WorldWideScience

Sample records for acoustic emission signals

  1. Time reversal signal processing in acoustic emission testing

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan

    Brno: University of Technology, 2014. s. 10-11. ISBN 978-80-214-5019-6. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. 06.10.2014-10.10.2014, Praha] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustics * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustics

  2. Time reversal signal processing in acoustic emission testing

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan; Dos Santos, S.

    2014-01-01

    Roč. 19, č. 12 (2014). ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustics * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/637_Prevorovsky.pdf

  3. Study of acoustic emission sources and signals

    Pumarega, M. I. López; Armeite, M.; Oliveto, M. E.; Piotrkowski, R.; Ruzzante, J. E.

    2002-05-01

    Methods of acoustic emission (AE) signal analysis give information about material conditions, since AE generated in stressed solids can be used to indicate cracks and defect positions so as their damaging potential. We present a review of results of laboratory AE tests on metallic materials. Rings of seamless steel tubes, with and without oxide layers, were cut and then deformed by opening their ends. Seamless Zry-4 tubes were submitted to hydraulic stress tests until rupture with a purposely-constructed hydraulic system. In burst type signals, their parameters, Amplitude (A), Duration (D) and Risetime (R), were statistically studied. Amplitudes were found to follow the Log-normal distribution. This led to infer that the detected AE signal, is the complex consequence of a great number of random independent sources, which individual effects are linked. We could show, using cluster analysis for A, D and R mean values, with 5 clusters, coincidence between the clusters and the test types. A slight linear correlation was obtained for the parameters A and D. The arrival time of the AE signals was also studied, which conducted to discussing Poisson and Polya processes. The digitized signals were studied as (1/f)β noises. The general results are coherent if we consider the AE phenomena in the frame of Self Organized Criticality theory.

  4. Wavelet analysis of acoustic emission signals from thermal barrier coatings

    YANG Li; ZHOU Yi-chun

    2006-01-01

    The wavelet transform is applied to the analysis of acoustic emission signals collected during tensile test of the ZrO2-8% Y2O3 (YSZ) thermal barrier coatings (TBCs). The acoustic emission signals are de-noised using the Daubechies discrete wavelets,and then decomposed into different wavelet levels using the programs developed by the authors. Each level is examined for its specific frequency range. The ratio of energy in different levels to the total energy gives information on the failure modes (coating micro-failures and substrate micro-failures) associated with TBCs system.

  5. Discrimination of Acoustic Emission Signals using Pattern Recognition Analysis

    Acoustic Emission(AE) signals obtained during fracture toughness test and fatigue test for nuclear pressure vessel material(SA 508 cl.3) and artificial AE signals from pencil break and ultrasonic pulser were classified using pattern recognition methods. Three different classifiers ; namely Minimum Distance Classifier, Linear Discriminant Classifier and Maximum Likelihood Classifier were used for pattern recognition. In this study, the performance of each classifier was compared. The discrimination of AE signals from cracking and crack surface rubbing was possible and the analysis for crack propagation was applicable by pattern recognition methods

  6. Monitoring of hard turning using acoustic emission signal

    Bhaskaran, J.; Murugan, M. [B.S. Abdur Rahman University, Chennai (India); Balashanmugam, N.; Chellamalai, M. [Central Manufacturing Technology Institute, Bangalore (India)

    2012-02-15

    Monitoring of tool wear during hard turning is essential. Many investigators have analyzed the acoustic emission (AE) signals generated during machining to understand the metal cutting process and for monitoring tool wear and failure. In the current study on hard turning, the skew and kurtosis parameters of the root mean square values of AE signal (AERMS) are used to monitor tool wear. The rubbing between the tool and the workpiece increases as the tool wear crosses a threshold, thereby shifting the mass of AERMS distribution to right, leading to a negative skew. The increased rubbing also led to a high kurtosis value in the AERMS distribution curve.

  7. Identifying fatigue crack geometric features from acoustic emission signals

    Bao, Jingjing; Poddar, Banibrata; Giurgiutiu, Victor

    2016-04-01

    Acoustic emission (AE) caused by the growth of fatigue crack were well studied by researchers. Conventional approaches predominantly are based on statistical analysis. In this study we focus on identifying geometric features of the crack from the AE signals using physics based approach. One of the main challenges of this approach is to develop a physics of materials based understanding of the generation and propagation of acoustic emissions due to the growth of a fatigue crack. As the geometry changes due to the crack growth, so does the local vibration modes around the crack. Our aim is to understand these changing local vibration modes and find possible relation between the AE signal features and the geometric features of the crack. Finite element (FE) analysis was used to model AE events due to fatigue crack growth. This was done using dipole excitation at the crack tips. Harmonic analysis was also performed on these FE models to understand the local vibration modes. Experimental study was carried out to verify these results. Piezoelectric wafer active sensors (PWAS) were used to excite cracked specimen and the local vibration modes were captured using laser Doppler vibrometry. The preliminary results show that the AE signals do carry the information related to the crack geometry.

  8. Acoustic emission

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  9. Analysis of Acoustic Emission Signals using WaveletTransformation Technique

    S.V. Subba Rao

    2008-07-01

    Full Text Available Acoustic emission (AE monitoring is carried out during proof pressure testing of pressurevessels to find the occurrence of any crack growth-related phenomenon. While carrying out AEmonitoring, it is often found that the background noise is very high. Along with the noise, thesignal includes various phenomena related to crack growth, rubbing of fasteners, leaks, etc. Dueto the presence of noise, it becomes difficult to identify signature of the original signals related to the above phenomenon. Through various filtering/ thresholding techniques, it was found that the original signals were getting filtered out along with noise. Wavelet transformation technique is found to be more appropriate to analyse the AE signals under such situations. Wavelet transformation technique is used to de-noise the AE data. The de-noised signal is classified to identify a signature based on the type of phenomena.Defence Science Journal, 2008, 58(4, pp.559-564, DOI:http://dx.doi.org/10.14429/dsj.58.1677

  10. Statistics of the acoustic emission signals parameters from Zircaloy-4 fuel cladding

    Statistic analysis of acoustic emission signals parameters: amplitude, duration and risetime was carried out. CANDU type Zircaloy-4 fuel claddings were pressurized up to rupture, one set of five normal pieces and six with defects included, acoustic emission was used on-line. Amplitude and duration frequency distributions were fitted with lognormal distribution functions, and risetime with an exponential one. Using analysis of variance, acoustic emission was appropriated to distinguish between defective and non-defective subsets. Clusters analysis applied on mean values of acoustic emission signal parameters were not effective to distinguish two sets of fuel claddings studied. (author)

  11. Acoustic emission source location based on signal features

    Blaháček, Michal; Chlada, Milan; Převorovský, Zdeněk

    Uetikon-Zuerich : Trans Tech Publications, 2006 - (Pullin, R.), s. 77-82 ISBN 0-87849-420-0. ISSN 1022-6680. [European Conference on AE Testing /27./. Cardiff (GB), 20.09.2006-22.09.2006] R&D Projects: GA MPO(CZ) FT-TA/026 EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * source location Subject RIV: BI - Acoustics

  12. Acoustic emission source localization based on distance domain signal representation

    Gawronski, M.; Grabowski, K.; Russek, P.; Staszewski, W. J.; Uhl, T.; Packo, P.

    2016-04-01

    Acoustic emission is a vital non-destructive testing technique and is widely used in industry for damage detection, localisation and characterization. The latter two aspects are particularly challenging, as AE data are typically noisy. What is more, elastic waves generated by an AE event, propagate through a structural path and are significantly distorted. This effect is particularly prominent for thin elastic plates. In these media the dispersion phenomenon results in severe localisation and characterization issues. Traditional Time Difference of Arrival methods for localisation techniques typically fail when signals are highly dispersive. Hence, algorithms capable of dispersion compensation are sought. This paper presents a method based on the Time - Distance Domain Transform for an accurate AE event localisation. The source localisation is found through a minimization problem. The proposed technique focuses on transforming the time signal to the distance domain response, which would be recorded at the source. Only, basic elastic material properties and plate thickness are used in the approach, avoiding arbitrary parameters tuning.

  13. Wavelet packet transform for detection of single events in acoustic emission signals

    Bianchi, Davide; Mayrhofer, Erwin; Gröschl, Martin; Betz, Gerhard; Vernes, András

    2015-12-01

    Acoustic emission signals in tribology can be used for monitoring the state of bodies in contact and relative motion. The recorded signal includes information which can be associated with different events, such as the formation and propagation of cracks, appearance of scratches and so on. One of the major challenges in analyzing these acoustic emission signals is to identify parts of the signal which belong to such an event and discern it from noise. In this contribution, a wavelet packet decomposition within the framework of multiresolution analysis theory is considered to analyze acoustic emission signals to investigate the failure of tribological systems. By applying the wavelet packet transform a method for the extraction of single events in rail contact fatigue test is proposed. The extraction of such events at several stages of the test permits a classification and the analysis of the evolution of cracks in the rail.

  14. Intensity modification of acoustic emission signals under thermocyclic tests of high-temperature steel EP33

    With the help of the acoustic emission (AE) method a study is made into structural and phase transformations in a heat resistant austenitic steel Kh12N22T3MR under conditions of cyclic heating up to 600 deg C and constant tensile loading. Based on the analysis of acoustic emission data the temperature dependence of AE signal intensity on thermal cycling is built and regularities of its variation are established for every test cycle

  15. Identification of acoustic emission signal in aluminum alloys spot welding based on fractal theory

    2007-01-01

    The acoustic emission signal of aluminum alloys spot welding includes the information of forming nugget and is one of the important parameters in the quality control. Due to the nonlinearity of the signals, classic Euclidean geometry can not be applied to depict exactly. The fractal theory is implemented to quantitatively describe the characteristics of the acoustic emission signals. The experiment and calculation results show that the box counting dimension of acoustic emission signal, between 1 and 2, are distinctive from different nugget areas in AC spot welding. It is proved that box counting dimension is an effective characteristic parameter to evaluate spot welding quality. In addition, fractal theory can also be applied in other spot welding parameters, such as voltage, current, electrode force and so on, for the purpose of recognizing the spot welding quality.

  16. Robust Clustering of Acoustic Emission Signals Using Neural Networks and Signal Subspace Projections

    Shi Zhiqiang

    2003-01-01

    Full Text Available Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems. For reliable automatic fault monitoring related to the generation and propagation of cracks, it is important to identify the transient crack-related signals in the presence of strong time-varying noise and other interference. A prominent difficulty is the inability to differentiate events due to crack growth from noise of various origins. This work presents a novel algorithm for automatic clustering and separation of acoustic emission (AE events based on multiple features extracted from the experimental data. The algorithm consists of two steps. In the first step, the noise is separated from the events of interest and subsequently removed using a combination of covariance analysis, principal component analysis (PCA, and differential time delay estimates. The second step processes the remaining data using a self-organizing map (SOM neural network, which outputs the noise and AE signals into separate neurons. To improve the efficiency of classification, the short-time Fourier transform (STFT is applied to retain the time-frequency features of the remaining events, reducing the dimension of the data. The algorithm is verified with two sets of data, and a correct classification ratio over 95% is achieved.

  17. Surface Roughness Evaluation Based on Acoustic Emission Signals in Robot Assisted Polishing

    Beatriz de Agustina

    2014-11-01

    Full Text Available The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE signals can be considered useful to monitor the polishing process state.

  18. The characteristics of acoustic emission signal under composite destruction on GFRP gas cylinder

    Jee, Hyun Sup; Lee, Jong O; Ju, No Hoe [Korea Institute of Materials Science, Changwon (Korea, Republic of); So, Cheal Ho [Dongsin University, Naju (Korea, Republic of); Lee, Jong Kyu [Dept. of Physics, Bukyong National University, Busan (Korea, Republic of)

    2013-10-15

    This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appeared when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

  19. The characteristics of acoustic emission signal under composite destruction on GFRP gas cylinder

    This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appeared when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

  20. An information processing method for acoustic emission signal inspired from musical staff

    Zheng, Wei; Wu, Chunxian

    2016-01-01

    This study proposes a musical-staff-inspired signal processing method for standard description expressions for discrete signals and describing the integrated characteristics of acoustic emission (AE) signals. The method maps various AE signals with complex environments into the normalized musical space. Four new indexes are proposed to comprehensively describe the signal. Several key features, such as contour, amplitude, and signal changing rate, are quantitatively expressed in a normalized musical space. The processed information requires only a small storage space to maintain high fidelity. The method is illustrated by using experiments on sandstones and computed tomography (CT) scanning to determine its validity for AE signal processing.

  1. Type-2 Fuzzy Modeling for Acoustic Emission Signal in Precision Manufacturing

    Qun Ren; Luc Baron; Marek Balazinski

    2011-01-01

    This paper presents an application of type-2 fuzzy logic on acoustic emission (AE) signal modeling in precision manufacturing. Type-2 fuzzy modeling is used to identify the AE signal in precision machining. It provides a simple way to arrive at a definite conclusion without understanding the exact physics of the machining process. Moreover, the interval set of the output from the type-2 fuzzy approach assesses the information about the uncertainty in the AE signal, which can be of great value...

  2. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    Barat, K.; Bar, H.N. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Mandal, D. [Material Processing and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Roy, H., E-mail: himadri9504@gmail.com [NDT and Metallurgy Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Sivaprasad, S.; Tarafder, S. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2014-03-01

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed.

  3. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed

  4. Usage Autocorrelation Function in the Capacity of Indicator Shape of the Signal in Acoustic Emission Testing of Intricate Castings

    Popkov, Artem

    2016-01-01

    The article contains information about acoustic emission signals analysing using autocorrelation function. Operation factors were analysed, such as shape of signal, the origins time and carrier frequency. The purpose of work is estimating the validity of correlations methods analysing signals. Acoustic emission signal consist of different types of waves, which propagate on different trajectories in object of control. Acoustic emission signal is amplitude-, phase- and frequency-modeling signal. It was described by carrier frequency at a given point of time. Period of signal make up 12.5 microseconds and carrier frequency make up 80 kHz for analysing signal. Usage autocorrelation function like indicator the origin time of acoustic emission signal raises validity localization of emitters.

  5. Classification Identification of Acoustic Emission Signals from Underground Metal Mine Rock by ICIMF Classifier

    Hongyan Zuo

    2014-01-01

    Full Text Available To overcome the drawback that fuzzy classifier was sensitive to noises and outliers, Mamdani fuzzy classifier based on improved chaos immune algorithm was developed, in which bilateral Gaussian membership function parameters were set as constraint conditions and the indexes of fuzzy classification effectiveness and number of correct samples of fuzzy classification as the subgoal of fitness function. Moreover, Iris database was used for simulation experiment, classification, and recognition of acoustic emission signals and interference signals from stope wall rock of underground metal mines. The results showed that Mamdani fuzzy classifier based on improved chaos immune algorithm could effectively improve the prediction accuracy of classification of data sets with noises and outliers and the classification accuracy of acoustic emission signal and interference signal from stope wall rock of underground metal mines was 90.00%. It was obvious that the improved chaos immune Mamdani fuzzy (ICIMF classifier was useful for accurate diagnosis of acoustic emission signal and interference signal from stope wall rock of underground metal mines.

  6. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  7. Acoustic emissions for particle sizing of powders through signal processing techniques

    Bastari, A.; Cristalli, C.; Morlacchi, R.; Pomponi, E. [Loccioni Group (Italy)

    2011-04-15

    The present work introduces an innovative method for measuring particle size distribution of an airborne powder, based on the application of signal processing techniques to the acoustic emission signals produced by the impacts of the powder with specific metallic surfaces. The basic idea of the proposed methodology lies on the identification of the unknown relation between the acquired acoustic emission signals and the powder particle size distribution, by means of a multi-step procedure. In the first step, wavelet packet decomposition is used to extract useful features from the acoustic emission signals: the dimensionality of feature space is further reduced through multivariate data analysis techniques. As a final step, a neural network is properly trained to map the feature vector into the particle size distribution. The proposed solution has several advantages, such as low cost and low invasiveness which allow the system based on this technique to be easily integrated in pre-existing plants. It has been successfully applied to the PSD measurement of coal powder produced by grinding mills in a coal-fired power station, and the experimental results are reported in the paper. The measurement principle can also be applied to different particle sizing applications, whenever a solid powder is carried in air or in other gases.

  8. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  9. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  10. Practical acoustic emission testing

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  11. Signal Characteristic of acoustic emission from plant by the water stress

    To improve environmental control in plant, a signal characteristics of plant has been studied by a nondestructive technique. Hereupon, the acoustic emission (AE) for plant was discussed for water stress detection. AE signals were taken from angiosperms and gymnosperm. It has found that the AE sensor could detect the AE signals on the plant stem right below the sensor. The AE hit counts in daytime was higher than that in night tim, and it was realised that the daily hit counts pattern corresponded with the water stress in the plant. The frequency band of the angiosperms was different from the gymnosperm. The frequency band from outdoor was in accord with that of indoor obtained from the same conditions.

  12. Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion

    Wang, Yuefei; Xue, Chuang; Jia, Xiaohan; Peng, Xueyuan

    2015-05-01

    This paper proposes a method of diagnosing faults in reciprocating compressor valves using the acoustic emission signal coupled with the simulated valve motion. The actual working condition of a valve can be obtained by analyzing the acoustic emission signal in the crank angle domain and the valve movement can be predicted by simulating the valve motion. The exact opening and closing locations of a normal valve, provided by the simulated valve motion, can be used as references for the valve fault diagnosis. The typical valve faults are diagnosed to validate the feasibility and accuracy of the proposed method. The experimental results indicate that this method can easily distinguish the normal valve, valve flutter and valve delayed closing conditions. The characteristic locations of the opening and closing of the suction and discharge valves can be clearly identified in the waveform of the acoustic emission signal and the simulated valve motion.

  13. Can acoustic emissions patterns signal imminence of avalanche events in a growing sand pile?

    Vögtli, Melanie; Lehmann, Peter; Breitenstein, Daniel; Or, Dani

    2014-05-01

    Gravity driven mass release is often triggered abruptly with limited precursory cues to indicate imminent failure and thus limiting early warning. Evidence suggests that with increased mechanical loading of a slope, numerous local damage events marking friction between rearranged particles or breakage of roots release strain energy as elastic waves measurable as acoustic emissions. We examined the potential predictability of mass release events from preceding acoustic emission (AE) signatures in a well-known and simple model system of a growing sand pile. We installed four AE-sensors within the core of a 30 cm (diameter) sand pile fed by a constant input of grains and mounted on a balance. Subsequent to the convergence of the slope to dynamic angle of repose, sand avalanche across the bottom boundary were monitored by abrupt mass change and by the amplitudes and number of AE events (recorded at high frequency and averaged to 0.2 s). We detected a systematic change of AE-patterns characterized by systematically decreasing AE standard deviation prior to each mass release. Although the lead time following minimum AE standard deviation was relatively short (10s of seconds), the AE signature already started to change minutes before the mass release. Accordingly the information embedded in AE signal dynamics could potentially offer larger lead times for systems of practical interest.

