexey V., E-mail: a-bulanov@me.com [Far Eastern Federal University, Vladivostok, Russia 690950 (Russian Federation); V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, Russia 690041 (Russian Federation); Nagorny, Ivan G., E-mail: ngrn@mail.ru [Far Eastern Federal University, Vladivostok, Russia 690950 (Russian Federation); Institute for automation and control processes, Vladivostok, Russia 690041 (Russian Federation)

    2015-10-28

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  13. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained

  14. Near-field acoustical holography of military jet aircraft noise

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  15. Effect of non-uniform mean flow field on acoustic propagation problems in computational aeroacoustics

    Si, Haiqing; Shen, Wen Zhong; Zhu, Wei Jun

    2013-01-01

    Acoustic propagation in the presence of a non-uniform mean flow is studied numerically by using two different acoustic propagating models, which solve linearized Euler equations (LEE) and acoustic perturbation equations (APE). As noise induced by turbulent flows often propagates from near field t...

  16. Trip Report-Produced-Water Field Testing

    Sullivan, Enid J. [Los Alamos National Laboratory

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  17. Acoustic tracking of a freely drifting sonobuoy field

    Dosso, Stan E.; Collison, Nicole E. B.

    2002-05-01

    This paper develops an acoustic inversion algorithm to track a field of freely drifting sonobuoys using travel-time measurements from a series of nonsimultaneous impulsive sources deployed around the field. In this scenario, the time interval between sources can be sufficiently long that significant independent movement of the individual sonobuoys occurs. In addition, the source transmission instants are unknown, and the source positions and initial sonobuoy positions are known only approximately. The formulation developed here solves for the track of each sonobuoy (parametrized by the sonobuoy positions at the time of each source transmission), allowing arbitrary, independent sonobuoy motion between transmissions, as well as for the source positions and transmission instants. This leads to a strongly underdetermined inverse problem. However, regularized inversion provides meaningful solutions by incorporating a priori information consisting of prior estimates (with uncertainties) for the source positions and initial sonobuoy positions, and a physical model for preferred sonobuoy motion. Several models for sonobuoy motion are evaluated, with the best results obtained by minimizing the second spatial derivative of the tracks to obtain the minimum-curvature or smoothest track, subject to fitting the acoustic data to a statistically appropriate level.

  18. Acoustic tracking of a freely drifting sonobuoy field.

    Dosso, Stan E; Collison, Nicole E B

    2002-05-01

    This paper develops an acoustic inversion algorithm to track a field of freely drifting sonobuoys using travel-time measurements from a series of nonsimultaneous impulsive sources deployed around the field. In this scenario, the time interval between sources can be sufficiently long that significant independent movement of the individual sonobuoys occurs. In addition, the source transmission instants are unknown, and the source positions and initial sonobuoy positions are known only approximately. The formulation developed here solves for the track of each sonobuoy (parametrized by the sonobuoy positions at the time of each source transmission), allowing arbitrary, independent sonobuoy motion between transmissions, as well as for the source positions and transmission instants. This leads to a strongly underdetermined inverse problem. However, regularized inversion provides meaningful solutions by incorporating a priori information consisting of prior estimates (with uncertainties) for the source positions and initial sonobuoy positions, and a physical model for preferred sonobuoy motion. Several models for sonobuoy motion are evaluated, with the best results obtained by minimizing the second spatial derivative of the tracks to obtain the minimum-curvature or smoothest track, subject to fitting the acoustic data to a statistically appropriate level. PMID:12051436

  19. Controlled Acoustic Bass System (CABS) A Method to Achieve Uniform Sound Field Distribution at Low Frequencies in Rectangular Rooms

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2008-01-01

    The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CABS...

  20. Patch near field acoustic holography based on particle velocity measurements

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing; Chen, Xin-Zhao

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies......, PNAH based on particle velocity measurements can give better results than the pressure-based PNAH with a reduced number of iterations. A simulation study, as well as an experiment carried out with a pressure-velocity sound intensity probe, demonstrates these findings....

  1. An acoustical study of English word stress produced by Americans and Koreans

    Yang, Byunggon

    2002-05-01

    Acoustical correlates of stress can be divided into duration, intensity, and fundamental frequency. This study examined the acoustical difference in the first two syllables of stressed English words produced by ten American and Korean speakers. The Korean subjects scored very high in TOEFL. They read, at a normal speed, a fable from which the acoustical parameters of eight words were analyzed. In order to make the data comparison meaningful, each parameter was collected at 100 dynamic time points proportional to the total duration of the two syllables. Then, the ratio of the parameter sum of the first rime to that of the second rime was calculated to determine the relative prominence of the syllables. Results showed that the durations of the first two syllables were almost comparable between the Americans and Koreans. However, statistically significant differences showed up in the diphthong pronunciations and in the words with the second syllable stressed. Also, remarkably high r-squared values were found between pairs of the three acoustical parameters, which suggests that either one or a combination of two or more parameters may account for the prominence of a syllable within a word. [Work supported by Korea Science Foundation R01-1999-00229.

  2. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  3. Numerical derivation of forces on particles and agglomerates in a resonant acoustic field

    Knoop, Claas; Fritsching, Udo

    2013-10-01

    Particles and agglomerates are investigated in gaseous acoustic flow fields. Acoustic fields exert forces on solid objects, which can influence the shape of the exposed bodies, even to the point of breakage of the structures. Motivated by experimentally observed breakage of agglomerates in an acoustic levitator (f = 20 kHz), a numerical study is presented that derives the acoustic forces on a complex model agglomerate from the pressure and velocity fields of a resonant standing ultrasound wave, calculated by computational fluid dynamics (CFD). It is distinguished between the drag and lift/lateral forces on the overall agglomerate and on the different primary particles of the model.

  4. Orbital motions of bubbles in an acoustic field

    Shirota, Minori; Yamashita, Ko; Inamura, Takao

    2012-09-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.

  5. Experimental verification of subwavelength acoustic focusing using a near-field array of closely spaced elements.

    Abasi, Reza; Markley, Loïc; Eleftheriades, George V

    2011-12-01

    A linear array of closely spaced sound transducers is presented that can produce a subwavelength-focused intensity profile at a distance of a quarter wavelength. This work is related to research on super-resolution using metamaterials in both the acoustic and optical domains. It is designed using the principle of shifted beams, a near-field antenna array theory developed for the subwavelength focusing of electromagnetic waves. Once the spatial sound pattern is characterized for each source, the optimal weights for a minimum beam width can be calculated. An experiment operating at 4 kHz was able to successfully construct a super-focused beam. PMID:22225134

  6. Instability of the critical surface of a laser-produced plasma in the presence of ion-acoustic turbulence

    The critical surface can be unstable to coherent rippling perturbations due to the action of negative pressure induced by the random magnetic field associated with ion-acoustic turbulence. The negative magnetic pressure occurs if there exists a preferential orientation of the random magnetic field (anisotropy of the ion-acoustic turbulence) when the nonpotential component of the magnetic pressure more than compensates the potential part

  7. Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography.

    Gren, P; Schedin, S; Li, X

    1998-02-10

    Pulsed TV holography combined with computerized tomography (CT) are used to evaluate the three-dimensional distribution of transient acoustic fields in air. Experiments are performed with an electrical discharge between two electrodes as the sound source. Holograms from several directions of the acoustic field are recorded directly onto a CCD detector by use of a double-pulsed ruby laser as the light source. Phase maps, representing projections of the acoustic field, are evaluated quantitatively from the recorded holograms. The projections are used for the CT reconstruction to evaluate the pressure-field distribution in any cross section of the measured volume of air. PMID:18268660

  8. Stimulated Brillouin scattering phase-locking using a transient acoustic standing wave excited through an optical interference field

    Complete text of publication follows. Analytical description of an experimentally verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS), used in a laser beam combination systems, is presented. The essential condition for the phase-locking effect for SBS is the fixation of the starting position and time of the acoustic Brillouin wave. It is shown that the starting position fixation of this acoustic wave may have its origin in a transient acoustic standing wave initiated by an arising optical interference field produced by the back-seeding concave mirror. This interference field leads to a stationary density modulation of the medium. However, the way to the formation of this density modulation leads via the acoustic standing wave. An appropriate solution, in the form of the standing wave, was obtained from solving the acoustic wave-equation using the electrostriction as a driving force. As a consequence of the damping term included in this equation the acoustic standing wave becomes gradually attenuated and contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon. Using a mathematical formalism similar to that which is used for the SBS description in the case of a random phase, the coupled equations describing the phase-locked SBS were derived. Contrary to the case without the back-seeding mirror, where the wave chosen from the thermal noise background subsequently plays the role of a trigger of the stimulated process, in this case it is replaced by the transient standing wave produced as a consequence of the presence of an optical interference field arisen in the focal region of the back-seeding concave mirror.

  9. Development of anticavitation hydrophone using a titanium front plate: Effect of the titanium front plate in high-intensity acoustic field with generation of acoustic cavitation

    Shiiba, Michihisa; Okada, Nagaya; Kurosawa, Minoru; Takeuchi, Shinichi

    2016-07-01

    Novel anticavitation hydrophones were fabricated by depositing a hydrothermally synthesized lead zirconate titanate polycrystalline film at the back of a titanium front plate. These anticavitation hydrophones were not damaged by the measurement of the acoustic field formed by a high-intensity focused ultrasound (HIFU) device. Their sensitivity was improved by approximately 20 dB over that of the conventional anticavitation hydrophone by modifying their basic structure and materials. The durability of the anticavitation hydrophone that we fabricated was compared by exposing it to a high-intensity acoustic field at the focal point of the HIFU field and in the water tank of an ultrasound cleaner. Therefore, the effect of the surface of the titanium front plate on acoustic cavitation was investigated by exposing such a surface to the high-intensity acoustic field. We found that the fabricated anticavitation hydrophone was robust and was not damaged easily, even in the focused acoustic field where acoustic cavitation occurs.

  10. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    Faqi Li

    2015-12-01

    Full Text Available Resolution of high intensity focused ultrasound (HIFU focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102. This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  11. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    Li, Faqi; Song, Dan; Zeng, Deping; Lin, Zhou; He, Min; Lei, Guangrong; Wu, Junru; Zhang, Dong; Wang, Zhibiao

    2015-12-01

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  12. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing 401121 (China); Song, Dan; Lei, Guangrong [National Engineering Research Center of Ultrasound Medicine, Chongqing 401121 (China); Lin, Zhou; Zhang, Dong, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Wu, Junru [Department of Physics, University of Vermont, Burlington, VT 05405 (United States)

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  13. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results

  14. Field reversal produced by a plasma gun

    Experimental results are presented of the production of Field-Reversed Plasma with a high energy coaxial plasma gun. The gun is magnetized with solenoids inside the center electrode and outside the outer electrode so that plasma emerging from the gun entrains the radial fringer field at the muzzle. The plasma flow extends field lines propagating a high electrical conductivity, the flux inside the center electrode should be preserved. However, for low flux, the trapped flux exceeds by 2 or more the initial flux, possibly because of helical deformation of the current channel extending from the center electrode

  15. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  16. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration

  17. Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fishes.

    Kalmijn, A D

    2000-01-01

    The acoustic near field of quietly moving underwater objects and the bio-electric field of aquatic animals exhibit great similarity, as both are predominantly governed by Laplace's equation. The acoustic and electrical sensory modalities thus may, in directing fishes to their prey, employ analogous processing algorithms, suggesting a common evolutionary design, founded on the salient physical features shared by the respective stimulus fields. Sharks and rays are capable of orientating to the ...

  18. Prediction and near-field observation of skull-guided acoustic waves

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoaco...

  19. The near field acoustic holography technique for cyclostationary sound field and its experimental research

    WAN Quan; JIANG Weikang

    2005-01-01

    One near field acoustic holography (NAH) technique is proposed for analyzing cyclostationary sound field. The signal of this kind of sound field has very serious modulation phenomenon generally, in spectrum of which obvious sidebands exist. It is difficult for the traditional NAH to possess demodulation function, so virtual power of sidebands exists in its hologram. Replacing the Fourier's transform with the second-order cyclic statistics, the proposed NAH technique uses the cyclic spectrum density (CSD) function as reconstructed physical quantity, instead of the spectrum or power spectrum density of sound pressure signal.The CSD function can demodulate cyclostationary signals, which makes no virtual power of sidebands in its hologram. The results of simulation and experiment show that the proposed NAH can extract more information about cyclostationary sound field than traditional NAH, by which sound field can be known more clearly.

  20. Ion acoustic instability of HPT particles, FAC density, anomalous resistivity and parallel electric field in the auroral region

    C S Jayasree; G Renuka; C Venugopal

    2003-12-01

    During the magnetic storm of 21st March 1990, the DE-1 spacecraft encountered the auroral region at high invariant latitude at altitudes ranging from a few thousand kilometers in the ionosphere to many earth radii in the magnetosphere. The magnetic field perturbations interpretable as field aligned current (FAC) layers and the electrostatic turbulence possibly due to electrostatic ion acoustic instability driven by these currents are shown. The critical drift velocity of Hot Plasma Torus (HPT) electrons and the growth rate of ion acoustic wave as a function of electron to ion temperature ratio (/) for low and high current densities and energy of HPT electrons are found out. The intense FAC destabilizes the ion acoustic wave and the resultant electrostatic turbulence creates an anomalous resistivity. The current driven resistivity produces parallel electric field and high power dissipation. The anomalous resistivity , potential differnece along the auroral field lines ∥, intensity of electric field turbulence ∥ and power produced per unit volume are computed. It is found that the change in westward magnetic perturbation increases ∥; ; ∥ ;∥ and . Hence HPT electrons are heated and accelerated due to power dissipation during magnetically active periods in the auroral region. Concerning, applications, such HPT electrons can be used in particle accelerators like electron ring accelerator, smokatron etc.

  1. Axial acoustic radiation force on a sphere in Gaussian field

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated. Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers

  2. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  3. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    2010-01-01

    Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.

  4. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    A rotating superconductor magnet is described for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet

  5. Lift-Off Acoustics Prediction of Clustered Rocket Engines in the Near Field

    Vu, Bruce; Plotkin, Ken

    2010-01-01

    This slide presentation presents a method of predicting acoustics during lift-off of the clustered rocket engines in the near field. Included is a definition of the near field, and the use of deflectors and shielding. There is discussion about the use of PAD, a software system designed to calculate the acoustic levels from the lift of of clustered rocket enginee, including updates to extend the calculation to directivity, water suppression, and clustered nozzles.

  6. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  7. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    Schwieger, J.; Baumann, B.; Wolff, M.; Manders, F.; Suijker, J.

    2015-11-01

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  8. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force. PMID:20040404

  9. Applications of digital holography in visualized measurement of acoustic and flow fields

    Zhao, Jianlin; Li, Enpu; Sun, Weiwei; Di, Jianglei

    2010-03-01

    Digital holography allows recording the hologram using digitally imaging devices such as CCD, and reconstructing the holographic image by numerically simulating the diffraction of the hologram. Its main advantages are by which one can directly obtain the complex amplitude distribution of the object field, so that more impersonally measure the detail information of the object field, such as the distribution of the refractive index changing in crystals induced by light irradiation, deformation of the object surface, particle distribution, as well as acoustic field, flow field and temperature distribution in air. In this paper, we summarize the principle and some of our experimental results on the applications of digital holography in visualized measurement of acoustic standing wave (acoustic levitation field), plasma plume and water flow (Karman vortex street) fields.

  10. Acoustic experience shapes alternative mating tactics and reproductive investment in male field crickets.

    Bailey, Nathan W; Gray, Brian; Zuk, Marlene

    2010-05-11

    Developmental plasticity allows juvenile animals to assess environmental cues and adaptively shape behavioral and morphological traits to maximize fitness in their adult environment. Sexual signals are particularly conspicuous cues, making them likely candidates for mediating such responses. Plasticity in male reproductive traits is a common phenomenon, but empirical evidence for signal-mediated plasticity in males is lacking. We tested whether experience of acoustic sexual signals during juvenile stages influences the development of three adult traits in the continuously breeding field cricket Teleogryllus oceanicus: male mating tactics, reproductive investment, and condition. All three traits were affected by juvenile acoustic experience. Males of this species produce a long-range calling song to attract receptive females, but they can also behave as satellites by parasitizing other males' calls. Males reared in an environment mimicking a population with many calling males were less likely to exhibit satellite behavior, invested more in reproductive tissues, and attained higher condition than males reared in a silent environment. These results contrast with other studies and demonstrate how the effects of juvenile social experience on adult male morphology, reproductive investment, and behavior may subsequently influence sexual selection and phenotypic evolution. PMID:20417103

  11. NATO TG-53: acoustic detection of weapon firing joint field experiment

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  12. Deformation of biological cells in the acoustic field of an oscillating bubble.

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  13. Numerical Analysis of the Acoustic Field of Tip-Clearance Flow

    Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team

    2015-11-01

    Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.

  14. Numerical study on scanning radiation acoustic field in formations generated from a borehole

    CHE Xiaohua; ZHANG Hailan; QIAO Wenxiao; JU Xiaodong

    2005-01-01

    Numerical study on scanning radiation acoustic field in formations generated by linear phased array transmitters in a fluid-filled borehole is carried out using a real axis integration (RAI) method. The main lobe width of the acoustic beams and the incident angle on the borehole wall can be controlled by means of adjusting parameters, such as the element number and the delay time between the neighboring array elements of linear phased array transmitter. The steered angle of longitudinal waves generated in the formation satisfies the Snell's law for plane waves when the incident angle on the borehole wall is less than the first critical angle. When the lobe width of the acoustic beams is narrow and the steered angle is less than the first critical angle, the acoustic field in the formation can be approximately calculated given that the linear phased array is put in the formation without borehole. The technique of scanning radiation acoustic field can be applied to enhancing investigation resolution and signal-to-noise ratio in crosswell seismic survey and borehole acoustic reflection imaging.

  15. Optical imaging of transient acoustic fields using a phase contrast method

    Clement, G T

    2014-01-01

    A coherent phase-contrast optical system has been designed and tested for tomographic imaging of pressure fields from experimental transient acoustic signals. The system is similar to the pulsed, central-order schlieren method, but uses a Fourier filtering technique that images the actual acoustic pressure field, where the former technique reconstructs only the absolute value of the field. Simulations of the system are performed using a single-cycle sine-wave acoustic pulse. Experimental images resulting from a broad-band Gaussian pulse input to an underwater piezoceramic transducer array are presented. Relative pressure field s are reconstructed in space over a series of times after the source excitation. Theory and limitations of the phase contrast system are discussed.

  16. Free Field Reciprocity Calibration in a Convergent Spherical Acoustic Wave of a Focusing Transducer

    寿文德; 严加勇; 王鸿樟; 钱德初

    2002-01-01

    Based on the reciprocity theorem of the acoustic field, we derive the formula of the reciprocity coefficient of a convergent spherical acoustic wave and we calculate a series of diffraction corrective factor curves of the reciprocity coefficient of transducers. Using these formulae and corrective factors, we calibrate the free field transmitting current response and the free field voltage sensitivity of a focusing transducer using the self-reciprocity method.The experimental results of the reciprocity calibration of the focusing transducer in the frequency range of 2 MHz to 5.4 MHz are presented.

  17. Identification of vibration excitations from acoustic measurements using near field acoustic holography and the force analysis technique

    Pézerat, C.; Leclère, Q.; Totaro, N.; Pachebat, M.

    2009-10-01

    This study presents a method of using acoustic holography and the force analysis technique to identify vibration sources from radiated noise measurements. The structure studied is a plate excited by a shaker on which three measurements were performed: the first is a reference measurement of plate velocity obtained by scanning laser vibrometry, the second is based on sound pressure measurements in the near field of the structure, and the third is the measurement of normal acoustic velocities by using a p-U probe recently developed by Microflown Technologies. This was followed by the application of classical NAH, known as pressure-to-velocity holography and velocity-to-velocity holography to predict the plate velocity field from acoustic measurements at distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF technique, is applied with these five data sets. The principle is to inject the displacement field of the structure into its equation of motion and extract the resulting force distribution. This technique requires regularization done by a low-pass filter in the wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the reconstructed force distribution allows localizing the excitation point in the measurement area. FAT regularization is also shown to improve results as its cutoff wavenumber is optimized with the natural wavenumber of the plate. Lastly, quantitative force values are extracted from force distributions at all frequencies of the band 0-4 kHz studied and compared with the force spectrum measured directly by a piezoelectric sensor.

  18. Design of acoustic logging signal source of imitation based on field programmable gate array

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes. (paper)

  19. Thermally induced secondary atomization of droplet in an acoustic field

    Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-01-01

    We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization.

  20. Acoustic correlates of talker sex and individual talker identity are present in a short vowel segment produced in running speech.

    Bachorowski, J A; Owren, M J

    1999-08-01

    Although listeners routinely perceive both the sex and individual identity of talkers from their speech, explanations of these abilities are incomplete. Here, variation in vocal production-related anatomy was assumed to affect vowel acoustics thought to be critical for indexical cueing. Integrating this approach with source-filter theory, patterns of acoustic parameters that should represent sex and identity were identified. Due to sexual dimorphism, the combination of fundamental frequency (F0, reflecting larynx size) and vocal tract length cues (VTL, reflecting body size) was predicted to provide the strongest acoustic correlates of talker sex. Acoustic measures associated with presumed variations in supralaryngeal vocal tract-related anatomy occurring within sex were expected to be prominent in individual talker identity. These predictions were supported by results of analyses of 2500 tokens of the /epsilon/ phoneme, extracted from the naturally produced speech of 125 subjects. Classification by talker sex was virtually perfect when F0 and VTL were used together, whereas talker classification depended primarily on the various acoustic parameters associated with vocal-tract filtering. PMID:10462810

  1. Variation of Acoustic Power with Magnetic Field as seen in Gong+ Data

    Venkatakrishnan, P; Tripathy, S C; Kumar, Brajesh

    2002-01-01

    The acoustic spectra in sunspots are known to be richer in higher frequency power. We have attempted a generalized study of the effect of magnetic fields on the shape of the acoustic spectrum using GONG+ bread-board data (spatial scale of ~ 2 arc-sec per pixel) of 11 May, 2000 and 12 June, 2000. The mean power spectra of the velocity oscillations were obtained by averaging over several spectra for different values of the magnetic field. With increasing magnetic field, the acoustic power increases at higher frequencies and decreases at lower frequencies with a transition at ~= 5 mHz. This behaviour is slightly different from earlier results obtained from SOHO/MDI data.

  2. Oil field produced water discharges into wetlands in Wyoming

    US Fish and Wildlife Service, Department of the Interior — Approximately 600 oil field produced water discharges are permitted in Wyoming by the State’s Department of Environmental Quality's (WDEQ) National Pollutant...

  3. Detection and modeling of the acoustic perturbation produced by the launch of the Space Shuttle using the Global Positioning System

    Bowling, T. J.; Calais, E.; Dautermann, T.

    2010-12-01

    Rocket launches are known to produce infrasonic pressure waves that propagate into the ionosphere where coupling between electrons and neutral particles induces fluctuations in ionospheric electron density observable in GPS measurements. We have detected ionospheric perturbations following the launch of space shuttle Atlantis on 11 May 2009 using an array of continually operating GPS stations across the Southeastern coast of the United States and in the Caribbean. Detections are prominent to the south of the westward shuttle trajectory in the area of maximum coupling between the acoustic wave and Earth’s magnetic field, move at speeds consistent with the speed of sound, and show coherency between stations covering a large geographic range. We model the perturbation as an explosive source located at the point of closest approach between the shuttle path and each sub-ionospheric point. The neutral pressure wave is propagated using ray tracing, resultant changes in electron density are calculated at points of intersection between rays and satellite-to-reciever line-of-sight, and synthetic integrated electron content values are derived. Arrival times of the observed and synthesized waveforms match closely, with discrepancies related to errors in the apriori sound speed model used for ray tracing. Current work includes the estimation of source location and energy.

  4. Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    Zhou, Deng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People' s Republic of China and Centre for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-09-15

    The dispersion relation of geodesic acoustic modes in the tokamak plasma with an equilibrium radial electric field is derived and analyzed. Multiple branches of eigenmodes have been found, similar to the result given by the fluid model with a poloidal mass flow. Frequencies and damping rates of both the geodesic acoustic mode and the sound wave increase with respect to the strength of radial electric field, while the frequency and the damping rate of the lower frequency branch slightly decrease. Possible connection to the experimental observation is discussed.

  5. Convergent acoustic field of view in echolocating bats

    Jakobsen, Lasse; Ratcliffe, John M; Surlykke, Annemarie

    2013-01-01

    Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed on...... wavelength by preferred prey size have been used to explain this relationship. Here we propose the hypothesis that smaller bats emit higher frequencies to achieve directional sonar beams, and that variable beam width is critical for bats. Shorter wavelengths relative to the size of the emitter translate into...... more directional sound beams. Therefore, bats that emit their calls through their mouths should show a relationship between mouth size and wavelength, driving smaller bats to signals of higher frequency. We found that in a flight room mimicking a closed habitat, six aerial hawking vespertilionid...

  6. Research Into the Influence of the Acoustic Field on the Efficiency of Removing Aerosols

    Vladas Vekteris

    2012-12-01

    Full Text Available The paper presents the methods for reducing harmful aerosols from galvanic baths polluting the environment under conditions when air flow helps in forming an acoustic field above the bath. The findings show that the level of air humidy is the lowest when aerosols are removed with the help of a side exhauster. Side effects on acoustic coagulation may occur. Aerosol coagulates when elevated above the liquid and returns to liquid not dispersed in the evironment. The article introduces active suckers in accordance to their form and effectiveness collecting pollutants. The dependence of humidity on temperature is analyzed under the impact of external factors such as sucking, blowing and sucking or blowing, sucking and an acoustic field. The paper also discusses data on the dependence of sound pressure and looks at the level of frequency distribution.Article in Lithuanian

  7. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2014-03-01

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  8. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    Chen, Tao; Fan, Tingbo [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012 (China); Zhang, Wei [Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012 (China); Qiu, Yuanyuan [Department of electronic information, Nantong University, Nantong 226019 (China); Tu, Juan, E-mail: juantu@nju.edu.cn, E-mail: dzhang@nju.edu.cn; Guo, Xiasheng [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Zhang, Dong, E-mail: juantu@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Institute of Acoustics, State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  9. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.

  10. Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction

    Oba, Roger; Finette, Steven

    2002-02-01

    Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is

  11. Sound field separation technique with double holographic planes and its applications in acoustic holography

    YU Fei; CHEN Jian; CHEN Xinzhao

    2004-01-01

    Sound field separation technique with double holographic planes is proposed, which overcomes the limitation on applications of near-field acoustic holography (NAH) and broadband acoustic holography from intensity measurement (BAHIM). The limitation is that sound field on one side of holographic plane must be free, that is to say, all the sound sources must be confined to the other side; but it is not easy to achieve for industrial measurements. The technique builds the sound field separation formula in wave number domain according to the wave field extrapolation theorem, and the sound pressure caused by sources on one side of holographic plane can be obtained as expected by taking two-dimensional Fourier transform of the formula. The derivation of the principle verifies the technique theoretically. The numerical simulations demonstrate its feasibility and effectiveness.

  12. Recent advances in lateral field excited and monolithic spiral coil acoustic transduction bulk acoustic wave sensor platforms

    The quartz crystal microbalance (QCM) has been used extensively as a bulk acoustic wave (BAW) platform for applications such as chemical and biological sensors and rate monitors in thin film deposition systems. Although the QCM is capable of measuring mechanical property changes critical in many thin film deposition systems, it cannot measure electrical property changes that can occur in many sensor applications. In this paper we review the recent developments of two novel transducer configurations for BAW sensors. In the first sensor, called the lateral field excited (LFE) sensor, the transverse shear mode (TSM) in AT-cut quartz is excited by two electrodes on the reference surface, resulting in a bare sensing surface which allows both electrical and mechanical properties of target analytes to be measured. In the second sensor, called the monolithic spiral coil acoustic transduction (MSCAT) sensor, the TSM is excited by a photolithographically deposited spiral antenna on the reference surface which can excite high-order harmonics in the substrate, and potentially lead to increased sensitivity. The responses of both the LFE and MSCAT sensors to electrical and mechanical property changes of liquids have been examined and compared to the response of the standard QCM. In addition, results relating to the detection of chemical and biological target analytes using the LFE and MSCAT sensor platforms are presented

  13. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has recen...... generated by sources on the two sides of the hologram plane is also examined....

  14. Use of near field acoustic levitation sliding contact

    Stolarski, TA; Woolliscroft, CI

    2007-01-01

    This paper presents an investigation into producing self-levitation effect using piezo-electric actuators (PZT). Self-levitation has been demonstrated and results are presented and discussed. A relationship between the levitation distance and weight of the levitating sample has been found. In addition the orientation and position of the PZTs has been found to affect the levitation distance. Modal shapes of the vibration plates used have been produced through modelling annd found to accurately...

  15. Hydrophone spatial directivity and the induced difference in HIFU acoustic field test

    Chen, T; Zhang, D [Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Hu, J M; Huang, W; Zhang, W, E-mail: Chent_qxs@jsfda.gov.cn [Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012 (China)

    2011-02-01

    Hydrophone has been widely used in testing ultrasonic field distribution. But the hydrophone has a certain directivity, which may bring error in the actual acoustic field measurements. So it is necessary to meet some requirements about the directivity of hydrophone. In the measurement, the spatial directivities of needle hydrophone, membrane hydrophone and robust hydrophone is measured and a comparison about measured data of HIFU acoustic field with them is given. Experimental results indicate that the asymmetric special directivity of hydrophone is due to manufacturing processes and other reasons. As a result, it is not sufficient to test the directivity of hydrophone along one axis. It is necessary to adjust the direction of the hydrophone when characterizing the HIFU field.

