WorldWideScience

Sample records for acoustic 4f imaging

  1. Acoustical Imaging

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  2. Acoustical Imaging

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  3. 4F-based optical phase imaging system

    Palima, Darwin; Glückstad, Jesper

    2013-01-01

    The invention relates to 4F-based optical phase imaging system and in particular to reconstructing quantitative phase information of an object when using such systems. The invention applies a two-dimensional, complex spatial light modulator (SLM) to impress a complex spatial synthesized modulation in addition to the complex spatial modulation impressed by the object. This SLM is arranged so that the synthesized modulation is superimposed with the object modulation and is thus placed at an inp...

  4. 4F-based optical phase imaging system

    2013-01-01

    The invention relates to 4F-based optical phase imaging system and in particular to reconstructing quantitative phase information of an object when using such systems. The invention applies a two-dimensional, complex spatial light modulator (SLM) to impress a complex spatial synthesized modulation...... synthesized modulation is selected to optimize parameters in the output image which improves the reconstruction of qualitative and quantitative object phase information from the resulting output images....... in addition to the complex spatial modulation impressed by the object. This SLM is arranged so that the synthesized modulation is superimposed with the object modulation and is thus placed at an input plane to the phase imaging system. By evaluating output images from the phase imaging system, the...

  5. Magneto-photo-acoustic imaging

    Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Truby, Ryan; Homan, Kimberly; Joshi, Pratixa; Chen, Yun-Sheng; Sokolov, Konstantin; Emelianov, Stanislav

    2011-01-01

    Magneto-photo-acoustic imaging, a technique based on the synergy of magneto-motive ultrasound, photoacoustic and ultrasound imaging, is introduced. Hybrid nanoconstructs, liposomes encapsulating gold nanorods and iron oxide nanoparticles, were used as a dual-contrast agent for magneto-photo-acoustic imaging. Tissue-mimicking phantom and macrophage cells embedded in ex vivo porcine tissue were used to demonstrate that magneto-photo-acoustic imaging is capable of visualizing the location of cel...

  6. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    Cheng, Ying; Liu, XiaoJun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Chen; Wei, Qi; Wu, DaJian [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  7. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution

  8. Airborne synthetic aperture acoustic imaging.

    Soumekh, M

    1997-01-01

    This paper presents a system model and inversion for airborne synthetic aperture acoustic (SAA) imaging. The system model accurately represents the intercation of the acoustic source and the target region at near range values. Moreover, the model incorporates the fact that the relative speed of the vehicle's (transmitter/receiver) with respect to the target region is comparable to the acoustic wave propagation speed. The inversion utilizes the principle of spectral decomposition of spherical phase functions to develop a wavefront reconstruction method from SAA data. Processing issues and selection of appropriate acoustic FM-CW sources are discussed. Results are provided that exhibit the superior accuracy of the proposed SAA system model and inversion over their synthetic aperture radar (SAR) counterpart in which the vehicle's speed is assumed to be much smaller than the wave propagation speed. PMID:18282912

  9. Simultaneous measurements of nonlinear refraction and nonlinear absorption using a 4f imaging system

    2008-01-01

    A method is reported to simultaneously measure the nonlinear absorption and re-fraction coefficients of materials using a nonlinear-imaging technique with a phase object. In this technique, the sign and magnitude of both the nonlinear absorption and refraction can be acquired conveniently from the analysis of three experiment images: the linear image, the nonlinear image and the image without sample. In order to validate our approach, we demonstrate this method for ZnSe at 532 nm where two-photon absorption is present and the nonlinear refractive index n2 is negative. The values of β (nonlinear absorption coefficient) and n2 we measured are very close to the values found in other literature.

  10. Reflective echo tomographic imaging using acoustic beams

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  11. 30th International Acoustical Imaging Symposium

    Jones, Joie; Lee, Hua

    2011-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place every two years since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2009 the 30th International Symposium on Acoustical Imaging was held in Monterey, CA, USA, March 1-4. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 30 in the Series contains an excellent collection of forty three papers presented in five major categories: Biomedical Imaging Acoustic Microscopy Non-Destructive Evaluation Systems Analysis Signal Analysis and Image Processing Audience Researchers in medical imaging and biomedical instrumentation experts.

  12. First images of thunder: Acoustic imaging of triggered lightning

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  13. Acoustic 3D imaging of dental structures

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  14. Magnetic resonance imaging of acoustic neuroma

    Kashihara, Kengo; Murata, Hideaki; Ito, Haruhide; Onishi, Hiroaki; Kadoya, Masumi; Suzuki, Masayuki.

    1989-03-01

    Thirteen patients with acoustic neuroma were studied on a 1.5T superconductive magnetic resonance (MR) imager. Acoustic neuromas appeared as lower signal intensity than the surrounding brain stem on T1 weighted image (W.I.), and as higher signal intensity on T2 W.I.. Axial and coronal sections of T1 W.I. were very useful in observing the tumor in the auditory canal and in investigating the anatomical relations of the tumor and the surrounding structures. MR imaging is very excellent examination to make early diagnosis of the acoustic neuroma and preoperative anatomical evaluation.

  15. Imaging of Acoustic Waves in Sand

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  16. Acoustic imaging systems (for robotic object acquisition)

    Richardson, J. M.; Martin, J. F.; Marsh, K. A.; Schoenwald, J. S.

    1985-03-01

    The long-term objective of the effort is to establish successful approaches for 3D acoustic imaging of dense solid objects in air to provide the information required for acquisition and manipulation of these objects by a robotic system. The objective of this first year's work was to achieve and demonstrate the determination of the external geometry (shape) of such objects with a fixed sparse array of sensors, without the aid of geometrical models or extensive training procedures. Conventional approaches for acoustic imaging fall into two basic categories. The first category is used exclusively for dense solid objects. It involves echo-ranging from a large number of sensor positions, achieved either through the use of a larger array of transducers or through extensive physical scanning of a small array. This approach determines the distance to specular reflection points from each sensor position; with suitable processing an image can be inferred. The second category uses the full acoustic waveforms to provide an image, but is strictly applicable only to weak inhomogeneities. The most familiar example is medical imaging of the soft tissue portions of the body where the range of acoustic impedance is relatively small.

  17. Holographic imaging of surface acoustic waves

    Bruno, Francois; Royer, Daniel; Atlan, Michael

    2014-01-01

    We report on an experimental demonstration of surface acoustic waves monitoring on a thin metal plate with heterodyne optical holography. Narrowband imaging of local optical pathlength modulation is achieved with a frequency-tunable time-averaged laser Doppler holographic imaging scheme on a sensor array, at video-rate. This method enables robust and quantitative mapping of out-of-plane vibrations of nanometric amplitudes at radiofrequencies.

  18. Mathematical models and reconstruction methods in magneto-acoustic imaging

    Ammari, Habib; Capdeboscq, Yves; Kang, Hyeonbae; Kozhemyak, Anastasia

    2008-01-01

    In this paper, we provide the mathematical basis for three different magneto- acoustic imaging approaches (vibration potential tomography, magneto-acoustic tomog- raphy with magnetic induction, and magneto-acoustic current imaging) and propose new algorithms for solving the inverse problem for each of them.

  19. Acoustic Imaging of Snowpack Physical Properties

    Kinar, N. J.; Pomeroy, J. W.

    2011-12-01

    Measurements of snowpack depth, density, structure and temperature have often been conducted by the use of snowpits and invasive measurement devices. Previous research has shown that acoustic waves passing through snow are capable of measuring these properties. An experimental observation device (SAS2, System for the Acoustic Sounding of Snow) was used to autonomously send audible sound waves into the top of the snowpack and to receive and process the waves reflected from the interior and bottom of the snowpack. A loudspeaker and microphone array separated by an offset distance was suspended in the air above the surface of the snowpack. Sound waves produced from a loudspeaker as frequency-swept sequences and maximum length sequences were used as source signals. Up to 24 microphones measured the audible signal from the snowpack. The signal-to-noise ratio was compared between sequences in the presence of environmental noise contributed by wind and reflections from vegetation. Beamforming algorithms were used to reject spurious reflections and to compensate for movement of the sensor assembly during the time of data collection. A custom-designed circuit with digital signal processing hardware implemented an inversion algorithm to relate the reflected sound wave data to snowpack physical properties and to create a two-dimensional image of snowpack stratigraphy. The low power consumption circuit was powered by batteries and through WiFi and Bluetooth interfaces enabled the display of processed data on a mobile device. Acoustic observations were logged to an SD card after each measurement. The SAS2 system was deployed at remote field locations in the Rocky Mountains of Alberta, Canada. Acoustic snow properties data was compared with data collected from gravimetric sampling, thermocouple arrays, radiometers and snowpit observations of density, stratigraphy and crystal structure. Aspects for further research and limitations of the acoustic sensing system are also discussed.

