WorldWideScience

Sample records for acoustic doppler current

  1. Acoustic Doppler Current Profiling near Shorty's Island, June 1, 2012, Kootenai River near Bonners Ferry, ID

    U.S. Geological Survey, Department of the Interior — An Acoustic Doppler Current Profiler (ADCP) was used to survey streamflow characteristics including total streamflow, velocity magnitude and secondary flow...

  2. Buoyancy package for self-contained acoustic doppler current profiler mooring

    Venkatesan, R.; Krishnakumar, V.

    A buoyancy package for self-contained Acoustic Doppler Current Profiler(SC-ADCP 1200 RD instruments USA) was designed and fabricated indigenously, for subsurface mooring in coastal waters. The system design is discussed. The design to keep SC...

  3. Acoustic Doppler Current Profiling near Myrtle Bend, June 3, 2013, Kootenai River near Bonners Ferry, ID

    U.S. Geological Survey, Department of the Interior — Acoustic doppler current profiling (ADCP) data was collected to describe streamflow characteristics including total streamflow, velocity magnitude and secondary...

  4. Estimation of Surface Winds From Upward Looking Acoustic Doppler Current Profilers

    Brown, Juan; Barton, Eric D.; Trasviña, Armando; Vélez, Héctor S.; Kosro, P. Michael; Robert L. Smith

    1992-01-01

    Three upward looking acoustic Doppler current profilers (ADCP) were deployed beneath meteorological buoys in the Gulf of Tehuantepec, Mexico, during winter 1988–1989. Hourly averaged wind speed data from the buoys and from ship when in the vicinity were compared with surface acoustic backscatter intensity recorded at the ADCPs. The backscatter was found to be a significant predictor of wind speeds from both buoy and ship, the latter when within 50 km of the mooring site. There was no apparent...

  5. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    A. J. F. Hoitink; F. A. Buschman; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP (HADCP) data in a tidal river. In the deterministic part, single-depth velocity data are converted to specific discharge by applying the law of the wall, which requires knowledge of local values o...

  6. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Sellar, Brian [Univ. of Edinburgh, Scotland (United Kingdom); Harding, Samuel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-16

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referred to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.

  7. Ocean currents measured by Shipboard Acoustic Doppler Current Profilers (SADCP) from global oceans accumulated at Joint Archive for SADCP from 2004 to 2013 (NODC Accession 0123302)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high-frequency sampling (nominally 5 minutes...

  8. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  9. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    Kim, D.; Winkler, M.; Muste, M.

    2015-06-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats.

  10. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  11. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  12. Correcting acoustic Doppler current profiler discharge measurements biased by sediment transport

    Mueller, D.S.; Wagner, C.R.

    2007-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment on or near the streambed, and is an issue widely acknowledged by the scientific community. The integration of a differentially corrected global positioning system (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias, based on the closure error resulting from a two-way crossing of the river, is presented. The uncertainty in the mean moving-bed velocity measured by the loop method is shown to be approximately 0.6cm/s. For the 13 field measurements presented, the loop method resulted in corrected discharges that were within 5% of discharges measured utilizing DGPS to compensate for moving-bed conditions. ?? 2007 ASCE.

  13. Validation of HF radar probing of the vertical shear of surface currents by acoustic Doppler current profiler measurements

    Ivonin, Dmitry V.; Broche, Pierre; Devenon, Jean-Luc; Shrira, Victor I.

    2004-04-01

    There exists no practical way of measuring vertical shear in the water just below the air/sea interface that contains information on air/water momentum fluxes. The paper is concerned with the validation of a recently proposed method of remote sensing of sea subsurface shear by means of a commonly used single-frequency HF radar based on the use of the second-order Bragg echo. To this end a dedicated field experiment was carried out off the French Mediterranean coast. In parallel with the HF radar probing, the independent simultaneous measurements of the subsurface shear profile were obtained by means of acoustic Doppler current profiler mounted on a floating platform, whose position was monitored by GPS. The comparison shows a fairly good agreement of the results (the discrepancy does not exceed 15%) and suggests a higher accuracy of the HF probing.

  14. Temperature, conductivity, pressure, oxygen concentration, beam attenuation, Chlorophyll-a fluorescence, current speed and direction, and particle size distribution collected from moored platform using CTD, ADCP, acoustic Doppler velocimeter, and benthic optical sensors in Monterey Bay from 2011-05-03 to 2012-10-29 (NODC Accession 0123606)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational oceanographic data obtained by an autonomous moored CTD profiler, thermistor mooring, acoustic Doppler current profiler, acoustic Doppler velocimeter,...

  15. Comparison of acoustic doppler current profiler and Price AA mechanical current meter measurements made during the 2011 Mississippi River Flood

    O'Brien, Patrick; Mueller, David; Pratt, Thad

    2012-01-01

    The Mississippi River and Tributaries project performed as designed during the historic 2011 Mississippi River flood, with many of the operational decisions based on discharge targets as opposed to stage. Measurement of discharge at the Tarbert Landing, Mississippi range provides critical information used in operational decisions for the floodways located in Louisiana. Historically, discharge measurements have been made using a Price AA current meter and the mid-section method, and a long record exists based on these types of measurements, including historical peak discharges. Discharge measurements made using an acoustic Doppler current profiler from a moving boat have been incorporated into the record since the mid 1990's, and are used along with the Price AA mid-section measurements. During the 2011 flood event, both methods were used and appeared to provide different results at times. The apparent differences between the measurement techniques are due to complex hydrodynamics at this location that created large spatial and temporal fluctuations in the flow. The data and analysis presented herein show the difference between the two methods to be within the expected accuracy of the measurements when the measurements are made concurrently. The observed fluctuations prevent valid comparisons of data collected sequentially or even with different observation durations.

  16. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    Kim, H.S.; Flagg, C.N.; Shi, Y. [Brookhaven National Lab., Upton, NY (United States). Oceanographic and Atmospheric Sciences Div.

    1996-12-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the US JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. Seven of the cruises follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipment and towing of a SeaSoar. Detailed description of ADCP hardware, the AutoADCP data acquisition system, and the collection of navigation and compass data on the Thompson is documented in Section 2. Followed by data collection for each cruise together with a cruise track, Section 3 presents the processing and analysis of velocity and acoustic backscatter intensity data. Section 5 shows results of profile quality diagnosis.

  17. Acoustic Doppler Current Profiler Measurements in the Tailrace at John Day Dam

    Cook, Chris B.; Dibrani, Berhon; Serkowski, John A.; Richmond, Marshall C.; Titzler, P. Scott; Dennis, Gary W.

    2006-01-30

    Acoustic Doppler current profilers (ADCPs) were used to measure water velocities in the tailrace at John Day Dam over a two-week period in February 2005. Data were collected by the Pacific Northwest National Laboratory for the Hydraulic Design Section, Portland District, U.S. Army Corps of Engineers (USACE). The objective of this project was therefore to collect field measurements of water velocities in the near-field draft tube exit zone as well as the far-field tailrace to be used for improving these models. Field data were collected during the project using five separate ADCPs. Mobile ADCP data were collected using two ADCPs mounted on two separate boats. Data were collected by either holding the boat on-station at pre-defined locations for approximately 10 minutes or in moving transect mode when the boat would move over large distances during the data collection. Results from the mobile ADCP survey indicated a complex hydrodynamic flow field in the tailrace downstream of John Day Dam. A large gyre was noted between the skeleton section of the powerhouse and non-spilling portion of the spillway. Downstream of the spillway, the spillway flow is constrained against the navigation lock guide wall, and large velocities were noted in this region. Downstream of the guide wall, velocities decreased as the spillway jet dispersed. Near the tailrace island, the flow split was measured to be approximately equal on Day 2 (25.4 kcfs spillway/123 kcfs total). However, approximately 60% of the flow passed along the south shore of the island on Day 1 (15.0 kcfs spillway/150 kcfs total). At a distance of 9000 ft downstream of the dam, flows had equalized laterally and were generally uniform over the cross section. The collection of water velocities near the draft tube exit of an operating turbine unit is not routine, and equipment capable of measuring 3D water velocities in these zones are at the forefront of hydraulic measurement technology. Although the feasibility of

  18. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for SADCP holdings from 20 August 1999 to 13 May 2009 (NCEI Accession 0067774)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high-frequency sampling (nominally 5 minutes...

  19. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 16 June 1985 to 23 March 2001 (NCEI Accession 0000755)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  20. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 16 June 1985 to 22 July 2003 (NODC Accession 0001206)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  1. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—User’s manual for version 2.8

    Mueller, David S.

    2016-01-01

    The software program, QRev computes the discharge from moving-boat acoustic Doppler current profiler measurements using data collected with any of the Teledyne RD Instrument or SonTek bottom tracking acoustic Doppler current profilers. The computation of discharge is independent of the manufacturer of the acoustic Doppler current profiler because QRev applies consistent algorithms independent of the data source. In addition, QRev automates filtering and quality checking of the collected data and provides feedback to the user of potential quality issues with the measurement. Various statistics and characteristics of the measurement, in addition to a simple uncertainty assessment are provided to the user to assist them in properly rating the measurement. QRev saves an extensible markup language file that can be imported into databases or electronic field notes software. The user interacts with QRev through a tablet-friendly graphical user interface. This report is the manual for version 2.8 of QRev.

  2. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview

  3. Observations of near-inertial waves in acoustic Doppler current profiler measurements made during the Mixed Layer Dynamics Experiment

    Chereskin, T. K.; Levine, M. D.; Harding, A. J.; Regier, L. A.

    1989-06-01

    Measurements of upper ocean shear made during the Mixed Layer Dynamics Experiment (MILDEX) provide evidence of large horizontal scale motion at near-inertial frequency. The measurements consist of shipboard acoustic Doppler current profiles. Four large-scale spatial surveys of 2-4 days duration were made by the R/V Wecoma as a set of boxes approximately 60 km per side around a drifting current meter buoy. Velocity time series from the drifting buoy and from sonar measurements made from FLIP also indicated the presence of motions at near-inertial frequency. Horizontal length and time scales of the motion are estimated from the phase of the shear vector measured during the spatial surveys. Estimates of the length scale of the waves range from 500 to 1000 km, and the frequency is approximately 1.1f. The behavior of the phase is found to be consistent with a model of narrow-band inertial waves with vertical structure such that there is a zero crossing in velocity at the base of the mixed layer (40-60 m).

  4. Acoustic doppler methods for remote measurements of ocean flows - a review

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  5. Acoustic Doppler current profiling from the JGOFS Arabian sea cruises aboard the RV T.G. Thompson

    Kim, Hyun-Sook; Flagg, C.N.; Shi, Yan

    1996-06-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the U.S. JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. They are numbered consecutively from the ship`s commissioning with the first JGOFS cruise designated TN039. Table 1 lists start and end dates of each cruise with its mission. All but the first cruise have been or will be staged from Muscat, Oman. Each cruise is scheduled for a duration of between two weeks and one month. Seven of the cruises, referred to as process cruises, follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipments and towing of a SeaSoar. ADCP data are collected using an autonomous data acquisition system developed for ship-of-opportunity cruises, named the AutoADCP system. The system is an extension of RD instrument`s DAS version 2.48 using enhancements made possible with {open_quotes}user-exit{close_quotes} programs. It makes it possible to collect ADCP data without the constant monitoring usually necessary and insures constant data coverage and uniform data quality.

  6. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  7. The Acoustic Doppler Current Profiler (adcp) as a Tool for Ocean Exploration

    Rossby, H. T.; Flagg, C. N.; Ortner, P. B.

    2010-12-01

    Although the ADCP has been around for three decades it remains somewhat underappreciated for its excellent exploratory potential in several areas. First and perhaps foremost because oceanographers have always been handicapped in their ability to resolve horizontal patterns below the surface, the ADCP opens up a powerful and very cost-effective window into the ocean water column to explore the meso- and submesoscale velocity field at very high resolution. This is particularly true when ADCP data are collected from just a single instrument mounted on a vessel operating repeatedly over an extended period of time in an area or along a route. The ADCP greatly expands upon hydrographic and XBT information by directly measuring the velocity field accurately without any assumptions about geostrophy or the velocity of reference layers. Second, vessels in transit can characterize currents and eddy activities across contrasting oceanic regimes and highlight their relation to the steering role of bottom topography. Third, even though the ADCP is a single frequency device the backscatter signal recorded by the ADCP is showing considerable skill in revealing space-time patterns of biomass variability. Here, through data we have taken over the past ten years, we survey the ADCP’s future as a tool of exploration across several dimensions: space, time, and parameter (physics and biology). Today, thanks to the ADCP we have a far more accurate picture of the velocity and vorticity structure of fronts and eddies. At the surface a front is simply a transition between different water masses, but the actual transition will often consist a water-mass and potential vorticity jump on a significantly smaller scale within the frontal feature. The same applies to the boundaries of rings and lenses. Commercial vessels equipped with ADCPs operating on a repeat schedule can document underlying patterns that single transects or cruises cannot detect due to inherent eddy activity. Newly

  8. Observation of wind forced circulation on the continental shelf off Point Sur, California from a self-contained acoustic doppler current profiler.

    Abbott, Christopher Lynn

    1991-01-01

    Approved for public release; distribution is unlimited To study the current structure of the California Current as it manifests itself on the continental shelf a subsurface mooring, P1, was anchored 5km west of Point Sur at 36(o), 17' N, 121(o), 59' W from 28 February through 11 May 1990. the P1 mooring, placed on the 84 m isobaths, consisted of a self-contained acoustic Doppler current profiler (SC-ADCP) housed in a syntactic foam sphere and secured to an anchor. The mooring geometry pl...

  9. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  10. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional

  11. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Freidoonkenar Bay, Iran

    P. Ghaffari

    2009-12-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Freidoonkenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year that performs motive force in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, are dominating the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  12. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Feridoonkenar Bay, Iran

    P. Ghaffari

    2010-07-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Feridoon-kenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year. This system performs the forcing in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, dominates the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  13. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  14. The diel vertical migration of sound scatterers observed by an acoustic Doppler current profiler in the Luzon Strait from July 2009 to April 2011

    YANG Chenghao; LIAO Guanghong; YUAN Yaochu; CHEN Hong; ZHU Xiaohua

    2013-01-01

    Acoustic Doppler current profiler (ADCP) receives echoes from sound scatterers, then their speed is calcu-lated by the Doppler effect. In the open ocean, most of these backscatterers are from the plankton. The sound scatterers descend down to depth at around dawn, their mean speed is 2.9 cm/s, then they ascend up to the surface layer at around dusk with a mean speed of 2.1 cm/s, in the Luzon Strait. The descending speed is faster, which suggests that this zooplankton population may accelerate its downward migration under the action of the gravity. The vertical distribution of a mean volume backscattering strength (MVB-S) in the nighttime has two peaks, which locate near the upper and lower boundary layers of halocline, respectively. However, the backscatterers only aggregate near the surface layer in the daytime. The diel ver-tical migration (DVM) of sound scatterers has several characteristic patterns, it is stronger in summer, but weaker in winter, and the maximum peak occurs in September. The DVM occurrence is synchronous with the seawater temperature increasing at around dawn and dusk, it may affect the ocean mixing and water stratification.

  15. Year-long measurements of flow-through the dover strait by HF radar and acoustic doppler current profilers (ADCP)

    Prandle, D.

    1993-01-01

    Contaminants from the Channel flow through the Dover Strait into the North Sea where they represent a significant fraction of the enhanced concentrations observed along the continental coast. Despite numerous previous investigations, the magnitude of this net flow and its dependency on various forcing factors remain uncertain. The new UK H.F. Radar system, OSCR (Ocean Surface Current Radar) developed for measuring nearshore surface currents offers a clear opportunity of establishing the magni...

  16. Experimental Observation of Reversed Doppler Effects in Acoustic Metamaterials

    Zhai, Shilong; Zhao, Xiaopeng; Liu, Song; Luo, Chunrong

    2015-01-01

    This paper reports an experimental observation of broadband reversed Doppler effects using an acoustic metamaterial with seven flute-like double-meta-molecule clusters. Simulations and experiments verify that this locally resonant acoustic metamaterial with simultaneous negative elastic modulus and mass density can realize negative refraction in a broad frequency range. The constructed metamaterial exhibits broadband reversed Doppler effects. The frequency shift increases continuously as the ...

  17. Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data

    McCaffrey, Katherine

    Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean's sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations. I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2/3 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and -1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing

  18. Ocean Current Velocity Moored Time-Series Records, collected from moored Acoustic Doppler Current Profilers (ADCP) during 2010 and 2011 in Vieques Sound and Virgin Passage (NODC Accession 0088063)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between March 2010 and April 2011 on shallow water moorings located in Vieques Sound, Puerto Rico,...

  19. Ocean Current Velocity Moored Time-Series Records collected from moored Acoustic Doppler Current Profilers near Grammanik Bank Spawning Aggregation Site (SPAG) and Frenchcap Cay, United States Virgin Islands, from April 24, 2011 to September 25, 2011 (NODC Accession 0088064)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between April 2011 and September 2011 on shallow water moorings located on the coastal shelf south...

  20. Ocean Current Velocity Moored Time-Series Records, collected from moored Acoustic Doppler Current Profilers (ADCP) during 2011 near Grammanik Bank SPAG and Frenchcap Cay, USVI (NODC Accession 0088064)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between April 2011 and September 2011 on shallow water moorings located on the coastal shelf south...

  1. HF Doppler observations of acoustic waves excited by the earthquake

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  2. A New Underwater Acoustic Navigation Method Based on the Doppler Principle

    Jinsong Tang; Kun Fang; Sen Zhang

    2013-01-01

    In this paper, a new underwater acoustic navigation method is proposed, which is named from Doppler Acoustic Omnirange Beacon (DAOB). It is borrowed from the idea of Doppler VHF Omnirange (DVOR) and based on the Doppler principle. The cause of Doppler effect in the received signal is the motion or position change of one or two sources. The effect of multipath is analyzed, and an improved signal form is presented to solve the rigorous multipath environment underwater. Some simulation is presen...

  3. Use of Acoustic Doppler Instruments for Measuring Discharge in Streams with Appreciable Sediment Transport

    Mueller, D.S.

    2002-01-01

    The use of Acoustic Doppler current profilers (ADCP) for measuring discharge in streams with sediment transport was discussed. The studies show that the acoustic frequency of an ADCP in combination with the sediment transport characteristics in a river causes the ADCP bottom-tracking algorithms to detect a moving bottom. A moving bottom causes bottom-tracking-referenced water velocities and discharges to be biased low. The results also show that the use of differential global positioning system (DGPS) data allows accurate measurement of water velocities and discharges in such cases.

  4. Current-induced spin wave Doppler shift

    Bailleul, Matthieu

    2010-03-01

    In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).

  5. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Acoustic doppler current profilers data on CD-ROM (NODC Accession 0000312)

    National Oceanic and Atmospheric Administration, Department of Commerce — World-Wide shipboard current data were collected from ADCP casts from the ALPHA HELIX and other platforms as part of World Ocean Circulation Experiment (WOCE). Data...

  6. CRED Acoustic Doppler Profiler (ADP); NWHI, MID; Long: -177.42181, Lat: 28.21826 (WGS84); Sensor Depth: 1.83m; Data Range: 20080926-20090321.

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Island Fisheries Science Center Acoustic Doppler Profilers (ADP) provide a time series of water current...

  7. CRED Acoustic Doppler Profiler (ADP); AMSM, ROS; Long: -168.15481, Lat: -14.53510 (WGS84); Sensor Depth: 7.01m; Data Range: 20080311-20080314.

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Island Fisheries Science Center Acoustic Doppler Profilers (ADP) provide a time series of water current...

  8. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    Mueller, D.S.

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  9. A New Underwater Acoustic Navigation Method Based on the Doppler Principle

    Jinsong Tang

    2013-07-01

    Full Text Available In this paper, a new underwater acoustic navigation method is proposed, which is named from Doppler Acoustic Omnirange Beacon (DAOB. It is borrowed from the idea of Doppler VHF Omnirange (DVOR and based on the Doppler principle. The cause of Doppler effect in the received signal is the motion or position change of one or two sources. The effect of multipath is analyzed, and an improved signal form is presented to solve the rigorous multipath environment underwater. Some simulation is presented to verify the performance.    

  10. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  11. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids

    Brunker, Joanna; Beard, Paul

    2016-02-01

    Photoacoustic Doppler velocimetry provides a major opportunity to overcome limitations of existing blood flow measuring methods. By enabling measurements with high spatial resolution several millimetres deep in tissue, it could probe microvascular blood flow abnormalities characteristic of many different diseases. Although previous work has demonstrated feasibility in solid phantoms, measurements in blood have proved significantly more challenging. This difficulty is commonly attributed to the requirement that the absorber spatial distribution is heterogeneous relative to the minimum detectable acoustic wavelength. By undertaking a rigorous study using blood-mimicking fluid suspensions of 3 μm absorbing microspheres, it was discovered that the perceived heterogeneity is not only limited by the intrinsic detector bandwidth; in addition, bandlimiting due to spatial averaging within the detector field-of-view also reduces perceived heterogeneity and compromises velocity measurement accuracy. These detrimental effects were found to be mitigated by high-pass filtering to select photoacoustic signal components associated with high heterogeneity. Measurement under-reading due to limited light penetration into the flow vessel was also observed. Accurate average velocity measurements were recovered using “range-gating”, which furthermore maps the cross-sectional velocity profile. These insights may help pave the way to deep-tissue non-invasive mapping of microvascular blood flow using photoacoustic methods.

  12. Doppler effect in a solid medium: Spin wave emission by a precessing domain wall drifting in spin current

    Xia, Hong; Chen, Jie; Zeng, Xiaoyan; Yan, Ming

    2016-04-01

    The Doppler effect is a fundamental physical phenomenon observed for waves propagating in vacuum or various media, commonly gaseous or liquid. Here, we report on the occurrence of a Doppler effect in a solid medium. Instead of a real object, a topological soliton, i.e., a magnetic domain wall (DW) traveling in a current-carrying ferromagnetic nanowire, plays the role of the moving wave source. The Larmor precession of the DW in an external field stimulates emission of monochromatic spin waves (SWs) during its motion, which show a significant Doppler effect, comparable to the acoustic one of a train whistle. This process involves two prominent spin-transfer-torque effects simultaneously, the current-driven DW motion and the current-induced SW Doppler shift. The latter gives rise to an interesting feature, i.e., the observed SW Doppler effect appears resulting from a stationary source and a moving observer, contrary to the laboratory frame.

  13. Reverse Doppler effect in backward spin waves scattered on acoustic waves

    A. V. Chumak; Dhagat, P.; Jander, A.; Serga, A. A.; Hillebrands, B

    2009-01-01

    We report on the observation of reverse Doppler effect in backward spin waves reflected off of surface acoustic waves. The spin waves are excited in a yttrium iron garnet (YIG) film. Simultaneously, acoustic waves are also generated. The strain induced by the acoustic waves in the magnetostrictive YIG film results in the periodic modulation of the magnetic anisotropy in the film. Thus, in effect, a travelling Bragg grating for the spin waves is produced. The backward spin waves reflecting off...

  14. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System

    Kesai Ouyang

    2015-08-01

    Full Text Available The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS. Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy.

  15. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657

  16. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  17. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  18. Evaluation of performance of Son Tek Argonaut acoustic doppler velocity log in tow tank and sea

    Joseph, A.; Madhan, R.; Mascarenhas, A.A.M.Q.; Desai, R.G.P.; VijayKumar, K.; Dias, M.; Tengali, S.; Methar, A.

    Performance of a 500-kHz, 3-beam downward-looking Sontex Argonaut acoustic Doppler velocity log (DVL) based on measurements at tow-tank and sea is addressed. Its accuracy and linearity under tow-tank measurements were largely scattered...

  19. A Comparison of the Electromagnetic and Acoustic Doppler Effects Using Geometrical Diagrams

    Bokor, Nandor

    2009-01-01

    Students often find the difference in the electromagnetic and the acoustic Doppler formulae somewhat puzzling. As is shown below, geometrical diagrams and the concept of "event"--a point in spacetime having coordinates (x,y,z,t)--can be a useful and simple way to explain the physical background behind the fundamental differences between the two…

  20. HF Doppler Acoustic Imaging of the Ocean Surface and Interior

    Pinkel, Robert; Smith, Jerome A.

    2004-11-01

    HF phased array Doppler sonar represents a new tool for obtaining Three-dimensional (r,q,t) images of the oceanic surface and interior velocity field. While the capabilities of the approach are unique, the design constraints are also unusual. Examples of both are presented in this work.

  1. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Tran MinhHai

    2016-01-01

    Full Text Available We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1 estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2 symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  2. Current-induced spin-wave Doppler shift.

    Vlaminck, Vincent; Bailleul, Matthieu

    2008-10-17

    Spin transfer appears to be a promising tool for improving spintronics devices. Experiments that quantitatively access the magnitude of the spin transfer are required for a fundamental understanding of this phenomenon. By inductively measuring spin waves propagating along a permalloy strip subjected to a large electrical current, we observed a current-induced spin wave Doppler shift that we relate to the adiabatic spin transfer torque. Because spin waves provide a well-defined system for performing spin transfer, we anticipate that they could be used as an accurate probe of spin-polarized transport in various itinerant ferromagnets. PMID:18927387

  3. Prospects for in vivo blood velocimetry using acoustic resolution photoacoustic Doppler

    Brunker, J.; Beard, P.

    2016-03-01

    Acoustic resolution photoacoustic Doppler flowmetry (AR-PAF) is a technique that has the potential to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Previous work has shown the potential of the technique using blood-mimicking phantoms, but it has proved difficult to make accurate measurements in blood, and thus in vivo application has not yet been possible. One explanation for this difficulty is that whole blood is insufficiently heterogeneous. Through experimental measurements in red blood cell suspensions of different concentrations, as well as in whole blood, we provide new insight and evidence that refutes this assertion. We show that the velocity measurement accuracy is influenced by bandlimiting not only due to the detector frequency response, but also due to spatial averaging of absorbers within the detector field-of-view. In addition, there is a detrimental effect of limited light penetration, but this can be mitigated by selecting less attenuated wavelengths of light, and also by employing range-gating signal processing. By careful choice of these parameters as well as the detector centre frequency, bandwidth and field-of-view, it is possible to make AR-PAF measurements in whole blood using transducers with bandwidths in the tens of MHz range. These findings have profound implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions.

  4. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. THOMPSON: TN043, January 8, 1995--February 4, 1995; TN044, February 8, 1995--February 25, 1995; TN045, March 14, 1995--April 10, 1995; TN046, April 14, 1995--April 29, 1995

    Flagg, C.N.; Kim, H.S.; Shi, Y.

    1995-09-01

    Acoustic Doppler current profiler (ADCP) data from the R/V T.G. THOMPSON is part of the core data for the US JGOFS Arabian Sea project along with hydrographic and nutrient data. Seventeen cruises on the THOMPSON are scheduled to take place between September 1994 and January 1996. This is the second in a series of data reports covering the ADCP data from the Arabian Sea JGOFS cruises TNO43 through TNO46. ADCP data are being collected on all the JGOFS Arabian Sea cruises using an autonomous data acquisition system developed for ship-of-opportunity cruises. This system, referred to as the AutoADCP, makes it possible to collect the ADCP data without the constant monitoring usually necessary and assures constant data coverage and uniform data quality. This data report presents ADCP results from the second group of four JGOFS cruises, TNO43 through TNO46, concentrating on the data collection and processing methods. The ADCP data itself reside in a CODAS data base at Brookhaven National Laboratory and is generally available to JGOFS investigators through contact with the authors. The CODAS data base and associated ADCP processing software were developed over a number of years by Eric Firing and his group at the University of Hawaii. The CODAS software is shareware available for PC`s or Unix computers and is the single most widely used ADCP processing program for ship mounted units.

  5. Scanning Laser Doppler Vibrometry Application to Artworks: New Acoustic and Mechanical Exciters for Structural Diagnostics

    Agnani, A.; Esposito, E.

    After first attempts some years ago, the scanning laser Doppler vibrometer has become an effective way of diagnosing different types of artworks; successful applications regard frescoes, icons, mosaics, ceramic artefacts and wood inlays. Also application to historical bridges has been successfully developed and a recently approved European Commission project will see the employment of scanning laser Doppler Vibrometry (SLDV) for the dynamical characterization of ancient buildings. However, a critical issue consists in the adequate excitation of the structure under test. Moreover different types of defects and different kinds of artworks require different types of excitation, so this topic needs a deep consideration. In this work we will present two new types of exciters developed at our Department, namely an acoustic exciter and a mechanical one. Acoustic exciters allow remote non-invasive loading but are limited in the lower frequency range and in the amount of vibrational energy input into the structure. The proposed automatic tapping device based on a commercial impact hammer overcomes these problems. Also another acoustic exciter, a HyperSonic Sound (HSS) source has been evaluated, showing interesting features as regards sound radiation.