  16. Hydrophone spatial directivity and the induced difference in HIFU acoustic field test

    Hydrophone has been widely used in testing ultrasonic field distribution. But the hydrophone has a certain directivity, which may bring error in the actual acoustic field measurements. So it is necessary to meet some requirements about the directivity of hydrophone. In the measurement, the spatial directivities of needle hydrophone, membrane hydrophone and robust hydrophone is measured and a comparison about measured data of HIFU acoustic field with them is given. Experimental results indicate that the asymmetric special directivity of hydrophone is due to manufacturing processes and other reasons. As a result, it is not sufficient to test the directivity of hydrophone along one axis. It is necessary to adjust the direction of the hydrophone when characterizing the HIFU field.

  17. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Xiong, Jichuan [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Xu, Xiaodong, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Glorieux, Christ, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Matsuda, Osamu [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Cheng, Liping [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  18. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz

  19. Study on the High Precision Acoustic Measurement Techniques for Determining Temperature Field Around Seafloor Hydrothermal Vent

    CAI Yong; FAN Wei; ZHOU Yan; FU Xian-qiao; FANG Hui; JIN Tao

    2012-01-01

    This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths of acoustic signal are introduced.Experimental research is performed to exactly rebuild the temperature field around hot springs on the floor of Qiezishan Lake,Yunnan,China.The accuracy of the travel time estimation has been improved based on the aforementioned technique and method.At the same time,by comparison of the results of temperature field with different means,the max absolute error,the maximum relative error and the root mean square error are given.It shows that the technique and the method presented in the paper can be applied to the temperature field measurement detector around the seafloor hydrothermal vent.It also has a good accuracy.

  20. Characterization of the Acoustic Field in Marine Environments with Anthropogenic Noise

    Guan, Shane

    Most animals inhabit the aquatic environment are acoustical-oriented, due to the physical characteristics of water that favors sound transmission. Many aquatic animals depend on underwater sound to navigate, communicate, find prey, and avoid predators. The degradation of underwater acoustic environment due to human activities is expected to affected these animals' well-being and survival at the population level. This dissertation presents three original studies on the characteristics and behavior of underwater sound fields in three unique marine environments with anthropogenic noises. The first study examines the soundscape of the Chinese white dolphin habitat in Taiwan. Acoustic recordings were made at two coastal shallow water locations, Yunlin and Waisanding, in 2012. Results show that croaker choruses are dominant sound sources in the 1.2--2.4 kHz frequency band for both locations at night, and noises from container ships in the 150--300 Hz frequency band define the relative higher broadband sound levels at Yunlin. Results also illustrate interrelationships among different biotic, abiotic, and anthropogenic elements that shape the fine-scale soundscape in a coastal environment. The second study investigates the inter-pulse sound field during an open-water seismic survey in coastal shallow waters of the Arctic. The research uses continuous acoustic recordings collected from one bottom-mounted hydrophone deployed in the Beaufort Sea in summer 2012. Two quantitative methods were developed to examine the inter-pulse sound field characteristics and its dependence on source distances. Results show that inter-pulse sound field could raise the ambient noise floor by as much as 9 dB, depending on ambient condition and source distance. The third study examines the inter-ping sound field of simulated mid-frequency active sonar in deep waters off southern California in 2013 and 2014. The study used drifting acoustic recorder buoys to collect acoustic data during sonar

  1. Two dimensional imaging of laser produced plasma in magnetic field

    A new experimental set which consist of pulse magnetic field system has been developed for two dimensional imaging of laser produced plasma across the transverse magnetic field. A pair of coils coupled with capacitor bank system is used to generate uniform magnetic field varying from 0-0.8 T magnetic. The coils, target and ablation geometry are set in such a way that it facilitate the plume imaging in both across and along the magnetic field lines. Internally synchronized two ICCD cameras, mounted in orthogonal direction have been used to capture the temporal evolution of expending plasma plume. The design, optimization and performance of the above system will discuss in detail. Apart from the technical aspect of the experimental setup, test results related to effect of magnetic field on the geometrical aspect of the expanding plasma across as well as along the magnetic field will discuss briefly. (author)

  2. Absorption boundary conditions for geomertical acoustics

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  3. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    Mueller, D.S.

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  4. Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena).

    Wisniewska, Danuta M; Ratcliffe, John M; Beedholm, Kristian; Christensen, Christian B; Johnson, Mark; Koblitz, Jens C; Wahlberg, Magnus; Madsen, Peter T

    2015-01-01

    Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking. PMID:25793440

  5. Aharonov-Bohm effect for a fermion field in the acoustic black hole background

    Anacleto, M A; Mohammadi, A; Passos, E

    2016-01-01

    In this paper we consider the dynamics of a massive spinor field in the background of the acoustic black hole spacetime and then compute the differential cross section through the use of the partial wave approach. We show that an effect similar to the gravitational Aharonov-Bohm effect occurs for massive fermion fields moving in this effective metric. We discuss the limiting cases and compare the results with the bosonic case.

  6. Modelling of diffuse sound field in architectural acoustic using transport theory

    LE POLLES, T; Picaut, J.; BERENGIER, M

    2001-01-01

    A general formalism to predict the repartition of diffuse sound field energy, in rooms and urban areas including scattering effects, is presented. We propose an exact analytical description of the spatial and temporal evolution of the diffuse sound field energy by the use of a transport equation. Boundary conditions are described in a probabilistic way and are expressed in terms of façade or wall reflection laws including absorption and scattering effects. Applications to room acoustics are t...

  7. Modeling the Underwater Acoustic Field Excited by an Airborne Rapidly Moving Source Using Wavenumber Integration

    Zhang Yipeng; Ma Yuanliang

    2007-01-01

    It is complicated to model the acoustic field in stratified ocean for airborne aircraft, due to high speed of the source and air-to-water sound transmission. To our knowledge, there are very few papers in the open literature dealing with this complicated problem; but, in our opinion,they all require great amount of computation. We now propose a different method that requires much less computation. We improve the wavenumber integration method to model the received temporal signal for a moving source in stratified ocean and sum up in a concise form the core of our paper as follows: (A) Eq. (11) can be calculated by means of fast Chirp Z transform and the signals at all N time points are generated simultaneously; (B) direct numerical evaluation of the wavenumber integral in Eq. (4) produces large numerical errors; so it is necessary to shift the integration slightly below the real axis; (C) we compare the computation cost of direct calculation method with that of our fast calculation method ; from the results presented in table 1,we can see that the fast calculation method consumes much less computation time, particularly for long duration signals; (D) for an airborne rapidly moving source, we compute the Dopplershifted signals in shallow water and analyze their short-time Fourier transform; from Fig. 1b, we can see that the received signals have multiple frequency components for a tonal source due to source motion and that each component corresponds to an arrival path.

  8. Shape oscillation of a levitated drop in an acoustic field

    Ran, Weiyu

    2013-01-01

    A `star drop' refers to the patterns created when a drop, flattened by some force, is excited into shape mode oscillations. These patterns are perhaps best understood as the two dimensional analog to the more common three dimensional shape mode oscillations. In this fluid dynamics video an ultrasonic standing wave was used to levitate a liquid drop. The drop was then flattened into a disk by increasing the field strength. This flattened drop was then excited to create star drop patterns by exciting the drop at its resonance frequency. Different oscillatory modes were induced by varying the drop radius, fluid properties, and frequency at which the field strength was modulated.

  9. Prediction and near-field observation of skull-guided acoustic waves

    Estrada, Héctor; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  10. Overview on the diversity of sounds produced by clownfishes (Pomacentridae: importance of acoustic signals in their peculiar way of life.

    Orphal Colleye

    Full Text Available BACKGROUND: Clownfishes (Pomacentridae are brightly colored coral reef fishes well known for their mutualistic symbiosis with tropical sea anemones. These fishes live in social groups in which there is a size-based dominance hierarchy. In this structure where sex is socially controlled, agonistic interactions are numerous and serve to maintain size differences between individuals adjacent in rank. Clownfishes are also prolific callers whose sounds seem to play an important role in the social hierarchy. Here, we aim to review and to synthesize the diversity of sounds produced by clownfishes in order to emphasize the importance of acoustic signals in their way of life. METHODOLOGY/PRINCIPAL FINDINGS: Recording the different acoustic behaviors indicated that sounds are divided into two main categories: aggressive sounds produced in conjunction with threat postures (charge and chase, and submissive sounds always emitted when fish exhibited head shaking movements (i.e. a submissive posture. Both types of sounds showed size-related intraspecific variation in dominant frequency and pulse duration: smaller individuals produce higher frequency and shorter duration pulses than larger ones, and inversely. Consequently, these sonic features might be useful cues for individual recognition within the group. This observation is of significant importance due to the size-based hierarchy in clownfish group. On the other hand, no acoustic signal was associated with the different reproductive activities. CONCLUSIONS/SIGNIFICANCE: Unlike other pomacentrids, sounds are not produced for mate attraction in clownfishes but to reach and to defend the competition for breeding status, which explains why constraints are not important enough for promoting call diversification in this group.

  11. Shape oscillation of a levitated drop in an acoustic field

    Ran, Weiyu; Fredericks, Steven; Saylor, John R.

    2013-01-01

    A `star drop' refers to the patterns created when a drop, flattened by some force, is excited into shape mode oscillations. These patterns are perhaps best understood as the two dimensional analog to the more common three dimensional shape mode oscillations. In this fluid dynamics video an ultrasonic standing wave was used to levitate a liquid drop. The drop was then flattened into a disk by increasing the field strength. This flattened drop was then excited to create star drop patterns by ex...

  12. Applications of whole field interferometry in mechanics and acoustics

    Molin, Nils-Erik

    1999-07-01

    A description is given of fringe formation in holographic interferometry, in electronic speckle pattern interferometry, in electro-optic or TV holography and for a newly developed system for pulsed TV-holography. A numerical example, which simulates the equations describing the different techniques, is included. A strain measuring system using defocused digital speckle photography is described. Experiments showing mode shapes of musical instruments, transient bending wave propagation in beams and plates as well as sound pressure fields in air are included.

  13. Communication Acoustics

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  14. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    Huichen Yan

    2015-10-01

    Full Text Available Matched field processing (MFP is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method.

  15. Modelling and closed loop control of near-field acoustically levitated objects

    Ilssar, Dotan; Flashner, Henryk

    2016-01-01

    The present paper introduces a novel approach for modelling the governing, slow dynamics of near-field acoustically levitated objects. This model is sufficiently simple and concise to enable designing a closed-loop controller, capable of accurate vertical positioning of a carried object. The near-field acoustic levitation phenomenon exploits the compressibility, the nonlinearity and the viscosity of the gas trapped between a rapidly oscillating surface and a freely suspended planar object, to elevate its time averaged pressure above the ambient pressure. By these means, the vertical position of loads weighing up to several kilograms can be varied between dozens and hundreds of micrometers. The simplified model developed in this paper is a second order ordinary differential equation where the height-dependent stiffness and damping terms of the gas layer are derived explicitly. This simplified model replaces a traditional model consisting of the equation of motion of the levitated object, coupled to a nonlinear...

  16. Acoustic susceptibility of an insulating spin-glass in an applied magnetic field

    Doussineau, P.; Levelut, A.; Schön, W.

    1991-01-01

    The propagation of longitudinal acoustic waves of frequency between 30 MHz and 800 MHz has been studied in the insulating spin-glass (CoF2)0.5(BaF2)0.2(NaPO3)0.3. This was achieved in the temperature range 1.2 to 4.2 K which includes the critical temperature Tc=1.8 K, with an applied magnetic field up to 9 Teslas. The results are the following. i) The velocity shows an anisotropic bahaviour. It depends on the angle between the field and the acoustic wavevector. ii) The initial slope of the ve...

  17. Field theory for zero sound and ion acoustic wave in astrophysical matter

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  18. Field Theory for Zero Sound and Ion Acoustic Wave in Astrophysical Matter

    Gabadadze, Gregory

    2015-01-01

    We set up a field theory model to describe the longitudinal low energy modes in high density matter present in white dwarf stars. At the relevant scales, ions -- the nuclei of oxygen, carbon and helium -- are treated as heavy point-like spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  19. Field Pea and Lentil Marketing Strategies for Northern Plains Producers

    Flaskerud, George

    2006-01-01

    Marketing strategies are analyzed for field pea and lentil producers in the Northern Plains. Seasonal price patterns were derived from the 1999-2003 marketing years. Correlations indicate that corn futures may provide risk reduction for cross-hedging pea prices. Relationships were too weak to consider a cross-hedge for lentils. Combining a pre-harvest strategy with a marketing loan strategy offered the best total net price for the pea crop in 2004. No one marketing loan strategy performed bes...

  20. Flow rate estimation using acoustic field distortions caused by turbulent flows: time-reversal approach

    Zimmermann, A. L.; Pérez, N.; Adamowski, J. C.

    2011-05-01

    A new acoustic technique for flow rate estimation is proposed here. This technique is based on the traditional ultrasonic cross-correlation flow meter, but instead of using a continuous wave or pulse trains in each transmitter-receiver pair, the acoustic time-reversal technique is applied. The system relies on the principle that a turbulent flow with multiple vortices will cause random distortions in a given acoustic field; hence, analyzing this noise caused in the ultrasound signal by the turbulence over time allows a "signature" or "tag" of the flow to be defined. In other words, the vortices modify the frequency response function of the flowing system uniquely, since the distortion is assumed to be random. The use of the time-reversal procedure in the cross-correlation flow meter provides improvements in several aspects: it simplifies the signal processing needed after the reception of the signals, avoiding the use of a demodulator to obtain the signature of the vortex; the signal is focused at the position of the reception transducer and; the sensitivity is also increased because the wave travels twice in the acoustic channel. The method is theoretically discussed showing its limitations and improvements. Experimental results in a laboratory water tank are also presented.

  1. Site Study Plan for Acoustics, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    1987-06-01

    The Acoustics site study plan describes a field program which characterizes existing sound levels, determines the area's sound propagation characteristics, and monitors the project-related sound emissions. The plan describes for each study: the need for the study, study design, data management and use, schedule, and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Requirements Document. 37 refs., 9 figs., 3 tabs.

  2. Site Study Plan for Acoustics, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    The Acoustics site study plan describes a field program which characterizes existing sound levels, determines the area's sound propagation characteristics, and monitors the project-related sound emissions. The plan describes for each study: the need for the study, study design, data management and use, schedule, and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Requirements Document. 37 refs., 9 figs., 3 tabs

  3. Environmental contaminants in oil field produced waters discharged into wetlands

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  4. Possible variations of E-layer electromagnetic fields by acoustic waves above earthquake preparation regions

    Meister, C.-V.; Mayer, B.; Hoffmann, D. H. H.

    2012-04-01

    The many-fluid magnetohydrodynamic theory is applied to describe the modification of the electromagnetic field of the ionospheric E-layer by acoustic-type waves. These waves originate from lower altitudes and may be caused by earthquake preparation processes. In comparison to former works, the different stratification of the positively and negatively charged ionospheric particles and of the neutral constituents is taken into account. There also the influence of the mean electric field on the different hight scales of the plasma parameters is discussed. Besides, the hight scales of the electric and magnetic wave fields are modeled. It is shown that at E-layer altitudes the acoustic waves may be converted into Alfvén waves. The dependence of these waves on the height scales of the plasma parameters of the particles and on the momentum transport between the charged and neutral particles is analysed. First estimates of the temperature variations within the E-layer because of the assumed acoustic-type waves of seismic origin are made.

  5. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  6. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  7. Field-aligned electron flux oscillations that produce flickering aurora

    Measurements of energetic electrons that produce flickering aurora were made by a pair of sounding rockets launched during a slowly evolving auroral breakup. Both payloads passed through a broad inverted-V structure. A component of the electron distribution function was closely aligned with the magnetic field over a broad energy range that extended form low energies up to the inverted-V differential energy flux peak. High time resolution measurements of the field-aligned component showed the presence of order to magnitude coherent flux oscillations. Source altitudes between 4,000 and 8,000 km were derived from velocity dispersion of the flux oscillations. A ground-based TV camera recorded visual flickering in the vicinity of the payloads' auroral footprints during periods when flux oscillations were present. Measurements are compared with previous observations of electron flux oscillations, and possible sources for the field-aligned component are discussed

  8. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    Kaduchak, Gregory; Ward, Michael D

    2016-05-17

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  9. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    Kaduchak, Gregory; Ward, Michael D.

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  10. Application of acoustic tomography to reconstruct the horizontal flow velocity field in a shallow river

    Razaz, Mahdi; Kawanisi, Kiyosi; Kaneko, Arata; Nistor, Ioan

    2015-12-01

    A novel acoustic tomographic measurement system capable of resolving sound travel time in extremely shallow rivers is introduced and the results of an extensive field measurements campaign are presented and further discussed. Acoustic pulses were transmitted over a wide frequency band of 20-35 kHz between eight transducers for about a week in a meandering reach of theBāsen River, Hiroshima, Japan. The purpose of the field experiment was validating the concept of acoustic tomography in rivers for visualizing current fields. The particular novelty of the experiment resides in its unusual tomographic features: subbasin scale (100 m × 270 m) and shallowness (0.5-3.0 m) of the physical domain, frequency of the transmitted acoustic signals (central frequency of 30 kHz), and the use of small sampling intervals (105 s). Inverse techniques with no a priori statistical information were used to estimate the depth-average current velocity components from differential travel times. Zeroth-order Tikhonov regularization, in conjunction with L-curve method deployed to stabilize the solution and to determine the weighting factor appearing in the inverse analysis. Concurrent direct environmental measurements were provided in the form of ADCP readings close to the right and left bank. Very good agreement found between along-channel velocities larger than 0.2 m/s obtained from the two techniques. Inverted quantities were, however, underestimated, perhaps due to vicinity of the ADCPs to the banks and strong effect of river geometry on the readings. In general, comparing the visualized currents with direct nodal measurements illustrate the plausibility of the tomographically reconstructed flow structures.

  11. Distributed Acoustic Sensing Technology in a Magmatic Geothermal Field - First Results From a Survey in Iceland

    Reinsch, Thomas; Jousset, Philippe; Henninges, Jan; Blanck, Hanna

    2016-04-01

    Seismic methods are particularly suited for investigating the Earth's subsurface. Compared to surface-measurements , wellbore measurements can be used to acquire more detailed information about rock properties and possible fluid pathways within a geothermal reservoir. For high temperature geothermal wells, however, ambient temperatures are often far above the operating temperature range of conventional geophones. One way to overcome this limitation is the application of fiber optic sensor systems, where only the passive optical fiber is subjected to downhole conditions. Their applicability is thus determined by the operating temperature range of the optical fiber. Choosing appropriate fibers, such sensor systems can be operated at temperatures far above 200°C. Along an optical fiber, the distributed acoustic sensing technology (DAS) can be used to acquire acoustic signals with a high spatial and temporal resolution. Previous experiments have shown that the DAS technology is well suited for active seismic measurements. Within the framework of the EC funded project IMAGE, a fiber optic cable was deployed in a newly drilled geothermal well (RN-34) within the Reykjanes geothermal field, Iceland. Additionally, a >15 km fiber optic cable, already available at the surface, was connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed at the wellhead as well as along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fiber optic data to conventional seismic records from a dense seismic network deployed on the Reykjanes in the course of the IMAGE project. Here, first results from the seismic survey will be presented.

  12. An Analytical Method for Calculating P-SV Acoustical Field Excited by a Piezoelectric Strip with Finite Width and Thickness

    ZHANG Bi-Xing; WANG Cheng-Hao; Anders Bostr(o)m

    2005-01-01

    @@ A piezoelectric strip with finite width and thickness is placed on top of an isotropic elastic half-space. Acoustical field can be excited when a voltage is across the piezoelectric strip. An analytical method is presented to calculate the acoustical field by the dynamics characteristics of the piezoelectric strip. Considering the piezoelectric strip as an anisotropic material of the 6 mm-type crystal system, we study the two-dimensional P-SV acoustical fields inside the piezoelectric strip and the isotropic half-space. The displacement and stress distributions are analysed thoroughly. The effects of the width and thickness of the piezoelectric strip and other parameters on the acoustical field are also analysed.

  13. Near-seismic effects in ULF fields and seismo-acoustic emission: statistics and explanation

    O. Molchanov

    2005-01-01

    Full Text Available Preseismic intensification of fracturing has been investigated from occurrence analysis of seismo-acoustic pulses (SA foreshocks and ULF magnetic pulses (ULF foreshocks observed in Karimshino station in addition to seismic foreshocks. Such analysis is produced for about 40 rather strong and nearby isolated earthquakes during 2 years of recording. It is found that occurrence rate of SA foreshocks increases in the interval (-12, 0 h before main shock with 3-times exceeding of background level in the interval (-6, -3 h, and occurrence probability of SA foreshocks (pA~75% is higher than probability of seismic foreshocks (ps~30% in the same time interval.ULF foreshocks are masked by regular ULF activity at local morning and daytime, nevertheless we have discovered an essential ULF intensity increase in the interval (-3, +1 h at the frequency range 0.05-0.3 Hz. Estimated occurrence probability of ULF foreshocks is about 40%. After theoretical consideration we conclude: 1 Taking into account the number rate of SA foreshocks, their amplitude and frequency range, they emit due to opening of fractures with size of L=70-200 m (M=1-2; 2 The electro-kinetic effect is the most promising mechanism of ULF foreshocks, but it is efficient only if two special conditions are fulfilled: a origin of fractures near fluid-saturated places or liquid reservoirs (aquifers; b appearance of open porosity or initiation of percolation instability; 3 Both SA and ULF magnetic field pulses are related to near-distant fractures (r<20-30 km; 4 Taking into account number rate and activation period of seismic, SA and ULF foreshocks, it is rather probable that opening of fractures and rupture of fluid reservoirs occur in the large preparation area with horizontal size about 100-200km.

  14. Acoustic concentration of particles in fluid flow

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  15. Calculus of the uncertainty in acoustic field measurements: comparative study between the uncertainty propagation method and the distribution propagation method

    Navacerrada Saturio, Maria Angeles; Díaz Sanchidrián, César; Pedrero González, Antonio; Iglesias Martínez, Luis

    2008-01-01

    The new Spanish Regulation in Building Acoustic establishes values and limits for the different acoustic magnitudes whose fulfillment can be verify by means field measurements. In this sense, an essential aspect of a field measurement is to give the measured magnitude and the uncertainty associated to such a magnitude. In the calculus of the uncertainty it is very usual to follow the uncertainty propagation method as described in the Guide to the expression of Uncertainty in Measurements (GUM...

  16. Classification of the extracellular fields produced by activated neural structures

    Perry Danielle

    2005-09-01

    Full Text Available Abstract Background Classifying the types of extracellular potentials recorded when neural structures are activated is an important component in understanding nerve pathophysiology. Varying definitions and approaches to understanding the factors that influence the potentials recorded during neural activity have made this issue complex. Methods In this article, many of the factors which influence the distribution of electric potential produced by a traveling action potential are discussed from a theoretical standpoint with illustrative simulations. Results For an axon of arbitrary shape, it is shown that a quadrupolar potential is generated by action potentials traveling along a straight axon. However, a dipole moment is generated at any point where an axon bends or its diameter changes. Next, it is shown how asymmetric disturbances in the conductivity of the medium surrounding an axon produce dipolar potentials, even during propagation along a straight axon. Next, by studying the electric fields generated by a dipole source in an insulating cylinder, it is shown that in finite volume conductors, the extracellular potentials can be very different from those in infinite volume conductors. Finally, the effects of impulses propagating along axons with inhomogeneous cable properties are analyzed. Conclusion Because of the well-defined factors affecting extracellular potentials, the vague terms far-field and near-field potentials should be abandoned in favor of more accurate descriptions of the potentials.

  17. Acoustic Cues to Fricatives Place of Articulation Produced in Moroccan Dialect

    Leila Elmazouzi

    2014-11-01

    Full Text Available The aim of the present study is to examine acoustic characteristics of Moroccan fricatives in order to find invariant cues that classify fricatives into their place of articulation. Fricative consonants of Moroccan Arabic dialect were elicited from 8 adult speakers (4 male and 4 female in 3 vowel contexts (/i, a, u/. The cues investigated included temporal measurement (duration of fricative consonant and formant information at fricative-vowel transition (F1 and F2 at vowel onset and locus equation. The effects of voicing, speaker’s gender and post-fricative vowel on both formants onset values and locus equations were investigated. The results obtained showed that F1 onset values differentiated voiceless from voiced fricatives. F2 onset values distinguished fricatives in term of place of articulation. The locus equation slope and intercept differentiated voiceless from voiced fricative and distinguished clearly palatal fricatives from the other places of articulation

  18. Near-field acoustic holography with sound pressure and particle velocity measurements

    Fernandez Grande, Efren

    . Measurement of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle......, and studied under the light of different measurement principles. A direct formulation in space domain has been proposed, and the experimental validity of the quantity has been demonstrated. Additionally, the use of rigid spherical microphone arrays in near-field acoustic holography has been examined...

  19. Two Years of Industrial Experience in the Use of a Small, Direct Field Acoustic Chamber

    Saggini, Nicola; Di Pietro, Vincenzo; Poulain, Nicolas; Herzog, Philippe

    2012-07-01

    Within Thales Alenia Space - Italy small satellite Assembly Integration and Test (AIT) plant, the need to develop a suitable facility for spacecraft acoustic noise test has arisen, with additional constraints posed by the necessity of a low impact on the existing building layout, low cost of procurement and operations, while maintaining a high reliability of the system for a theoretical maximum throughput of one test per week over an extended period of time, e.g. six months. The needs have been answered by developing a small (~40 m3 test volume), direct field (DF A T) acoustic test chamber, christened “Alpha Cabin”, where noise generation is achieved by means of commercial audio drivers equipped with custom enclosures. The paper starts with a brief presentation of the main characteristics of the system, but then concentrates on the lessons learnt and return of experience from the tests conducted in more than two years of continuous use. Starting from test article structural responses and their comparison with reverberant chambers, properties of the acoustic field and their implications on the former are analyzed.

  20. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)]. PMID:26723332

  1. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  2. Acoustics lecturing in Mexico

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  3. On sparse reconstructions in near-field acoustic holography using the method of superposition

    Abusag, Nadia M

    2016-01-01

    The method of superposition is proposed in combination with a sparse $\\ell_1$ optimisation algorithm with the aim of finding a sparse basis to accurately reconstruct the structural vibrations of a radiating object from a set of acoustic pressure values on a conformal surface in the near-field. The nature of the reconstructions generated by the method differs fundamentally from those generated via standard Tikhonov regularisation in terms of the level of sparsity in the distribution of charge strengths specifying the basis. In many cases, the $\\ell_1$ optimisation leads to a solution basis whose size is only a small fraction of the total number of measured data points. The effects of changing the wavenumber, the internal source surface and the (noisy) acoustic pressure data in general will all be studied with reference to a numerical study on a cuboid of similar dimensions to a typical loudspeaker cabinet. The development of sparse and accurate reconstructions has a number of advantageous consequences includin...

  4. Heat pump system utilizing produced water in oil fields

    As the alternative to the heating furnace for crude oil heating, a heat pump system utilizing produced water, a main byproduct, in oil fields was proposed and the thermodynamic model of the system was established. A particular compression process with inner evaporative spray water cooling was applied in the screw compressor and an analysis method for the variable-mass compression process was introduced. The simulation results showed that the efficiency of the screw compressor, the temperature of produced water and the temperature difference in flash process are key parameters affecting the system performance. The energy cost of the heat pump system was compared to that of the heating furnace, revealing that the heat pump system with EER, 4.67, would save over 20% energy cost as compared with the heating furnace. Thus, the heat pump system was energy saving, money saving and environmentally benign

  5. Characterisation of the acoustic field radiated by a rail with a microphone array: The SWEAM method

    Faure, Baldrik; Chiello, Olivier; Pallas, Marie-Agnès; Servière, Christine

    2015-06-01

    Beamforming methods are widely used for the identification of acoustic sources on rail-bound vehicles with microphone arrays, although they have limitations in case of spatially extended sources such as the rail. In this paper, an alternative method dedicated to the acoustic field radiated by the rail is presented. The method is called SWEAM for Structural Wavenumbers Estimation with an Array of Microphones. The main idea is to replace the elementary fields commonly used in beamforming (point sources or plane waves) by specific fields related to point forces applied on the rail. The vertical bending vibration of the rail is modelled using a simple beam assumption so that the rail vibration depends only on two parameters: the wavenumber and the decay rate of the propagative wave. Together with a radiation model based on a line of coherent monopoles, the acoustic field emitted by the rail is easily derived. The method itself consists in using the signals measured on a microphone array to estimate both the structural parameters and the global amplitude of this specific source. The estimation is achieved by minimising a least squares criterion based on the measured and modelled spectral matrices. Simulations are performed to evaluate the performance of the method considering one or several sources at fixed positions. The comparison of the simulated and reconstructed fields are convincing at most frequencies. The method is finally validated in the case of a single vertical excitation using an original set up composed of a 30 m long experimental track excited by an electrodynamic shaker. The results show a great improvement of the wavenumber estimation in the whole frequency range compared with the plane wave beamforming method and a fair estimation of the decay rate. The underestimation of some low decay rates due to the poor selectivity of the criterion occurring in these cases requires further study.