  20. 28th International Acoustical Imaging Symposium

    André, Michael P; Andre, Michael; Arnold, Walter; Bamber, Jeff; Burov, Valentin; Chubachi, Noriyoshi; Erikson, Kenneth; Ermert, Helmut; Fink, Mathias; Gan, Woon S; Granz, Bernd; Greenleaf, James; Hu, Jiankai; Jones, Joie P; Khuri-Yakub, Pierre; Laugier, Pascal; Lee, Hua; Lees, Sidney; Levin, Vadim M; Maev, Roman; Masotti, Leonardo; Nowicki, Andrzej; O’Brien, William; Prasad, Manika; Rafter, Patrick; Rouseff, Daniel; Thijssen, Johan; Tittmann, Bernard; Tortoli, Piero; Steen, Anton; Waag, Robert; Wells, Peter; Acoustical Imaging

    2007-01-01

    The International Acoustical Imaging Symposium has been held continuously since 1968 as a unique forum for advanced research, promoting the sharing of technology, developments, methods and theory among all areas of acoustics. The interdisciplinary nature of the Symposium and the wide international participation are two of its main strengths. Scientists from around the world present their papers in an informal environment conducive to lively discussion and cross-fertilization. The fact that a loyal community of scientists has supported this Series since 1968 is evidence of its impact on the field. The Symposium Series continues to thrive in a busy calendar of scientific meetings without the infrastructure of a professional society. It does so because those who attend and those who rely on the Proceedings as a well-known reference work acknowledge its value. This Volume 28 of the Proceedings likewise contains an excellent collection of papers presented in six major categories, offering both a broad perspective ...

  1. Magnetic resonance imaging of acoustic neurinomas

    A restrospective review was made on magnetic resonance imaging (MRI) scans, preoperative neuro-otological findings, and surgical results for hearing preservation in 20 consecutive patients with histologically verified acoustic neurinomas. The maximum diameter of the tumor, both in the cerebellopontine angle (CPA) and internal auditory canal (IAC), were measured by MRI scans to classify tumor size. The signal intensity of acoustic neurinoma was equal to or lower than that of the adjacent pons on T1-weighted images and higher on T2-weighted images. After the administration of Gd-DTPA, tumors were markedly enhanced, which appeared homogeneous for small tumors and heterogeneous for large ones. There was no relationship between the degree of preoperative hearing loss and tumor size in either the CPA or the IAC. The larger the tumor in the CPA, however, the more often did the response to a caloric test disappear or decrease greatly. In contrast, there was no apparent correlation between the caloric response and tumor size in the IAC. Twelve patients (60%) had serviceable hearing (pure tone average loss 50%) preoperatively: the average tumor size in this group was similar to that in patients with poor or no hearing. These 12 patients were considered to be candidates for hearing preservation at surgery: 5 (41.7%) retained serviceable hearing postoperatively. A mean tumor size in the CPA was 11.8 mm for patients with postoperative serviceable hearing and 21.3 mm for those without it. Moreover, hearing was preserved postoperatively in all 4 patients with tumor less than 5 mm in the IAC. Thus, hearing preservation after surgery seemed to be closely related to tumor size. This study confirmed the value of MRI, providing information for the evaluation of hearing-preservation surgery. (N.K.)

  2. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  3. Laser-induced acoustic imaging of underground objects

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  4. Optimization of a Biometric System Based on Acoustic Images

    Alberto Izquierdo Fuente

    2014-01-01

    Full Text Available On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced.

  5. ACOUSTO-OPTIC IMAGING IN DIFFERENT FIELDS OF ACOUSTICS

    Mayer, W.

    1990-01-01

    A very short introduction of the principles of light diffraction by ultrasonic waves is followed by a discussion of acousto-optic imaging (schlieren) techniques. This method is often useful to obtain qualitative results of various acoustic phenomena in ultrasonics, underwater sound, material characterization, transducer performance and other areas of acoustics. Examples from different fields of acoustics and some scale model studies will be given, illustrating under what conditions this metho...

  6. Theoretical study of subwavelength imaging by acoustic metamaterial slabs

    Deng, Ke; He, Zhaojian; Zhao, Heping; Shi, Jing; Liu, Zhengyou

    2009-01-01

    We investigate theoretically subwavelength imaging by acoustic metamaterial slabs immersed in the liquid matrix. A near-field subwavelength image formed by evanescent waves is achieved by a designed metamaterial slab with negative mass density and positive modulus. A subwavelength real image is achieved by a designed metamaterial slab with simultaneously negative mass density and modulus. These results are expected to shed some lights on designing novel devices of acoustic metamaterials.

  7. Laser Acoustic Imaging of Film Bulk Acoustic Resonator (FBAR) Lateral Mode Dispersion

    Ken L. Telschow

    2004-07-01

    A laser acoustic imaging microscope has been developed that measures acoustic motion with high spatial resolution without scanning. Images are recorded at normal video frame rates and heterodyne principles are used to allow operation at any frequency from Hz to GHz. Fourier transformation of the acoustic amplitude and phase displacement images provides a direct quantitative determination of excited mode wavenumbers at any frequency. Results are presented at frequencies near the first longitudinal thickness mode (~ 900 MHz) demonstrating simultaneous excitation of lateral modes with nonzero wavenumbers in an electrically driven AlN thin film acoustic resonator. Images combined at several frequencies form a direct visualization of lateral mode dispersion relations for the device under test allowing mode identification and a direct measure of specific lateral mode properties. Discussion and analysis of the results are presented in comparison with plate wave modeling of these devices taking account for material anisotropy and multilayer films.

  8. Combined Photoacoustic-Acoustic Technique for Crack Imaging

    Zakrzewski, J.; Chigarev, N.; Tournat, V.; Gusev, V.

    2010-01-01

    Nonlinear imaging of a crack by combination of a common photoacoustic imaging technique with additional acoustic loading has been performed. Acoustic signals at two different fundamental frequencies were launched in the sample, one photoacoustically through heating of the sample surface by the intensity-modulated scanning laser beam and another by a piezoelectrical transducer. The acoustic signal at mixed frequencies, generated due to system nonlinearity, has been detected by an accelerometer. Different physical mechanisms of the nonlinearity contributing to the contrast in linear and nonlinear photoacoustic imaging of the crack are discussed.

  9. Combination of acoustical radiosity and the image source method

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho;

    2013-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The...... model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated...... studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy....

  10. 3D acoustic imaging applied to the Baikal neutrino telescope

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10→22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of ∼0.2 m (along the beam) and ∼1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  11. 3D acoustic imaging applied to the Baikal neutrino telescope

    Kebkal, K.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany)], E-mail: kebkal@evologics.de; Bannasch, R.; Kebkal, O.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany); Panfilov, A.I. [Institute for Nuclear Research, 60th October Anniversary pr. 7a, Moscow 117312 (Russian Federation); Wischnewski, R. [DESY, Platanenallee 6, 15735 Zeuthen (Germany)

    2009-04-11

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10{yields}22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of {approx}0.2 m (along the beam) and {approx}1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km{sup 3}-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  12. Interpreting underwater acoustic images of the upper ocean boundary layer

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of physical processes occurring simultaneously beneath the surface of the sea. Sonars are so sensitive that they detected a new acoustic signature at the breaking of surface gravity waves in deep water, which resembles oblique motion-like vortices

  13. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet;

    2015-01-01

    Opto-acoustic imaging (OAI) shows particular promise for in-vivo biomedical diagnostics. Its applications include cardiovascular, gastrointestinal and urogenital systems imaging. Opto-acoustic endoscopy (OAE) allows the imaging of body parts through cavities permitting entry. The critical parameter...... in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...... on the opportunities and challenges of applying this technology in biomedical applications....

  14. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging.

    Thalhammer, Gregor; McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-04-12

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  15. Time-Reversal Acoustics and Maximum-Entropy Imaging

    Berryman, J G

    2001-08-22

    Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.

  16. Underwater Acoustic Image Transmission System Based on DSP

    Cheng En; Xu Ru

    2002-01-01

    The underwater acoustic image transmission system based on the high-speed DSP device TMS320C549 has been studied. We use Goertzel algorithm for source decoding and MFSK for modulation. Turbo code is used for channel coding and decoding. The purpose is to implement underwater video image data transmission.