  6. Three dimensional measurements of Geodesic Acoustic Mode with correlation Doppler reflectometers

    Correlation Doppler reflectometers have been newly developed in the HL-2A Tokamak. Owing to the flexibility of the diagnostic arrangements, the multi-channel systems allow us to study, simultaneously, the radial properties of edge turbulence and its long-range correlation in both the poloidal and toroidal direction. With these reflectometers, three-dimensional spatial structure of Geodesic Acoustic Mode (GAM) is surveyed, including the symmetric feature of Er fluctuations in both poloidal and toroidal directions, and the radial propagation of GAMs. The bi-coherence analysis for the Er fluctuations suggests that the three-wave nonlinear interaction could be the mechanism for the generation of GAM. The temporal evolution of GAM during the plasma density modulation experiments has been studied. The results show that the collisional damping plays a role in suppressing the GAM magnitudes, and hence, weakening the regulating effects of GAM on ambient turbulence. Three dimensional correlation Doppler measurements of GAM activity demonstrate that the newly developed correlation Doppler reflectometers in HL-2A are powerful tools for edge turbulence studies with high reliability. A shorter version of this contribution is due to be published in PoS at: ''1st EPS conference on Plasma Diagnostics''

  7. Theory and signal processing of acoustic correlation techniques for current velocity measurement

    ZHU Weiqing; FENG Lei; WANG Changhong; WANG Yuling; QIU Wei

    2008-01-01

    A theoretical model and signal processing of acoustic correlation measurements to estimate current velocity are discussed. The sonar space-time correlation function of vol-ume reverberations within Fraunhofer zone is derived. The function, which is in exponential forms, is the theoretical model of acoustic correlation measurements. The characteristics of the correlation values around the maximum of the amplitude of the correlation function, where most information about current velocity is contained, are primarily analyzed. Localized Least Mean Squares (LLMS) criterion is put forward for velocity estimation. Sequential Quadratic Programming (SQP) method is adopted as the optimization method. So the systematic sig-nal processing method of acoustic correlation techniques for current velocity measurement is established. A prototype acoustic correlation current profiler (ACCP) underwent several sea trials, the results show that theoretical model approximately coincides with experimental re-sults. Current profiles including the speed and direction from ACCP are compared with those from acoustic Doppler current profiler (ADCP). The current profiles by both instruments agree reasonably well. Also, the standard deviation of velocity measurement by ACCP is statistically calculated and it is a little larger than predicted value.

  8. ALOHA Cabled Observatory (ACO): Acoustic Doppler Current Profiler (ADCP): Temperature

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii's ALOHA ("A Long-term Oligotrophic Habitat Assessment") Cabled Observatory (ACO) is located 100 km north of the island of Oahu, Hawaii (22...

  9. ALOHA Cabled Observatory (ACO): Acoustic Doppler Current Profiler (ADCP): Velocity

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii's ALOHA ("A Long-term Oligotrophic Habitat Assessment") Cabled Observatory (ACO) is located 100 km north of the island of Oahu, Hawaii (22...

  10. Linking water surface roughness to velocity patterns using terrestrial laser scanning and acoustic doppler velocimetry

    Heritage, George; Milan, David; Entwistle, Neil

    2010-05-01

    There are well established links between water surface characteristics and hydraulics. Biotope identification is currently an important part of the River Habitat Survey in England and Wales. Their differentiation is based upon recognition of a family of flow features exhibited on the water surface. Variability in this water surface ‘roughness' is dependent upon the interaction of flow with boundary roughness and flow depth. Past research that has attempted to differentiate biotopes based upon differences in Froude number (Fr) and Reynolds number (Re), however this linkage has only been limited to local analysis between flow velocity, depth and roughness. Milan et al. (2010) have recently demonstrated that terrestrial laser scanning (TLS) can be applied to produce fully quantitative maps of hydraulic habitat, based upon defined water surface roughness delimeters. However the nature of the linkages between water surface roughness, flow velocity and depth are still poorly understood, particularly at the reach-scale. This study attempts to provide a full spatial picture of the links between water surface roughness, flow depth and velocity. A Sontek Acoustic Doppler Velocity Profiler (ADVP) was used to provide detailed information on vertical velocity and water depth for a 300 m reach of the gravel-bed River Wharfe, Yorkshire, UK. Simultaneous to the ADVP measurements, a Riegl LMS-Z210 TLS was used to take a series of first return scans of the water surface. Categorisation of the point cloud elevation data for the water surface was achieved through the allocation of moving window standard deviation values to a regular grid, thus defining water surface roughness. The ADVP data demonstrate gross reach-scale variation in velocity and depth linked to bedforms, and more localised spatial and temporal variation within biotope units. The ADVP data was used to produce reach-scale maps of Fr and Re. The extent to which water surface roughness defined biotopes mapped onto these

  11. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied p...

  12. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  13. Estimating discharge using multi-level velocity data from acoustic doppler instruments

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    ADCP-data have been collected for different stage-values. For each stage many-pull traverses (>20) have been combined in order to produce reliable high-density stream velocity profiles across the stream. Currently, the different sets of velocity data are being analyzed in order to investigate how well...... the discharge may be predicted from the in situ Dopplers. The poster will present the field-set up and the results of the data analysis....

  14. Relative contributions of sand and gravel bedload transport to acoustic Doppler bedload- velocity magnitudes in the Trinity River, California

    Gaeuman, D.; Pittman, S.

    2007-12-01

    Apparent bedload velocities measured using the bottom-track feature of acoustic Doppler current profilers (ADCPs) have received attention over the past few years as potential surrogate technique for estimating bedload transport rates and for investigating bedload dynamics. This poster reports findings from perhaps the first use of ADCP bedload velocity measurements in an applied sediment monitoring program. Sediment transport data reported here were collected under the auspices of the Trinity River Restoration Program as part of an intensive sediment monitoring effort to assess the effects of the 2006 flow release in the Trinity River of Northern California. A 1200-kHz ADCP was deployed for a subset of bedload samples collected during the release to evaluate whether acoustic bedload velocities can be used to aid interpolation between less-frequent physical samples. Paired conventional bedload samples and acoustic bedload velocity samples supplemented by underwater video showed that the instrument used in this study is sensitive primarily to the motion of sand-sized particles at the bed, but comparatively insensitive to the motion of gravel- and cobble-sized particles. High bed velocities were measured at times and in locations where sand transport rates at the bed were high, as determined by both physical samples and video. Low bed velocities were measured where both the video and bedload samples indicated that little or no bedload was being transported, irrespective of the persistence of fast-moving sand particles in the near-bed water column. To the extent that suspended or saltating particles influence the bottom- track signal, they are near enough to the bed to be captured in the physical sampler. Thus, contamination of the bottom-track signal by suspended particles (commonly referred to as water bias) is not a significant problem with this instrument in streams with low to moderate suspended sediment concentrations. These results demonstrate that acoustic

  15. Applicability of acoustic Doppler devices for flow velocity measurements and discharge estimation in flows with sediment transport

    Nord, Guillaume; F. Gallart; Gratiot, N.; Soler, M.; Reid, Ian; Vachtman, Dina; Latron, Jerome; Martín-Vide, J. P.; Laronne, J. B.

    2014-01-01

    Acoustic Doppler devices (Unidata Starflow) have been deployed for velocity measurements and discharge estimates in five contrasted open-channel flow environments, with particular attention given to the influence of sediment transport on instrument performance. The analysis is based on both field observations and flume experiments. These confirm the ability of the Starflow to provide reliable discharge time-series, but point out its limitations when sediment is being transported. (i) After ca...

  16. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  17. Use of 'velocity projection' to estimate the variation of sea-surface height from HF Doppler radar current measurements

    Marmorino, G. O.; Shen, C. Y.; Evans, T. E.; Lindemann, G. J.; Hallock, Z. R.; Shay, L. K.

    2004-02-01

    The technique of 'velocity projection' (J. Geophys. Res. 106 (2001) 6973) is used to estimate the sea-surface height field and its change over time from measurements of surface velocity made using a shore-based HF Doppler radar over a 30×30-km region of the continental shelf located near the mouth of the Chesapeake Bay (USA). Projected current profiles are compared with measured currents from an array of acoustic Doppler current profilers, and the consistency and sensitivity of the projections to model assumptions are also examined. Using projected values of the local surface slope, a model sea-surface η( x, y) is least-squares fit over the study region at each measurement time. The error associated with these fits provides an internal check on the validity of the projection results. The slope of the model sea-surface shows a set-up toward the mouth of the Chesapeake Bay during downwelling-favorable winds and a counterclockwise rotation over the tidal cycle that is consistent with linear, shallow-water dynamics. A time series of sea-level difference extracted from the η maps shows a dominant M 2 tidal signal that compares well with measurements of bottom pressure made at two moorings. With proper attention to limits of applicability, such projection-based sea-surface slope fields (as well as other projection results) may be useful in diagnostic calculations or as nowcasts for use with prognostic models.

  18. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure. PMID:17225392

  19. Acoustic and Doppler radar detection of buried land mines using high-pressure water jets

    Denier, Robert; Herrick, Thomas J.; Mitchell, O. Robert; Summers, David A.; Saylor, Daniel R.

    1999-08-01

    The goal of the waterjet-based mine location and identification project is to find a way to use waterjets to locate and differentiate buried objects. When a buried object is struck with a high-pressure waterjets, the impact will cause characteristic vibrations in the object depending on the object's shape and composition. These vibrations will be transferred to the ground and then to the water stream that is hitting the object. Some of these vibrations will also be transferred to the air via the narrow channel the waterjet cuts in the ground. Currently the ground vibrations are detected with Doppler radar and video camera sensing, while the air vibrations are detected with a directional microphone. Data is collected via a Labview based data acquisition system. This data is then manipulated in Labview to produce the associated power spectrums. These power spectra are fed through various signal processing and recognition routines to determine the probability of there being an object present under the current test location and what that object is likely to be. Our current test area consists of a large X-Y positioning system placed over approximately a five-foot circular test area. The positioning system moves both the waterjet and the sensor package to the test location specified by the Labview control software. Currently we are able to locate buried land mine models at a distance of approximately three inches with a high degree of accuracy.

  20. Detection of geodesic acoustic mode oscillations, using multiple signal classification analysis of Doppler backscattering signal on Tore Supra

    This paper presents the first observation of geodesic acoustic modes (GAMs) on Tore Supra plasmas. Using the Doppler backscattering system, the oscillations of the plasma flow velocity, localized between r/a = 0.85 and r/a = 0.95, and with a frequency, typically around 10 kHz, have been observed at the plasma edge in numerous discharges. When the additional heating power is varied, the frequency is found to scale with Cs/R. The MUltiple SIgnal Classification (MUSIC) algorithm is employed to access the temporal evolution of the perpendicular velocity of density fluctuations. The method is presented in some detail, and is validated and compared against standard methods, such as the conventional fast Fourier transform method, using a synthetic signal. It stands out as a powerful data analysis method to follow the Doppler frequency with a high temporal resolution, which is important in order to extract the dynamics of GAMs. (paper)

  1. Detection of geodesic acoustic mode oscillations, using multiple signal classification analysis of Doppler backscattering signal on Tore Supra

    Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; the Tore Supra Team

    2012-06-01

    This paper presents the first observation of geodesic acoustic modes (GAMs) on Tore Supra plasmas. Using the Doppler backscattering system, the oscillations of the plasma flow velocity, localized between r/a = 0.85 and r/a = 0.95, and with a frequency, typically around 10 kHz, have been observed at the plasma edge in numerous discharges. When the additional heating power is varied, the frequency is found to scale with Cs/R. The MUltiple SIgnal Classification (MUSIC) algorithm is employed to access the temporal evolution of the perpendicular velocity of density fluctuations. The method is presented in some detail, and is validated and compared against standard methods, such as the conventional fast Fourier transform method, using a synthetic signal. It stands out as a powerful data analysis method to follow the Doppler frequency with a high temporal resolution, which is important in order to extract the dynamics of GAMs.

  2. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices

    Martin, Chad A.; Gates, Timothy K.

    2014-09-01

    Seepage losses from unlined irrigation canals amount to a large fraction of the total volume of water diverted for agricultural use, posing problems to both water conservation and water quality. Quantifying these losses and identifying areas where they are most prominent are crucial for determining the severity of seepage-related complications and for assessing the potential benefits of seepage reduction technologies and materials. A relatively easy and inexpensive way to estimate losses over an extensive segment of a canal is the flowing water balance, or inflow-outflow, method. Such estimates, however, have long been considered fraught with ambiguity due both to measurement error and to spatial and temporal variability. This paper presents a water balance analysis that evaluates uncertainty in 60 tests on two typical earthen irrigation canals. Monte Carlo simulation is used to account for a number of different sources of uncertainty. Issues of errors in acoustic Doppler flow measurement, in water level readings, and in evaporation estimates are considered. Storage change and canal wetted perimeter area, affected by variability in the canal prism, as well as lagged vs. simultaneous measurements of discharge at the inflow and outflow ends also are addressed. Mean estimated seepage loss rates for the tested canal reaches ranged from about -0.005 (gain) to 0.110 m3 s-1 per hectare of canal wetted perimeter (or -0.043 to 0.95 m d-1) with estimated probability distributions revealing substantial uncertainty. Across the tests, the average coefficient of variation was about 240% and the average 90th inter-percentile range was 0.143 m3 s-1 per hectare (1.24 m d-1). Sensitivity analysis indicates that while the predominant influence on seepage uncertainty is error in measured discharge at the upstream and downstream ends of the canal test reach, the magnitude and uncertainty of storage change due to unsteady flow also is a significant influence. Recommendations are

  3. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Discoverer Enterprise oil platform from May 23, 2010 to July 04, 2010 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083684)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  4. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Development Driller III from 2010-05-31 to 2010-07-04 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083634)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  5. The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler

    Guerrero, M.

    2014-09-01

    The measurement of sediment processes at the scale of a river cross-section is desirable for the evaluation of many issues related to river hydro-morphodynamics, such as the calibration and validation of numerical models for predicting the climate change impacts on water resources and efforts of maintenance of the navigation channel and other hydraulic works. Suspended- and bed-load have traditionally been measured by cumbersome techniques that are difficult to apply in large rivers. The acoustics for the investigation of small-scale sedimentological processes gained acceptance in the marine community because of its ability to simultaneously profile sediment concentration and size distribution, non-intrusively, and with high temporal and spatial resolution. The application of these methods in true riverine case studies presents additional difficulties, mainly related to water depths and stream currents that limit sound propagation into water and challenge the instruments deployment, especially during floods. This article introduces the motivations for using the ADCP for sediment processes investigation other than for flow discharge measurement, summarizes the developed methods and indicates future desirable improvements. In addition, an application on the Po River in Italy is presented, focusing on the calibration of the existing software by means of ADCP recordings. The calibrated model will assist in planning the dredging activities to maintain the navigation channel and the intake of a pump station for irrigation that is periodically obstructed with a sandbar.

  6. Compensation of Linear Multiscale Doppler for OFDM-Based Underwater Acoustic Communication Systems

    A. E. Abdelkareem

    2012-01-01

    Full Text Available In particular cases, such as acceleration, it is required to design a receiver structure that is capable of accomplishing time varying Doppler compensation. In this paper, two approaches are taken into consideration in order to estimate the symbol timing offset parameter. The first method employed to achieve an estimate of this particular parameter is based upon centroid localization and this prediction is reinforced by a second technique which utilises linear prediction, based on the assumption that the speed changes linearly during the OFDM symbol time. Subsequently, the two estimations of the symbol timing offset parameter are smoothed in order to obtain a fine tuned approximation of the Doppler scale. Additionally, the effects of weighting coefficients on smoothing the Doppler scale and on the performance of the receiver are also investigated. The proposed receiver is investigated, incorporating an improvement that includes fine tuning of the coarse timing synchronization in order to accommodate the time-varying Doppler. Based on this fine-tuned timing synchronization, an extension to the improved receiver is presented to assess the performance of two point correlations. The proposed algorithms' performances were investigated using real data obtained from an experiment that took place in the North Sea in 2009.

  7. Model of the Long Island Sound outflow: Comparison with year-long HF radar and Doppler current observations

    Mau, Jenq-Chi; Wang, Dong-Ping; Ullman, David S.; Codiga, Daniel L.

    2008-08-01

    A three-dimensional primitive-equation model is used to simulate the Long Island Sound (LIS) outflow for a 1-year (2001) period. The model domain includes LIS and New York Bight (NYB). Tidal and wind forcing are included, and seasonal salinity and temperature variations are assimilated. The model results are validated with the HF radar, moored acoustic Doppler current profiler (ADCP), and ferry-based ADCP observations. The agreement between simulated and observed flow patterns generally is very good. The difference in seasonal mean currents between the model and moored ADCP is about 0.01 m/s; the correlation of dominant velocity fluctuations between the model and HF radar is 0.83; and the difference in mean LIS transport between the model and shipboard ADCP is about 5%. However, the model predicts a prominent tidally generated headland eddy not supported by the HF radar observation. The model sensitivity study indicates that the tides, winds, and ambient coastal front all have important impact on the buoyant outflow. The tides and winds cause stronger vertical mixing, which reduces the surface plume strength. The ambient coastal front, on the other hand, tends to enhance the plume.

  8. Current Density Imaging through Acoustically Encoded Magnetometry: A Theoretical Exploration

    Sheltraw, Daniel J

    2014-01-01

    The problem of determining a current density confined to a volume from measurements of the magnetic field it produces exterior to that volume is known to have non-unique solutions. To uniquely determine the current density, or the non-silent components of it, additional spatial encoding of the electric current is needed. In biological systems such as the brain and heart, which generate electric current associated with normal function, a reliable means of generating such additional encoding, on a spatial and temporal scale meaningful to the study of such systems, would be a boon for research. This paper explores a speculative method by which the required additional encoding might be accomplished, on the time scale associated with the propagation of sound across the volume of interest, by means of the application of a radially encoding pulsed acoustic spherical wave.

  9. Design of Yagi antennas for a Doppler radar system that measures ocean surface currents

    The purpose of this study was to design Yagi antennas meeting the design criteria. The study consisted of numerical calculations made with the Lawrence Livermore Laboratory SWANT computer code. The code was modified to include a gain calculation, to incorporate normalized field-pattern calculations, and to output the plots and summaries presented in the 62 figures at the end of the report. These antennas were designed for the National Oceanographic and Atmospheric Administration (NOAA) for use in its Doppler backscatter radar system that monitors the near-coastline ocean surface currents

  10. Invariant currents in lossy acoustic waveguides with complete local symmetry

    Kalozoumis, P A; Diakonos, F K; Theocharis, G; Schmelcher, P

    2015-01-01

    We implement the concept of complete local symmetry in lossy acoustic waveguides. Despite the presence of losses, the existence of a spatially invariant current is shown theoretically and observed experimentally. We demonstrate how this invariant current leads to the generalization of the Bloch and parity theorems for lossy systems defining a mapping of the pressure field between symmetry related spatial domains. Using experimental data we verify this mapping with remarkable accuracy. For the performed experiment we employ a construction technique based on local symmetries which allows the design of setups with prescribed perfect transmission resonances in the lossless case. Our results reveal the fundamental role of symmetries in restricted spatial domains and clearly indicate that completely locally symmetric devices constitute a promising class of setups, regarding the manipulation of wave propagation.

  11. The acoustic Doppler effect applied to the study of linear motions

    In this work, the change of frequency of a sound wave due to the Doppler effect has been measured using a smartphone. For this purpose, a speaker at rest and a smartphone placed on a cart on an air track were used. The change in frequency was measured by using an application for Android™, ‘Frequency Analyzer’, which was developed by us specifically for this work. This made it possible to analyze four types of mechanical motions: uniform linear motion, uniform accelerated linear motion, harmonic oscillations and damped harmonic oscillations. These experiments are suitable for undergraduate students. The main novelty of this work was the possibility of measuring the instantaneous frequency as a function of time with high precision. The results were compared with alternative measurements yielding good agreement. (paper)

  12. Acoustic velocity measurement by means of Laser Doppler Velocimetry: Development of an Extended Kalman Filter and validation in free-field measurement

    Le Duff, Alain; Plantier, Guy; Valière, Jean C.; Gazengel, Bruno

    2016-03-01

    A signal processing technique, based on the use of an Extended Kalman Filter, has been developed to measure sound fields by means of Laser Doppler Velocimetry in weak flow. This method allows for the parametric estimation of both the acoustic particle and flow velocity for a forced sine-wave excitation where the acoustic frequency is known. The measurements are performed from the in-phase and the quadrature components of the Doppler downshifted signal thanks to an analog quadrature demodulation technique. Then, the estimated performance is illustrated by means of Monte-Carlo simulations obtained from synthesized signals and compared with asymptotic and analytical forms for the Cramer-Rao Bounds. Results allow the validity domain of the method to be defined and show the availability for free-field measurements in a large range. Finally, an application based on real data obtained in free field is presented.

  13. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System

    Kesai Ouyang; Siliang Lu; Shangbin Zhang; Haibin Zhang; Qingbo He; Fanrang Kong

    2015-01-01

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the s...

  14. Design and performance of acoustic planar array antenna for Doppler sodar

    A.Kamalakumari

    2012-09-01

    Full Text Available The remote probing of the thermal structure and the wind velocity in the lower atmosphere requires highly directive antennas, which should have a half-power beam width of about ±10° (3-dB points, a 90°-sidelobe suppression of at least 40 dB, little volume reverberation, low wind sensitivity, and be made of weatherproofmaterial. In this paper, various off-axis planar antennas have been built and acoustically evaluated the design aspects, measured results and field patterns of an 8x8 acoustic planar array antennas are described. Tweeter elements are arranged in a planar geometry and are capable of transmitting vertical polarization when placed nearly horizontal, are appropriate for the sodar applications. The performance of 8x8 planar antennas are tested experimentally for the frequencies from 1.8KHz to 4KHz at elevation angles ranging between 0 to 180°.The experimental results, as well as the measured beam widths and field patterns of this antennas, are presented.

  15. Phononic crystal surface mode coupling and its use in acoustic Doppler velocimetry.

    Cicek, Ahmet; Salman, Aysevil; Kaya, Olgun Adem; Ulug, Bulent

    2016-02-01

    It is numerically shown that surface modes of two-dimensional phononic crystals, which are Bloch modes bound to the interface between the phononic crystal and the surrounding host, can couple back and forth between the surfaces in a length scale determined by the separation of two surfaces and frequency. Supercell band structure computations through the finite-element method reveal that the surface band of an isolated surface splits into two bands which support either symmetric or antisymmetric hybrid modes. When the surface separation is 3.5 times the lattice constant, a coupling length varying between 30 and 48 periods can be obtained which first increases linearly with frequency and, then, decreases rapidly. In the linear regime, variation of coupling length can be used as a means of measuring speeds of objects on the order of 0.1m/s by incorporating the Doppler shift. Speed sensitivity can be improved by increasing surface separation at the cost of larger device sizes. PMID:26565078

  16. Theory of the anomalous doppler instability during lower-hybrid current drive

    An instability condition is derived for electrostatic waves obeying the dispersion relation ω = ω/sub p//sub e/k/sub parallel//k using a two dimensional electron distribution function, f(v/sub parallel/,v/sub perpendicular/), appropriate for lower-hybrid current drive. It is found that when the raised plateau in f in the velocity range v12 has a sufficiently large anisotropy, T/sub p//sub parallel/>T/sub p//sub perpendicular/, this mode can become unstable. If the plateau velocities satisfy the condition v2/v1>1+ω/sub c//sub e//ω/sub p//sub e/ then waves exist with phase velocities in the plateau region and these waves are most easily destabilized by the anomalous doppler resonance, ω-k/sub parallel/v/sub parallel/ = -ω/sub c//sub e/

  17. Current recommendations for the study of carotid stenosis by doppler ultrasound and other imaging techniques

    Ischemic cerebrovascular disease has been one of the most frequent causes of death from chronic disease, as well as cause of long-term disabilities, in both the United States, and in Latin American countries during recent years. It is therefore, important to know about it. An updated review of international recommendations to the Costa Rican health system is performed for carotid imaging study in patients at risk of accidents and ischemic cerebrovascular disease; with special emphasis on carotid Doppler ultrasonography, due to its wide availability in the medical field Costa Rican. Furthermore, certain relevant concepts of other imaging techniques currently available are listed to determine the appropriate choice of each method according to the individual patient's condition, such as conventional angiography and tomographic angiography

  18. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  19. Current state of the radiological diagnosis of acoustic neuroma

    Valavanis, A.; Dabir, K.; Hamdi, R.; Oguz, M.; Wellauer, J.

    1982-03-01

    Thin, overlapping section, contrast-enhanced, axial and coronal CT, with additional high-resulution (HR) treatment of the sections through the internal auditory canal, was performed on 31 patients clinically suspected of acoustic neuroma. With this technique 13 acoustic neuromas protruding more than 10 mm and eight acoustic neuromas protruding between 2 and 10 mm outside the internal auditory canal were unequivocally diagnosed. O/sub 2/CT cisternography was performed on ten patients. An intracanalicular neuroma was diagnosed in three cases with this technique, also a small extracanalicular neuroma in one case, and an acoustic neuroma was definitely excluded in six cases. It is concluded that O/sub 2/CT cisternography is the diagnostic procedure of choice for the detection of purely intracanalicular neuromas and the definite exclusion of acoustic neuroma. HR CT proved superior to polytomography for the evaluation of the internal auditory canal and should be performed in every case suspected of acoustic neuroma. A protocol for the radiological investigation of patients suspected of acoustic neuroma is given.

  20. An EOF analysis of HF Doppler radar current measurements of the Chesapeake Bay buoyant outflow

    Marmorino, G. O.; Shay, L. K.; Haus, B. K.; Handler, R. A.; Graber, H. C.; Horne, M. P.

    1999-02-01

    Surface currents measured by HF Doppler radar as part of a study of the Chesapeake Bay outflow plume are examined using a 'real-vector' empirical orthogonal function (EOF) analysis (Kaihatu et al., 1998). Based on about 23 days of nearly continuous data, the analysis shows that the first three EOF modes, judged to be the only significant modes, account for 76% of the variance in the data set. The buoyant outflow occurs primarily in the mean flow field. The first EOF mode is dominated by wind forcing and the second mode by across-shelf semi-diurnal tidal forcing. The third mode exhibits a large-scale horizontal shear and contains a curved region of weak relative flow which appears to delineate the offshore edge of the plume; also, the third-mode response varies over the spring-neap cycle, suggesting a modulation of the outflow plume by a tidal residual eddy. The analysis therefore has provided a useful, exploratory examination of this dataset of surface currents.

  1. Ion acoustic double layer in a current-carrying bounded plasma

    The experimental study of new type of ion acoustic double layer moving with the ion acoustic velocity in a current-carrying bounded plasma is presented. The structure of potential formation differs significantly from that observed in the recent experiment and existing theories do not fully account for the present structure. (author)

  2. Integration of a laser doppler vibrometer and adaptive optics system for acoustic-optical detection in the presence of random water wave distortions

    Land, Phillip; Robinson, Dennis; Roeder, James; Cook, Dean; Majumdar, Arun K.

    2016-05-01

    A new technique has been developed for improving the Signal-to-Noise Ratio (SNR) of underwater acoustic signals measured above the water's surface. This technique uses a Laser Doppler Vibrometer (LDV) and an Adaptive Optics (AO) system (consisting of a fast steering mirror, deformable mirror, and Shack-Hartmann Wavefront Sensor) for mitigating the effect of surface water distortions encountered while remotely recording underwater acoustic signals. The LDV is used to perform non-contact vibration measurements of a surface via a two beam laser interferometer. We have demonstrated the feasibility of this technique to overcome water distortions artificially generated on the surface of the water in a laboratory tank. In this setup, the LDV beam penetrates the surface of the water and travels down to be reflected off a submerged acoustic transducer. The reflected or returned beam is then recorded by the LDV as a vibration wave measurement. The LDV extracts the acoustic wave information while the AO mitigates the water surface distortions, increasing the overall SNR. The AO system records the Strehl ratio, which is a measure of the quality of optical image formation. In a perfect optical system the Strehl ratio is unity, however realistic systems with imperfections have Strehl ratios below one. The operation of the AO control system in open-loop and closed-loop configurations demonstrates the utility of the AO-based LDV for many applications.

  3. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Yang, Luyi [Univ. of California, Berkeley, CA (United States)

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  4. Integrating fluorescent dye flow-curve testing and acoustic Doppler velocimetry profiling for in situ hydraulic evaluation and improvement of clarifier performance.

    Tarud, F; Aybar, M; Pizarro, G; Cienfuegos, R; Pastén, P

    2010-08-01

    Enhancing the performance of clarifiers requires a thorough understanding of their hydraulics. Fluorescence spectroscopy and acoustic doppler velocimeter (ADV) profiling generally have been used separately to evaluate secondary settlers. We propose that simultaneous use of these techniques is needed to obtain a more reliable and useful evaluation. Experiments were performed on laboratory- and full-scale clarifiers. Factors affecting Fluorescein and Rhodamine 6G properties were identified. Underestimations up to 500% in fluorescence intensities may be derived from differential fluorescence quenching by oxygen. A careful control and interpretation of fluorescent dye experiments is needed to minimize artifacts in real settings. While flow-curve tests constructed under controlled conditions provided a more accurate overall quantitative estimation of the hydraulic performance, ADV velocity and turbulence profiling provided a detailed spatial understanding of flow patterns that was used to troubleshoot and fix the causes of hydraulic short-circuits. PMID:20853746

  5. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented

  6. Damping of an ion acoustic surface wave due to surface currents

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  7. Currents and other physical parameters collected from moored current meters and various ADCPs offshore the United Kingdom, as part of British Oceanographic Data Center's (BODC) current meter series, from 21 June 1967 to 29 April 2007 (NODC Accession 0067029)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BODC current meter data set provides all currents data held in the BODC National Oceanographic Database (NODB). It includes entries for Moored Acoustic Doppler...

  8. Are the Current Doppler Echocardiography Criteria Able to Discriminate Mitral Bileaflet Mechanical Heart Valve Malfunction? An In Vitro Study.