  14. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform

    Siracusano, Giulio; Lamonaca, Francesco; Tomasello, Riccardo; Garescì, Francesca; Corte, Aurelio La; Carnì, Domenico Luca; Carpentieri, Mario; Grimaldi, Domenico; Finocchio, Giovanni

    2016-06-01

    The acoustic emission (AE) is a powerful and potential nondestructive testing method for structural monitoring in civil engineering. Here, we show how systematic investigation of crack phenomena based on AE data can be significantly improved by the use of advanced signal processing techniques. Such data are a fundamental source of information that can be used as the basis for evaluating the status of the material, thereby paving the way for a new frontier of innovation made by data-enabled analytics. In this article, we propose a framework based on the Hilbert-Huang Transform for the evaluation of material damages that (i) facilitates the systematic employment of both established and promising analysis criteria, and (ii) provides unsupervised tools to achieve an accurate classification of the fracture type, the discrimination between longitudinal (P-) and traversal (S-) waves related to an AE event. The experimental validation shows promising results for a reliable assessment of the health status through the monitoring of civil infrastructures.

  15. Classification of acoustic emission signals using wavelets and Random Forests : Application to localized corrosion

    Morizet, N.; Godin, N.; Tang, J.; Maillet, E.; Fregonese, M.; Normand, B.

    2016-03-01

    This paper aims to propose a novel approach to classify acoustic emission (AE) signals deriving from corrosion experiments, even if embedded into a noisy environment. To validate this new methodology, synthetic data are first used throughout an in-depth analysis, comparing Random Forests (RF) to the k-Nearest Neighbor (k-NN) algorithm. Moreover, a new evaluation tool called the alter-class matrix (ACM) is introduced to simulate different degrees of uncertainty on labeled data for supervised classification. Then, tests on real cases involving noise and crevice corrosion are conducted, by preprocessing the waveforms including wavelet denoising and extracting a rich set of features as input of the RF algorithm. To this end, a software called RF-CAM has been developed. Results show that this approach is very efficient on ground truth data and is also very promising on real data, especially for its reliability, performance and speed, which are serious criteria for the chemical industry.

  16. Frequency Analysis of Acoustic Emission Signal to Monitor Damage Evolution in Masonry Structures

    A crucial aspect in damage evaluation of masonry structures is the analysis of long-term behaviour and for this reason fatigue analysis has a great influence on safety assessment of this structures. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced and unreinforced masonry walls under variable amplitude and static loading has been carried out. During these tests, the AE signals were recorded. The AE signals were analysed using Fast Fourier Transform (FFT) to examine the frequency distribution of the micro and macro cracking. It possible to evaluate the evolution of the wavelength of the AE signal through the two characteristic peak in the AE spectrum signals and the wave speed of the P or S waves. This wavelength evolution can be represent the microcrak and macrocrack evolution in masonry walls. This procedure permits to estimate the fracture dimension characteristic in several loading condition and for several masonry reinforced condition.

  17. Correlation of infrared thermographic patterns and acoustic emission signals with tensile deformation and fracture processes

    Venkataraman, B.; Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2001-04-01

    During tensile deformation, part of the mechanical work done on the specimen is transformed into heat and acoustic activity. The amount of acoustic activity and the thermal emissions depend on the test conditions and the deformation behavior of the specimen during loading. Authors have used thermography and acoustic emission (AE) simultaneously for monitoring tensile deformation in AISI type 316 SS. Tensile testing was carried out at 298 K at three different strain rates. It has been shown that the simultaneous use of these techniques can provide complementary information for characterizing the tensile deformation and fracture processes.

  18. The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures

    The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection

  19. The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures

    Kim, Jong Hyun; Kim, Jae Seong; Lee, Bo Young [Korea Aerospace University, Goyang (Korea, Republic of); Lee, Jung; Kwag, No Gwon [SAEAN, Seoul (Korea, Republic of)

    2009-10-15

    The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection

  20. Implementing wavelet packet transform for valve failure detection using vibration and acoustic emission signals

    The efficiency of reciprocating compressors relies heavily on the health condition of its moving components, most importantly its valves. Previous studies showed good correlation between the dynamic response and the physical condition of the valves. These can be achieved by employing vibration technique which is capable of monitoring the response of the valve, and acoustic emission technique which is capable of detecting the valves' material deformation. However, the relationship/comparison between the two techniques is rarely investigated. In this paper, the two techniques were examined using time-frequency analysis. Wavelet packet transform (WPT) was chosen as the multi-resolution analysis technique over continuous wavelet transform (CWT), and discrete wavelet transform (DWT). This is because WPT could overcome the high computational time and high redundancy problem in CWT and could provide detailed analysis of the high frequency components compared to DWT. The features of both signals can be extracted by evaluating the normalised WPT coefficients for different time window under different valve conditions. By comparing the normalised coefficients over a certain time frame and frequency range, the feature vectors revealing the condition of valves can be constructed. One way analysis of variance was employed on these feature vectors to test the significance of data under different valve conditions. It is believed that AE signals can give a better representation of the valve condition as it can detect both the fluid motion and material deformation of valves as compared to the vibration signals.

  1. Implementing wavelet packet transform for valve failure detection using vibration and acoustic emission signals

    Sim, H. Y.; Ramli, R.; Abdullah, M. A. K.

    2012-05-01

    The efficiency of reciprocating compressors relies heavily on the health condition of its moving components, most importantly its valves. Previous studies showed good correlation between the dynamic response and the physical condition of the valves. These can be achieved by employing vibration technique which is capable of monitoring the response of the valve, and acoustic emission technique which is capable of detecting the valves' material deformation. However, the relationship/comparison between the two techniques is rarely investigated. In this paper, the two techniques were examined using time-frequency analysis. Wavelet packet transform (WPT) was chosen as the multi-resolution analysis technique over continuous wavelet transform (CWT), and discrete wavelet transform (DWT). This is because WPT could overcome the high computational time and high redundancy problem in CWT and could provide detailed analysis of the high frequency components compared to DWT. The features of both signals can be extracted by evaluating the normalised WPT coefficients for different time window under different valve conditions. By comparing the normalised coefficients over a certain time frame and frequency range, the feature vectors revealing the condition of valves can be constructed. One way analysis of variance was employed on these feature vectors to test the significance of data under different valve conditions. It is believed that AE signals can give a better representation of the valve condition as it can detect both the fluid motion and material deformation of valves as compared to the vibration signals.

  2. Classification of acoustic emission signals for drive systems coupling crack detection in semi-real time

    Early detection of mechanical failure in helicopter drive train components is a key safety and economical issue with both military and civil sectors of aviation. Of these components, couplings are particularly critical. The objective of this work is to demonstrate the feasibility of designing and developing a reliable, real time monitoring methodology based on Supervised Pattern Recognition (SPR) for early detection of cracks in couplings used in helicopter and engine drive systems. Within this framework, a portable Acoustic Emission (AE) system was used, equipped with a semi-real time SPR software package. Results from AE tests performed in a gearbox-testing bench at different speeds and different torque values are presented. These results indicate that the energy content of different frequency bands in the AE signals power spectra is strongly correlated with the introduction of EDM notches in the main gear. Further tests indicate that a strong shift in the frequency of the AE signals is observed after spalling occurred in the pinion gear. The variation of displacement and velocity between signal classes are discussed as a potential feature in characterizing crack severity. Finally, a scope of the work for optimizing the methodology in detecting and evaluating coupling cracking in real time will be presented. (author)

  3. Acoustic Signals and Systems

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will...... present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  4. Real-Time Source Classification with an Waveform Parameter Filtering of Acoustic Emission Signals

    Cho, Seung Hyun; Park, Jae Ha; Ahn, Bong Young [Chonnam National University, Gwangju (Korea, Republic of)

    2011-04-15

    The acoustic emission(AE) technique is a well established method to carry out structural health monitoring(SHM) of large structures. However, the real-time monitoring of the crack growth in the roller coaster support structures is not easy since the vehicle operation produces very large noise as well as crack growth. In this investigation, we present the waveform parameter filtering method to classify acoustic sources in real-time. This method filtrates only the AE hits by the target acoustic source as passing hits in a specific parameter band. According to various acoustic sources, the waveform parameters were measured and analyzed to verify the present filtering method. Also, the AE system employing the waveform parameter filter was manufactured and applied to the roller coaster support structure in an actual amusement park

  5. A methodology to condition distorted acoustic emission signals to identify fracture timing from human cadaver spine impact tests.

    Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A

    2014-12-01

    While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments. PMID:25241279

  6. A signal processing approach for enhanced Acoustic Emission data analysis in high activity systems: Application to organic matrix composites

    Kharrat, M.; Ramasso, E.; Placet, V.; Boubakar, M. L.

    2016-03-01

    Structural elements made of Organic Matrix Composites (OMC) under complex loading may suffer from high Acoustic Emission (AE) activity caused by the emergence of different emission sources at high rates with high noise level, which finally engender continuous emissions. The detection of hits in this situation becomes a challenge particularly during fatigue tests. This work suggests an approach based on the Discrete Wavelet Transform (DWT) denoising applied on signal segments. A particular attention is paid to the adjustment of the denoising parameters based on pencil lead breaks and their influence on the quality of the denoised AE signals. The validation of the proposed approach is performed on a ring-shaped Carbon Fiber Reinforced Plastics (CFRP) under in-service-like conditions involving continuous emissions with superimposed damage-related transients. It is demonstrated that errors in hit detection are greatly reduced leading to a better identification of the natural damage scenario based on AE signals.

  7. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    2010-01-01

    Roč. 4, č. 1 (2010), s. 25-36. ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  8. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as

  9. Acoustic Signals and Systems

    present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  10. Sonification of acoustic emission data

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  11. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    Plzeň : University of West Bohemia, 2009 - (Adámek, V.; Zajíček, M.). s. 1-2 ISBN 978-80-7043-824-4. [Výpočtová mechanika 2009. 09.11.2009-11.11.2009, Nečtiny] R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  12. Neural Network Approach to Automated Condition Classification of a Check Valve by Acoustic Emission Signals

    This paper presents new techniques under development for monitoring the health and vibration of the active components in nuclear power plants, The purpose of this study is to develop an automated system for condition classification of a check valve one of the components being used extensively in a safety system of a nuclear power plant. Acoustic emission testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disc movement for valve failure such as wear and leakage due to foreign object interference in a check valve, It is clearly demonstrated that the evaluation of different types of failure types such as disc wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters, It is also shown that the leak size can be determined with an artificial neural network

  13. Source location on full-scale wind turbine blade using acoustic emission energy based signal mapping method

    Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. In this study, the activities of AE signals generated from external artificial sources was evaluated and located by new developed signal mapping source location method and this test is conducted by 750 kW full-scale blade. And a new source location method was applied to assess the damage in the wind turbine blade during step-by-step static load test. In this static loading test, we have used a full scale blade of 100 kW in capacity. The results show that the acoustic emission activities give a good agreement with the stress distribution and damage location in the blade. Finally, the applicability of the new source location method was confirmed by comparison of the result of source location and experimental damage location.

  14. Detection of multiple AE signal by triaxial hodogram analysis; Sanjiku hodogram ho ni yoru taju acoustic emission no kenshutsu

    Nagano, K.; Yamashita, T. [Muroran Institute of Technology, Hokkaido (Japan)

    1997-05-27

    In order to evaluate dynamic behavior of underground cracks, analysis and detection were attempted on multiple acoustic emission (AE) events. The multiple AE is a phenomenon in which multiple AE signals generated by underground cracks developed in an extremely short time interval are superimposed, and observed as one AE event. The multiple AE signal consists of two AE signals, whereas the second P-wave is supposed to have been inputted before the first S-wave is inputted. The first P-wave is inputted first, where linear three-dimensional particle movements are observed, but the movements are made random due to scattering and sensor characteristics. When the second P-wave is inputted, the linear particle movements are observed again, but are superimposed with the existing input signals and become multiple AE, which creates poor S/N ratio. The multiple AE detection determines it a multiple AE event when three conditions are met, i. e. a condition of equivalent time interval of a maximum value in a scalogram analysis, a condition of P-wave vibrating direction, and a condition of the linear particle movement. Seventy AE signals observed in the Kakkonda geothermal field were analyzed and AE signals that satisfy the multiple AE were detected. However, further development is required on an analysis method with high resolution for the time. 4 refs., 4 figs.

  15. Signal Simulation and Experimental Research on Acoustic Emission using LS-DYNA

    Zhang Jianchao

    2015-09-01

    Full Text Available To calculate sound wave velocity, we performed the Hsu-Nielsen lead break experiment using the ANSYS/LS-DYNA finite element software. First, we identified the key problems in the finite element analysis, such as selecting the exciting force, dividing the grid density, and setting the calculation steps. Second, we established the finite element model of the sound wave transmission in a plate under the lead break simulation. Results revealed not only the transmission characteristics of the sound wave but also the simulation and calculation of the transmission velocity of the longitudinal and transverse waves through the time travel curve of the vibration velocity of the sound wave at various nodes. Finally, the Hsu-Nielsen lead break experiment was implemented. The results of the theoretical calculation and simulation analysis were consistent with the experimental results, thus demonstrating that the research method using the ANSYS/LS-DYNA software to simulate sound wave transmissions in acoustic emission experiments is feasible and effective.

  16. Acoustic emission source modeling

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  17. Acoustic vector sensor signal processing

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  18. Evoked acoustic emission

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar to...... the emission evoked by click stimuli. It is concluded that significant information is obtained by the click rather than by the tonal stimuli. The click-evoked emissions were also recorded from both ears in a consecutive series of 100 full-term and otherwise normal babies 2-4 days after birth. The...

  19. World Conference on Acoustic Emission 2013

    Wu, Zhanwen; Zhang, Junjiao

    2015-01-01

    This volume collects the papers from the 2013 World Conference on Acoustic Emission in Shanghai. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  20. Pattern recognition methods for acoustic emission analysis

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  1. Acoustic Emission Stethoscope - Measurements with Acoustic Emission on Wind Turbines

    Krystof Kryniski [AaF Infrastructure, Stockholm (Sweden)

    2013-02-15

    A remote ultrasonic stethoscope, designed on mobile devices to help a maintenance team in diagnosing drive train problems, has been demonstrated. By implementing an acoustic emission technology, the operating conditions of wind turbines have been assessed by trending techniques and ultrasonic acoustic emission converted into audible sound. The new approach has been developed and tested and compared to other monitoring techniques. Acoustic emission has generally been shown to provide a number of advantages over vibration and shock pulse methods because the system is operating in a substantially higher frequency range (100 kHz) and therefore it is more immune to operation of surrounding machines and components. Quick attenuation of ultrasonic propagation waves in the drive-train structure helps to pin-point the origin of any fault as the signals are sharper and more pronounced. Further, with the intensity measurements a direction of the source of ultrasonic energy can be identified. Using a high frequency thus makes the method suitable for measuring local effects and to determine local defects since the disturbing signals from other parts are damped. Recently developed programmable sensors capable of processing signals onboard, producing quality outputs with extremely low noise-to-signal ratio, have been used. It is discussed how the new approach can lower the cost of a wind-turbine monitoring system, while at the same time making it simple and more reliable, see Appendix A. The method has been tested on rotating parts of wind-turbines, including traditionally difficult areas such as low speed main bearings and planetary gearboxes. The method developed in the project was designed to see physical processes such as friction, impacts and metal removal, occurring when machinery degrades, can be detected and notified with the developed notification system. Apart from reporting the status and displaying the changes of the pre-defined parameters or symptoms, the system has

  2. ACOUSTIC EMISSIONS AT THE INSTANT DESTRUCTION OF THE CUTTING TOOL

    Філоненко, С.; Національний авіаційний університет; Косицка, Т.; Національний авіаційний університет; Німченко, Т.; Національний авіаційний університет

    2013-01-01

    The outcomes of simulation of acoustic emission resulting signal are reviewed, which one is reshaped at ma­chine work of cutting material, with allowance of instantaneous composite material destruction. Is shown, that at instantaneous destruction of composite material on an acoustic emission resulting signal there is appearance of let of amplitude. Influencing the area of instantaneous destruction of composite material on value of acoustic emission resulting signal of let of amplitude is dete...

  3. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  4. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    Agarwal, Vivek, E-mail: vivek.agarwal@inl.gov [Department of Human Factors, Controls, and Statistics, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Tawfik, Magdy S., E-mail: magdy.tawfik@inl.gov [Nuclear Science and Technology Directorate, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Smith, James A., E-mail: james.smith@inl.gov [Department of Fuel Performance and Design, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  5. Classification of acoustic emission signal for fatigue crack opening and closure by principal component analysis

    This study was performed to present the analyzing method for fatigue crack opening and closure for three kinds of aluminum alloy by principal component analysis (PCA). Fatigue cycle loading test was conducted on a MTS closed loop hydraulic loading machine in order to acquire AE signals which come from different source mechanism such as crack opening and closure, rubbing, fretting etc.. To extract the significant feature from AE signal, correlation analysis was performed. Over 94% of the variance of AE parameters could be accounted for in the first two principal components. The results of the PCA on AE parameters showed that the first principal component was associated with the size of AE signals and the second principal component was associated with shape of AE signals. An artificial neural network (ANN) analysis was successfully used to identify AE signals to six classes. The ANN classifier based on PCA might be a promising tool to analyze AE signals for fatigue crack opening and closure.

  6. Acoustic emission testing

    Grosse, Christian U

    2008-01-01

    Acoustic Emission (AE) techniques have been studied in civil engineering for a long time. The techniques are recently going to be more and more applied to practical applications and to be standardized in the codes. This is because the increase of aging structures and disastrous damages due to recent earthquakes urgently demand for maintenance and retrofit of civil structures in service for example. It results in the need for the development of advanced and effective inspection techniques. Thus, AE techniques draw a great attention to diagnostic applications and in material testing. The book covers all levels from the description of AE basics for AE beginners (level of a student) to sophisticated AE algorithms and applications to real large-scale structures as well as the observation of the cracking process in laboratory specimen to study fracture processes.

  7. Neural Network Analysis of Acoustic Emission Signals for Drill Wear Monitoring

    The objective of the proposed study is to produce a tool-condition monitoring (TCM) strategy that will lead to a more efficient and economical drilling tool usage. Drill-wear monitoring is an important attribute in the automatic cutting processes as it can help preventing damages of the tools and workpieces and optimizing the tool usage. This study presents the architectures of a multi-layer feed-forward neural network with back-propagation training algorithm for the monitoring of drill wear. The input features to the neural networks were extracted from the AE signals using the wavelet transform analysis. Training and testing were performed under a moderate range of cutting conditions in the dry drilling of steel plates. The results indicated that the extracted input features from AE signals to the supervised neural networks were effective for drill wear monitoring and the output of the neural networks could be utilized for the tool life management planning.