  17. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  18. Performance Evaluation of a Biometric System Based on Acoustic Images

    Juan J. Villacorta

    2011-10-01

    Full Text Available An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side. Two Uniform Linear Arrays (ULA with 15 l/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR/False Non-Match Rate (FNMR parameters and the Receiver Operating Characteristic (ROC curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications.

  19. Acoustical properties of selected tissue phantom materials for ultrasound imaging

    Zell, K [Chair for Analytical Chemistry, Technische Universitaet Muenchen, Munich (Germany); Sperl, J I [GE Global Research-Europe, Advanced Medical Applications Laboratory, Garching (Germany); Vogel, M W [GE Global Research-Europe, Advanced Medical Applications Laboratory, Garching (Germany); Niessner, R [Chair for Analytical Chemistry, Technische Universitaet Muenchen, Munich (Germany); Haisch, C [Chair for Analytical Chemistry, Technische Universitaet Muenchen, Munich (Germany)

    2007-10-21

    This note summarizes the characterization of the acoustic properties of four materials intended for the development of tissue, and especially breast tissue, phantoms for the use in photoacoustic and ultrasound imaging. The materials are agar, silicone, polyvinyl alcohol gel (PVA) and polyacrylamide gel (PAA). The acoustical properties, i.e., the speed of sound, impedance and acoustic attenuation, are determined by transmission measurements of sound waves at room temperature under controlled conditions. Although the materials are tested for application such as photoacoustic phantoms, we focus here on the acoustic properties, while the optical properties will be discussed elsewhere. To obtain the acoustic attenuation in a frequency range from 4 MHz to 14 MHz, two ultrasound sources of 5 MHz and 10 MHz core frequencies are used. For preparation, each sample is cast into blocks of three different thicknesses. Agar, PVA and PAA show similar acoustic properties as water. Within silicone polymer, a significantly lower speed of sound and higher acoustical attenuation than in water and human tissue were found. All materials can be cast into arbitrary shapes and are suitable for tissue-mimicking phantoms. Due to its lower speed of sound, silicone is generally less suitable than the other presented materials. (note)

  20. Pictoral Essay: Imaging of Acoustic Neuroma with Brief Literature Review

    Felix U. Uduma; Jude-Kennedy C Emejuru; Mathieu Motah

    2012-01-01

    Acoustic neuroma is the commonest cerebello-pontine angle(CPA) tumour. It is a benign tumour of intracranial segment of the vestibulo-cochlear cranial nerve. In this pictoral essay, we used MRI images to highlight typical imaging features of acoustic neuroma. Our patient was a 51 year old male Cameronian civil servant with a right CPA mass. This was preceded by right unilateral sensori-neural hearing loss and disequilibrium. MRI has been adjudged to be the most recent and best radiological di...

  1. Designable hybrid sonic crystals for transportation and division of acoustic images

    He, Zhaojian; Deng, Ke; Zhao, Heping; Li, Xiaochun

    2012-01-01

    Conventional sonic crystal (SC) devices designed for acoustic imaging can focus acoustic waves from an input source into only one image but not multi-images. Furthermore the output position of formed image cannot be designed at will. In this paper, we propose the hybrid SC imaging devices to achieve multi-images from one-source-input along with the designable image-positions. The proposed hybrid devices can image acoustic waves radiated both from point source and Gaussian beam, which differen...

  2. Acoustic Angiography: A New Imaging Modality for Assessing Microvasculature Architecture

    Ryan C. Gessner

    2013-01-01

    Full Text Available The purpose of this paper is to provide the biomedical imaging community with details of a new high resolution contrast imaging approach referred to as “acoustic angiography.” Through the use of dual-frequency ultrasound transducer technology, images acquired with this approach possess both high resolution and a high contrast-to-tissue ratio, which enables the visualization of microvascular architecture without significant contribution from background tissues. Additionally, volumetric vessel-tissue integration can be visualized by using b-mode overlays acquired with the same probe. We present a brief technical overview of how the images are acquired, followed by several examples of images of both healthy and diseased tissue volumes. 3D images from alternate modalities often used in preclinical imaging, contrast-enhanced micro-CT and photoacoustics, are also included to provide a perspective on how acoustic angiography has qualitatively similar capabilities to these other techniques. These preliminary images provide visually compelling evidence to suggest that acoustic angiography may serve as a powerful new tool in preclinical and future clinical imaging.

  3. Acoustic imaging of underground storage tank wastes

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  4. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  5. AUV Local Path Planning Based on Acoustic Image Processing

    LI Ye; CHANG Wen-tian; JIANG Da-peng; ZHANG Tie-dong; SU Yu-min

    2006-01-01

    The forward-looking image sonar is a necessary vision device for Autonomous Underwater Vehicles (AUV). Based on the acoustic image received from forward-looking image sonar, AUV local path is planned. When the environment model is made to adapt to local path planning, an iterative algorithm of binary conversion is used for image segmentation. Raw data of the acoustic image, which were received from serial port, are processed. By the use of "Mathematic Morphology" to filter noise, a mathematic model of environment for local path planning is established after coordinate transformation. The optimal path is searched by the distant transmission (Dt) algorithm. Simulation is conducted for the analysis of the algorithm. Experiment on the sea proves it reliable.

  6. Monitoring of rapid sand filters using an acoustic imaging technique

    Allouche, N.; Simons, D.G.; Rietveld, L.C.

    2012-01-01

    A novel instrument is developed to acoustically image sand filters used for water treatment and monitor their performance. The instrument consists of an omnidirectional transmitter that generates a chirp with a frequency range between 10 and 110 kHz, and an array of hydrophones. The instrument was e

  7. Homotopy Based Reconstruction from Acoustic Images

    Sharma, Ojaswa

    are reconstruction from an organised set of linear cross sections and reconstruction from an arbitrary set of linear cross sections. The first problem is looked upon in the context of acoustic signals wherein the cross sections show a definite geometric arrangement. A reconstruction in this case can...... take advantage of the inherent arrangement. The problem of reconstruction from arbitrary cross sections is a generic problem and is also shown to be solved here using the mathematical tool of continuous deformations. As part of a complete processing, segmentation using level set methods is explored for......This thesis presents work in the direction of generating smooth surfaces from linear cross sections embedded in R2 and R3 using homotopy continuation. The methods developed in this research are generic and can be applied to higher dimensions as well. Two types of problems addressed in this research...

  8. Underwater acoustic image segmentation based on deformable template

    SANG Enfang; LIU Zhuofu

    2005-01-01

    In order to solve the problem of deformation and blurred edge in underwater acoustic image segmentation, an approach based on the deformable template is presented. Compared with the energy minimization of the Snake model, the energy function is redefined by adding a shape restriction. This improves the noise-resistance ability so that robustness and high segmentation efficiency are acquired. The energy optimization problem is tackled using the Dijkstra Algorithm. This method has been successfully tested on the filled-in acoustic images.The results show that this algorithm is efficient, precise and very immune to image deformation and noise when compared to results obtained from the Snake model and several traditional optimization methods.

  9. Acoustic noise in magnetic resonance imaging: An ongoing issue

    Purpose: Acoustic noise creates a problem for both patients and staff within the magnetic resonance (MR) environment. This study qualitatively and quantitatively investigates the acoustic noise levels from two MR systems in one clinical department and demonstrates the adverse effects that the acoustic noise generated in magnetic resonance imaging (MRI) has on a patient's experience of an MRI examination. Methods: A questionnaire was distributed to consenting patients undergoing one of two specific MR examinations on two MR systems (System A and System B) of varying age and technology in one clinical department. These evaluated the patient's experience during the MRI examination. Physical measurements of the maximum acoustic noise levels produced by each system for various pulse sequences were also recorded using a sound level meter. Results: The results of the questionnaire survey demonstrated significantly greater tolerance of the acoustic noise levels of System B (mean noise level rating of 2.45 on LIKERT scale) in comparison to System A (mean noise level rating of 3.71 on LIKERT scale) (P = 0.001). Significantly lower noise level descriptions were also demonstrated (P = 0.01). The maximum recorded sound levels also confirmed that System B was quieter than the System A. Conclusion: It is has been demonstrated that the acoustic noise generated during an MRI examinations has an adverse effect on the patient experience during the examination. However, new technology has significantly reduced these effects and is improving patient comfort in MRI. It was shown quantitatively that the newer system's advanced gradient technology was quieter than the older system, in terms of the acoustic noise levels associated with a range of common pulse sequences.