    Evin, Morgane; Guivier-Curien, Carine; Pibarot, Philippe; Kadem, Lyes; Rieu, Régis

    2016-05-01

    Malfunction of bileaflet mechanical heart valves in the mitral position could either be due to patient-prosthesis mismatch (PPM) or leaflet obstruction. The aim of this article is to investigate the validity of current echocardiographic criteria used for diagnosis of mitral prosthesis malfunction, namely maximum velocity, mean transvalvular pressure gradient, effective orifice area, and Doppler velocity index. In vitro testing was performed on a double activation left heart duplicator. Both PPM and leaflet obstruction were investigated on a St. Jude Medical Master. PPM was studied by varying the St. Jude prosthesis size (21, 25, and 29 mm) and stroke volume (70 and 90 mL). Prosthesis leaflet obstruction was studied by partially or totally blocking the movement of one valve leaflet. Mitral flow conditions were altered in terms of E/A ratios (0.5, 1.0, and 1.5) to simulate physiologic panel of diastolic function. Maximum velocity, effective orifice area, and Doppler velocity index are shown to be insufficient to distinguish normal from malfunctioning St. Jude prostheses. Doppler velocity index and effective orifice area were 1.3 ± 0.49 and 1.83 ± 0.43 cm(2) for testing conditions with no malfunction below the 2.2 and 2 cm(2) thresholds (1.19 cm(2) for severe PPM and 1.23 cm(2) for fully blocked leaflet). The mean pressure gradient reached 5 mm Hg thresholds for several conditions of severe PPM only (6.9 mm Hg and mean maximum velocity value: 183.4 cm/s) whereas such value was never attained in the case of leaflet obstruction. In the case of leaflet obstruction, the maximum velocity averaged over the nine pulsed-wave Doppler locations increased by 38% for partial leaflet obstruction and 75% for a fully blocked leaflet when compared with normal conditions. Current echocardiographic criteria might be suboptimal for the detection of bileaflet mechanical heart valve malfunction. Further developments and investigations are required in order

  9. Acoustic microfluidics: Capillary waves and vortex currents in a spherical fluid drop

    Lebedev-Stepanov, P. V.; Rudenko, O. V.

    2016-07-01

    We calculate the radiation forces in a spherical drop lying on a solid substrate. The forces form as a result of the action of a capillary wave on a fluid as it propagates along the free spherical surface. We study the structure of acoustic currents excited by the radiation forces.

  10. Current Applications of Scanning Coherent Doppler Lidar in Wind Energy Industry

    Krishnamurthy, R.; Boquet, M.; Osler, E.

    2016-06-01

    Scanning Doppler Lidars have become more prominent in the wind energy industry for a variety of applications. Scanning Lidar's provide spatial variation of winds and direction over a large area, which can be used to assess the spatial uncertainty of winds and analyze complex flows. Due to the recent growth in wind energy, wind farms are being built in complex terrain areas and fine tuning of the existing wind farms for optimized performance have gained significant interest. Scanning Lidar is an ideal tool for improved assessment of flow over complex terrains and wake characterization of large wind farms. In this article, the various applications of Lidar in the wind industry are discussed and results from several campaigns conducted in US and Europe is presented. The conglomeration of results provided in this article would assist wind energy developers and researchers in making improved decisions about their wind farm operations and pre-construction analysis using scanning Lidar's.

  11. The 2011 Tohoku tsunami south of Oahu: High-frequency Doppler radio observations and model simulations of currents

    Benjamin, L. R.; Flament, P.; Cheung, K. F.; Luther, D. S.

    2016-02-01

    A 16 MHz high-frequency Doppler radio (HFDR) deployed on the south shore of Oahu (Hawaii) detected oscillatory radial currents following the arrival of the 2011 Tohoku tsunami. The observations over a two-dimensional area provided an opportunity for intercomparison with the spatial patterns of currents and the resonant modes predicted by a nonhydrostatic model. Over the 50 m deep Penguin Bank, extending west from Molokai, the observed currents are intensified in two areas: 43 min period currents of 0.27 m s-1 lasting 6 h are observed on the south part of the bank, while 27 min period currents of 0.14 m s-1 lasting 2 h are observed on the north. The spatial EOFs suggest that standing full-waves and 3/2 waves formed over the bank. Modeled currents over Penguin Bank are similar to the observations but their north-south asymmetry is less pronounced than observed. Nearshore, observed alongshore currents showed long-period oscillations of 43 min that stretched along the entire coastline, while modeled currents show strong evidence for edge waves. EOF analysis of the nearshore signal suggests that the HFDR and model reveal different processes. The discrepancy might be attributed to the fact that both the Penguin Bank and nearshore observations are limited by HFDR sensitivity to azimuthal sidelobe contamination and decreased angular resolution at high steering angles.

  12. The average direct current offset values for small digital audio recorders in an acoustically consistent environment.

    Koenig, Bruce E; Lacey, Douglas S

    2014-07-01

    In this research project, nine small digital audio recorders were tested using five sets of 30-min recordings at all available recording modes, with consistent audio material, identical source and microphone locations, and identical acoustic environments. The averaged direct current (DC) offset values and standard deviations were measured for 30-sec and 1-, 2-, 3-, 6-, 10-, 15-, and 30-min segments. The research found an inverse association between segment lengths and the standard deviation values and that lengths beyond 30 min may not meaningfully reduce the standard deviation values. This research supports previous studies indicating that measured averaged DC offsets should only be used for exclusionary purposes in authenticity analyses and exhibit consistent values when the general acoustic environment and microphone/recorder configurations were held constant. Measured average DC offset values from exemplar recorders may not be directly comparable to those of submitted digital audio recordings without exactly duplicating the acoustic environment and microphone/recorder configurations. PMID:24502252

  13. The Influence of Ion-Acoustic Turbulence on the Electron Acceleration in the Reconnecting Current Sheet

    Gui-Ping Wu; Guang-Li Huang; Yu-Hua Tang

    2005-01-01

    Through solving the single electron equation of motion and the FokkerPlanck equation including the terms of electric field strength and ion-acoustic turbulence, we study the influence of the ion-acoustic wave on the electron acceleration in turbulent reconnecting current sheets. It is shown that the ion-acoustic turbulence which causes plasma heating rather than particle acceleration should be considered. With typical parameter values, the acceleration time scale is around the order of 10-6 s, the accelerated electrons may have approximately a power-law distribution in the energy range 20 ~ 100 keV and the spectral index is about 3~10, which is basically consistent with the observed hard X-ray spectra in solar flares.

  14. Persistence of Albunex (ALB) Ultrasound Contrast Agent – Invitro Study of the Effects of Pressure and Acoustic Power on Particle-Size, and the Duration of Contrast and Doppler Enhancement

    Shandas, Robin; Sahn, David J.; Bales, Gary; Elkadi, Taher; Yau, Kwong-Kun; Gharib, Morteza

    1990-01-01

    LV contrast intensity after intravenous ALB injection varies with the cardiac cycle, raising questions about the pressure related stability of the particle. We explored pressure stability and the influence of acoustic power on ALB effect in an in-vitro pulsatile model at receiving chamber (RC) pressures between 10-160 mmHg. Ultrasound imaging was performed at 5MHz along with 3.5MHz color Doppler at maximal and minimal levels of acoustic power output on a VingMed CFM ...

  15. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  16. Ocean currents measured by shipboard ADCP from global oceans from the Joint Archive for Shipboard ADCP holdings from 2000-07 to 2012-02 (NODC Accession 0093159)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  17. Superharmonic microbubble Doppler effect in ultrasound therapy

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml‑1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s‑1, prior to the onset

  18. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a...... positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  19. Doppler blood flow indicator

    Byrtus, David

    2014-01-01

    This bachelor´s thesis deals with basis of ultra-acoustics. The project presents basic information about Doppler effect. It describes the methods of processing and analyzing of velocity and direction of blood at doppler’s systems with modulated and unmodulated carrier wave. The project presents the system design of non-directional doppler indicator with unmodulated carrier wave for 8 MHz frequency, generating intensity of ultrasound 100 mW/cm2 and diameter D-shaped transmitting transducer 8 m...

  20. A field intercomparison between an acoustic current profiler / ADCP and two Savonius type current meters

    Gytre, Trygve; Østensen, Øivind

    1990-01-01

    During an introductory experiment in Lofoten May 1990 data from a vessel mounted ADCP on an anchored research vessel were intercompared with corresponding data from two anchored rotor current meters in a region where the current speed varied between 0 and 30 cm/s. The results showed good agreements when the ships heading was stable. When the anchored ship described "S" or "O"- shaped horizontal motions due to varying wind stress, the ADCP added up to 15 cm/s. to its output signal.

  1. Study on Doppler Effects Estimate in Underwater Acoustic Communication Based on Fractional Fourier Transform%基于分数阶Fourier变换的水声通信多普勒系数估计技术研究

    霍雁明; 刘媛; 张晓

    2012-01-01

    An estimate method of the Doppler effects in mobile underwater acoustic communication based on fractional Fourier transform has been proposed.The Doppler coefficients are obtained by estimating chirp rate change of LFM signal with fractional Fourier transform(FRFT) in this paper.And the performance of the Doppler effects estimation method based on FRFT is verified by the computer simulation.%本文基于传统多普勒系数估计方法,提出一种基于分数阶Fourier变换的多普勒系数估计方法,该方法利用分数阶Fourier变换估计得到经过信道后LFM信号调频斜率的变化量值,进而得到多普勒系数的估计。通过计算机仿真研究验证了该方法的有效性与稳健性。

  2. Current state of acoustic emission as an aid to the structural integrity assessment of nuclear power plants

    As an integral method permitting continuous monitoring and remote defect location, acoustic emission offers promising benefits for the nuclear industry. The potential applications relating to the integrity of the primary pressure boundary of nuclear reactors that are considered in this presentation are: detection of flaws during pre-service and requalification hydrotests and continuous monitoring for crack growth and leakage. The correlations between fracture mechanics and acoustic emission are discussed on the basis of certain fundamentals of material emission behaviour. The influence of instrumentation and wave propagation related aspects on the detectability and evaluation of acoustic emission signals is considered. A critical review is given of the application of acoustic emission to the assessment of reactor pressure vessel integrity, which demands a precise knowledge of the method's ability to distinguish different origins of acoustic emission, to detect and locate cracks and to evaluate the severity of cracks. World wide, at least 40 reactor pressure vessels and nuclear primary systems have been monitored by acoustic emission, either during acceptance pressure tests at the manufacturer's shop or during pre-service testing after installation in a plant. Together with the monitoring of requalification hydrotests after a certain period of operation, these applications of acoustic emission are currently receiving the most attention. The experience gained with continuous monitoring by acoustic emission is reported. The technique of leak detection by acoustic emission shows promising results, which permit the location and quantification of leaks. It is expected that practical experience and future research work will enhance the accuracy and detection sensitivity. (author)

  3. Surface acoustic wave amplification by direct current-voltage supplied to graphene film

    Using a high-resolution X-Ray diffraction measurement method, the surface acoustic wave (SAW) propagation in a graphene film on the surface of a Ca3TaGa3Si2O14 (CTGS) piezoelectric crystal was investigated, where an external current was driven across the graphene film. Here, we show that the application of the DC field leads to a significant enhancement of the SAW magnitude and, as a result, to amplification of the diffraction satellites. Amplification of 33.2 dB/cm for the satellite +1, and of 13.8 dB/cm for the satellite +2, at 471 MHz has been observed where the external DC voltage of +10 V was applied. Amplification of SAW occurs above a DC field much smaller than that of a system using bulk semiconductor. Theoretical estimates are in reasonable agreement with our measurements and analysis of experimental data for other materials

  4. Reverse Doppler Effect of Sound

    Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo

    2009-01-01

    We report observation of reverse Doppler effect in a double negative acoustic metamaterial. The metamaterial exhibited negative phase velocity and positive group velocity. The dispersion relation is such that the wavelength corresponding to higher frequency is longer. We observed that the frequency was down-shifted for the approaching source, and up-shifted when the source receded.

  5. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC Brain Potential Changes

    Karin Trimmel

    2014-09-01

    Full Text Available Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes. This study investigated brain direct current (DC potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  6. Modificações da hemodinâmica fetal pelo estímulo sonoro: avaliação pela dopplervelocimetria colorida Vibro-acoustic stimulation induced hemodynamic fetal changes assessed by color doppler

    Francisco Mauad Filho

    1999-04-01

    Full Text Available Objetivos: verificar se ocorrem ou não alterações hemodinâmicas na aréria cerebral média (ACM aferido pela dopplervelocimetria colorida após realização de um estímulo sonoro. Métodos: trinta fetos de gestantes consideradas clinicamente normais com idade gestacional igual ou superior a 28 semanas foram submetidos a um estímulo sonoro. Examinamos as alterações da velocidade sangüínea na ACM fetal por meio do índice de resistência e da freqüência cardíaca fetal, pelo doppler colorido, antes e depois do estímulo acústico. Resultados: a média da freqüência cardíaca fetal (FCF antes do estímulo sonoro foi de 142,41 batimentos por minuto (bpm com desvio padrão de 9,01 e faixa de variação de 122 a 162 bpm. Após o estímulo sonoro, a média da FCF foi de 159,44 bpm com desvio padrão de 15,49, com faixa de variação de 130 a 187 bpm (pPurpose: to determine the possible occurrence of hemodynamic changes in the middle cerebral artery of the fetus (MCA using color doppler after vibro-acoustic stimulation. Methods: thirty fetuses from pregnant women considered to be clinically normal, with a gestational age of 28 weeks or more were submitted to vibro-acoustic stimulation. We examined the changes in blood flow rate in the middle cerebral artery of the fetus on the basis of resistance index (RI and fetal heart rate (FHR by color doppler before and after the sound stimulus. Results: mean FHR before vibro-acoustic stimulation was 142.41 beats per minute (bpm with a standard deviation of 9.01 and a range of 122 to 162 bpm. After stimulation, mean FHR was 159.44 bpm with a standard deviation of 15.49 and a range of 130 to 187 bpm (p<0.01. Mean RI in the MCA of the fetuses was 75.89% (range: 64 to 91% before the experiment. After the vibro-acoustic stimulation, mean RI was 66.93% (range: 47 to 83%; p < 0.01. Conclusions: we observed that a sound stimulus provokes the well-known immediate and significant elevation of FHR and a

  7. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  8. Validation of current acoustic dead-zone estimation methods in lakes with strongly sloped bottoms

    Tušer, Michal; Balk, H.; Mrkvička, T.; Frouzová, Jaroslava; Čech, Martin; Muška, Milan; Kubečka, Jan

    2011-01-01

    Roč. 9, - (2011), s. 507-514. ISSN 1541-5856 R&D Projects: GA ČR(CZ) GA206/07/1392 Grant ostatní: EEA FM, NFM(CZ) CZ 0091 Institutional research plan: CEZ:AV0Z60170517 Keywords : acoustic dead zone * bottom slope * lentic freshwater habitats Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.535, year: 2011

  9. Acoustic phonons mediated non-equilibrium spin current in the presence of Rashba and Dresselhaus spin–orbit couplings

    Hasanirokh, K.; Phirouznia, A., E-mail: Phirouznia@azaruniv.ac.ir

    2013-10-30

    Influence of electrons interaction with longitudinal acoustic phonons on magnetoelectric and spin-related transport effects are investigated. The considered system is a two-dimensional electron gas system with both Rashba and Dresselhaus spin–orbit couplings. The works which have previously been performed in this field, have revealed that the Rashba and Dresselhaus couplings cannot be responsible for spin current in the non-equilibrium regime. In the current Letter, a semiclassical method was employed using the Boltzmann approach and it was shown that the spin current of the system, in general, does not go all the way to zero when the electron–phonon coupling is taken into account. It was also shown that spin accumulation of the system could be influenced by electron–phonon coupling.

  10. Speaker-Oriented Classroom Acoustics Design Guidelines in the Context of Current Regulations in European Countries

    Pelegrin Garcia, David; Brunskog, Jonas; Rasmussen, Birgit

    2014-01-01

    Most European countries have regulatory requirements or guidelines for reverberation time in classrooms which have the goal of enhancing speech intelligibility and reducing noise levels in schools. At the same time, school teachers suffer frequently from voice problems due to high vocal load...... experienced at work. With the aim of improving working conditions for teachers, this article presents guidelines for classroom acoustics design that meet simultaneously criteria of vocal comfort and speech intelligibility, which may be of use in future discussions for updating regulatory requirements in...

  11. [Acoustic emission diagnostic techniques for high-field high current-density super inducting poles

    Acoustic emission technology was introduced in the late 1970's to monitor superconducting magnets. It has now been firmly established that acoustic signals in superconducting magnets are emitted principally by mechanical events such as conductor strain, conductor motion, frictional motion, and epoxy cracking. Despite earlier suggestions, flux motion, except during flux jumping, does not appear to be an important source of AE signals in superconducting magnets. Of these several potential sources of AE signals in superconducting magnets, mechanical disturbances have been identified to be most important in high-performance, ''adiabatic'' magnets such as the dipoles used in accelerators. These mechanical disturbances are transitory, each generating a packet of AE signals that can be located with sensors. Source identification and location has been achieved with a number of superconducting magnets. In this section, the basic principle for the operation of adiabatic magnets is discussed, followed by presentation of some of the important experimental results relevant to the question of premature quench obtained at MIT

  12. Acoustic estimation of suspended sediment concentration

    ZHU; Weiqing(

    2001-01-01

    [1]Morse, P. H. , Theoretical Acoustics, New York: McGraw-Hill Book Co. , 1968.[2]Skudrjuk, E., Die Grundlagen der Akustik, Wien: Springer-Verlag, 1954.[3]Olshevskii, V. V., Statistical Characteristics of Sea Reverberation, Moscow: Nauka Publisher, 1966.[4]Thorne, P. D., Hardcastl, P. J., Soulsby, R. L., Analysis of acoustic measurements of suspended sediments, J. Geop.Res. , 1993, 98: 899.[5]Guo Jijie, Ren Laifa, Li Yunwu, ln-situ calibration of acoustic measurement of suspended sedienmt, Acta Oceanologica Sini-ca, 1998, (20): 120-125.[6]Zhang Shuying, Li Yunwu, Development and application of an acoustic suspended sediemnt monitoring system, Acta Oceanologica Sinica, 1998, (20): 114-119.[7]Zhang Shuying, Li Yunwu, A theoretical analysis of acoustic suspended sediment obsvervation, Acta Acoustica, 1999, (24):267-274.[8]Zhu Weiqing, Pan Feng, Zhu Min et al. , IOA-1 Multi-function Acoustic Doppler Current Profiler (MADCP), OCEAN'2000,Rhode Island, USA.

  13. Range-instantaneous Doppler imaging of inverse synthetic aperture sonar

    XU Jia; JIANG Xingzhou; TANG Jingsong

    2003-01-01

    Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.

  14. Doppler tracking

    Thomas, Christopher Jacob

    This study addresses the development of a methodology using the Doppler Effect for high-resolution, short-range tracking of small projectiles and vehicles. Minimal impact on the design of the moving object is achieved by incorporating only a transmitter in it and using ground stations for all other components. This is particularly useful for tracking objects such as sports balls that have configurations and materials that are not conducive to housing onboard instrumentation. The methodology developed here uses four or more receivers to monitor a constant frequency signal emitted by the object. Efficient and accurate schemes for filtering the raw signals, determining the instantaneous frequencies, time synching the frequencies from each receiver, smoothing the synced frequencies, determining the relative velocity and radius of the object and solving the nonlinear system of equations for object position in three dimensions as a function of time are developed and described here.

  15. Maximum Likelihood Estimator For Doppler Parameter And Cramer Rao Bound In ZP-OFDM UWA Channel

    Lyonnet, Bastien; Siclet, Cyrille; Brossier, Jean-Marc

    2010-01-01

    A Doppler estimation system using a maximum likelihood criterion is presented in the context of underwater acoustic communications between moving transmitter/receiver. We simulate the method for the estimation of the Doppler effect induced by an underwater acoustic channel (UWA) using Zero Padded-Orthogonal Frequency Division Multiplexing (ZP-OFDM). Among the wide range of physical processes that impact OFDM communications through the underwater environment, Doppler effect is an important cau...

  16. Laser double Doppler flowmeter

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  17. HF Doppler observations

    Kikuchi, T.; Sugiuchi, H.; Ishimine, T.; Maeno, H.; Honma, S.

    1986-12-01

    This paper reports the solar flare and geomagnetic storm effects on the frequency of JJY signals received at Okinawa (f = 15 MHz) and Kokubunji (f = 5 and 8 MHz) during the period of June-September 1982. The increase in the electron density due to solar flares is deduced from the Doppler frequency deviation of 1 Hz as 2 x 10/sup 15/ electrons/m/sub 2/ below the reflection height. The result is in good agreement with the observation of the total electron content by the Faraday rotation measurements. On July 13, 1982, an abrupt increase of 0.8 Hz in frequency followed by a decrease of 0.6 Hz was observed in association with the huge storm sudden commencement. This fact indicates a successive transmission of westward electric field of 1.5 mV/m and eastward electric field of 1.1 mV/m from the outer magnetosphere to the low latitude ionosphere. It is shown that the decreases in Doppler frequency were associated with geomagnetic bays. The strength of the electric field (1.8 mV/m) derived from the Doppler frequency deviation is 20% of that of the electric field which is required to produce ionospheric electric currents responsible for the geomagnetic field variation on the ground. The large amplitude Doppler frequency oscillations of period of 1-1.5 h were observed at Kokubunji and Okinawa with a delay time of 20-25 min during the geomagnetic storm on September 6, 1982. It is suggested that the large-scale TID (Travelling Ionospheric Disturbance) with a phase velocity of 600 m/s and a wavelength of 2000 km is produced at high latitudes and is propagated to low latitudes.

  18. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  19. Dual-Doppler Feasibility Study

    Huddleston, Lisa L.

    2012-01-01

    radar geometry issues at the NWS MLB radar, such as the "cone of silence" or beam blockage. In the event of a radar outage at one of the sites, the multi-radar algorithms would provide continuing coverage of the area through use of the data from the remaining operational radar sites. There are several options to collect, edit, synthesize and display dual-Doppler data sets. These options include commercial packages available for purchase and a variety of freeware packages available from the National Center for Atmospheric Research (NCAR) for processing raw radar data. However, evaluation of the freeware packages revealed that they do not have sufficient documentation and configuration control to be certified for 45 SW use. Additionally, a TI data line must be installed/leased from the NWS MLB office and CCAFS to enable the receipt of NWS MLB raw radar data to use in the dual-Doppler synthesis. Integration of the TI data line into the Eastern Range infrastructure that will meet the security requirements necessary for 45 SW use is time-consuming and costly. Overall evaluation indicates that establishment of the dual-Doppler capability using the existing operational radar systems is desirable and feasible with no technical concerns. Installation of such a system represents a significant enhancement to forecasting capabilities at the 45 WS and at NWS MLB. However, data security and cost considerations must be evaluated in light of current budgetary constraints. In any case, gaining the dual-Doppler capability will provide opportunities for better visualization of the wind field and better forecasting of the onset of convection and severe weather events to support space launch operations at KSC and CCAFS.

  20. Springer Handbook of Acoustics

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  1. Physical and chemical signatures of a developing anticyclonic eddy in the Leeuwin Current, eastern Indian Ocean

    Paterson, Harriet L.; Feng, Ming; Waite, Anya M.; Gomis, Damià; Beckley, Lynnath E.; Holliday, David; Thompson, Peter A

    2008-01-01

    A multidisciplinary cruise aboard the R/V Southern Surveyor was conducted in May 2006 to sample a developing anticyclonic eddy of the Leeuwin Current off Western Australia. The eddy formed from a meander of the Leeuwin Current in mid-April 2006 and remained attached to the current until mid-August. In this study, a combination of satellite data (altimeter, sea surface temperature, and chlorophyll a) and shipboard measurements (acoustic Doppler current profiler and conductivity-temperature-dep...

  2. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—Technical manual for version 2.8

    Mueller, David S.

    2016-01-01

    The software program, QRev applies common and consistent computational algorithms combined with automated filtering and quality assessment of the data to improve the quality and efficiency of streamflow measurements and helps ensure that U.S. Geological Survey streamflow measurements are consistent, accurate, and independent of the manufacturer of the instrument used to make the measurement. Software from different manufacturers uses different algorithms for various aspects of the data processing and discharge computation. The algorithms used by QRev to filter data, interpolate data, and compute discharge are documented and compared to the algorithms used in the manufacturers’ software. QRev applies consistent algorithms and creates a data structure that is independent of the data source. QRev saves an extensible markup language (XML) file that can be imported into databases or electronic field notes software. This report is the technical manual for version 2.8 of QRev.

  3. A stator flux oriented current vector control of a sensorless 6/4 SRM for reduction of acoustic noise and vibration

    In this paper, a stator flux oriented current vector control of a sensorless three-phase 6/4 switched reluctance motor without position sensors is presented. Space current vector control technology based on torque angle estimation was used to reduce the acoustic noise and vibration of the motor drive system. The power converter for the 6/4 switched reluctance motor is three-phase full bridge inverter. The experimental results show that the maximum level of acoustic noises and vibration are 73 dB and 8 dB; m/s/s, respectively, and the steady speed error of the drive system is less than 0.1% operated at the rated load when the drive system was operated below 1500 rpm. In addition, the transient speed performance is also satisfactory

  4. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  5. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

  6. Clinical Doppler ultrasound

    The authors begin with the basics: how Doppler signals are formed, reflected, and refracted - and how those facts apply to clinical practice; anatomy (blood and blood flow), the Doppler equation (explained from a radiologic, rather than a mathematical, perspective); and approaches to Doppler signal production. The available methods of signal processing - including audio, multifilter analysis, zero-crossing detection, autocorrelation, and the Fast Fourier Transform, as well as more sophisticated techniques of duplex and color flow imaging - are covered with an eye to helping the ultrasonographer obtain the most reliable and artifact-free information from every Doppler reading

  7. Minimally destructive, Doppler measurement of a quantized, superfluid flow

    Kumar, A.; Anderson, N.; Phillips, W. D.; Eckel, S.; Campbell, G. K.; Stringari, S.

    2015-01-01

    The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in-situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose-Einstein condensate using the Doppler effect. Phonon modes generated in this condensate have their frequencies Doppler shifted by a persistent current. This frequency shift will cause a standing-wave phonon mode to be "dragged" along with the...

  8. Optical Doppler shift with structured light

    Belmonte A.; Belmonte, Aniceto; de Torres, Juan P; Torres J.P.

    2011-01-01

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement system...

  9. Current clinical applications of spectral tissue Doppler echocardiography (E/E' ratio as a noninvasive surrogate for left ventricular diastolic pressures in the diagnosis of heart failure with preserved left ventricular systolic function

    Roux Emmanuel

    2007-03-01

    Full Text Available Abstract Congestive heart failure with preserved left ventricular systolic function has emerged as a growing epidemic medical syndrome in developed countries, which is characterized by high morbidity and mortality rates. Rapid and accurate diagnosis of this condition is essential for optimizing the therapeutic management. The diagnosis of congestive heart failure is challenging in patients presenting without obvious left ventricular systolic dysfunction and additional diagnostic information is most commonly required in this setting. Comprehensive Doppler echocardiography is the single most useful diagnostic test recommended by the ESC and ACC/AHA guidelines for assessing left ventricular ejection fraction and cardiac abnormalities in patients with suspected congestive heart failure, and non-invasively determined basal or exercise-induced pulmonary capillary hypertension is likely to become a hallmark of congestive heart failure in symptomatic patients with preserved left ventricular systolic function. The present review will focus on the current clinical applications of spectral tissue Doppler echocardiography used as a reliable noninvasive surrogate for left ventricular diastolic pressures at rest as well as during exercise in the diagnosis of heart failure with preserved left ventricular systolic function. Chronic congestive heart failure, a disease of exercise, and acute heart failure syndromes are characterized by specific pathophysiologic and diagnostic issues, and these two clinical presentations will be discussed separately.

  10. Doppler derived quantitative flow estimate in coronary artery bypass graft: a computational multiscale model for the evaluation of the current clinical procedure.

    Ponzini, Raffaele; Lemma, Massimo; Morbiducci, Umberto; Montevecchi, Franco M; Redaelli, Alberto

    2008-09-01

    In order to investigate the reliability of the so called mean velocity/vessel area formula adopted in clinical practice for the estimation of the flow rate using an intravascular Doppler guide wire instrumentation, a multiscale computational model was used to give detailed predictions on flow profiles within Y-shaped coronary artery bypass graft (CABG) models. At this purpose three CABG models were built from clinical patient's data and used to evaluate and compare, in each model, the computed flow rate and the flow rate estimated according to the assumption of parabolic velocity profile. A consistent difference between the exact and the estimated value of the flow rate was found in every branch of all the graft models. In this study we showed that this discrepancy in the flow rate estimation is coherent to the theory of Womersley regarding spatial velocity profiles in unsteady flow conditions. In particular this work put in evidence that the error in flow rate estimation can be reduced by using the estimation formula recently proposed by Ponzini et al. [Ponzini R, Vergara C, Redaelli A, Veneziani A. Reliable CFD-based estimation of flow rate in haemodynamics measures. Ultrasound Med Biol 2006;32(10):1545-55], accounting for the unsteady nature of blood, applicable in the clinical practice without resorting to further measurements. PMID:17980641

  11. Differential doppler heterodyning technique

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating the...

  12. Complex Doppler effect in left-handed metamaterials

    Ziemkiewicz, David

    2014-01-01

    The Doppler shift is investigated in one-dimensional system with moving source. Theoretical findings are confirmed in numerical simulations of optical and acoustical waves propagation in simple metamaterial model, showing the reversed shift and the existence of multiple frequency modes. The properties of these waves are discussed. The effect of absorption on the phenomenon is outlined.

  13. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    Maulik, D. [Winthrop Univ. Hospital, Mineola, NY (United States). Dept. of Obstetrics and Gynecology; Zalud, I. (eds.) [Kapiolani Medical Center for Women and Children, Honolulu, HI (United States)

    2005-07-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  14. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  15. The Estimation and Compensation of Doppler Effect on Underwater Acoustic Spread Spectrum Communication%水声扩频通信中多普勒估计与补偿算法研究

    袁兆凯; 隋天宇; 李宇; 黄海宁

    2012-01-01

    The Doppler effect is inherent in communication systems which makes the carrier synchronization critical to the whole system. In underwater communication environment, the Doppler effect is more severe due to the limited sound speed. In this paper, the Doppler effect of underwater channel is analyzed by formulas on a software-defined radio communication system. Then an effective algorithm is developed which can estimate and compensate the frequency shift. The simulation results show that this algorithm works out within the speed of 15 m/s, when the signal to noise ratio is above -22 dB. The sea experimental results show that the system can successfully achieve the carry wave synchronization with the speed to be 6 knots.%通信系统普遍受多普勒效应影响,因而载波同步成为通信中的一项关键技术.在水声通信中,由于声速有限,信道中的多普勒效应的影响更为明显.该文在一个基于软件无线电机制的水声扩频通信系统中,对水声信道的多普勒效应进行分析和建模,并在此基础上提出了一种有效的水声扩频多普勒估计与补偿算法.仿真实验表明,算法能够在-22 dB的情况下有效地对15 m/s以内产生的多普勒频移进行估计与补偿.算法经过海试测试,在6节速度及加速减速过程中,系统均能够成功地完成载波同步.