  6. An Acoustic and Perceptual Study of Initial Stops Produced by Profoundly Hearing Impaired Adolescents

    Khouw, Edward; Ciocca, Valter

    2007-01-01

    This study investigated the role of Voice Onset Time (VOT) as perceptual cue to the aspiration contrast of Cantonese initial stops produced by adolescent profoundly hearing impaired speakers. Speakers with normal hearing signalled the aspiration contrast through VOT differences. Hearing impaired speakers produced initial stops with no significant…

  7. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  8. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz. PMID:26026514

  9. Adult Vampire Bats Produce Contact Calls When Isolated: Acoustic Variation by Species, Population, Colony, and Individual

    Carter, Gerald G.; Logsdon, Ryane; Arnold, Bryan D.; Menchaca, Angelica; Medellin, Rodrigo A.

    2012-01-01

    Background Bat pups produce individually distinct isolation calls to facilitate maternal recognition. Increasing evidence suggests that, in group-living bat species, adults often use similar calls to maintain contact. We investigated if isolated adults from all three species of the highly cooperative vampire bats (Phyllostomidae: Desmodontinae) would produce vocally distinct contact calls when physically isolated. Methods/Principal Findings We assessed variation in contact calls recorded from...

  10. Adult Vampire Bats Produce Contact Calls When Isolated: Acoustic Variation by Species, Population, Colony, and Individual

    Gerald G Carter; Ryane Logsdon; Arnold, Bryan D.; Angelica Menchaca; Medellin, Rodrigo A.

    2012-01-01

    BACKGROUND: Bat pups produce individually distinct isolation calls to facilitate maternal recognition. Increasing evidence suggests that, in group-living bat species, adults often use similar calls to maintain contact. We investigated if isolated adults from all three species of the highly cooperative vampire bats (Phyllostomidae: Desmodontinae) would produce vocally distinct contact calls when physically isolated. METHODS/PRINCIPAL FINDINGS: We assessed variation in contact calls recorded fr...

  11. On the certain semi-analytical models of low-frequency acoustic fields in terms of scalar-vector description

    Oleg E.Gulin; Yang Desen

    2004-01-01

    Behaviour of scalar and vector characteristics of steady-state acoustical field is modeled based on analytical-numerical approach. This field is radiated by low-frequency monochromatic point-like source in the deterministic layered shallow sea, which has various hydrologic and bottom conditions. Approach being developed is free of any mathematical approximations and without the difficulties it enables to calculate sound field vector characteristics for various models of shallow sea. Owing to this fact the complete description of underwater acoustical situation is possible that is useful to make a prognosis for the experiment. A number of regularities of wave field scalar-vector functions are discovered and discussed.

  12. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    Strantza, Maria; Aggelis, Dimitrios G.; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals. PMID:26506349

  13. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    Maria Strantza

    2015-10-01

    Full Text Available During the last decades, structural health monitoring (SHM systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT techniques. During this study, detailed acoustic emission (AE analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  14. Phase-locked stimulated Brillouin scattering seeded by a transient acoustic wave excited through an optical interference field

    A mathematical description of an experimentally-verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS) is presented. It is shown that this phase-locking of the SBS process may have its origin in a transient acoustic standing wave initiated by an arising optical interference field, eventually leading to a stationary density modulation of the medium. An appropriate solution was obtained by solving the acoustic wave-equation with electrostriction as a driving force. As a consequence of the damping term being included in this equation, the acoustic standing wave becomes gradually attenuated and, contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon.

  15. Numerical Investigation of Symmetry Breaking and Critical Behavior of the Acoustic Streaming Field in High-Intensity Discharge Lamps

    Baumann, Bernd; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2014-01-01

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled 3D multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. The system behaves similar to a ferromagnet near the Curie point. Furthermore, it is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach wit...

  16. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  17. Pollution of an aquifer by produced oil field water

    Brine is produced from reservoirs as a waste material from crude oil and gas after processing. Waste water may be discharged at the surface or reinjected underground. When it is reinjected, it may be mixed with an underground fresh water source for several reasons. From this point of view, forecasting the pollutant concentrations by knowing the historical data at several locations on a field has great importance when planning the necessary precautions for environmental safety. Aquifer-M in Turkey, having the properties of potable water, is contaminated by oil field water that is injected for disposal purposes. A numerical model is used to determine the extent of pollution due to the injection of saline produced water into aquifer-M. Eight observation wells are drilled to take water and core samples in order to identify both rock and fluid properties of aquifer-M. Water samples taken from different intervals of aquifer-M are analyzed to determine the flow paths for the pollutant movement. The results are interpreted with the help of core property data obtained by computerized tomography (CT) analysis and routine core analysis. By using drilling records, log data, and CT analysis results, two subunits in aquifer-M with different lithological properties are identified. All data are used in a ground water pollution model. Aquifer-M has fresh water with salinity of 5-10 ppm, and the chlorine concentration of injected waste water is approximately 3410 pp. Since there is a significant difference between these concentrations, the chlorine ion is selected as the indicative ion for locating the pollution front. The model study indicated that the contaminated water has propagated 18.7 km from the site of injection. (author)

  18. Parameter-dependence of the acoustic rotation effect of a metamaterial-based field rotator (Presentation Video)

    Jiang, Xue; Cheng, JianChun; Liang, Bin

    2015-05-01

    The field rotator is a fascinating device capable to rotate the wave front by a certain angle, which can be regarded as a special kind of illusion. We have theoretically designed and experimentally realized an acoustic field rotator by exploiting acoustic metamaterials with extremely anisotropic parameters. A nearly perfect agreement is observed between the numerical simulation and experimental results. We have also studied the acoustic property of the acoustic rotator, and investigated how various structural parameters affect the performances of such devices, including the operating frequency range and rotation angle, which are of particularly significance for the application. The inspection of the operating frequency range shows the device can work within a considerably broad band as long as the effective medium approximation is valid. The influence of the configuration of the metamaterial unit has also been investigated, illustrating the increase of anisotropy of metamaterial helps to enhance the rotator effect, which can be conveniently attained by elongating each rectangle inserted to the units. Furthermore, we have analyzed the underlying physics to gain a deep insight to the rotation mechanism, and discussed the application of such devices for non-plane wave and the potential of extending the scheme to three-dimensional cases. The realization of acoustic field rotator has opened up a new avenue for the versatile manipulations on acoustic waves and our findings are of significance to their design and characterization, which may pave the way for the practical application of such devices.

  19. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography

    Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler

  20. Acoustic lenses

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  1. Acoustical Imaging

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  2. Parallel electric field in the auroral ionosphere: excitation of acoustic waves by Alfvén waves

    P. L. Israelevich

    2004-09-01

    Full Text Available We investigate a new mechanism for the formation of a parallel electric field observed in the auroral ionosphere. For this purpose, the excitation of acoustic waves by propagating Alfvén waves was studied numerically. We find that the magnetic pressure perturbation due to finite amplitude Alfvén waves causes the perturbation of the plasma pressure that propagates in the form of acoustic waves, and gives rise to a parallel electric field. This mechanism explains the observations of the strong parallel electric field in the small-scale electromagnetic perturbations of the auroral ionosphere. For the cases when the parallel electric current in the small-scale auroral perturbations is so strong that the velocity of current carriers exceeds the threshold of the ion sound instability, the excited ion acoustic waves may account for the parallel electric fields as strong as tens of mV/m.

  3. Producing acoustic 'Frozen Waves': Simulated experiments with diffraction/attenuation resistant beams, in lossy media

    Prego-Borges, Jose' L; Recami, Erasmo; Tavares-Costa, Eduardo

    2013-01-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have arisen significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction (self-healing) property, after obstacles with size smaller than the antenna's; while the FWs, a sub-class of theirs, offer the possibility of arbitrarily modeling the field longitudinal intensity pattern inside a prefixed interval, for instance 0 < z < L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate by simulated experiments, various cases of generation of ultrasonic FW fields, with frequency f_o = 1 MHz in a water-like medium, taking account of the effects of attenuation. We present res...

  4. Flow and acoustic field due to an inclined plate with a downstream splitter

    Kim, C. M.; Conlisk, A. T.

    1993-01-01

    In the present work, the high Reynolds number flow past an inclined plate with a splitter plate placed in its wake is considered numerically. A numerical conformal mapping technique is employed to transform the two-plate system into the same number of cylinders: the flow field is assumed to be two-dimensional. The vortex shedding from the inclined plate is modelled using the discrete vortex method. It is shown that the splitter plate has a profound effect on the development of the flow over a range of values of a suitably defined offset parameter and for a range of positions of the leading edge of the splitter plate. The acoustic field is also calculated and the spectrum reflects the flow results.

  5. Towards field and laboratory experiments with ocean acoustic-gravity waves

    Oliveira, Tiago; Kadri, Usama; Lin, Ying-Tsong; Morozov, Andrey

    2016-04-01

    Acoustic-gravity waves (AGWs) can be generated in the ocean by mechanical energy transfer from the Earth's crust (e.g. earthquakes or volcanoes) and by energy transfer occurring at the water surface (e.g. interaction of opposing gravity waves, ice-quakes or localized pressure changes). Recent theoretical studies shed light on the underlying physics of the generation and propagation of AGWs in the ocean. However, these theories are yet to be verified further with very challenging field experiments due to the associated low frequency signals required, and ambient disturbances involved. Here, we present a unique setup of field experiments and large scale laboratory tests to verify the main physical properties of AGWs in ocean generated by different types of sources. We also present a novel methodology to generate and measure AGWs in the ocean.

  6. Radiation acoustics

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  7. Efficient modeling of flat and homogeneous acoustic treatments for vibroacoustic finite element analysis. Direct field formulations

    Alimonti, L.; Atalla, N.

    2016-04-01

    This paper is concerned with the development of a simplified model for noise control treatments to speed up finite element analysis in vibroacoustic applications. The methodology relies on the assumption that the acoustic treatment is flat and homogeneous. Moreover, its finite lateral extent is neglected. This hypothesis is justified by short wavelength and large dissipation, which suggest that the reflected field emanating from the acoustic treatment lateral boundaries does not substantially affect its dynamic response. Under these circumstances, the response of the noise control treatment can be formally obtained by means of convolution integrals involving simple analytical kernels (i.e. Green functions). Such fundamental solutions can be computed efficiently by the transfer matrix method. However, some arbitrariness arises in the formulation of the mathematical model, resulting in different baffling conditions at the two ends of the treatment to be considered. Thus, the paper investigates the possibility of different formulations (i.e. baffling conditions) within the same hybrid finite element-transfer matrix framework, seeking for the best strategy in terms of tradeoff between efficiency and accuracy. Numerical examples are provided to show strengths and limitations of the proposed methodology.

  8. Permeability, electrical impedance, and acoustic velocities on reservoir rocks from the Geysers field

    Boitnott, G.N.; Boyd, P.J. [New England Research, Inc., White River Junction, VT (United States)

    1996-12-31

    Previous measurements of acoustic velocities on NEGU-17 cores indicate that saturation effects are significant enough to cause V{sub p}/V{sub s}, anomalies observed in the field. In this study we report on the results of new measurements on core recently recovered from SB-15-D along with some additional measurements on the NEGU-17 cores. The measurements indicate correlations between mechanical, transport, and water storage properties of the matrix which may prove useful for reservoir assessment and management. The SB-15-D material is found to be similar to the NEGU-17 material in terms of acoustic velocities, being characterized by a notably weak pressure dependence on the velocities and a modest V{sub p}/V{sub s} signature of saturation. The effect of saturation on V{sub p}/V{sub s} appears to result in part from a chemo-mechanical weakening of the shear modulus due to the presence of water. Electrical properties of SB-15-D material are qualitatively similar to those of the NEGU-17 cores, although resistivities of SB-15-D cores are notably lower and dielectric permittivities higher than in their NEGU-17 counterparts. While some limited correlations of measured properties with depth are noted, no clear change in character is observed within SB-15-D cores which can be associated with the proposed caprock/reservoir boundary.

  9. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    Hwang, Jae Youn [Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo, E-mail: jwlee@kw.ac.kr [Department of Electronic Engineering, Kwangwoon University, Seoul (Korea, Republic of)

    2015-05-04

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  10. THE RESULTS OF EXPERIMENTAL RESEARCH OF INFLUENCE OF ACOUSTIC AND MAGNETIC FIELD ON ELECTROCONDUCTIVITY AND PH VALUE OF HYDROPONIC SOLUTION

    Korzhakov A. V.; Loyko V. I.; Osykin S. V.; Korzhakova S. A.; Korzhakov V. Y.

    2015-01-01

    The article deals with the results of research of acoustic and magnetic field influence on conductivity and pH value of hydroponic solution. For carrying out researches in this area the hypothesis of possibility of nutrient solution influence on ions by means of an acoustic and magnetic field is set up. A laboratory scale plant was constructed for a pilot study of the hypothesis. The solution was moved in the tube passing through a ferrite ring with winding. Thus, the solution was exposed to ...

  11. The acoustic field in the ionosphere caused by an underground nuclear explosion

    Krasnov, V. M.; Drobzheva, Ya. V.

    2005-07-01

    The problem of describing the generation and propagation of an infrasonic wave emitted by a finite extended source in the inhomogeneous absorbing atmosphere is the focus of this paper. It is of interest since the role of infrasonic waves in the energy balance of the upper atmosphere remains largely unknown. We present an algorithm, which allows adaptation of a point source model for calculating the infrasonic field from an underground nuclear explosion at ionospheric altitudes. Our calculations appear to agree remarkably well with HF Doppler sounding data measured for underground nuclear explosions at the Semipalatinsk Test Site. We show that the temperature and ionospheric electron density perturbation caused by an acoustic wave from underground nuclear explosion can reach 10% of background levels.

  12. On the horizontal wobbling of an object levitated by near-field acoustic levitation.

    Kim, Cheol-Ho; Ih, Jeong-Guon

    2007-11-01

    A circular planar object can be levitated with several hundreds of microns by ultrasonic near-field acoustic levitation (NFAL). However, when both the sound source and the levitated object are circularly shaped and the center of the levitated object does not coincide with the source center, instability problem often occurs. When this happens, it becomes difficult to pick up or transport the object for the next process. In this study, when the center of the levitated object was offset from the source center, the moving direction of the levitated object was predicted by using the time averaged potential around the levitated object. The wobbling frequency of the levitated object was calculated by analyzing the nonlinear wobbling motion of the object. It was shown that the predicted wobbling frequencies agreed with measured ones well. Finally, a safe zone was suggested to avoid the unstable movement of an object. PMID:17590402

  13. Acoustic field in a cased well with a sectorial crossing channel

    LIN Weijun; ZHANG Chengyu; ZHANG Hailan; WANG Xiuming

    2004-01-01

    To study the possibility of detecting the crossing channel by using a traditional logging tool, acoustic field generated by a monopole source in a cased well with a crossing channel of various angles is simulated by 2.5-D Finite Difference Method (FDM). Snapshots of normal stress and synthetic time-domain waveforms are displayed. The two-dimensional spectrum in wave-number and frequency domains is also calculated, where the influence of the channel is clearer than that in the waveforms. Numerical study demonstrated that a crossing channel can be detected and sized if its angle is greater than 30 degree, and larger spacing and lower frequency source are favorable to detect and size the crossing channel.

  14. Acoustic phonon propagation in ultra-thin Si membranes under biaxial stress field

    We report on stress induced changes in the dispersion relations of acoustic phonons propagating in 27 nm thick single crystalline Si membranes. The static tensile stress (up to 0.3 GPa) acting on the Si membranes was achieved using an additional strain compensating silicon nitride frame. Dispersion relations of thermally activated hypersonic phonons were measured by means of Brillouin light scattering spectroscopy. The theory of Lamb wave propagation is developed for anisotropic materials subjected to an external static stress field. The dispersion relations were calculated using the elastic continuum approximation and taking into account the acousto-elastic effect. We find an excellent agreement between the theoretical and the experimental dispersion relations. (paper)

  15. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    Li, Bodong

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  16. Computation of the time-averaged temperature fields and energy fluxes in a thermally isolated thermo-acoustic stack at low acoustic Mach numbers

    Piccolo, A. [Department of Civil Engineering, University of Messina, Contrada di Dio - 98166 S. Agata (Messina) (Italy); Pistone, G. [Department of Matter Physics and Advanced Physical Technologies, University of Messina, Contrada Papardo, Salita Sperone, 31-98166 S. Agata (Messina) (Italy)

    2007-03-15

    A simplified calculus model to investigate on the transverse heat transport near the edges of a thermally isolated thermo-acoustic stack in the low acoustic Mach number regime is presented. The proposed methodology relies on the well-known results of the classical linear thermo-acoustic theory which are implemented into an energy balance calculus-scheme through a finite difference technique. Details of the time-averaged temperature and heat flux density distributions along a pore cross-section of the stack are given. It is shown that a net heat exchange between the fluid and the solid walls takes place only near the edges of the stack plates, at distances from the ends not exceeding the peak-to-peak particle displacement amplitude. The structure of the mean temperature field within a stack plate is also investigated; this last results not uniform near its terminations giving rise to a smaller temperature difference between the plate extremities than that predicted by the standard linear theory. This result, when compared with experimental measurements available in literature, suggests that thermal effects localized at the stack edges may play an important role as sources of the deviations found between linear theory predictions and experiments at low and moderate Mach numbers. (author)

  17. Lattice Boltzmann simulations of attenuation-driven acoustic streaming

    We show that lattice Boltzmann simulations can be used to model the attenuation-driven acoustic streaming produced by a travelling wave. Comparisons are made to analytical results and to the streaming pattern produced by an imposed body force approximating the Reynolds stresses. We predict the streaming patterns around a porous material in an attenuating acoustic field

  18. Spin polarized electrons produced by strong field ionization

    Barth, Ingo; Smirnova, Olga

    2012-01-01

    We show that ionization of noble gas atoms by strong infrared circularly polarized laser field under standard exerimental conditions can yield electrons with up to 100% spin polarization in energy resolved measurements. Spin polarization arises due to the interplay of the electron-core entanglement and the sensitivity of ionization in circularly polarized fields to the sense of electron rotation in the initial state.

  19. Impact of internal waves on the acoustic field at a coastal station off Paradeep, east coast of India

    Sridevi, B.; Murty, T.V.R.; Sadhuram, Y.; Murty, V.S.N.

    Internal Wave (IW) characteristics and the impact of IW on acoustic field have been studied utilizing the hourly time series of temperature and salinity data collected at a coastal site off Paradeep (north Bay of Bengal) during 24-25 October 2008...

  20. Estimation of changes in the variability of human heart rate under the impact of weak acoustic fields

    Solovyov, A. V.; Talipov, D. V.; Borodin, A. S.; Tuzhilkin, D. A.; Baklykova, E. S.; Pobachenko, S. V.

    2014-11-01

    The results of experimental studies on the cardiovascular system response to the impact of weak low-frequency acoustic fields using ERG characteristics are presented. The slowing of the heart rate under the impact of frequencies 10Hz and 100Hz is shown.

  1. Multi-path propagation of acoustical wave and time reversal field in a solid plate

    WU Hao; ZHANG Bixing; WANG Chenghao

    2005-01-01

    The multi-path effect of the acoustical wave in a solid plate is studied. The multireflection and wave conversion of the cylindrical compressional and shear waves, which are excited by an infinite strip on a free surface of the solid plate, are analyzed thoroughly by the far-field approximation method. The concise analytical representations of the cylindrical waves are obtained. The time reversal processing is then applied to the propagation of the cylindrical waves and analyzed theoretically and experimentally. It is shown that the waves coming from different array elements and different paths all arrive at the original place after the time reversal operation. It indicates that the time reversal can compensate automatically the wave aberration caused by the multi-path effect. The self-adaptive focusing of the time reversal field is also analyzed quantificationally by the focusing gain and the ratio of the principal to the second lobe. The effects of the focus position and the aperture of the transducer array on the focused field are also investigated. It shows that theoretical and experimental results are consistent to each other very well.

  2. Analytical solution based on the wavenumber integration method for the acoustic field in a Pekeris waveguide

    Wen-Yu, Luo; Xiao-Lin, Yu; Xue-Feng, Yang; Ren-He, Zhang

    2016-04-01

    An exact solution based on the wavenumber integration method is proposed and implemented in a numerical model for the acoustic field in a Pekeris waveguide excited by either a point source in cylindrical geometry or a line source in plane geometry. Besides, an unconditionally stable numerical solution is also presented, which entirely resolves the stability problem in previous methods. Generally the branch line integral contributes to the total field only at short ranges, and hence is usually ignored in traditional normal mode models. However, for the special case where a mode lies near the branch cut, the branch line integral can contribute to the total field significantly at all ranges. The wavenumber integration method is well-suited for such problems. Numerical results are also provided, which show that the present model can serve as a benchmark for sound propagation in a Pekeris waveguide. Project supported by the National Natural Science Foundation of China (Grant No. 11125420), the Knowledge Innovation Program of the Chinese Academy of Sciences, the China Postdoctoral Science Foundation (Grant No. 2014M561882), and the Doctoral Fund of Shandong Province, China (Grant No. BS2012HZ015).

  3. A lateral field excited ZnO film bulk acoustic wave sensor working in viscous environments

    We present a lateral field excited ZnO film bulk acoustic resonator (FBAR) operated in pure-shear mode and analyze its performances in viscous liquids. The electrodes of the device are located on the film surface and normal to the c-axis of the ZnO film. The proposed device works near 1.44 GHz with a Q-factor up to 360 in air and 310 in water, which are higher than those of the quasi-shear thickness field excited FBAR. The resonant frequency is decreased with the increasing square root of the product of the viscosity and density with a linear dependence in the viscosity below 148.7 mPa s. The mass sensitivity of 670 Hz cm2 ng−1 was measured by monitoring the frequency change during the volatilization of saline solution loaded on the resonator. In addition, the levels of the noise and the mass resolutions were measured in various viscous environments. The proposed device yields the mass resolution of 670 Hz cm2 ng−1 and the high mass resolution of 0.06 ng cm−2. These results indicated that the lateral field excited ZnO FBAR had superior sensitivity for the bio-sensing applications in viscous biological liquids. (paper)

  4. Synthesis of magnetic systems producing field with maximal scalar characteristics

    A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient of a field energy on a given directing vector, a field magnitude, a magnetic flux through a given surface, a scalar product of a field or a force by a directing function given in some area of space, etc. The synthesized MSs provide maximal efficiency of permanent magnets utilization. The usage of the proposed method of MSs synthesis allows to change a procedure of projecting in principal, namely, to execute it according to the following scheme: (a) to choose the sizes, a form and a number of blocks of a system proceeding from technological (economical) reasons; (b) using the proposed synthesis method, to find an orientation of site magnetization providing maximum possible effect of magnet utilization in a system obtained in (a). Such approach considerably reduces a time of MSs projecting and guarantees maximal possible efficiency of magnets utilization. Besides it provides absolute assurance in 'ideality' of a MS design and allows to obtain an exact estimate of the limit parameters of a field in a working area of a projected MS. The method is applicable to a system containing the components from soft magnetic material with linear magnetic properties

  5. The acoustic field in the atmosphere and ionosphere caused by a point explosion on the ground

    Drobzheva, Ya. V.; Krasnov, V. M.

    2003-02-01

    In this paper, we present a set of equations and their solutions which describe the propagation of acoustic pulses through a model terrestrial atmosphere due to a chemical explosion on the ground, and the effects of these pulses on the ionosphere above the explosion. Our calculations appear to agree remarkably well with acoustic and radio sounding data measured for the 1981 Mill Race explosion at seven different altitudes from approximately /10-260km. We show that (i) the acoustic wave speed depends on the viscosity and thermal conductivity of the atmosphere, (ii) the amplitude of the fluid velocity in the acoustic wave reaches a maximum at an altitude of about 120km, (iii) the altitude of the maximum does not depend on the initial launch angle of the acoustic wavefront or the size of the explosion, and (iv) the path taken by different parts of the acoustic wavefront depends on the yield of explosion.

  6. Chiral medium produced by parallel electric and magnetic fields

    Ruggieri, Marco; Chernodub, Maxim

    2016-01-01

    We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.

  7. A mapping relationship based near-field acoustic holography with spherical fundamental solutions for Helmholtz equation

    Wu, Haijun; Jiang, Weikang; Zhang, Haibin

    2016-07-01

    In the procedure of the near-field acoustic holography (NAH) based on the fundamental solutions for Helmholtz equation (FS), the number of FS and the measurement setup to obtain their coefficients are two crucial issues to the successful reconstruction. The current work is motivated to develop a framework for the NAH which supplies a guideline to the determination of the number of FS as well as an optimized measurement setup. A mapping relationship between modes on surfaces of boundary and hologram is analytically derived by adopting the modes as FS in spherical coordinates. Thus, reconstruction is converted to obtain the coefficients of participant modes on holograms. In addition, an integral identity is firstly to be derived for the modes on convex surfaces, which is useful in determining the inefficient or evanescent modes for acoustic radiation in free space. To determine the number of FS adopted in the mapping relationship based NAH (MRS-based NAH), two approaches are proposed to supply reasonable estimations with criteria of point-wise pressure and energy, respectively. A technique to approximate a specific degree of mode on patches by a set of locally orthogonal patterns is explored for three widely used holograms, such as planar, cylindrical and spherical holograms, which results in an automatic determinations of the number and position of experimental setup for a given tolerance. Numerical examples are set up to validate the theory and techniques in the MRS-based NAH. Reconstructions of a cubic model demonstrate the potential of the proposed method for regular models even with corners and shapers. Worse results for the elongated cylinder with two spherical caps reveal the deficiency of the MRS-based NAH for irregular models which is largely due to the adopted modes are FS in spherical coordinates. The NAH framework pursued in the current work provides a new insight to the reconstruction procedure based on the FS in spherical coordinates.

  8. A Review of Large Solid Rocket Motor Free Field Acoustics, Part I

    Pilkey, Debbie; Kenny, Robert Jeremy

    2011-01-01

    At the ATK facility in Utah, large full scale solid rocket motors are tested. The largest is a five segment version of the Reusable Solid Rocket Motor, which is for use on future launch vehicles. Since 2006, Acoustic measurements have been taken on large solid rocket motors at ATK. Both the four segment RSRM and the five segment RSRMV have been instrumented. Measurements are used to update acoustic prediction models and to correlate against vibration responses of the motor. Presentation focuses on two major sections: Part I) Unique challenges associated with measuring rocket acoustics Part II) Acoustic measurements summary over past five years

  9. Review of German activities in the field of acoustic boiling detection

    The potential and the feasibility of acoustic boiling detection systems in LMFBRs are mainly determined by the four following items: The availability of radiation and temperature resistant acoustic transducers; Kind and intensity of the noise source; The acoustic transfer behaviour of the core structure and the coolant; The acoustic background noise. Although these four elements are more or less present in any practical case, this differentiation is useful for several reasons. It helps to analyse the .problem, to define appropriate theoretical and experimental investigations, and finally to synthesize the single results to an overall judgement. This paper reviews the German (KfK and Interatom) activities in the four areas

  10. Partial wave series expansions in spherical coordinates for the acoustic field of vortex beams generated from a finite circular aperture

    Mitri, F G

    2014-01-01

    Stemming from the Rayleigh-Sommerfeld surface integral, the addition theorems for the spherical wave and Legendre functions, and a weighing function describing the behavior of the radial component of the normal velocity at the surface of a finite circular radiating source, partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams in a spherical coordinate system centered on the axis of wave propagation. Examples for vortex beams, comprising \\rho-vortex, zeroth-order and higher-order Bessel-Gauss and Bessel, truncated Neumann-Gauss and Hankel-Gauss, Laguerre-Gauss, and other Gaussian-type vortex beams are considered. The mathematical expressions are exact solutions of the Helmholtz equation. The results presented here are particularly useful to accurately evaluate analytically and compute numerically the acoustic scattering and other mechanical effects of finite vortex beams, such as the axial and 3D acoustic radiation force and torque components on a sphere of any ...

  11. Optimal current loop systems for producing uniform magnetic fields

    This article presents magnetic field uniformity design data for several alternative current loop systems. Universal field symmetry properties of the class of current loop systems that is being considered are elucidated. A common property of the five loop systems that are investigated in detail is that they are all in a sense optimal. This 'Nth order' optimality criterion is defined and discussed. Parameters of selected Nth order current loop systems are quoted. Computations of the field uniformity of these loop systems are presented in graphical form, as 'isogauss' contours, and in tabular form, as the 'normalised volumes' enclosed by the isogauss contours. Information is provided about a current loop system that was actually constructed on the basis of the design data presented here

  12. Neutronic fields produced by a lineal accelerator for radiotherapy

    Measurements and Monte Carlo calculations has been utilized to determine the dosimetric features as well as the neutron spectra of photoneutrons produced around an 18 MV linear accelerator for radiotherapy. Measurements were carried out with bare and Cd covered thermoluminescent dosimeters, TLD600 and TLD700, as well as inside a paraffine moderator. TLD pairs were also utilized as thermal neutrons inside a Bonner sphere spectrometer (au)

  13. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to...

  14. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen

    Gélat, P.; ter Haar, G.; Saffari, N.