  10. Opto-acoustic breast imaging with co-registered ultrasound

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  11. Solid Appearance of Pancreatic Serous Cystadenoma Diagnosed as Cystic at Ultrasound Acoustic Radiation Force Impulse Imaging

    Mirko D’Onofrio; Anna Gallotti; Enrico Martone; Roberto Pozzi Mucelli

    2009-01-01

    Context Acoustic radiation force impulse imaging is an emerging imaging modality. The study of the pancreas is a new and promising application of ultrasound acoustic radiation force impulse imaging. Case report We present the first case of pancreatic serous cystadenoma which mimics a solid neoplasm at conventional imaging (US and CT), correctly diagnosed as cystic at ultrasound acoustic radiation force impulse imaging. Conclusion The “XXXX” values always measured at Virtual TouchTM tissue qua...

  12. Acoustic and photoacoustic microscopy imaging of single leukocytes

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-03-01

    An acoustic/photoacoustic microscope was used to create micrometer resolution images of stained cells from a blood smear. Pulse echo ultrasound images were made using a 1000 MHz transducer with 1 μm resolution. Photoacoustic images were made using a fiber coupled 532 nm laser, where energy losses through stimulated Raman scattering enabled output wavelengths from 532 nm to 620 nm. The laser was focused onto the sample using a 20x objective, and the laser spot co-aligned with the 1000 MHz transducer opposite the laser. The blood smear was stained with Wright-Giemsa, a common metachromatic dye that differentially stains the cellular components for visual identification. A neutrophil, lymphocyte and a monocyte were imaged using acoustic and photoacoustic microscopy at two different wavelengths, 532 nm and 600 nm. Unique features in each imaging modality enabled identification of the different cell types. This imaging method provides a new way of imaging stained leukocytes, with applications towards identifying and differentiating cell types, and detecting disease at the single cell level.

  13. Monitoring of rapid sand filters using an acoustic imaging technique

    Allouche, N.; Simons, D.G.; Rietveld, L. C.

    2012-01-01

    A novel instrument is developed to acoustically image sand filters used for water treatment and monitor their performance. The instrument consists of an omnidirectional transmitter that generates a chirp with a frequency range between 10 and 110 kHz, and an array of hydrophones. The instrument was extensively tested in a lab before being deployed in an industrial rapid sand filter, made available by a Dutch drinking water company. This filter was monitored over a period of 10 days. We perform...

  14. A method of imaging viscoelastic parameters with acoustic radiation force

    Acoustic radiation force has been proposed as a method of interrogating the mechanical properties of tissue. One simple approach applies a series of focused ultrasonic pulses to generate an acoustic radiation force, then processes the echoes returned from these pulses to estimate the radiation-force-induced displacement as a function of time. This process can be repeated at a number of locations to acquire data for image formation. In previous work we have formed images of tissue stiffness by depicting the maximum displacement induced at each tissue location after a finite period of insonification. While these maximum displacement images are able to differentiate materials of disparate mechanical properties, they exploit only a fraction of the information available. In this paper we show that the time-displacement curves acquired from tissue mimicking phantoms exhibit a viscoelastic response which is accurately described by the Voigt model. We describe how the viscous and elastic parameters of this model may be determined from experimental data. Finally, we show phantom images that depict not only the maximum local displacement, but also the viscous and elastic model parameters. These images offer complementary information about the target. (author)

  15. Solid Appearance of Pancreatic Serous Cystadenoma Diagnosed as Cystic at Ultrasound Acoustic Radiation Force Impulse Imaging

    Mirko D’Onofrio

    2009-09-01

    Full Text Available Context Acoustic radiation force impulse imaging is an emerging imaging modality. The study of the pancreas is a new and promising application of ultrasound acoustic radiation force impulse imaging. Case report We present the first case of pancreatic serous cystadenoma which mimics a solid neoplasm at conventional imaging (US and CT, correctly diagnosed as cystic at ultrasound acoustic radiation force impulse imaging. Conclusion The “XXXX” values always measured at Virtual TouchTM tissue quantification allow the diagnosis of a pancreatic cystic lesion with simple fluid content suggesting the diagnosis of serous cystadenoma.

  16. Acoustical imaging of spheres above a reflecting surface

    Chambers, David; Berryman, James

    2003-04-01

    An analytical study using the MUSIC method of subspace imaging is presented for the case of spheres above a reflecting boundary. The field scattered from the spheres and the reflecting boundary is calculated analytically, neglecting interactions between spheres. The singular value decomposition of the response matrix is calculated and the singular vectors divided into signal and noise subspaces. Images showing the estimated sphere locations are obtained by backpropagating the noise vectors using either the free space Green's function or the Green's function that incorporates reflections from the boundary. We show that the latter Green's function improves imaging performance after applying a normalization that compensates for the interference between direct and reflected fields. We also show that the best images are attained in some cases when the number of singular vectors in the signal subspace exceeds the number of spheres. This is consistent with previous analysis showing multiple eigenvalues of the time reversal operator for spherical scatterers [Chambers and Gautesen, J. Acoust. Soc. Am. 109 (2001)]. [Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  17. From acoustic segmentation to language processing: evidence from optical imaging

    Hellmuth Obrig

    2010-06-01

    Full Text Available During language acquisition in infancy and when learning a foreign language, the segmentation of the auditory stream into words and phrases is a complex process. Intuitively, learners use ‘anchors’ to segment the acoustic speech stream into meaningful units like words and phrases. Regularities on a segmental (e.g., phonological or suprasegmental (e.g., prosodic level can provide such anchors. Regarding the neuronal processing of these two kinds of linguistic cues a left hemispheric dominance for segmental and a right hemispheric bias for suprasegmental information has been reported in adults. Though lateralization is common in a number of higher cognitive functions, its prominence in language may also be a key to understanding the rapid emergence of the language network in infants and the ease at which we master our language in adulthood. One question here is whether the hemispheric lateralization is driven by linguistic input per se or whether non-linguistic, especially acoustic factors, ‘guide’ the lateralization process. Methodologically, fMRI provides unsurpassed anatomical detail for such an enquiry. However, instrumental noise, experimental constraints and interference with EEG assessment limit its applicability, pointedly in infants and also when investigating the link between auditory and linguistic processing. Optical methods have the potential to fill this gap. Here we review a number of recent studies using optical imaging to investigate hemispheric differences during segmentation and basic auditory feature analysis in language development.

  18. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    Jianning Han; Tingdun Wen; Peng Yang; Lu Zhang

    2014-01-01

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refr...

  19. Dual-frequency acoustic droplet vaporization detection for medical imaging.

    Arena, Christopher B; Novell, Anthony; Sheeran, Paul S; Puett, Connor; Moyer, Linsey C; Dayton, Paul A

    2015-09-01

    Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and -0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and was independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a standalone diagnostic system to monitor the physical properties of the surrounding environment. PMID:26415125

  20. Frequency-Modulated Magneto-Acoustic Detection and Imaging: Challenges, Experimental Procedures, and B-Scan Images

    Aliroteh, Miaad S; Arbabian, Amin

    2016-01-01

    Magneto-acoustic tomography combines near-field radio-frequency (RF) and ultrasound with the aim of creating a safe, high resolution, high contrast hybrid imaging technique. We present continuous-wave magneto-acoustic imaging techniques, which improve SNR and/or reduce the required peak-to-average excitation power ratio, to make further integration and larger fields of view feasible. This method relies on the coherency between RF excitation and the resulting ultrasound generated through Lorentz force interactions, which was confirmed by our previous work. We provide detailed methodology, clarify the details of experiments, and explain how the presence of magneto-acoustic phenomenon was verified. An example magneto-acoustic B-scan image is acquired in order to illustrate the capability of magneto-acoustic tomography in highlighting boundaries where electrical conductivity alters, such as between different tissues.

  1. DESIGN OF MODULATION AND COMPRESSION CODING IN UNDERWATER ACOUSTIC IMAGE TRANSMISSION

    程恩; 余丽敏; 林耿超

    2002-01-01

    This paper describes the design of modulation, compression coding and transmissi on control in underwater acoustic color image transmission system. This design adap ts a special system of modulation and transmission control based on a DSP(Digital Signal Processing) chip, to cope with the complex underwater acoustic channel. The hardware block diagram and software flow chart are presented.