  16. Ultrasonic Doppler methods to extract signatures of a walking human.

    Mehmood, Asif; Sabatier, James M; Damarla, Thyagaraju

    2012-09-01

    Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics. In this work, 40 kHz ultrasonic sonar is employed to measure the Doppler signature generated by the motion of body segments using different electronic and signal processing schemes. These schemes are based on both analog and digital demodulation with homodyne and heterodyne receiver circuitry. The results and analyses from these different schemes are presented. PMID:22979839

  17. OFDM for Underwater Acoustic Communication

    Thottappilly, Arjun

    2011-01-01

    Communicating wirelessly underwater has been an area of interest for researchers, engineers, and practitioners alike. One of the main reasons for the slow rate of progress in this area is that the underwater acoustic channel is in general much more hostile â in terms of multipath, frequency selectivity, noise, and the Doppler effect â than the over-the-air radio frequency channel. In this work a time warp based technique which can be used to model time-varying wideband Doppler shifts (as ...

  18. Ultrasonic colour Doppler imaging

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  19. Cosmology with Doppler Lensing

    Bacon, David; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, C.; Maartens, Roy

    2014-01-01

    Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect dominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of...

  20. Rotational Doppler Effect

    Halder, Amit

    2002-01-01

    A monochromatic linear source of light is rotated with certain angular frequency and when such light is analysed after reflection then a change of frequency or wavelength may be observed depending on the location of the observer. This change of frequency or wavelength is different from the classical Doppler effect [1] or relativistic Doppler effect [2]. The reason behind this shift in wavelength is that a certain time interval observed by an observer in the rotating frame is different from th...

  1. Characteristics Analysis of HFM Signal over Underwater Acoustic Channels

    YUAN Fei

    2013-01-01

    Full Text Available For pulse compression characteristics and not easily affected by noise, linear frequency modulation signal are widely used in underwater acoustic communication. This paper analyzes the characteristics of hyperbolic frequency modulation signal over underwater acoustic channels. Compared with linear frequency modulation signal, hyperbolic frequency modulation has the same performance of strong anti-noise and anti-multipath, what’s more, hyperbolic frequency modulation signal is better resist the influence of doppler. And discussed the influence of doppler on signal, simulation results show that the hyperbolic frequency modulation signal detection rate is better than linear frequency modulation signal in the doppler environment.

  2. Doppler term in the galaxy two-point correlation function: wide-angle, velocity, Doppler lensing and cosmic acceleration effects

    Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.

    2016-01-01

    We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys such as Euclid, SPHEREx and SKA, however, we show that the Doppler term must be included. The effect of t...

  3. Development of the doppler electron velocimeter: theory.

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  4. Seasonal variation of a coastal jet in the Long Island Sound outflow region based on HF radar and Doppler current observations

    Ullman, D. S.; Codiga, D. L.

    2004-07-01

    Surface current (HF radar) and velocity profile observations, obtained as part of the Front-Resolving Observational Network with Telemetry (FRONT) project over an approximately 2-year period, are used to describe the seasonal variability of a coastal jet in the Long Island Sound outflow region. The jet is observed in an area of the continental shelf where surface thermal fronts are frequently detected during both summer and winter. The current jet is coincident with a band of high summer frontal probability, and apparently arises from the interaction between Long Island Sound outflow and larger-scale alongshore currents on the shelf. The jet reaches peak strength in summer (transport of ˜0.07 Sv) and is weak or non-existent in winter. Flow is strongest near the surface and weakens with depth, with only moderate seasonal variations in the vertical shear. The relatively long data set of currents combined with historical hydrographic measurements and buoy wind observations is analyzed to examine the seasonal variability of the terms in the depth-averaged momentum balance. The depth-averaged pressure gradient is partitioned into a steric component, evaluated from the hydrography, and a non-steric component that is estimated as the residual of the computed terms in the momentum equation. The depth-averaged momentum balance is found to be approximately geostrophic in the across-shore direction. The seasonal variability in the jet arises due to the shifting balance between buoyancy-driven flow that is always downshelf but intensifies somewhat in summer and wind-driven flow which dominates in winter when wind stress becomes strongly upwelling favorable.

  5. The electronic structure of BSCCO in the presence of a super-current: Flux-flow, Doppler shift and quasiparticle pockets

    Naamneh, M.; Campuzano, J. C.; Kanigel, A.

    2016-01-01

    There are several ways to turn a superconductor into a normal conductor: increase the temperature, apply a high magnetic field, or run a large current. High-T$_c$ cuprate superconductors are unusual in the sense that experiments suggest that destroying superconductivity by heating the sample to temperatures above T$_c$ or by applying a high magnetic field result in different 'normal' states. Spectroscopic probes show that above T$_c$, in the pseudogap regime, the Fermi surface is partly gappe...

  6. Ultrasonic Doppler Modes

    Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi

    Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.

  7. Doppler cooling a microsphere

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  8. Doppler-suuntima-algoritmi

    Rekis, Matti

    2014-01-01

    Doppler-ilmiö aiheuttaa havaitsijan ja signaalilähteen välisen suhteellisen liikkeen seurauksena taajuusvääristymää lähteen alkuperäisestä signaalista. Tämä mm. doppler-siirtymäksi kutsuttu vääristymä voidaan havaita signaalilähteen taajuudessa, aallonpituudessa ja vaiheessa. Doppler-siirtymän suuruuteen ja suuntaan vaikuttaa se, kasvaako vai pieneneekö havaitsijan ja lähteen välinen etäisyys sekä niiden välinen suhteellinen nopeus. Tätä ilmiötä voidaan hyödyntää mm. radiolähettimen paikantam...

  9. Communication Acoustics

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  10. Ocean acoustic hurricane classification.

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  11. Pulse Doppler radar

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  12. Doppler ion program description

    The Doppler spectrometer is a conventional Czerny-Turner grating spectrometer with a 1024 channel multiple detector. Light is dispersed across the detector, and its output yields a spectrum covering approximately 200 A. The width of the spectral peak is directly proportional to the temperature of the emitting ions, and determination of the impurity ion temperature allows one to infer the plasma ion temperature. The Doppler ion software system developed at General Atomic uses a TRACOR Northern 1710-31 and an LSI-11/2. The exact configuration of Doublet III is different from TRACOR Northern systems at other facilities

  13. Doppler Cooling a Microsphere

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The...

  14. Polarimetric Doppler Weather Radar

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  15. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  16. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  17. Doppler-musical instrument

    We propose a possible ultra-high energy resolution backscattering spectrometer optimized to spallation neutron source. A combination of multi monochromator crystal and Doppler drive provides considerable neutron flux, together with the reasonable energy range -30 < E < 30 μeV, even when the ultra-high energy resolution of ΔE∼0.03 μeV is attained. (author)

  18. Doppler electron velocimetry : notes on creating a practical tool.

    Reu, Phillip L.; Milster, Tom (University of Arizona)

    2008-11-01

    The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.

  19. Doppler echocardiographic measurement of flow velocity in the ascending aorta during supine and upright exercise.

    Daley, P J; Sagar, K B; Wann, L S

    1985-01-01

    Doppler echocardiography was used to measure stroke volume, peak flow velocity, and acceleration of flow in the ascending aorta in 10 healthy young volunteers during unlimited supine bicycle exercise and upright treadmill exercise. High quality studies were obtained in all subjects through the suprasternal notch acoustic window; there was no appreciable degradation in Doppler signal caused by interference by increased respiration or chest wall motion. Stroke volume index increased from 54 ml/...

  20. Accurate determination of the Boltzmann constant by Doppler spectroscopy: Towards a new definition of the kelvin

    Darquié, Benoît; Sow, Papa Lat Tabara; Lemarchand, Cyril; Triki, Meriam; Tokunaga, Sean; Bordé, Christian J; Chardonnet, Christian; Daussy, Christophe

    2015-01-01

    Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 $\\mu$m enables a determination of the Boltzmann constant k B. We report on our latest measurements. By fitting this lineshape to several models which include Dicke narrowing or speed-dependent collisional effects, we find that a determination of k B with an uncertainty of a few ppm is reachable. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k B determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the kelvin by fixing k B, an exciting prospect considering the upcoming redefinition of the International System of Units.

  1. Acoustic cloaking and transformation acoustics

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  2. Acoustic cloaking and transformation acoustics

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  3. Quantitative Laser Doppler Flowmetry

    Fredriksson, Ingemar

    2009-01-01

    Laser Doppler flowmetry (LDF) is virtually the only non-invasive technique, except for other laser speckle based techniques, that enables estimation of the microcirculatory blood flow. The technique was introduced into the field of biomedical engineering in the 1970s, and a rapid evolvement followed during the 1980s with fiber based systems and improved signal analysis. The first imaging systems were presented in the beginning of the 1990s. Conventional LDF, although unique in many aspects an...

  4. Laser Doppler imaging, revisited

    Atlan, Michael; Gross, Michel

    2006-01-01

    International audience We present a detection scheme designed to perform laser Doppler imaging in a wide-field configuration, aimed at slow flows characterization. The optical field which carries a spectral information about the local scatterers dynamic state that results from momentum transfer at each scattering event, is analyzed in the temporal frequencies domain. The setup is based on heterodyne off-axis digital holography.

  5. Holographic laser Doppler ophthalmoscopy

    Simonutti, Manuel; Sahel, J A; Gross, Michel; Samson, Benjamin; Magnain, Caroline; Atlan, Michael; 10.1364/OL.35.001941

    2010-01-01

    We report laser Doppler ophthalmoscopic fundus imaging in the rat eye with near-IR heterodyne holography. Sequential sampling of the beat of the reflected radiation against a frequency-shifted optical local oscillator is made onto an array detector. Wide-field maps of fluctuation spectra in the 10 Hz to 25 kHz band exhibit angiographic contrasts in the retinal vascular tree without requirement of an exogenous marker.

  6. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); NWHI, PHR; Long: -175.88110, Lat: 27.78209 (WGS84); Sensor Depth: 21.34m; Data Range: 20070806-20070912.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  7. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, BAK; Long: -176.46025, Lat: 00.19005 (WGS84); Sensor Depth: 18.90m; Data Range: 20040123-20060130.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  8. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); NWHI, PHR; Long: -175.88112, Lat: 27.78204 (WGS84); Sensor Depth: 21.34m; Data Range: 20060922-20070805.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  9. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); AMSM, SWA; Long: -171.09092, Lat: -11.05848 (WGS84); Sensor Depth: 15.00m; Data Range: 20020227-20021207.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  10. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); NWHI, NEC; Long: -164.71215, Lat: 23.56792 (WGS84); Sensor Depth: 24.90m; Data Range: 20050411-20060903.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  11. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, JAR; Long: -160.01553, Lat: -00.37917 (WGS84); Sensor Depth: 15.00m; Data Range: 20020311-20040325.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  12. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); MHI, KAU; Long: -159.51350, Lat: 22.21593 (WGS84); Sensor Depth: 15.24m; Data Range: 20060914-20070420.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  13. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, JAR; Long: -160.01547, Lat: -00.37915 (WGS84); Sensor Depth: 14.60m; Data Range: 20040327-20051016.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  14. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, BAK; Long: -176.46025, Lat: 00.19005 (WGS84); Sensor Depth: 18.90m; Data Range: 20020201-20040122.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  15. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); NWHI, MID; Long: -177.42977, Lat: 28.23180 (WGS84); Sensor Depth: 29.26m; Data Range: 20060916-20080928.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  16. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); Guam, SRR; Long: 144.41784, Lat: 12.83819 (WGS84); Sensor Depth: 20.40m; Data Range: 20030929-20050908.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  17. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, BAK; Long: -176.46012, Lat: 00.18994 (WGS84); Sensor Depth: 19.81m; Data Range: 20080210-20100130.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  18. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); Guam, SRR; Long: 144.41778, Lat: 12.83819 (WGS84); Sensor Depth: 20.42m; Data Range: 20051007-20070121.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  19. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, BAK; Long: -176.46012, Lat: 00.18994 (WGS84); Sensor Depth: 18.80m; Data Range: 20060131-20080209.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  20. Small-scale field-aligned currents and ionospheric disturbances induced by vertical acoustic resonance during the 2015 eruption of Chile's Calbuco volcano

    Aoyama, T.; Iyemori, T.; Nakanishi, K.; Nishioka, M.

    2015-12-01

    Wave packet structure of small-scale magnetic fluctuations were observed by SWARM satellites just above the volcano and it's magnetic conjugate point after the eruption of Chile's Calbuco volcano on April 22, 2015. These magnetic fluctuations in low and middle latitudes generated by small-scale field aligned currents (FACs), and have about 10-30 seconds period along the satellites' orbit [Nakanishi et al., 2014] and about 200 (340) seconds temporal scale for meridional (longitudinal) magnetic components [Iyemori et al., 2015]. We also observed ionospheric disturbances and ground geomagnetic fluctuations just after the eruption. The 4-min period oscillations of total electron content (TEC) were observed by GPS receivers near the volcano. The 260 and 215 seconds spectral peaks in D component of ground based geomagnetic observation were found. Such oscillations and spectral peaks didn't exist before the eruption. All of these observations may have the same origin, i.e., vertical acoustic resonance between the ionosphere and the ground. In this presentation, we estimate the propagation velocity of the TEC oscillations and the spatial scale of the disturbance region in the E-layer where the FACs are generated by the ionospheric dynamo.

  1. Acoustical Imaging

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  2. Acoustic telemetry.

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  3. Mitigating Doppler shift effect in HF multitone data modem

    Sonlu, Yasar

    1989-09-01

    Digital communications over High Frequency (HF) radio channels are getting important in recent years. Current HF requirements are for data transmission at rates 2.4 kbps or more to accommodate computer data links and digital secure voice. HF modems which were produced to meet these speeds are, serial modems and parallel modems. On the other hand, the HF sky-wave communication medium, the ionosphere, has some propagation problems such as multipath and Doppler shift. The effect of Doppler shift in a parallel modem which employs Differential Quadrature Phase Shift Keying (DQPSK) modulation is considered and a correction method to mitigate the Doppler Shift effect is introduced.

  4. [Feasibility study of the Doppler exploration of the renal artery].

    Milon, P; Clavier, E; Genevois, A; Benozio, M

    1990-03-01

    Using arteriography as a reference, the authors investigate the feasibility of pulsed doppler exploration of the normal or pathological renal arteries in 46 successive patients. The poor sensitivity of pulsed doppler, mainly due to the considerable anatomical variations of the renal pedicle, does not currently allow using this technique for the detection of renal arterial stenosis. When combined with angiography, pulsed doppler becomes a definite asset in therapeutic radiology to help in the choice of a treatment and in follow-up. PMID:2191123

  5. Considerations pertinent to the Doppler effect for space reactors

    This paper describes various theoretical aspects pertinent to the estimation of the Doppler effect for space reactors. The distinct characteristics of space reactors give rise to various issues that are not present in the more thoroughly studied Doppler effect of fast breeder reactors. Key issues concerning the existing resonance data and computational models are extensively discussed. Calculations of the Doppler coefficient for a generic space reactor design having features of current designs have also been carried out to illustrate various aspects of practical importance

  6. The Antarctic Circumpolar Current between the Falkland Islands and South Georgia

    Arhan, M.; Naveira Garabato, AC.; Heywood, KJ; Stevens, DP

    2002-01-01

    Hydrographic and lowered acoustic Doppler current profiler data along a line from the Falkland Islands to South Georgia via the Maurice Ewing Bank are used to estimate the flow of circumpolar water into the Argentine Basin, and to study the interaction of the Antarctic Circumpolar Current with the Falkland Plateau. The estimated net transport of 129 ± 21 Sv (Sv = 106 m3 s-1) across the section is shared between three major current bands. One is associated with the Subantarctic Front (SAF; 52 ...

  7. TIDDBIT HF Doppler Sounder Measurements of TIDs During the Wallops Island Rocket Launch of October 2007

    Reynolds, A.; Crowley, G.; Rodrigues, F.; Earle, G.; Bullett, T.; Bishop, R.

    2008-12-01

    The TID Detector Built In Texas (TIDDBIT) sounder was deployed on the East Coast near Wallops Island to support a rocket launch in October 2007. The purpose of the rocket experiment was to study mid-latitude spread-F (MSF), and TIDDBIT provided information on the TID characteristics during the launch and for several days surrounding the launch. The sounder data confirm that waves were present during the rocket launch. This presentation reviews the TIDDBIT results from the experiment, contrasting data collected on different days, and from the same dates a year earlier. HF Doppler sounders represent a low-cost and low- maintenance solution for monitoring acoustic and gravity wave activity in the F-region ionosphere. HF Doppler sounders together with modern data analysis techniques provide both horizontal and vertical phase trace velocities across the entire TID spectrum from periods of 30-s to several hours. ASTRA has extensive experience with HF systems, and is currently building TIDDBIT sounders in New Mexico, and Peru.

  8. Laser doppler perfusion imaging

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 {mu}m. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs.

  9. Laser doppler perfusion imaging

    Waardell, K.

    1992-11-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 {mu}m. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs.

  10. Laser doppler perfusion imaging

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  11. Single mode, extreme precision Doppler spectrographs

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2012-01-01

    The 'holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Ho...

  12. Acoustic engineering and technology '90

    Acoustic monitoring, testing and diagnosis in machines, production processes and products enhance the uptimes and profitability of machinery and plants. 18 papers discuss the current state of the art of acoustic monitoring systems including integrated factory planning as well as industrial health, and noise protection. (DG)

  13. Radiation acoustics

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  14. High-Frequency Seafloor Acoustics

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  15. Doppler speedometer for micro-organisms

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the Pentium. Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  16. Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    van Haren, H; Aguilar, J A; Albert, A; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J -J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabof, M; Bouwhuis, M C; Brown, A; Brunner, J; Busto, J; Camarena, F; Capone, A; Carminati, G; Carr, J; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyleh, P; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J -P; Escoffier, S; Fehr, F; Flaminio, V; Fratini, K; Fritsch, U; Fuda, J -L; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; de Jong, M; Kalantar-Nayestanakia, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kretschmer, W; Lahmann, R; Lamare, P; Lambard, G; Laros, G; Laschinsky, H; Lefèvre, D; Lelaizant, G; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Lyons, K; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Maurin, G; Mazure, A; Melissas, M; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Ostasch, R; Palioselitis, G; Păvălaş, G E; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Picqu, C; Pillet, R; Popa, V; Pradier, T; Presani, E; Racca, C; Radu, A; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Russo, G V; Sales, F; Schoeck, F; Schuller, J -P; Shanidze, R; Simeone, F; Spurio, M; Steijger, J J M; Stolarczyk, Th; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are ...

  17. Myocardial Strain and Strain Rate Imaging: Comparison between Doppler Derived Strain Imaging and Speckle Tracking Echocardiography

    Anita Sadeghpour

    2013-05-01

    Full Text Available Regional myocardial function has been traditionally assessed by visual estimation (1. Echocardiographic strain imaging which is known as deformation imaging, has been emerged as a quantitative technique to accurately estimate regional myocardial function and contractility. Currently, strain imaging has been regarded as a research tool in the most echocardiography laboratories. However, in recent years, strain imaging has gain momentum in daily clinical practice (2. The following two techniques have dominated the research arena of echocardiography: (1 Doppler based tissue velocity measurements, frequently referred to tissue Doppler or myocardial Doppler, and (2 speckle tracking on the basis of displacement measurements (3. Over the past two decades, Tissue Doppler Imaging (TDI and Doppler –derived strain (S and strain rate (SR imaging were introduced to quantify regional myocardial function. However, Doppler–derived strain variables faced criticisms, with regard to the angle dependency, noise interference, and substantial intraobserver and interobserver variability. The angle dependency is the major weakness of Doppler based methodology; however, it has the advantage of online measurements of velocities and time intervals with excellent temporal resolution, which is essential for the assessment of ischemia (4. Speckle-tracking echocardiography (STE or Non Doppler 2D strain echocardiography is a relatively new, largely angle-independent technique that analyzes motion by tracking natural acoustic reflections and interference patterns within an ultrasonic window. The image-processing algorithm tracks elements with approximately 20 to 40 pixels containing stable patterns and are described as ‘‘speckles’’ or ‘‘fingerprints’’. The speckles seen in grayscale B-mode (2D images are tracked consecutively frame to frame (5, 6. Assessment of 2D strain by STE is a semiautomatic method that requires definition of the myocardium

  18. ANL Doppler flowmeter

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  19. Trapping of superfluid persistent currents in superleaks

    Persistent currents in superleaks in contact with bulk superfluid helium have been investigated using Doppler shifts of the acoustic modes of an annular resonator partially packed with superleak and with a simple gyroscopic technique. In an annulus in which the bottom fraction is packed with fine powder and the upper part is left unpacked, there are two hybrid acoustic modes consisting of a combination of the three bulk sounds of superfluid helium, first, second and fourth sound. One mode, with velocity C/sub II/, consists of second sound modified by the presence of the superleak. The other mode, with velocity C14, is an interpolated first and fourth sound mode. The two modes have been studied between the temperatures 1.20K and the lambda temperature for annuli 20, 40, 60 and 80 percent filled with superleak. The velocities obtained were compared with the predictions of the two fluid hydrodynamic theory and good agreement was found. The doppler shifts of C/sub II/ and C14 were used to obtain the persistent current velocities in the unpacked or free section and the packed region of the resonator. It is found that the persistent current velocity in the powder is about the same as is found in a fully packed annulus. The decay of the observed persistent currents was observed for various initial velocities. These observations are discussed in terms of the vortex configurations in the annulus. Vortices form a sheath or cage on the surface of the superleak and prevent loss of angular momentum from the persistent current in the superleak. The arguments are extended to the case of a superleak without walls--a bare superleak--and it is shown that in this case the vortices close on themselves to form a cage to contain the current. Observations were made on a bare superleak by using a simple gyroscopic apparatus suspended from a torsion wire

  20. Doppler Beats or Interference Fringes?

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  1. Cooperative OFDM underwater acoustic communications

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  2. Laser Doppler measurement of cutaneous blood flow

    Laser Doppler velocimetry is an instrument system which has only recently been applied to the evaluation and quantitation of perfusion in the micro-vascular bed. The instrument is based on the Doppler principle, but uses low power laser light rather than the more commonly used ultrasound, and has a sample volume of approximately 1 mm/sup 3/. As it is non-invasive, it can be used on any skin surface or exposed microvascular bed and provides a continuous semi-quantitative measure of microcirculatory perfusion, it has a number of advantages as compared to other cutaneous blood flow measurement techniques. Initial studies have shown that it is easily used, and it has demonstrated good correlation with both xenon radio-isotope clearance and microsphere deposition techniques. Areas of current evaluation and utilization are in most major areas of medicine and surgery and include plastic, vascular and orthopaedic surgery, dermatology, gastro-enterology, rheumatology, burns and anaesthesiology

  3. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  4. Adaptive Spectral Doppler Estimation

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence....... The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested and...... compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of...

  5. Battlefield acoustics

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  6. Acoustical Imaging

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  7. Acoustic telemetry

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive...

  8. Acoustics Research

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  9. Reverberant Acoustic Test Facility (RATF)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  10. Strong acoustic wave action

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  11. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    Fang Liu; Changqing Shen; Qingbo He; Ao Zhang; Yongbin Liu; Fanrang Kong

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, ...

  12. Holographic imaging of surface acoustic waves

    Bruno, Francois; Royer, Daniel; Atlan, Michael

    2014-01-01

    We report on an experimental demonstration of surface acoustic waves monitoring on a thin metal plate with heterodyne optical holography. Narrowband imaging of local optical pathlength modulation is achieved with a frequency-tunable time-averaged laser Doppler holographic imaging scheme on a sensor array, at video-rate. This method enables robust and quantitative mapping of out-of-plane vibrations of nanometric amplitudes at radiofrequencies.

  13. Feasability of a ARFI/B-mode/Doppler system for real-time, freehand scanning of the cardiovascular system

    Dumont, Douglas M.; Lee, Seung-Yun; Doherty, Joshua R.; Trahey, Gregg E.

    2011-03-01

    Acoustic radiation force impulse (ARFI) imaging has been previously described for the visualization of the cardiovascular system, including assessment of cerebral and lower-limb vascular disease, myocardial function, and cardiac RF ablation monitoring. Given that plaque imposes a 3-dimensional burden on the artery and that accurate visualization of all lesion borders are important for ablation guidance, it would be convenient if an entire plaque or lesion volume could be acquired, either using a 3D system or 2D freehand scanning. Currently, ARFI imaging uses single-frame acquisition, with acquisition times ranging from 100-200ms. Such a system would be cumbersome for real-time, freehand scanning. In this work, we evaluate the feasibility of using ARFI for freehand, real-time scanning of the cardiovascular system. New techniques are presented which acquire B-mode / ARFI/ and Color-flow Doppler (BACD) information in less than 50 ms. Freehand feasibility is evaluated by sweeping the BACD system across lesion phantoms and vascular phantoms modeling a thin-cap fibroatheroma at sweep rates currently utilized in conventional B-mode systems. Stationary in vivo BACD images were then formed from the carotid artery of a canine model, demonstrating the system's potential. The results suggest that little loss in either ARFI or Doppler quality occurs during translational-stage controlled, quasi-freehand sweeps.

  14. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2011-12-15

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  15. How to study the Doppler effect with Audacity software

    Adriano Dias, Marco; Simeão Carvalho, Paulo; Rodrigues Ventura, Daniel

    2016-05-01

    The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle passing by the camera is recorded on the video; it is then analyzed with the free software Audacity by measuring the frequency of the sound during approach and recede of the vehicle from the observer. The speed of the vehicle is determined due to the application of Doppler effect equations for acoustic waves.

  16. High Resolution Doppler Lidar

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  17. Wind climatology observed over Kalpakkam using Doppler sodar

    Acoustic remote sensing of the prevailing winds in the boundary layer finds an important application in studying the problems related to air pollution meteorology. Analysis of the seasonal variation of vertical and horizontal wind speed with altitude is made using the Doppler sodar data collected at an atomic research centre, Kalpakkam. A pictorial representation of horizontal wind flow for each season is given in the form of wind roses at three lower levels of probing, namely 100, 300 and 500 m. Such analysis would prove to be a basic reference material for taking necessary meaningful emergency measures in similar climatic regions. (author). 18 refs., 10 figs

  18. Acoustic emission

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  19. Study of bed load measurement with Acoustic Doppler Current Profiler in Yantze River estuary%基于ADCP的长江口推移质运动遥测技术研究

    胡浩; 程和琴; 杨忠勇; 计娜

    2014-01-01

    利用ADCP底跟踪技术遥测了长江河口北港段推移质运动过程,并对推移质运动状态进行了分段研究。结果表明:无推移质运动状态下,测量误差主要受近底悬沙影响,推移质流速沿水流方向被高估;部分推移质运动状态下,推移质运动视速度与垂线平均流速呈指数相关;普遍推移质运动状态下,两者线性相关显著,且推移质运动速度误差将随流速变化而改变,测量精度主要受脉冲长度和近底悬沙影响。基于ADCP测量数据的推移质单宽输沙率公式合理有效,可以用于河口推移质输沙率的快速定量。%ADCP was used to measure the bed load transport process in Beigang Channel of Yantze River estuary and the bed load transport status in different stages was studied. The results show that if there is no bed load transport, the measuring error was influenced by suspended load near bed and the movement velocity of bed load in the flow direction is over estimated;if there is partial bed load transport, the apparent velocity of bed load has exponential correlation with mean velocity in vertical;if there is much bed load transport, the apparent velocity of bed load and mean velocity in vertical is in obvious linear correlation, and the error of apparent velocity varies with flow velocity. However, the measurement accuracy is mainly affected by the pulse range and the near-bottom suspended sediment. The formula of bed load transport rate per unit width measured by ADCP is reasona-ble, which can be used to rapidly determine the bed load transport rate in Yantze River estuary.

  20. Acoustic doppler current meter data collected in support of the Minerals Management Service-supported Deep Water Program in the the Gulf of Mexico, 1999 - 2003 (NODC Accession 0002196)

    National Oceanic and Atmospheric Administration, Department of Commerce — A research program has been initiated by the Minerals Management Service (Contract No. 1435-01-99-CT-30991) to gain better knowledge of the benthic communities of...

  1. Hull-Mounted (shipboard) Acoustic Doppler Current Profiler (ADCP) data collected during shipboard surveys during 2010 and 2011 in Vieques Sound, Virgin Passage and surrounding regions (NODC Accession 0088063)

    National Oceanic and Atmospheric Administration, Department of Commerce — Teledyne RD Instruments Ocean Surveyor 150kHz and Workhorse 300kHz ADCPs were utilized during cruises conducted between March 2010 and April 2011 in Vieques Sound,...

  2. Use of a tethersonde measurement system to conduct a Doppler SODAR performance audit

    Wilkerson, G.W. [North American Weather Consultants, Salt Lake City, UT (United States); Catizone, P.A. [TRC Environmental Corp., Windsor, CT (United States); Coble, T.D. [ASARCO Inc., East Helena, MT (United States)

    1994-12-31

    With the increased usage of dispersion models that require stack top wind information, such as the Complex Terrain Dispersion Model (CTDM), the need for a reliable method to collect elevated wind data has also increased. Doppler Sound Detection and Ranging (SODAR) instruments have gained recognition as a viable means of collecting such data. SODAR technology has improved greatly over the last decade and is now a cost effective alternative to tall meteorological towers. SODARs are remote sensing devices that sample the atmosphere and calculate wind speed and wind direction data at different altitudes. This is accomplished by measuring the doppler shift of an acoustic pulse emitted by a ground level antenna.