  8. A study of the characteristics of the acoustic emission signals for condition monitoring of check valves in nuclear power plants

    The objective of this study is to demonstrate that a condition-monitoring system based on acoustic emission (AE) detection can provide timely detection of check valve degradation and service aging so that maintenance or replacement can be preformed prior to the loss of safety function. This research is focused on the investigation and understanding of the capability of the acoustic emission technique to provide diagnostic information on check valve failures. AE testing for a check valve under controlled flow loop conditions was performed to detect and valve degradation such as wear and leakage due to foreign object interference. It is clearly demonstrated that the distinction of different types of failure were successful by systematically analyzing the characteristics of various AE parameters

  9. A study of the characteristics of the acoustic emission signals for condition monitoring of check valves in nuclear power plants

    Lee, Joon-Hyun [School of Mechanical Engineering, Pusan National University, San 30 Jangjeon-dong, Kumjeong-gu, Pusan 609-735 (Korea, Republic of)]. E-mail: johlee@pusan.ac.kr; Lee, Min-Rae [Department of Mechanical Design Engineering, Pusan National University (Korea, Republic of); Kim, Jung-Teak [Man-Machine Interface System Team, Korea Atomic Energy Research Institute Yuseong, Daejeon 305-600 (Korea, Republic of); Luk, Vincent [Sandia National Laboratories, Risk and Reliability Analysis Department, Albuquerque, NM (United States); Jung, Yoong-Ho [School of Mechanical Engineering, Pusan National University, San 30 Jangjeon-dong, Kumjeong-gu, Pusan 609-735 (Korea, Republic of)

    2006-07-15

    The objective of this study is to demonstrate that a condition-monitoring system based on acoustic emission (AE) detection can provide timely detection of check valve degradation and service aging so that maintenance or replacement can be preformed prior to the loss of safety function. This research is focused on the investigation and understanding of the capability of the acoustic emission technique to provide diagnostic information on check valve failures. AE testing for a check valve under controlled flow loop conditions was performed to detect and valve degradation such as wear and leakage due to foreign object interference. It is clearly demonstrated that the distinction of different types of failure were successful by systematically analyzing the characteristics of various AE parameters.

  10. Correlation of Acoustic Emission Signals with Kinetics of Fatigue Crack Growth in the Shock Absorber of Aircraft Landing Gear

    Šanjavskis, A; Urbahs, A; Banov, M; Doroško, S; Hodoss, N

    2009-01-01

    In this article it is analyzed possibility of correlation between acoustic emission (AE) parameters and characteristics of fatigue crack development beginning from moment of crack initiation before didruption. A shock absorber cylinder of aircraft landing gear leg was used as object of investigation. In process of testing the fatigue crack was grew during action of periodic loading which imitates full flight cycle including take-off and landing and running at the ground. This testing was fini...

  11. Acoustic emission pickup essentially for waveguide

    Lambda wave length acoustic emission pickup comprising two juxtaposed piezoelectric capsules of equal lambda/2 thickness and with opposite polarization, separated by an electrically insulating foil, the two opposite sides of the capsules being earthed. The electric signal resulting from the acoustic emission is picked up on the two sides facing both sides of the insulating foil and the assembly of the two piezoelectric capsules is mounted on a base insulating it from the structure on which the acoustic emission is being listened to. Application of this pickup to the surveillance of defects in the steel vessels of nuclear reactors, characterized in that it is placed at the end of a metal ultrasonic wave guide the other end of which is welded directly to the vessel

  12. Acoustically-Induced Electrical Signals

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  13. Intelligent location of simultaneously active acoustic emission sources: Part II

    Kosel, T

    2007-01-01

    Part I describes an intelligent acoustic emission locator, while Part II discusses blind source separation, time delay estimation and location of two continuous acoustic emission sources. Acoustic emission (AE) analysis is used for characterization and location of developing defects in materials. AE sources often generate a mixture of various statistically independent signals. A difficult problem of AE analysis is separation and characterization of signal components when the signals from various sources and the mode of mixing are unknown. Recently, blind source separation (BSS) by independent component analysis (ICA) has been used to solve these problems. The purpose of this paper is to demonstrate the applicability of ICA to locate two independent simultaneously active acoustic emission sources on an aluminum band specimen. The method is promising for non-destructive testing of aircraft frame structures by acoustic emission analysis.

  14. Effects of signal attenuation in natural media on interpretation of acoustic emissions in the context early warning systems

    Faillettaz, Jerome; Or, Dani

    2015-04-01

    Gravity driven instabilities in natural media such as rockfalls, landslides, snow avalanches or glacier break-offs represent a significant class of natural hazards. Reliable prediction of imminence of such events combined with timely evacuation remain a challenge because material failure is a non linear process involving inherent heterogeneities affecting the outcome. Nevertheless, such materials break gradually with the weakest parts breaking first, producing precursory "micro-cracks" and associated elastic waves traveling in the material. The monitoring of such acoustic/micro-seismic activity offers valuable information on the progression of damage and imminence of global failure. The main challenge is that acoustic waves are strongly attenuated during their travel through natural media thereby introducing ambiguity in the interpretation of the magnitude (severity) or leading to loss of detection for faraway events. For example, a micro-crack event would be measured as a large event if occurring close to the sensor, and as a small event if far from the sensor ( or may not be detected at all). A more complete picture of acoustic emissions or micro- seismic activity requires deployment of a dense network of sensors that enables localization of sources and thus the determination of initial energy released with each event. However, such networks are prohibitively costly difficult to analyze in real time over scales of interest. Is it possible to find a way to analyze directly in real time the measured micro-seismic activity to infer the slope mechanical status? Following a qualitative description of the observation problem and the processes leading to attenuation, a quantitative analysis is performed using a numerical model based on the classical Fiber Bundle Model. Introducing a basic attenuation law in such simple models enables to directly compare un-attenuated and attenuated acoustic activity (and also avalanche size-frequency distribution) at any location

  15. Acoustic Emission Health Monitoring of Steel Bridges

    Pahlavan, Pooria Lotfollah; Paulissen, Joep; Pijpers, Richard; Hakkesteegt, Henk; Jansen, Rob

    2014-01-01

    Despite extensive developments in the field of Acoustic Emission (AE) for monitoring fatigue cracks in steel structures, the implementation of AE systems for large-scale bridges is hindered by limitations associated with instrumentation costs and signal processing complexities. This paper sheds light on some of the most important challenges in the utilization of AE systems for steel bridge decks. These challenges are mainly related to the multi-modal character of guided waves, and the expensi...

  16. Handbook of Signal Processing in Acoustics

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  17. Evaluation of Adhesive Bonding Quality by Acoustic Emission

    Prediction of fatigue life and monitoring of fracture process for adhesively bonded CFRP composites joint have been investigated by analysis of acoustic emission signals during the fatigue and tension tests. During fatigue test, generated acoustic emission is related to stored elastic strain energy. By results of monitoring of AE event rate, fatigue process could be divided into two regions, and boundaries of two regions, fatigue cycles of the initiation of fast crack growth, were 70-80% of fatigue life even though the fatigue life were highly scattered from specimen to specimen. The result shows the possibility of predicting catastrophic failure by acoustic emission monitoring

  18. Regularities of Acoustic Emission in the Freight Car Solebar Materials

    Bekher, S.

    2016-01-01

    Acoustic emission results which were obtained during tests of the samples, which were made from foundry solebars with the developing fatigue crack, are presented. The dependences of the acoustic emission event count, the force critical value during the stationary acoustic emission process, and the growth rate of the event count from the cycles number are determined. The amplitude signal distributions relating to the crack growth were received. It is offered to use the force critical value and the amplitude threshold in the rejection criteria.

  19. Holographic and acoustic emission evaluation of pressure vessels

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality

  20. Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method

    Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei

    2016-04-01

    Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.

  1. Condition Monitoring and Management from Acoustic Emissions

    Pontoppidan, Niels Henrik Bohl

    2005-01-01

    In the following, I will use technical terms without explanation as it gives the freedom to describe the project in a shorter form for those who already know. The thesis is about condition monitoring of large diesel engines from acoustic emission signals. The experiments have been focused on a...... this work is the analysis of the angular position changes of the engine related events such as fuel injection and valve openings, caused by operational load changes. With inspiration from speech recognition and voice effects the angular timing changes have been inverted with the event alignment...

  2. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing; Analyse der Schallemissionssignale aus Ermuedungsrisswachstum und Korrosionsprozessen. Untersuchung der Moeglichkeiten fuer die kontinuierliche Zustandsueberwachung von Transportbehaeltern mittels Schallemissionspruefung

    Wachsmuth, Janne

    2016-05-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  3. Acoustic emission leak monitoring system LMS-96

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  4. Acoustic emission in uranium under thermal stimulus

    Acoustic emission (AE) monitoring was carried out during heating and cooling of uranium through alpha-to-beta phase transformation temperature. Intense AE activity was observed during heating as well as cooling of uranium in the alpha phase. During alpha ↔ beta phase transformation also, distinct AE activity was observed. The mechanisms of acoustic emission from uranium during thermal stimulus are explained. (author)

  5. ACOUSTIC EMISSION DURING STRETCHING OF POLYMERS

    QIAN Renyuan; WANG Tiangui; SHEN Jingshu

    1983-01-01

    Acoustic emission has been studied for a wide range of polymers including amorphous glasses,semi-crystalline polymers, copolymers, polymer blends and a crosslinked rubber during the course of uni-axial stretching at room temperature. For non-crystalline polymers acoustic emission occurred in rather small number of events accompanied by crazing and micro-crack formation. Strong acoustic activity appeared during yielding and necking of crystalline polymers. Rather small number or none of acoustic bursts occurred during the initial stage of neck drawing but numerous strong bursts appeared when drawing proceeded approaching specimen break. Specimens of the same polymer but of different fabrication history may be reflected in their acoustic emission behavior. Acoustic emission during stretching crosslinked polybutadiene rubber was very weak but observable when the force-elongation curve started to deviate from the linear region. No Kaiser effect was observed for the rubber. Very strong and numerous acoustic emission was observed during stretching specimens of polymer blends.High impact resistant polymer modifications showed no sharp increase of acoustic activity before specimen break. So long as the polymer and conditions of specimen fabrication are the same quite reproducible acoustic emission behavior could be observed.

  6. In situ calibration of acoustic emission sensors

    Kober, Jan; Převorovský, Zdeněk

    Brno: University of Technology, Brno, 2015 - (Mazal, P.), s. 93-97 ISBN 978-80-214-5262-6. [International Workshop NDT in Progress /8./. Praha (CZ), 12.10.2015-14.10.2015] Institutional support: RVO:61388998 Keywords : standardisation * Acoustic Emission (AE) * time reversal * calibration * requency response Subject RIV: BI - Acoustics

  7. Acoustic emission strand burning technique for motor burning rate prediction

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  8. Time Reversal Processing in Acoustic Emission Monitoring

    Převorovský, Zdeněk; Krofta, Josef; Farová, Zuzana; Chlada, Milan; Dos Santos, S.

    Singapore, 2013. s. 65-65. [International Congress on ULTRASONICS. 02.05.2013-05.05.2013, Singapore] Institutional support: RVO:61388998 Keywords : time reveresal * acoustic emission * deconvolution * source identification Subject RIV: JS - Reliability ; Quality Management, Testing

  9. Studies on the primary statistics and signal analysis of the acoustic emission during the propagation of cracks in fracture mechanical samples

    As is demonstrated by the experimental results, the method of acoustic emission testing is well suited to obtain information on the statistical-microscopic material behaviour of fracture mechanically loaded materials before and during the propagation of cracks. So this method closes the gap between the on-line determination of macroscopic parameters (stress, volume enlargement, etc) and the microscopic observations which can only be performed after the material test. Based on different models, the fundamental processes of acoustic emission are presented to determine their influence on the experimental measurements. In addition models are presented for stable and unstable crack propagation. The most essential result of this work is a demonstration of a hitherto unknown interrelation between amplitude and time statistics. (orig./RW)

  10. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (pcomposite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process. PMID:25904176

  11. Acoustic Emission Monitoring of Cementitious Wasteforms

    A summary is presented of the potential of non-destructive acoustic emission (AE) method to be applied for structures immobilising nuclear wastes. The use and limitations of the method are discussed with given examples of experimental configurations and results obtained from AE monitoring and data analysis of two different processes addressing particular issues related to the nuclear waste immobilisation. These are (a) corrosion of aluminium, classified as intermediate level waste (ILW) in the UK, encapsulated in cementitious structures and (b) partial melting and solidification during cooling of granite at a pressure of 0.15 GPa which simulates the conditions in a deep borehole disposal of canisters of vitrified high level waste (HLW). Methodology for analysis of the collected data and characterisation of the potential AE sources is performed at different steps including simple signals count and more complex signal parameter-based approach and advanced signal processing. The AE method has been shown as a potential tool for monitoring and inspection of structures immobilising nuclear wastes in relation to the time progress of different interactions of the waste with the encapsulating matrix or the wasteform with the hosting environment for permanent disposal. (author)

  12. Signal Classification for Acoustic Neutrino Detection

    Neff, M; Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; Richardt, C

    2011-01-01

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of one percent is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  13. Research on the Acoustic Emission Signal Feature for the Inner Leakage of Valves%阀门内漏声发射检测信号特征研究

    刘治超; 张悠江

    2015-01-01

    阀门在天然气管道运输中具有重要的作用,阀门内漏会给天然气管道运输造成安全隐患。采集阀门内漏的声发射信号,采用改进的小波阈值去噪方法对采集的信号进行降噪处理,提高信号的信噪比,进而提取降噪后信号的频域峰值和峰值频率,探究阀门内漏的信号特征,为阀门内漏检测提供参考。%Valves have an important role in the transport of natural gas,and the safety operation of gas pipelines is threatened by valve inner leakage.The acoustic emission signals are collected,and the improved threshold de-noising algorithm is applied to signal analysis,in order to improve the signal-to-noise-ratio,and decrease the root-mean-square-error (RMSE)value.Then,the frequency domain peak and peak frequency of the de-noising signal are extracted to research the acoustic e-mission signal feature for the inner leakage of valve and lay the foundation for the valve leak de-tection.

  14. Crack detection in lap-joints using acoustic emission

    Experiments have been performed to assess the feasibility of crack growth detection in an aircraft lap-joint using acoustic emission (AE). Fatigue tests were conducted in both simple geometry specimens and lap-joint specimens. A high fidelity, wide band transient recording system was used to capture the acoustic emission due to defect growth. The simple specimens were used to determine crack growth signal characteristics, while the complex lap-joint provided a more realistic specimen. Representative waveforms from these two specimens are presented, along with a discussion of wave propagnation for the particular media. A self-organizing map was investigated as a means of automatically identify crack signals. Results and suggestions for future work are presented

  15. System for detecting acoustic emissions in multianvil experiments: Application to deep seismicity in the Earth

    One of the major goals in the experimental study of deep earthquakes is to identify slip instabilities at high pressure and high temperature (HPHT) that might be responsible for the occurrence of earthquakes. Detecting acoustic emissions from a specimen during faulting provides unique constraints on the instability process. There are few experimental studies reporting acoustic emissions under HPHT conditions, due to technical challenges. And those studies have used only one or at most two acoustic sensors during the experiments. Such techniques preclude the accurate location of the acoustic emission source region and thus the ability to distinguish real signal from noise that may be coming from outside the sample. We have developed a system for detecting acoustic emissions at HPHT. Here we present a four-channel acoustic emission detecting system working in the HPHT octahedral multianvil apparatus. Each channel has high resolution (12 bits) and a sampling rate of 30 MHz. In experiments at the pressures up to 6 GPa and temperatures up to 770 deg. C, we have observed acoustic emissions under various conditions. Analyzing these signals, we are able to show that this system permits us to distinguish between signal and noise, locate the source of the acoustic emission, and obtain reliable data on the radiation pattern. This system has greatly improved our ability to study faulting instabilities under high pressure and high temperature

  16. Testing of welded clad pipelines using acoustic emission method

    Recording of signals of acoustic emission (AE) on structure loading enables not only to determine the location of defects, but also to evaluate conditions, which occur in materials in defect neighbourhood, that is to approach to evaluation of a dauger degree of one or another defect. Results of AE recording and analysis on loading of pipelines sections with welded joints on 22 K steel were considered. The behaviour of preliminarily grown fatigue cracks and natural defects of welding origin was compared

  17. Ice breakup: Observations of the acoustic signal

    Waddell, S. R.; Farmer, D. M.

    1988-03-01

    We describe observations of ambient sound beneath landfast ice in the Canadian Arctic Archipelago and interpret its evolution over the period June-August in terms of ice cracking and disintegration. The data were recorded on six bands between 50 and 14,500 Hz for the period April 2 to August 7, 1986, in Dolphin and Union Strait. The frequency dependence of the attenuation of sound in water allows separation of distant and local noise sources. In conjunction with satellite imagery and meteorological data, it is shown that strong signals in the acoustic time series are associated with major breakup events. The acoustic signal can provide predictive information about ice conditions and the approach of breakup.

  18. Detection and Classification of Whale Acoustic Signals

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  19. Acoustic Emission in Brittle Solids

    Swindlehurst, W. E.; Wilshaw, T. R.

    1976-01-01

    A signal/source correlation study of the stress waves emitted during unstable microscopic Hertzian fracture in glass is described. A theoretical analysis of the variation in excess strain energy with applied load is made and the results compared with experimental data covering a wide range of cra...

  20. Multilevel Analysis of Continuous Acoustic Emission Records

    Chlada, Milan; Převorovský, Zdeněk

    Praha : ČVUT Praha Fakulta jaderná a fyzikálně inženýrská, 2013 - (Hobza, T.), s. 62-71 ISBN 978-80-01-05383-6. [SPMS 2013. Nebřich (CZ), 24.06.2013-29.06.2013] R&D Projects: GA MPO FR-TI3/755 Institutional support: RVO:61388998 Keywords : continuous acoustic emission * wavelet analysis * countogram * helicopter gearbox diagnostics Subject RIV: JR - Other Machinery

  1. Analysis of acoustic emission data for bearings subject to unbalance

    Rapinder Sawhney

    2013-01-01

    Full Text Available Acoustic Emission (AE is an effective nondestructive method for investigating the behavior of materials under stress. In recent decades, AE applications in structural health monitoring have been extended to other areas such as rotating machineries and cutting tools. This research investigates the application of acoustic emission data for unbalance analysis and detection in rotary systems. The AE parameter of interest in this study is a discrete variable that covers the significance of count, duration and amplitude of AE signals. A statistical model based on Zero-Inflated Poisson (ZIP regression is proposed to handle over-dispersion and excess zeros of the counting data. The ZIP model indicates that faulty bearings can generate more transient wave in the AE waveform. Control charts can easily detect the faulty bearing using the parameters of the ZIP model. Categorical data analysis based on generalized linear models (GLM is also presented. The results demonstrate the significance of the couple unbalance.