  2. DESIGN OF MODULATION AND COMPRESSION CODING IN UNDERWATER ACOUSTIC IMAGE TRANSMISSION

    程恩; 余丽敏; 林耿超

    2002-01-01

    This paper describes the design of modulation, compression coding and transmission control in underwater acoustic color image transmission system. This design adapts a special system of modulation and transmission control based on a DSP(Digital Signal Processing) chip, to cope with the complex underwater acoustic channel. The hardware block diagram and software flow chart are presented.

  3. Negative refraction induced acoustic concentrator and the effects of scattering cancellation, imaging, and mirage

    Wei, Qi; Cheng, Ying; Liu, Xiao-jun

    2012-07-01

    We present a three-dimensional acoustic concentrator capable of significantly enhancing the sound intensity in the compressive region with scattering cancellation, imaging, and mirage effects. The concentrator shell is built by isotropic gradient negative-index materials, which together with an exterior host medium slab constructs a pair of complementary media. The enhancement factor, which can approach infinity by tuning the geometric parameters, is always much higher than that of a traditional concentrator made by positive-index materials with the same size. The acoustic scattering theory is applied to derive the pressure field distribution of the concentrator, which is consistent with the numerical full-wave simulations. The inherent acoustic impedance match at the interfaces of the shell as well as the inverse processes of “negative refraction—progressive curvature—negative refraction” for arbitrary sound rays can exactly cancel the scattering of the concentrator. In addition, the concentrator shell can also function as an acoustic spherical magnifying superlens, which produces a perfect image with the same shape, with bigger geometric and acoustic parameters located at a shifted position. Then some acoustic mirages are observed whereby the waves radiated from (scattered by) an object located in the center region may seem to be radiated from (scattered by) its image. Based on the mirage effect, we further propose an intriguing acoustic transformer which can transform the sound scattering pattern of one object into another object at will with arbitrary geometric, acoustic, and location parameters.

  4. Acoustics

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  5. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave

  6. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    Jianning Han

    2014-05-01

    Full Text Available Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  7. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    Han, Jianning [School of Information and Communication Engineering, North University of China, Taiyuan 030051 (China); Wen, Tingdun [Key Laboratory of Instrumental Science and Dynamic Testing, Ministry of Education, North University of China, Taiyuan 030051 (China); Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051 (China); Yang, Peng; Zhang, Lu [Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051 (China)

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  8. An Acoustic Charge Transport Imager for High Definition Television

    Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard

    1999-01-01

    This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode

  9. Convolution Models with Shift-invariant kernel based on Matlab-GPU platform for Fast Acoustic Imaging

    Chu, Ning; Gac, Nicolas; Picheral, José; Mohammad-Djafari, Ali

    2014-01-01

    Acoustic imaging is an advanced technique for acoustic source localization and power reconstruc-tion from limited noisy measurements at microphone sensors. This technique not only involves in a forward model of acoustic propagation from sources to sensors, but also its numerical solution of an ill-posed inverse problem. Nowadays, the Bayesian inference methods in inverse methods have been widely investigated for robust acoustic imaging, but most of Bayesian methods are time-consuming, and one...

  10. OASIS in the sea: Measurement of the acoustic reflectivity of zooplankton with concurrent optical imaging

    Jaffe, J. S.; Ohman, M. D.; De Robertis, A.

    A new instrument Optical-Acoustic Submersible Imaging System (OASIS) has been developed for three-dimensional acoustic tracking of zooplankton with concurrent optical imaging to verify the identity of the insonified organisms. OASIS also measures in situ target strengths (TS) of freely swimming zooplankton and nekton of known identity and 3-D orientation. The system consists of a three-dimensional acoustic imaging system (FishTV), a sensitive optical CCD camera with red-filtered strobe illumination, and ancillary oceanographic sensors. The sonar triggers the acquisition of an optical image when it detects the presence of a significant target in the precise location where the camera, strobe and sonar are co-registered. Acoustic TS can then be related to the optical image, which permits identification of the animal and its 3-D aspect. The system was recently deployed (August 1996) in Saanich Inlet, B.C., Canada. Motile zooplankton and nekton were imaged with no evidence of reaction to or avoidance of the OASIS instrument package. Target strengths of many acoustic reflectors were recorded in parallel with the optical images, triggered by the presence of an animal in the correct location of the sonar system. Inspection of the optical images, corroborated with zooplankton sampling with a MOCNESS net, revealed that the joint optically and acoustically sensed taxa at the site were the euphausiid Euphausia pacifica, the gammarid amphipod Orchomene obtusa, and a gadid fish. The simultaneous optical and acoustic images permitted an exact correlation of TS and taxa. Computer simulations from a model of the backscattered strength from euphausiids are in good agreement with the observed data.

  11. Photo-acoustic imaging of coronary arteries with polymer optical fibers

    Woyessa, Getinet; Broadway, Christian; Lamela, Horacio;

    2014-01-01

    less blood to flow through the arteries hence the heart muscle can't get the blood or oxygen it needs. Worse, a plaque can suddenly rupture. As a result, blood clot over the rapture and suddenly cut off the hearts’ blood supply, causing permanent heart dama ge or stroke [1]. Photo-acoustic imaging...... is useful for detection of plaques for prevention of rupture of vulnerable plaques. These vulnerable plaques in the arteries can be distinguished using photo-acoustic imaging based on lipid accumulation with different characteristics of optical absorption. The basic principle of this imaging technique...... relies on exposing lipids to a laser capable of inducing photo-acoustic effect and a sensor affected by the induced pressure. Polymer optical fibre Bragg grating and Fabry-Perot sensors will be developed for detection of photo-acoustic signal in collaboration of Optoelectronics and Laser technology group...

  12. RGB representation of two-dimensional multi-spectral acoustic data for object surface profile imaging

    Conventionally, acoustic imaging has been performed using a single frequency or a limited number of frequencies. However, the rich information on surface profiles, structures hidden under surfaces and material properties of objects may exhibit frequency dependence. In this study, acoustic imaging on object surface was conducted over a wide frequency range with a fine frequency step, and a method for displaying the acquired multi-spectral acoustic data was proposed. A complicated rigid surface with different profiles was illuminated by sound waves sweeping over the frequency range from 1 to 20 kHz with a 30 Hz step. The reflected sound was two-dimensionally recorded using a scanning microphone, and processed using a holographic reconstruction method. The two-dimensional distributions of obtained sound pressure at each frequency were defined as ‘multi-spectral acoustic imaging data’. Next, the multi-spectral acoustic data were transformed into a single RGB-based picture for easy understanding of the surface characteristics. The acoustic frequencies were allocated to red, green and blue using the RGB filter technique. The depths of the grooves were identified by their colours in the RGB image. (paper)

  13. Adapting MRI Acoustic Radiation Force Imaging For In Vivo Human Brain Focused Ultrasound Applications

    Kaye, Elena A.; Pauly, Kim Butts

    2012-01-01

    A variety of MRI acoustic radiation force imaging (MR-ARFI) pulse sequences as the means for image guidance of focused ultrasound therapy have been recently developed and tested ex vivo and in animal models. To successfully translate MR-ARFI guidance into human applications, ensuring that MR-ARFI provides satisfactory image quality in the presence of patient motion and deposits safe amount of ultrasound energy during image acquisition is necessary. The first aim of this work was to study the ...

  14. Seismic wave imaging in visco-acoustic media

    WANG Huazhong; ZHANG Libin; MA Zaitian

    2004-01-01

    Realistic representation of the earth may be achieved by combining the mechanical properties of elastic solids and viscousliquids. That is to say, the amplitude will be attenuated withdifferent frequency and the phase will be changed in the seismicdata acquisition. In the seismic data processing, this effect mustbe compensated. In this paper, we put forward a visco-acoustic wavepropagator which is of better calculating stability and tolerablecalculating cost (little more than an acoustic wave propagator).The quite good compensation effect is demonstrated by thenumerical test results with synthetic seismic data and real data.

  15. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis

  16. Segmentation and classification of shallow subbottom acoustic data, using image processing and neural networks

    Yegireddi, Satyanarayana; Thomas, Nitheesh

    2014-06-01

    Subbottom acoustic profiler provides acoustic imaging of the subbottom structure constituting the upper sediment layers of the seabed, which is essential for geological and offshore geo-engineering studies. Delineation of the subbottom structure from a noisy acoustic data and classification of the sediment strata is a challenging task with the conventional signal processing techniques. Image processing techniques utilise the spatial variability of the image characteristics, known for their potential in medical imaging and pattern recognition applications. In the present study, they are found to be good in demarcating the boundaries of the sediment layers associated with weak acoustic reflectivity, masked by noisy background. The study deals with application of image processing techniques, like segmentation in identification of subbottom features and extraction of textural feature vectors using grey level co-occurrence matrix statistics. And also attempted classification using Self Organised Map, an unsupervised neural network model utilising these feature vectors. The methodology was successfully demonstrated in demarcating the different sediment layers from the subbottom images and established the sediments constituting the inferred four subsurface sediment layers differ from each other. The network model was also tested for its consistency, with repeated runs of different configuration of the network. Also the ability of simulated network was tested using a few untrained test images representing the similar environment and the classification results show a good agreement with the anticipated.