  3. Planetary Doppler Imaging

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  4. Doppler evaluation of valvular regurgitation

    The many examples described in this chapter show that there are several major points to keep in mind when examining patients for the presence of valvular insufficiency. One practical point not previously emphasized is that the audible output may be more sensitive than the spectral display. It is not infrequent that a given lesion is heard by audio but cannot be adequately recorded on the spectral hard copy. Interpretation in these cases is often difficult and, in our experience, usually involves a tradeoff. Accepting audio evidence of a regurgitant lesion without hard-copy confirmation increases the sensitivity of the procedure but will also result in an increased number of false-positive diagnoses. Currently, we require hard-copy confirmation before we will report definite evidence of valvular regurgitation. Second, it is important for the operator to take time to search for small regurgitant jets. When searching for insufficiency by pulsed wave with an instrument that has a variable sample volume size, one should not routinely begin the examination with a sample volume size that is as large as possible. Although this may seem desirable for locating small jets, the operator must remember that this process will frequently result in a loss of system sensitivity. Third, the opertor should expect regurgitant jets to exceed a velocity of 1.5m/sec and result in aliasing when in pulsed wave mode. This is certainly true in most adults, since regurgitant lesions are located far enough away from the transducer to cause the Nyquist limit to be exceeded. Thus, in almost every instance, pulsed Doppler operators should expect aliasing of regurgitant lesion. Fourth, particularly beginners should be prepared to switch back and forth between pulsed and continuous wave modes

  5. Inverse Doppler Effects in Flute

    Zhao, Xiao P; Liu, Song; Shen, Fang L; Li, Lin L; Luo, Chun R

    2015-01-01

    Here we report the observation of the inverse Doppler effects in a flute. It is experimentally verified that, when there is a relative movement between the source and the observer, the inverse Doppler effect could be detected for all seven pitches of a musical scale produced by a flute. Higher tone is associated with a greater shift in frequency. The effect of the inverse frequency shift may provide new insights into why the flute, with its euphonious tone, has been popular for thousands of years in Asia and Europe.

  6. Doppler Ultrasound Doppler and their applications in maternal medicine

    In this paper the technical aspects and physical principles of Doppler ultrasound are discussed, as well as the analysis that can be made from the quantitative and qualitative data. Finally, its utility in perinatal medicine is reviewed with emphasis in the clinical implications

  7. Comparisons between PW Doppler system and enhanced FM Doppler system

    Wilhjelm, Jens E.; Pedersen, P. C.

    system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location of...

  8. Acoustic lenses

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  9. Doppler tomography in fusion plasmas and astrophysics

    Salewski, Mirko; Heidbrink, Bill; Jacobsen, Asger Schou; Korsholm, Soren Bang; Leipold, Frank; Madsen, Jens; Moseev, Dmitry; Nielsen, Stefan Kragh; Rasmussen, Jesper; Stagner, Luke; Steeghs, Danny; Stejner, Morten; Tardini, Giovani; Weiland, Markus

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what ...

  10. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  11. It's all in the past: Deconstructing the temporal Doppler effect.

    Aksentijevic, Aleksandar; Treider, John Melvin Gudnyson

    2016-10-01

    A recent study reported an asymmetry between subjective estimates of future and past distances with passive estimation and virtual movement. The temporal Doppler effect refers to the contraction of future distance judgments relative to past ones. We aimed to replicate the effect using real and imagined motion in both directions as well as different temporal perspectives. To avoid the problem of subjective anchoring, we compared real- and imagined-, ego- and time-moving conditions to a control group. Generally, Doppler-like distortion was only observed in conditions in which the distance between the participant and a frontal target increased. No effects of temporal perspective were observed. The "past-directed temporal Doppler effect" presents a challenge for the current theories of temporal cognition by demonstrating absence of psychological movement into the future. The effect could open new avenues in memory research and serve as a starting point in a systematic examination of how the humans construct future. PMID:27395440

  12. The Tsushima Warm Current from a High Resolution Ocean Prediction Model, HYCOM

    Seongbong Seo

    2013-06-01

    Full Text Available This study investigates the characteristic of the Tsushima Warm Current from an assimilated high resolution global ocean prediction model, 1/12o Global HYbrid Coordiate Ocean Model (HYCOM. The model results were verified through a comparison with current measurements obtained by acoustic Doppler current profiler (ADCP mounted on the passenger ferryboat between Busan, Korea, and Hakata, Japan. The annual mean transport of the Tsushima Warm Current was 2.56 Sverdrup (Sv (1 Sv = 106 m3s−1, which is similar to those from previous studies (Takikawa et al. 1999; Teague et al. 2002. The volume transport time series of the Tsushima Warm Current from HYCOM correlates to a high degree with that from the ADCP observation (the correlation coefficient between the two is 0.82. The spatiotemporal structures of the currents as well as temperature and salinity from HYCOM are comparable to the observed ones.

  13. Wayside bearing fault diagnosis based on a data-driven Doppler effect eliminator and transient model analysis.

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197

  14. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    Fang Liu

    2014-05-01

    Full Text Available A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects.

  15. Anomalous Doppler effects in bulk phononic crystal

    Doppler effects in simple cubic phononic crystal are studied theoretically and numerically. In addition to observing Doppler shifts from a moving source's frequencies inside the gap, we find that Doppler shifts can be multi-order, anisotropic, and the dominant order of shift depends on the band index that the source's frequency is in.

  16. Three-dimensional power doppler imaging

    Three-dimensional (3-D) ultrasonographic imaging techniques have recently shown rapid development and their clinical application has begun to attract considerable attention. Power Doppler sonography is known to be more sensitive than color Doppler for detecting blood flow, and there is also less noise and clutter. This paper describes the basic principles and initial clinical experience of 3-D power Doppler sonography

  17. The Doppler Effect--A New Approach

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  18. Doppler term in the galaxy two-point correlation function: wide-angle, velocity, Doppler lensing and cosmic acceleration effects

    Raccanelli, Alvise; Jeong, Donghui; Neyrinck, Mark C; Szalay, Alexander S

    2016-01-01

    We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys such as Euclid, SPHEREx and SKA, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter $f_{\\rm NL}^{\\rm eff}$ of a few, we show that this would affect forecasts on measurements of $f_{\\rm NL}$ at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-...

  19. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    Petrusevich, Vladislav; Dmitrenko, Igor; Kirillov, Sergey; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David; Ehn, Jens

    2016-04-01

    Six and a half month time series of acoustic backscatter and velocity from three ice-tethered Acoustic Doppler Current Profilers deployed in the Young Sound fjord in Northeast Greenland were used to analyse the acoustic signal. During period of civil polar night below the land-fast ice, the acoustic data suggest a systematic diel vertical migration (DVM) of backscatters likely comprised of zooplankton. The acoustic backscatter and vertical velocity data were also arranged in a form of actograms. Results show that the acoustic signal pattern typical to DVM in Young Sound persists throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favouring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead the zooplankton tended to favour remaining in the upper 40 m layer where also the relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favourable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Using existing models for lunar illuminance and light transmission through sea ice and snow cover we estimated under ice illuminance and compared it with known light sensitivity for Arctic zooplankton species.

  20. Widefield laser doppler velocimeter: development and theory.

    Hansche, Bruce David; Reu, Phillip L.; Massad, Jordan Elias

    2007-03-01

    The widefield laser Doppler velocimeter is a new measurement technique that significantly expands the functionality of a traditional scanning system. This new technique allows full-field velocity measurements without scanning, a drawback of traditional measurement techniques. This is particularly important for tests in which the sample is destroyed or the motion of the sample is non-repetitive. The goal of creating ''velocity movies'' was accomplished during the research, and this report describes the current functionality and operation of the system. The mathematical underpinnings and system setup are thoroughly described. Two prototype experiments are then presented to show the practical use of the current system. Details of the corresponding hardware used to collect the data and the associated software to analyze the data are presented.

  1. Time-Height Variations of Ion-Line Doppler Spectra at HAARP

    Watkins, B. J.; Fallen, C. T.

    2012-12-01

    O-mode HF heating results in enhanced electron temperatures in the lower ionosphere that in turn result in enhanced electron densities due to temperature-dependent molecular ion chemistry. As a result, for a fixed HF heating frequency, the altitude of the HF interaction region decreases with time after the onset of HF heating. Corresponding altitudes of the HF-enhanced ion-line signals detected with the MUIR UHF-frequency diagnostic radar also decrease with time. For the data presented here, the radar range resolution was 600 meters, and time-height Doppler spectra were obtained for every pulse (10ms inter-pulse period) of the UHF-radar. We have therefore been able to examine the height-dependent spectral characteristics of ion-line signals every 10ms. The UHF radar signals show a brief initial period after HF turn-on (about 120ms) when signals are scattered around zero Doppler over about 2km height range. The UHF signals then rapidly convert to a stable configuration with two ion-line signatures (approximately +/- 5kHz Doppler values); above a fixed height there is only positive Doppler data (downward ion-acoustic waves), and below that height there is only negative Doppler data (upward ion-acoustic waves). The power associated with the downward ion-acoustic waves is typically stronger than the upward waves. For the example shown, this spectral type persists for the entire duration of the HF heating time, at progressively lower heights. We suggest that the spectral characteristics are associated with HF frequencies near the 3rd gyro harmonic.

  2. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  3. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  4. A Doppler Transient Model Based on the Laplace Wavelet and Spectrum Correlation Assessment for Locomotive Bearing Fault Diagnosis

    Changqing Shen

    2013-11-01

    Full Text Available The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.

  5. The Use of Color Doppler Sonography to Avoid Misinterpretation of the Intrahepatic Portal Vein in Gray-Scale Sonographic Diagnosis of Cysts: Two Case Reports

    Youn, Byong Jong; Yu, Jeong Sik; Kim, Ki Whang [YongDong Severance Hospital, Seoul (Korea, Republic of); Park, Mi Suk [Sinchon Severance Hospital, Seoul (Korea, Republic of)

    2006-06-15

    The Use of Color Doppler Sonography Avoids Misinterpretation of the Intrahepatic Portal Vein in the Gray-Scale Sonographic Diagnosis of Cysts. When gray-scale US shows an intrahepatic cystic lesion with weak or no posterior acoustic enhancement in close proximity to the portal vein, especially at the bifurcation area, a detailed color Doppler US should be subsequently performed to evaluate its vascular nature

  6. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  7. Diel vertical migration of zooplankton at the S1 biogeochemical mooring revealed from acoustic backscattering strength

    Inoue, Ryuichiro; Kitamura, Minoru; Fujiki, Tetsuichi

    2016-02-01

    We examined the diel vertical migration of zooplankton by using the backscatter strength obtained from moored acoustic Doppler current profilers at mooring site S1 in the North Pacific subtropical gyre. There was seasonal variability in the vertical distribution and migration of the high-backscatter layers in that they became deeper than the euphotic zone (zooplankton near the surface by changing the light intensity. Physical events, such as mixed-layer deepening and restratification and the passage of a mesoscale eddy, also affected zooplankton behavior possibly by changing food environment in the euphotic zone. Since the comparison with net samples indicated that the backscatter likely represents the bulk biomass, the accuracy of biomass estimates based on net samples could be influenced by the high temporal variability of zooplankton distributions.

  8. Integration of Acoustic Detection Equipment into ANTARES

    Lahmann, R; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Naumann, C; Salomon, K

    2005-01-01

    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.

  9. Acoustic Transmitters for Underwater Neutrino Telescopes

    Ardid, Miguel; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to...

  10. Applications of Doppler optical coherence tomography

    Xu, Zhiqiang

    longitudinal resolution and the imaging depth for OCT imaging. Doppler OCT is becoming an increasingly popular field of investigation within optical coherence tomography with potentially important applications in cardiovascular and microfluidic research. We have spent some of the effort on searching for accurate and efficient methods for processing the experimental data. We applied the pseudo Wigner time-frequency distribution method to the data processing of Doppler OCT and compared its performance to that of the short-time Fourier transform method, the Hilbert-based phase-resolved method and the autocorrelation method. We concluded that the pseudo Wigner-distribution signal processing method is overall more precise than other often-used methods in Doppler OCT for the analysis of cross-sectional velocity distributions, especially in the high velocity regime. We also discovered the advantage of using the time-domain instead of the frequency domain for Doppler OCT for some applications where precise Doppler-speed metrology is essential. Based on the fact that the obtained local OCT interference signal is almost a single periodic waveform, we have developed a novel, simple and less time-consuming processing method based on the zero-crossing points in an OCT signal for the measurement of the Doppler frequency in a laminar flow. This method was compared to other processing approaches currently used in Doppler OCT. The results show that in the case of laminar flow, the zero-crossing method gives the more precise results, especially in the higher velocity regime with a substantial economy in processing time and an increase in dynamic range which can reach 70 dB. This feature becomes a major advantage in metrology if one wants to measure velocities over several orders of magnitude. We have applied this technique to some real flow models and the preliminary results on flow velocity distributions obtained in the case of a microfluidic circuit and in that of a phantom of a blood vessel

  11. Mathematical models and reconstruction methods in magneto-acoustic imaging

    Ammari, Habib; Capdeboscq, Yves; Kang, Hyeonbae; Kozhemyak, Anastasia

    2008-01-01

    In this paper, we provide the mathematical basis for three different magneto- acoustic imaging approaches (vibration potential tomography, magneto-acoustic tomog- raphy with magnetic induction, and magneto-acoustic current imaging) and propose new algorithms for solving the inverse problem for each of them.

  12. Using microwave Doppler radar in automated manufacturing applications

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  13. Causality and the Doppler Peaks

    Turok, Neil

    1996-01-01

    Could cosmic structure have formed by the action of causal physics within the standard hot big bang, or was a prior period of inflation required? Recently there has been some discussion of whether causal sources could reproduce the pattern of Doppler peaks of the standard scale-invariant adiabatic theory. This paper gives a rigorous definition of causality, and a causal decomposition of a general source. I present an example of a simple causal source which mimics the standard adiabatic theory...

  14. Doppler Imaging of Ap Stars

    Kuschnig, R.

    1998-01-01

    Doppler imaging, a technique which inverts spectral line profile variations of an Ap star into a two-dimensional abundance maps, provides new observational constraints on diffusion mechanism in the presence of a global magnetic field. A programme is presented here with the aim to obtain abundance distributions of at least five elements on each star, in order to study how different diffusion processes act under influence of a stellar magnetic field. The importance of this multi-element approac...

  15. [Doppler echocardiography in endomyocardial fibrosis].

    Tello, R; Cuan, V; Abundes, A; Navarro, J; García Lara, J; Astudillo, R; Ariza, H; Cuan, M

    1994-01-01

    Twelve patients with endomyocardial fibrosis with angiographic and/or histologic corroboration were studied with Doppler echocardiography with the purpose of describing the echocardiographic features and identify the affected sites. The average age was 41 years (range 16 to 59 years), 2 men and 10 women. Three patients (25%) had isolated right ventricular involvement, one patient (8%) left ventricular, 8 patients (66%) both ventricular. Our Doppler echocardiographic findings were: right atrium enlargement (91%), right ventricle outflow dilatation (83%), paradoxical septal motion (83%), left atrial enlargement (33%), mitral and tricuspid valve prolapse (50%), pericardial effusion (41%), mitral regurgitation (75%), tricuspid regurgitation (100%), apex obliteration (50%) and a restrictive type flow pattern (50%). Doppler echocardiography is a useful method for the diagnosis of endomyocardial fibrosis, the finding of normal or small ventricles associated with apex obliteration and enlarged atria, mitral or tricuspid regurgitation and a restrictive type flow pattern are characteristics of this disease. In our population, the isolated or predominantely right ventricular involvement is the most common finding as it represented 83% of the cases. PMID:7979815

  16. Radio wave diffraction during the passage of an acoustic shock through a sporadic E layer

    Bistatic HF Doppler measurements of the ionospheric disturbance arising from a large ground-level chemical explosion have revealed a peculiar HF return which begins at large positive Doppler (greater than +5 Hz) and linearly evolves to large negative Doppler (less than -5 Hz). Various pieces of evidence in the data suggest that an HF wave which is diffracted from the intersection of the acoustic shock and an extensive plane of sporadic E ionization at 110 km was observed. From these measurements the horizontal trace velocity of the locus of intersection is estimated. 16 references

  17. Acoustic hemostasis

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  18. Nonlinear characterization of a single-axis acoustic levitator

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  19. Nonlinear characterization of a single-axis acoustic levitator

    Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  20. Shallow water acoustic response and platform motion modeling via a hierarchical Gaussian mixture model.

    Gendron, Paul J

    2016-04-01

    A hierarchical Gaussian mixture model is proposed to characterize shallow water acoustic response functions that are time-varying and sparse. The mixture model is based on the assumption that acoustic paths can be partitioned into two sets. The first is a relatively coherent set of arrivals that on average exhibit Doppler spreading about a mean Doppler and the remaining set is of multiple surface scattered paths that exhibit a spectrally flat Doppler. The hierarchy establishes constraints on the parameters of each of these Gaussian models such that coherent components of the response are both sparse and in the ensemble obey the Doppler spread profile. This is accomplished with a Bernoulli model that indicates the ensonification state of each element in the bi-frequency representation of the acoustic response function. Estimators of the time-varying acoustic response for the full duration of a broadband transmission are developed and employed to compensate for the shared time-varying dilation process among the coherent arrivals. The approach ameliorates response coherence degradation and can be employed to enhance coherent multi-path combining and is a useful alternative to time recursive estimation. The model is tested with acoustic communication recordings taken in shallow water at low signal-to-noise ratios. PMID:27106339

  1. Acoustic Neuroma Educational Video

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  2. Use of acoustic vortices in acoustic levitation

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...

  3. Acoustic dispersive prism

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  4. DOPPLER ANALYSIS IN PREGNANCY INDUCED HYPERTENSION

    Tushar

    2014-12-01

    Full Text Available A study of 50 cases was conducted to evaluate the role of Colour Doppler imaging in pregnancy induced hypertension with women over 28 weeks of gestation, the initial scan was performed immediately after the diagnosis of PIH to avoid any influence of treatment on Doppler evaluation. This study was aimed to analyze the blood flow in umbilical artery, maternal uterine artery & fetal middle cerebral artery using Doppler ultrasound.

  5. Doppler tomography in fusion plasmas and astrophysics

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.;

    2015-01-01

    spots, spiral structures and flow patterns. Fusion plasma Doppler tomography has led to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  6. Observation of the Zero Doppler Effect

    Jia Ran; Yewen Zhang; Xiaodong Chen; Kai Fang; Junfei Zhao; Hong Chen

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and i...

  7. Advanced Technology MEMS-based Acoustic Array Project

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation proposes a technological advancement of current state-of-the-art acoustic energy harvester for harsh environment...

  8. Flow velocity measurement with the nonlinear acoustic wave scattering

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution

  9. Flow velocity measurement with the nonlinear acoustic wave scattering

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  10. Flow velocity measurement with the nonlinear acoustic wave scattering

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  11. Acoustic Neurinomas

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  12. Acoustic Spatiality

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  13. Acoustic metasurface with hybrid resonances.

    Ma, Guancong; Yang, Min; Xiao, Songwen; Yang, Zhiyu; Sheng, Ping

    2014-09-01

    An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions, with its thickness less than the peak absorption wavelength by two orders of magnitude. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies, or converted into other form(s) of energy, such as an electrical current. A high acoustic-electrical energy conversion efficiency of 23% is achieved. PMID:24880731

  14. Phoneme Recognition Using Acoustic Events

    Huebener, K; Huebener, Kai; Carson-Berndsen, Julie

    1994-01-01

    This paper presents a new approach to phoneme recognition using nonsequential sub--phoneme units. These units are called acoustic events and are phonologically meaningful as well as recognizable from speech signals. Acoustic events form a phonologically incomplete representation as compared to distinctive features. This problem may partly be overcome by incorporating phonological constraints. Currently, 24 binary events describing manner and place of articulation, vowel quality and voicing are used to recognize all German phonemes. Phoneme recognition in this paradigm consists of two steps: After the acoustic events have been determined from the speech signal, a phonological parser is used to generate syllable and phoneme hypotheses from the event lattice. Results obtained on a speaker--dependent corpus are presented.

  15. Responsive acoustic surfaces

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design for the...... acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design was...... simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  16. Studi Penentuan Kecepatan Aliran Darah dan Frekuensi Terimaan Pasien Atherosclerosis Menggunakan USG Color Doppler

    Mulyani, Emba

    2014-01-01

    Jurnal Fisika Medik Studi Penentuan Kecepatan Aliran Darah dan Frekuensi Terimaan Pasien Atherosclerosis Menggunakan USG Color Doppler Mulyani H211 08 507 Pembimbing Utama Sri Dewi Astuty Ilyas,Ssi, Msi Nip.19750513 199903 2 001 Pembimbing Pertama Dahlang Tahir, Msi, Ph.D Nip.19750907 200003 1 001 ABSTRACT Research about Study of determination blood speed of current and freq uency give patient atherosclero sis uses plane USG Color Doppler had be...

  17. Modification of the Doppler Effect due to the Helicity-Rotation Coupling

    Mashhoon, Bahram

    2002-01-01

    The helicity-rotation coupling and its current empirical basis are examined. The modification of the Doppler effect due to the coupling of photon spin with the rotation of the observer is considered in detail in connection with its applications in the Doppler tracking of spacecraft. Further implications of this coupling and the possibility of searching for it in the intensity response of a rotating detector are briefly discussed.

  18. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage

  19. Acoustic source for generating an acoustic beam

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  20. Experimental Investigation of Turbulence Specifications of Turbidity Currents

    B Firoozabadi

    2010-01-01

    Full Text Available The present study investigates the turbulence characteristic of turbidity current experimentally. The three-dimensional Acoustic-Doppler Velocimeter (ADV was used to measure the instantaneous velocity and characteristics of the turbulent flow. The experiments were conducted in a three-dimensional channel for different discharge flows, concentrations, and bed slopes. Results are expressed at various distances from the inlet, for all flow rates, slopes and concentrations as the distribution of turbulence energy, Reynolds stress and the turbulent intensity. It was concluded that the maximum turbulence intensity happens in both the interface and near the wall. Also, it was observed that the turbulence intensity reaches its minimum where maximum velocity occurs.

  1. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Analytical Solutions of Electromagnetic Fields from Current Dipole Moment on Spherical Conductor in a Low-Frequency Approximation

    Okita, Taishi; Takagi, Toshiyuki

    2010-01-01

    We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequeny excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems.

  2. Airborne Differential Doppler Weather Radar

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  3. First images of thunder: Acoustic imaging of triggered lightning

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  4. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a

  5. Microwave Doppler radar in unobtrusive health monitoring

    This article frames the use of microwave Doppler radar in the context of ubiquitous, non-obstructive health monitoring. The use of a 24GHz CW (continuous wave) Doppler radar based on a commercial off-the-shelf transceiver for remote sensing of heart rate and respiration rate based on the acquisition and processing of the signals delivered by the radar is briefly presented

  6. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  7. Observation of the Zero Doppler Effect

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  8. Acoustic Transmitters for Underwater Neutrino Telescopes

    Carlos D. Llorens

    2012-03-01

    Full Text Available In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars, high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

  9. Atlantic Herring Acoustic Surveys

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  10. Acoustic Neuroma Educational Video

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  11. Acoustic Neuroma Educational Video

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  12. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  13. Acoustic Neuroma Educational Video

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  14. Acoustic Neuroma Educational Video

    Full Text Available ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ...

  15. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA. ...

  16. Cystic acoustic neuromas

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  17. Multimodal integration of micro-Doppler sonar and auditory signals for behavior classification with convolutional networks.

    Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas

    2013-10-01

    The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance. PMID:23924412

  18. Design and Experimental Applications of Acoustic Metamaterials

    Zigoneanu, Lucian

    Acoustic metamaterials are engineered materials that were extensively investigated over the last years mainly because they promise properties otherwise hard or impossible to find in nature. Consequently, they open the door for improved or completely new applications (e.g. acoustic superlens that can exceed the diffraction limit in imaging or acoustic absorbing panels with higher transmission loss and smaller thickness than regular absorbers). Our objective is to surpass the limited frequency operating range imposed by the resonant mechanism that s1ome of these materials have. In addition, we want acoustic metamaterials that could be experimentally demonstrated and used to build devices with overall performances better than the previous ones reported in the literature. Here, we start by focusing on the need of engineered metamaterials in general and acoustic metamaterials in particular. Also, the similarities between electromagnetic metamaterials and acoustic metamaterials and possible ways to realize broadband acoustic metamaterials are briefly discussed. Then, we present the experimental realization and characterization of a two-dimensional (2D) broadband acoustic metamaterial with strongly anisotropic effective mass density. We use this metamaterial to realize a 2D broadband gradient index acoustic lens in air. Furthermore, we optimize the lens design by improving each unit cell's performance and we also realize a 2D acoustic ground cloak in air. In addition, we explore the performance of some novel applications (a 2D acoustic black hole and a three-dimensional acoustic cloak) using the currently available acoustic metamaterials. In order to overcome the limitations of our designs, we approach the active acoustic metamaterials path, which offers a broader range for the material parameters values and a better control over them. We propose two structures which contain a sensing element (microphone) and an acoustic driver (piezoelectric membrane or speaker). The

  19. Color doppler sonography in thickened gallbladder wall

    Han, Sang Suk; Choi, Seok Jin; Seo, Chang Hae; Eun, Choong Ki [Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1996-11-01

    The thickening of the gallbladder wall is a valuable finding for the diagnosis of cholecystitis, but may be seen in non-cholecystic disease as well as in acute or chronic cholecystitis. The purpose of this study is to determine the value of color Doppler sonography in differentiating the causes of thickened gallbladder wall. Ninety eight patients with thickened gallbladder wall(more than 3mm) which was not due to gallbladder cancer were prospectively evaluated with color Doppler sonography. Sixty-six cases, confirmed by pathologic reports and clinical records, were analyzed for correlation between thickened gallbladder wall and color flow signal according to the underlying causes. Of the 66 patients, 28 cases were cholecystitis and 38 cases had non-cholecystic causes such as liver cirrhosis, ascites, hepatitis, pancreatitis, renal failure, and hypoalbuminemia. Of the 28 patients with cholecystitis(12 acute, 16 chronic), 23(82%) had color Doppler flow signals in the thickened gallbladder wall. Of the 38 patients with non-cholecystic causes, eight(21%) had color Doppler flow signals. There was a statistically significant difference of color Doppler flow signals between the cholecystitis and non-cholecystic groups(p=0.0001). No significant difference of color Doppler flow signals was found between cases of acute and chronic cholecystitis. Of the 23 patients with color Doppler flow signals in 28 cases of cholecystitis, 18(78.3%) showed a linear pattern and five(21.7%) showed a spotty pattern. Of the eight patients with color Doppler flow signals in the 38 non-cholecystic cases, four(50%) showed a linear pattern and four(50%) showed a spotty pattern. In cholecystitis, a linear color Doppler flow signal pattern is a much more frequent finding than a spotty pattern. Color Doppler sonography is a useful and adequate method for determining whether a thickened gallbladder wall is the result of cholecystitis or has non-cholecystic causes.

  20. Color doppler sonography in thickened gallbladder wall

    The thickening of the gallbladder wall is a valuable finding for the diagnosis of cholecystitis, but may be seen in non-cholecystic disease as well as in acute or chronic cholecystitis. The purpose of this study is to determine the value of color Doppler sonography in differentiating the causes of thickened gallbladder wall. Ninety eight patients with thickened gallbladder wall(more than 3mm) which was not due to gallbladder cancer were prospectively evaluated with color Doppler sonography. Sixty-six cases, confirmed by pathologic reports and clinical records, were analyzed for correlation between thickened gallbladder wall and color flow signal according to the underlying causes. Of the 66 patients, 28 cases were cholecystitis and 38 cases had non-cholecystic causes such as liver cirrhosis, ascites, hepatitis, pancreatitis, renal failure, and hypoalbuminemia. Of the 28 patients with cholecystitis(12 acute, 16 chronic), 23(82%) had color Doppler flow signals in the thickened gallbladder wall. Of the 38 patients with non-cholecystic causes, eight(21%) had color Doppler flow signals. There was a statistically significant difference of color Doppler flow signals between the cholecystitis and non-cholecystic groups(p=0.0001). No significant difference of color Doppler flow signals was found between cases of acute and chronic cholecystitis. Of the 23 patients with color Doppler flow signals in 28 cases of cholecystitis, 18(78.3%) showed a linear pattern and five(21.7%) showed a spotty pattern. Of the eight patients with color Doppler flow signals in the 38 non-cholecystic cases, four(50%) showed a linear pattern and four(50%) showed a spotty pattern. In cholecystitis, a linear color Doppler flow signal pattern is a much more frequent finding than a spotty pattern. Color Doppler sonography is a useful and adequate method for determining whether a thickened gallbladder wall is the result of cholecystitis or has non-cholecystic causes

  1. Vibro-acoustic characterization of flexible hose in CO2 car air conditioning systems

    Angelini, F.; Bergami, A.; Martarelli, M.; Tomasini, E. P.

    2008-06-01

    Following the EU directive 2006/40/EC proscribing from 2011 that refrigerant fluids must have a global warming potential not higher than 150, it will not be allowed anymore to employ the current R134a on car air conditioning systems. Maflow s.p.a (automotive hose maker) is developing products for each possible new refrigerant. This paper is focused on hoses for CO2 refrigerants operating in the worst conditions because of the high pressures and temperatures at which they are working (with R134a the high pressure is 18 bar and low pressure is 3 bar; with CO2 the high pressure is 100 bar and low pressure is 35 bar). Therefore the noise emission control of the CO2 air conditioning systems is very important. The aim of this study is to develop a standard measurement method for the vibro - acoustic characterization of High Pressure (HP - Shark F4) and Low Pressure (LP - ULEV) hoses to reduce noise emission and raise car passenger comfort; in particular deep research on high pressure hose. The method is based on the measurement of the vibration level of the hoses in a standard test bench by means of a Laser Doppler Vibrometer (LDV) and its acoustic emission by a sound intensity probe.