    2013-08-01

    The efficacy of high intensity focused ultrasound (HIFU) for the non-invasive treatment of cancer has been demonstrated for a range of different cancers including those of the liver, kidney, prostate and breast. As a non-invasive focused therapy, HIFU offers considerable advantages over other techniques such as chemotherapy and surgical resection, in terms of its non-invasiveness and low risk of harmful side effects. There is, however, a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to induce tissue necrosis at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. As such, a common side effect of focusing ultrasound in regions located behind the rib cage is the overheating of bone and surrounding tissue, which can lead to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy are deposited. This is likely to rely on a treatment planning procedure in which optimal source velocity distributions are obtained so as to maximise a dose quantity at the treatment sites, whilst ensuring that this quantity does not exceed a specified threshold at other field locations, particularly on the surface of the ribs. Previously, a boundary element approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. This work describes the reformulation of the boundary element equations as a least-squares minimisation problem with non-linear constraints. The methodology was subsequently tested at an excitation frequency of 100 kHz on a spherical multi-element array in the presence

  15. The effect of an acoustic field on the filtration efficiency of aerosols by a granular bed

    A theoretical and an experimental study were developed in order to evaluate the parameters controlling the aerosol collection efficiency of a granular bed, i.e. all the chief collection mechanisms and the effect of acoustic waves on this efficiency. The action of acoustic waves of appropriate intensity and frequency increased the efficiency of the granular bed significantly for all aerosol sizes including those corresponding to the minimum efficiency. The theoretical prediction was verified by an experimental apparatus using a granular bed of glass of 2 mm diameter. Furthermore, our experimental results demonstrated the existence of a threshold in the acoustic intensity above which the collection efficiency of the granular bed increased rapidly. We also demonstrated a semi-empirical law relating acoustic capture efficiency of a spherical collector to frequency and acoustic intensity

  16. Numerical investigation of symmetry breaking and critical behavior of the acoustic streaming field in high-intensity discharge lamps

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled three-dimensional multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. In certain respects the system behaves similar to a ferromagnet near the Curie point. It is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach with a transient model. (paper)

  17. THE RESULTS OF EXPERIMENTAL RESEARCH OF INFLUENCE OF ACOUSTIC AND MAGNETIC FIELD ON ELECTROCONDUCTIVITY AND PH VALUE OF HYDROPONIC SOLUTION

    Korzhakov A. V.

    2015-06-01

    Full Text Available The article deals with the results of research of acoustic and magnetic field influence on conductivity and pH value of hydroponic solution. For carrying out researches in this area the hypothesis of possibility of nutrient solution influence on ions by means of an acoustic and magnetic field is set up. A laboratory scale plant was constructed for a pilot study of the hypothesis. The solution was moved in the tube passing through a ferrite ring with winding. Thus, the solution was exposed to the influence of acoustic and magnetic field. The object of research was hydroponic solution of (NH42SO4; (NH42HPO4; K2SO4; Ca(NO32; MgSO4 in water having adjusted concentration and acidity. The solution was taken from the tank of laboratory scale plant by means of the pump, passed through the working area of the acoustic and magnetic device, filter, and then was poured into the tank, from which the sample for pH level changing was taken. The pH value was measured at the temperature of 22С by using electronic pH-meter KL-009(1A. For control of instrument readings acidity was tested by universal test-paper. The initial pH value of solution made 5. As a result of acoustic and magnetic treatment of solution pH value of hydroponic solution increased from 6 to 6.9. The results show the possibility of pH value correction by small energy input

  18. Use of acoustic vortices in acoustic levitation

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...

  19. Springer Handbook of Acoustics

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  20. Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation

    贾兵; 陈超; 赵淳生

    2011-01-01

    A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to severa/velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange--Euler (ALE) form are numericaJly solved by using streamline upwind petrov gaJerkin (SUPG) finite elements method. Second, the formed a/gebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.

  1. Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation

    Jia, Bing; Chen, Chao; Zhao, Chun-Sheng

    2011-12-01

    A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to several velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange—Euler (ALE) form are numerically solved by using streamline upwind petrov galerkin (SUPG) finite elements method. Second, the formed algebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.

  2. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  3. Azimuthal cement evaluation with an acoustic phased-arc array transmitter: numerical simulations and field tests

    Che, Xiao-Hua; Qiao, Wen-Xiao; Ju, Xiao-Dong; Wang, Rui-Jia

    2016-03-01

    We developed a novel cement evaluation logging tool, named the azimuthally acoustic bond tool (AABT), which uses a phased-arc array transmitter with azimuthal detection capability. We combined numerical simulations and field tests to verify the AABT tool. The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing. With larger channeling size in the circumferential direction, the amplitude difference of the casing wave at different azimuths becomes more evident. The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing—cement interface, and can visualize the size, depth, and azimuth of channeling. In the case of good casing—cement bonding, the AABT can further evaluate the cement bond quality at the cement—formation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.

  4. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen

    Gélat, P.; ter Haar, G.; Saffari, N.

    2012-12-01

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  5. Active control of membrane-type acoustic metamaterial by electric field

    Xiao, Songwen; Ma, Guancong; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-03-01

    By employing a metal-coated central platelet and a rigid mesh electrode which is transparent to acoustic wave, we show that the membrane-type acoustic metamaterials (MAMs) can be easily tuned by applying an external voltage. With static voltage, the MAM's eigenfrequencies and therefore the phase of the transmitted wave are tunable up to 70 Hz. The MAM's vibration can be significantly suppressed or enhanced by using phase-matched AC voltage. Functionalities such as phase modulation and acoustic switch with on/off ratio up to 21.3 dB are demonstrated.

  6. Active control of acoustic field-of-view in a biosonar system.

    Yovel, Yossi; Falk, Ben; Moss, Cynthia F; Ulanovsky, Nachum

    2011-09-01

    Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized. PMID:21931535

  7. Influence of a single lightning on the intensity of an air electric field and acoustic emission of near surface rocks

    S. E. Smirnov

    2012-06-01

    Full Text Available The effect of a single lightning discharge on electric field intensity in the near ground atmosphere was investigated. The effect appeared as a sharp fall of electric field potential gradient from 80 V m−1 up to −21 V m−1. The process of intensity recovery is described by flat capacitor model with characteristic time of recovery of 17 c. Simultaneously with electric field, the acoustic emission response in the near surface rocks on lightning discharge was registered in the frequency range of 6.5–11 kHz.

  8. Influence of a single lightning on the intensity of an air electric field and acoustic emission of near surface rocks

    Smirnov, S. E.; Marapulets, Y. V.

    2012-01-01

    The effect of a single lightning discharge on electric field intensity in the near ground atmosphere was investigated. The effect appeared as a sharp fall of electric field potential gradient from 80 V m−1 up to −21 V m−1. The process of intensity recovery is described by flat capacitor model with characteristic time of recovery of 17 c. Simultaneously with electric field, the acoustic emission response in the near surface rocks on lightning disch...

  9. Amplification of acoustic waves in armchair graphene nanoribbon in the presence of external electric and magnetic fields

    Dompreh, K. A.; Mensah, S. Y.; Abukari, S. S.; Sam, F.; Mensah, N. G.

    2016-09-01

    Amplification of acoustic waves in Armchair Graphene Nanoribbon (AGNR) in the presence of an external electric and magnetic fields was studied using the Boltzmann's kinetic equation. The general expression for the amplification (Γ⊥ /Γ0) was obtained in the region ql ≫ 1 for the energy dispersion ε(p →) near the Fermi point. For various parameters of the quantized wave vector (β), the graphs of Γ⊥ /Γ0 against the electric field (Ex →), the acoustic wave-number (q →), the energy gap (Eg) and the dimensionless factor (Ωτ0) were numerically analyzed. The results showed a linear relation for Γ⊥ /Γ0 with Ex → but non-linear for q → and Ωτ0. The observed amplification can lead to SASER in Armchair Graphene Nanoribbon (AGNR).

  10. A theoretical study of the feasibility of acoustical tweezers: Ray acoustics approach

    Lee, Jungwoo; Ha, Kanglyeol; Shung, K. Kirk

    2005-05-01

    The optical tweezer has been found to have many biomedical applications in trapping macromolecules and cells. For the trapping mechanism, there has to be a sharp spatial change in axial optical intensity and the particle size must be much greater than the wavelength. Similar phenomenon may exist in acoustics. This work was undertaken to demonstrate theoretically that it is possible to acoustically trap particles near the focal point where most of the acoustic energy is concentrated if certain conditions are met. Acoustic force exerted on a fluid particle in ultrasonic fields is analyzed in a ray acoustics regime where the wavelength of acoustic beam is much smaller than the size of the particle. In order to apply the acoustical tweezer to manipulating macromolecules and cells whose size is in the order of a few microns or less, a prerequisite is that the ultrasound wavelength has to be much smaller than a few microns. In this paper, the analysis is therefore based on the field pattern produced by a strongly focused 100 MHz ultrasonic transducer with Gaussian intensity distribution. For the realization of acoustic trapping, negative axial radiation force has to be generated to pull a particle towards a focus. The fat particle considered for acoustic trapping in this paper has an acoustic impedance of 1.4 MRayls. The magnitude of the acoustic axial radiation force that has been calculated as the size of the fat particle is varied from 8λ to 14λ. In addition, both Fresnel coefficients at various positions are also calculated to assess the interaction of reflection and refraction and their relative contribution to the effect of the acoustical tweezer. The simulation results show that the feasibility of the acoustical tweezer depends on both the degree of acoustic impedance mismatch and the degree of focusing relative to the particle size. .

  11. High-Fidelity Prediction of Launch Vehicle Liftoff Acoustic Fields Project

    National Aeronautics and Space Administration — The high-intensity level acoustic load generated by large launch vehicle lift-off propulsion is of major concern for the integrity of the launch complex and the...

  12. Seeing Sound - Image Analysis of the Lift-off Acoustic Field Project

    National Aeronautics and Space Administration — A launch vehicle and its launch facilities are subjected to intense acoustic loads generated by the vehicle's propulsion system. The vehicle, its payload, and...

  13. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Our analysis places no restrictions on the length scales of the viscous and thermal boundary layer thicknesses $\\delta_\\mathrm{s}$ and $\\delta_\\mathrm{t}$ relative to the particle radius $a$, but it assumes the particle to be small in comparison to the acoustic wavelength $...

  14. Near-field signal acquisition for smartglasses using two acoustic vector-sensors

    Levin, Dovid Y.; Habets, Emanuël A.P.; Gannot, Sharon

    2016-01-01

    Smartglasses, in addition to their visual-output capabilities, often contain acoustic sensors for receiving the user's voice. However, operation in noisy environments may lead to significant degradation of the received signal. To address this issue, we propose employing an acoustic sensor array which is mounted on the eyeglasses frames. The signals from the array are processed by an algorithm with the purpose of acquiring the user's desired near-filed speech signal while suppressing noise sig...

  15. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  16. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT).Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static nagnetic field on the Lorentz force under pulsed voltage excitation are studied.

  17. Acoustical Imaging

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  18. Direct measurements of the ion acoustic decay instability in a laser-produced, large-scale, hot plasma

    The ion acoustic decay instability has been investigated using UV collective Thomson scattering (CTS) in a large scale (∼1 mm) and hot (∼1 keV) plasma relevant to laser fusion. The instability was found to be easily excited. The spectrum of the electron plasma wave is consistent with simple theory. Collective Thomson scattering is shown to be a good tool for diagnosing the local electron temperature

  19. Experiments on the Flow Field and Acoustic Properties of a Mach number 0·75 Turbulent Air Jet at a Low Reynolds Number

    Slot, H J; Moore, P.; Delfos, R.; Boersma, B.J.

    2009-01-01

    In this paper we present the experimental results of a detailed investigation of the flow and acoustic properties of a turbulent jet with Mach number 0·75 and Reynolds number 3·5 103. We describe the methods and experimental procedures followed during the measurements, and subsequently present the flow field and acoustic field. The experiment presented here is designed to provide accurate and reliable data for validation of Direct Numerical Simulations of the same flow. Mean Mach number surve...

  20. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.

    Karlsen, Jonas T; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems. PMID:26565335

  1. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    Karlsen, Jonas T.; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a , but it assumes the particle to be small in comparison to the acoustic wavelength λ . This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  2. Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field

    Lebon, Gerard S. B.; Pericleous, Koulis; Tzanakis, Iakovos; Eskin, Dmitry G.

    2015-10-01

    Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front.

  3. Pattern recognition methods for acoustic emission analysis

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  4. A three-dimensional hydroelasticity theory for ship structures in acoustic field of shallow sea

    邹明松; 吴有生; 刘艳敏; 林长刚

    2013-01-01

    Nowadays the development of green ship technology requires the vibration and noise control of oceangoing ships. The three-dimensional hydroelasticity theory of ships was previously extended to include the effect of fluid compressibility. This enables the dynamic responses and the acoustic radiations of a ship excited by onboard machineries or fluid fluctuation loads to be predicted. In this paper the hydroelastic analysis and sonoelastic analysis methods are further incorporated with the Green’s function in the Pekeris ocean hydro-acoustic waveguide model to work out a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. As examples, the sound radiations of a floating elastic spherical shell excited by a concentrated force and a traveling LNG ship excited by the propeller induced pulsating forces acting on the wetted bottom plate of the stern in the sha- llow sea environment are predicted. The influences of the free surface and the sea bed on the generalized hydrodynamic coefficients and the acoustic pressure distributions in fluid domain are illustrated and discussed.

  5. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    Karlsen, Jonas Tobias

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Our analysis places no restrictions on the length scales of the viscous and thermal boundary layer thicknesses $\\delta_\\mathrm{s}$ and $\\delta_\\mathrm{t}$ relative to the particle radius $a$, but it assumes the particle to be small in comparison to the acoustic wavelength $\\lambda$. This is the limit relevant to scattering of sound and ultrasound waves from micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical parti...

  6. Technical procedures for implementation of acoustics site studies, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    1987-09-01

    The purpose and scope of the technical procedure for processing data from the tethered meteorological system are covered. Definitions, interfaces, and concurrent data needs are also addressed. This technical procedure describes how to control, organize, verify, and archive tethered meteorological system data. These data will be received at the processing location from the field measurement location and are part of the characterization of the Deaf Smith County Site, Texas for the salt repository program. These measurements will be made in support of the sound propagation study and are a result of environmental data requirements for acoustics. 6 refs., 15 figs., 5 tabs.

  7. Elastic properties of lotus-type porous iron: acoustic measurement and extended effective-mean-field theory

    We studied the elastic properties of lotus-type porous iron experimentally and theoretically. First we determined the elastic constants of lotus iron fabricated by the continuous zone-melting method by using the acoustic resonance techniques. All the elastic moduli are found to follow the well-known power-law formula. Next, we extended the effective-mean-field (EMF) theory so as to consider effects of the pore orientation on the effective elastic constants. The model calculations proved that the extended EMF theory is capable of calculating satisfactorily the elastic properties of lotus metals

  8. Technical procedures for implementation of acoustics site studies, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    The purpose and scope of the technical procedure for processing data from the tethered meteorological system are covered. Definitions, interfaces, and concurrent data needs are also addressed. This technical procedure describes how to control, organize, verify, and archive tethered meteorological system data. These data will be received at the processing location from the field measurement location and are part of the characterization of the Deaf Smith County Site, Texas for the salt repository program. These measurements will be made in support of the sound propagation study and are a result of environmental data requirements for acoustics. 6 refs., 15 figs., 5 tabs

  9. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  10. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties

  11. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  12. Ultrasonic imaging of an object at the presence of Fourier and non-Fourier transformation in the transmitted through the object acoustic field.

    Andreeva, A; Burova, M; Burov, J

    2007-06-01

    A metal object is computer visualized by registration of the amplitudes of the transmitted through the object short acoustic pulses. The pulses are separated by time, because of the presence of holes and internal compact components in the longitudinal section (structure along the propagation direction of acoustic wave). The acoustic field transmitted through the object is composited from a field presenting Fourier transformation of the hole shape and field, transmitted through the metal components in the longitudinal section of the object. A computer Fourier transformation of the digital data of the amplitude fields transmitted through the object components is performed instead of converging lens. The Fourier series of the object obtained as digital data after the transformation is multiplied with a term, describing the angle distribution of the field on spatial frequencies. The reconstruction of the image of the metal components is performed by reverse transformation, i.e. summing up in all spatial frequencies. 3D visualization of the transmitted through the hole acoustic field determines the hole geometry (circular, square, rectangular). It is shown that at the transmission of a short acoustic pulse through the components with different thicknesses and holes, presenting Fourier and non-Fourier transformation can be registered separately in contrast to the optics. PMID:17395232

  13. Propagation-invariant waves in acoustic, optical, and radio-wave fields

    Salo, Janne

    2003-01-01

    The physical phenomena considered in this thesis are associated with electromagnetic and acoustic waves that propagate in free space or in homogeneous media without diffraction. The concept of rotationally periodic wave propagation is introduced in the first journal article included in the thesis and it is subsequently used to analyse waves that avoid diffractive deterioration by repeatedly returning to their initial shape, possibly rotated around the optical axis. Such waves constitute an es...

  14. Solid waves and acoustic emission first phase: Problems direct and inverse and equations elasto dynamics fields

    The present work is the first of a series of three memoirs briefs, destinadas to revise the classic theoretical foundations that allow to understand the generation,la diffusion and the detection of the elastic waves in those been accustomed to from the point of view of the mechanics of the means continuos. The study is faced in the mark of the non destructive rehearsals, emphasizing aspects related with the rehearsals based on the acoustic emission of the material defects

  15. Sound Field Modeling in Architectural Acoustics using a Diffusion Equation Based Model

    Fortin, Nicolas; Picaut, Judicaël; Billon, Alexis; Valeau, Vincent; SAKOUT, Anas

    2009-01-01

    In this paper, an implementation of a model for room-acoustic predictions in COMSOL Multiphysics is presented. The model (called diffusion model) is based on the solving of diffusion equations instead of classical wave equations and allows simulating the sound propagation in complex geometries at high frequency. Instead of using COMSOL Multiplysics to solve directly the problem, a specific tool has been developed. It is composed of a user-friendly interface (I-Simpa) which manipulates all the...

  16. Sound Field Modeling in Architectural Acoustics using a Diffusion Equation Based Model

    Fortin, Nicolas; Picaut, Judicaël; Billon, Alexis; Valeau, Vincent; SAKOUT, Anas

    2009-01-01

    In this paper, an implementation of a model for room-acoustic predictions in COMSOL Multiphysics is presented. The model (called diffusion model) is based on the solving of diffusion equations instead of classical wave equations and allows simulating the sound propagation in complex geometries at high frequency. Instead of using COMSOL Multiplysics to solve directly the problem, a specific tool has been developed. It is composed of a user-friendly interface (I-Simpa) which manipulates a...

  17. Self-generation mechanisms of intense magnetic fields in laser produced plasmas on solid targets

    Mechanisms of magnetic field self-generation in laser produced plasma are presented. Magnetic field generation due to the thermoelectric sources (Vnsub(e) x VTsub(e)), resonance absorption, ponderomotive forces, some kind of instabilities (modulational, Weibel, Rayleigh-Taylor instabilities) is considered. Estimates or scaling laws for parameters typical for current experiments are given. (author)

  18. Proton radiography of magnetic field produced by ultra-intense laser irradiating capacity-coil target

    Wang, W W; Chen, J; Cai, H B; He, S K; Zhou, W M; Shan, L Q; Lu, F; Wu, Y C; Hong, W; Liu, D X; Bi, B; Zhang, F; Xue, F B; Li, B Y; Zhang, B; He, Y L; He, W; Jiao, J L; Dong, K G; Zhang, F Q; Deng, Z G; Zhang, Z M; Cui, B; Han, D; Zhou, K N; Wang, X D; Zhao, Z Q; Cao, L F; Zhang, B H; He, X T; Gu, Y Q

    2014-01-01

    Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.

  19. Evidence for a devil's staircase in holmium produced by an applied magnetic field

    The magnetic structure of holmium has been studied using neutron diffraction when a magnetic field is applied along the c axis. The field has the effect of suppressing the onset of the commensurate cone phase found at low temperatures in zero field, and instead produces a series of spin-slip structures. In contrast to the zero-field diffraction experiments, where a continuous variation of the magnetic wave vector q was observed, we find that below ∼15 K the wave vector q is always commensurate and forms a devil's staircase with increasing field

  20. Acoustic data analysis and scenario over watch from an aerostat at the NATO SET-153 field experiment

    Reiff, Christian; Scanlon, Michael

    2012-06-01

    The purpose of the NATO SET-153 field experiment was to provide an opportunity to demonstrate multiple sensor technologies in an urban environment and determine integration capabilities for future development. The Army Research Laboratory (ARL) experimental aerostat was used primarily as a persistent over watch capability as a substitute for a UAV. Continuous video was recorded on the aerostat and segments of video were captured of the scenarios on the ground that the camera was following manually. Some of the segments showing scenario activities will be presented. The captured pictures and video frames have telemetry in the headers that provides the UTM time and the Inertial Navigation System (INS) GPS location and the inertial roll, pitch, and yaw as well as the camera gimbal pan and tilt angles. The timing is useful to synchronize the images with the scenario events providing activity ground truth. The INS, GPS, and camera gimbal angle values can be used with the acoustic solution for the location of a sound source to determine the relative accuracy of the solution if the camera is pointed at the sound source. This method will be confirmed by the use of a propane cannon whose GPS location is logged. During the field experiment, other interesting acoustic events such as vehicle convoys, platoon level firefights with vehicles using blanks, and a UAV helicopter were recorded and will be presented in a quick analysis.

  1. Integration of Temporal Contextual Information for Robust Acoustic Recognition of Bird Species from Real-Field Data

    Iosif Mporas

    2013-06-01

    Full Text Available We report on the development of an automated acoustic bird recognizer with improved noise robustness, which is part of a long-term project, aiming at the establishment of an automated biodiversity monitoring system at the Hymettus Mountain near Athens, Greece. In particular, a typical audio processing strategy, which has been proved quite successful in various audio recognition applications, was amended with a simple and effective mechanism for integration of temporal contextual information in the decision-making process. In the present implementation, we consider integration of temporal contextual information by joint post-processing of the recognition results for a number of preceding and subsequent audio frames. In order to evaluate the usefulness of the proposed scheme on the task of acoustic bird recognition, we experimented with six widely used classifiers and a set of real-field audio recordings for two bird species which are present at the Hymettus Mountain. The highest achieved recognition accuracy obtained on the real-field data was approximately 93%, while experiments with additive noise showed significant robustness in low signal-to-noise ratio setups. In all cases, the integration of temporal contextual information was found to improve the overall accuracy of the recognizer.

  2. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  3. Insight into morphology changes of nanoparticle laden droplets in acoustic field

    Basu, Saptarshi; Tijerino, Erick; Kumar, Ranganathan

    2013-04-01

    Hollow structures with unique morphologies form due to particle agglomeration in acoustically levitated nanofluid functional droplets when subjected to external heating. The final diameter of the structure depends only on the ratio of agglomeration to evaporation time scales for various nanoparticle laden droplets, and not on the type of the suspended particles. These time scales depend only on nanoparticle concentration. This valuable information may be exploited to form microstructures with desired properties from ceramic compounds. Phase diagrams for alumina and silica droplets indicate the transition from a bowl to ring structure depending on concentration.

  4. Holding characteristics of planar objects suspended by near-field acoustic levitation

    Matsuo; Koike; Nakamura; Ueha; Hashimoto

    2000-03-01

    The authors have found the acoustic levitation phenomenon where planar objects of 10 kg weight can be levitated near a vibration surface. This phenomenon has been studied for non-contact transportation. A circular planar object can be suspended without contacting a circular vibration plate. We have studied the holding force which acts horizontally on the levitated objects. The horizontal position of the object is stabilized by this force. In this paper, we discuss the effect of the radius of a levitated object, levitation distance, displacement amplitude of the vibration plate and the vibration mode on the suspending force. PMID:10829629

  5. Localizing Near and Far Field Acoustic Sources with Distributed Microhone Arrays

    Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    In this paper, we consider the problem of acoustic source localization using distributed microphone arrays. Time differences of arrival (TDOAs) are estimated using a recently proposed method based on joint direction of arrival (DOA) and range estimation. The TDOAs are used to estimate the location...... method based on joint DOA and pitch estimation, using synthesized harmonic signals with varying source position. Results show a decrease in the error of the estimated position when joint DOA and range estimation is used for TDOA estimation, compared to the GCC-PHAT and joint DOA and pitch methods....

  6. Field trials of a tactile acoustic monitor for the profoundly deaf.

    Summers, I R; Peake, M A; Martin, M C

    1981-08-01

    Profoundly deaf subjects were given information about sound level in their environment by means of a body-worn unit coupled to a small vibrator worn on the finger. Results of trials on 19 adults are discussed. The Tactile Acoustic Monitor was found to be useful for identifying domestic sounds by means of their distinctive timing patterns. No significant overall improvement in subject's control of voice level was observed, although some subjects found that having a voice level monitor gave them greater confidence to join conversations. Various design improvements were suggested by the trials. Modifications which have been incorporated into an improved unit are described. PMID:7296098

  7. Simulations of Magnetic Field Generation in Laser-Produced Blast Waves

    Lamb, D.; Fatenejad, M.; Gregori, G.; Miniati, F.; Park, H.-S.; Remington, B.; Ravasio, A.; Koenig, M.; Murphy, C. D.

    2011-10-01

    Magnetic fields are ubiquitous in the Universe. The origin of these fields and process by which they are amplified are not fully understood, although amplification is thought to involve turbulence. Experiments being conducted at medium-scale laser facilities (such as the LULI laser the Janus laser) can investigate the self-generation of magnetic fields under conditions that resemble astrophysical shocks. In these experiments, two 527 nm, 1.5 ns long laser beams are focused onto a 500 μm diameter graphite rod producing an explosion and asymmetric blast wave into a Helium filled chamber. A variety of diagnostics measure the velocity, electron density, and show that a large scale magnetic field is produced. We report preliminary hydrodynamic and MHD simulations using FLASH of a simplified version of the experiment. The results provide insights into the origin and generation of the magnetic field. This work was partially supported by the US DOE, the European Research Council, and Laserlab Europe.

  8. Simultaneous measurement of acoustic pressure and temperature in the HIFU fields using all-silica fiber optic Fabry-Perot hydorophone

    Wang, Dai-Hua; Zeng, Lu-Yu; Jia, Ping-Gang; Liu, Lei; Jiang, Xin-Yin

    2014-11-01

    Accurately measuring the acoustic pressure distributions and the size of the focal regions of high-intensity focused ultrasound (HIFU) fields, as well as the temperature induced by the HIFUs, are significant for ensuring the efficiency and safety of treatments. In our previous work, a tip-sensitive all-silica fiber-optic Fabry-Perot (TAFOFP) ultrasonic hydrophone for measuring HIFU fields is developed. In this paper, we explore the possibility that utilizing the TAFOFP ultrasonic hydrophone to simultaneously measure the acoustic pressure of HIFU fields and the induced temperature. The TAFOFP ultrasonic hydrophone for simultaneously measuring the acoustic pressure and temperature is developed and the experiment setup for measuring the HIFU fields based on the developed TAFOFP ultrasonic hydrophone is established. The developed TAFOFP ultrasonic hydrophone is experimentally tested in the degassed water and tissue phantom to verify the possibility of simultaneously measuring the acoustic pressure and temperature. Experimental results show that the sensing system can simultaneously measure the acoustic pressure and temperature.

  9. Field emission properties of carbon nanotube cathodes produced using composite plating

    Field emission properties of carbon nanotube field emission cathodes (CNT-FECs) produced using composite plating are studied. The experiment uses a CNT suspension and electroless Ni plating bath to carry out composite plating. The CNTs were first purified by an acid solution, dispersed in a Ni electrobath, and finally co-deposited with Ni on glass substrates to synthesize electrically conductive films. Field emission scanning electron microscopy and Raman spectroscopy results show that the field emission characteristics and graphitic properties of CNT-FECs depend on the pH value of the electrobath. Experiments show that the optimum electrobath pH value is 5.4, achieving a field emission current density of 1.0 mA/cm2 at an applied electric field of 1.5 V/μm. The proposed CNT-FECs possess good field emission characteristics and have potential for backlight unit application in liquid crystal displays.

  10. [Acoustic emission diagnostic techniques for high-field high current-density super inducting poles

    Acoustic emission technology was introduced in the late 1970's to monitor superconducting magnets. It has now been firmly established that acoustic signals in superconducting magnets are emitted principally by mechanical events such as conductor strain, conductor motion, frictional motion, and epoxy cracking. Despite earlier suggestions, flux motion, except during flux jumping, does not appear to be an important source of AE signals in superconducting magnets. Of these several potential sources of AE signals in superconducting magnets, mechanical disturbances have been identified to be most important in high-performance, ''adiabatic'' magnets such as the dipoles used in accelerators. These mechanical disturbances are transitory, each generating a packet of AE signals that can be located with sensors. Source identification and location has been achieved with a number of superconducting magnets. In this section, the basic principle for the operation of adiabatic magnets is discussed, followed by presentation of some of the important experimental results relevant to the question of premature quench obtained at MIT

  11. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure. PMID:17225392

  12. The charge state of the ions produced by a saddle field ion source

    The thesis is concerned with an analysis of the charge state and energy of the ions produced by a saddle field ion source, and its application to the measurement of the sputtering yield. The subject is discussed under the topic headings: production of multicharged ions, saddle field ion sources, experimental conditions, ionic charge state, energy for argon, and sputtering yield of gold for Ar+ and Ar2+ ions. (U.K.)

  13. A geometric Model for the Spatial Correlation of an Acoustic Vector Field in Surface-generated Noise

    Yiwang Huang; Qunyan Ren; Ting Li

    2012-01-01

    Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated,with directional noise sources uniformly distributed on the ocean surface.In the evaluation of particle velocity,plane wave approximation was applied to each incident ray.Due to the equivalence of the sound source correlation property and its directivity,solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source.As a typical horizontally stratified media,surface noise in a perfect waveguide was investigated.Correlation coefficients given by normal mode and geometric models show satisfactory agreement.Also,the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient,while that of the surface noise in semi-infinitely homogeneous space is zero.