  17. Acoustic tomographic imaging of temperature and flow fields in air

    Acoustic travel-time tomography is a remote sensing technique that uses the dependence of sound speed in air on temperature and wind speed along the sound propagation path. Travel-time measurements of acoustic signals between several sound sources and receivers travelling along different paths through a measuring area give information on the spatial distribution of temperature and flow fields within the area. After a separation of the two influences, distributions of temperature and flow can be reconstructed using inverse algorithms. As a remote sensing method, one advantage of acoustic travel-time tomography is its ability to measure temperature and flow field quantities without disturbing the area under investigation due to insertion of sensors. Furthermore, the two quantities—temperature and flow velocity—can be recorded simultaneously with this measurement method. In this paper, an acoustic tomographic measurement system is introduced which is capable of resolving three-dimensional distributions of temperature and flow fields in air within a certain volume (1.3 m × 1.0 m × 1.2 m) using 16 acoustic transmitter–receiver pairs. First, algorithms for the 3D reconstruction of distributions from line-integrated measurements are presented. Moreover, a measuring apparatus is introduced which is suited for educational purposes, for demonstration of the method as well as for indoor investigations. Example measurements within a low-speed wind tunnel with different incident flow situations (e.g. behind bluff bodies) using this system are shown. Visualizations of the flow illustrate the plausibility of the tomographically reconstructed flow structures. Furthermore, alternative individual measurement methods for temperature and flow speed provide comparable results

  18. Optical imaging of transient acoustic fields using a phase contrast method

    Clement, G T

    2014-01-01

    A coherent phase-contrast optical system has been designed and tested for tomographic imaging of pressure fields from experimental transient acoustic signals. The system is similar to the pulsed, central-order schlieren method, but uses a Fourier filtering technique that images the actual acoustic pressure field, where the former technique reconstructs only the absolute value of the field. Simulations of the system are performed using a single-cycle sine-wave acoustic pulse. Experimental images resulting from a broad-band Gaussian pulse input to an underwater piezoceramic transducer array are presented. Relative pressure field s are reconstructed in space over a series of times after the source excitation. Theory and limitations of the phase contrast system are discussed.

  19. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  20. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    Wen, Jihong; Shen, Huijie; Yu, Dianlong; Wen, Xisen

    2013-11-01

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  1. Apparatus for real-time acoustic imaging of Rayleigh-Benard convection.

    Kuehn, Kerry; Polfer, Jonathan; Furno, Joanna; Finke, Nathan

    2007-11-01

    We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in nondestructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sound via refraction of acoustic plane waves passing vertically through the fluid layer. The apparatus has been validated by observing convection rolls in both silicone oil and ferrofluid. PMID:18052477

  2. Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting

    Quaegebeur, Nicolas; Padois, Thomas; Gauthier, Philippe-Aubert; Masson, Patrice

    2016-06-01

    In this paper, an alternative formulation of the time-domain beamforming is proposed using the generalized cross-correlation of measured signals. This formulation uses spatial weighting functions adapted to microphone positions and imaging points. The proposed approach is demonstrated for acoustic source localization using a microphone array, both theoretically and experimentally. An increase in accuracy of acoustic imaging results is shown for both narrow and broadband sources, while a factor of reduction up to 20 in the computation time can be achieved, allowing real-time or volumetric source localization over very large grids.

  3. Acoustic Imaging of Ferroelectric Domains in BaTiO3 Single Crystals Using Atomic Force Microscope

    Zeng, Huarong; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion G.; Takekawa, Shunji; Kitamura, Kenji; Yin, Qingrui

    2007-01-01

    An “alternating-force-modulated” atomic force microscope (AFM) operating in the acoustic mode, generated by launching acoustic waves on the piezoelectric transducer that is attached to the cantilever, was used to visualize the ferroelectric domains in barium titanate (BaTiO3) single crystals by detecting acoustic vibrations generated by the tip and transmitted through the sample placed beneath it to the transducer. The acoustic signal was found to reflect locally elastic microstructures at low frequencies, while high-frequency acoustic images revealed strip like domain configurations of internal substructures in BaTiO3 single crystals. The underlying acoustic imaging mechanism using the AFM was discussed in terms of the interaction between the excited acoustic wave and ferroelectric domains.

  4. 3He and 4f instable compounds

    The high localization of the 4f electron and the possibility of a weak delocalization through the coupling with the itinerant electrons lead to Fermi liquid properties. With the example of CeAl3, the main role of the coherence between the Ce is emphasized at low temperature. Thermal dilatation data show the transition from a regime of almost independent Kondo centers to a regime of coherent Kondo centers. The occurence of the superconductivity in the heavy fermion CeCu2Si2 is discussed and compared to the superfluidity of liquid 3He

  5. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.

    Vogt, William C; Jia, Congxian; Wear, Keith A; Garra, Brian S; Joshua Pfefer, T

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  6. On the focusing conditions in time-reversed acoustics, seismic interferometry, and Marchenko imaging

    Wapenaar, C.P.A.; Van der Neut, J.R.; Thorbecke, J.W.; Vasconcelos, I.; Van Manen, D.J.; Ravasi, M.

    2014-01-01

    Despite the close links between the fields of time-reversed acoustics, seismic interferometry and Marchenko imaging, a number of subtle differences exist. This paper reviews the various focusing conditions of these methods, the causality/acausality aspects of the corresponding focusing wavefields, a

  7. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed in the...

  8. Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics

    Dos Santos, S.; Převorovský, Zdeněk

    2011-01-01

    Roč. 51, č. 6 (2011), s. 667-674. ISSN 0041-624X Institutional research plan: CEZ:AV0Z20760514 Keywords : TR-NEWS * chirp-coded excitation * echodentography * ultrasonic imaging Subject RIV: BI - Acoustics Impact factor: 1.838, year: 2011 http://www.sciencedirect.com/science/article/pii/S0041624X11000229

  9. Selective magnetic resonance imaging of magnetic nanoparticles by Acoustically Induced Rotary Saturation (AIRS)

    Zhu, Bo; Witzel, Thomas; Jiang, Shan; Huang, Susie Y.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Purpose We introduce a new method to selectively detect iron oxide contrast agents using an acoustic wave to perturb the spin-locked water signal in the vicinity of the magnetic particles. The acoustic drive can be externally modulated to turn the effect on and off, allowing sensitive and quantitative statistical comparison and removal of confounding image background variations. Methods We demonstrate the effect in spin-locking experiments using piezoelectric actuators to generate vibrational displacements of iron oxide samples. We observe a resonant behavior of the signal changes with respect to the acoustic frequency where iron oxide is present. We characterize the effect as a function of actuator displacement and contrast agent concentration. Results The resonant effect allows us to generate block-design “modulation response maps” indicating the contrast agent’s location, as well as positive contrast images with suppressed background signal. We show the AIRS effect stays approximately constant across acoustic frequency, and behaves monotonically over actuator displacement and contrast agent concentration. Conclusion AIRS is a promising method capable of using acoustic vibrations to modulate the contrast from iron oxide nanoparticles and thus perform selective detection of the contrast agents, potentially enabling more accurate visualization of contrast agents in clinical and research settings. PMID:25537578

  10. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  11. Method and system to synchronize acoustic therapy with ultrasound imaging

    Owen, Neil (Inventor); Bailey, Michael R. (Inventor); Hossack, James (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  12. Apparatus for real-time acoustic imaging of Rayleigh-Benard convection

    Kuehn, Kerry; Polfer, Jonathan; Furno, Joanna; Finke, Nathan

    2007-01-01

    We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in non-destructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sou...

  13. Current Density Imaging through Acoustically Encoded Magnetometry: A Theoretical Exploration

    Sheltraw, Daniel J

    2014-01-01

    The problem of determining a current density confined to a volume from measurements of the magnetic field it produces exterior to that volume is known to have non-unique solutions. To uniquely determine the current density, or the non-silent components of it, additional spatial encoding of the electric current is needed. In biological systems such as the brain and heart, which generate electric current associated with normal function, a reliable means of generating such additional encoding, on a spatial and temporal scale meaningful to the study of such systems, would be a boon for research. This paper explores a speculative method by which the required additional encoding might be accomplished, on the time scale associated with the propagation of sound across the volume of interest, by means of the application of a radially encoding pulsed acoustic spherical wave.