  2. Complete velocity distribution in river cross-sections measured by acoustic instruments

    Cheng, R.T.; Gartner, J.W.

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  3. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  4. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  5. Doppler lidar sampling strategies and accuracies: Regional scale

    Emmitt, G. D.

    1985-01-01

    It has been proposed that a Doppler lidar be placed in a polar orbit and scanned to provide estimates of lower tropospheric winds twice per day and with a spatial resolution of 300 km. Initial feasibility studies conducted primarily by NOAA and NASA presented an optimistic outlook for a space based lidar. The technology appeared within reach and initial computer simulations suggested that acceptable accuracies could be obtained. Those early studies exposed, however, several potential problem areas which included: (1) the algorithms for computing the wind vectors did not perform well when there were coherent gradients in the wind fields; and (2) the lifetime and power requirements of the lidar put severe restrictions on the pulse repetition frequency (PRF). These two basic problems are currently being addressed by a Doppler lidar simulation study focussed upon three primary objectives: (1) to develop optimum scan parameters and shot patterns for a satellite-based Doppler lidar; (2) to develop robust algorithms for computing wind vectors from lidar returns; and (3) to evaluate the impact of coherent mesoscale structures (wind gradients, clouds, aerosols) on up-scale wind estimates. An overview is provided of the simulation efforts with particular emphasis upon rationale and methodology. Since this research is currently underway, any results shown are meant only as evidence of progress.

  6. A comprehensive radial velocity error budget for next generation Doppler spectrometers

    Halverson, Samuel; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefánsson, Guðmundur Kári; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; McElwain, Michael; Schwab, Christian; Ramsey, Lawrence; Wright, Jason; Wang, Sharon; Gong, Qian; Robertson, Paul

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance erro...

  7. Novel Doppler Frequency Extraction Method Based on Time-Frequency Analysis and Morphological Operation

    HOU Shu-juan; WU Si-liang

    2006-01-01

    A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can over come the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.

  8. Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz

    Cooper, Ken B.

    2016-05-01

    Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz, all using the frequency-modulated continuous-wave technique, are in various stages of development for both defense and science applications at the Jet Propulsion Laboratory. For standoff security screening, a 340 GHz imaging radar now achieves an 8.3 Hz frame, and it has been tested using power-efficient MMIC-based active multiplier sources into its front end. That system evolved from a 680 GHz security radar platform, which has also been modified to operate in a Doppler mode for probing the dynamics of blowing sand and sensing small-amplitude target vibrations. Meanwhile, 95 and 183 GHz radars based on similar RF architectures are currently being developed to probe cometary jets in space and, using a differential absorption technique, humidity inside upper-tropospheric clouds.

  9. LISA data analysis: Doppler demodulation

    The orbital motion of the laser interferometer space antenna (LISA) produces amplitude, phase and frequency modulations of a gravitational wave signal. The modulations have the effect of spreading a monochromatic gravitational wave signal across a range of frequencies. The modulations encode useful information about the source location and orientation, but they also have the deleterious effect of spreading a signal across a wide bandwidth, thereby reducing the strength of the signal relative to the instrument noise. We describe a simple method for removing the dominant, Doppler component of the signal modulation. The demodulation reassembles the power from a monochromatic source into a narrow spike and provides a quick way to determine the sky locations and frequencies of the brightest gravitational wave sources

  10. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  11. The observation of Doppler shifts of subionospheric LF signal in possible association with earthquakes

    Hayakawa, M.; Kasahara, Y.; Endoh, T.; Hobara, Y.; Asai, S.

    2012-09-01

    The Doppler-shift observation of LF (f = 60 kHz) subionospheric signal from Saga (Kyushu) (with call sign of JJY) as observed at Chofu (CHF), has been used to investigate the properties of ionospheric perturbations possibly associated with earthquakes(EQs). The period of analysis is seismo-active half a year from January 1, 2009 to June 30, 2009, and six EQs with magnitude greater than 5.0 (in a range from 5.1 to 5.8, which took place within the wave sensitive area of the JJY-CHF path) are dealt with. It is found from the Doppler-shift observation at CHF that the Doppler shifts are really observed and the components in the frequency ranges of AGW (atmospheric gravity wave) and AW (acoustic wave) in the Doppler shifts are clearly enhanced, at least, before each EQ. This observational fact would lend a strong support to the important role of atmospheric oscillation channel in the lithosphere-atmosphere-ionosphere coupling mechanism.

  12. Rotational Doppler effect in nonlinear optics

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  13. 2013-2014 California Current Ecosystem (CCE14): Acoustic-Trawl Survey of Coastal Pelagic Fishes (Legs I and II); and Investigations of hake survey methods, life history, and associated ecosystem (Legs III and IV) (SH1405, ME70)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 acoustic-trawl method (ATM) project aboard Bell M. Shimada represents a joint effort between the SWFSC and the NWFSC in investigating elements of the...

  14. 2013-2014 California Current Ecosystem (CCE14): Acoustic-Trawl Survey of Coastal Pelagic Fishes (Legs I and II); and Investigations of hake survey methods, life history, and associated ecosystem (Legs III and IV) (SH1405, EK60)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 acoustic-trawl method (ATM) project aboard Bell M. Shimada represents a joint effort between the SWFSC and the NWFSC in investigating elements of the...

  15. Propagation of acoustic gravity waves excited by explosions

    Acoustic gravity waves excited by low-altitude nuclear explosions have been observed in the ionosphere, by H.F. Doppler soundings, at horizontal distances from the source between 100 and 1200 km. The characteristics of the initial shock wave, which is observed at short range, are progressively replaced by those of the atmospheric wave guide. In particular, the dispersion properties of the signal observed in the ionosphere at long range are those of the first acoustic and gravity modes. Detailed study of the propagation times to middle and long range shows that the wave guide is mainly excited by the focalisation of acoustic energy which is produced by non-linear mechanisms at an altitude of about 100 km and at a small horizontal distance from the explosion

  16. ACOUSTICAL STANDARDS NEWS.

    Blaeser, Susan B; Struck, Christopher J

    2016-03-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Susan B. Blaeser.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27036268

  17. Color doppler ultrasonography diagnosis of intramuscular hemangioma

    Objective: To analyze the clinical application of color Doppler ultrasonography in diagnosing intramuscular hemangioma. Methods: The color Doppler ultrasonographic characteristics of 17 cases with intramuscular hemangioma were analyzed retrospectively. Results: Seventeen patients with intramuscular hemangima were examined and diagnosed, and all these cases were confirmed by pathology after operation. The diagnostic accurate rate was 100%. Conclusion: Intramuscular hemangioma possesses typical characteristics in two-dimensional ultrasound. On the base of two-dimensional image, Color Doppler Flow Imaging can show blood vessel distribution of intramuscular hemangioma. So intramuscular hemangioma can be measured accurately. (authors)

  18. Preliminary simulation study of doppler reflectometry

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  19. Carotid Artery Doppler Assessment In Patients Accussed Of Strokes

    H. Mazaher; S. Sharif Kashani

    2005-01-01

    Carotid Doppler ultrasound assessment mostly indicated in patients accussed of TIAs or in younger patients with nonpersistant neurologic deficits. This assessment should be consisted of gray scale sonography, color Doppler Sonography, spectral Doppler sonography and power Doppler sonography. By gray scale sonography atherosclerotic plaques assessed from the point of Homogenousity, degree of echogenicity, surface regularity, calcification, length, Thichkness and sites of involvement. In color ...

  20. Steering A Radar Beam Toward The Zero-Doppler Line

    Chang, Chi-Yung; Curlander, John C.

    1994-01-01

    Algorithm computes angles needed to aim radar beam from airborne or spaceborne platform toward Doppler line projected on ground for which Doppler shift of radar return is zero. Devised to reduce Doppler errors and simplify processing of data from synthetic-aperture-radar system. Applicable to aiming of other radio or optical instruments toward their zero-Doppler lines on ground.

  1. Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth

    We report on dust acoustic wave growth rate measurements taken in a dc (anode glow) discharge plasma device. By introducing a mesh with a variable bias 12-17 cm from the anode, we developed a technique to produce a drifting dusty plasma. A secondary dust cloud, free of dust acoustic waves, was trapped adjacent to the anode side of the mesh. When the mesh was returned to its floating potential, the secondary cloud was released and streamed towards the anode and primary dust cloud, spontaneously exciting dust acoustic waves. The amplitude growth of the excited dust acoustic waves was measured directly along with the wavelength and Doppler shifted frequency. These measurements were compared to fluid and kinetic dust acoustic wave theories. As the wave growth saturated a transition from linear to nonlinear waves was observed. The merging of the secondary and primary dust clouds was also observed.

  2. Coherent scattering of CO2 light from ion-acoustic waves

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  3. Investigating the use of the acousto-optic effect for acoustic holography

    Torras Rosell, Antoni; Fernandez Grande, Efren; Jacobsen, Finn; Barrera Figueroa, Salvador

    2012-01-01

    Recent studies have demonstrated that the acousto-optic effect, that is, the interaction between sound and light, can be used as a means to visualize acoustic fields in the audible frequency range. The changes of density caused by sound waves propagating in air induce phase shifts to a laser beam...... that travels through the acoustic field. This phenomenon can in practice be captured with a laser Doppler vibrometer (LDV), and the pressure distribution of the acoustic field can be reconstructed using tomography. The present work investigates the potential of the acousto-optic effect in acoustic...... holography. Two different holographic methods are examined for this purpose. One method first reconstructs the hologram plane using acousto-optic tomography and then propagates it using conventional near-field acoustic holography (NAH). The other method exploits the so-called Fourier Slice Theorem and bases...

  4. On the Fly Doppler Broadening Using Multipole Representation

    On the Fly Doppler broadening is the technique to avoid pre-generation of the microscopic cross section, in other words, reduce the amount of storage. Currently, there are different types of formalisms used by NJOY code to generate reaction cross section and accomplish its Doppler broadening. Single-Level Breit-Wigner (SLBW) formalism is limited to well-separated resonances, in other words, it does not consider interference between energy levels. Multi-Level Breit- Wigner formalism (MLBW) was tested as the candidate for the cross section generation in the Monte Carlo code, which is under development in UNIST. According to the results, MLBW method requires huge amount of computational time to produce cross section at certain energy point. Reich-Moore (RM) technique can generate only 0K cross section, which means that it cannot produce broaden cross section directly from resonance parameters. The first step was to convert resonance parameters given in nuclear data file into multipoles. MPR shows very high potential to be used as the formalism in the on-the-fly Doppler broadening module of MCS. One of the main reasons is that comparison of the time cost shown in Table IV supports application of multipole representation

  5. Considerations pertinent to the Doppler effect for space reactors

    Because of the potential importance of the Doppler effect to the safety considerations of compact fast spectrum reactors for space applications, extensive investigations have been carried out. The purpose of this paper is two-fold. First, the magnitude of the Doppler reactivity of such reactors will be estimated. Secondly, some relevant questions concerning the fundamental nature of the problems will be addressed. In the present study, a generic space reactor design having features of current designs is examined. In R-Z geometry, the reactor consists of 3 core regions which are made of UN with various enrichments mixed in with a W/Re matrix and coolant channels filled with 7Li and surrounded by Mo-vessel and beryllium oxide reflector along with external control drums made of B4C in the radial direction and accompanied by axial regions. The axial region above the core contains BeO with W/Re structure. The enrichment increases as a function of radius to provide an approximately constant power distribution in the core regions. Hence, the temperature distribution is also expected to be approximately constant in various core regions. The Doppler reactivities will be given for various radial and axial regions

  6. Single mode, extreme precision Doppler spectrographs

    Schwab, Christian; Betters, Christopher H; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2012-01-01

    The 'holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a...

  7. International Space Station Acoustics - A Status Report

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  8. Active acoustic metamaterials reconfigurable in real time

    Popa, Bogdan-Ioan; Shinde, Durvesh; Konneker, Adam; Cummer, Steven A.

    2015-06-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or are only modestly tunable, tying them to the particular application for which they are designed. We present a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real time by configuring the digital electronics that control the metamaterial acoustic properties. We demonstrate this approach experimentally by designing a metamaterial slab configured to act as a very thin acoustic lens that manipulates differently three identical, consecutive pulses incident on the lens. Moreover, we show that the slab can be configured to simultaneously implement various roles, such as that of a lens and a beam steering device. Finally, we show that the metamaterial slab is suitable for efficient second harmonic acoustic imaging devices capable of overcoming the diffraction limit of linear lenses. These advantages demonstrate the versatility of this active metamaterial and highlight its broad applicability, in particular, to acoustic imaging.

  9. High Throughput Direct Detection Doppler Lidar Project

    National Aeronautics and Space Administration — Lite Cycles, Inc. (LCI) proposes to develop a direct-detection Doppler lidar (D3L) technology called ELITE that improves the system optical throughput by more than...

  10. INSTANTANEOUS DOPPLER FREQUENCY FOR SQUINT SAR IMAGING

    Liu Guangyan; Huang Shunji

    2003-01-01

    Instantaneous Doppler frequency for squint SAR imaging has been found with ChirpScaling Algorithm (CSA). Because the azimuth sample is not perpendicular to the range sample,the range signal must impact on the azimuth signal in the squint SAR data processing, andthe different slant range targets have different Doppler frequencies. From the mathematicalmodel of SAR echo signal, this paper carefully analyzes the instantaneous azimuth frequency, theinstantaneous Doppler frequency component of the azimuth frequency and the impact of rangechirp on azimuth frequency, which explains that Doppler frequency should be properly selected forcorrect SAR imaging in the squint SAR. The results of point target simulation experiments showthat the way is reasonable for the squint SAR and can effectively complete range compressionand azimuth focusing, and improve images' quality.

  11. Student Microwave Experiments Involving the Doppler Effect.

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  12. Doppler coefficient measurements in Zebra Core 5

    Measurements using a central hot loop in Zebra Core 5 are described. Results are given for the Doppler coefficients found in a number of assemblies with PuO2 and 16% PuO2/84% depleted UO2 pins, loaded with different combinations of steel, sodium or void pins. The mixed oxide results are in general about 20% more negative than was calculated using the FD2 data set, but agreement is good if the plutonium contributions in the calculations are omitted. The small positive Doppler coefficient calculated for Pu239 was not observed, and two measurements indicated instead a small negative effect. The Doppler effect in the mixed oxide systems was found to vary approximately as 1/T. The results from the empty loop and non-fissile assemblies indicate either a small negative Doppler effect in steel or alternatively the presence of an unexplained expansion effect. (author)

  13. Intensity changes in the Doppler effect

    Johnson, Montgomery H.; Teller, Edward

    1982-01-01

    When a source moves in any direction, the source strength and the frequencies are altered by the Doppler effect. It is shown that the source strength divided by the cube of the frequency is a Lorentz invariant.

  14. Separation of Doppler radar-based respiratory signatures.

    Lee, Yee Siong; Pathirana, Pubudu N; Evans, Robin J; Steinfort, Christopher L

    2016-08-01

    Respiration detection using microwave Doppler radar has attracted significant interest primarily due to its unobtrusive form of measurement. With less preparation in comparison with attaching physical sensors on the body or wearing special clothing, Doppler radar for respiration detection and monitoring is particularly useful for long-term monitoring applications such as sleep studies (i.e. sleep apnoea, SIDS). However, motion artefacts and interference from multiple sources limit the widespread use and the scope of potential applications of this technique. Utilising the recent advances in independent component analysis (ICA) and multiple antenna configuration schemes, this work investigates the feasibility of decomposing respiratory signatures into each subject from the Doppler-based measurements. Experimental results demonstrated that FastICA is capable of separating two distinct respiratory signatures from two subjects adjacent to each other even in the presence of apnoea. In each test scenario, the separated respiratory patterns correlate closely to the reference respiration strap readings. The effectiveness of FastICA in dealing with the mixed Doppler radar respiration signals confirms its applicability in healthcare applications, especially in long-term home-based monitoring as it usually involves at least two people in the same environment (i.e. two people sleeping next to each other). Further, the use of FastICA to separate involuntary movements such as the arm swing from the respiratory signatures of a single subject was explored in a multiple antenna environment. The separated respiratory signal indeed demonstrated a high correlation with the measurements made by a respiratory strap used currently in clinical settings. PMID:26358241

  15. AST Launch Vehicle Acoustics

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  16. Application of Energy Window Concept in Doppler Broadening of 238U Cross Section

    Currently, the NJOY code is used for construction and Doppler broadening of microscopic cross sections. There exist several methods or formalisms to produce microscopic cross sections and there are also different methods of Doppler broadening. In this paper, Multi-Level Breit-Wigner (MLBW) formalism and the Psi method are used for generation and Doppler broadening of the resonance cross section. Accuracy of the energy window concept applied MLBW (EW MLBW) Doppler broadened cross section was compared with that of the cross section generated by conventional MLBW (Con MLBW) formalism for 238U isotope using MATLAB. The conventional method requires Doppler broadening of all resonances, including resonances far from the target energy point, which do not change much with respect to the temperature change. The energy window concept makes Doppler broadening possible with a smaller number of resonances neighboring to the energy point we are interested in, and just adds up 0 K temperature cross sections of other resonances. Multi-level Breit-Wigner formalism and the Doppler broadening method were used to construct microscopic cross sections of 238U at different temperatures. The energy window concept was applied only for the 1st resonance energy region (4.5∼11.2 eV). The energy window concept demonstrates high competitiveness because the relative differences were less than 0.0016% for all types of cross sections. The advantage of the energy window concept is that the number of resonances broadened for every energy point is significantly reduced, which allows a reduction of computation time by almost 45 % of Doppler broadening time of the cross section generation at temperatures higher than 0 K

  17. Laser Doppler flowmetry in microvascular surgery

    Adrichem, Léon

    1992-01-01

    textabstractIn the first part of this thesis, describing clinical and experimental studies, laser Doppler flowmetry is evaluated as diagnostic tool to assess tissue microcirculation after various microvascular operations. The second part concerns the application of laser Doppler flowmetry to investigate and to objectivate the negative effects of cigarette smoking upon the microcirculation under normal circumstances as well as after microvascular operative procedures. Success of plastic and re...

  18. Speckles in laser Doppler perfusion imaging

    Rajan, V; Varghese, B.; Leeuwen, van; W. Steenbergen

    2006-01-01

    We report on the quantitative influence of speckles in laser Doppler perfusion imaging. The influence of speckles on the signal amplitude and on the Doppler spectrum is demonstrated experimentally for particle suspensions with different scattering levels and various beam widths. It is shown that the type of tissue affects the instrumental response through the effect of lateral light diffusion on the number of speckles involved in the detection process. These effects are largest for narrow beams.

  19. with Ultrasound Color Doppler Imaging

    Shin Takayama

    2012-01-01

    Full Text Available Color Doppler imaging (CDI can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture.

  20. Doppler synthetic aperture hitchhiker imaging

    In this paper we consider passive airborne receivers that use backscattered signals from sources of opportunity transmitting single-frequency or ultra-narrowband waveforms. Because of its combined passive synthetic aperture and the single-frequency nature of the transmitted waveforms, we refer to the system under consideration as Doppler synthetic aperture hitchhiker (DSAH). We present a novel image formation method for DSAH. Our method first correlates the windowed signal obtained from one receiver with the windowed, filtered, scaled and translated version of the received signal from another receiver. This processing removes the transmitter-related variables from the phase of the Fourier integral operator that maps the radiance of the scene to the correlated signal. Next, we use microlocal analysis to reconstruct the scene radiance by the weighted backprojection of the correlated signal. The image reconstruction method is applicable to both cooperative and non-cooperative sources of opportunity using one or more airborne receivers. It has the desirable property of preserving the visible edges of the scene radiance. Additionally, it is an analytic reconstruction technique that can be made computationally efficient. We present numerical simulations to demonstrate the performance of the image reconstruction method and to verify the theoretical results

  1. Adaptive Model-Based Mine Detection/Localization using Noisy Laser Doppler Vibration Measurements

    Sullivan, E J; Xiang, N; Candy, J V

    2009-04-06

    The acoustic detection of buried mines is hampered by the fact that at the frequencies required for obtaining useful penetration, the energy is quickly absorbed by the ground. A recent approach which avoids this problem, is to excite the ground with a high-level low frequency sound, which excites low frequency resonances in the mine. These resonances cause a low-level vibration on the surface which can be detected by a Laser Doppler Vibrometer. This paper presents a method of quickly and efficiently detecting these vibrations by sensing a change in the statistics of the signal when the mine is present. Results based on real data are shown.

  2. Color Doppler Ultrasound Indices in Endometriotic Cysts

    Parisa Hajialioghlo

    2009-01-01

    Full Text Available Problem statement: There have been considerable interests on using non-invasive techniques to detect endometriosis. A few studies were evaluated the Doppler ultrasound findings of endometriosis. This study aimed to characterize the grayscale and Doppler ultrasound findings of endometriosis. Approach: During present prospective study, gray scale and Doppler ultrasound findings of 37 women with final diagnosis of endometriosis were evaluated. Patients with probable diagnosis of endometriosis underwent conventional transvaginal and color Doppler assessment. After laparascopic confirmation of endometriosis, gray scale and color Doppler ultrasonographic data of patients considered for analysis. Results: Finally data of 37 subjects' data with suspected endometriosis was analyzed. Twenty nine of lesions were endometriosis, five hydrosalpinx, four paraovarian adhesion cysts and one peritoneal inclusion cyst according to laparoscopic exploration. Out of 29 endometriotic cysts, flow was detected in 58.62%. The mean of RI and PI were 0.67±0.15 (0.46-1.00 and 1.49±0.85 (0.66-3.11, respectively. Conclusion: In our experience, transvaginal sonography with color Doppler interrogation is a useful technique in the diagnosis of pathologic ovarian conditions, including cystic endometriosis.

  3. Doppler micro sense and avoid radar

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  4. Relationships between objective acoustic indices and acoustic comfort evaluation in nonacoustic spaces

    Kang, Jian

    2001-05-01

    Much attention has been paid to acoustic spaces such as concert halls and recording studios, whereas research on nonacoustic buildings/spaces has been rather limited, especially from the viewpoint of acoustic comfort. In this research a series of case studies has been carried out on this topic, considering various spaces including shopping mall atrium spaces, library reading rooms, football stadia, swimming spaces, churches, dining spaces, as well as urban open public spaces. The studies focus on the relationships between objective acoustic indices such as sound pressure level and reverberation time and perceptions of acoustic comfort. The results show that the acoustic atmosphere is an important consideration in such spaces and the evaluation of acoustic comfort may vary considerably even if the objective acoustic indices are the same. It is suggested that current guidelines and technical regulations are insufficient in terms of acoustic design of these spaces, and the relationships established from the case studies between objective and subjective aspects would be useful for developing further design guidelines. [Work supported partly by the British Academy.

  5. Theory of External Geodesic Acoustic Mode Excitation

    Full text: It is extremely appealing to externally excite geodesic acoustic modes in a tokamak, either to artificially reduce the turbulent transport provided sufficiently large amplitude is achievable, since GAMs are theoretically expected to impact the transport, or for diagnostic purposes, since the GAM frequency is dependent on the temperature and flux surface shapes. Moreover, even when not sufficient to suppress the turbulence completely, raising the GAM amplitude may lower the LH transition threshold. It can be shown that injection of momentum by heating, neutral particle beams or various plasma waves tends to be rather inefficient. In contrast resonant excitation by magnetic perturbations by external coils is a viable and potentially efficient method. (In principle, this could already be done at present, e.g., in the DIII-D tokamak with the in-vessel ELM stabilization coils). An elegant way to compute the action of external coil currents on the interior flux surfaces has been discovered, which allows analytical estimates and the coupling of a novel dynamic equilibrium code with a turbulence code to study the resonance in detail. To describe the induced resonance layer within the turbulence calculation it is essential to retain the radial variation of the GAM frequency throughout the computational domain, i.e., use a nonlocal framework and not rely on the flux tube/local approximation. The peaking and phase variation due to the resonance lead to strong flow shear at the resonance, and a modulation and partial suppression of the turbulence by the GAMs. The results offer several control knobs to influence the drive effectivity and aid in designing a GAM drive antenna. For example, the ELM suppression coils (internal, or I-coils) in DIII-D can produce a perturbation field of 0.02 mT at 7 kHz, yielding a displacement of about 6 mm under good conditions according to the mentioned analytical estimates, while displacement amplitudes larger than 2 mm can be readily

  6. Acoustic streaming in microchannels

    Tribler, Peter Muller

    , and experimental results for the streaming-induced drag force dominated motion of particles suspended in a water-filled microchannel supporting a transverse half-wavelength resonance. The experimental and theoretical results agree within a mean relative dierence of approximately 20%, a low deviation given state......This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...

  7. Vibro-acoustics

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  8. Springer handbook of acoustics

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  9. Model of propagation of acoustic pulses caused by underground nuclear explosion and theirs influence on the ionosphere

    Krasnov, V.; Drobzheva, Y.

    2003-04-01

    To describe the propagation of an acoustic pulse through the inhomogeneity atmosphere we developed new equation and correspondent computer simulation code. The equation takes into account nonlinear effects, inhomogeneities of the atmosphere, absorption, expansion of a wave acoustic front, etc. The model includes subroutine of vertical movement of earth surface during an underground nuclear explosion (we use an empirical model), subroutine of acoustic pulse generation by a spall zone, subroutine of propagation of acoustic pulse up to the ionospheric height, subroutine of acoustic wave influence on the ionospheric plasma, subroutine of ionospheric perturbation influence on Doppler frequency of a radio wave. All calculations take into account geomagnetic field and neutral wind. The data measurement of acoustic pulses at heights of the ionosphere with helping Doppler radio sounding were used to test the model. We used data of Doppler shift records which were obtained during 9 underground nuclear explosion for 16 traces of radio sounding of the ionoshphere. Coefficients correlation between calculated and experimental forms is 0.7-0.94.

  10. Active acoustic metamaterials reconfigurable in real-time

    Popa, Bogdan-Ioan; Shinde, Durvesh; Konneker, Adam; Cummer, Steven A.

    2015-01-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or only modestly tunable, tying them to the particular application for which they are designed. We present in this paper a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real-time by configuring the digital electronics that control the metamaterial acou...

  11. Acoustic non-diffracting Airy beam

    Lin, Zhou; Guo, Xiasheng, E-mail: guoxs@nju.edu.cn; Tu, Juan [Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Nanjing University, Nanjing 210093 (China); Ma, Qingyu [Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Nanjing University, Nanjing 210093 (China); School of Physics and Technology, Nanjing Normal University, Nanjing 210046 (China); Wu, Junru [Department of Physics, University of Vermont, Burlington, Vermont 05405 (United States); Zhang, Dong, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Nanjing University, Nanjing 210093 (China); The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080 (China)

    2015-03-14

    The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound.

  12. Acoustic non-diffracting Airy beam

    The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound

  13. Single Mode, Extreme Precision Doppler Spectrographs

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  14. Localized Acoustic Surface Modes

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  15. Shallow Water Acoustic Laboratory

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  16. Handbook of Engineering Acoustics

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  17. Acoustic dispersive prism

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  18. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    Sumit Goel

    2011-01-01

    Full Text Available Aim: To evaluate the efficacy of ultrasonography (USG with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Materials and Methods: Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. Results: USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas. There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. Conclusions: USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions.

  19. What Is an Acoustic Neuroma

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  20. Microembolus Detection by Transcranial Doppler Sonography: Review of the Literature

    Vlasta Vuković-Cvetković

    2012-01-01

    Full Text Available Transcranial Doppler can detect microembolic signals which are characterized by unidirectional high intensity increase, short duration, random occurrence, and a “whistling” sound. Microembolic signals have been detected in a number of clinical settings: carotid artery stenosis, aortic arch plaques, atrial fibrillation, myocardial infarction, prosthetic heart valves, patent foramen ovale, valvular stenosis, during invasive procedures (angiography, percutaneous transluminal angioplasty, surgery (carotid, cardiopulmonary bypass, orthopedic, and in certain systemic diseases. Microembolic signals are frequent in large artery disease, less commonly detected in cardioembolic stroke, and infrequent in lacunar stroke. This article provides an overview about the current state of technical and clinical aspects of microembolus detection.

  1. ADCP measurements of gravity currents in the Chicago River, Illinois

    Garcia, C.M.; Oberg, K.; Garcia, M.H.

    2007-01-01

    A unique set of observations of stratified flow phenomena in the Chicago River was made using an upward-looking acoustic Doppler current profiler (ADCP) during the period November 20, 2003 to February 1, 2004. Water density differences between the Chicago River and its North Branch (NB) seem to be responsible for the development of gravity currents. With the objective of characterizing the occurrence, frequency, and evolution of such currents, the ADCP was configured to continuously collect high-resolution water velocity and echo intensity profiles in the Chicago River at Columbus Drive. During the observation period, 28 gravity current events were identified, lasting a total of 77% of the time. Sixteen of these events were generated by underflows from the NB and 12 of these events were generated by overflows from the NB. On average, the duration of the underflow and overflow events was 52.3 and 42.1 h, respectively. A detailed analysis of one underflow event, which started on January 7, 2004, and lasted about 65h, was performed. This is the first time that ADCP technology has been used to continuously monitor gravity currents in a river. ?? 2007 ASCE.

  2. Chromospheric heating by acoustic waves compared to radiative cooling

    Sobotka, M; Švanda, M; Jurčák, J; del Moro, D; Berrilli, F

    2016-01-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric ma...

  3. APPLICATION OF DOMAIN DECOMPOSITION IN ACOUSTIC AND STRUCTURAL ACOUSTIC ANALYSIS

    2007-01-01

    Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.

  4. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    2010-01-01

    Roč. 4, č. 1 (2010), s. 25-36. ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  5. Acoustic Neuroma Educational Video

    Full Text Available ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ...