  2. Employing Acoustic Emission for Monitoring Oil Film Regimes

    David Mba

    2013-07-01

    Full Text Available The major purpose of a gear lubricant is to provide adequate oil film thickness to reduce and prevent gear tooth surface failures. Real time monitoring for gear failures is important in order to predict and prevent unexpected failures which would have a negative impact on the efficiency, performance and safety of the gearbox. This paper presents experimental results on the influence of specific oil film thickness on Acoustic Emission (AE activity for operational helical gears. Variation in film thickness during operations was achieved by spraying liquid nitrogen onto the rotating gear wheel. The experimental results demonstrated a clear relationship between the root mean square (r.m.s value of the AE signal and the specific film thickness. The findings demonstrate the potential of Acoustic Emission technology to quantify lubrication regimes on operational gears.

  3. Design of an Acoustic Probe to Measure Otoacoustic Emissions Below 0.5 kHz

    Christensen, Anders Tornvig; Ordoñez, Rodrigo; Hammershøi, Dorte

    2015-01-01

    Our ability to hear is reflected in low-level acoustic signals emitted from the ear. These otoacoustic emissions (OAEs) can be measured with an acoustic probe assembly coupling one or more small loudspeakers and microphones into the sealed ear canal. The electroacoustic instrumentation of...

  4. Acoustic signals of baby black caimans.

    Vergne, Amélie L; Aubin, Thierry; Taylor, Peter; Mathevon, Nicolas

    2011-12-01

    In spite of the importance of crocodilian vocalizations for the understanding of the evolution of sound communication in Archosauria and due to the small number of experimental investigations, information concerning the vocal world of crocodilians is limited. By studying black caimans Melanosuchus niger in their natural habitat, here we supply the experimental evidence that juvenile crocodilians can use a graded sound system in order to elicit adapted behavioral responses from their mother and siblings. By analyzing the acoustic structure of calls emitted in two different situations ('undisturbed context', during which spontaneous calls of juvenile caimans were recorded without perturbing the group, and a simulated 'predator attack', during which calls were recorded while shaking juveniles) and by testing their biological relevance through playback experiments, we reveal the existence of two functionally different types of juvenile calls that produce a different response from the mother and other siblings. Young black caimans can thus modulate the structure of their vocalizations along an acoustic continuum as a function of the emission context. Playback experiments show that both mother and juveniles discriminate between these 'distress' and 'contact' calls. Acoustic communication is thus an important component mediating relationships within family groups in caimans as it is in birds, their archosaurian relatives. Although probably limited, the vocal repertoire of young crocodilians is capable of transmitting the information necessary for allowing siblings and mother to modulate their behavior. PMID:21978842

  5. Wavelet-based acoustic emission detection method with adaptive thresholding

    Menon, Sunil; Schoess, Jeffrey N.; Hamza, Rida; Busch, Darryl

    2000-06-01

    Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. One such technology, the use of acoustic emission for the early detection of helicopter rotor head dynamic component faults, has been investigated by Honeywell Technology Center for its rotor acoustic monitoring system (RAMS). This ambitious, 38-month, proof-of-concept effort, which was a part of the Naval Surface Warfare Center Air Vehicle Diagnostics System program, culminated in a successful three-week flight test of the RAMS system at Patuxent River Flight Test Center in September 1997. The flight test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. This paper presents the results of stress wave data analysis of the flight-test dataset using wavelet-based techniques to assess background operational noise vs. machinery failure detection results.

  6. Acoustic Emission Analysis Applet (AEAA) Software

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  7. Application of Mellin Transform in Wideband Underwater Acoustic Signal Processing

    2007-01-01

    According to the features of the wideband underwater acoustic signals, an algorithm for the wideband ambiguity function is put forward based on Mellin transform. The wideband acoustic signal processing using the fast Mellin transform is also explored. The theoretical analysis and simulation results show that the algorithm has not only high computation efficiency but also good concentration in wideband ambiguity domain. It suits for the wideband underwater acoustic signal processing.

  8. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  9. Low-Frequency Acoustic Signals Propagation in Buried Pipelines

    Ovchinnikov, A. L.; Lapshin, B. M.

    2016-01-01

    The article deals with the issues concerning acoustic signals propagation in the large-diameter oil pipelines caused by mechanical action on the pipe body. Various mechanisms of signals attenuation are discussed. It is shown that the calculation of the attenuation caused only by internal energy loss, i.e, the presence of viscosity, thermal conductivity and liquid pipeline wall friction lead to low results. The results of experimental studies, carried out using the existing pipeline with a diameter of 1200 mm. are shown. It is experimentally proved that the main mechanism of signal attenuation is the energy emission into the environment. The numerical values of attenuation coefficients that are 0,14- 0.18 dB/m for the pipeline of 1200 mm in diameter, in the frequency range from 50 Hz to 500 Hz, are determined.

  10. Acoustic emission during the compaction of brittle UO2 particles

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author)

  11. Spatial acoustic signal processing for immersive communication

    Atkins, Joshua

    Computing is rapidly becoming ubiquitous as users expect devices that can augment and interact naturally with the world around them. In these systems it is necessary to have an acoustic front-end that is able to capture and reproduce natural human communication. Whether the end point is a speech recognizer or another human listener, the reduction of noise, reverberation, and acoustic echoes are all necessary and complex challenges. The focus of this dissertation is to provide a general method for approaching these problems using spherical microphone and loudspeaker arrays.. In this work, a theory of capturing and reproducing three-dimensional acoustic fields is introduced from a signal processing perspective. In particular, the decomposition of the spatial part of the acoustic field into an orthogonal basis of spherical harmonics provides not only a general framework for analysis, but also many processing advantages. The spatial sampling error limits the upper frequency range with which a sound field can be accurately captured or reproduced. In broadband arrays, the cost and complexity of using multiple transducers is an issue. This work provides a flexible optimization method for determining the location of array elements to minimize the spatial aliasing error. The low frequency array processing ability is also limited by the SNR, mismatch, and placement error of transducers. To address this, a robust processing method is introduced and used to design a reproduction system for rendering over arbitrary loudspeaker arrays or binaurally over headphones. In addition to the beamforming problem, the multichannel acoustic echo cancellation (MCAEC) issue is also addressed. A MCAEC must adaptively estimate and track the constantly changing loudspeaker-room-microphone response to remove the sound field presented over the loudspeakers from that captured by the microphones. In the multichannel case, the system is overdetermined and many adaptive schemes fail to converge to

  12. Acoustic emission classification for failure prediction due to mechanical fatigue

    Emamian, Vahid; Kaveh, Mostafa; Tewfik, Ahmed H.

    2000-06-01

    Acoustic Emission signals (AE), generated by the formation and growth of micro-cracks in metal components, have the potential for use in mechanical fault detection in monitoring complex- shaped components in machinery including helicopters and aircraft. A major challenge for an AE-based fault detection algorithm is to distinguish crack-related AE signals from other interfering transient signals, such as fretting-related AE signals and electromagnetic transients. Although under a controlled laboratory environment we have fewer interference sources, there are other undesired sources which have to be considered. In this paper, we present some methods, which make their decision based on the features extracted from time-delay and joint time-frequency components by means of a Self- Organizing Map (SOM) neural network using experimental data collected in a laboratory by colleagues at the Georgia Institute of Technology.

  13. Smart acoustic emission system for wireless monitoring of concrete structures

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical

  14. Determining peak stress history using acoustic emissions

    As part of the test program at the Nevada Test Site, there is a need for determining the peak stress induced by explosions in tuff. Standard techniques make use of various gages grouted into the tuff prior to the test. These are difficulties in interpreting the output of these gages and there is always the chance that the gage will not survive long enough to allow a stress determination to be made. As an alternative, we have been testing a passive technique for determining peak stress as a function of distance from a test. Using core samples retrieved from the vicinity of an explosion, we have tested for the existence of a threshold stress for the onset of acoustic emissions, the Kaiser effect (Kaiser 1950). From laboratory results it is known that for many rock types, the previously applied peak stress can be detected by restressing a sample while monitoring acoustic emissions. An abrupt onset for acoustic emission activity typically occurs at a stress state close to the previous peak. The point of this work was to determine if the Kaiser effect occurred in tuff and, if so, whether it could be used to determine the peak stresses induced by an explosion. On the basis of four tests it is only possible to draw tentative conclusions. There does seem to be enough evidence of the existence and stress dependence of the Kaiser effect in the tuff to allow hope for the use of this technique in studying past stress states. In future tests the saturation state of the samples should be carefully controlled. Tests should be done on variously oriented subcores from a main core to determine the other components of the in situ stress tensor. If the components are indeed decoupled, as these few tests indicate, then a complete stress determination can be made this way. It would be interesting to use the same technique to try and determine in situ stresses in tuff. 7 refs., 6 figs

  15. Acoustic emission: The first half century

    Drouillard, T.F.

    1994-08-01

    The technology of acoustic emission (AE) is approaching the half century mark, having had its beginning in 1950 with the work of Joseph Kaiser. During the 1950s and 1960s researchers delved into the fundamentals of acoustic emission, developed instrumentation specifically for AE, and characterized the AE behavior of many materials. AE was starting to be recognized for its unique capabilities as an NDT method for monitoring dynamic processes. In the decade of the 1970s research activities became more coordinated and directed with the formation of the working groups, and its use as an NDT method continued to increase for industrial applications. In the 1980s the computer became a basic component for both instrumentation and data analysis, and today it has sparked a resurgence of opportunities for research and development. Today we are seeing a transition to waveform-based AE analysis and a shift in AE activities with more emphasis on applications than on research. From the beginning, we have been fortunate to have had so many dedicated savants with different fields of expertise contribute in a collective way to bring AE to a mature, fully developed technology and leave a legacy of knowledge recorded in its literature. AE literature has been a key indicator of the amount of activity, the proportion of research to application, the emphasis on what was of current interest, and the direction AE has taken. The following is a brief survey of the history of acoustic emission with emphasis on development of the infrastructure over the past half century.

  16. Acoustic emission: The first half century

    Drouillard, Thomas F.

    The technology of acoustic emission (AE) is approaching the half century mark, having had its beginning in 1950 with the work of Joseph Kaiser. During the 1950s and 1960s researchers delved into the fundamentals of acoustic emission, developed instrumentation specifically for AE, and characterized the AE behavior of many materials. AE was starting to be recognized for its unique capabilities as an NDT method for monitoring dynamic processes. In the decade of the 1970s research activities became more coordinated and directed with the formation of the working groups, and its use as an NDT method continued to increase for industrial applications. In the 1980s the computer became a basic component for both instrumentation and data analysis, and today it has sparked a resurgence of opportunities for research and development. Today we are seeing a transition to waveform-based AE analysis and a shift in AE activities with more emphasis on applications than on research. From the beginning, we have been fortunate to have had so many dedicated savants with different fields of expertise contribute in a collective way to bring AE to a mature, fully developed technology and leave a legacy of knowledge recorded in its literature. AE literature has been a key indicator of the amount of activity, the proportion of research to application, the emphasis on what was of current interest, and the direction AE has taken. The following is a brief survey of the history of acoustic emission with emphasis on development of the infrastructure over the past half century.

  17. Acoustic Emissions (AE) Electrical Systems' Health Monitoring Project

    National Aeronautics and Space Administration — Acoustic Emissions (AE) are associated with physical events, such as thermal activity, dielectric breakdown, discharge inception, as well as crack nucleation and...

  18. Corrosion Acoustic Emission Signal Recognition Based on Relevance Vector Machine Model%基于相关向量机模型的腐蚀声发射信号识别

    马佳良; 于洋

    2014-01-01

    The classification performance of the RVM model and its associated kernel function parameter are closely related. This paper applies artificial bee colony algorithm (ABC), particle swarm optimization (PSO) and genetic algorithm (GA) to find the optimal parameter of the RVM model, and the performance of these methods was compared. Based on the binary tree structure and one-against-all method, the binary-classification RVM model is extended to establish a four-classification model. The tank bottom corrosion acoustic emission signals were recognized using the established model. The characteristics parameters of the acoustic emission signal and the frequency-domain parameters were selected as the input parameters of the model, and a good recognition was obtained.%相关向量机(RVM)模型的分类性能与其核函数参数的选择有密切关系。本文分别利用人工蜂群算法(ABC)、粒子群算法(PSO)和遗传算法(GA)寻找相关向量机模型的最优参数,对几种方法的寻优性能进行了对比。采用基于二叉树结构的一对多扩展方法,对二分类相关向量机模型进行了扩展,建立了四分类模型。基于该分类模型对罐底腐蚀声发射信号进行识别,将声发射特征参数和频域参数作为模型的输入参数,获得了较好的识别结果。

  19. Monitoring of Robot Assisted Polishing through parameters of acoustic emission

    Lazarev, Ruslan; Top, Søren; Bilberg, Arne

    duration of each process stage and predict the end of process in a precise and unmanned way. This paper presents and analyses the utilization of acoustic emission for generation of control signals in the stone polishing process for achieving these control objectives in an industrial set-up prototype....... determination of the point in time to change a polishing media or stop the process is needed for computer controlled functional surface generation. During the last years, several research works have been done in order to build grinding/polishing monitoring systems to determine process characteristics, the...

  20. Acoustic signal detection of manatee calls

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-04-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  1. Acoustic emission monitoring of composite containment systems

    This paper considers two different types of composite containment system, and two different types of acoustic emission (AE) monitoring approach. The first system is a composite reinforced pressure vessel (CRPV) which is monitored both during construction and in-service using a broadband modal acoustic emission (MAE) technique. The second system is a membrane cargo containment system which is monitored using both a global as well as a local AE technique. For the CRPV, the damage assessment is concerned mainly with the integrity of the composite outer layer at the construction stage, and possible fatigue cracking of the inner steel liner at the in-service stage. For the membrane tank, the damage assessment is concerned with locating and quantifying any abnormal porosities that might develop in-service. By comparing and contrasting the different types of structural system and different monitoring approaches inferences are drawn as to what role AE monitoring could take in the damage assessment of other types of composite containment system. (Detailed technical data have not been included, due to client confidentiality constraints.)

  2. Acoustic emission assessment of interface cracking in thermal barrier coatings

    Yang, Li; Zhong, Zhi-Chun; Zhou, Yi-Chun; Zhu, Wang; Zhang, Zhi-Biao; Cai, Can-Ying; Lu, Chun-Sheng

    2016-04-01

    In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.

  3. Acoustic emission during hydrogen absorption and desorption in palladium

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  4. Localization of acoustic emission sources in geometrically sparse structures

    Převorovský, Zdeněk; Chlada, Milan

    Berlín : Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V, 2014. ISBN 978-3-940283-63-4. [Conference of the European Working Group on Acoustic Emission : EWGAE 2014 /31./. Drážďany (DE), 03.09.2014-05.09.2014] Institutional support: RVO:61388998 Keywords : civil structures * structures health monitoring ( SHM) * acoustic emission * source location Subject RIV: BI - Acoustics

  5. Acoustic emission monitoring of HFIR vessel during hydrostatic testing

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results

  6. Characteristics Analysis of HFM Signal over Underwater Acoustic Channels

    YUAN Fei

    2013-01-01

    Full Text Available For pulse compression characteristics and not easily affected by noise, linear frequency modulation signal are widely used in underwater acoustic communication. This paper analyzes the characteristics of hyperbolic frequency modulation signal over underwater acoustic channels. Compared with linear frequency modulation signal, hyperbolic frequency modulation has the same performance of strong anti-noise and anti-multipath, what’s more, hyperbolic frequency modulation signal is better resist the influence of doppler. And discussed the influence of doppler on signal, simulation results show that the hyperbolic frequency modulation signal detection rate is better than linear frequency modulation signal in the doppler environment.

  7. Acoustic Emission from Breaking a Bamboo Chopstick

    Tsai, Sun-Ting; Wang, Li-Min; Huang, Panpan; Yang, Zhengning; Chang, Chin-De; Hong, Tzay-Ming

    2016-01-01

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg and Richter, Omori, and Båth. By the use of a force-sensing detector, we establish a positive correlation between the statistics of sound intensity and the magnitude of a tremor. We also manage to derive these laws analytically without invoking the concept of a phase transition, self-organized criticality, or fractal. Our model is deterministic and relies on the existence of a structured cross section, either fibrous or layered. This success at explaining the power-law behavior supports the proposal that geometry is sometimes more important than mechanics.

  8. Characteristic evaluation of acoustic emission sensors

    Jung, Hyun Kyu; Joo, Y. S.; Lee, N. H

    2000-12-01

    This report introduces the various kinds of Acoustic Emission(AE) sensors as well as the basic principle of AE sensors in order to select AE sensor suitably. The described sensors include : high sensitivity sensor, broadband sensor, underwater sensor, miniature sensor, directional sensor, integral pre-amplifier sensor. Sensor has two critical aspects of reliability and repeatability. For the high reliability, sensor has to be calibrated in accordance with ASTM standard E 1106 which explains to measure the characteristics of AE sensor accurately. For investigating the degradation of AE sensor under the severe environment for example the high radiation condition, It is important to perform the repeatability test which is described in detail in according to the ASTM standard E 976. Two kinds of AE sensor applications are also summarized.

  9. Characteristic evaluation of acoustic emission sensors

    This report introduces the various kinds of Acoustic Emission(AE) sensors as well as the basic principle of AE sensors in order to select AE sensor suitably. The described sensors include : high sensitivity sensor, broadband sensor, underwater sensor, miniature sensor, directional sensor, integral pre-amplifier sensor. Sensor has two critical aspects of reliability and repeatability. For the high reliability, sensor has to be calibrated in accordance with ASTM standard E 1106 which explains to measure the characteristics of AE sensor accurately. For investigating the degradation of AE sensor under the severe environment for example the high radiation condition, It is important to perform the repeatability test which is described in detail in according to the ASTM standard E 976. Two kinds of AE sensor applications are also summarized

  10. Acoustic emission from irradiated nuclear graphite

    Burchell, T. D.; Rose, A. P. G.; McEnaney, B.

    1986-08-01

    Measurements of acoustic emission (AE) from a range of four unirradiated nuclear graphites during three-point bend tests are reported. Results are in agreement with the trends found in earlier work using different AE apparatus. The technique is applied to the testing of small beam specimens cut from irradiated Civil Advanced Gas-cooled Reactor (CAGR) graphite fuel sleeves after discharge from the reactor. The AE information is explained by considering separately the known changes in graphite microstructure that occur in the reactor due to radiolytic oxidation and fast neutron irradiation. Coarsening of the material due to radiolytic oxidation increases the total number of AE events and the proportion of events of low amplitude. Fast neutron irradiation increases the fracture stress and makes the stress-strain curve more linear. As a consequence, the number of AE events is reduced along with the proportion of events of low amplitude.