  14. Integrating Acoustic Imaging of Flow Regimes With Bathymetry: A Case Study, Main Endeavor Field

    Bemis, K. G.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2003-12-01

    A unified view of the seafloor and the hydrothermal flow regimes (plumes and diffuse flow) is constructed for three major vent clusters in the Main Endeavour Field (e.g., Grotto, S&M, and Salut) of the Endeavour Segment, Juan de Fuca Ridge. The Main Endeavour Field is one of RIDGE 2000's Integrated Study Sites. A variety of visualization techniques are used to reconstruct the plumes (3D) and the diffuse flow field (2D) based on our acoustic imaging data set (July 2000 cruise). Plumes are identified as volumes of high backscatter intensity (indicating high particulate content or sharp density contrasts due to temperature variations) that remained high intensity when successive acoustic pings were subtracted (indicating that the acoustic targets producing the backscatter were in motion). Areas of diffuse flow are detected using our acoustic scintillation technique (AST). For the Grotto vent region (where a new Doppler technique was used to estimate vertical velocities in the plume), we estimate the areal partitioning between black smoker and diffuse flow in terms of volume fluxes. The volumetric and areal regions, where plume and diffuse flow were imaged, are registered over the bathymetry and compared to geologic maps of each region. The resulting images provide a unified view of the seafloor by integrating hydrothermal flow with geology.

  15. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object's reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel's color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  16. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  17. Optimization of Encoding Gradients for Magnetic Resonance Acoustic Radiation Force Imaging

    Chen, Jing; Watkins, Ron; Pauly, Kim Butts

    2009-04-01

    For HIFU treatments without significant heating, MR monitoring could be done by imaging the acoustic radiation force (MR-ARFI). MR-ARFI used motion-sensitizing gradients to encode the small displacement induced by the acoustic radiation force into the phase of the image. Unfortunately, large conventional gradients render the image sensitive to motion, and susceptible to artifacts, which are seen as a non-linear background phase and can be larger than the displacement-induced phase. In this work, MR-ARFI encoding gradients are optimized to minimize these problems. The proposed repeated bipolar gradients are robust against motion and eddy current, and the SNR is significantly enhanced at no cost of scan time or encoding sensitivity.

  18. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Xiong, Jichuan [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Xu, Xiaodong, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Glorieux, Christ, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Matsuda, Osamu [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Cheng, Liping [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  19. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz

  20. Multi-acoustic lens design methodology for a low cost C-scan photoacoustic imaging camera

    Chinni, Bhargava; Han, Zichao; Brown, Nicholas; Vallejo, Pedro; Jacobs, Tess; Knox, Wayne; Dogra, Vikram; Rao, Navalgund

    2016-03-01

    We have designed and implemented a novel acoustic lens based focusing technology into a prototype photoacoustic imaging camera. All photoacoustically generated waves from laser exposed absorbers within a small volume get focused simultaneously by the lens onto an image plane. We use a multi-element ultrasound transducer array to capture the focused photoacoustic signals. Acoustic lens eliminates the need for expensive data acquisition hardware systems, is faster compared to electronic focusing and enables real-time image reconstruction. Using this photoacoustic imaging camera, we have imaged more than 150 several centimeter size ex-vivo human prostate, kidney and thyroid specimens with a millimeter resolution for cancer detection. In this paper, we share our lens design strategy and how we evaluate the resulting quality metrics (on and off axis point spread function, depth of field and modulation transfer function) through simulation. An advanced toolbox in MATLAB was adapted and used for simulating a two-dimensional gridded model that incorporates realistic photoacoustic signal generation and acoustic wave propagation through the lens with medium properties defined on each grid point. Two dimensional point spread functions have been generated and compared with experiments to demonstrate the utility of our design strategy. Finally we present results from work in progress on the use of two lens system aimed at further improving some of the quality metrics of our system.

  1. Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry

    Berson, Arganthael; Michard, Marc; Blanc-Benon, Philippe [Ecole Centrale de Lyon, LMFA - UMR CNRS 5509, Ecully Cedex (France)

    2008-06-15

    Thermoacoustic refrigeration systems generate cooling power from a high-amplitude acoustic standing wave. There has recently been a growing interest in this technology because of its simple and robust architecture and its use of environmentally safe gases. With the prospect of commercialization, it is necessary to enhance the efficiency of thermoacoustic cooling systems and more particularly of some of their components such as the heat exchangers. The characterization of the flow field at the end of the stack plates is a crucial step for the understanding and optimization of heat transfer between the stack and the heat exchangers. In this study, a specific particle image velocimetry measurement is performed inside a thermoacoustic refrigerator. Acoustic velocity is measured using synchronization and phase-averaging. The measurement method is validated inside a void resonator by successfully comparing experimental data with an acoustic plane wave model. Velocity is measured inside the oscillating boundary layers, between the plates of the stack, and compared to a linear model. The flow behind the stack is characterized, and it shows the generation of symmetric pairs of counter-rotating vortices at the end of the stack plates at low acoustic pressure level. As the acoustic pressure level increases, detachment of the vortices and symmetry breaking are observed. (orig.)

  2. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Pinton, Gianmarco

    2015-10-01

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  3. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Pinton, Gianmarco [Joint Department of Biomedical Engineering, University of North Carolina - North Carolina State University, 348 Taylor Hall, Chapel Hill, NC 27599, USA gfp@unc.edu (United States)

    2015-10-28

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  4. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  5. Thermodynamic properties of 4f metal trifluorides

    The experimental low-temperature heat capacities of some solid 4f-block metal trifluorides were used to reveal the trends in the behavior of variable parameters in the equation that described the lattice heat capacity component in the quasi-harmonic approximation for the whole series of LnF3 (Ln La-Lu) compounds. The results were used to describe the temperature dependences of heat capacity over the temperature range from 0 K to the melting point, Tm. The measured high-temperature enthalpy increments were used to determine corrections to the quasi-harmonic description of heat capacities at T > ∼0.5Tm. The reduced Gibbs energies were calculated over the temperature range 298.15-2000 K. The thermodynamic functions of LnF3 in the gaseous state were determined over the same temperature range in the rigid rotator - harmonic oscillator approximation. All calculations were performed taking into account excited electronic states whose energies did not exceed 10000 cm-1. The reliability of the thermodynamic functions obtained was proved by the convergence of the enthalpies of sublimation calculated by the second and third laws of thermodynamics from the experimental data on saturated vapor pressures. The complete set of the consistent thermodynamic properties of these compounds is described

  6. Three-dimensional ghost imaging using acoustic transducer

    Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli

    2016-06-01

    We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.

  7. HF Doppler Acoustic Imaging of the Ocean Surface and Interior

    Pinkel, Robert; Smith, Jerome A.

    2004-11-01

    HF phased array Doppler sonar represents a new tool for obtaining Three-dimensional (r,q,t) images of the oceanic surface and interior velocity field. While the capabilities of the approach are unique, the design constraints are also unusual. Examples of both are presented in this work.

  8. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    Huichen Yan

    2015-10-01

    Full Text Available Matched field processing (MFP is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method.

  9. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  10. The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization.