  14. Unstable resonator system producing a high irradiance beam in the far field

    Laser systems comprising an unstable resonator and optics for increasing the magnification of the output beam from the resonator to concentrate the power distribution in the far field are disclosed. The resonator device produces a beam of laser energy which is an annulus in cross section and matched optics change the energy distribution in the annulus; both refractory and reflecting optics are disclosed. Also graphs describing the intensity distribution of the annular beam under various conditions in both the near field and far field locations in the optical system are provided

  15. Two-dimensional interferometric measurements of a laser-produced plasma in a strong magnetic field

    Interferometric measurements on CO2-laser-produced plasmas in a 250 kilogauss magnetic field show the development of a slender, well-behaved plasma column with an on-axis minimum suitable for refractive trapping of the laser beam. 3 refs., 4 figs

  16. Manual of plant producers and services in environmental protection. Database in the field of environmental protection

    On the basis of an enquiry, the Stuttgart Chamber of Industry and Commerce produced a database of the services offered by regional and supraregional companies in the field of environmental protection. The data are presented in this manual, classified as follows: noise protection systems; sanitation systems and services; other systems and services. (orig.)

  17. Characterisation of Laboratory-produced CANDU(r)-like workplace neutron fields

    Two neutron fields were produced in the Neutron Irradiation Facility (NIF) at the Chalk River Laboratories of the Atomic Energy of Canada Ltd. by direction (d,D) neutrons from a 150 kV neutron generator through a specially designed moderator assembly. Bonner sphere and proton recoil spectrometry systems were used to characterise these fields to determine whether they were CANDU(r)-like, i.e. whether they resembled neutron fields found in workplaces around pressurised heavy-water moderated power reactors such as CANDU(r) reactors. Similarities were found between the distributions in energy of neutron fluence and ambient dose equivalent of the neutron fields produced in the NIF and those measured previously in power plants. In addition, there was agreement between theoretical (Monte Carlo) data and measured data, thereby validating continued use of Monte Carlo modelling for field characterisations in the NIF. The CANDU(r)-like fields add to the repertoire of neutron fields available in the NIF and are expected to be useful for evaluating neutron dosemeters. (author)

  18. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Igumenshchev, I.; Stoeckl, C.; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  19. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    Espejel-Morales, R.; Murguía-Romero, G.; Calles, A.; Cabrera-Bravo, E.; Morán-López, J. L.

    2016-07-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell-like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder.

  20. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  1. Springer handbook of acoustics

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  2. Modificações vocais acústicas produzidas pelo som hiperagudo Acoustic vocal modifications produced by high-pitched sound

    Geise Roman-Niehues

    2010-06-01

    Full Text Available OBJETIVO: descrever as modificações vocais acústicas após a produção da técnica vocal do som hiperagudo em mulheres adultas jovens, sem queixas vocais e com laringe normal. MÉTODOS: participaram do estudo 23 sujeitos que assinaram o Termo de Consentimento Livre e Esclarecido, preencheram um questionário, realizaram avaliação otorrinolaringológica com laringoscopia indireta, exame dos órgãos fonoarticulatórios e funções estomatognáticas e triagem auditiva. Realizaram o som hiperagudo em três séries de 15 repetições, em tempo máximo de fonação com intervalos de 30 segundos de repouso passivo entre cada série. A análise vocal acústica foi realizada através do Multi-Dimensional Voice Program, Modelo 5105, da Kay Pentax. RESULTADOS: na avaliação acústica vocal, após o som hiperagudo, constatou-se o aumento das medidas de frequência fundamental e das medidas de perturbação da frequência fundamental, diminuição das medidas de perturbação da intensidade, ruído, quebra de voz, irregularidade da voz e tremor, mas não houve significância estatística em todas as medidas oferecidas pelo programa. CONCLUSÃO: neste grupo, os sons hiperagudos não produziram efeitos acústicos estatisticamente significantes sobre o sinal vocal.PURPOSE: to describe acoustic vocal modifications that may occur after the vocal technique production of high-pitched sound in young adult women without voice complaints and with normal larynx. METHODS: 23 subjects participated in the study and signed the Free and Clarified Consent, completed a questionnaire, the ear, nose and throat evaluation was performed with indirect laryngoscopy; stomatognathic system evaluation, and hearing screening. They produced the high-pitched sound in three series of fifteen repetitions, maximum time speech with intervals of 30-second rest between each series. Vocal acoustic analysis was carried out using the Multi-Dimensional Voice Program Model 5105, of Kay

  3. Numerical simulation of the reflected acoustic wave components in the near field of surface defects

    The interaction of a laser generated surface acoustic wave with a surface crack has been simulated in detail by the finite element method, where a surface notch of rectangular shape has been introduced to represent the fatigue crack for the convenience of modelling. It is shown that four distinct reflected components are present in the captured waveforms; the first component is the direct reflection of a compressive pulse from the left side of the notch, while the second one is assumed to be the Rayleigh wave converted from the laser generated compressive wave when it impacts the left face of the notch. The arrival time of the third peak has demonstrated clearly that it comes from the direct reflection of an initial Rayleigh wave on the near side of the notch. The origin of the last component has been assumed to be the mode conversion occurring at the base of the notch, which is based on the fact that the deeper the notch the longer the arrival time of the fourth peak

  4. Cross-field flow of plasma produced by laser resonance photoionization

    A slow(v≅700m/s) neodymium plasma was produced by laser resonance photoionization in a transverse magnetic field of up to 2240G. The plasma density was in the range of 7.5 x 107 - 1.7 x 109cm-3. The high-density plasma in the low magnetic field flowed straight and was detected by a planar collector set 60mm downstream from the position of plasma production. On the contrary, the low-density plasma did not flow straight across the high magnetic field. The ion numbers detected by the collector decreased and arrival time to the collector delayed. It was found that the ratio of the ions detected by the collector to those produced by laser beams and the arrival times were functions of the plasma relative dielectric constant εr in the wide ranges of plasma density and magnetic field. When εr >1000, the plasma flowed straight across the magnetic field. Therefore it was concluded that the lowest value of εr for the very slow plasma flow in the transverse magnetic field is also consistent with the theoretical prediction εr >(M/m)1/2 =513 for neodymium plasma, where M/m is the mass ratio of the ion to the electron. (author)

  5. Inverse estimation of the temperature field within a gas-filled duct section by use of acoustic data

    Knowledge of the temperature distribution of an in-duct gaseous medium is essential in the monitoring of combustion status. To obtain the temperature distribution, an inverse relationship based on the Radon transform is formulated by using the measured time retardation data from a set of acoustic sensors and actuators. The entire spatial distribution can be obtained by interpolating the estimated discrete temperature data using either a path-based or spaced-based method. An interpolation method then determines the precision of the final imaging result. The characteristics and performance of two interpolation methods are investigated in a simulation study by reconstructing the temperature distribution of a rectangular cross-section. To calculate the temperature field, the path-based interpolation method adopts a direct expression of temperature variation along the propagation path, whereas the space-based interpolation method uses data obtained at predetermined points deployed inside the field. The average reconstruction accuracy of the space-based interpolation for temperature fields with 1 and 4 local maxima is 22% and 183% better than that of path-based interpolation, respectively. Also, the space-based interpolation method is more robust with regard to measurement noise than the path-based interpolation method. (paper)

  6. A theoretical study of the feasibility of acoustical tweezer: Ray acoustics approach

    Lee, Jungwoo; Shung, Kirk

    2005-04-01

    Optical tweezer has been found to have many biomedical applications in trapping macromolecules and cells. For the trapping mechanism, there has to be a sharp spatial change in axial optical intensity and the particle size must be much greater than the wavelength. Similar phenomenon may exist in acoustics. This work was undertaken to demonstrate theoretically that it is possible to acoustically trap particles near the focal point if certain conditions are met. Acoustic force exerted on fat tissue in ultrasonic fields is analyzed in ray acoustics regime where the wavelength of acoustic beam is much smaller than the size of the particle. In this paper, the analysis is therefore based on the field pattern produced by a strongly focused 100 MHz ultrasonic transducer with Gaussian intensity distribution. The magnitude of force and Fresnel coefficients at various positions are calculated. According to the simulation results, acoustical tweezer works particularly when the beam width at focus is one wavelength and the tolerance of acoustic impedance mismatch between two media lies within 6.7%. [Work supported by NIH Grant P41-EB2182.

  7. A comparison of inverse boundary element method and near-field acoustical holography

    Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.

    1999-01-01

    An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface...

  8. External magnetic field influence on properties of high-power laser-produced plasma

    Wołowski, J.; Kasperczuk, A.; Pisarczyk, T.

    1996-03-01

    The paper presents results of formation of expanding plasma by combining laser-produced plasma with an external strong magnetic field. The plasma was generated by means of a Nd-glass laser which was focused on a solid target located on the axis of a single-turn coil providing magnetic field of up to 50 T. Spatial characteristics of the dynamics of interaction of the plasma with the magnetic field were registered by means of a three-frame interferometry. For registration and analysis of interferograms, CCD cameras and a multichannel image acquisition system were used. An interesting influence of the strong magnetic field on the plasma dynamics and shape was observed. Preliminary results of numerical modelling are compared with the experimental data.

  9. Uniform trapped fields produced by stacks of HTS coated conductor tape

    Mitchell-Williams, T. B.; Baskys, A.; Hopkins, S. C.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.; Patel, A.

    2016-08-01

    The trapped magnetic field profile of stacks of GdBa2Cu3O7‑x superconducting tape was investigated. Angled stacks of superconducting tape were magnetized and found to produce very uniform trapped field profiles. The angled stacks were made of 12 mm × 24 mm solder coated tape pieces and were bonded together following a brief consolidation heat treatment. Layering multiple stacks together and adding a ferromagnetic plate beneath the samples were both found to enhance the magnitude and uniformity of the trapped field profiles. Stationary and time-dependent critical state finite element models were also developed to complement the experimental results and investigate the magnetization process. The size and shapes possible with the angled stacks make them attractive for applications requiring uniform magnetic fields over larger areas than can be achieved with existing bulk rings or tape annuli.

  10. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    Richard S Brown

    Full Text Available Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to

  11. Field Trial of Distributed Acoustic Sensing Using Active Sources at Garner Valley, California

    Wang, H. F.; Lord, N. E.; Chalari, A.; Lancelle, C.; Baldwin, J. A.; Castongia, E.; Fratta, D.; Nigbor, R. L.; Karaulanov, R.

    2014-12-01

    An optical fiber Distributed Acoustic Sensor array was deployed in a shallow trench at the site of the Garner Valley Downhole Array (GVDA) in southern California. The site was operated as a collaborator of the Network for Earthquake Engineering Simulation (NEES) by UCSB. The fiber-optic cable layout approximated a rectangle whose dimensions were roughly 160 meters by 80 meters. The layout included two subdiagonals to provide a variety of orientations of the cable relative to source locations. The study included different seismic sources deployed at a number of surveyed positions: a 45 kN shear shaker operated at the site by NEES@UCLA, a portable 450 N shaker, a small Vibroseis truck, and hammer blows on a steel plate to map cable locations. Several dozen separate tests were recorded in which each test typically included ten repeats. The data were utilized for several studies. First, the characteristics of the recorded signals were analyzed for directivity and sensitivity of the cable response (Lancelle et al., 2014, this meeting). The DAS system recorded dynamic ground events in the direction of the cable and hence comparisons with geophones required signal processing. The one-meter spacing of DAS traces could be well correlated over distances of a few meters. Second, swept-sine sources were used to obtain surface-wave velocity dispersion to determine near-surface shear-wave velocity distribution using Multispectral Analysis of Surface Waves (MASW) (Baldwin et al., 2014, this meeting). The results were in good agreement with previous Vibroseis results at the site (Stokoe et al. 2004). Third, a new method for time-frequency filtering was developed for extracting the surface-wave phase velocities from uncorrelated receiver traces (Lord et al., 2014, this meeting).

  12. Deformation of biological cells in the acoustic field of an oscillating bubble

    Zinin, Pavel V.; Allen, John S.

    2009-01-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from t...

  13. Estimation of electric fields on plasma pattern in an RF produced magnetized plasma

    Electric field inside the plasma patterns formed in an RF produced magnetized plasma is measured experimentally. The homogeneous plasma breaks into spatio-temporal patterns when magnetic filed strength exceeds a threshold value for a given discharge parameter. The electrostatic potential of these patterns is seen to trap the micron size dust particles which are charged to large negative potential by the plasma particles. The experiment involves achieving an equilibrium between the radial component of the gravitational force and the electrostatic force produced by the patterns in order to evaluate the later. In order to verify our results we follow an alternate technique by introducing multiple particles and observe them rotate due to ion drag force. By calculating their average drift velocities we estimate the electric filed using the value of applied magnetic field. The details of the experiments will be presented in the conference. (author)

  14. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  15. Acoustic-Gravity Waves Interacting with a Rectangular Trench

    Usama Kadri

    2014-01-01

    A mathematical solution of the two-dimensional linear problem of an acoustic-gravity wave interacting with a rectangular trench, in a compressible ocean, is presented. Expressions for the flow field on both sides of the trench are derived. The dynamic bottom pressure produced by the acoustic-gravity waves on both sides of the trench is measurable, though on the transmission side it decreases with the trench depth. A successful recording of the bottom pressures could assist in the early detect...

  16. Acoustic vector sensor signal processing

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  17. Expressions for far electric fields produced at an arbitrary altitude by lightning return strokes

    Thottappillil, Rajeev; Rakov, Vladimir A.; Theethayi, Nelson

    2007-08-01

    Electromagnetic fields produced at high altitudes by return strokes in cloud-to-ground lightning are needed in studies of transient luminous events in the mesosphere. Such calculations require the use of a lightning return stroke model. Two of the widely used return stroke models are (1) the modified transmission line model with exponential decay (MTLE) of current with height and (2) the modified transmission line model with linear decay (MTLL) of current with height. In this paper, simplified expressions based on the MTLE and MTLL models are derived for calculating far (radiation) electric fields produced at an arbitrary elevation angle by lightning return strokes. It is shown that different (for example, containing either spatial or time integral), but equivalent equations can be derived for each of the models. Predictions of simplified expressions are compared with electric fields computed using exact expressions, including all the field components, and the validity of simplified expressions for distances that are much greater than the radiating channel length is confirmed.

  18. Reducing the field perturbation produced by shifted gaps in a drift-tube linac

    A space of three cell lengths is left between tanks in the SSC DTL. This space contains two quadrupoles and beam diagnostic equipment. To compensate for the absence of longitudinal focusing in this space, the gaps in two end cells of both neighboring tanks are shifted upstream to produce a phase shift of as much as 45 degrees. These displacements of the gaps from the approximate geometrical centers of the cells cause frequency errors and significant perturbations in the fields in the vicinity of these cells. Adjusting the gap widths to get the correct frequency is not sufficient to reduce the field perturbations. In this paper we describe the technique used for reducing the field perturbation in the SSC DTL. (Author) 2 figs., 3 tabs., ref

  19. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard [Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich (Switzerland)

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  20. Acoustic assessments of the severity of grub infestations in Queensland sugarcane fields

    Effective management of sugarcane, Queensland's 2nd-most-important crop, currently requires the digging-up of large numbers of cane stools to estimate populations of Dermolepida albohirtum and Antitrogus parvulus grubs. In recent field tests, these relatively large, active grubs were easily detecte...

  1. Near field acoustic holography with microphones mounted on a rigid sphere

    Jacobsen, Finn; Moreno, Guillermo; Fernandez Grande, Efren;

    2008-01-01

    is only valid if it can be assumed that the sphere has a negligible in-fluence on the incident sound field, and this is not necessarily a good assumption when the sphere is very close to a radiating surface. This paper describes the modified spherical NAH theory and examines the matter through simulations...

  2. Acoustic velocity measurement by means of Laser Doppler Velocimetry: Development of an Extended Kalman Filter and validation in free-field measurement

    Le Duff, Alain; Plantier, Guy; Valière, Jean C.; Gazengel, Bruno

    2016-03-01

    A signal processing technique, based on the use of an Extended Kalman Filter, has been developed to measure sound fields by means of Laser Doppler Velocimetry in weak flow. This method allows for the parametric estimation of both the acoustic particle and flow velocity for a forced sine-wave excitation where the acoustic frequency is known. The measurements are performed from the in-phase and the quadrature components of the Doppler downshifted signal thanks to an analog quadrature demodulation technique. Then, the estimated performance is illustrated by means of Monte-Carlo simulations obtained from synthesized signals and compared with asymptotic and analytical forms for the Cramer-Rao Bounds. Results allow the validity domain of the method to be defined and show the availability for free-field measurements in a large range. Finally, an application based on real data obtained in free field is presented.

  3. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.

    Joyce, Priya; Hermann, Scott; O'Connell, Anthony; Dinh, Quang; Shumbe, Leonard; Lakshmanan, Prakash

    2014-05-01

    Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques. PMID:24330327

  4. A Small Acoustic Goniometer for General Purpose Research

    Michael L. Pook

    2016-04-01

    Full Text Available Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed.

  5. Investigation of scaling characteristics for defining design environments due to transient ground winds and near-field, nonlinear acoustic fields

    Shih, C. C.

    1973-01-01

    In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.

  6. Near-Field Acoustic Power Level Analysis of F31/A31 Open Rotor Model at Simulated Cruise Conditions, Technical Report II

    Sree, Dave

    2015-01-01

    Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  7. Acoustic gain in piezoelectric semiconductors at ε-near-zero response

    Willatzen, Morten; Christensen, Johan

    2014-01-01

    We demonstrate strong acoustic gain in electric-field biased piezoelectric semiconductors at frequencies near the plasmon frequency in the terahertz range. When the electron drift velocity produced by an external electric field is higher than the speed of sound, Cherenkov radiation of phonons...... an electrically controlled piezoelectric slab waveguide. This extreme sound field enhancement in an active piezo material shows potential for acoustic sensing and loss compensation in metamaterials and nonlinear devices....

  8. Hybrid Matter-Wave-Microwave Solitons Produced by the Local-Field Effect.

    Qin, Jieli; Dong, Guangjiong; Malomed, Boris A

    2015-07-10

    It was recently found that the electric local-field effect (LFE) can lead to a strong coupling of atomic Bose-Einstein condensates (BECs) to off-resonant optical fields. We demonstrate that the magnetic LFE gives rise to a previously unexplored mechanism for coupling a (pseudo-) spinor BEC or fermion gas to microwaves (MWs). We present a theory for the magnetic LFE and find that it gives rise to a short-range attractive interaction between two components of the (pseudo) spinor, and a long-range interaction between them. The latter interaction, resulting from deformation of the magnetic field, is locally repulsive but globally attractive, in sharp contrast with its counterpart for the optical LFE, produced by phase modulation of the electric field. Our analytical results, confirmed by the numerical computations, show that the long-range interaction gives rise to modulational instability of the spatially uniform state, and it creates stable ground states in the form of hybrid matter-wave-microwave solitons (which seem like one-dimensional magnetic monopoles), with a size much smaller than the MW wavelength, even in the presence of arbitrarily strong contact intercomponent repulsion. The setting is somewhat similar to exciton-polaritonic condensates in semiconductor microcavities. The release of matter waves from the soliton may be used for the realization of an atom laser. The analysis also applies to molecular BECs with rotational states coupled by the electric MW field. PMID:26207469

  9. Ultra-sensitive atomic magnetometer for studying magnetization fields produced by hyperpolarized helium-3

    Zou, Sheng; Zhang, Hong; Chen, Xi-yuan; Chen, Yao; Lu, Ji-xi; Hu, Zhao-hui; Shan, Guang-cun; Quan, Wei; Fang, Jian-cheng

    2016-04-01

    An ingenious approach to acquire the absolute magnetization fields produced by polarized atoms has been presented in this paper. The method was based on detection of spin precession signal of the hyperpolarized helium-3 with ultra-sensitive atomic magnetometer of potassium by referring to time-domain analysis. At first, dynamic responses of the mixed spin ensembles in the presence of variant external magnetic fields have been analyzed by referring to the Bloch equation. Subsequently, the relevant equipment was established to achieve the functions of hyperpolarizing helium-3 and detecting the precession of spin-polarized noble gas. By analyzing the transient response of the magnetometer in time domain, we obtained the relevant damping ratio and natural frequency. When the value of damping ratio reached the maximum value of 0.0917, the combined atomic magnetometer was in equilibrium. We draw a conclusion from the steady response: the magnetization fields of the polarized electrons and the hyperpolarized nuclei were corresponding 16.12 nT and 90.74 nT. Under this situation, the nuclear magnetization field could offset disturbing magnetic fields perpendicular to the orientation of the electronic polarization, and it preserved the electronic spin staying in a stable axis. Therefore, the combined magnetometer was particularly attractive for inertial measurements.

  10. Modeling and computation of mean field equilibria in producers' game with emission permits trading

    Zhang, Shuhua; Wang, Xinyu; Shanain, Aleksandr

    2016-08-01

    In this paper, we present a mean field game to model the production behaviors of a very large number of producers, whose carbon emissions are regulated by government. Especially, an emission permits trading scheme is considered in our model, in which each enterprise can trade its own permits flexibly. By means of the mean field equilibrium, we obtain a Hamilton-Jacobi-Bellman (HJB) equation coupled with a Kolmogorov equation, which are satisfied by the adjoint state and the density of producers (agents), respectively. Then, we propose a so-called fitted finite volume method to solve the HJB equation and the Kolmogorov equation. The efficiency and the usefulness of this method are illustrated by the numerical experiments. Under different conditions, the equilibrium states as well as the effects of the emission permits price are examined, which demonstrates that the emission permits trading scheme influences the producers' behaviors, that is, more populations would like to choose a lower rather than a higher emission level when the emission permits are expensive.

  11. Automated disposal of produced water from a coalbed methane well field, a case history

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  12. Computational Ocean Acoustics

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  13. Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela

    Guirados, C.; Sandoval, J.; Rivas, O.; Troconis, H.

    1995-12-31

    Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design. The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.

  14. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  15. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    Gélat, Pierre; ter Haar, Gail; Saffari, Nader

    2011-09-01

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  16. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    Gelat, Pierre [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Ter Haar, Gail [Therapeutic Ultrasound Group, Physics Department, Institute of Cancer Research, Sutton SM2 5NG (United Kingdom); Saffari, Nader, E-mail: Pierre.Gelat@npl.co.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2011-09-07

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  17. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

  18. Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation.

    Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao

    2015-12-01

    Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude. PMID:26723328

  19. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units

  20. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben [Acoustics Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  1. Matrix method for acoustic levitation simulation.

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort. PMID:21859587

  2. CO2-laser--produced plasma columns in a solenoidal magnetic field

    A 1-GW CO2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  3. Measurements of the magnetic fields produced by the human heart, brain, and lungs

    Magnetic fields produced by organs of the human body are being measured in a shielded room, using both a SQUID magnetometer and second-derivative gradiometer. Measurements of the field around the human body can yield new information not obtainable with surface electrodes about organs which generate current and about organs which contain foreign, ferromagnetic particles. Magnetocardiograms of normal and abnormal heart subjects are being analyzed and visually displayed in order to assess their information content. Magnetoencephalograms recorded from normal and abnormal brain subjects are also under analysis. Measurements were made of magnetite dust in the lung, with two potential medical applications: (1) the use of pure magnetite dust as a deliberately inhaled tracer (harmless) for pulmonary diagnosis; and (2) the assessment of the amount of asbestos accumulated in the lungs of heavily-exposed workers, since most asbestos (harmful) occurs with adhered magnetite

  4. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.

  5. Characterisation of mixed radiation field produced in medical linear accelerators using foil activation technique

    The photon spectrum produced in medical linear accelerators and used for tumour therapy was measured using foil activation techniques in this work. The machine employed is the linear medical accelerator SL-25, Philips, installed at the Walsgrave Hospital Radiotherapy Centre in Coventry, U.K. A number of foil sets, with different energy thresholds were irradiated at different points inside a 400 mm by 400 mm treatment field at a nominal dose rate of 400 MU (∼4 Gy/min), and photon energy of 25 MV at the machine's isocentre. The induced activity of each foil was measured using a NaI(Tl) detector and a PC-based multichannel analyzer. The spectrum of the photons was unfolded using the computer code LOUHI82. The relative changes in the spectrum across the treatment field, were also measured using foils placed at 2.5deg, 5deg, 10deg and 13deg on both sides of the central axis of the treatment field. In order to estimate the extra dose received by the patient due to the neutron component, the neutron flux distribution at different points across the treatment field was measured using gold foils. The results and implications are discussed. (author)

  6. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... the first phases in the architectural process and set out a reverse strategy for simulation programmes to do so - from developing acoustics from given spaces to developing spaces from given acoustics...

  7. Study on the characteristics of rock failure strain and acoustic emission field for two parallelling faults with the same slip direction including asperities

    焦明若; 张国民; 马胜利; 马宏生

    2002-01-01

    By dealing with strain and acoustic emission (AE) data for two parallelling faults's instability and failure with the same slip direction including asperities, the temporal-spatial evolution of strain and AE field distribution on the asperity of parallelling faults is analyzed. Furthermore the failure process of asperities and interaction among the asperities, i.e., positive and negative seismicity are discussed. Results show that instability and failure for the parallelling faults is a kind of negative seismicity.

  8. Acoustic energy density distribution and sound intensity vector field inside coupled spaces.

    Meissner, Mirosław

    2012-07-01

    In this paper, the modal expansion method supported by a computer implementation has been used to predict steady-state distributions of the potential and kinetic energy densities, and the active and reactive sound intensities inside two coupled enclosures. The numerical study was dedicated to low-frequency room responses. Calculation results have shown that the distribution of energetic quantities in coupled spaces is strongly influenced by the modal localization. Appropriate descriptors of the localization effect were introduced to identify localized modes. As was evidenced by numerical data, the characteristic objects in the active intensity field are vortices positioned irregularly inside the room. It was found that vortex centers lie exactly on the lines corresponding to zeros of the eigenfunction for a dominant mode. Finally, an impact of the wall impedance on the quantitative relationship between the active and reactive intensities was analyzed and it was concluded that for very small sound damping the behavior of the sound intensity inside the room space is essentially only oscillatory. PMID:22779472

  9. Analysis and Experiment Investigation of Ultrasonic Near Field Acoustic Levitation Stiffness%基于超声近场作用的悬浮特性分析与试验

    宗遐龄; 赵群; 傅星菊; 孙运涛; 贾兵

    2012-01-01

    超声近场的悬浮现象和动力学机理,提出圆形振子薄板与悬浮物之间的耦合数学模型,给定圆盘在特定弯振模态下的边界条件,推导了基于挤压膜模型的悬浮压力近似解析式.同时为了试验研究超声近场的悬浮特性,在兰杰文振子顶端设计了利于产生超声辐射近场效应的圆盘式装置并试制了样机,通过激励出圆盘的弯曲振动模态诱发出声场辐射力,实现了物体在圆盘表面的近距离悬浮.搭建了基于虚拟仪器平台的测试系统,通过试验获得其悬浮特性参数,分析了悬浮的距离随着重物质量的增大而减少的规律,验证了理论分析结果,为采用近声场来悬浮和实现悬浮力的有效控制奠定了基础.%This paper analyzes the special phenomenon and dynamic mechanism of ultrasonic near-field acoustic levitation and presents the mathematical model of coupling the vibration plate with levitation object based on the boundary condition of the special vibration mode. In order to measure the characteristic parameters of ultrasonic near-field acoustic levitation, the annular plate is designed and installed on top of Lanngevin vibrator, which is able to produce ultrasonic radiation effect. The prototype is manufactured, ultrasonic near-field acoustic levitation is observed by inducing flexural vibration mode of annular plate. The virtual instrument technology Is used in the testing system to measure the levitation characteristic parameter It is experimentally found that levitation distance decreases with the heavier object, and the theoretical results are validated. The theoretical and experimental investigations in this paper lay the foundation for the control of ultrasonic near-field acoustic levitation.

  10. Development of high-performance ER gel produced by electric-field assisted molding

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30∼40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  11. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    Cheng, Ying; Liu, XiaoJun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Chen; Wei, Qi; Wu, DaJian [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  12. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution

  13. 低场强MRI对听神经瘤的诊断分析%Low Field MRI Analysis of the Acoustic Neuroma

    陈煜; 潘梁; 岳沪宁

    2014-01-01

    Objective To investigate the value of low field MRI in diagnosis of the acoustic neuroma.Methods Twenty-one patients with acoustic neuromas were confirmed by pathologic examination, The image characteristics of this patients were analyzed restrospectively.Results Twenty-one patients al involved unilateral auditory nerve.Twenty-one patients were examined al by MRI plan scan and enhancement scan. MRI findings of the acoustic neuroma are characteristic.Conclusion Low field MRI can clearly show the acoustie neuroma at cerebel opontine angle.Low field MRI is of great value in determining and nature of the acoustic neuroma.%目的分析听神经瘤的低场强MRI表现并探讨其临床应用价值和意义。方法收集来我院检查并经手术病理证实的21例听神经瘤,回顾性分析其影像学特点。结果本组21例均为单侧发病,全部行MRI平扫及增强扫描,MRI表现具有特征性。结论低场强MRI可清晰显示桥小脑角区的解剖部位,对听神经瘤的显示非常敏感,能清晰显示瘤体的信号特点,低场强MRI对听神经瘤的定位及定性诊断有重要价值。

  14. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression.