  11. Acoustic emissions correlated with hydration of Saguaro Cactus

    Wardell, L. J.; Rowe, C. A.

    2013-12-01

    For some years it has been demonstrated that hardwood trees produce acoustic emissions during periods of drought, which arise from cavitation in the xylem as water is withdrawn. These emissions not only provide insights into the fluid transport behavior within these trees, but also the degree to which cavitation can proceed before inevitable tree mortality. Such studies can have significant impact on our understanding of forest die-off in the face of climate change. Plant mortality is not limited to woody trees, however, and it is not only the coniferous and deciduous forests whose response to climate and rainfall changes are important. In the desert Southwest we observe changes to survival rates of numerous species of flora. One of the most conspicuous of these plants is the iconic Saguaro Cactus (Carnegiea gigantean). These behemoths of the Sonoran Desert are very sensitive to small perturbations in their environment. Specifically, during the summer monsoon season when the cacti become well-hydrated, they can absorb hundreds of gallons of water within a very short time frame. We have obtained a juvenile saguaro on which we are conducting experiments to monitor acoustic emissions during hydration and dessication cycles. We will report on our observations obtained using piezoelectric ceramic accelerometers whose signals are digitized up to 44 Khz and recorded during hydration.

  12. Acoustic Emission Behavior during Damage Development of Reinforced Concrete Beam

    As a preliminary study for applying the acoustic emission(AE) technique to assess the integrity of concrete structures, AE behavior of a reinforced concrete beam under cyclic loads of various loading stage was examined by laboratory experiments. By analyzing failure behavior of a reinforced concrete beam in the AE point of view, it was presumed that major sources of AE signals in concrete were micro-crack initiation, development of flexural and diagonal tension crack, and the friction between track surfaces. In addition, cyclic loading tests and failure test were carried out to obtain the AE responses under various loading conditions. The analysis of the signal patterns was aimed at discussing the differences between the normal signal and the abnormal signal, which represent the safe condition and the condition of developing damage, respectively. In this study, especially, the behavior of friction signals from crack surfaces, which were usually treated as noises, was considered as a typical pattern of the normal signal. As a result, significant differences between the normal and abnormal signal patterns were observed in the such parameters as the AE hit rate, magnitude of the primary or secondary AE peak, and AE response according to the sensor location. Based on the preliminary results, this new approach for practical AE application may provide a promising method for estimating the level of damage and distress in concrete structures

  13. Neural Fuzzy Techniques In Vehicle Acoustic Signal Classification

    Sampan, Somkiat

    1998-01-01

    Vehicle acoustic signals have long been considered as unwanted traffic noise. In this research acoustic signals generated by each vehicle will be used to detect its presence and classify its type. Circular arrays of microphones were designed and built to detect desired signals and suppress unwanted ones. Circular arrays with multiple rings have an interesting and important property that is constant sidelobe levels. A modified genetic algorithm that can work directly with real numbers is u...

  14. Signal processing and field measurements for underwater acoustic communications

    Zhang, Guosong

    2013-01-01

    The present dissertation presents new developments in the signal processing of receiver structures for high-rate underwater acoustic communications, and describes the field measurements that test the structures in real oceanic environments. The signalling methods of spectrally efficient spread spectrum are also investigated to achieve long range underwater acoustic communications. The digital signal processing is of significance in recovering distorted information, and compensating waveform d...

  15. An introduction to acoustic emission technology for in-process inspection of welds

    Weld quality monitoring, as it stands today, is primarily done by X-ray radiography and ultrasonic testing which is applied after welding is complete. Acoustic Emission Technique (AET) also presents a possible substitute for weld quality monitoring which can be used during welding. Acoustic signals are generated during welding and the sound waves of weld defects are picked up by using AE sensors. With the introduction of sophisticated instrumentation in AET, it is possible to carry out the test even in noisy shop floor environments. Large number of reports on the subject of acoustic emission in recent years is a clear indication that it is gaining importance in welding industry. The present day status of the acoustic emission technology as an on-line weld quality monitoring technique has been reviewed. This report discusses the technique and system along with the acoustic emission parameters important for weld quality analysis. This also deals with the application of this technique in different welding processes like TIG, resistance, electro slag and submerged arc. It has been reported that monitoring of emission during welding can detect crack formation, crack growth and lack of fusion precisely. Static defects like porosity and inclusion do not generate very strong acoustic signals and are therefore difficult to intercept, but, however, lately they have detected successfully. (author)

  16. Fundamental developments in acoustic emission measurements: The NBS program

    Recent NBS progress in the development of standards and improved measurement methods for quantitative acoustic emission measurements are reviewed. Results on generalizing the NBS AE transducer calibration service and on its relation to other methods are presented. Recent improvements in the design of a new piezoelectric AE transducer are presented. The new transducer measures normal surface displacement nearly as faithfully as the NBS standard capacitive transducer but with much greater sensitivity. It holds promise for use as a secondary calibration device and for application relying on causal signal processing. AE system calibration is also briefly discussed. Recent results on the determination of AE sources from remote measurement are mentioned. An indentation method for generating AE has been used to produce repeatable signals in temper and hydrogen embrittled A533B steel. A multichannel AE system for characterizing AE events in A533B steel and multichannel operation has been tested with a Nd-YAG laser thermoelastic source

  17. Signal recovery technique based on a physical method of underwater acoustics

    Guo, Xinyi; Wu, Guoqing; Ma, Li

    2010-09-01

    In the underwater sound channel we often use an array to receive signals from distant sources. The received signals are often mixed with environmental interference. In the complex acoustic environment, received signals are distorted greatly and elongated in time. In many practical applications such as sound communications, sound remote sensing and active sonar signals, we hope to obtain the original signal's waveform. In general theory, the received signals are the convolution of emission signals and Green's function of environment. In unknown Green's function of environment, simply relying on the array to record the information to determine the sound source signal wave propagation features and the environment is not enough. However, in certain circumstances, based on a physics method of underwater acoustics, the spread of recovery technology is successful.

  18. Acoustic emission measurements of PWR weld material with inserted defects using advanced instrumentation

    Twenty-one steel tensile specimens containing realistic welding defects have been monitored for acoustic emission during loading to failure. A new design of broad frequency bandwidth point contact transducer was used and the resulting signal captured using a high speed transient recording system. The data was analysed using the techniques of statistical pattern recognition to separate different types of signals. The results show that it is possible to separate true acoustic emission from background noise and to distinguish between certain types of defect. (author)

  19. Application of acoustic emission in pressure vessel testing

    Materials of the CrMoV and the NiCrMoV types were tested for integrity using an acoustic emission method developed by SKODA Trust. The materials are used for the production of reactor pressure vessels. The acoustic emission method is employed for determining the beginning of crack formation and crack proliferation. The objective of the tests was to obtain information necessary for evaluating acoustic emission sources in actual components. The use is discussed of a 24-channel system by Trodyne (USA) for testing the integrity of WWER type pressure vessels manufactured by SKODA. (B.S.)

  20. Materials for Damping Ambient Acoustic and Vibration Signals Project

    National Aeronautics and Space Administration — Long-term exposure to even relatively low levels of acoustic and vibration signals has been shown to be potentially harmful to humans. A new class of piezoelectric...

  1. Acoustic emission technique based rubbing identification for Rotor-bearing systems

    2001-01-01

    Rubbing is the frequent and dangerous fault in the rotating machine, and efficient identi-fication of the rubbing is a hot research subject in the field of fault diagnosis. In this paper, a newrubbing identification method is proposed, which is based on the acoustic emission technique. Inthis method, the acoustic emission signal of the rubbing in the multi-support rotor-bearing systemis acquired by the acoustic emission sensor, and then the continuous wavelet transform is utilizedto analyze this signal. Based on the rubbing mechanism, the frequency feature of the multiple fre-quency relation in the instantaneous frequency wave is extracted as the rubbing identification fea-ture. The experimental results prove that the proposed method is efficient and feasible.

  2. Development of a MEMS acoustic emission sensor system

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    and the second mode frequency, strongly approximating the desirable rigid plate limit. The effect is modeled analytically and is verified experimentally by measurement of the resonance frequencies in the new transducers. Another improvement arises from the use of a pin grid array ceramic package, in which the MEMS chip is acoustically coupled to the structure with only two interfaces, through a ceramic medium that is negligible in thickness when compared to wavelengths of interest. Like other acoustic emission sensors, those on the 2006 MEMS chip are sensitive only to displacements normal to the surface on which the device is mounted. To overcome that long-standing limitation, a new MEMS sensor sensitive to in-plane motion has been designed, featuring a different spring-mass mechanism and creating the signal by the change in capacitance between stationary and moving fingers. Predicted damping is much lower for the case of the in-plane sensor, and squeeze-film damping is used selectively to isolate the desired in-plane mechanical response from any unwanted out-of-plane response. The new spring-mass mechanism satisfies the design rules for the PolyMUMPS fabrication (foundry) process. A 3-D MEMS sensor system is presently being fabricated, collocating two in-plane sensors and one out-of-plane sensor at the mm scale, which is very short compared to the acoustic wavelength of interest for stress waves created by acoustic emission events.

  3. Acoustic emission generated during scratch test of various thin films

    Boháč, Petr; Tomáštík, J.; Čtvrtlík, R.; Dráb, M.; Koula, V.; Cvrk, K.; Jastrabík, Lubomír

    2014-01-01

    Roč. 19, č. 12 (2014), s. 16635. ISSN 1435-4934 R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : acoustic emission * scratch test * thin films * AE data analysis * mechanical toughness Subject RIV: BI - Acoustic s

  4. Nonlinear ultrasonic spectroscopy and acoustic emission in SHM of aircrafts

    Převorovský, Zdeněk; Chlada, Milan; Krofta, Josef

    2012-01-01

    Roč. 2012, SI (2012), s. 36-40. ISSN 1213-3825 R&D Projects: GA MPO(CZ) FR-TI1/274 Institutional support: RVO:61388998 Keywords : NDT * structural health monitoring * acoustic emission * nonlinear elastic wave spectroscopy * time reversal mirrors Subject RIV: BI - Acoustics

  5. Characterization of martensitic transformations using acoustic emission

    Acoustic emission (AE) is a highly sensitive technique which can reveal changes in materials not detectable by other means. The goal of this project was to obtain basic information on the AE response to martensitic transformation in steel. This information will enable the use of AE for improved quality assurance testing of rough-cut component blanks and semifinished parts. The AE response was measured as a function of temperature in four steels undergoing martensitic transformation, and the AE response was compared with martensitic start temperature M/sub s/ and finish temperature M/sub f/ obtained by other methods. As measured by AE activity, M/sub s/ occurred as much as 260C higher than previously reported using less sensitive measurement techniques. It was also found that 10 to 30% of an alloy of Fe-0.2% C-27% Ni transformed to martensite during one AE burst. These results show that AE can be used to study transformations both inside and outside the classical M/sub s/-M/sub f/ ranges. The findings will help to achieve the goal of using AE for quality assurance testing, and will add to the knowledge of the basic materials science of martensitic transformations

  6. Acoustic Emission Analysis of Prestressed Concrete Structures

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  7. Acoustic Emission Analysis of Prestressed Concrete Structures

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  8. Intelligent location of simultaneously active acoustic emission sources: Part I

    Kosel, T

    2007-01-01

    The intelligent acoustic emission locator is described in Part I, while Part II discusses blind source separation, time delay estimation and location of two simultaneously active continuous acoustic emission sources. The location of acoustic emission on complicated aircraft frame structures is a difficult problem of non-destructive testing. This article describes an intelligent acoustic emission source locator. The intelligent locator comprises a sensor antenna and a general regression neural network, which solves the location problem based on learning from examples. Locator performance was tested on different test specimens. Tests have shown that the accuracy of location depends on sound velocity and attenuation in the specimen, the dimensions of the tested area, and the properties of stored data. The location accuracy achieved by the intelligent locator is comparable to that obtained by the conventional triangulation method, while the applicability of the intelligent locator is more general since analysis o...

  9. Detection of acoustic signal emitted during corrosion of 304 stainless steel

    In this work, corrosion of 304 stainless steel was evaluated by using acoustic emission(AE) technique. AE measurement system was set for detecting acoustic signal during accelerated corrosion test of the specimen. AE signal started to be detected after the time of pitting corrosion initiation was evaluated by anodic polarization curve. Pitting corrosion damage was confirmed by optical microscopic observation of the surface morphology. AE cumulative counts and amplitude according to corrosion time could be divided into three stages. These trends were discussed in relation with changing pitting corrosion mechanism. Feasibilities of AE technique for evaluation of corrosion damage and mechanism were suggested.

  10. STUDY ON STABILITY OF UNDERGROUND STRUCTURAL ENGINEERING BY ACOUSTIC EMISSION MONITORING SYSTEM

    来兴平; 张冰川; 蔡美峰

    2000-01-01

    A simulation acoustic emission (AE) signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal. This paper introduces the artificial monitoring system, its application at underground roadway and its monitoring results, and tries to explore theoretically analyzing method of stability of underground concrete roadway by AE parameters. A simulation AE signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal It shows the nice future of the application in the active damage detection of composite material.

  11. Acoustic emission monitoring of recycled aggregate concrete under bending

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  12. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring

  13. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Vander Stappen, François; Janssens, Guillaume; Prieels, Damien [Ion Beam Applications SA, Louvain-la-Neuve 1348 (Belgium); Bawiec, Christopher R.; Lewin, Peter A. [School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Sehgal, Chandra M. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  14. A wireless acoustic emission sensor remotely powered by light

    In this paper, wireless sensing of acoustic emission (AE) signals using a battery-free sensor node remotely powered by light is presented. The wireless sensor consists of a piezoelectric wafer active sensor (PWAS) for AE signal acquisition and a wireless transponder that performs signal conditioning, frequency conversion, and wireless transmission. For signal conditioning, a voltage follower that consumes less than 2 mW was introduced to buffer the high impedance of the PWAS from the low impedance of the wireless transponder. A photocell-based energy harvester with a stable voltage output was developed to power the voltage follower so that the wireless AE sensor can operate without an external power source. The principle of operation of the battery-free wireless AE sensor node and the sensor interrogation system is described, followed by a detailed description of the hardware implementation. The voltage follower and the wireless channel were characterized by ultrasound pitch–catch and pencil lead break experiments. (paper)

  15. Design of the Acoustic Signal Receiving Unit of Acoustic Telemetry While Drilling

    Li Zhigang

    2016-01-01

    Full Text Available Signal receiving unit is one of the core units of the acoustic telemetry system. A new type of acoustic signal receiving unit is designed to solve problems of the existing devices. The unit is a short joint in whole. It not only can receive all the acoustic signals transmitted along the drill string, without losing any signal, but will not bring additional vibration and interference. In addition, the structure of the amplitude transformer is designed, which can amplify the signal amplitude and improve the receiving efficiency. The design of the wireless communication module makes the whole device can be used in normal drilling process when the drill string is rotating. So, it does not interfere with the normal drilling operation.

  16. Acoustic signal analysis of underwater elastic cylinder

    LI Xiukun; YANG Shi'e

    2001-01-01

    The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.PACS numbers: 43.30, 43.60

  17. Application of acoustic emission testing as a non-destructive quality control of conrete

    The time dependence of texture changes in concrete is studied in short-time pressure experiments, using the method of acoustic emission testing. These investigations have been performed as a function of strength and composition of the material under study. As a result, the method of acoustic emission testing is shown to be an adequate method to evaluate the evolution and the character of the structural changes. In the case where only the time developement is of interest, a simple electronic method, the pulse-sum-method or pulse rate method can be applied. However only a signal evaluation procedure can give information on the character of the structure changes. (orig./RW)

  18. Detecting acoustic emission during cyclic crack growth in simulated BWR environment

    An attempt is made to detect and analyze acoustic emissions from cyclic crack growth in SA 533 grade B steel in the simulated BWR water environment. Significant levels of signals caused by the environment-enhanced crack growth were obtained through appropriate noise reduction techniques. By reducing the frictional noises between the loading pins and the specimen, as well as characterizing the spectrum of signals emitted from various sources, discrete signal identification was made possible. The following empirical relationship was obtained between the energy of emission and the crack growth rate: da/dN = C(dΣE sub(AE)/mm/dN)sup(n) where C and n are material constant and exponent respectively. The possibility of utilizing this type of acoustic emission technique was also discussed in relation to future continuous monitoring of operating nuclear plants. (author)

  19. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation

  20. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  1. Speaker verification using combined acoustic and EM sensor signal processing

    Ng, L C; Gable, T J; Holzrichter, J F

    2000-11-10

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantity of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. SOC. Am . 103 ( 1) 622 (1998). By combining the Glottal-EM-Sensor (GEMS) with the Acoustic-signals, we've demonstrated an almost 10 fold reduction in error rates from a speaker verification system experiment under a moderate noisy environment (-10dB).

  2. A novel Communication Technique for Nanobots based on acoustic signals

    Loscri, Valeria; Natalizio, Enrico; Mannara, Valentina; Gianluca ALOI

    2012-01-01

    International audience In this work we present the simulation of a swarm of nanobots that behave in a distributed fashion and communicate through vibrations, permitting a decentralized control to treat endogenous diseases of the brain. Each nanobot is able to recognize a cancer cell, eliminate it and announces through a communication based on acoustic signals the presence of the cancer to the other nanobots. We assume that our nano-devices vibrate and these vibrations cause acoustic waves ...

  3. Use of Macro Fibre Composite Transducers as Acoustic Emission Sensors

    Mark Eaton

    2009-04-01

    Full Text Available The need for ever lighter and more efficient aerospace structures and components has led to continuous optimization pushing the limits of structural performance. In order to ensure continued safe operation during long term service it is desirable to develop a structural health monitoring (SHM system. Acoustic emission (AE offers great potential for real time global monitoring of aerospace structures, however currently available commercial sensors have limitations in size, weight and adaptability to complex structures. This work investigates the potential use of macro-fibre composite (MFC film transducers as AE sensors. Due to the inhomogeneous make-up of MFC transducers their directional dependency was examined and found to have limited effect on signal feature data. However, signal cross-correlations revealed a strong directional dependency. The sensitivity and signal attenuation with distance of MFC sensors were compared with those of commercially available sensors. Although noticeably less sensitive than the commercial sensors, the MFC sensors still had an acceptable operating range. Furthermore, a series of compressive carbon fiber coupon tests were monitored in parallel using both an MFC sensor and a commercially available sensor for comparison. The results showed good agreement of AE trends recorded by both sensors.