  6. Hands-Free Transcranial Color Doppler Probe

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses a spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design. A parallel motor configuration was used to minimize the amount of space wasted inside the probe case while minimizing the overall case dimensions. The distance from the front edge of the crystal to the edge of the case was also minimized to allow positioning of the probe very close to the ear on the temporal lobe. The mechanical probe is able to achieve a +/-20deg tip and tilt with smooth repeatable action in a very compact package. The enclosed probe is about 7 cm long, 4 cm wide, and 1.8 cm tall. The device is compact, hands-free, and can be adjusted via an innovative touchscreen. Positioning of the probe to the head is performed via conventional transducer gels and pillows. This device is amendable to having advanced software, which could intelligently focus and optimize the TCD signal.

  7. Estimation of sediment transport with an in-situ acoustic retrieval algorithm in the high-turbidity Changjiang Estuary, China

    Ge, Jian-zhong; Ding, Ping-xing; Li, Cheng; Fan, Zhong-ya; Shen, Fang; Kong, Ya-zhen

    2015-12-01

    A comprehensive acoustic retrieval algorithm to investigate suspended sediment is presented with the combined validations of Acoustic Doppler Current Profiler (ADCP) and Optical Backscattering Sensor (OBS) monitoring along seven cross-channel sections in the high-turbidity North Passage of the Changjiang Estuary, China. The realistic water conditions, horizontal and vertical salinities, and grain size of the suspended sediment are considered in the retrieval algorithm. Relations between net volume scattering of sound attenuation ( S v ) due to sediments and ADCP echo intensity ( E) were obtained with reasonable accuracy after applying the linear regression method. In the river mouth, an intensive vertical stratification and horizontal inhomogeneity were found, with a higher concentration of sediment in the North Passage and a lower concentration in the North Channel and South Passage. Additionally, The North Passage is characterized by higher sediment concentration in the middle region and lower concentration in the entrance and outlet areas. The maximum sediment flux rate, occurred in the middle region, could reach 6.3×105 and 1.5×105 t/h during the spring and neap tide, respectively. Retrieved sediment fluxes in the middle region are significantly larger than that in the upstream and downstream region. This strong sediment imbalance along the main channel indicates potential secondary sediment supply from southern Jiuduansha Shoals.

  8. Cochlear bionic acoustic metamaterials

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  9. Computational Ocean Acoustics

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  10. Acoustic Signals and Systems

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will...... present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  11. Active acoustic metamaterials reconfigurable in real-time

    Popa, Bogdan-Ioan; Konneker, Adam; Cummer, Steven A

    2015-01-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or only modestly tunable, tying them to the particular application for which they are designed. We present in this paper a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real-time by configuring the digital electronics that control the metamaterial acoustic properties. We demonstrate experimentally this approach by designing a metamaterial slab configured to act as a very thin acoustic lens that manipulates differently three identical, consecutive pulses incident on the lens. Moreover, we show that the slab can be configured to implement simultaneously various roles, such as that of a lens and beam steering device. Finally, we show that the metamaterial slab is suitable for efficient second harmonic acoustic imaging devices capable to overcome the diffraction limit of l...

  12. Arm locking with Doppler estimation errors

    Yu Yinan; Wand, Vinzenz; Mitryk, Shawn; Mueller, Guido, E-mail: yinan@phys.ufl.ed [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2010-05-01

    At the University of Florida we developed the University of Florida LISA Interferometer Simulator (UFLIS) in order to study LISA interferometry with hardware in the loop at a system level. One of the proposed laser frequency stabilization techniques in LISA is arm locking. Arm locking uses an adequately filtered linear combination of the LISA arm signals as a frequency reference. We will report about experiments in which we demonstrated arm locking using UFLIS. During these experiments we also discovered a problem associated with the Doppler shift of the return beam. The initial arm locking publications assumed that this Doppler shift can perfectly be subtracted inside the phasemeter or adds an insignificant offset to the sensor signal. However, the remaining Doppler knowledge error will cause a constant change in the laser frequency if unaccounted for. Several ways to circumvent this problem have been identified. We performed detailed simulations and started preliminary experiments to verify the performance of the proposed new controller designs.

  13. Diabetic Nephropathy : Evaluation with Doppler Ultrasonography

    Sim, Jung Suk; Kim, Seung Hyup; Kang, Heung Sik; Park, Jae Hyung; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-06-15

    To compare Doppler ultrasonography with laboratory tests in evaluation of diabetic nephropathy. Fifty-five patients (mean age = 60, M : F = 26 : 29) with diabetes mellitus underwent renal Doppler ultrasonography. Resistive indices were compared with degree of proteinuria, serum creatinine level, and creatinine clearance rate. Eighteen patients who showed no proteinuria or microscopic proteinuria had a mean resistive index (RI) of 0.72 (SD, 0.05), 16 patients with macroscopic proteinuria without nephrotic syndrome had a mean RI of 0.82 (SD, 0.13), and 21 patients with nephrotic syndrome had a mean RI of 0.90 (SD, 0.12). Renal RI correlated highly with serum creatinine level (r = 0.62) and creatinine clearance rate (r = -0.43). Renal Doppler ultrasonography provides a useful indication of renal function in diabetic nephropathy but cannot offer an advantage over conventional laboratory test

  14. Gallblader varices in children with portal cavernoma: duplex-Doppler and color Doppler ultrasound studies

    To determine the prevalence of varices in the gallbladder wall, observed by duplex-Doppler and color Doppler ultrasound, in children with cavernoma of the portal vein. Nineteen patients with portal hypertension were studied prospectively by duplex-Doppler and color Doppler ultrasound: 12 of the patients had developed a cavernoma of the portal vein. The presence of peri vesicular varices was assessed in the group of patients with portal cavernoma. Duplex-Doppler and color Doppler ultrasound disclosed the presence of varices in gallbladder wall in nine of the 12 patients (75%). The varices appeared as anechoic and serpiginous areas, and Doppler ultrasound revealed slowed venous flow. However, the three patients in whom gallbldder varices were not detected presented collateral gastric ciculation and spontaneous splenorenal shunt. Gallbladder varices are common in children with portal vein cavernoma; they present hepatopetal flow. Their developments is not related to the size of the portal cavernoma, the presence of spontaneous portosystemic shunts, or endoscopic obliteration of gastric and esophageal varices. The detection of gallbladder varices in patients with portal hypertension who are to undergo biliary surgery is highly important for the surgeon, helping to avoid perioperative complications. (Author) 15 refs

  15. Topological charge pump by surface acoustic waves

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  16. Bayesian Classifier for Medical Data from Doppler Unit

    J. Málek

    2006-01-01

    Full Text Available Nowadays, hand-held ultrasonic Doppler units (probes are often used for noninvasive screening of atherosclerosis in the arteries of the lower limbs. The mean velocity of blood flow in time and blood pressures are measured on several positions on each lower limb. By listening to the acoustic signal generated by the device or by reading the signal displayed on screen, a specialist can detect peripheral arterial disease (PAD.This project aims to design software that will be able to analyze data from such a device and classify it into several diagnostic classes. At the Department of Functional Diagnostics at the Regional Hospital in Liberec a database of several hundreds signals was collected. In cooperation with the specialist, the signals were manually classified into four classes. For each class, selected signal features were extracted and then used for training a Bayesian classifier. Another set of signals was used for evaluating and optimizing the parameters of the classifier. Slightly above 84 % of successfully recognized diagnostic states, was recently achieved on the test data. 

  17. Ultrasonographic Doppler Use for Female Reproduction Management.

    Bollwein, Heinrich; Heppelmann, Maike; Lüttgenau, Johannes

    2016-03-01

    Transrectal color Doppler ultrasonography is a useful technique to get new information about physiologic and pathophysiologic alterations of the uterus and ovaries in female cattle. During all reproductive stages characteristic changes in uterine blood flow are observed. Cows with puerperal disturbances show delayed decrease in uterine blood flow in the first few weeks postparturition compared with healthy cows. Measurement of follicular blood flow is used to identify normally developing follicles and predict superovulatory response. Determination of luteal blood is more reliable than B-mode sonography to distinguish between functional and nonfunctional corpora lutea. Color Doppler ultrasonography is a promising tool to improve reproductive management in female cattle. PMID:26922117

  18. Preprocessing of ionospheric echo Doppler spectra

    FANG Liang; ZHAO Zhengyu; WANG Feng; SU Fanfan

    2007-01-01

    The real-time information of the distant ionosphere can be acquired by using the Wuhan ionospheric oblique backscattering sounding system(WIOBSS),which adopts a discontinuous wave mechanism.After the characteristics of the ionospheric echo Doppler spectra were analyzed,the signal preprocessing was developed in this paper,which aimed at improving the Doppler spectra.The results indicate that the preprocessing not only makes the system acquire a higher ability of target detection but also suppresses the radio frequency interference by 6-7 dB.

  19. An Undergraduate Experiment on Nuclear Lifetime Measurement Using the Doppler Effect

    Campbell, J. L.; And Others

    1972-01-01

    While designed for a senior undergraduate laboratory, the experiment illustrates the principles involved in the various Doppler techniques currently used in nuclear lifetime studies and demonstrates the versatility of the Ge(Li) detector in applications other than direct energy or intensity measurement. (Author/TS)

  20. Sediment resuspension by wind, waves, and currents during meteorological frontal passages in a micro-tidal lagoon

    Carlin, Joseph A.; Lee, Guan-hong; Dellapenna, Timothy M.; Laverty, Paul

    2016-04-01

    Meteorological frontal passages are recognized as important mechanisms for remobilizing sediment in estuaries along the northern Gulf of Mexico, but few studies have addressed factors beyond wind speed as a predictor for resuspension. To better understand resuspension mechanisms during these events, this study investigated the effects of wind, waves, and currents on suspended sediment concentration near the seabed during frontal passages in the shallow, micro-tidal West Galveston Bay located along the Texas coast. In late January and early February 2013, two multi-day deployments of instrumented pods (an acoustic Doppler velocimeter, and an acoustic wave and current profiler) were conducted to capture two separate frontal passages. The results indicate that the bed shear stress under the combined effect of waves and currents showed a much stronger relationship to sediment resuspension (R2 = 0.90) than wind stress alone (R2 = 0.55), or currents alone (R2 = 0.72). Increases in the bed shear stress due to the combined effects of waves and currents resulted from increased wave height, which is strongly related to fetch within the bay. Therefore, understanding fetch-limited wave heights as a function of wind speed and direction, in conjunction with basin geometry, may be a better way to predict sediment resuspension during meteorological frontal passages in the shallow bays of the northern Gulf of Mexico.

  1. Time-delay and Doppler tests of the Lorentz symmetry of gravity

    Bailey, Quentin G

    2009-01-01

    Modifications to the classic time-delay effect and Doppler shift in General Relativity (GR) are studied in the context of the Lorentz-violating Standard-Model Extension (SME). We derive the leading Lorentz-violating corrections to the time-delay and Doppler shift signals, for a light ray passing near a massive body. It is demonstrated that anisotropic coefficients for Lorentz violation control a time-dependent behavior of these signals that is qualitatively different from the conventional case in GR. Estimates of sensitivities to gravity-sector coefficients in the SME are given for current and future experiments, including the recent Cassini solar conjunction experiment.

  2. Doppler string phantom for assessment of clinical doppler ultrasound velocity measurement

    Yi Zhang; Ted Lynch; Hangiandreou, Nicholas J.

    2014-01-01

    Purpose: The Doppler string phantom provides accurate velocity of the string motion; it can be used to calibrate Doppler ultrasound (US) velocity measurements and to evaluate variations due to intrinsic spectral broadening. We developed a semi‐automated method to estimate the mode velocity (Vmode) and peak velocity (Vmax) based on duplex US images from a string phantom, and use them to assess clinical Doppler US velocity measurement.Methods: Steady motion of a rubber O‐ring (20 – 110 cm/s) in...

  3. Flat acoustic lens by acoustic grating with curled slits

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating

  4. Analisis Efek Doppler pada Sistem Komunikasi ITS-Sat

    Agriniwaty Paulus

    2013-09-01

    Full Text Available Analisa efek Doppler ini menggunakan pemrograman Matlab dengan citra yang berukuran 160 128 piksel, pada eksentrisitas (e satelit yang diasumsikan 0 sehingga bentuk lintasannya circular, dengan ketinggian 700 km dari stasiun bumi, sudut inklinasi sebesar 53° dan sinyal informasi ditransmisikan pada transmisi downlink dengan frekuensi carrier 2.4 GHz. Doppler shift terbesar terjadi saat satelit berada pada posisi terjauh dari terminal bumi yakni sebesar 51.077 KHz. Untuk  menghilangkan efek Doppler maka data output dikompensasi dengan invers dari efek Doppler tersebut. Berdasarkan hasil simulasi diperoleh bahwa BER untuk frekuensi Doppler maksimum maupun minimum adalah mendekati atau hampir sama yaitu 0.5001 dan 0.4998, dan dalam keadaan tanpa terkena Doppler shift yaitu ± 0.0197 untuk SNR 0 sampai 10 dB. Sedangkan dari segi kualitas citra, diperoleh bahwa untuk Doppler shift maksimum, kualitas citra lebih baik dibandingkan saat Doppler shift minimum.

  5. Operational Bright-Band Snow Level Detection Using Doppler Radar

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  6. Fish embryo multimodal imaging by laser Doppler digital holography

    Verrier, Nicolas; Picart, Pascal; Gross, Michel

    2015-01-01

    A laser Doppler imaging scheme combined to an upright microscope is proposed. Quantitative Doppler imaging in both velocity norm and direction, as well as amplitude contrast of either zebrafish flesh or vasculature is demonstrated.

  7. Aortic isthmus Doppler velocimetry: role in assessment of preterm fetal growth restriction.

    Kennelly, M M

    2012-02-01

    Intrauterine fetal growth restriction (IUGR) is an important pregnancy complication associated with significant adverse clinical outcome, stillbirth, perinatal morbidity and cerebral palsy. To date, no uniformly accepted management protocol of Doppler surveillance that reduces mortality and cognitive morbidity has emerged. Aortic isthmus (AoI) evaluation has been proposed as a potential monitoring tool for IUGR fetuses. In this review, the current knowledge of the relationship between AoI Doppler velocimetry and preterm fetal growth restriction is reviewed. Relevant technical aspects and reproducibility data are reviewed as we discuss AoI Doppler and its place within the existing repertoire of Doppler assessments in placental insufficiency. The AoI is a link between the right and left ventricles which perfuse the lower and upper body, respectively. The clinical use of AoI waveforms for monitoring fetal deterioration in IUGR has been limited, but preliminary work suggests that abnormal AoI impedance indices are an intermediate step between placental insufficiency-hypoxemia and cardiac decompensation. Further prospective studies correlating AoI indices with arterial and venous Doppler indices and perinatal outcome are required before encorporating this index into clinical practice.

  8. Research of smoothing pseudo-range algorithm by Doppler based on GPS/BD

    Kang, Chuanli; Zhou, Yanliu

    2015-12-01

    GNSS (Global Navigation Satellite System) technology not only in the general field of surveying and mapping, geology, mining, water and electricity, and in particular in the field of public security, fire protection, tourism, search and rescue, adventure have been more widely used. These special areas require real-time and high positioning accuracy. Currently, GNSS precision positioning technology has become a hot research direction. This paper introduced an algorithm of smoothing pseudo range by Doppler based GPS/BD to improve GNSS positioning precision. This algorithm decoded the pseudo range data and ephemeris data, and then designed algorithm of smoothing pseudo range by Doppler according principle of Doppler smoothing pseudo range. This algorithm was realized by C++ and proved its efficiency. At last, this algorithm has proved its correctness through calculating and analyzing practical Doppler and pseudo range data, and then a conclusion has been obtained: the Doppler value precision is sub-meter, far better than the pseudo-range accuracy, so that if the two data are combined to calculate position that can help to improve the positioning accuracy.

  9. Spacecraft Doppler tracking with possible violations of LLI and LPI: a theoretical modeling

    Deng, Xue-Mei

    2013-01-01

    Currently two-way and three-way spacecraft Doppler tracking techniques are widely used and playing important roles in control and navigation for deep space missions. Starting from one-way Doppler model, we extend the models of two-way and three-way Doppler by making them include possible violations of the local Lorentz invariance (LLI) and the local position invariance (LPI) in order to test the Einstein equivalence principle which is the cornerstone of general relativity and all other metric theories of gravity. After taking the finite speed of light into account, which is so-called light-time solution (LTS), we have these models depending on the time of reception of the signal only for practical convenience. We find that possible violations of LLI and LPI can not affect two-way Doppler under linear approximation of LTS although this approximation is sufficiently good for most cases in the solar system. We also show that, in three-way Doppler, possible violations of LLI and LPI associate with two stations on...

  10. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre.

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s(-1) and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  11. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  12. Underwater Applications of Acoustical Holography

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  13. Predicting Acoustics in Class Rooms

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be...

  14. Rotational Doppler effect in left-handed materials

    Luo, Hailu; Wen, Shuangchun; Shu, Weixing; Tang, Zhixiang; Zou, Yanhong; Fan, Dianyuan

    2008-01-01

    We explain the rotational Doppler effect associated with light beams carrying with orbital angular momentum in left-handed materials (LHMs). We demonstrate that the rotational Doppler effect in LHMs is unreversed, which is significantly different from the linear Doppler effect. The physics underlying this intriguing effect is the combined contributions of negative phase velocity and inverse screw of wave-front. In the normal dispersion region, the rotational Doppler effect induces a upstream ...

  15. Acoustic field effects on a negative corona discharge

    For a negative corona discharge under atmospheric pressure in different regimes, we investigated the effects of an acoustic field both on its electrical parameters and on the change in its visual appearance. We found that the application of an acoustic field on the true corona discharge, for particular currents, decreases the discharge voltage. The application of an acoustic field on the discharge in the filamentary streamer regime substantially extends the range of currents for which the discharge voltage remains more or less constant, i.e. it allows a substantial increase in the power delivered to the discharge. The application of an acoustic field on the discharge causes the discharge to spread within the discharge chamber and consequently, a highly reactive non-equilibrium plasma is created throughout the inter-electrode space. Finally, our experimental apparatus radiates almost no acoustic energy from the discharge chamber. (paper)

  16. Acoustic field effects on a negative corona discharge

    Bálek, R.; Červenka, M.; Pekárek, S.

    2014-06-01

    For a negative corona discharge under atmospheric pressure in different regimes, we investigated the effects of an acoustic field both on its electrical parameters and on the change in its visual appearance. We found that the application of an acoustic field on the true corona discharge, for particular currents, decreases the discharge voltage. The application of an acoustic field on the discharge in the filamentary streamer regime substantially extends the range of currents for which the discharge voltage remains more or less constant, i.e. it allows a substantial increase in the power delivered to the discharge. The application of an acoustic field on the discharge causes the discharge to spread within the discharge chamber and consequently, a highly reactive non-equilibrium plasma is created throughout the inter-electrode space. Finally, our experimental apparatus radiates almost no acoustic energy from the discharge chamber.

  17. Tunable acoustic metamaterials

    Babaee, Sahab; Viard, Nicolas; Fang, Nicholas; Bertoldi, Katia

    2015-03-01

    We report a new class of active and switchable acoustic metamaterials composed of three-dimensional stretchable chiral helices arranged on a two-dimensional square lattice. We investigate the propagation of sounds through the proposed structure both numerically and experimentally and find that the deformation of the helices can be exploited as a novel and effective approach to control the propagation of acoustic waves. The proposed concept expands the ability of existing acoustic metamaterials since we demonstrate that the deformation can be exploited to turn on or off the band gap, opening avenues for the design of adaptive noise-cancelling devices.

  18. Doppler prediction of adverse perinatal outcome in intrauterine growth restriction

    Nina Mahale

    2015-02-01

    Full Text Available Background: Objective of current study was to determine and compare the diagnostic performance of Doppler ultrasonography of the fetal Middle Cerebral Artery (MCA and Umbilical Artery (UA for prediction of adverse perinatal outcome in suspected intrauterine growth restriction (IUGR. Methods: Fifty singleton pregnancies in third trimester of pregnancy with suspected intrauterine growth restriction were examined with Doppler ultrasonography of fetal MCA and UA. Results: Twenty patients of the fifty included patients had at least one major or minor adverse outcome. Major adverse outcome included perinatal deaths which included both intrauterine deaths and early neonatal deaths, hypoxic ischemic encephalopathy, intraventricular hemorrhage, periventricular leukomalacia, pulmonary hemorrhage, necrotizing enterocolitis and septicemia. Minor outcomes included cesarean section for fetal distress, Apgar score below 7 at 5 minutes and admission to Neonatal Intensive Care Unit (NICU for treatment. MCA PI is the most sensitive(90% index in predicting any adverse perinatal outcome i.e. including both major and minor outcomes, Positive Predictive Value (PPV and specificity being greatest for MCA/UA PI (96.6%, 93.7%. For the major adverse outcome most sensitive (86.6% most specific (91.4% and with highest PPV (81.2% and NPV (94.1%, is MCA/UA PI. Ratio of MCA/UAPI is more sensitive (90% than PI of both the arteries alone for overall prediction of adverse perinatal outcome. Conclusions: Thus we conclude that the Doppler studies of the multiple vessels in the fetoplacental unit can help in the monitoring of the compromised fetus and can help us predicting neonatal morbidity. This may be helpful in determining the optimal time of deliveries in pregnancies complicated by IUGR. [Int J Reprod Contracept Obstet Gynecol 2015; 4(1.000: 119-130

  19. Equipment for flow measurements according to the ultrasonic Doppler method

    An instrument for flow measurements according to the ultrasonic Doppler method is described. It consists of an applicator with an ultrasonic oscillator and, connected to it, a Doppler instrument for the Doppler flow record. The angle of incidence of the ultrasonic beam may be taken into account, flow measurement independent of the angle thus becoming possible. (RW)

  20. Radar micro-doppler signatures processing and applications

    Chen, Victor C; Miceli, William J

    2014-01-01

    Radar Micro-Doppler Signatures: Processing and applications concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a good working knowledge on a variety of applications of radar micro-Doppler signatures.

  1. Applications of doppler effect in navigation and oceanography

    Joseph, A.

    . The Doppler effect is also used in sports, through Doppler radar systems to measure ball speed. Navigation technology received a boost in the 1960s with the introduction of the satellite navigation system, which applies the Doppler effect. In this system...

  2. On acceleration dependence of Doppler effect in light

    Sanjay M Wagh

    2013-09-01

    Using only the geometric relationships of suitable locations, we analyse Doppler effect in light to show how the acceleration of the source also contributes to the Doppler shift. We further propose that an experiment be performed using cyclotron-type devices to determine the acceleration dependence of the Doppler shift.

  3. Fifty Years of HF Doppler Observations

    Ogawa, T.; T. Ichinose

    2009-01-01

    High frequency Doppler observations of the ionosphere began in August of 1957 in Kyoto. The number of the observation points worldwide were about 40 in 1980 and are about 20 at present. By this method the movement of the ionosphere reflection height and electron density below the height can be observed. Such variations are occurred by a wide variety of sources.

  4. HF Doppler Radar Observations of Geomagnetic Pulsations

    Fišer, Jiří; Chum, Jaroslav

    Prague : Matfyzpress, 2014, s. 304-309. ISBN 978-80-7378-276-4. [Week of Doctoral Students /23./ : focused on physical study branches. Prague (CZ), 03.06.2014-05.06.2014] R&D Projects: GA ČR(CZ) GAP209/12/2440 Institutional support: RVO:68378289 Keywords : Doppler sounding * ionosphere * geomagnetic pulsations Subject RIV: DG - Athmosphere Sciences, Meteorology

  5. Ultrasonic Doppler color in glaucoma: Concordance study

    Our study demonstrates that US color Doppler is a non invasive, reliable and reproducible method for the evaluation of the orbitary flow in normal and glaucomatous patients. However is suggested that every group evaluates the inter and intraobserver variability because of the lack of universal reference velocity measurements

  6. Doppler Shift Compensation Schemes in VANETs

    F. Nyongesa

    2015-01-01

    Full Text Available Over the last decade vehicle-to-vehicle (V2V communication has received a lot of attention as it is a crucial issue in intravehicle communication as well as in Intelligent Transportation System (ITS. In ITS the focus is placed on integration of communication between mobile and fixed infrastructure to execute road safety as well as nonsafety information dissemination. The safety application such as emergence alerts lays emphasis on low-latency packet delivery rate (PDR, whereas multimedia and infotainment call for high data rates at low bit error rate (BER. The nonsafety information includes multimedia streaming for traffic information and infotainment applications such as playing audio content, utilizing navigation for driving, and accessing Internet. A lot of vehicular ad hoc network (VANET research has focused on specific areas including channel multiplexing, antenna diversity, and Doppler shift compensation schemes in an attempt to optimize BER performance. Despite this effort few surveys have been conducted to highlight the state-of-the-art collection on Doppler shift compensation schemes. Driven by this cause we survey some of the recent research activities in Doppler shift compensation schemes and highlight challenges and solutions as a stock-taking exercise. Moreover, we present open issues to be further investigated in order to address the challenges of Doppler shift in VANETs.

  7. The Doppler effect measurement on 238U

    The UO2 sample was irradiated in the RB zero power reactor in order to determine the Doppler effect on the 238 U by measuring the change in the 238 capture cross section with temperature. The measurement was meant to verify the indigenous developed computer codes and nuclear data library

  8. Measurements of the Doppler effect at Phenix

    A measurement of the Doppler effect has been performed at Phenix. Large corrections were necessary. Thus the measurement has been done again on another way. Results agree. A comparison has been made with the results of a theoretical calculation performed with the CARNAVAL IV ''formulaire''

  9. Method for Canceling Ionospheric Doppler Effect

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  10. Preserving the acoustical heritage of historical buildings

    Rindel, Jens Holger

    2005-01-01

    The use of virtual reality and auralization techniques has opened new possibilities for the study of acoustical conditions in historic buildings. With reference to some recent and current projects the paper describes the steps in the process and how new technology may be used to overcome some of ...

  11. Improving Accuracy in Detecting Acoustic Onsets

    Duyck, Wouter; Anseel, Frederik; Szmalec, Arnaud; Mestdagh, Pascal; Tavernier, Antoine; Hartsuiker, Robert J.

    2008-01-01

    In current cognitive psychology, naming latencies are commonly measured by electronic voice keys that detect when sound exceeds a certain amplitude threshold. However, recent research (e.g., K. Rastle & M. H. Davis, 2002) has shown that these devices are particularly inaccurate in precisely detecting acoustic onsets. In this article, the authors…

  12. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu; Liang Feng; Yan-Feng Chen

    2009-01-01

    Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surf...

  13. Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement

    He, Qingbo; Wang, Jun; Hu, Fei; Kong, Fanrang

    2013-10-01

    The diagnosis of train bearing defects plays a significant role to maintain the safety of railway transport. Among various defect detection techniques, acoustic diagnosis is capable of detecting incipient defects of a train bearing as well as being suitable for wayside monitoring. However, the wayside acoustic signal will be corrupted by the Doppler effect and surrounding heavy noise. This paper proposes a solution to overcome these two difficulties in wayside acoustic diagnosis. In the solution, a dynamically resampling method is firstly presented to reduce the Doppler effect, and then an adaptive stochastic resonance (ASR) method is proposed to enhance the defective characteristic frequency automatically by the aid of noise. The resampling method is based on a frequency variation curve extracted from the time-frequency distribution (TFD) of an acoustic signal by dynamically minimizing the local cost functions. For the ASR method, the genetic algorithm is introduced to adaptively select the optimal parameter of the multiscale noise tuning (MST)-based stochastic resonance (SR) method. The proposed wayside acoustic diagnostic scheme combines signal resampling and information enhancement, and thus is expected to be effective in wayside defective bearing detection. The experimental study verifies the effectiveness of the proposed solution.

  14. Range estimation by Doppler of multi-line in radiated noise spectrum

    WU Guoqing; MA Li

    2005-01-01

    A method by applying Doppler frequency shift of multi-line in radiated noise spectrum to estimate the vertical range from a receiver to a moving vessel, which is supposed to move along a straight line at a constant velocity, is developed. This method is based on passive ranging by a single sensor and the depth of the sea and other environment parameters are not necessarily known. First the Wigner-Ville distribution is used as the instantaneous frequency estimator to find out the instantaneous frequencies of the muti-lines as a signal. Then define Doppler frequency shift basis functions, based on an algorithm called matching pursuit, by a searching strategy of variable span, and explore the minimum spatial distance between the signal and the Doppler frequency shift basis functions in a five-dimension space. The basis function of the obtained minimum spatial distance corresponds to the estimation of range and speed of the moving vessel. Computer simulations yield statistics errors in the range and speed estimates with differing intensities of noise. If the white noise deviation is less than 10% of the maximum Doppler frequency shift and time-window width is 1.47 times of reference-duration,relative error of range estimate is less than 5.4% and relative error of speed estimate is less than 1.4%. This estimation method has been tested and the result conforms to data collected during an experiment on the sea, the estimated speed is 52 knots and the estimated range is 42 m. The single point passive ranging method can be used for ranging purposes in sonar-buoys, mines,movement analysis of an underwater object in underwater acoustics experiment, and sound source level measurements.

  15. Acoustic integrated extinction

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  16. Acoustics Noise Test Cell

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  17. Principles of musical acoustics

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  18. Compact acoustic refrigerator

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  19. Acoustics lecturing in Mexico

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  20. Acoustic Igniter Project

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  1. Thermal Acoustic Fatigue Apparatus

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  2. Acoustic Neuroma Educational Video

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  3. Acoustic coherent perfect absorbers

    In this paper, we explore the possibility of achieving acoustic coherent perfect absorbers. Through numerical simulations in two dimensions, we demonstrate that the energy of coherent acoustic waves can be totally absorbed by a fluid absorber with specific complex mass density or bulk modulus. The robustness of such absorbing systems is investigated under small perturbations of the absorber parameters. We find that when the resonance order is the lowest and the size of the absorber is comparable to the wavelength in the background, the phenomenon of perfect absorption is most stable. When the wavelength inside both the background and the absorber is much larger than the size of the absorber, perfect absorption is possible when the mass density of the absorber approaches the negative value of the background mass density. Finally, we show that by using suitable dispersive acoustic metamaterials, broadband acoustic perfect absorption may be achieved. (papers)

  4. Ocean acoustic reverberation tomography.

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  5. Autonomous Acoustic Receiver System

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  6. An electronic Doppler signal generator for assessing continuous-wave ultrasonic Doppler flowmeters

    Smallwood, R. H.; Dixon, P.