    Pall, Martin L

    2016-09-01

    Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970s to 1980s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression

  15. Theory and experimental show up of axial magnetic fields self-generated in dense laser-produced plasmas

    The work presented in this thesis concerns the magnetic fields generated in laser produced plasma. A summary of the theoretical and experimental studies concerning the toroidal magnetic fields and realised by different groups of research is presented. Then, we present our original contribution on the generation of axial magnetic fields by the dynamo effect. The experimental work for the detection of magnetic field is based on the Faraday rotation and Zeeman effects. The experimental diagrams are detailed and discussed. The experimental results are presented and compared to the theory. Finaly, we present some consequences of the generation of the axial magnetic fields in laser produced plasma as a discussion of the thermal conductivity

  16. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity. PMID:19290520

  17. Experimental acoustic ground cloak in air.

    Popa, Bogdan-Ioan; Zigoneanu, Lucian; Cummer, Steven A

    2011-06-24

    We present the design, fabrication, and performance analysis for a class of two-dimensional acoustic cloaking coatings in air. Our approach takes advantage of transformation acoustics and linear coordinate transformations that result in shells which are homogeneous, broadband, and compact. The required material parameters are highly anisotropic; however, we show that they are easily achievable in practice in metamaterials made of perforated plastic plates. The good performance of the fabricated design is assessed from measurements of the sound field produced around the cloak by a broadband source. The remarkably low complexity of the device made of perforated plastic plates shows that sound in air can be fully and effectively manipulated using realizable transformation acoustics devices. PMID:21770640

  18. The acoustic communities: Definition, description and ecological role.

    Farina, Almo; James, Philip

    2016-09-01

    An acoustic community is defined as an aggregation of species that produces sound by using internal or extra-body sound-producing tools. Such communities occur in aquatic (freshwater and marine) and terrestrial environments. An acoustic community is the biophonic component of a soundtope and is characterized by its acoustic signature, which results from the distribution of sonic information associated with signal amplitude and frequency. Distinct acoustic communities can be described according to habitat, the frequency range of the acoustic signals, and the time of day or the season. Near and far fields can be identified empirically, thus the acoustic community can be used as a proxy for biodiversity richness. The importance of ecoacoustic research is rapidly growing due to the increasing awareness of the intrusion of anthropogenic sounds (technophonies) into natural and human-modified ecosystems and the urgent need to adopt more efficient predictive tools to compensate for the effects of climate change. The concept of an acoustic community provides an operational scale for a non-intrusive biodiversity survey and analysis that can be carried out using new passive audio recording technology, coupled with methods of vast data processing and storage. PMID:27262416

  19. Neutron measurements in the stray field produced by 158 GeV/c lead ion beams

    This paper discusses measurements carried out at CERN in the stray radiation field produced by 158 GeV/c 208Pb82+ ions. The purpose was to test and intercompare the response of several detectors, mainly neutron measuring devices, and to determine the neutron spectral fluence as well as the microdosimetric (absorbed dose and dose equivalent) distributions in different locations around the shielding. Both active instruments and passive dosimeters were employed, including different types of Andersson-Braun rem counters, a tissue equivalent proportional counter, a set of superheated drop detectors, a Bonner sphere system and different types of ion chambers. Activation measurements with 12C plastic scintillators and with 32S pellets were also performed to assess the neutron yield of high energy lead ions interacting with a thin gold target. The results are compared with previous measurements and with measurements made during proton runs. (author)

  20. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  1. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  2. Compressive and rarefactive ion acoustic solitons in a magnetized two-ion component plasma

    The formation of compressive (hump) and rarefactive (dip) ion acoustic solitons is studied in magnetized O+- H+- e and O+- H−- e plasmas. The hydrodynamics equations are described for cold heavy (oxygen) ions, warm light (hydrogen) ions and isothermal Boltzmann distributed electrons along with Poisson equations in the presence of a magnetic field. The reductive perturbation method is used to derive the nonlinear Zakharov–Kuznetsov (ZK) equation for an ion acoustic wave in magnetized two-ion component plasma. It is found that two modes of ion acoustic waves with fast and slow speeds can propagate in the linear limit in such a plasma. It is noticed that, in the case of positively charged light hydrogen ions O+- H+- e plasmas, the slow ion acoustic wave solitons formed both potential hump as well as dip structures, while fast ion acoustic wave solitons give only hump structures. However in the case of negatively charged light hydrogen ions O+- H−- e plasmas, the slow ion acoustic wave solitons formed potential hump structures while fast ion acoustic wave solitons produce dip structures. The variations in the amplitude and width of the nonlinear slow and fast ion acoustic wave structures with density, temperature of light ions and magnetic field intensity are obtained in magnetized two-ion component plasmas. The magnetic field has its effect only on the width of the nonlinear ion acoustic wave structures in two-ion component plasmas. (paper)

  3. Acoustic gain in piezoelectric semiconductors at ε-near-zero response

    Willatzen, Morten; Christensen, Johan

    2014-01-01

    We demonstrate strong acoustic gain in electric-field biased piezoelectric semiconductors at frequencies near the plasmon frequency in the terahertz range. When the electron drift velocity produced by an external electric field is higher than the speed of sound, Cherenkov radiation of phonons generates amplification of sound. It is demonstrated that this effect is particularly effective at ε-near-zero response, leading to giant levels of acoustic gain. Operating at conditions with strong acou...

  4. Formation of high-order acoustic Bessel beams by spiral diffraction gratings

    Jiménez, Noé; Sánchez-Morcillo, Víctor; Romero-García, Vicent; García-Raffi, Lluis M; Staliunas, Kestutis

    2016-01-01

    The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically and experimentally reported in this work. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on-axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow to obtain Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

  5. Using a fibre-optic cable as Distributed Acoustic Sensor for Vertical Seismic Profiling - Overview of various field tests

    Götz, Julia; Lüth, Stefan; Henninges, Jan; Reinsch, Thomas

    2015-04-01

    Fibre-optic Distributed Acoustic Sensing (DAS) or Distributed Vibration Sensing (DVS) is a technology, where an optical fibre cable is used as a sensor for acoustic signals. An ambient seismic wavefield, which is coupled by friction or pressure to the optical fibre, induces dynamic strain changes along the cable. The DAS/DVS technology offers the possibility to record an optoelectronic signal which is linearly related to the time dependent local strain. The DAS/DVS technology is based on the established technique of phase-sensitive optical time-domain reflectometry (phi-OTDR). Coherent laser pulses are launched into the fibre to monitor changes in the resulting elastic Rayleigh backscatter with time. Dynamic strain changes lead to small displacements of the scattering elements (non-uniformities within the glass structure of the optical fibre), and therefore to variations of the relative phases of the backscattered photons. The fibre behaves as a series of interferometers whose output is sensitive to small changes of the strain at any point along its length. To record the ground motion not only in space but also in time, snapshots of the wavefield are created by repeatedly firing laser pulses into the fibre at sampling frequencies much higher than seismic frequencies. DAS/DVS is used e.g. for continuous monitoring of pipelines, roads or borders and for production monitoring from within the wellbore. Within the last years, the DAS/DVS technology was further developed to record seismic data. We focus on the recording of Vertical Seismic Profiling (VSP) data with DAS/DVS and present an overview of various field tests published between 2011 and 2014. Here, especially CO2 storage pilot sites provided the opportunity to test this new technology for geophysical reservoir monitoring. DAS/DVS-VSP time-lapse measurements have been published for the Quest CO2 storage site in Canada. The DAS/DVS technology was also tested at the CO2 storage sites in Rousse (France), Citronelle

  6. The autonomous acoustic buoy

    Pellicer, Francisco; Reitsma, Robert; Agüera, Joaquín; Marinas, Alexandra

    2013-01-01

    The Acoustic Buoy is a project between the Laboratory of Applied Bioacoustics (LAB) and the Universitat Politècnica de Catalunya (UPC). In areas that the human activities produce high noise levels, such as oil exploration or construction, there is a need to monitor the environment for the presence of cetaceans. Another need is for fishing, to prevent endangered species from being killed. This can be done with an Autonomous Acoustic Buoy (AAB). Mooring or anchoring at to the seaflo...

  7. Influence of classroom acoustics on the voice levels of teachers with and without voice problems: a field study

    Pelegrin Garcia, David; Lyberg-Åhlander, Viveka; Rydell, Roland;

    2010-01-01

    Many teachers suffer from voice problems and classroom acoustics has been considered as one of the potential hazards for this. The present study examines how classroom acoustics interacts with the voices of 14 teachers without voice problems and 13 teachers with voice problems. The assessment of...... of Reverberation Time and Voice Support were measured in the 30 empty classrooms of the study. An empirical model shows that the measured voice levels depended on the activity noise levels and the voice support. Teachers with and without voice problems were differently affected by the voice support...... of the classroom. The results thus suggest that teachers with voice problems are more aware of classroom acoustic conditions than their healthy colleagues and make use of the more supportive rooms to lower their voice levels. This behavior may result from an adaptation process of the teachers with...

  8. Assessment of the temporal trend of the exposure of people to electromagnetic fields produced by base stations for mobile telephones

    Monitoring of electric field levels produced by base stations (BSs) for mobile telephones of different typologies (TACS, GSM, DCS) has been carried out. Results show that BSs can be classified as 'business' or 'residential'. The mean value of six minutes average E-field value measured between 10 am and 1 pm corresponds to the 84% of the maximum daily six minutes averaged value. Comparison between electromagnetic field levels produced by BSs and their phone traffic data, supplied by companies, is shown. Finally, on an hourly average basis, a daily curve has been constructed of the exposure trend produced by such installations. (author)

  9. On the behavior of a shear-coaxial jet, spanning sub- to supercritical pressures, with and without an externally imposed transverse acoustic field

    Davis, Dustin Wayne

    In the past, liquid rocket engines (LRE) have experienced high-frequency combustion instability, which impose an acoustic field in the combustion chamber. The acoustic field interacts with the fluid jets issuing from the injectors, thus altering the behavior of the jet compared to that of stable operation of the LRE. It is possible that this interaction could be a substantial feed back mechanism driving the combustion instability. In order to understand the problem of combustion instability, it is necessary to understand the interaction of the jet with the acoustic waves. From past combustion instability studies of the liquid oxygen and hydrogen propellant combination in a shear-coaxial injector configuration, a design guideline of outer-to-inner jet velocity ratio greater than about ten was proposed in order to avoid high-frequency acoustic combustion instability problems. However, no satisfactory physical explanation was provided. To promote this understanding, a cold-flow experimental investigation of a shear-coaxial jet interacting with a high-amplitude non-linear acoustic field was undertaken under chamber pressures extending into the supercritical regime. Liquid nitrogen (LN2) flowed from the inner tube of a coaxial injector while gaseous nitrogen (GN2) issued from its annular region. The injector fluids were directed into a chamber pressurized with gaseous nitrogen. The acoustic excitation was provided by an external driver capable of delivering acoustic field amplitudes up to 165 dB. The resonant modes of the chamber governed the two frequencies studied here, with the first two modes being about 3 and 5.2 kHz. High-speed images of the jet were taken with a Phantom CMOS camera. The so-called "dark core" of the jet is among the most salient features in the acquired images, and therefore, was defined and measured. The core length was found to decrease with increasing velocity and momentum flux ratio. Because of the ability of the camera to capture thousands of

  10. 声学超晶格中的横场激发超声波产生%CROSSED-FIELD EXCITATION OF ULTRASONIC IN AN ACOUSTIC SUPERLATTICE

    万志良; 李鹏; 陆延青; 奚元新; 王全; 朱永元; 闵乃本

    2000-01-01

    从理论与实验两方面研究了横场激发技术对声学超晶格LiNbO(LN)晶体谐振特性的影响,两者之间得到了很好的吻合。采用提拉法,制得了沿Z轴生长的具有周期性铁电畴结构的LN单晶,将此晶体先Z切,再X切成样品,经过适当的处理后,在X面镀上电极,采用HP8510C网络分析仪测得的样品的横场激发谐振频率为502MHz,与理论计算的谐振频率500MHz基本一致。这种“横场激发”利用了LN的最大机电耦合系数,而且采用特殊的生长技术,可消除声光器件的声阻抗不匹配问题。此技术可望在新型声光器件方面得到应用。%Single crystal LiNbO(LN) with periodic laminar ferroelectric donmin structure is widely studied due to its important application in nonlinear optics and acoustics. Theoretical deduction shows that the piezoelectric coefficient, a third-rank tensor, changes its sign from positive domain to negative domain periodically. As a result, this special structure exhibits several exciting new features and is very useful in acoustic devices. For a single-domain crystal LN, there is only one scheme named "in-line field" to excite acoustic wave by piezoelectric effect. However, in the case of LN with periodic laminar ferroelectric domain (we call this structure acoustic superlattice (ASL)), two excitation schemes, the "in-line field" and the "crossed-field", can be adopted. In the latter method, the applied electric field is perpendicular to the propagation vector of acoustic wave and the resonance frequency is determined by the period of ferroelectric domain, which is different from that of single-domain LN crystal. In this paper, we report the crossed-fleld excitation of high frequency ultrasonic in an ASL of LN. A single LN crystal with periodic laminar ferroelectric domain structure is z-grown by Czochralski method from congruent LN melts doped with 0.5% yttrium (by mass). The domain structure is the result of

  11. A field demonstration of the microbial treatment of sour produced water

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  12. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  13. Geolipids produced by methanogens and sulfate-reducing bacteria at the Lost City Hydrothermal Field

    Bradley, A. S.; Hayes, J. M.; Summons, R. E.

    2003-12-01

    Molecular biomarkers document the presence in a geologic system of particular microbial lineages, or of microbes that use specific metabolic processes. Lipid extracts from carbonate rocks of the Lost City Hydrothermal Field yield a predominance of biomarkers diagnostic for methanogenic archaea including the ether lipids archaeol, sn-2 and sn-3 hydroxyarchaeol, and dihydroxyarchaeol and the hydrocarbon 2,6,10,15,19-pentamethylicosane (PMI). Sterols and hopanoids, diagnostic for eukaryotes and bacteria respectively, were subordinate. At ten sites surveyed thus far, biomarker types were not correlated with vent temperature or activity. Hydroxyarchaeols were detected in three active (T >= 70° C) and two inactive vents. Glycerol monoethers with saturated and unsaturated C15-C20 n-alkyl chains, diagnostic for sulfate-reducing bacteria, were detected in five active and three inactive vents. Carbohydrates were detected in four active vents, but not in the inactive vents. High concentrations of sn-2 and sn-3 hydroxyarchaeol and a dihydroxyarchaeol at a 70° C site (sample 3869-1404) suggest that methane cycling is the dominant metabolic processes at this location. The presence of methanogens at this site is confirmed by the presence of pentamethylicosane. Stable isotopic compositions of these biomarkers will be used to determine whether these methanogens are consuming or producing methane. This sample also contains C16 and C18 saturated glycerol monoethers. In conjunction with genomic studies, the biomarker analyses will document the metabolic roles of microbes in this system.

  14. Characterization of Line Nanopatterns on Positive Photoresist Produced by Scanning Near-Field Optical Microscope

    Sadegh Mehdi Aghaei

    2015-01-01

    Full Text Available Line nanopatterns are produced on the positive photoresist by scanning near-field optical microscope (SNOM. A laser diode with a wavelength of 450 nm and a power of 250 mW as the light source and an aluminum coated nanoprobe with a 70 nm aperture at the tip apex have been employed. A neutral density filter has been used to control the exposure power of the photoresist. It is found that the changes induced by light in the photoresist can be detected by in situ shear force microscopy (ShFM, before the development of the photoresist. Scanning electron microscope (SEM images of the developed photoresist have been used to optimize the scanning speed and the power required for exposure, in order to minimize the final line width. It is shown that nanometric lines with a minimum width of 33 nm can be achieved with a scanning speed of 75 µm/s and a laser power of 113 mW. It is also revealed that the overexposure of the photoresist by continuous wave laser generated heat can be prevented by means of proper photoresist selection. In addition, the effects of multiple exposures of nanopatterns on their width and depth are investigated.

  15. Densitometry By Acoustic Levitation

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  16. Acoustojet: acoustic analogue of photonic jet phenomenon

    Minin, Igor V

    2016-01-01

    It has been demonstrated for the first time that an existence of acoustic analogue of photonic jet phenomenon, called acoustojet, providing for subwavelength localization of acoustic field in the shadow area of arbitrary 3D penetrable mesoscale particle, is possible.

  17. Acoustic cloaking and transformation acoustics

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  18. Acoustic cloaking and transformation acoustics

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  19. Ocean acoustic reverberation tomography.

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  20. Latest Trends in Acoustic Sensing

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  1. Influence of a single lightning discharge on the intensity of an air electric field and acoustic emission of near-surface rocks

    S. E. Smirnov

    2012-10-01

    Full Text Available The effect was observed as a sharp fall of the electric potential gradient from +80 V m−1 down to –21 V m−1. After that the field returned to its normal level according to the formula of the capacitor discharge with 17 s characteristic time. Simultaneously, the response of the acoustic emission of surface rocks in the range of frequencies between 6.5 kHz and 11 kHz was evaluated.

  2. Low frequency sound field control in rectangular listening rooms using CABS (Controlled Acoustic Bass System) will also reduce sound transmission to neighbor rooms

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2011-01-01

    Sound reproduction is often taking place in small and medium sized rectangular rooms. As rectangular rooms have 3 pairs of parallel walls the reflections at especially low frequencies will cause up to 30 dB spatial variations of the sound pressure level in the room. This will take place not only at...... resonance frequencies, but more or less at all frequencies. A time based room correction system named CABS (Controlled Acoustic Bass System) has been developed and is able to create a homogeneous sound field in the whole room at low frequencies by proper placement of multiple loudspeakers. A normal setup...

  3. Acoustic levitator for containerless measurements on low temperature liquids

    Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Rey, Charles A A [Charles Ray, Inc.

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  4. High-field technology for producing a microsurgical instruments with zero level of microroughness

    In this work field emission microscope operating in electron and ion regimes was used to examine the effect of electric field lowering by small amounts of chemically active gases. Gas promoted field evaporation at 20-80 K tungsten at nitrogen partial pressure of 10-5 - 10-1 Pa/ It was settled that lower evaporation field thresholds coincide with the field corresponding to beginning of active gases. It was shown that gas promotion lowers the needed for evaporation electric field up to level of macroscopic yield point of material. As a result the forming the instrument by field evaporation method does not accompanied by the destruction

  5. Humanitarian mine detection by acoustic resonance

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  6. Characterization and Measurement of the Spatial Distribution of Electromagnetic Fields Produced by Focussing Elements.

    Haddock, Christopher

    During the late 1970's in the wake of fossil fuel price increases, renewed interest in the generation of renewable forms of energy was aroused. In order to study new methods of converting solar energy in particular to more useful forms, a solar concentrator facility was built. The purpose of the facility is to concentrate the intensity of beams of sunlight by a factor of several thousand using a system of reflecting and focussing mirrors and to use this technique in the direct generation of electricity. The intensity variation of the concentrated sunlight at the focus of the system was measured with a radiometric instrument capable of measuring very high intensities. The results of the mapping were compared with a theoretical model which used the optical figuring parameters of the system as input. The results showed that the concentrated intensity as a function of position can be accurately predicted given the incident intensity and a representative value of the clearness of the sky for that day. At the start of the technology transfer process it was decided that a modern analogue to digital converter (ADC), an integral part of a high accuracy digital multimeter, could perform data collection quickly and accurately so that recording of pulse information could take place in real time. Thus electronic integrators, which can be inherently unstable and represent the weak link in this type of apparatus are no longer required in the measurement process. Furthermore, advances in microcomputer technology, both hardware and software, made it possible to produce a completely automated field mapping system, including data analysis and logging, for approximately 1/5th the price of other competitive contemporary systems. At the same time this strategy eliminated the long lead time required for developing an appropriate software package. (Abstract shortened with permission of author.).

  7. Temporally and spatially resolved measurements of multi-megagauss magnetic fields in high intensity laser-produced plasmas

    We report spatially and temporally resolved measurements of self-generated multi-megagauss magnetic fields produced during ultrahigh intensity laser plasma interactions. Spatially resolved measurements of the magnetic fields show an asymmetry in the distribution of field with respect to the angle of laser incidence. Temporally resolved measurements of the self-generated third harmonic suggest that the strength of the magnetic field is proportional to the square root of laser intensity (i.e., the laser B-field) during the rise of the laser pulse. The experimental results are compared with numerical simulations using a particle-in-cell code which also shows clear asymmetry of the field profile and similar magnetic field growth rates and scalings.

  8. An overview of acoustic telemetry

    Drumheller, D.S.

    1992-01-01

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.

  9. Acoustic metamaterial for subwavelength edge detection

    Molerón, Miguel; Daraio, Chiara

    2015-08-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ~5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions.

  10. Truck acoustic data analyzer system

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  11. Digital Controller For Acoustic Levitation

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  12. VIVACE Electronic Variable Acoustic Field System and its Application in Dalian International Conference Center Theater%VIVACE电子可变声场系统及在大连国际会议中心剧场的应用

    周泉

    2014-01-01

    阐述VIVACE电子可变声场系统是采用电声方法改变室内声学环境以及能够实现3D空间音频效果的声学仿真系统,并以大连国际会议中心剧场为例,给出了建声和VIVACE系统的实施方案。%VIVACE electronic variable acoustic field system is an acoustic simulation system by means of electroacoustic method to change the indoor acoustic condition, and can realize 3D audio effects. Taking Dalian international conference center theater for example, the architectural acoustics and VIVACE system implementation plan were given in this paper.

  13. Possibility of introducing spin into attoscience with spin-polarized electrons produced by a bichromatic circularly polarized laser field

    Milošević, D. B.

    2016-05-01

    We show that the electrons, produced in strong-bicircular-field-induced above-threshold ionization of inert-gas atoms, have a large spin asymmetry if the ions exhibit fine-structure splitting. For a bicircular field, which consists of two coplanar counterrotating circularly polarized fields of frequencies ω and 2 ω , the spin-asymmetry parameter changes rapidly with the electron energy. Since the electron-parent-ion rescattering in a counterrotating bicircular field is characterized on the attosecond time scale, this spin asymmetry may introduce the spin degree of freedom into attoscience. We show that the high-energy backward and low-energy forward scattered electrons, which are produced on the scale of a fraction of the laser cycle, exhibit spin asymmetry.

  14. The Generation of Magnetic Field by Transverse Plasmons in Laser-Produced Plasma

    LIU Shan-qiu; LI Xiao-qing

    2000-01-01

    In this paper, it is studied that a quasi-steady magnetic field could be generated in laser-producde plasmas with high-frequency electromagnetic radiation through wave-wave and wave-partide interactions in the vicinity of critical point. The behavior of self-generated magnetic field can be described by nonlinear coupling equatiom.

  15. Field Dependence and Social Responsiveness as Determinants of Spontaneously Produced Words.

    Goldberger, Leo; Bendich, Stephen

    This study measured responsiveness to the immediate environment on the basis of the social (vs. neutral) content of a person's free associations, in an effort to relate this responsiveness to field-dependence. The results lend support to the view that field-dependence is associated with social responsiveness in word association. Two aspects of…

  16. Visualizing and Measuring the Temperature Field Produced by Medical Diagnostic Ultrasound Using Thermography

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and…

  17. Ultra-high pulsed magnetic field produced by CO2 laser

    Presented is the method of generating high magnetic field driven by a CO2 laser. The magnetic field, current and voltage in a one-turn coil are measured as the functions of the gap width where the high voltage is induced by the laser irradiation at a fixed intensity of 1.3 x 1014 W/cm2. Those results are explained on the basis of lateral transport by hot electron E x B motion and the expansion of the critical density plasma in the gap. The maximum magnetic field are determined and limited by the filling time of the gap with critical-density plasma. In order to get higher magnetic field, we test the cylinder type one-turn coil attached to the optimized gap. Highest magnetic field of 400 T was observed. (author)

  18. Acoustically swept rotor. [helicopter noise reduction

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  19. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  20. Comment on ‘Exact electromagnetic fields produced by a finite wire with constant current’

    Ferreira, J. M.; Anacleto, Joaquim

    2016-07-01

    This comment addresses the Jiménez et al paper (2008 Eur. J. Phys. 29 163–75). We correct these authors’ expressions for the electric field and the Poynting vector, and also correct their expressions for the magnetic field. Contrary to the authors, we find that the contribution of the second term in Jefimenko’s formula for the electric field is not zero. These corrections in no way affect the main points made by the authors of the aforementioned paper, and help strengthen their work.

  1. Draft Genome Sequences of Three Smithella spp. Obtained from a Methanogenic Alkane-Degrading Culture and Oil Field Produced Water

    Tan, BoonFei; de Araújo e Silva, Renata; Rozycki, Trent; Nesbø, Camilla; Foght, Julia

    2014-01-01

    Two draft genomes affiliated with Smithella spp. were obtained from a methanogenic alkane-degrading enrichment culture by single-cell sorting and metagenome contig binning, and a third was obtained by single-cell sorting of oil field produced water. Two genomes contained putative assABC genes encoding alkylsuccinate synthase, indicating genetic potential for fumarate activation of alkanes.

  2. Coincidence spectroscopy of high-lying Rydberg states produced in strong laser fields

    Larimian, Seyedreza; Lemell, Christoph; Yoshida, Shuhei; Nagele, Stefan; Maurer, Raffael; Baltuška, Andrius; Burgdörfer, Joachim; Kitzler, Markus; Xie, Xinhua

    2016-01-01

    We report on the measurement of electron emission after the interaction of strong laser pulses with atoms and molecules. These electrons originate from high-lying Rydberg states with quantum numbers up to $n \\lesssim 120$ formed by frustrated field ionization. Simulations show that both tunneling ionization by a weak dc field and photoionization by the black-body radiation contribute to delayed electron emission on the nano- to microsecond scale. We measured ionization rates from these Rydberg states by coincidence spectroscopy. Further, the dependence of the Rydberg-state production on the ellipticity of the driving laser field proves that such high-lying Rydberg states are populated through electron recapture. The present experiment provides detailed quantitative information on Rydberg production by frustrated field ionization.

  3. Electric field measurements in picosecond laser-produced plasma via X-ray spectroscopy

    Woolsey, N.C.; Howe, J.; Chambers, D.M.; Courtois, C.; Förster, E.; Gregory, C.D.; Hall, I.M.; Renner, Oldřich; Uschmann, I.

    2007-01-01

    Roč. 3, - (2007), s. 292-296. ISSN 1574-1818 Grant ostatní: UK Engineering and Physical Sciences Research Council(GB) XX Institutional research plan: CEZ:AV0Z10100523 Keywords : laser -produced plasma * K-shell spectroscopy * laser -induced satellites Subject RIV: BH - Optics, Masers, Laser s

  4. Coherent population oscillation produced by saturating probe and pump fields on the intercombination Line

    Vafafard, A; Agarwal, G S

    2016-01-01

    We present a theoretical study of the experiments on coherent population oscillations and coher- ent population trapping on the intercombination line of 174Y b. The transition involves a change of the spin and thus can not be interpreted in terms of an effective Lambda system. The reported experiments are done in the regime where both pump and probe fields can saturate the transition. We demonstrate by both numerical and analytical calculations the appearance of the interference minimum as both pump and probe start saturating the transition. We present an analytical result for the threshold probe power when the interference minimum can appear. We also present de- tailed study of the appearance of the interference minimum when magnetic fields are applied. The magnetic fields not only create Zeeman splittings but in addition make the system open because of the couplings to other levels. We show the possibility of interference minimum at the position of subharmonic resonances.

  5. Battlefield acoustics

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  6. Acoustic telemetry

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive...

  7. Acoustics Research

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  8. Strong acoustic wave action

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  9. Structural Acoustics and Vibrations

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  10. Electromagnetic Fields Produced by Power Overhead Lines and their Environmental Aspects

    Doležel, Ivo; Krumphanzl, J.; Kubín, P.; Kyncl, J.; Trefný, J.

    Brno: Národní komitét CIGRE ČR a SR, 2001, s. 51-57. ISBN 80-238-7635-X. [Colloquium CIGRE. Prague (CZ), 28.09.2001] R&D Projects: GA ČR GA102/00/0483 Keywords : overhead lines * electromagnetic field * environmental aspects Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. Two dimensional analytical considerations of large magnetic and electric fields in laser produced plasmas

    A simple model in two dimensions is developed and solved analytically taking into account the electric and magnetic fields in laser procuded plasmas. The electric potential in this model is described by a nonlinear differential equation. The stationary solution of this model is consistent for -0.1 less than or equal to psi 6 v/cm]/[B/MGauss] approx. 1

  12. Selfing Potato Species Produce Robust Spontaneous Field Seed Increases Under Floating Mesh

    Performing genebank propagation of botanical seed populations of wild potato species is typically done by hand pollinations in the greenhouse. This prevents intermixing of the populations by bumblebees and avoids the need for emasculation. Field plantings require less inputs and often have vigorou...

  13. Intracellular electric fields produced by dielectric barrier discharge treatment of skin

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to both production of beneficial radicals which intersect with biological reaction chains and to the surface and intracellular generation of electric fields. In this paper, we report on computational studies of the intersection of plasma streamers in atmospheric pressure dielectric barrier discharges (DBDs) sustained in air with human skin tissue, with emphasis on the intracellular generation of electric fields. Intracellular structures and their electrical properties were incorporated into the computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the skin and the intracellular production of electrical currents. The short duration of a single plasma filament in DBDs and its intersection with skin enables the intracellular penetration of electric fields. The magnitude of these electric fields can reach 100 kV cm-1 which may exceed the threshold for electroporation.