  4. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  5. Investigation of the Portevin-Le Chatelier effect by the acoustic emission

    B. Grzegorczyk

    2013-09-01

    Full Text Available Purpose: The aim of this paper is to determine the relation existing between the behaviour of the signals of acoustic emissions generated in the course of plastic deformation at elevated temperature, and the shape of the work-hardening curves σ-ε and the Portevin - Le Chatelier effect. Design/methodology/approach: Single crystal was investigated applying the method of free compression at a constant strain rate and a temperature within the range from 20°C to 400°C at a strain rate of 10-5 sec-1 to 10-1 sec-1, simultaneously recording this phenomenon by means of acoustic emission. Findings: The analysis of the results of these investigations permitted to prove considerable relations between the work-hardening curve σ-ε displaying the PLC effect and the characteristics of the signals of the acoustic emission generated in the uniaxial compression. Practical implications: The AE method applied in the process of plastic deformation of single crystals of the alloy CuZn30 displays also a dependence of the activity of acoustic emissions on the stage of strain-hardening of the investigated alloy. Originality/value: In the range of the occurrence of the PLC effect during the compression test of the investigated single crystals the signal AE displays a cyclic character, distinctly correlated qualitatively with the oscillations of stresses on the curve σ-ε.

  6. Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity

    Song, Kyungjun; Lee, Seong-Hyun; Kim, Kiwon; Hur, Shin; Kim, Jedo

    2014-01-01

    The emission enhancement of sound without electronic components has wide applications in a variety of remote systems, especially when highly miniaturized (smaller than wavelength) structures can be used. The recent advent of acoustic metamaterials has made it possible to realize this. In this study, we propose, design, and demonstrate a new class of acoustic cavity using a double-walled metamaterial structure operating at an extremely low frequency. Periodic zigzag elements which exhibit Fabr...

  7. ADVANCED ACOUSTIC EMISSION SOURCE LOCATION IN COMPLEX AIRCRAFT STRUCTURE

    Blaháček, Michal; Převorovský, Zdeněk

    Krakow: University of Technology Krakov, 2008 - (Kanji, O.), s. 172-177 ISBN 978-83-7242-478-5. [European Conference on Acoustic Emission Testing EWGAE /28./. Krakow (PL), 17.09.2008-19.09.2008] R&D Projects: GA ČR GA101/07/1518 Institutional research plan: CEZ:AV0Z20760514 Keywords : source location * aircraft structure * fuzzy Subject RIV: BI - Acoustics

  8. Acoustic Emission from Arctic Steels and Fractographic Investigations

    Hartwig, Cathrine Gjerstad

    2015-01-01

    There is a need for better understanding of brittle fracture due to an increased interest in exploring the undiscovered hydrocarbon resources in the arctic region. There is also a need for development of steels with better low temperature fracture toughness, as steels are experiencing a drastic decrease in toughness in the HAZ after welding. This thesis uses acoustic emission in the investigation of the brittle initiation and propagation micromechanisms for a low carbon HSLA steel. Acoust...

  9. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    Highlights: • Thermogravimetry associated to acoustic emission (AE) improves knowledge on the corrosion of metals at high temperature. • Kinetic transition is detected under air oxidation tests at 900 °C of Zircaloy-4 by a change in the rate of mass gain and by the AE activity. • AE analysis is complementary to characterizations of post mortem oxidized samples. • AE allows us to distinguish the cracks which occur during the Zircaloy-4 oxidation from the cracks which arise during the cooling of the samples. - Abstract: Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in

  10. Potential of acoustic emissions from three point bending tests as rock failure precursors

    Agioutantis Z.; Kaklis K.; Mavrigiannakis S.; Verigakis M.; Vallianatos F.; Saltas V.

    2016-01-01

    Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. This paper presents results from acoustic emission mea-surements obtained during three point bending tests on Nestos marble under laboratory conditions. Acoustic emission activity was monitored using piezoelectric acoustic emission sensors, and the potential for accurate prediction of rock damage based on acoustic emission data was investigated. Damage local-ization was determined based on acoustic emissions generated from the critically stressed region as scat-tered events at stresses below and close to the strength of the material.

  11. Characterisation of Damage in Composite Structures using Acoustic Emission

    Eaton, M; Featherston, C; Holford, K; Pullin, R [Cardiff School of Engineering, Cardiff University, Queens Buildings, Newport Road, Cardiff, CF24 3AA (United Kingdom); May, M [Fraunhofer Institut fuer Kurzzeitdynamik, Ernst-Mach-Institut, Eckerstr. 4, 79104 Freiburg (Germany); Hallet, S, E-mail: eatonm@cf.ac.uk, E-mail: michael.may@emi.fraunhofer.de, E-mail: featherstoncaf@cardiff.ac.uk, E-mail: holford@cardiff.ac.uk, E-mail: stephen.hallett@bristol.ac.uk, E-mail: pullinr@cf.ac.uk [Department of Aerospace Engineering, University of Bristol, Queens Building, University Walk, Bristol, BS8 1TR (United Kingdom)

    2011-07-19

    Detection and characterisation of damage in composite structures during in-service loading is highly desirable. Acoustic emission (AE) monitoring of composite components offers a highly sensitive method for detecting matrix cracking and delamination damage mechanisms in composites. AE relies on the detection of stress waves that are released during damage propagation and using an array of sensors, damage location may be determined. A methodology for damage characterisation based on measuring the amplitude ratio (MAR) of the two primary lamb wave modes; symmetric (in-plane) and asymmetric (out-of-plane) that propagate in plate like structures has been developed. This paper presents the findings of a series of tensile tests in composite coupons with large central ply blocks. The specimens were monitored using AE sensors throughout loading and once significant AE signals were observed the loading process was stopped. The specimens were removed and subjected to x-ray inspection to assess for any damage. The onset of damage was successfully detected using AE and was identified as being matrix cracking using the MAR methodology. The results were validated with x-ray inspection and a strong correlation was observed between the number of significant AE signals recorded and the number of identified matrix cracks.

  12. New methods for leaks detection and localisation using acoustic emission

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes

  13. Current state of acoustic emission as an aid to the structural integrity assessment of nuclear power plants

    As an integral method permitting continuous monitoring and remote defect location, acoustic emission offers promising benefits for the nuclear industry. The potential applications relating to the integrity of the primary pressure boundary of nuclear reactors that are considered in this presentation are: detection of flaws during pre-service and requalification hydrotests and continuous monitoring for crack growth and leakage. The correlations between fracture mechanics and acoustic emission are discussed on the basis of certain fundamentals of material emission behaviour. The influence of instrumentation and wave propagation related aspects on the detectability and evaluation of acoustic emission signals is considered. A critical review is given of the application of acoustic emission to the assessment of reactor pressure vessel integrity, which demands a precise knowledge of the method's ability to distinguish different origins of acoustic emission, to detect and locate cracks and to evaluate the severity of cracks. World wide, at least 40 reactor pressure vessels and nuclear primary systems have been monitored by acoustic emission, either during acceptance pressure tests at the manufacturer's shop or during pre-service testing after installation in a plant. Together with the monitoring of requalification hydrotests after a certain period of operation, these applications of acoustic emission are currently receiving the most attention. The experience gained with continuous monitoring by acoustic emission is reported. The technique of leak detection by acoustic emission shows promising results, which permit the location and quantification of leaks. It is expected that practical experience and future research work will enhance the accuracy and detection sensitivity. (author)

  14. Phonon Emission from Acoustic Black Hole

    Fang, Hengzhong; Zhou, Kaihu; Song, Yuming

    2012-08-01

    We study the phonon tunneling through the horizon of an acoustic black hole by solving the Hamilton-Jacobi equation. We also make use of the closed-path integral to calculate the tunneling probability, and an improved way to determine the temporal contribution is used. Both the results from the two methods agree with Hawking's initial analysis.

  15. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  16. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. PMID:26518525

  17. Acoustic Emission Defects Localized by Means of Geodetic Iterative Procedure - Algorithms, Tests, AE Experiment

    Kůs, V.; Záveský, M.; Převorovský, Zdeněk

    Granada : University of Granada, 2012 - (Gallego, A.; Ono, K.), s. 1-12 ISBN 978-84-615-9941-7. [Europen Conference on Acoustic Emission Testing/30./ & International Conference on Acoustic Emission/7./. Granada (ES), 12.09.2012-15.09.2012] Institutional support: RVO:61388998 Keywords : acoustic emissio * geodesic * Newton -Raphson method * iterative source localization Subject RIV: BI - Acoustics

  18. Acoustic emission testing on an F/A-18 E/F titanium bulkhead

    Martin, Christopher A.; Van Way, Craig B.; Lockyer, Allen J.; Kudva, Jayanth N.; Ziola, Steve M.

    1995-04-01

    An important opportunity recently transpired at Northrop Grumman Corporation to instrument an F/A - 18 E/F titanium bulkhead with broad band acoustic emission sensors during a scheduled structural fatigue test. The overall intention of this effort was to investigate the potential for detecting crack propagation using acoustic transmission signals for a large structural component. Key areas of experimentation and experience included (1) acoustic noise characterization, (2) separation of crack signals from extraneous noise, (3) source location accuracy, and (4) methods of acoustic transducer attachment. Fatigue cracking was observed and monitored by strategically placed acoustic emission sensors. The outcome of the testing indicated that accurate source location still remains enigmatic for non-specialist engineering personnel especially at this level of structural complexity. However, contrary to preconceived expectations, crack events could be readily separated from extraneous noise. A further dividend from the investigation materialized in the form of close correspondence between frequency domain waveforms of the bulkhead test specimen tested and earlier work with thick plates.

  19. Proton beam characterization by proton-induced acoustic emission: simulation studies

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ∼1 mm. (paper)

  20. Monitoring the viscosity of diesel engine lubricating oil by using acoustic emission technique, the selection of measurement parameters

    Acoustic emission technique has been developed through years of monitoring and diagnosis of bearing, but it is still new in the diagnosis and monitoring of lubrication oil to bearings drive. The propagation of acoustic emission signal is generated when the signal piston on the cylinder liner lubricating oil which is a par. The signal is analyzed in time domain to obtain the parameters of root mean squared, amplitude, energy and courtesy. Lubricant viscosity will undergo changes due to temperature, pressure and useful. This study focuses on the appropriate parameters for the diagnosis and monitoring of lubricating oil viscosity. Studies were conducted at a constant rotational speed and temperature, but use a different age. The results showed that the energy parameter is the best parameter used in this monitoring. However, this parameter cannot be used directly and it should be analyzed using mathematical formulas. This mathematical formula is a relationship between acoustic emission energy with the viscosity of lubricating oil. (author)

  1. Ellipsoidal reflector for measuring oto-acoustic emissions

    Epp, Bastian; Pulkki, Ville; Heiskanen, Vesa

    2014-01-01

    A truncated prolate ellipsoidal reflector having the ear canal of a listener at one focal point and large- diaphragm low-noise microphone at the other focal point is proposed for free-field recordings of oto-acoustic emissions. A prototype reflector consisting of three pieces is presented, which...

  2. Decision-making for acoustic emission data set

    Acoustic emission techniques are widely applied in proof tests of pressure vessels. Correct interpretation of experimental data is of primary importance. The AE DATA EXPERT system performs this task in three procedures: source separation, source purification and source classification. Basic production rules are discussed. (author) 19 refs.; 16 figs.; 2 tabs

  3. Correlation of acoustic emission and dislocation damping in beryllium

    In a study of the acoustic emission generated in beryllium during tensile deformation, there is substantial evidence showing that the burst rate peak at yield is due to the generation of new dislocations and the burst rate peak at higher strains is due to the breakaway of dislocation line segments from deformation produce pins

  4. Acoustic emission during quench training of superconducting accelerator magnets

    Marchevsky, M.; Sabbi, G.; Bajas, H.; Gourlay, S.

    2015-07-01

    Acoustic emission (AE) sensing is a viable tool for superconducting magnet diagnostics. Using in-house developed cryogenic amplified piezoelectric sensors, we conducted AE studies during quench training of the US LARP's high-field quadrupole HQ02 and the LBNL's high-field dipole HD3. For both magnets, AE bursts were observed, with spike amplitude and frequency increasing toward the quench current during current up-ramps. In the HQ02, the AE onset upon current ramping is distinct and exhibits a clear memory of the previously-reached quench current (Kaiser effect). On the other hand, in the HD3 magnet the AE amplitude begins to increase well before the previously-reached quench current (felicity effect), suggesting an ongoing progressive mechanical motion in the coils. A clear difference in the AE signature exists between the untrained and trained mechanical states in HD3. Time intervals between the AE signals detected at the opposite ends of HD3 coils were processed using a combination of narrow-band pass filtering; threshold crossing and correlation algorithms, and the spatial distributions of AE sources and the mechanical energy release were calculated. Both distributions appear to be consistent with the quench location distribution. Energy statistics of the AE spikes exhibits a power-law scaling typical for the self-organized critical state.

  5. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  6. Application of Acoustic Emission Testing for the Assessment of Wind Turbine Blade

    Lee, Sang Il; Yun, Dong Jin; Hur, Yong Jin; Kim, Dong Jin [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2006-11-15

    The purpose of this study was to verify the applicability of acoustic emission (AE) to detect damage in wind turbine blade. Nondestructive behavior of a GFRP wind turbine blade (WTB) was evaluated using AE analysis under stepwise cyclic loading. AE hits of the blade were correspondence with strain change within 80% of the maximum load. From the analysis of AE signals, the low energy signals due to electrical/mechanical noise were well distinguished from the signals of the blade delamination with higher amplitude or energy. When the AE test is performed with full blade test, AE will play an important role as a major nondestructive technique to assess damages of the WTB.

  7. The Analysis of Efficiency of Acoustic Emission Diagnostic Method for the Determination of Defect Coordinates

    Urbahs, A; Valberga, A; Banov, M; Carjova, K; Stelpa, I

    2014-01-01

    Acoustic emission (AE) method is widely used as a non-destructive control tool of vehicle points and construction and also as a tool for technical condition monitoring. One of the most important AE diagnostic technological operations is the determination of AE source defect coordinates. Modern defect location techniques allow detecting coordinates of developing defects with high accuracy and reliability. There are several AE source detection methods, but the most popular one is a signal arriv...

  8. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines

    Carlos Quiterio Gómez Muñoz

    2016-01-01

    Full Text Available The renewable energy industry is undergoing continuous improvement and development worldwide, wind energy being one of the most relevant renewable energies. This industry requires high levels of reliability, availability, maintainability and safety (RAMS for wind turbines. The blades are critical components in wind turbines. The objective of this research work is focused on the fault detection and diagnosis (FDD of the wind turbine blades. The FDD approach is composed of a robust condition monitoring system (CMS and a novel signal processing method. CMS collects and analyses the data from different non-destructive tests based on acoustic emission. The acoustic emission signals are collected applying macro-fiber composite (MFC sensors to detect and locate cracks on the surface of the blades. Three MFC sensors are set in a section of a wind turbine blade. The acoustic emission signals are generated by breaking a pencil lead in the blade surface. This method is used to simulate the acoustic emission due to a breakdown of the composite fibers. The breakdown generates a set of mechanical waves that are collected by the MFC sensors. A graphical method is employed to obtain a system of non-linear equations that will be used for locating the emission source. This work demonstrates that a fiber breakage in the wind turbine blade can be detected and located by using only three low cost sensors. It allows the detection of potential failures at an early stages, and it can also reduce corrective maintenance tasks and downtimes and increase the RAMS of the wind turbine.

  9. Acoustic Signal based Traffic Density State Estimation using SVM

    Prashant Borkar

    2013-06-01

    Full Text Available Based on the information present in cumulative acoustic signal acquired from a roadside-installed single microphone, this paper considers the problem of vehicular traffic density state estimation. The occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc are determined by the prevalent traffic density conditions on the road segment. In this work, we extract the short-term spectral envelope features of the cumulative acoustic signals using MFCC (Mel-Frequency Cepstral Coefficients. Support Vector Machines (SVM is used as classifier is used to model the traffic density state as Low (40 Km/h and above, Medium (20-40 Km/h, and Heavy (0-20 Km/h. For the developing geographies where the traffic is non-lane driven and chaotic, other techniques (magnetic loop detectors are inapplicable. SVM classifier with different kernels are used to classify the acoustic signal segments spanning duration of 20–40 s, which results in average classification accuracy of 96.67% for Quadratic kernel function and 98.33% for polynomial kernel function, when entire frames are considered for classification.

  10. The use of acoustic emission to detect stress relief cracking

    Stress rupture tests have been carried out on CrMoV steel specimens containing weld heat affected zone structures. An acoustic emission technique is described which has been used to detect cracking in these tests. Cavitational damage is associated with bursts of acoustic output and these results have been supported by fractograpic examination. The features of progressive cavitational damage are described for materials of different cracking susceptibility. It is implied that cavity formation can occur in the heat affected zone of CrMoV welds when heating to the stress relieving temperature. (orig.)

  11. In process acoustic emission in multirun submerged arc welding

    In order to avoid the formation of deep grooves when repairing defects in welded joints in heavy plates, an investigation was made aiming to detect and locate the defects by in-process acoustic emission in multirun submerged arc welding. Twelve defects (lack of penetration, cracks, inclusions, lack of fusion together with inclusions, blowholes) were intentionally introduced when the first plate was welded. A space-time method for processing the acoustic activity during welding allowed the detection and the location of the intentional defects as well as of the most important accidental defects evidenced by ultrasonic testing

  12. The sound emission board of the KM3NeT acoustic positioning system

    We describe the sound emission board proposed for installation in the acoustic positioning system of the future KM3NeT underwater neutrino telescope. The KM3NeT European consortium aims to build a multi-cubic kilometre underwater neutrino telescope in the deep Mediterranean Sea. In this kind of telescope the mechanical structures holding the optical sensors, which detect the Cherenkov radiation produced by muons emanating from neutrino interactions, are not completely rigid and can move up to dozens of meters in undersea currents. Knowledge of the position of the optical sensors to an accuracy of about 10 cm is needed for adequate muon track reconstruction. A positioning system based on the acoustic triangulation of sound transit time differences between fixed seabed emitters and receiving hydrophones attached to the kilometre-scale vertical flexible structures carrying the optical sensors is being developed. In this paper, we describe the sound emission board developed in the framework of KM3NeT project, which is totally adapted to the chosen FFR SX30 ultrasonic transducer and fulfils the requirements imposed by the collaboration in terms of cost, high reliability, low power consumption, high acoustic emission power for short signals, low intrinsic noise and capacity to use arbitrary signals in emission mode.

  13. Signal processing methodologies for an acoustic fetal heart rate monitor

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  14. Distributed feedback fiber laser acoustic emission sensor for concrete structure health monitoring

    Hao, Gengjie; Huang, Wenzhu; Zhang, Wentao; Sun, Baochen; Li, Fang

    2014-05-01

    This paper introduces a highly-sensitive fiber optical acoustic emission (AE) sensor and a parameter analysis method aiming at concrete structure health monitoring. Distributed feedback fiber-laser (DFB-FL), which is encapsulated to have a high acoustic sensitivity, is used for sensor unit of the AE sensor. The AE signal of concrete beam in different work stages, based on the four-point bending experiment of the concrete beam, is picked up, and the relationship between the concrete beam work stages and the AE parameter is found. The results indicate that DFB-FLAES can be used as sensitive transducers for recording acoustic events and forecasting the imminent failure of the concrete beam.