    1986-03-01

    The design and performance of the electric Doppler signal generator are described. The features of the CW ultrasonic Doppler flowmeter, which operates in the 2-10 MHz range, that are relevant to the design of the generator are examined. Methods for evaluating the bandwidth, dynamic range, directional separation, and linearity of the zero-crossing detector are discussed. The use of a polyphase network as a phase shifter to generate a single sideband (SSB) signal is analyzed. The SSB generation is performed at a frequency of 100 kHz and the advantages of generation at this frequency are stated. The selection of proper SSB signals for the system is investigated. The performance of the Doppler signal generator is evaluated with a frequency analyzer; sideband rejection ratios and phase error in the quadrature oscillator are calculated. The Doppler generator was applied to a CW flowmeter and output signal levels were measured. The test reveals that the Doppler signal generator's performance exceeds the flowmeter requirements; rejection of the unwanted sideband exceeds 40 dB for Doppler frequencies up to 10 kHz, which is the minimum upper frequency for 10 MHz flowmeters.

  7. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    Plzeň : University of West Bohemia, 2009 - (Adámek, V.; Zajíček, M.). s. 1-2 ISBN 978-80-7043-824-4. [Výpočtová mechanika 2009. 09.11.2009-11.11.2009, Nečtiny] R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  8. The autonomous acoustic buoy

    Pellicer, Francisco; Reitsma, Robert; Agüera, Joaquín; Marinas, Alexandra

    2013-01-01

    The Acoustic Buoy is a project between the Laboratory of Applied Bioacoustics (LAB) and the Universitat Politècnica de Catalunya (UPC). In areas that the human activities produce high noise levels, such as oil exploration or construction, there is a need to monitor the environment for the presence of cetaceans. Another need is for fishing, to prevent endangered species from being killed. This can be done with an Autonomous Acoustic Buoy (AAB). Mooring or anchoring at to the seaflo...

  9. Anal acoustic reflectometry

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  10. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  11. Fish effects on ocean current observations in the Cariaco Basin

    Virmani, Jyotika I.; Weisberg, Robert H.

    2009-03-01

    Multiple years of moored current meter observations from the Cariaco Basin show low-frequency variations along with near-inertial waves and further imply the persistent diurnal movement of fish species known to populate the basin. In agreement with short-term observations from 1979, the more recent observations with acoustic Doppler current profilers provide evidence of the multidecadal presence and behavior of these species. An unwanted corollary, however, is a bias in both the vertical and horizontal components of velocity due to the fish movements. Removal of this fish bias results in large data loss (approximately 72%); however, an interpolated, non-biased data set is developed with depth-averaged horizontal velocities comparable to the observations, demonstrating successful elimination of the bias. Further comparisons show that the interpolated data result in minimal variance density loss at low frequencies and a reduction of variance density at high frequencies such that the interpolated data in the internal wave range more closely fit the Garrett-Munk spectrum. The net result is a data set appropriate for further analysis. A mean downward velocity of 0.18 cm s-1 is a reflection of a biogenic particle flux and some residual fish contamination. The mean settling speed of particles in the Cariaco Basin is calculated, via Stokes law, to be smaller than 0.04 cm s-1. Velocity observations from acoustic current meters at depths greater than 400 m are impacted by the water clarity; therefore alternate methods should be used to make velocity measurements at depth.

  12. Digital storage and analysis of color Doppler echocardiograms

    Chandra, S.; Thomas, J. D.

    1997-01-01

    Color Doppler flow mapping has played an important role in clinical echocardiography. Most of the clinical work, however, has been primarily qualitative. Although qualitative information is very valuable, there is considerable quantitative information stored within the velocity map that has not been extensively exploited so far. Recently, many researchers have shown interest in using the encoded velocities to address the clinical problems such as quantification of valvular regurgitation, calculation of cardiac output, and characterization of ventricular filling. In this article, we review some basic physics and engineering aspects of color Doppler echocardiography, as well as drawbacks of trying to retrieve velocities from video tape data. Digital storage, which plays a critical role in performing quantitative analysis, is discussed in some detail with special attention to velocity encoding in DICOM 3.0 (medical image storage standard) and the use of digital compression. Lossy compression can considerably reduce file size with minimal loss of information (mostly redundant); this is critical for digital storage because of the enormous amount of data generated (a 10 minute study could require 18 Gigabytes of storage capacity). Lossy JPEG compression and its impact on quantitative analysis has been studied, showing that images compressed at 27:1 using the JPEG algorithm compares favorably with directly digitized video images, the current goldstandard. Some potential applications of these velocities in analyzing the proximal convergence zones, mitral inflow, and some areas of future development are also discussed in the article.

  13. On the Doppler effect for photons in rotating systems

    Giuliani, Giuseppe

    2015-01-01

    The analysis of the Doppler effect for photons in rotating systems, studied using the M\\"ossbauer effect, confirms the general conclusions of a previous paper dedicated to experiments with photons emitted/absorbed by atoms/nuclei in inertial flight. The wave theory of light is so deeply rooted that it has been--and currently is--applied to describe phenomena in which the fundamental entities at work are discrete (photons). The fact that the wave theory of light can describe one aspect of these phenomena can not overshadow two issues: the corpuscular theory of light, firstly applied to the Doppler effect for photons by Schr\\"odinger in 1922, is by far more complete since it describes all the features of the studied phenomena; the wave theory can be used only when the number of photons at work is statistically significant. The disregard of basic methodological criteria may appear as a minor fault. However, the historical development of quantum physics shows that the predominance of the wave theory of radiation,...

  14. Doppler string phantom for assessment of clinical doppler ultrasound velocity measurement

    Yi Zhang

    2014-03-01

    Full Text Available Purpose: The Doppler string phantom provides accurate velocity of the string motion; it can be used to calibrate Doppler ultrasound (US velocity measurements and to evaluate variations due to intrinsic spectral broadening. We developed a semi‐automated method to estimate the mode velocity (Vmode and peak velocity (Vmax based on duplex US images from a string phantom, and use them to assess clinical Doppler US velocity measurement.Methods: Steady motion of a rubber O‐ring (20 – 110 cm/s in a CIRS Doppler String phantom (Model 043 was studied using GE LOGIQ E9 system with a 9L probe. 5 s of Doppler spectral data was averaged to generate a mean spectral profile. It was fitted by a Gaussian function and Vmode was defined as the velocity of the Gaussian peak, while Vmax is defined as the velocity at which the spectral profile falls to within 1 SD of the background. Vmode and Vmax were evaluated against the prescribed motor velocity. Repeatability and variation to scanning parameters were analyzed and reported in % range, i.e. (max – min / mean.Results: Vmode and Vmax had good repeatability over six days (6.0% for Vmode, 2.9% for Vmax. Gain, compression, scale, sample volume (SV depth and length, frequency and beam steering all had minimal impact on Vmode and Vmax (variations ≤ 4.4%. Doppler angle θ had minimal effect on Vmode (2.2% but a strong effect on Vmax (26% increase as θ increased from 10° to 60°. Vmode was linearly correlated with but overestimated the motor velocity (Pearson’s r = 1.05, R2 = 1.Conclusion: This study developed a simple yet robust Vmode and Vmax estimation method. Combined with a string phantom, these velocity estimators are shown to be a useful tool to evaluate clinical Doppler US system performance. For the tested system, only Doppler angle has an appreciable impact on Vmax estimation.--------------------------------------------Cite this article as: Zhang Y, Lynch T, Hangiandreou NJ. Doppler string phantom

  15. Acoustic vector sensor signal processing

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  16. Carotid Artery Doppler Assessment In Patients Accussed Of Strokes

    H. Mazaher

    2005-08-01

    Full Text Available Carotid Doppler ultrasound assessment mostly indicated in patients accussed of TIAs or in younger patients with nonpersistant neurologic deficits. This assessment should be consisted of gray scale sonography, color Doppler Sonography, spectral Doppler sonography and power Doppler sonography. By gray scale sonography atherosclerotic plaques assessed from the point of Homogenousity, degree of echogenicity, surface regularity, calcification, length, Thichkness and sites of involvement. In color Doppler sonography hypoechoic Plaques which could not be identified in gray scale sonogarphy, arterial tortusity, Better and faster detection of Dis-turbed flow for flow spectrum analysis are assessed. Flow spectrum analysis and degree of stenosis in carotid arteries are assessed by Spectral Doppler sonography. Finally the main indication of carotid power Doppler sonography is differentiation Of high grade stenosis from occlusion.

  17. Power and color Doppler ultrasound settings for inflammatory flow

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin;

    2015-01-01

    OBJECTIVE: To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. METHODS: Six different types of ultrasound machines were used....... On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis...... (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity...

  18. ESTIMATION OF DOPPLER CENTROID FREQUENCY IN SPACEBORNE SCANSAR

    2008-01-01

    Doppler centroid frequency is an essential parameter in the imaging processing of the Scanning mode Synthetic Aperture Radar(ScanSAR).Inaccurate Doppler centroid frequency will result in ghost images in imaging result.In this letter,the principle and algorithms of Doppler centroid frequency estimation are introduced.Then the echo data of ScanSAR system is analyzed.Based on the algorithms of energy balancing and correlation Doppler estimator in the estimation of Doppler centroid fequency in strip mode SAR,an improved method for Doppler centroid frequency estimation in ScanSAR is proposed.The method has improved the accuracy of Doppler centroid fequency estimation in ScanSAR by zero padding between burst data.Finally,the proposed method is validated with the processing of ENVironment SATellite Advanced Synthetic Aperture Radar(ENVISAT ASAR)wide swath raw data.

  19. Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate

    Kumar, A.; Anderson, N.; Phillips, W. D.; Eckel, S.; Campbell, G. K.; Stringari, S.

    2016-02-01

    The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose-Einstein condensate using the Doppler effect. Phonon modes generated in this condensate have their frequencies Doppler shifted by a persistent current. This frequency shift will cause a standing-wave phonon mode to be ‘dragged’ along with the persistent current. By measuring this precession, one can extract the background flow velocity. This technique will find utility in experiments where the winding number is important, such as in emerging ‘atomtronic’ devices.

  20. Acoustic comfort in eating establishments

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating...

  1. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu

    2009-12-01

    Full Text Available Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surface evanescent waves have also been recognized to play key roles to reach acoustic subwavelength imaging and enhanced transmission.

  2. Integration of Acoustic Neutrino Detection Methods into ANTARES

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure

  3. Integration of Acoustic Neutrino Detection Methods into ANTARES

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure.

  4. HADES - Hydrophone for Acoustic Detection at South Pole

    Semburg, Benjamin

    2008-01-01

    The South Pole Acoustic Test Setup (SPATS) is located in the upper part of the optical neutrino observatory IceCube, currently under construction. SPATS consists of four strings at depths between 80 m and 500 m below the surface of the ice with seven stages per string. Each stage is equipped with an acoustic sensor and a transmitter. Three strings (string A-C) were deployed in the austral summer 2006/07. SPATS was extended by a fourth string (string D) with second generation sensors and transmitters in 2007/08. One second generation sensor type HADES (Hydrophone for Acoustic Detection at South Pole) consists of a ring-shaped piezo-electric element coated with polyurethane. The development of the sensor, optimization of acoustic transmission by acoustic impedance matching and first in-situ results will be discussed.

  5. Geodesic Acoustic Modes in Rotating Large Aspect Ratio Tokamak Plasmas

    Full text: Analytical theory of Geodesic Acoustic Modes (GAM's) is modified for a general case of rotating tokamak plasma. Both toroidal and poloidal components of steady-state plasma rotation are taken into account. For large aspect ratio tokamaks, the dispersion relation of electrostatic perturbations is derived analytically in the frame of one-fluid ideal magneto-hydrodynamics. In the case of small (compared to the sound frequency) angular rotation velocity, two solutions of dispersion relation are found. The first one is the standard GAM modified by the rotation effects. The second mode has a frequency close to the frequency of acoustic mode. The new GAM is induced by poloidal plasma rotation. This mode appears as a consequence of the Doppler frequency shift in the side-band components of plasma density, pressure and parallel velocity perturbations. The side-bands arise as the curvature driven response to the electrostatic potential perturbation with m =0(m is the poloidal wavenumber). The Doppler frequency shift is caused by poloidal rotation and has opposite signs for the m = 1 and m = -1 side-bands. Unlike the case of tokamak equilibrium with isothermal magnetic flux surfaces, no new low-frequency GAM arises in the case of purely toroidal plasma rotation in tokamak with isentropic magnetic surfaces. The pure toroidal flow results only in the up-shift of GAM frequency. (author)

  6. Color Doppler US of the penis

    Bertolotto, Michele (ed.) [Trieste Univ. Ospedale di Cattinara (Italy). Dept. Radiology

    2008-07-01

    This book provides a comprehensive reference and practical guide on the application of US to penile diseases and conditions. After introductory chapters on technical requirements and penile anatomy, subsequent chapters offer a systematic overview of the diverse applications of color Doppler US. The topics covered include erectile dysfunction, Peyronie's disease, priapism, trauma, tumors, the postoperative penis, inflammation, and fibrosis. Each topic is introduced by a clinical overview with the purpose of clarifying the problems and elucidating what the urologist may expect from color Doppler US. Thereafter, performance of the US study is explained and the pathological anatomy reviewed. High-quality images obtained with high-end US equipment are included. Each chapter also contains a section on the diagnostic information provided by other imaging modalities, and in particular MRI. (orig.)

  7. Minior Actinide Doppler Coefficient Measurement Assessment

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  8. Transcranial Doppler sonography in familial hemiplegic migraine

    A patient affected by familial hemiplegic migraine underwent transcranial Doppler sonography twice: the first during a spontaneous attack with right hemiparesis and aphasia, the second during a headachefree period. During the attack the following haemodynamic changes were seen: (a) bilateral increase in the middle cerebral artery and anterior cerebral artery blood flow velocities (this increase was more pronounced on the left side), (b) decreased systo-diastolic ratio and pulsatility index on the right side, (c) increased systo-diastolic ratio and pulsatility index on the left side. The results indicate that during the attack in this familial hemiplegic migraine patient, a diffuse vasoconstriction of the basal cerebral arteries developed. Moreover, transcranial Doppler sonography data suggest that a prolonged vasoconstriction of the peripheral arterioles could play a role in determining the neurological symptoms in this syndrome. 13 refs., 1 figs., 1 tab

  9. Color Doppler US of the penis

    This book provides a comprehensive reference and practical guide on the application of US to penile diseases and conditions. After introductory chapters on technical requirements and penile anatomy, subsequent chapters offer a systematic overview of the diverse applications of color Doppler US. The topics covered include erectile dysfunction, Peyronie's disease, priapism, trauma, tumors, the postoperative penis, inflammation, and fibrosis. Each topic is introduced by a clinical overview with the purpose of clarifying the problems and elucidating what the urologist may expect from color Doppler US. Thereafter, performance of the US study is explained and the pathological anatomy reviewed. High-quality images obtained with high-end US equipment are included. Each chapter also contains a section on the diagnostic information provided by other imaging modalities, and in particular MRI. (orig.)

  10. Design of a Doppler reflectometer for KSTAR

    Lee, K. D., E-mail: kdlee@nfri.re.kr; Nam, Y. U.; Seo, Seong-Heon; Kim, Y. S. [National Fusion Research Institute, Yuseong, Daejeon 305-333 (Korea, Republic of)

    2014-11-15

    A Doppler reflectometer has been designed to measure the poloidal propagation velocity on the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It has the operating frequency range of V-band (50-75 GHz) and the monostatic antenna configuration with extraordinary mode (X-mode). The single sideband modulation with an intermediate frequency of 50 MHz is used for the heterodyne measurement with the 200 MHz in-phase and quadrature (I/Q) phase detector. The corrugated conical horn antenna is used to approximate the Gaussian beam propagation and it is installed together with the oversized rectangular waveguides in the vacuum vessel. The first commissioning test of the Doppler reflectometer system on the KSTAR tokamak is planned in the 2014 KSTAR experimental campaign.

  11. Renal duplex Doppler ultrasound findings in diabetics

    The correlation between clinical-laboratory findings and renal duplex Doppler ultrasound findings was studied in 45 patients with diabetes mellitus to see the role of duplex Doppler ultrasound in the detection of diabetic nephropathy. The resistive indices in patients with elevated serum creatinine, BUN, proteinuria, and systolic blood pressure levels were statistically significantly higher than those in patients with normal levels (p<0.05). Also resistive indics in patients with retinopathy were higher than that in patients without retinopathy (p<0.05). But the ultrasound morphologic changes of kidney such as renal length, cortical eye-catching, and corticomedullarycontrast were not well correlated with clinical-laboratory data and resistive index. The resistive index of the kidney in conjunction with clinical-laboratory data in diabetics may be helpful in the evaluation of diabetic nephropathy

  12. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... the first phases in the architectural process and set out a reverse strategy for simulation programmes to do so - from developing acoustics from given spaces to developing spaces from given acoustics...

  13. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  14. Optimal Masks for Low-Degree Solar Acoustic Modes.

    Toutain; Kosovichev

    2000-05-10

    We suggest a solution to an important problem in observational helioseismology of the separation of lines of solar acoustic (p) modes of low angular degree in oscillation power spectra by constructing optimal masks for Doppler images of the Sun. Accurate measurements of oscillation frequencies of low-degree modes are essential for the determination of the structure and rotation of the solar core. However, these measurements for a particular mode are often affected by leakage of other p-modes arising when the Doppler images are projected on to spherical harmonic masks. The leakage results in overlapping peaks corresponding to different oscillation modes in the power spectra. In this Letter, we present a method for calculating optimal masks for a given (target) mode by minimizing the signals of other modes appearing in its vicinity. We apply this method to time series of 2 yr obtained from the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory space mission and demonstrate its ability to reduce efficiently the mode leakage. PMID:10813685

  15. Doppler Lidar Wind Value-Added Product

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  16. Doppler Findings in Intrapartum Fetal Distress

    Khatereh Tooba; Laleh Eslamian

    2011-01-01

    The umbilical vein (UV) has a non pulsating and even pattern in normal fetuses. Pulsation of UV has been described in severely growth restricted fetuses with chronic hypoxia. We wanted to see whether UV pulsations could also be seen in fetuses with heart deceleration during labor, as an adjunctive measure to assess the intra partum hypoxia. In a prospective study Doppler examination was performed on 34 fetuses with normal cardiotocography (CGT) and 26 fetuses with abnormal CTGs (GA>37w and ce...

  17. Colour Doppler ultrasound of the penis

    Wilkins, C.J.; Sriprasad, S.; Sidhu, P.S. E-mail: paulsidhu@compuserve.com

    2003-07-01

    Because it is a superficial structure, the penis is ideally suited to ultrasound imaging. A number of disease processes, including Peyronie's disease, penile fractures and penile tumours, are clearly visualized with ultrasound. An assessment of priapism can also be made using spectral Doppler waveform technology. Furthermore, dynamic assessment of cavernosal arterial changes after pharmaco-stimulation allows diagnosis of arterial and venogenic causes for impotence. This pictorial review illustrates the range of diseases encountered with ultrasound of the penis.

  18. El doppler en podología

    Albiol Ferrer, Josep Maria; Giralt de Veciana, Enrique; Hernández Galayo, Fco. Javier (Francisco Javier); Novel Martí, Virginia; Padrós Sánchez, Carolina; Valero, L.

    1990-01-01

    El sistema doppler por ultrasonido es un método de exploración incruento y no invasivo, que permite tener acceso a los fenómenos hemodinamicos producido en el interior de los vasos. Es un sistema de relativa sencillez de manejo, pero que utilizado correelamente aporta datos fidedignos de la velocidad del flujo como del estado de la pared de los vasos.

  19. Sub-Nyquist Radar via Doppler Focusing

    Bar-Ilan, Omer; Eldar, Yonina C.

    2012-01-01

    We investigate the problem of a monostatic pulse-Doppler radar transceiver trying to detect targets, sparsely populated in the radar's unambiguous time-frequency region. Several past works employ compressed sensing (CS) algorithms to this type of problem, but either do not address sample rate reduction, impose constraints on the radar transmitter, propose CS recovery methods with prohibitive dictionary size, or perform poorly in noisy conditions. Here we describe a sub-Nyquist sampling and re...

  20. Colour Doppler ultrasound of the penis

    Because it is a superficial structure, the penis is ideally suited to ultrasound imaging. A number of disease processes, including Peyronie's disease, penile fractures and penile tumours, are clearly visualized with ultrasound. An assessment of priapism can also be made using spectral Doppler waveform technology. Furthermore, dynamic assessment of cavernosal arterial changes after pharmaco-stimulation allows diagnosis of arterial and venogenic causes for impotence. This pictorial review illustrates the range of diseases encountered with ultrasound of the penis

  1. Color Doppler imaging of cervicocephalic fibromuscular dysplasia

    Grzyska Ulrich; Arning Christian

    2004-01-01

    Abstract Background Fibromuscular dysplasia (FMD) is a possible cause of stroke, especially in middle-aged women. However, only few reports are available on ultrasonographic detection and monitoring. Methods Among the 15,000 patients who underwent color Doppler imaging (CDI) of the cervicocephalic arteries during the study period, all cases fulfilling ultrasound criteria of FMD were included into the case series. Criteria of FMD were: 1. Segmental string-of-beads pattern, 2. Localization in t...

  2. Poincare's relativistic Doppler-Fizeau formula

    Pierseaux, Yves

    2006-01-01

    We deduce from Poincare's ellipsoidal wavefronts a relativistic Doppler-Fizeau formula that is not the same as 1905 Einstein's one. Longitudinally, Einstein's formula and Poincare's formula are the same. The question of an experimental test is connected with the possibility or the impossibility of directly measuring the relativistic transverse effect. Hasselkamp's 1978 experiment becomes a crucial experiment because Poincare's relativistic kinematics predicts an expansion of sapce directly co...

  3. Doppler-free magnetic optical activity

    Giraud-Cotton, S.; Kaftandjian, V.P.; Talin, B.

    1980-01-01

    The theory of Doppler-free magnetic optical activity associated with a single absorption line is presented. The transmission of tunable laser light, linearly polarized, through a dilute gaseous medium along a steady magnetic field is studied in the presence of a second counterpropagating saturating laser. The third order non linear susceptibility is calculated for a two-level system exhibiting a normal Zeeman effect, with arbitrary J values.

  4. Blazar sequence - an artefact of Doppler boosting

    Nieppola, E.; Valtaoja, E.; Tornikoski, M.; Hovatta, T.; Kotiranta, M.

    2008-01-01

    The blazar sequence is a scenario in which the bolometric luminosity of the blazar governs the appearance of its spectral energy distribution. The most prominent result is the significant negative correlation between the synchrotron peak frequencies and the synchrotron peak luminosities of the blazar population. Observational studies of the blazar sequence have, in general, neglected the effect of Doppler boosting. We study the dependence of both the synchrotron peak frequency and luminosity ...

  5. Doppler cooling to the Quantum limit

    Chalony, Maryvonne; Kastberg, Anders; Klappauf, Bruce; Wilkowski, David

    2011-01-01

    Doppler cooling on a narrow transition is limited by the noise of single scattering events. It shows novel features, which are in sharp contrast with cooling on a broad transition, such as a non-Gaussian momentum distribution, and divergence of its mean square value close to the resonance. We have observed those features using 1D cooling on an intercombination transition in strontium, and compared the measurements with theoretical predictions and Monte Carlo simulations. We also find that for...

  6. Doppler Lidar for Wind Measurements on Venus

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  7. COLOUR DOPPLER EVALUATION OF ACUTE RENAL COLIC

    Vallepu Ramaiah

    2016-05-01

    Full Text Available AIMS Can Doppler index–RI be a predictor of renal colics impending obstruction in acute and emergency clinical settings. To compare the results of RI in cases of obstructive, nondilated and normal kidneys. METHODS A total of 90 patients were included in this prospective study. The patients were grouped into three categories based on the clinical settings. Group 1 with acute unilateral obstruction were 44, group 2 who were presented with flank pain without stone disease were 26 and group 3 were 20 patients with sonologically normal kidneys. Grey scale ultrasonography and colour Doppler study carried out in all the groups and index – RI value were compared. RESULTS The study showed differences in RI values among the groups (0.726±0.04, 0.63±0.039 and 0.608±0.03 respectively. CONCLUSION In acute and emergency clinical setting, grey scale ultrasonography and interrogation with colour Doppler index– RI improved the assessment and detection of impending obstructive uropathy.

  8. Precise Doppler Monitoring of Barnard's Star

    Choi, Jieun; Marcy, Geoffrey W; Howard, Andrew W; Fischer, Debra A; Johnson, John A; Isaacson, Howard; Wright, Jason T

    2012-01-01

    We present 248 precise Doppler measurements of Barnard's Star (Gl 699), the second nearest star system to Earth, obtained from Lick and Keck Observatories during 25 years between 1987 and 2012. The early precision was 20 \\ms{} but was 2 \\ms{} during the last 8 years, constituting the most extensive and sensitive search for Doppler signatures of planets around this stellar neighbor. We carefully analyze the 136 Keck radial velocities spanning 8 years by first applying a periodogram analysis to search for nearly circular orbits. We find no significant periodic Doppler signals with amplitudes above $\\sim$2 \\ms{}, setting firm upper limits on the minimum mass (\\msini) of any planets with orbital periods from 0.1 to 1000 days. Using a Monte Carlo analysis for circular orbits, we determine that planetary companions to Barnard's Star with masses above 2 \\mearth{} and periods below 10 days would have been detected. Planets with periods up to 2 years and masses above 10 \\mearth{} (0.03 \\mjup) are also ruled out. A sim...

  9. Two classes of medium-scale traveling ionospheric disturbances observed with an array on HF-Doppler sounders

    The importance of the quasi-evanescent mode of acoustic-gravity waves (AGW) was recently stressed to elaborate on the daytime dispersion characteristics of horizontal velocity of medium-scale traveling ionospheric disturbances (MS-TID) which were observed by a high frequency Doppler (HFD) sounder array in central Japan. Observed MS-TIDs were classified into two categories: the internal mode and the quasi-evanescent mode as regards physical implication. Nonlinear wave-wave interaction is proposed in an attempt to explain salient features of the latter-class TID

  10. Two classes of medium-scale traveling ionospheric disturbances observed with an array on HF-Doppler sounders

    Shibata, T.; Okuzawa, T.

    1985-01-01

    The importance of the quasi-evanescent mode of acoustic-gravity waves (AGW) was recently stressed to elaborate on the daytime dispersion characteristics of horizontal velocity of medium-scale traveling ionospheric disturbances (MS-TID) which were observed by a high frequency Doppler (HFD) sounder array in central Japan. Observed MS-TIDs were classified into two categories: the internal mode and the quasi-evanescent mode as regards physical implication. Nonlinear wave-wave interaction is proposed in an attempt to explain salient features of the latter-class TID.

  11. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  12. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  13. Single-electron transport driven by surface acoustic waves: Moving quantum dots versus short barriers

    Utko, Pawel; Hansen, Jørn Bindslev; Lindelof, Poul Erik;

    2007-01-01

    We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the...... gate voltage V-g of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added...

  14. Acoustic detection of pneumothorax

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  15. Seamount acoustic scattering

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  16. Acoustics waves and oscillations

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  17. Practical acoustic emission testing

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  18. Estimating colony sizes of emerging bats using acoustic recordings

    Kloepper, Laura N.; Linnenschmidt, Meike; Blowers, Zelda; Branstetter, Brian; Ralston, Joel; Simmons, James A.

    2016-01-01

    The decline of bats demands more widespread monitoring of populations for conservation and management. Current censusing methods are either prone to bias or require costly equipment. Here, we report a new method using passive acoustics to determine bat count census from overall acoustic amplitude of the emerging bat stream. We recorded the video and audio of an emerging colony of Mexican free-tailed bats from two cave locations across multiple nights. Instantaneous bat counts were calculated from the video frames, and the bat stream’s acoustic amplitude corresponding to each video frame was determined using three different methods for calculating acoustic intensity. We found a significant link between all three acoustic parameters and bat count, with the highest R2 of 0.742 linking RMS pressure and bat count. Additionally, the relationship between acoustics and population size at one cave location could accurately predict the population size at another cave location. The data were gathered with low-cost, easy-to-operate equipment, and the data analysis can be easily accomplished using automated scripts or with open-source acoustic software. These results are a potential first step towards creating an acoustic model to estimate bat population at large cave colonies worldwide. PMID:27069667

  19. Estimating colony sizes of emerging bats using acoustic recordings.

    Kloepper, Laura N; Linnenschmidt, Meike; Blowers, Zelda; Branstetter, Brian; Ralston, Joel; Simmons, James A

    2016-03-01

    The decline of bats demands more widespread monitoring of populations for conservation and management. Current censusing methods are either prone to bias or require costly equipment. Here, we report a new method using passive acoustics to determine bat count census from overall acoustic amplitude of the emerging bat stream. We recorded the video and audio of an emerging colony of Mexican free-tailed bats from two cave locations across multiple nights. Instantaneous bat counts were calculated from the video frames, and the bat stream's acoustic amplitude corresponding to each video frame was determined using three different methods for calculating acoustic intensity. We found a significant link between all three acoustic parameters and bat count, with the highest R (2) of 0.742 linking RMS pressure and bat count. Additionally, the relationship between acoustics and population size at one cave location could accurately predict the population size at another cave location. The data were gathered with low-cost, easy-to-operate equipment, and the data analysis can be easily accomplished using automated scripts or with open-source acoustic software. These results are a potential first step towards creating an acoustic model to estimate bat population at large cave colonies worldwide. PMID:27069667

  20. Advanced Active Acoustics Lab (AAAL)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...