  14. Intracellular electric fields produced by dielectric barrier discharge treatment of skin

    Babaeva, Natalia Yu; Kushner, Mark J.

    2010-05-01

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to both production of beneficial radicals which intersect with biological reaction chains and to the surface and intracellular generation of electric fields. In this paper, we report on computational studies of the intersection of plasma streamers in atmospheric pressure dielectric barrier discharges (DBDs) sustained in air with human skin tissue, with emphasis on the intracellular generation of electric fields. Intracellular structures and their electrical properties were incorporated into the computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the skin and the intracellular production of electrical currents. The short duration of a single plasma filament in DBDs and its intersection with skin enables the intracellular penetration of electric fields. The magnitude of these electric fields can reach 100 kV cm-1 which may exceed the threshold for electroporation.

  15. Intracellular electric fields produced by dielectric barrier discharge treatment of skin

    Babaeva, Natalia Yu; Kushner, Mark J, E-mail: nbabaeva@umich.ed, E-mail: mjkush@umich.ed [University of Michigan, Department of Electrical Engineering and Computer Science, 1301 Beal Ave., Ann Arbor, MI 48109 (United States)

    2010-05-12

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to both production of beneficial radicals which intersect with biological reaction chains and to the surface and intracellular generation of electric fields. In this paper, we report on computational studies of the intersection of plasma streamers in atmospheric pressure dielectric barrier discharges (DBDs) sustained in air with human skin tissue, with emphasis on the intracellular generation of electric fields. Intracellular structures and their electrical properties were incorporated into the computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the skin and the intracellular production of electrical currents. The short duration of a single plasma filament in DBDs and its intersection with skin enables the intracellular penetration of electric fields. The magnitude of these electric fields can reach 100 kV cm{sup -1} which may exceed the threshold for electroporation.

  16. Noise Shielding Using Acoustic Metamaterials

    We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamaterials. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Xie, Q.; Bai, S; Y. Li; Liu, L; Wang, S.; Xi, J.

    2016-01-01

    This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, ho...

  18. Validation and application of Acoustic Mapping Velocimetry

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army

  19. Practical acoustic emission testing

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  20. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology

  1. Can electro-magnetic field, anisotropic source and varying $\\Lambda$ be sufficient to produce wormhole spacetime ?

    Rahaman, F; Rahman, K A

    2008-01-01

    It is well known that solutions of general relativity which allow for traversable wormholes require the existence of exotic matter (matter that violates weak or null energy conditions [WEC or NEC]). So to construct wormholes theoretically without breaking NEC or WEC remains an elusive goal to the theoretical physicists. In this article, we provide a class of exact solution for Einstein-Maxwell field equations describing wormholes assuming the erstwhile cosmological term $\\Lambda$ to be space variable, viz., $\\Lambda = \\Lambda (r)$. The source considered here not only a matter entirely but a sum of matters i.e. anisotropic matter distribution, electromagnetic field and cosmological constant whose effective parts obey all energy conditions out side the wormhole throat. Here violation of energy conditions can be compensated by varying cosmological constant. The important feature of this article is that one can get wormhole structure, at least theoretically, without exotic matters.

  2. Evaluation of Slime-Producing Bacteria in Oil Field Core Flood Experiments

    Geesey, G. G.; Mittelman, M W; Lieu, V. T.

    1987-01-01

    Epifluorescence microscopy and carbohydrate determinations indicated that the decrease in permeability of oil reservoir sand to reclaimed sewage water was partially the result of biological plugging. Filtration and biocide addition studies demonstrated that the increase in bacterial densities and slime concentrations in flooded oil field cores appeared to be due to both deposition from the reclaimed water and in situ microbial growth and slime production. Although these biological components ...

  3. Coherent population oscillation produced by saturating probe and pump fields on the intercombination Line

    Vafafard, A.; Mahmoudi, M.; Agarwal, G. S.

    2016-01-01

    We present a theoretical study of the experiments on coherent population oscillations and coher- ent population trapping on the intercombination line of 174Y b. The transition involves a change of the spin and thus can not be interpreted in terms of an effective Lambda system. The reported experiments are done in the regime where both pump and probe fields can saturate the transition. We demonstrate by both numerical and analytical calculations the appearance of the interference minimum as bo...

  4. Characteristics of LDPE and Oriented Montmorillonite Nanocomposites Produced by Electric Field-inducement

    BAI Ge; LIAO Ruijin; YANG Lijun; YUAN Yuan; GU Jia

    2013-01-01

    In order to make montmorillonite (MMT) nanosheets disperse in low-density polyethylene (LDPE) with highly homogeneous orientation,altemating voltage is applied to molten LDPE with MMT nanosheets.The effect of electric field on the dispersion of MMT in the solidified LDPE is studied.X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses suggest that the MMT nanosheets are aligned with high anisotropy to the electric field direction,which is perpendicular to the LDPE film plane.Differential scanning calorimetry (DSC) results reveal that the crystallization degree of the oriented LDPE/MMT composite increases.Moreover,through a broadband dielectric spectroscopy analyzer,it is found that MMT manifests a significantly influence in the dielectric property of the oriented composite:the dielectric constant and loss tangent of the composite both become larger.Analysis shows that the electric field-induced torque caused by the polarization of MMT flakes is the main force inducing the orientation of the MMT flakes.

  5. Signals produced by inconel mineral insulated coaxial cables in neutron and gamma ray fields

    Mineral insulated (MI) cables used with self-powered flux detectors in CANDU reactors employ Inconel 600 as the sheath and core-wire material, and MgO as the insulation. A study was undertaken to obtain a more fundamental understanding of the current producing processes in such MI cables and to determine how these processes are related to cable geometries. A number of Inconel-Inconel cables were irradiated in the NRU, ZED-2, and Pool Test reactors at CRNL and a Gammacel-220 60Co irradiator. Additional data were obtained from the Bruce Nuclear Generating Station-A. (auth)

  6. An analysis for the sound field produced by rigid wide cord dual rotation propellers of high solidarity in compressible flow

    Ramachandra, S. M.; Bober, L. J.

    1986-01-01

    An unsteady lifting service theory for the counter-rotating propeller is presented using the linearized governing equations for the acceleration potential and representing the blades by a surface distribution of pulsating acoustic dipoles distributed according to a modified Birnbaum series. The Birnbaum series coefficients are determined by satisfying the surface tangency boundary conditions on the front and rear propeller blades. Expressions for the combined acoustic resonance modes of the front prop, the rear prop and the combination are also given.

  7. Cooling of ions trapped in potential wells produced by electromagnetic radiation fields

    The probability distributions for the ground state and the excited state of a two-level ion trapped in an harmonic potential well are studied. The ion is excited by electromagnetic radiation and relaxes back due to either spontaneous or stimulated emission. The photon statistics is considered Poissonian and the momentum transfer between the electromagnetic field and the ion is assumed discrete. The present results are closely related to the quantum treatment in the heavy particle limit as well as to those derived from previous semiclassical models. (Author)

  8. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    Pisarczyk, T.; Gus’kov, S.Yu.; Dudžák, Roman; Chodukowski, T.; Dostál, Jan; Demchenko, N. N.; Korneev, Ph.; Kalinowska, Z.; Kalal, M.; Renner, Oldřich; Šmíd, Michal; Borodziuk, S.; Krouský, Eduard; Ullschmied, Jiří; Hřebíček, Jan; Medřík, Tomáš; Golasowski, Jiří; Pfeifer, Miroslav; Skála, Jiří; Pisarczyk, P.

    2015-01-01

    Roč. 22, č. 10 (2015), s. 102706-102706. ISSN 1070-664X R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LD14089; GA ČR GPP205/11/P712 Grant ostatní: FP7(XE) 284464 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : space-time resolved spontaneous magnetic field (SMF) * Laser System Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://scitation.aip.org/content/aip/journal/pop/22/10/10.1063/1.4933364

  9. Correlation of spontaneous magnetic field with net energy absorbed in laser-plasmas produced from thin film target

    Experimental as well as computational studies have been performed on spontaneously generated magnetic-field and net absorbed laser energy bylaser-produced plasmas where one ruby-laser beam with relatively lower power level is focused onto one-side of an aluminum foil target with various thickness. It is found that these two physical quantities are experimentally in good correlation and the computational results based upon a simplified fluid-dynamic model explain this correlation. (author)

  10. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  11. Negative refraction induced acoustic concentrator and the effects of scattering cancellation, imaging, and mirage

    Wei, Qi; Cheng, Ying; Liu, Xiao-jun

    2012-07-01

    We present a three-dimensional acoustic concentrator capable of significantly enhancing the sound intensity in the compressive region with scattering cancellation, imaging, and mirage effects. The concentrator shell is built by isotropic gradient negative-index materials, which together with an exterior host medium slab constructs a pair of complementary media. The enhancement factor, which can approach infinity by tuning the geometric parameters, is always much higher than that of a traditional concentrator made by positive-index materials with the same size. The acoustic scattering theory is applied to derive the pressure field distribution of the concentrator, which is consistent with the numerical full-wave simulations. The inherent acoustic impedance match at the interfaces of the shell as well as the inverse processes of “negative refraction—progressive curvature—negative refraction” for arbitrary sound rays can exactly cancel the scattering of the concentrator. In addition, the concentrator shell can also function as an acoustic spherical magnifying superlens, which produces a perfect image with the same shape, with bigger geometric and acoustic parameters located at a shifted position. Then some acoustic mirages are observed whereby the waves radiated from (scattered by) an object located in the center region may seem to be radiated from (scattered by) its image. Based on the mirage effect, we further propose an intriguing acoustic transformer which can transform the sound scattering pattern of one object into another object at will with arbitrary geometric, acoustic, and location parameters.

  12. Acoustic Absorption in Porous Materials

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  13. Investigation of the exposure level of electromagnetic fields produced by mobile telephone base stations

    The aim of this work is to investigate the real values of microwave level distribution and propagation in the locality around samples of mobile phone base station, and to compare the results with the exposure restriction limits recommenced by the International Commission on Non Ionizing Radiation Protection (ICNIRP). Measurements were performed using special meters for microwaves; the first (Narda SRM-3000) is used for electromagnetic waves frequency spectrum scanning and the second (NARDA) emr 300) determine the level of electric and magnetic fields and the power density of these waves nearby any sort of transmitters. Samples of different kinds of mobile phone base station were chosen to cover important zones of Damascus, and the region around each base station was also scanned in the emission direction and according to accessibility into the studies positions. Results showed that the signal level in all measured points is lower than the ICNIRP restriction level, but for few points the detected microwave level has relatively important values. The signal level inside building situated partially in the emission direction of the base station transmitters decreases stepwise and walls reduce considerably the signal intensity. To realize these kind of field studies in the best way and obtain the maximum profits for all people, the properties and operating system of transmitters used in mobile phone base station must be known, and therefore, it is very important to achieve a transparent collaboration between research laboratory and mobile phone company. (author)

  14. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    The first space-time resolved spontaneous magnetic field (SMF) measurements realized on Prague Asterix Laser System are presented. The SMF was generated as a result of single laser beam (1.315 μm) interaction with massive planar targets made of materials with various atomic numbers (plastic and Cu). Measured SMF confirmed azimuthal geometry and their maximum amplitude reached the value of 10 MG at the laser energy of 250 J for both target materials. It was demonstrated that spatial distributions of these fields are associated with the character of the ablative plasma expansion which clearly depends on the target material. To measure the SMF, the Faraday effect was employed causing rotation of the vector of polarization of the linearly polarized diagnostic beam. The rotation angle was determined together with the phase shift using a novel design of a two-channel polaro-interferometer. To obtain sufficiently high temporal resolution, the polaro-interferometer was irradiated by Ti:Sa laser pulse with the wavelength of 808 nm and the pulse duration of 40 fs. The results of measurements were compared with theoretical analysis

  15. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Borodziuk, S. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gus' kov, S. Yu. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); National Research Nuclear University (Moscow Eng. Phys. Institute) (Russian Federation); Dudzak, R.; Dostal, J.; Krousky, E.; Ullschmied, J.; Hrebicek, J.; Medrik, T.; Golasowski, J.; Pfeifer, M.; Skala, J. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Institute of Physics ASCR, Prague (Czech Republic); Demchenko, N. N. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Korneev, Ph. [National Research Nuclear University (Moscow Eng. Phys. Institute) (Russian Federation); Kalal, M. [Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Institute of Plasma Physics ASCR, Prague (Czech Republic); Renner, O.; Smid, M. [Institute of Physics ASCR, Prague (Czech Republic); Pisarczyk, P. [Warsaw University of Technology, ICS, Warsaw (Poland)

    2015-10-15

    The first space-time resolved spontaneous magnetic field (SMF) measurements realized on Prague Asterix Laser System are presented. The SMF was generated as a result of single laser beam (1.315 μm) interaction with massive planar targets made of materials with various atomic numbers (plastic and Cu). Measured SMF confirmed azimuthal geometry and their maximum amplitude reached the value of 10 MG at the laser energy of 250 J for both target materials. It was demonstrated that spatial distributions of these fields are associated with the character of the ablative plasma expansion which clearly depends on the target material. To measure the SMF, the Faraday effect was employed causing rotation of the vector of polarization of the linearly polarized diagnostic beam. The rotation angle was determined together with the phase shift using a novel design of a two-channel polaro-interferometer. To obtain sufficiently high temporal resolution, the polaro-interferometer was irradiated by Ti:Sa laser pulse with the wavelength of 808 nm and the pulse duration of 40 fs. The results of measurements were compared with theoretical analysis.

  16. Modificações vocais acústicas produzidas pela fonação reversa Acoustic vocal modifications produced by reverse phonation

    Leila Susana Finger

    2009-01-01

    Full Text Available OBJETIVO: Descrever as modificações vocais acústicas e as sensações ocorridas após a técnica vocal de fonação reversa em mulheres adultas jovens, sem queixas vocais e com laringe normal. MÉTODOS: Trinta e duas mulheres adultas jovens submeteram-se à avaliação otorrinolaringológica e triagem fonoaudiológica para descartar possíveis alterações que pudessem interferir nos resultados da pesquisa; tiveram amostras vocais coletadas antes e após realizarem três séries de 15 repetições de fonação reversa, em tempo máximo de fonação com tom e intensidade habituais, e 30 segundos de repouso passivo entre cada série. Após, responderam a um questionário referente às sensações percebidas. A análise vocal acústica foi realizada através do software Praat (versão 4.6.10 e os dados analisados por meio da estatística descritiva e pelo teste de Wilcoxon, com nível de significância de 5%. RESULTADOS: Aumento estatisticamente significativo da frequência fundamental e da frequência máxima; diminuição da frequência mínima; aumento das medidas de Jitter, exceto da medida de Jitter local-absoluto que diminuiu; diminuição das medidas de Shimmer, relação ruído/harmônico (NHR e relação harmônico/ruído (HNR; e predomínio das sensações positivas. CONCLUSÃO: A fonação reversa pareceu promover efeito positivo sobre a vibração da mucosa das pregas vocais e sobre o seu alongamento. Sugere efeito sobre a musculatura, favorecendo mudanças de frequência fundamental; e sobre sua homogeneização e modificação da camada de muco. Além disso, promoveu melhora global do sinal vocal e das sensações durante sua produção.PURPOSE: To describe the acoustic vocal modifications and the sensations occurred after the reverse phonation technique in young adult women without vocal complaints and with normal larynx. METHODS: Thirty-two young adult women were submitted to otorhinolaryngologic and speech-language pathology

  17. Corrosion Behavior of Carbon Steel in Synthetically Produced Oil Field Seawater

    Subir Paul

    2014-01-01

    Full Text Available The life of offshore steel structure in the oil production units is decided by the huge corrosive degradation due to SO42-, S2−, and Cl−, which normally present in the oil field seawater. Variation in pH and temperature further adds to the rate of degradation on steel. Corrosion behavior of mild steel is investigated through polarization, EIS, XRD, and optical and SEM microscopy. The effect of all 3 species is huge material degradation with FeSx and FeCl3 and their complex as corrosion products. EIS data match the model of Randle circuit with Warburg resistance. Addition of more corrosion species decreases impedance and increases capacitance values of the Randle circuit at the interface. The attack is found to be at the grain boundary as well as grain body with very prominent sulphide corrosion crack.

  18. Investigation of the exposure level of electromagnetic fields produced by mobile telephone base stations

    The electromagnetic field levels in the surrounding of different samples of mobile phone base station were investigated in order to cover residential zones of Damascus and her environs. Measurements were achieved according to the emission direction and to the studied positions environment. Results showed that the signal level in all measured points is lower than the International Commission on Non Ionizing Radiation Protection (ICNIRP) restriction level, but for few measurement points the detected microwave level has relatively important values. The signal level inside building situated partially in the emission direction of the base station transmitters decreases stepwise and walls reduce considerably the signal intensity. This study showed the importance of achieving a transparent collaboration between research laboratory and mobile phone companies in order to improve the protection level.(author)

  19. Acoustic measuring of partial discharge in power transformers

    Power transformers' reliability can be seriously affected by partial discharges. For this reason, it is necessary to implement technical methods to identify endangered equipment before catastrophic failures occur. A well-known method that can be applied either in the laboratory or in the field is the detection and localization of partial discharges, by means of the analysis of the acoustic signals they produced. An innovative partial discharge detector was developed based on the analysis of an acoustic or electrical PD signal envelope. This paper describes the architecture of the developed acoustic detector, which is composed of a set of ultrasonic sensors, signal conditioning and control modules, a graphical interface and the required software for the location of the affected area within the transformer. The conditioning and control modules perform analog to digital conversion, arrival time measurement, communication and control operations. Finally, some power transformer diagnostic testing is presented and discussed

  20. Acoustic Imaging of Snowpack Physical Properties

    Kinar, N. J.; Pomeroy, J. W.

    2011-12-01

    Measurements of snowpack depth, density, structure and temperature have often been conducted by the use of snowpits and invasive measurement devices. Previous research has shown that acoustic waves passing through snow are capable of measuring these properties. An experimental observation device (SAS2, System for the Acoustic Sounding of Snow) was used to autonomously send audible sound waves into the top of the snowpack and to receive and process the waves reflected from the interior and bottom of the snowpack. A loudspeaker and microphone array separated by an offset distance was suspended in the air above the surface of the snowpack. Sound waves produced from a loudspeaker as frequency-swept sequences and maximum length sequences were used as source signals. Up to 24 microphones measured the audible signal from the snowpack. The signal-to-noise ratio was compared between sequences in the presence of environmental noise contributed by wind and reflections from vegetation. Beamforming algorithms were used to reject spurious reflections and to compensate for movement of the sensor assembly during the time of data collection. A custom-designed circuit with digital signal processing hardware implemented an inversion algorithm to relate the reflected sound wave data to snowpack physical properties and to create a two-dimensional image of snowpack stratigraphy. The low power consumption circuit was powered by batteries and through WiFi and Bluetooth interfaces enabled the display of processed data on a mobile device. Acoustic observations were logged to an SD card after each measurement. The SAS2 system was deployed at remote field locations in the Rocky Mountains of Alberta, Canada. Acoustic snow properties data was compared with data collected from gravimetric sampling, thermocouple arrays, radiometers and snowpit observations of density, stratigraphy and crystal structure. Aspects for further research and limitations of the acoustic sensing system are also discussed.

  1. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  2. Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas.

    Park, J; Brown, G V; Schneider, M B; Baldis, H A; Beiersdorfer, P; Cone, K V; Kelley, R L; Kilbourne, C A; Magee, E W; May, M J; Porter, F S

    2010-10-01

    We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of ∼6-60 Å. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer. PMID:21034017

  3. Acoustic emission

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  4. Controlling sound with acoustic metamaterials

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  5. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  6. Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics

    Kugland, N. L.; Ross, J. S.; Glenzer, S. H.; Huntington, C.; Martinez, D.; Plechaty, C.; Remington, B. A.; Ryutov, D. D.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Chang, P.-Y.; Fiksel, G.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14636 (United States); Drake, R. P.; Grosskopf, M.; Kuranz, C. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Gregori, G.; Meinecke, J.; Reville, B. [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Koenig, M.; Pelka, A. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), École Polytechnique-Univ, Paris VI, 91128 Palaiseau (France); and others

    2013-05-15

    Collisionless shocks are often observed in fast-moving astrophysical plasmas, formed by non-classical viscosity that is believed to originate from collective electromagnetic fields driven by kinetic plasma instabilities. However, the development of small-scale plasma processes into large-scale structures, such as a collisionless shock, is not well understood. It is also unknown to what extent collisionless shocks contain macroscopic fields with a long coherence length. For these reasons, it is valuable to explore collisionless shock formation, including the growth and self-organization of fields, in laboratory plasmas. The experimental results presented here show at a glance with proton imaging how macroscopic fields can emerge from a system of supersonic counter-streaming plasmas produced at the OMEGA EP laser. Interpretation of these results, plans for additional measurements, and the difficulty of achieving truly collisionless conditions are discussed. Future experiments at the National Ignition Facility are expected to create fully formed collisionless shocks in plasmas with no pre-imposed magnetic field.

  7. Interaction between CME and surrounding magnetic fields producing multiple flaring sites

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), T. Török (4), E. Pariat (2), L.M. Green (1),D.R. Williams (1), J. Carlyle (1,5) G. Valori (1, 2), P. Démoulin (2), B. Kliem (1,7,8),D. Long (1), S.A. Matthews (1), J.-M. Malherbe (2)(1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Predictive Science, Dan Diego, USA, (5) Max Planck Inst., Göttingen, Germany, (6) INAF, Obs. Roma, Italy, (7) Potsdam Univ., Germany, (8) Yunnan Observatories, Kunming, ChinaAnalyzing Solar Dynamics Observatory (SDO) observations of the spectacular Coronal Mass Ejection eruption on 7 June 2011, we present evidence of coronal magnetic reconnection between the expanding magnetic structure of the CME and the magnetic fields of an adjacent active region (AR). The onset of reconnection first became apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, was re-directed towards remote areas in the neighboring AR, tracing the change of large-scale magnetic connectivity. The observations are presented jointly with a topological analysis of the pre-eruption magnetic configuration, and a data-constrained numerical simulation of the three-AR complex, demonstrating the formation/intensification of current sheets along a pre-existing hyperbolic flux tube (HFT) at the interface between the CME and the neighboring AR, where a secondary flare ribbon was created. Reconnection across this current sheet resulted in the formation of new magnetic connections between the erupting magnetic structure and a neighboring AR about 200 Mm from the eruption site, in strong qualitative agreement with the observations. In addition, the CME temporarily created unusually dense plasma conditions around a reconnection region at high coronal altitudes, enabling us to observe emission resulting from it. We argue that this exceptional observation of a coronal brightening was directly observable at SDO/AIA wavelengths owing to the

  8. Influence of magnetic field on laser-produced barium plasmas: Spectral and dynamic behaviour of neutral and ionic species

    The expansion dynamics and spectral behaviour of plasma produced by a Nd:YAG laser (λ = 1.064 μm, pulse width: 8 ns) from barium target and expanding in 0.45 T transverse magnetic field in vacuum (10−5 Torr pressure) are investigated using time-of-flight optical emission spectroscopy. The experiments are carried out at various laser fluences from 12 to 31 J/cm2. The temporal profiles of neutral (Ba I 553.5 and 577.7 nm) lines are temporally broadened, while that of ionic (Ba II 413.0 and 455.4 nm) lines show strong confinement in the presence of a magnetic field. In the absence of magnetic field, the temporal profile of Ba I 553.5 nm is exactly reproduced by fitting with two Shifted Maxwell Boltzmann (SMB) Distribution components, while in the presence of a magnetic field the profile could only be fitted with three components. The field enhanced and field induced SMB components of neutral profile are correlated with populations of ground state, metastable states, and long-lived Rydberg states present in the barium plasma, while SMB components of ionic lines are explained on the basis of the presence of super-elastic collisions among the excited species in the plasma. The spatial variation of electron temperature and temporal variation of electron density are deduced and correlated to the different collisional processes in the barium plasma. The ionic profiles show efficient confinement in the presence of a magnetic field at higher fluences.

  9. An Optimisation Approach for Room Acoustics Design

    Holm-Jørgensen, Kristian; Kirkegaard, Poul Henning; Andersen, Lars

    2005-01-01

    This paper discuss on a conceptual level the value of optimisation techniques in architectural acoustics room design from a practical point of view. It is chosen to optimise one objective room acoustics design criterium estimated from the sound field inside the room. The sound field is modeled...

  10. Wireless Acoustic Measurement System

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  11. About the Results of the Destruction of the Molecules of Liquid Hydrocarbons in the Field of Acoustic Cavitation

    Rudenko Michael

    2016-01-01

    Full Text Available Analysis was conducted of fractional composition of hydrocarbon fuel. It is found that the excitation of cavitation in the fuel leads to a change of its fractional composition. This result can be explained by the destruction of liquid hydrocarbon molecules under high intensity of the unsteady pressure field

  12. On the limits to miniaturization of fibre-optic transducers for precise and undesturbing measurement in electromagnetical and acoustical fields

    Romaniuk, Ryszard S.

    1980-01-01

    Paper presents a digest of issues associated with application of optical fiber sensors in inaccessible places, in such a way as not to disturb the measured value. Fully dielectric optical fiber does not disturb the EM field distribution in the measured environment. Warsaw University of Technology Ryszard Romaniuk

  13. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Freidoonkenar Bay, Iran

    P. Ghaffari

    2009-12-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Freidoonkenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year that performs motive force in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, are dominating the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  14. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Feridoonkenar Bay, Iran

    P. Ghaffari

    2010-07-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Feridoon-kenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year. This system performs the forcing in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, dominates the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  15. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse combined with the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit ...

  16. Passive/Active Acoustic metamaterials

    Lissek, Hervé

    2011-01-01

    Within the last years, an increasing number of studies have been carried out in the field of acoustic metamaterials. These artificial composite materials aim at achieving new macroscopic properties, like negative refraction, that are not readily present in nature. In analogy to electromagnetics, where such concepts are already more mature, a novel concept of artificial acoustic transmission line has recently been reported, which presents such artificial behavior. In this presentation, the des...

  17. Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source

    A new technique is presented to produce any desired mean far-field irradiance pattern using a partially-coherent Schell-model source. The new method differs from similar approaches in the literature by requiring only phase control. This permits the proposed approach to be easily implemented in the laboratory using a single spatial light modulator. The analytical development of the phase-only method is presented and discussed. Simulation and experimental results are presented to validate the proposed method. Applications for the new technique include free-space optical communications, material processing/manufacture, and particle trapping. (paper)

  18. An Overview of Acoustic Telemetry

    Drumheller, D.S.

    1992-03-24

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The oil and gas industry has led in most of the attempts to develop this type of telemetry system; however, very substantial efforts have also been made through government sponsored work in the geothermal industry. None of these previous attempts have lead to a commercial telemetry system. Conceptually, the problem looks easy. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quite low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal Waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested

  19. Handbook of Signal Processing in Acoustics

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  20. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  1. Small-scale field-aligned currents and ionospheric disturbances induced by vertical acoustic resonance during the 2015 eruption of Chile's Calbuco volcano

    Aoyama, T.; Iyemori, T.; Nakanishi, K.; Nishioka, M.

    2015-12-01

    Wave packet structure of small-scale magnetic fluctuations were observed by SWARM satellites just above the volcano and it's magnetic conjugate point after the eruption of Chile's Calbuco volcano on April 22, 2015. These magnetic fluctuations in low and middle latitudes generated by small-scale field aligned currents (FACs), and have about 10-30 seconds period along the satellites' orbit [Nakanishi et al., 2014] and about 200 (340) seconds temporal scale for meridional (longitudinal) magnetic components [Iyemori et al., 2015]. We also observed ionospheric disturbances and ground geomagnetic fluctuations just after the eruption. The 4-min period oscillations of total electron content (TEC) were observed by GPS receivers near the volcano. The 260 and 215 seconds spectral peaks in D component of ground based geomagnetic observation were found. Such oscillations and spectral peaks didn't exist before the eruption. All of these observations may have the same origin, i.e., vertical acoustic resonance between the ionosphere and the ground. In this presentation, we estimate the propagation velocity of the TEC oscillations and the spatial scale of the disturbance region in the E-layer where the FACs are generated by the ionospheric dynamo.

  2. Coupling between plate vibration and acoustic radiation

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  3. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    Fisher, Aileen

    spatial wind noise filtering hoses or pipes. The grid was within the distance limits of a single gauge's normal hose array, and data were used to perform a spatial noise correlation study. The highest correlation values were not found in the lower frequencies as anticipated, owing to a lack of sources in the lower range and the uncorrelated nature of wind noise. The highest values, with cross-correlation averages between 0.4 and 0.7 from 3 to 17 m between gauges, were found at night from 10 and 20 Hz due to a continuous local noise source and low wind. Data from the larger array were used to identify continuous and impulsive signals in the area that comprise the ambient noise field. Ground truth infrasound and acoustic, time and location data were taken for a highway site, a wind farm, and a natural gas compressor. Close-range sound data were taken with a single IML "traveler" gauge. Spectrograms and spectrum peaks were used to identify their source signatures. Two regional location techniques were also tested with data from the large array by using a propane cannon as a controlled, impulsive source. A comparison is presented of the Multiple Signal Classification Algorithm (MUSIC) to a simple, quadratic, circular wavefront algorithm. MUSIC was unable to effectively separate noise and source eignenvalues and eigenvectors due to spatial aliasing of the propane cannon signal and a lack of incoherent noise. Only 33 out of 80 usable shots were located by MUSIC within 100 m. Future work with the algorithm should focus on location of impulsive and continuous signals with development of methods for accurate separation of signal and noise eigenvectors in the presence of coherent noise and possible spatial aliasing. The circular wavefront algorithm performed better with our specific dataset and successfully located 70 out of 80 propane cannon shots within 100 m of the original location, 66 of which were within 20 m. This method has low computation requirements, making it well

  4. Acoustic Tractor Beam

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  5. Anisotropic and Negative Acoustic Index Metamaterials

    Fok, Lee Ren

    2010-01-01

    Microstructured materials are used in material science and engineering to attain desired material properties. Acoustic metamaterials are a rapidly growing area in this field of engineered materials that use deep subwavelength microstructures to attain exotic acoustic properties unavailable in nature. These properties, such as negative acoustic index, allow unprecedented capabilities such as sub-diffraction limit resolution, which have the potential to greatly improve existing technologies l...