  15. Development of acoustic emission monitoring system for fault detection of thermal reduction reactor

    The research on the development of the fault monitoring system for the thermal reduction reactor has been performed preliminarily in order to support the successful operation of the thermal reduction reactor. The final task of the development of the fault monitoring system is to assure the integrity of the thermal reduction reactor by the Acoustic Emission (AE) method. The objectives of this paper are to identify and characterize the fault-induced signals for the discrimination of the various AE signals acquired during the reactor operation. The AE data acquisition and analysis system was constructed and applied to the fault monitoring of the small-scale reduction reactor. Through the series of experiments, the various signals such as background noise, operating signals, and fault-induced signals were measured and their characteristics were identified, which will be used in the signal discrimination for further application to full-scale thermal reduction reactor

  16. INSTRUMENTATION FOR SURVEYING ACOUSTIC SIGNALS IN NATURAL GAS TRANSMISSION LINES

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-09-01

    In the U.S. natural gas is distributed through more than one million miles of high-pressure transmission pipelines. If all leaks and infringements could be detected quickly, it would enhance safety and U.S. energy security. Only low frequency acoustic waves appear to be detectable over distances up to 60 km where pipeline shut-off valves provide access to the inside of the pipeline. This paper describes a Portable Acoustic Monitoring Package (PAMP) developed to record and identify acoustic signals characteristic of: leaks, pump noise, valve and flow metering noise, third party infringement, manual pipeline water and gas blow-off, etc. This PAMP consists of a stainless steel 1/2 inch NPT plumbing tree rated for use on 1000 psi pipelines. Its instrumentation is designed to measure acoustic waves over the entire frequency range from zero to 16,000 Hz by means of four instruments: (1) microphone, (2) 3-inch water full range differential pressure transducer with 0.1% of range sensitivity, (3) a novel 3 inch to 100 inch water range amplifier, using an accumulator with needle valve and (4) a line-pressure transducer. The weight of the PAMP complete with all accessories is 36 pounds. This includes a remote control battery/switch box assembly on a 25-foot extension chord, a laptop data acquisition computer on a field table and a sun shield.

  17. Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears

    Peng Chen

    2011-01-01

    Full Text Available Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis.

  18. Acoustic emission/flaw relationships for inservice monitoring of LWRs

    The program concerning Acoustic Emission/Flaw Relationships for Inservice Monitoring of LWRs was initiated in FY76 with the objective of validating the application of acoustic emission (AE) to monitor nuclear reactor pressure-containing components during operation to detect cracking. The program has been supported by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Research and development has been performed by Pacific Northwest Laboratory, operated for the Department of Energy by Battelle Memorial Institute. The program has shown the feasibility of continuous, on-line AE monitoring to detect crack growth and produced validated methods for applying the technology. Included are relationships for estimating flaw severity from AE data and field applications at Watts Bar Unit 1 Reactor, Limerick Unit 1 Reactor, and the High Flux Isotope Reactor. This report discusses the program scope and organization, the three program phases and the results obtained, standard and code activities, and instrumentation and software developed under this program

  19. Could Acoustic Emission Testing Show a Pipe Failure in Advance?

    Soares, S. D.; Teixeira, J. C. G.

    2004-02-01

    During the last 20 years PETROBRAS has been attempting to use Acoustic Emission (AE) as an inspection tool. In this period the AE concept has changed from a revolutionary method to a way of finding areas to make a complete inspection. PETROBRAS has a lot of pressure vessels inspected by AE and with other NDTs techniques to establish their relationship. In other hand, PETROBRAS R&D Center has conducted destructive hydrostatic tests in pipelines samples with artificial defects made by milling. Those tests were monitored by acoustic emission and manual ultrasonic until the complete failure of pipe sample. This article shows the results obtained and a brief proposal of analysis criteria for this environment of test.

  20. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  1. An Approach to Acoustic Emission Technique Applications to Evaluate Damage Mechanisms in Composite Materials

    Rios-Soberanis C.R.

    2015-01-01

    Full Text Available Acoustic Emission technique is a versatile method for characterization in materials science. It is considered to be a “passive” non-destructive method since damage can be only evaluated when de defects are being developed during the test which, at the end of the day, it is considered an advantage because failure mechanisms and damage process can be monitored and identified during the load history. When a failure mechanism is activated due to a discontinuity in the material such as crack propagation, part of the total strain energy is dissipated as an elastic waves that propagate from the damage source through the medium. Therefore, this released energy can be detected by piezoelectric sensors that perceive the emitted signal from the damage notation site by the surface dynamic movement and convert it in an electrical response. Acoustic emission signals can be correlated with the onset of damage process occurring in the tested materials and also to de diverse failure mechanisms such as matrix cracking, interface damage, fiber fracture, etc. This paper proposes to discuss our information and results on acoustic emission materials characterization undertaken on different types of materials.

  2. Utilization of acoustic emission in scratch test evaluation

    Tomáštík, J.; Čtvrtlík, Radim; Boháč, Petr; Dráb, M.; Koula, V.; Cvrk, K.; Jastrabík, Lubomír

    Pfafficon: Trans Tech Publications Ltd, 2015 - (Kovalčíková, A.; Lofaj, F.), s. 119-122 ISBN 978-3-03835-555-7. ISSN 1662-9795. [Conference on Local Mechanical Properties (LMP 2014) /11./. Stará Lesná (SK), 12.11.2014-14.11.2014] R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : acoustic emission * scratch test * thin films Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  3. Application of acoustic emission to the testing pressure tubing materials

    Acoustic emission is one of the promising techniques for the detection of embrittlement. The Zr-2.5 Nb alloy used as pressure tubing material shows slightly low stress intensity factor when it absorbs hydrogen. In this paper, the relationship between acoustic emission count N and stress intensity factor K in the tensile test of edge-notched specimens is described. The K value is proportional to the square root of crack opening displacement phi in the elastic region. The double-notched specimens were cut from pressure tubes, and the single-notched specimens were cut from extruded bars. The crack opening displacement was measured with a clip gauge recommended by ASTM STP 410 Appendix, and the acoustic emission was measured with a Nortec AEMS-4 system and PZT-5 type sensors. The sensors were bonded on the surfaces of the specimens with epoxy adhesive or rubber contact. A peak of the acoustic emission count rate was observed at the yield point of each specimen similarly to many other metals. The N values and the size of plastic zone showed the theoretical relationship following 4th power law, on the other hand, the size of plastic zone depended linearly on the K values in elastic region. The slope and the intersection point of the regression curves for the total N count vs the square root of phi corresponding to the elastic field of stress-strain curves showed almost same values for the specimens of same shape. The influence of the bonding methods was not observed. (Kako, I.)

  4. Acoustic emission monitoring for assessment of steel bridge details

    Acoustic emission (AE) testing was deployed on details of two large steel Interstate Highway bridges: one cantilever through-truss and one trapezoidal box girder bridge. Quantitative measurements of activity levels at known and suspected crack locations were made by monitoring AE under normal service loads (e.g., live traffic and wind). AE indications were used to direct application of radiography, resulting in identification of a previously unknown flaw, and to inform selection of a retrofit detail.

  5. Failure Mechanism of Rock Bridge Based on Acoustic Emission Technique

    Guoqing Chen; Yan Zhang; Runqiu Huang; Fan Guo; Guofeng Zhang

    2015-01-01

    Acoustic emission (AE) technique is widely used in various fields as a reliable nondestructive examination technology. Two experimental tests were carried out in a rock mechanics laboratory, which include (1) small scale direct shear tests of rock bridge with different lengths and (2) large scale landslide model with locked section. The relationship of AE event count and record time was analyzed during the tests. The AE source location technology and comparative analysis with its actual failu...

  6. Acoustic emission monitoring of fracturing process of migmatite samples

    Petružálek, Matěj; Lokajíček, Tomáš; Svitek, Tomáš

    Montréal: Canadian Institute of Mining , Metallurgy and Petroleum, 2015. ISBN 978-1-926872-25-4. [International Congress of Rock Mechanics /13./. Montréal (CA), 10.05.2015-13.05.2015] R&D Projects: GA ČR(CZ) GAP104/12/0915; GA MŠk LH13102 Institutional support: RVO:67985831 Keywords : anisotropy * fracturing process * acoustic emission * ultrasonic sounding Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  7. Why and how acoustic emission in pressure vessel first hydrotest

    The main advantages obtained performing the Acoustic Emission (AE) examination during pressure vessel first hydrotest are presented. The characteristics and performance of the AE instrumentation to be used for a correct test are illustrated. The main criteria for AE source characterization (location, typical AE parameters and their correlation with pressure value), the calibration and test procedures are discussed. The ndt post-test examinations and laboratory specimen experiments are also outlined. Personnel qualification requirements are finally indicated. (Author)

  8. Acoustic emission characteristics of single edge notched glass fiber/metal laminates

    Fracture behaviors of single-edge-notched monolithic aluminum sheets and glass fiber/aluminum laminates under tensile loadings have been investigated using acoustic emission(AE) monitoring. AE signals from monolithic aluminum could be classified into two different types. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macrocrack propagation and/or delamination. On the basis of the above AE analysis and fracture observation, characteristic features of fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations.

  9. Emission enhancement of sound emitters using an acoustic metamaterial cavity.

    Song, Kyungjun; Lee, Seong-Hyun; Kim, Kiwon; Hur, Shin; Kim, Jedo

    2014-01-01

    The emission enhancement of sound without electronic components has wide applications in a variety of remote systems, especially when highly miniaturized (smaller than wavelength) structures can be used. The recent advent of acoustic metamaterials has made it possible to realize this. In this study, we propose, design, and demonstrate a new class of acoustic cavity using a double-walled metamaterial structure operating at an extremely low frequency. Periodic zigzag elements which exhibit Fabry-Perot resonant behavior below the phononic band-gap are used to yield strong sound localization within the subwavelength gap, thus providing highly effective emission enhancement. We show, both theoretically and experimentally, 10 dB sound emission enhancement near 1060 Hz that corresponds to a wavelength approximately 30 times that of the periodicity. We also provide a general guideline for the independent tuning of the quality factor and effective volume of acoustic metamaterials. This approach shows the flexibility of our design in the efficient control of the enhancement rate. PMID:24584552

  10. Hyperbolic source location of crack related acoustic emission in bone.

    O'Toole, John; Creedon, Leo; Hession, John; Muir, Gordon

    2013-01-01

    Little work has been done on the localization of microcracks in bone using acoustic emission. Microcrack localization is useful to study the fracture process in bone and to prevent fractures in patients. Locating microcracks that occur before fracture allows one to predict where fracture will occur if continued stress is applied to the bone. Two source location algorithms were developed to locate microcracks on rectangular bovine bone samples. The first algorithm uses a constant velocity approach which has some difficulty dealing with the anisotropic nature of bone. However, the second algorithm uses an iterative technique to estimate the correct velocity for the acoustic emission source location being located. In tests with simulated microcracks, the constant velocity algorithm achieves a median error of 1.78 mm (IQR 1.51 mm) and the variable velocity algorithm improves this to a median error of 0.70 mm (IQR 0.79 mm). An experiment in which the bone samples were loaded in a three point bend test until they fractured showed a good correlation between the computed location of detected microcracks and where the final fracture occurred. Microcracks can be located on bovine bone samples using acoustic emission with good accuracy and precision. PMID:23363217

  11. Standard guide for acoustic emission system performance verification

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 System performance verification methods launch stress waves into the examination article on which the sensor is mounted. The resulting stress wave travels in the examination article and is detected by the sensor(s) in a manner similar to acoustic emission. 1.2 This guide describes methods which can be used to verify the response of an Acoustic Emission system including sensors, couplant, sensor mounting devices, cables and system electronic components. 1.3 Acoustic emission system performance characteristics, which may be evaluated using this document, include some waveform parameters, and source location accuracy. 1.4 Performance verification is usually conducted prior to beginning the examination. 1.5 Performance verification can be conducted during the examination if there is any suspicion that the system performance may have changed. 1.6 Performance verification may be conducted after the examination has been completed. 1.7 The values stated in SI units are to be regarded as standard. No other u...

  12. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  13. Codetection of acoustic emissions during failure of heterogeneous media: New perspectives for natural hazard early warning

    Faillettaz, Jerome; Or, Dani; Reiweger, Ingrid

    2016-02-01

    A simple method for real-time early warning of gravity-driven rupture that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. The method capitalizes on codetection of elastic waves emanating from microcracks by multiple and spatially separated sensors. Event codetection is considered as surrogate for large event size with more frequent codetected events marking imminence of catastrophic failure. Using a spatially explicit fiber bundle numerical model with spatially correlated mechanical strength and two load redistribution rules, we constructed a range of mechanical failure scenarios and associated failure events (mapped into acoustic emission) in space and time. Analysis considering hypothetical arrays of sensors and consideration of signal attenuation demonstrate the potential of the codetection principles even for insensitive sensors to provide early warning for imminent global failure.

  14. Effect of thermionic emission on dust-acoustic solitons

    The effect of thermionic emission on dust-acoustic solitons of very small but finite amplitude in dusty plasmas is studied taking into account the self-consistent variation of the dust charge. It is shown that thermionic emission can significantly lower the amplitude of the dust negative charge and can even make the dust charge positive. Results on the dependence of the phase velocity, amplitude and width of solitons on the dust temperature and the work function of dust material were obtained and are discussed here.

  15. Estimation of knock acoustical signal by parametric inversion method; Estimation du signal acoustique de cliquetis par inversion parametrique

    Boubal, O.; Oksman, J. [Ecole Superieure d' Electricite, 91 - Gif-sur-Yvette (France)

    1999-07-01

    Knock on spark ignition engines goes against car manufacturers efforts to reduce fuel consumption and exhaust gas emissions. This article develops a signal processing method to quantify knock. After discussing some classical techniques of knock energy estimation, an acoustical measurement technique is presented. An original signal processing method based on a parametric behavioral model for both knock and apparatus and a special inversion technique are used to get actual knock parameters. The knock related parameters are computed in a two step process. A deconvolution algorithm is used to obtain a signal made of unitary pulses, followed by an efficient inversion method. The whole process is applied to real data from a one-cylinder engine. Moreover, the results are compared to those obtained from an existing technique to suit a common industrial application. (authors)

  16. Multipath time delay estimation of underwater acoustic sinusoidal signals

    TONG Feng; XU Xiaomei; FANG Shiliang

    2009-01-01

    To overcome the performance limitation of multipath time-delay estimation posed by underwater acoustic sinusoidal signals, an approach incorporating the frequency-domain weighting of the highly oscillatory Nonlinear Least Squares (NLS) cost function with the evolutionary optimization was proposed to facilitate the accurate estimation of the multipath timedelay of sinusoidal signals. In the described method, the number of the effective multipath signals, which is included into the parameter model as well as the multipath time-delay and amplitude factor, can be estimated simultaneously thus avoiding the requirement of additional computation. The experimental results performed with numerical simulation and sea-trial data are provided, demonstrating the effectiveness and precision enhancement of the proposed algorithm.

  17. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

    Li, Chuan; Sanchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego; Vásquez, Rafael E.

    2016-08-01

    Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratory measurements in such mechanical devices are all sensitive to the existence of faults. This work addresses the use of a deep random forest fusion (DRFF) technique to improve fault diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an accelerometer that are used for monitoring the gearbox condition simultaneously. The statistical parameters of the wavelet packet transform (WPT) are first produced from the AE signal and the vibratory signal, respectively. Two deep Boltzmann machines (DBMs) are then developed for deep representations of the WPT statistical parameters. A random forest is finally suggested to fuse the outputs of the two DBMs as the integrated DRFF model. The proposed DRFF technique is evaluated using gearbox fault diagnosis experiments under different operational conditions, and achieves 97.68% of the classification rate for 11 different condition patterns. Compared to other peer algorithms, the addressed method exhibits the best performance. The results indicate that the deep learning fusion of acoustic and vibratory signals may improve fault diagnosis capabilities for gearboxes.

  18. Inverse Problem Solution in Acoustic Emission Source Analysis : Classical and Artificial Neural Network Approach

    Převorovský, Zdeněk; Chlada, Milan; Vodička, Josef

    New York : Springer, 2006 - (Delsanto, P.), s. 515-529 ISBN 0-387-33860-8 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * artificial neural network s * inverse problems Subject RIV: BI - Acoustics

  19. ACOUSTIC SIGNALLING IN EURASIAN PENDULINE TITS REMIZ PENDULINUS : REPERTOIRE SIZE SIGNALS MALE NEST DEFENCE

    Pogany, A.; van Dijk, R. E.; Menyhart, O.; Miklosi, A.; DeVoogd, T. J.; Szekely, T.

    2013-01-01

    Elaborate male song may restrain competitors in various songbirds, although the exact mechanism, information content and information flow of acoustic signals are not completely understood. Here we focus on the interactions between resident and intruder males using the Eurasian penduline tit Remiz pe

  20. Study of acoustic signal in the process of resistance spot welding based on array sensor system

    2008-01-01

    This investigation was performed to study acoustic field signal in order to improve RSW quality. Researchers firstly built an acoustic array sensor system, which included 8 MPA-416 acoustic sensors, data acquisition card and LabVIEW. The system obtained the acoustic field information in the process of nugget growing. Due to the nonlinearity field signal, array sensor algorithm was utilized to quantitatively analyze the characteristics of acoustic field and reduced noise. The experiment and calculation results show that array sensor system can acquire acoustic field signal of nugget growing in the RSW process and array processing algorithm based on acoustic field can extract characteristic parameters to evaluate RSW quality. It was concluded that the acoustic array sensor system offers a new methodology for RSW quality inspection.

  1. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    van Capel, P. J. S.; Turchinovich, Dmitry; Porte, Henrik;

    2011-01-01

    signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlatedwith electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured......We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic...... emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation....

  2. Frequency Analysis of Acoustic Emission - Application to machining and welding

    Ultrasonic acoustic waves have been seized and exploited within a bandwidth ranging from 30 kHz to 55 kHz for non-destructive control when boring 3 kinds of steel with a digitaly programmed drill. In addition, these waves have been considered in soldering two steels and one aluminium using T.I.G. process. Spectrum analysis of acoustic emissions produced during the drill is closely related to the extraction of turnings from the metal. Because of the wick's progressive wearing out, the spectrum tends to be close to the machine's own noise spectrum. Meanwhile in the soldering operation of test-tubes of 2 mm thickness, the frequency analysis shows a particular frequency called ''signature'' corresponding to the flow of protection gas. Other frequencies associated to some internal defects in the soldering process as a delay in the fissure and a lack in the fusion have been detected

  3. Frequency Analysis of Acoustic Emission - Application to machining and welding

    Snoussi, A.