  6. 挪威海格纳斯潜艇水声试验场测量设施分析%Analysis of Facilities of Norwegian Acoustic Testing Field in Heggemes

    刘兴章; 陈涛

    2011-01-01

    利用水声试验场对潜艇的水下辐射噪声进行测量和分析,是先进国家改善潜艇安静性的重要方法.位于挪威卑尔根附近的海格纳斯潜艇水声试验场,是德国、荷兰、丹麦、挪威等北约国家最重要的潜艇水声检测机构.本文介绍了该潜艇水声试验场的选址特点和主要测量设施,分析峡湾水域建设潜艇水声试验的利弊,分析航行试验场和静态试验场对水声试验场建设的不同作用,为我国水声试验场的建设提供参照.%Testing of underwater radiation noise of submarines using acoustic testing field is one of the important measures for improving the submarine' s silence in some developed countries. The Norwegian acoustic testing field in Heggernes is the most important testing field for measuring underwater noise of submarines of the members of NATO such as Germany, Holland, Demark, Norway and so on. In this paper, the characters of location and main facilities of the testing field are introduced. The advantages and disadvantages of the testing field construction in bay area are analyzed. Roles of the static testing field and the dynamic ranging to the testing field construction are studied. This discussion may be helpful for construction of acoustic testing field in our country.

  7. Seismic inversion with generalized Radon transform based on local second-order approximation of scattered field in acoustic media

    Ouyang, Wei; Mao, Weijian; Li, Xuelei; Li, Wuqun

    2014-08-01

    Sound velocity inversion problem based on scattering theory is formulated in terms of a nonlinear integral equation associated with scattered field. Because of its nonlinearity, in practice, linearization algorisms (Born/single scattering approximation) are widely used to obtain an approximate inversion solution. However, the linearized strategy is not congruent with seismic wave propagation mechanics in strong perturbation (heterogeneous) medium. In order to partially dispense with the weak perturbation assumption of the Born approximation, we present a new approach from the following two steps: firstly, to handle the forward scattering by taking into account the second-order Born approximation, which is related to generalized Radon transform (GRT) about quadratic scattering potential; then to derive a nonlinear quadratic inversion formula by resorting to inverse GRT. In our formulation, there is a significant quadratic term regarding scattering potential, and it can provide an amplitude correction for inversion results beyond standard linear inversion. The numerical experiments demonstrate that the linear single scattering inversion is only good in amplitude for relative velocity perturbation () of background media up to 10 %, and its inversion errors are unacceptable for the perturbation beyond 10 %. In contrast, the quadratic inversion can give more accurate amplitude-preserved recovery for the perturbation up to 40 %. Our inversion scheme is able to manage double scattering effects by estimating a transmission factor from an integral over a small area, and therefore, only a small portion of computational time is added to the original linear migration/inversion process.

  8. Acoustic Analysis of Vowels Following Glossectomy

    Whitehill, Tara L.; Ciocca, Valter; Chan, Judy C-T.; Samman, Nabil

    2006-01-01

    This study examined the acoustic characteristics of vowels produced by speakers with partial glossectomy. Acoustic variables investigated included first formant (F1) frequency, second formant (F2) frequency, F1 range, F2 range and vowel space area. Data from the speakers with partial glossectomy were compared with age- and gender-matched controls.…

  9. Subjective evaluation of speech and noise in learning environments in the realm of classroom acoustics: Results from laboratory and field experiments

    Meis, Markus; Nocke, Christian; Hofmann, Simone; Becker, Bernhard

    2005-04-01

    The impact of different acoustical conditions in learning environments on noise annoyance and the evaluation of speech quality were tested in a series of three experiments. In Experiment 1 (n=79) the auralization of seven classrooms with reverberation times from 0.55 to 3.21 s [average between 250 Hz to 2 kHz] served to develop a Semantic Differential, evaluating a simulated teacher's voice. Four factors were found: acoustical comfort, roughness, sharpness, and loudness. In Experiment 2, the effects of two classroom renovations were examined from a holistic perspective. The rooms were treated acoustically with acoustic ceilings (RT=0.5 s [250 Hz-2 kHz]) and muffling floor materials as well as non-acoustically with a new lighting system and color design. The results indicate that pupils (n=61) in renovated classrooms judged the simulated voice more positively, were less annoyed from the noise in classrooms, and were more motivated to participate in the lessons. In Experiment 3 the sound environments from six different lecture rooms (RT=0.8 to 1.39 s [250 Hz-2 kHz]) in two Universities of Oldenburg were evaluated by 321 students during the lectures. Evidence found supports the assumption that acoustical comfort in rooms is dependent on frequency for rooms with higher reverberation times.

  10. Acoustic and psychoacoustic analysis of the noise produced by the police force firearms Análise acústica e psicoacústica do ruído de armas utilizadas pela Polícia Militar

    Heraldo Lorena Guida

    2011-04-01

    Full Text Available Police officers are exposed to impact noise coming from firearms, which may cause irreversible injuries to the hearing system. AIM: To evaluate the noise exposure in shooting stands during gunfire exercises, to analyze the acoustic impact of the noise produced by the firearms and to associate it with tonal audiometry results. STUDY DESIGN: Cross-sectional. MATERIALS AND METHODS: To measure noise intensity we used a digital sound level meter, and the acoustic analysis was carried out by means of the oscillations and cochlear response curves provided by the praat software. 30 police officers were selected (27 males and 3 females. RESULTS: The peak level measured was 113.1 dB(C from a .40 pistol and 116.8 dB(C for a .38 revolver. The values obtained for oscillation and praat was 17.9±0.3 Barks, corresponding to the rate of 4,120 and 4,580 Hz. Audiometry indicated greater hearing loss at 4,000Hz in 86.7% of the cases. CONCLUSION: With the acoustic analysis it was possible to show cause and effect between the main areas of energy excitation of the cochlea (praat cochlear response curve and the frequencies of low hearing acuity.Os policiais militares estão expostos a ruídos de impacto provenientes de armas de fogo, os quais são capazes de causar lesões irreversíveis ao sistema auditivo. OBJETIVO: Avaliar a exposição ao ruído no estande de tiros durante os exercícios de tiro, analisar acusticamente o ruído de impacto e relacioná-lo com os resultados de audiometria tonal. FORMA DE ESTUDO: Transversal. MATERIAL E MÉTODO: A medição do ruído foi feita por meio de decibelímetro digital e a análise acústica foi feita no software Praat, levantando as curvas de oscilograma e cocleograma. Foi selecionada uma amostra de 30 policiais militares (27 masculinos e 3 femininos. RESULTADOS: Os picos máximos medidos no estante de tiros foram de 113,1 dB(C para pistola .40 e 116,8 dB(C para revólver .38. Os valores obtidos por meio da relação entre

  11. Acoustic transducer for nuclear reactor monitoring

    Disclosed is a transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer. 8 claims, 1 figure

  12. Spatiotemporal Analysis of Microbiological Contamination in New York State Produce Fields following Extensive Flooding from Hurricane Irene, August 2011.

    Bergholz, Peter W; Strawn, Laura K; Ryan, Gina T; Warchocki, Steven; Wiedmann, Martin

    2016-03-01

    Although flooding introduces microbiological, chemical, and physical hazards onto croplands, few data are available on the spatial extent, patterns, and development of contamination over time postflooding. To address this paucity of information, we conducted a spatially explicit study of Escherichia coli and Salmonella contamination prevalence and genetic diversity in produce fields after the catastrophic flooding that occurred in New England during 2011. Although no significant differences were detected between the two participating farms, both random forest and logistic regression revealed changes in the spatial pattern of E. coli contamination in drag swab samples over time. Analyses also indicated that E. coli detection was associated with changes in farm management to remediate the land after flooding. In particular, E. coli was widespread in drag swab samples at 21 days postflooding, but the spatial pattern changed by 238 days postflooding such that E. coli was then most prevalent in close proximity to surface water features. The combined results of several population genetics analyses indicated that over time postflooding E. coli populations on the farms (i) changed in composition and (ii) declined overall. Salmonella was primarily detected in surface water features, but some Salmonella strains were isolated from soil and drag swab samples at 21 and 44 days postflooding. Although postflood contamination and land management responses should always be evaluated in the context of each unique farm landscape, our results provide quantitative data on the general patterns of contamination after flooding and support the practice of establishing buffer zones between flood-contaminated cropland and harvestable crops in produce fields. PMID:26939648

  13. The geometrical acoustic method for calculating the echo of targets submerged in a shallow water waveguide

    CHEN Yan; TANG Weilin; FAN Wei; FAN Jun

    2012-01-01

    A geometrical acoustic method based on image-source method and physicM acoustic method was developed to calculate the echo of targets submerged in the shallow water waveguide. The incident rays and the scattering rays are reflected by two boundaries for many times, and then the back rays become countless. The total backscattering field is obtained through summing up the scattering field produced by each combination of incident rays and back rays. The echo of the 10m-radius pressure release sphere in Pekeris waveguide with the range is calculated by the geometrical acoustic method. Compared with the results calculated by the wave acoustic method in the available literature, it shows that both are in accordance on average value and descend trend. The following results indicate that the difference between Effective Target Strength (ETS) in shallow water and the Target Strength (TS) in free space for spheres and certain other rounded objects is small. However, the ETS of some targets such as cone-shaped is quite different from TS in free space, which can lead to large errors in estimating a target's scattering property using traditional sonar equation. Compared with the method of wave acoustics, the geometrical acoustic method not only has the definite physical meaning but also can calculate the echo of complex objects in shallow water waveguide.

  14. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  15. Study on the system for evaluating the irradiation field by using positron emitters produced through fragmentation reactions

    To evaluate the field irradiated with incident ions and the dose distribution deposited in a patient's body, utilization of the positron emitters produced through projectile fragmentation reactions of stable heavy ions has proposed. Through the previous works, the method of estimating the range of incident ions and the one dimensional (1D) dose distributions by using the Maximum Likelihood Estimation (MLE) method has established for the homogeneous and the bi-material targets with known elemental composition. The extension of the method to the estimation for 3D fields and targets with unknown elemental composition are now undergoing. In this year for the first extension, uniform polymethylmethacrylate (PMMA) targets were irradiated in rectangular parallelepiped shapes, and the dose distributions were estimated. As a result the estimated positions of the distal edges of the dose distributions were in agreement with the measured ones within 2 mm. However, the estimated positions of the proximal edges were different from the measured ones by 5 to 9 mm. For the second extension, the four uniform targets with CT-values from -66 to 120 were irradiated. Then, the ranges of the mono-energetic beams were estimated under the three different conditions; The target was assumed to be water, the target was assumed to have the elemental composition estimated from its CT value, and the elemental composition of the target was known. The results showed that the assumption of the target material as water seemed good enough for the materials with CT-values within the investigated range. (author)

  16. Artificial reproduction of magnetic fields produced by a natural geomagnetic storm increases systolic blood pressure in rats

    Martínez-Bretón, J. L.; Mendoza, B.; Miranda-Anaya, M.; Durán, P.; Flores-Chávez, P. L.

    2016-04-01

    The incidence of geomagnetic storms may be associated with changes in circulatory physiology. The way in which the natural variations of the geomagnetic field due to solar activity affects the blood pressure are poorly understood and require further study in controlled experimental designs in animal models. In the present study, we tested whether the systolic arterial pressure (AP) in adult rats is affected by simulated magnetic fields resembling the natural changes of a geomagnetic storm. We exposed adult rats to a linear magnetic profile that simulates the average changes associated to some well-known geomagnetic storm phases: the sudden commencement and principal phase. Magnetic stimulus was provided by a coil inductor and regulated by a microcontroller. The experiments were conducted in the electromagnetically isolated environment of a semi-anechoic chamber. After exposure, AP was determined with a non-invasive method through the pulse on the rat's tail. Animals were used as their own control. Our results indicate that there was no statistically significant effect in AP when the artificial profile was applied, neither in the sudden commencement nor in the principal phases. However, during the experimental period, a natural geomagnetic storm occurred, and we did observe statistically significant AP increase during the sudden commencement phase. Furthermore, when this storm phase was artificially replicated with a non-linear profile, we noticed a 7 to 9 % increase of the rats' AP in relation to a reference value. We suggested that the changes in the geomagnetic field associated with a geomagnetic storm in its first day could produce a measurable and reproducible physiological response in AP.

  17. Opto-acoustic cell permeation

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  18. Microfluidic device for acoustic cell lysis

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  19. Acoustically enhanced heat transport

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  20. Development of a compact transmitter array for the acoustic neutrino detection calibration

    Adrián-Martínez, S; Bou-Cabo, M; Larosa, G; Llorens, C D; Martínez-Mora, J A

    2011-01-01

    Parametric acoustic sources technique has been widely used in several fields of acoustics, especially in underwater acoustics with the aim to obtain very directive transducers. In this paper we present different studies and developments done during last years to develop a compact acoustic calibrator that allows emitting acoustic neutrino like signal with the goal to calibrate arrays of acoustic receiver sensors to detect ultra-high energy neutrinos.

  1. Effects of anomalous magnetic moment in the quantum motion of neutral particle in magnetic and conical spacetime electric fields produced by a linear source in a conical spacetime

    In this paper we analyse the effect of the anomalous magnetic moment on the non-relativistic quantum motion of a neutral particle in magnetic and electric fields produced by linear sources of constant current and charge density, respectively. (author)

  2. The acoustics of snoring.

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  3. The Helmholtz equation least squares method for reconstructing and predicting acoustic radiation

    Wu, Sean F

    2015-01-01

    This book gives a comprehensive introduction to the Helmholtz Equation Least Squares (HELS) method and its use in diagnosing noise and vibration problems. In contrast to the traditional NAH technologies, the HELS method does not seek an exact solution to the acoustic field produced by an arbitrarily shaped structure. Rather, it attempts to obtain the best approximation of an acoustic field through the expansion of certain basis functions. Therefore, it significantly simplifies the complexities of the reconstruction process, yet still enables one to acquire an understanding of the root causes of different noise and vibration problems that involve arbitrarily shaped surfaces in non-free space using far fewer measurement points than either Fourier acoustics or BEM based NAH. The examples given in this book illustrate that the HELS method may potentially become a practical and versatile tool for engineers to tackle a variety of complex noise and vibration issues in engineering applications.

  4. Failure to produce taste-aversion learning in rats exposed to static electric fields and air ions

    Creim, J.A.; Lovely, R.H.; Weigel, R.J.; Forsythe, W.C.; Anderson, L.E. [Pacific Northwest Labs., Richland, WA (United States)

    1995-12-01

    Taste-aversion (TA) learning was measured to determine whether exposure to high-voltage direct current (HVdc) static electric fields can produce TA learning in male Long Evans rats. Fifty-six rats were randomly distributed into four groups of 14 rats each. All rats were placed on a 20 min/day drinking schedule for 12 consecutive days prior to receiving five conditioning trials. During the conditioning trials, access to 0.1% sodium saccharin-flavored water was given for 20 min, followed 30 min later by one of four treatments. Two groups of 14 rats each were individually exposed to static electric fields and air ions, one group to +75 kV/m (+2 {times} 10{sup 5} air ions/cm{sup 3}) and the other group to {minus}75 kV/m ({minus}2 {times} 10{sup 5} air ions/cm{sup 3}). Two other groups of 14 rats each served as sham-exposed controls, with the following variation in one of the sham-exposed groups: this group was subdivided into two subsets of seven rats each, so that a positive control group could be included to validate the experimental design. The positive control group (n = 7) was injected with cyclophosphamide 25 mg/kg, i.p., 30 min after access to saccharin-flavored water on conditioning days, whereas the other subset of seven rats was similarly injected with an equivalent volume of saline. Access to saccharin-flavored water on conditioning days was followed by the treatments described above and was alternated daily with water recovery sessions in which the rats received access to water for 20 min in the home cage without further treatment. Following the last water-recovery session, a 20 min, two-bottle preference test (between water and saccharin-flavored water) was administered to each group. The positive control group did show TA learning, thus validating the experimental protocol.

  5. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  6. Innovative High Temperature Acoustic Liner Development and Modeling Project

    National Aeronautics and Space Administration — The massive acoustic loads produced by launch vehicles can detrimentally affect the proper functioning of vehicle components, payloads, and launch support...

  7. Acoustic hemostasis

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  8. Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials

    Li, Yong; Yu, Gaokun; Liang, Bin; Zou, Xinye; Li, Guangyun; Cheng, Su; Cheng, Jianchun

    2014-01-01

    Acoustic lenses find applications in various areas ranging from ultrasound imaging to nondestructive testing. A compact-size and high-efficient planar acoustic lens is crucial to achieving miniaturization and integration, and should have deep implication for the acoustic field. However its realization remains challenging due to the trade-off between high refractive-index and impedance-mismatch. Here we have designed and experimentally realized the first ultrathin planar acoustic lens capable ...

  9. Seismic-acoustic energy partitioning during a paroxysmal eruptive phase of Tungurahua volcano, Ecuador

    Palacios, Pablo B.; Díez, Mikel; Kendall, J.-Michael; Mader, Heidy M.

    2016-04-01

    Studies of discrete volcanic explosions, that usually last less than two or three minutes, have suggested that the partitioning of seismic-acoustic energy is likely related to a range of physical mechanisms that depend on magma properties and other physical constraints such as the location of the fragmentation surface. In this paper we explore the energy partition of a paroxysmal eruptive phase of Tungurahua volcano that lasted for over four hours, on 2006 July 14 - 15, using seismic-acoustic information recorded by stations on its flanks (near field). We find evidence of a linear scaling between seismic and acoustic energies, with time dependent intensities, during the sustained explosive phase of the eruption. Furthermore, we argue that this scaling can be explained by two different processes: (1) the fragmentation region ultimately acts as the common source of energy producing both direct seismic waves, that travel through the volcanic edifice, and direct acoustic waves coming from a disturbed atmosphere above the summit; (2) the coupling of acoustic waves with the ground to cause seismic waves. Both processes are concurrent, however we have found that the first one is dominant for seismic records below 4 Hz. Here we use the linear scaling of intensities to construct seismic and acoustic indices, which, we argue, could be used to track an ongoing eruption. Thus, especially in strong paroxysms that can produce pyroclastic flows, the index correlation and their levels can be used as quantitative monitoring parameters to assess the volcanic hazard in real time. Additionally, we suggest from the linear scaling that the source type for both cases, seismic and acoustic, is dipolar and dominant in the near field.

  10. Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea

    Kim, Da-Woon; Kim, Gi-Yong; Kim, Hee-Kyoung; Kim, Jueun; Jeon, Sun Jeong; Lee, Chul Won; Lee, Hyang Burm; Yun, Sung-Hwan

    2016-01-01

    Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multi-locus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea. PMID:27298593

  11. Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea.

    Kim, Da-Woon; Kim, Gi-Yong; Kim, Hee-Kyoung; Kim, Jueun; Jeon, Sun Jeong; Lee, Chul Won; Lee, Hyang Burm; Yun, Sung-Hwan

    2016-06-01

    Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multi-locus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea. PMID:27298593

  12. Acoustic telemetry.

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  13. Acoustic Neuroma Educational Video

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  14. Development of a single-shot pulsed power supply for a solenoid producing magnetic field to guide a pulsed electron beam

    Design and development of a single-shot pulsed power supply has been done for a solenoid producing magnetic field up to 1 Tesla. The magnetic field is used to guide a pulsed electron beam generated in a Marx generator. (author)

  15. 30th International Acoustical Imaging Symposium

    Jones, Joie; Lee, Hua

    2011-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place every two years since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2009 the 30th International Symposium on Acoustical Imaging was held in Monterey, CA, USA, March 1-4. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 30 in the Series contains an excellent collection of forty three papers presented in five major categories: Biomedical Imaging Acoustic Microscopy Non-Destructive Evaluation Systems Analysis Signal Analysis and Image Processing Audience Researchers in medical imaging and biomedical instrumentation experts.

  16. Dynamic acoustic tractor beams

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  17. Dynamic acoustic tractor beams

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  18. Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials.

    Park, Jong Jin; Lee, K J B; Wright, Oliver B; Jung, Myoung Ki; Lee, Sam H

    2013-06-14

    We demonstrate 97%, 89%, and 76% transmission of sound amplitude in air through walls perforated with subwavelength holes of areal coverage fractions 0.10, 0.03, and 0.01, respectively, producing 94-, 950-, and 5700-fold intensity enhancements therein. This remarkable level of extraordinary acoustic transmission is achieved with thin tensioned circular membranes, making the mass of the air in the holes effectively vanish. Imaging the pressure field confirms incident-angle independent transmission, thus realizing a bona fide invisible wall. Applications include high-resolution acoustic sensing. PMID:25165929

  19. Acoustic streaming jets: A scaling and dimensional analysis

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand

  20. Acoustic Mechanical Feedthroughs

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  1. Nonlinear acoustic-gravity waves

    Stenflo, Lennart; Shukla, P. K.

    2009-01-01

    Previous results on nonlinear acoustic-gravity waves are reconsidered. It turns out that the mathematical techniques used are somewhat similar to those already adopted by the plasma physics community. Consequently, a future interaction between physicists On different fields, e.g in meteorology and plasma physics, can be very fruitful.

  2. Continuous cell lysis in microfluidics through acoustic and optoelectronic tweezers

    Witte, C.; Kremer, C; Cooper, J.M.; Neale, S.L.

    2013-01-01

    A versatile platform for efficient cell lysis using a combination of acoustic and electric fields in a microchannel is presented. Cell membrane disruption is triggered by electric fields inducing electroporation and then lysis. The principle of optoelectronic tweezers (OET) is applied to control the electric field strength and a surface acoustic wave transducer is attached to an OET chip to implement acoustic tweezing (AT). The system is characterized in terms of spatial contro...

  3. Acoustic dispersive prism

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  4. Experiments on the Flow Field and Acoustic Properties of a Mach number 0·75 Turbulent Air Jet at a Low Reynolds Number

    Slot, H.J.; Moore, P.; Delfos, R.; Boersma, B.J.

    2009-01-01

    In this paper we present the experimental results of a detailed investigation of the flow and acoustic properties of a turbulent jet with Mach number 0·75 and Reynolds number 3·5 103. We describe the methods and experimental procedures followed during the measurements, and subsequently present the f

  5. Analytic solutions in the acoustic black hole analogue of the conical Kerr metric: massless scalar fields and Hawking-Unruh radiation

    Vieira, H S

    2016-01-01

    We study the sound perturbation of the rotating acoustic black hole in the presence of a disclination. The radial part of the massless Klein-Gordon equation is written into a Heun form, and its analytical solution is obtained. These solutions have an explicit dependence on the parameter of the disclination. We obtain the exact Hawking-Unruh radiation spectrum.

  6. A new definition for acoustic dose

    This paper discusses a recent proposal for definitions of acoustic dose and acoustic dose-rate. Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Its time-derivative, acoustic dose-rate, Qm, in W kg-1 is central to the prediction of both rate of temperature rise and radiation force. These quantities have spatial and temporal dependency, depending on the local field parameters (acoustic pressure, particle velocity, intensity) and local material properties (absorption coefficient, αa, and mass density, ρ0). Spatial and/or temporal averaging can be applied where appropriate. For plane-wave monochromatic conditions in a homogeneous medium, Qm=2αaI/ρ0, (I is the time-averaged intensity), a simple expression which may also incorporate frequency dependencies of energy deposition. Acoustic dose and acoustic does-rate are exact analogues for Specific Absorption and Specific Absorption Rate (SAR), quantities central to radiofrequency (RF) and microwave dosimetry. Acoustic dosimetry in the presence of tissue/gas interfaces remains a considerable challenge.

  7. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  8. Acoustic levitation in the presence of gravity

    Collas, P.; Barmatz, M.; Shipley, C.

    1989-01-01

    The method of Gor'kov (1961) has been applied to derive general expressions for the total potential and force on a small spherical object in a resonant chamber in the presence of both acoustic and gravitational force fields. The levitation position is also determined in rectangular resonators for the simultaneous excitation of up to three acoustic modes, and the results are applied to the triple-axis acoustic levitator. The analysis is applied to rectangular, spherical, and cylindrical single-mode levitators that are arbitrarily oriented relative to the gravitational force field. Criteria are determined for isotropic force fields in rectangular and cylindrical resonators. It is demonstrated that an object will be situated within a volume of possible levitation positions at a point determined by the relative strength of the acoustic and gravitational fields and the orientation of the chamber relative to gravity.

  9. Acoustic characterization of rehabilitated cloisters

    A. P. O. Carvalho; S. R. C. Vilela

    2008-01-01

    This paper presents the results of field measurements in eight rehabilitated cloisters of old monasteries in Portugal (length: 20 to 35 m and height: 3.3 to 6.3 m) regarding their acoustic behavior to two objective parameters: RT and RASTI. The goal is to characterize the acoustic effect of the rehabilitation done on theses spaces to adapt them to new uses. All these cloisters had recently their galleries#8217; openings to the central yard closed with glass panels. Simple formulas were obtain...

  10. Monitoring the irradiation field of 12C and 16O SOBP beams using positron emitters produced through projectile fragmentation reactions

    In order to effectively utilize the prominent properties of heavy ions in radiotherapy, it is important to evaluate both the position of the field irradiated with incident ions and the absorbed dose distribution in a patient's body. One of the methods for this purpose is the utilization of the positron emitters produced through the projectile fragmentation reactions of stable heavy ions with target nuclei. In heavy-ion therapy, spread-out Bragg peak (SOBP) beams are used to achieve uniform biological dose distributions in the whole tumor volume. Therefore, in this study, we designed SOBP beams of 30 and 50 mm water-equivalent length (mmWEL) in width for 12C and 16O, and carried out irradiation experiments using them. Water, polyethylene and polymethyl methacrylate were selected as targets to simulate a human body. Pairs of annihilation gamma rays were detected by means of a limited-angle positron camera for 500 s, and annihilation gamma-ray distributions were obtained. The maximum likelihood estimation (MLE) method was applied to the detected distributions for evaluating the positions of the distal and proximal edges of the SOBP in a target. The differences between the positions evaluated with the MLE method and those derived from the measured dose distributions were less than 1.7 mm and 2.5 mm for the distal and the proximal edge, respectively, in all irradiation conditions. When the positions of both edges are determined with the MLE method, the most probable shape of the dose distribution in a target can be estimated simultaneously. The close agreement between the estimated and the measured distributions implied that the shape of the dose distribution in an irradiated target could be evaluated from the detected annihilation gamma-ray distribution

  11. Absorption and impedance boundary conditions for phased geometrical-acoustics methods

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been...... reasonable results with some exceptions at low frequencies for acoustically soft materials....

  12. Acoustic emission/flaw relationships for inservice monitoring of LWRs

    The program concerning Acoustic Emission/Flaw Relationships for Inservice Monitoring of LWRs was initiated in FY76 with the objective of validating the application of acoustic emission (AE) to monitor nuclear reactor pressure-containing components during operation to detect cracking. The program has been supported by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Research and development has been performed by Pacific Northwest Laboratory, operated for the Department of Energy by Battelle Memorial Institute. The program has shown the feasibility of continuous, on-line AE monitoring to detect crack growth and produced validated methods for applying the technology. Included are relationships for estimating flaw severity from AE data and field applications at Watts Bar Unit 1 Reactor, Limerick Unit 1 Reactor, and the High Flux Isotope Reactor. This report discusses the program scope and organization, the three program phases and the results obtained, standard and code activities, and instrumentation and software developed under this program

  13. Acoustic Communication for Medical Nanorobots

    Hogg, Tad

    2012-01-01

    Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates up to 10,000 bits/second between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.

  14. Acoustic metamaterials for sound mitigation

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  15. Acoustic Neurinomas

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  16. Acoustic Spatiality

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  17. Responsive acoustic surfaces

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design for the...... acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design was...... simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  18. Self focusing of laser beams and its effect in the generation of magnetic field in laser-produced plasma

    The present work deals with the generation of magnetic field in a plasma due to self focusing effects of laser beam. Spontaneously generated magnetic fields of the order of several kilogauss have been investigated and the cause for the generation of B-field has been attributed to the time dependent ponderomotive force of a self focused inhomogeneous gaussian shaped laser beam. The magnitude of the magnetic field is found to increase with self focusing effect of the laser beam. It can be shown that for high-frequency laser (viz. Nd-glass laser having the wavelength (λ) = 1.06 μm and amplitude of E-field (E00) = 3.9 x 1011 V/m), the magnitude of B-field is found to be in better agreement with the experiment. B-field varies inversely with temperature which has not been taken care in earlier reports. (author)

  19. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonid Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  20. Acoustic source for generating an acoustic beam

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.