    1987-01-01

    Ultrasonic acoustic waves were seized and exploited within a bandwidth ranging from 30 kHz to 55 kHz for non-destructive control when boring three kinds of steel with a digitally programmed drill. In addition, these waves were considered in soldering two steels and one aluminum using T.I.G. process. Spectrum analysis of acoustic emissions produced during the drill is closely related to the extraction of turnings from the metal. Because of the wick's progressive wearing out, the spectrum tends to be close to the machine's own noise spectrum. Meanwhile in the soldering operation of test-tubes of 2 mm thickness, the frequency analysis shows a particular frequency called signature corresponding to the flow of protection gas. Other frequencies associated to some internal defects in the soldering process as a delay in the fissure and a lack in the fusion were detected.

  4. Extraction of Partial Discharge Acoustic Signal by Wavelet Transform with Teager's Energy Operator

    DU Boxue; OUYANG Mingjian; WU Yuan; WEI Guozhong

    2005-01-01

    To develop a measurement system for monitoring partial discharge (PD) without the effect of external interferences,an algorithm of PD signal extraction based on wavelet transform with Teager's energy operators was presented.Acoustic signal generated by PD was selected to remove excessive interfering signals and electromagnetic interferences.Acoustic signals were collected and decomposed into 10 levels by wavelet transform into approximation and detail components."Daubechies 25"was proved to be the most suitable mother wavelet for the extraction of PD acoustic signals.Compared with conventional wavelet denoising method,Teager's energy operators were adopted to the PD signal reconstruction and the signal to noise ratio was pulse amplitude.

  5. Simulating neurobiological localization of acoustic signals based on temporal and volumetric differentiations

    Dattani, Nikesh S.

    2008-01-01

    The localization of sound sources by the human brain is computationally simulated from a neurobiological perspective. The simulation includes the neural representation of temporal differences in acoustic signals between the ipsilateral and contralateral ears for constant sound intensities (angular localization), and of volumetric differences in acoustic signals for constant azimuthal angles (radial localization). The transmission of the original acoustic signal from the environment, through e...

  6. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  7. Acoustic Emission Characteristics during fracture Process of Glass Fiber/Aluminum Hybrid Laminates

    Fracture behaviors and acoustic emission (AE) characteristics of single-edge-notched monolithic aluminum plates and glass fiber/aluminum hybrid laminate plates have been investigated under tensile loads. AE signals from monolithic aluminum could be classified into two different types: signals with low frequency band and high frequency band. High frequency signals were detected in the post stage of loading beyond displacement of 0.45mm. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macro-crack propagation and/or delamination between A1 and fiber layers. On the basis of the above AE analysis and fracture observation with optical microscopy and ultrasonic T scan, characteristic features of AE associated with fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations

  8. Variation of solar acoustic emission and its relation to phase of the solar cycle

    Chen, Ruizhu; Zhao, Junwei

    2016-05-01

    Solar acoustic emission is closely related to solar convection and photospheric magnetic field. Variation of acoustic emission and its relation to the phase of solar cycles are important to understand dynamics of solar cycles and excitation of acoustic waves. In this work we use 6 years of SDO/HMI Dopplergram data to study acoustic emissions of the whole sun and of the quiet-sun regions, respectively, in multiple acoustic frequency bands. We show the variation of acoustic emission from May 2010 to April 2016, covering half of the solar cycle 24, and analyze its correlation with the solar activity level indexed by daily sunspot number and total magnetic flux. Results show that the correlation between the whole-Sun acoustic emission and the solar activity level is strongly negative for low frequencies between 2.5 and 4.5 mHz, but strongly positive for high frequencies between 4.5 and 6.0 mHz. For high frequencies, the acoustic emission excess in sunspot halos overwhelms the emission deficiency in sunspot umbrae and penumbrae. The correlation between the acoustic emission in quiet regions and the solar activity level is negative for 2.5-4.0 mHz and positive for 4.0-5.5 mHz. This shows that the solar background acoustic power, with active regions excluded, also varies during a solar cycle, implying the excitation frequencies or depths are highly related to the solar magnetic field.

  9. Failure Progress of 3D Reinforced GFRP Laminate during Static Bending, Evaluated by Means of Acoustic Emission and Vibrations Analysis

    Mateusz Koziol

    2015-12-01

    Full Text Available The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event’s energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is “safer” and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.

  10. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  ‑150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  11. STUDY OF ACOUSTIC EMISSION DURING NON- ISOTHERMAL CRYSTALLIZATION OF POLYPROPYLENE

    SHEN Jingshu; XU Duanfu; YAO Ruigang; LIU Ruixia; LI Dawei

    1990-01-01

    In this paper we have presented the results of acoustic emission (AE) during non-isothemal crystallization of polypropylene (PP) melt with mean cooling rate 4 ℃ /min , and discussed the effects of molecular weight (MW) on AE activity. It is shown that the amount of AE ring-down counts during whole crystallization of PP depends on the MW strongly. The copious AE bursts have been observed at the late stage of PPcrystallization.AE bursts are caused by cracking ,crazing and cavitation between spherulites and inside spherulites.

  12. Acoustic emission mechanism at switching of ferroelectric crystals

    Process of acoustic emission (AE) in lead germanate (PGO) representing pure ferroelectric, and gadolinium molybdate (GMO) representing ferroelectric-ferroelastic, for which switching may be conducted both by the field and pressure, were studied. A conclusion has been drawn that piezoelectric excitation of a crystal from the surface by pulses of overpolarization current in the process of domain coalescence is the main AE source in PGO. Not only piezoresponse, but also direct sound generation in the moment of domain penetration and collapse is considered as AE mechanism in GMO

  13. Acoustic emission study of deformation behavior of nacre

    Luo, Shunfei; Luo, Hongyun; Han, Zhiyuan

    2016-02-01

    A study on the acoustic emission (AE) characteristics during deformation of nacre material was performed. We found that intermittent AE events are generated during nacre deformation. These avalanches may be attributed to microfracture events of the aragonite (CaCO3) nano-asperities and bridges during tablet sliding. These events show several critical features, such as the power-law distributions of the avalanche sizes and interval. These results suggest that the underlying fracture dynamics during nacre deformation display a self-organized criticality (SOC). The results also imply that the disorder and long-range correlation between local microfracture events may play important roles in nacre deformation.

  14. The application of acoustic emission measurements on laboratory testpieces to large scale pressure vessel monitoring

    A test pressure vessel containing 4 artificial defects was monitored for emission whilst pressure cycling to failure. Testpieces cut from both the failed vessel and from as-rolled plate material were tested in the laboratory. A marked difference in emission characteristics was observed between plate and vessel testpieces. Activity from vessel material was virtually constant after general yield and emission amplitudes were low. Plate testpieces showed maximum activity at general yield and more frequent high amplitude emissions. An attempt has been made to compare the system sensitivities between the pressure vessel test and laboratory tests. In the absence of an absolute calibration device, system sensitivities were estimated using dummy signals generated by the excitation of an emission sensor. The measurements have shown an overall difference in sensitivity between vessel and laboratory tests of approximately 25db. The reduced sensitivity in the vessel test is attributed to a combination of differences in sensors, acoustic couplant, attenuation, and dispersion relative to laboratory tests and the relative significance of these factors is discussed. Signal amplitude analysis of the emissions monitored from laboratory testpieces showed that, whith losses of the order of 25 to 30db, few emissions would be detected from the pressure vessel test. It is concluded that no reliable prediction of acoustic behaviour of a structure may be made from laboratory test unless testpieces of the actual structural material are used. A considerable improvement in detection sensitivity, is also required for reliable detection of defects in low strength ductile materials and an absolute method of system calibration is required between tests

  15. Spectral characteristics of Acoustic Emission of rock based on Singular point of HHT Analysis

    Zhou Xiaoshan

    2016-01-01

    Full Text Available The sandstone test of uniaxial compression acoustic emission (AE test has been studied, the HHT analysis is applied to AE signal processing, and through the analysis of AE signal to reveal the process of rock fracture. The results show that HHT is a method that based on principal component analysis of time-frequency analysis. The method of HHT can very convenient to deal the singular signal; it can be determine the main composition of singular signal. The instantaneous frequency can be used to describe precisely the time-frequency characteristics of singular signal. The method has a very important significance to reveal the frequency characteristics of AE signal. The EMD signal is decomposed into 8 IMF components in the failure process of rock sound. The component of IMF1 ~ IMF4 is the main component, and the IMF5 ~ IMF8 for low frequency noise signal. Through the EMD of AE signal frequency, the rock fracture has been decomposition into three stages: the initial zone, wave zone, quiet zone. This shows that in the analysis of rupture must eliminate noise interference signal characteristics of AE.

  16. Characterization of granular collapse onto hard substrates by acoustic emissions

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien

    2013-04-01

    Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what

  17. Signal processing approaches on otoacoustic emissions

    Cheng, Jun

    2000-01-01

    The recent achievement on the measurement of otoacoustic emissions (OAEs) is based on a novel technical development of digital signal processing. OAEs measured in the external ear canal are normal by-products of the active process in hearing, which was discovered by Kemp (1978). Outer hair cells (OHCs) are thought to be the active source in the generation of this energy. Signal processing methods play a crucial role in the detection of OAEs in noise and artifacts, and in the...

  18. Application of acoustic emission technique for check valve monitoring

    Very limited choice is available in monitoring the health of check valves during service. Ultrasonics, magnetic flux leakage and acoustic emission (AE) monitoring are three methods, of which AE is the prominent. The paper describes work done on swing check valves in the ECCS circuit of Cirus using AE. It indicates that the valves can be monitored for any abnormal behaviour during their stable operation and during opening and closing. AE can also sense any abnormality at the hinge pin, hinge arm, disc etc., if they give AE emission. However, many of these may require background data from a spare valve of similar design or a working stand by. In absence of such a valve, data from the present study will be used as a baseline data for comparison with signatures taken during future inspections. (author). 3 refs., 5 figs., 1 tab

  19. Progressive Shear Failure in Granular Materials: Linking Force Fluctuations With Acoustic Emissions

    Michlmayr, G. K.; Cohen, D. O.; Or, D.

    2011-12-01

    Natural hazards associated with rapid mass movements such as shallow landslides, rock falls or debris flows are notoriously difficult to predict even though precursor events associated with small internal failures are known to occur. In this study we focus on grain scale processes preceding the formation of a shear plane in granular materials such as frictional sliding of grain contacts, accommodation of contact networks and fracturing of grain bonds (in cohesive materials) - all of which are discrete micro-mechanical failure events that emit characteristic acoustic emissions that could be used to study internal failure and potentially provide early warning (albeit short). Experiments involving direct shear tests using glass beads and sand were combined with acoustic emission (AE) measurements using piezoelectric sensors with sensitivities to frequencies in the range of 20kHz - 200kHz and accelerometers (0.2kHz - 20kHz) buried within the sheared sample. We obtained good correlations between shear deformation and associated grain-scale mechanical behavior with key characteristics of measured AE (frequency content, signal energy). Fluctuations of shear force occurring during strain controlled deformation are assumed to represent micro-structural rearrangements of the material. We obtained exponential distributions of force fluctuation magnitudes and low frequency AE event statistics. The number of AE events increased with confining stress as well as with particle roughness and were inversely related to grain size. These results were linked with conceptual models of failure accumulation such as the fiber-bundle model. The statistics of AE event occurrence, particularly magnitude-frequency distributions may provide prediction of imminent mechanical collapse. The strong attenuation of acoustic signals within most earth materials present a major challenge to field applications requiring innovative deployment strategies such as the use of acoustic waveguides.

  20. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  1. Acoustic emission of retrofitted fiber-wrapped columns

    El Echary, Hazem; Mirmiran, Amir

    1998-03-01

    In recent years, fiber-wrapping technique has become increasingly popular for retrofitting of existing bridge pier columns in seismic zones. By the way of confinement, the external jacket enhances strength, ductility and shear performance of the column. However, since state of the concrete core is not visible from outside of the jacket, it is of great necessity to develop proper non-destructive methods to evaluate structural integrity of the column. Extensive research on FRP-confined concrete at the University of Central Florida has shown that failure of such hybrid columns is often accompanied by considerable audible and sub-audible noise, making acoustic emission (AE) a viable NDE technique for retrofitted columns. Acoustic emission from fiber-wrapped concrete specimens were monitored. A total of 24 concrete specimens with two types of construction (bonded and unbonded) and four different number of layers (1, 3, 5 and 7) were tested under uniaxial compression. All specimens were made of S-glass fabric and polyester resin with a core diameter of 6' and a length of 12'. Some of the specimens were subjected to cycles of loading and unloading to examine the presence of the Kaiser and the Felicity effects. A 4-channel AEDSP-32/16 (Mistras-2001) machine from Physical Acoustics Corp. was used for the experiments. Results indicate that AE energy and the number of AE counts can both be good representatives for the response of confined concrete. Further, plots of AE energy versus load follows the same bilinear trend that has been observed in the stress-strain response of such specimens. Finally, Felicity effect was observed in all composite specimens.

  2. Localization of acoustic emission sources in tensile and ct specimens using a broadband acquisition technique.

    Fleischmann, P; Rouby, D; Malaprade, G; Lanchon, I

    1981-11-01

    The acoustic emission sources in a conventional cylindrical tensile test sample of short transversely-cut carbon manganese steel are localized. There is not always a good correlation between the localization of the first signals and the zone which eventually fractures. During the Lüder's plateau, the ae signals are emitted in the deformation band and, in the hardening range, there is no significant ae in the gauge length of the sample. In ct samples precracked by fatigue, the signals are due to the growth of the plastic zone around the crack tip, and the plastic zone size, measured by source localization, agrees with those provided by models derived from fracture mechanics. PMID:7292774

  3. Relation between welding parameter and acoustic emission information during laser deep penetration welding

    陈彦宾; 张忠典; 王欣

    2002-01-01

    In laser non-penetration deep penetration welding process, welding material will vaporize, metal vapor and ambient gas will produce a higher degree ionization, which forms plasma of high concentration. In the case of forming a small hole, plasma will eject from the hole, and form acoustic emission (AE) signals. Because AE information has many advantages such as non-contact measuring, fast response, and high ratio of signal to noise, it can be used as a monitor variable for in-process control. By studying AE information, information of welding pool and small hole can be obtained. According to characteristic of AE information, this paper reveals the correlation between welding parameters and AE signals, and provides a good base for further quality control.

  4. [Acoustic emission diagnostic techniques for high-field high current-density super inducting poles

    Acoustic emission technology was introduced in the late 1970's to monitor superconducting magnets. It has now been firmly established that acoustic signals in superconducting magnets are emitted principally by mechanical events such as conductor strain, conductor motion, frictional motion, and epoxy cracking. Despite earlier suggestions, flux motion, except during flux jumping, does not appear to be an important source of AE signals in superconducting magnets. Of these several potential sources of AE signals in superconducting magnets, mechanical disturbances have been identified to be most important in high-performance, ''adiabatic'' magnets such as the dipoles used in accelerators. These mechanical disturbances are transitory, each generating a packet of AE signals that can be located with sensors. Source identification and location has been achieved with a number of superconducting magnets. In this section, the basic principle for the operation of adiabatic magnets is discussed, followed by presentation of some of the important experimental results relevant to the question of premature quench obtained at MIT

  5. Study of oxygen reduction on stainless steel surfaces and its contribution to acoustic emission recorded during corrosion processes

    Acoustic emission technique is often used to monitor corrosion processes. Yet, among the potential sources of AE associated to corrosion phenomena, the emissivity of oxygen reduction on metallic surfaces has never been studied up to now. In that context, dissolved oxygen reduction was monitored by acoustic emission (AE) on as polished, pre-reduced, electrochemically or chemically passivated surfaces of AISI 316L austenitic stainless steel. The influence of the composition of the passive film on the oxygen reduction reaction has been confirmed. Moreover, in our experimental configuration, it has been demonstrated that proton reduction or iron oxide reduction were not at the origin of AE signals recorded during cathodic polarization of the specimens. On the other hand, oxygen reduction involving O-O bond rupture and/or atomic oxygen desorption from metallic surface appears to be the source of detected acoustic emission. However, these mechanisms generally occur too slowly during free corrosion processes, such as crevice corrosion, to promote any significant acoustic emission when developing naturally on metallic surfaces

  6. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis

    Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process

  7. Combined optical fiber interferometric sensors for the detection of acoustic emission

    LIANG Yi-jun; MU Lin-lin; LIU Jun-feng; YU Xiao-tao

    2008-01-01

    A type of combined optical fiber interferometric acoustic emission sensor is proposed.The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure.Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy.PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid.The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of intefferometer and using Fourier transform technique.The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.

  8. Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing

    Caesarendra, Wahyu; Kosasih, Buyung; Tieu, Anh Kiet; Zhu, Hongtao; Moodie, Craig A. S.; Zhu, Qiang

    2016-05-01

    This paper presents an acoustic emission-based method for the condition monitoring of low speed reversible slew bearings. Several acoustic emission (AE) hit parameters as the monitoring parameters for the detection of impending failure of slew bearings are reviewed first. The review focuses on: (1) the application of AE in typical rolling element bearings running at different speed classifications, i.e. high speed (>600 rpm), low speed (10-600 rpm) and very low speed (<10 rpm); (2) the commonly used AE hit parameters in rolling element bearings and (3) AE signal processing, feature extraction and pattern recognition methods. In the experiment, impending failure of the slew bearing was detected by the AE hit parameters after the new bearing had run continuously for approximately 15 months. The slew bearing was then dismantled and the evidence of the early defect was analysed. Based on the result, we propose a feature extraction method of the AE waveform signal using the largest Lyapunov exponent (LLE) algorithm and demonstrate that the LLE feature can detect the sign of failure earlier than the AE hit parameters with improved prediction of the progressive trend of the defect.

  9. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  10. Acoustic emission diagnosis of concrete-piles damaged by earthquakes

    Earthquakes often impose unexpected damage on structures. Concerning the soundness of the structure, the upper portion is easily estimated by visual observation, while the lower portion located in deep underground is difficult to be estimated. Thus there exist few effective methods to investigate underground structures. In this paper, a new inspection technique for damage evaluation of concrete-piles utilizing acoustic emission (AE) is proposed, and is verified by a series of experiments. Firstly, such basic characteristics as the attenuation and effective wave-guides for detecting AE underground, are examined through laboratory tests. Secondary, fracture tests of full-scale prefabricated concrete piles are conducted, and the characteristics of the AE are examined. Finally, actual concrete-piles attacked by the 1995 Great Hanshin Earthquake are investigated. Results confirm that the estimated damages by the proposed method are in good agreement with actual damaged locations. Thus, the method is very effective for the diagnosis of the concrete-piles.