    Allen, Jason D; Ham, Katherine L; Dumont, Douglas M; Sileshi, Bantayehu; Trahey, Gregg E; Dahl, Jeremy J

    2011-08-01

    Stroke is the third leading cause of death and long-term disability in the USA. Currently, surgical intervention decisions in asymptomatic patients are based upon the degree of carotid artery stenosis. While there is a clear benefit of endarterectomy for patients with severe (> 70%) stenosis, in those with high/moderate (50-69%) stenosis the evidence is less clear. Evidence suggests ischemic stroke is associated less with calcified and fibrous plaques than with those containing softer tissue, especially when accompanied by a thin fibrous cap. A reliable mechanism for the identification of individuals with atherosclerotic plaques which confer the highest risk for stroke is fundamental to the selection of patients for vascular interventions. Acoustic radiation force impulse (ARFI) imaging is a new ultrasonic-based imaging method that characterizes the mechanical properties of tissue by measuring displacement resulting from the application of acoustic radiation force. These displacements provide information about the local stiffness of tissue and can differentiate between soft and hard areas. Because arterial walls, soft tissue, atheromas, and calcifications have a wide range in their stiffness properties, they represent excellent candidates for ARFI imaging. We present information from early phantom experiments and excised human limb studies to in vivo carotid artery scans and provide evidence for the ability of ARFI to provide high-quality images which highlight mechanical differences in tissue stiffness not readily apparent in matched B-mode images. This allows ARFI to identify soft from hard plaques and differentiate characteristics associated with plaque vulnerability or stability. PMID:21447606

  11. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 24  ±  11%; vibration time, 0.2  ±  0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13  ±  7% [P ≤ 0.0001]; vibration time, 1.2  ±  0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics. (paper)

  12. Evaluation of magnetic resonance imaging (MRI) in diagnosis of acoustic neuroma. Comparative study with plain X-ray and CTs

    Nomura, Kimihisa; Sakai, Makoto; Shinkawa, Atsushi; Miyake, Hirosato; Matsukawa, Junichi

    1987-11-01

    In order to find an approach to earlier and more acurate diagnosis of acoustic neuroma, a comparative evaluation of MRI, plain X-ray (Stenvers' projection), high resolution CT with or without Metrizamide enhancement and air-CT has been made in five clinical cases of acoustic neuroma. A paramagnetic contrast agent, Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), was used to enhance images resolution in two cases of acoustic neuroma. In MRI, the high singnal mass in the posterior fossa was smaller than 10 x 10 mm in 2 cases, 17 x 20 mm in 2 cases and 35 x 40 mm in one case. MRI revealed enlargement of the neurovascular bundle around the VII and VIII cranial nerves compatible with a diagnosis of acoustic neuroma in all 5 cases, and masses within the cerebellopontine angle were also disclosed. In 2 cases the image of equivocal acoustic neuromas was well enhanced, and these lesions were visualized after intravenous administration of Gd-DTPA. In one of the cases the acoustic neuroma was satisfactorily differentiated from the surrounding cystic lesion with the aid of a contrast medium. Magnetic resonance which uses no ionizing radiation seems to be innocuous and offers several advantages over other imaging methods and CT, which may produce an adverse reaction when a contrast medium is used in CT-cisternography. Further advancement of MR technology will offer greater assistance in differential diagnosis of lesions such as acoustic tumors or other cerebellopontine angle tumors.

  13. Spectroscopic study of the interaction of Nd+3 with amino acids: phenomenological 4f-4f intensity parameters

    We have studied behaviour of the phenomenological 4f-4f intensity parameters in compounds of the Nd3+ ion with glycine, L-aspartic acid, L-glutamic acid, L-histidine, DL-malic acid and AspartameTM in aqueous solution, as function of the pK values and partial charges on the oxygens of the carboxylate groups of these molecules. The results are discussed and qualitatively interpreted in terms of the forced electric dipole and dynamic coupling mechanisms of the 4f-4f intensities, thus indicating that the forced electric dipole mechanism is dominant. (author)

  14. Spectroscopic study of the interaction of Nd{sup +3} with amino acids: phenomenological 4f-4f intensity parameters

    Jerico, Soraya; Carubelli, Celia R.; Massabni, Ana M.G.; Stucchi, Elizabeth B.; Leite, Sergio R. de A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Malta, Oscar [Pernambuco Univ., Recife, PE (Brazil). Dept. de Quimica Fundamental

    1998-10-01

    We have studied behaviour of the phenomenological 4f-4f intensity parameters in compounds of the Nd{sup 3+} ion with glycine, L-aspartic acid, L-glutamic acid, L-histidine, DL-malic acid and Aspartame{sup TM} in aqueous solution, as function of the pK values and partial charges on the oxygens of the carboxylate groups of these molecules. The results are discussed and qualitatively interpreted in terms of the forced electric dipole and dynamic coupling mechanisms of the 4f-4f intensities, thus indicating that the forced electric dipole mechanism is dominant. (author)

  15. 77 FR 321 - Section 4(f) Policy Paper

    2012-01-04

    ... Federal Highway Administration Section 4(f) Policy Paper AGENCY: Federal Highway Administration (FHWA... draft Section 4(f) Policy Paper that will provide guidance on the procedures the FHWA will follow when.... SUPPLEMENTARY INFORMATION: Electronic Access and Filing You may submit or retrieve comments online through...

  16. Acoustic noise analysis of echo planar imaging. Multi-center trial and comparison with other pulse sequences

    The purpose of this study was to evaluate acoustic noise in echo planar imaging (EPI) at various magnetic resonance imaging (MRI) centers, and to compare EPI acoustic noise with that in other principal pulse sequences. We measured the maximum clinical acoustic noise (A-weighted root-mean-square sound pressure levels (Leq) and peak impulse sound pressure levels (Lpeak)) for EPI under the same conditions in five clinical superconducting MRI systems (0.5-1.5 T). We also compared the sound pressure levels for EPI and nine different pulse sequences, and analyzed the acoustic noise spectra. There was no significant difference between acoustic noise levels in EPI and other pulse sequences, and these values were within Occupational Safety and Health Administration guidelines at all centers. However, of all the pulse sequences, EPI had the greatest proportion of high-frequency acoustic noise (>1,000 Hz). Single-shot EPI was subject to higher-pitched noise than multi-shot EPI. Even among centers using the same magnet and gradient coil systems, there was considerable difference in acoustic noise levels (maximum differences in Leq and Lpeak were 7.0 dBA and 7.7 dB, respectively). (author)

  17. Using numerical models and volume rendering to interpret acoustic imaging of hydrothermal flow

    Bemis, K. G.; Bennett, K.; Takle, J.; Rona, P. A.; Silver, D.

    2009-12-01

    Our acoustic imaging system will be installed onto the Neptune Canada observatory at the Main Endeavour Field, Juan de Fuca Ridge, which is a Ridge 2000 Integrated Study Site. Thereafter, 16-30 Gb of acoustic imaging data will be collected daily. We are developing a numerical model of merging plumes that will be used to guide expectations and volume rendering software that transforms volumetric acoustic data into photo-like images. Hydrothermal flow is modeled as a combination of merged point sources which can be configured in any geometry. The model stipulates the dissipation or dilution of the flow and uses potential fields and complex analysis to combine the entrainment fields produced by each source. The strengths of this model are (a) the ability to handle a variety of scales especially the small scale as the potential fields can be specified with an effectively infinite boundary condition, (b) the ability to handle line, circle and areal source configurations, and (c) the ability to handle both high temperature focused flow and low temperature diffuse flow. This model predicts the vertical and horizontal velocities and the spatial distribution of effluent from combined sources of variable strength in a steady ambient velocity field. To verify the accuracy of the model’s results, we compare the model predictions of plume centerlines for the merging of two relatively strong point sources with the acoustic imaging data collected at Clam Acres, Southwest Vent Field, EPR 21°N in 1990. The two chimneys are 3.5 m apart and the plumes emanating from their tops merge approximately 18 mab. The model is able to predict the height of merging and the bending of the centerlines. Merging is implicitly observed at Grotto Vent, Main Endeavour Field, in our VIP 2000 data from July 2000: although there are at least 5 vigorous black smokers only a single plume is discernable in the acoustic imaging data. Furthermore, the observed Doppler velocity data increases with height

  18. Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study

    Magnetic resonance image (MRI) is a promising monitoring tool for non-invasive real-time thermal guidance in high intensity focused ultrasound (HIFU) during thermal ablation surgery. However, this approach has two main drawbacks: 1) majority of components need to be redesigned to be MR compatible in order to avoid effecting MR images, and 2) the cost of operating MRI facilities is high. Alternately, ultrasound-stimulated acoustic emission (USAE) method has been applied for detecting thermal variations in tissues. An optical transparent phantom, made from polyacrylamide, containing thermal sensitive indicator protein (Bovine Serum Albumin), was prepared for observing the HIFU-induced denaturalization. A thermal-couple was set up for validation of temperature distribution. Experimental results show that thermal image can be captured clearly under stationary conditions

  19. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging

    M. Qu

    2015-09-01

    Full Text Available Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA and magneto-motive ultrasound (MMUS signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles. The results indicated that during the delivery of nanoparticles to the vicinity of the cells, both PA and MMUS signals are almost linearly proportional. However, accumulation of nanoparticles within the cells leads to nonlinear MMUS-PA relationship, due to non-linear MMUS signal amplification. Therefore, through longitudinal MPA imaging, it is possible to monitor the delivery of nanoparticles and identify the endocytosis of the nanoparticles by living cells.

  20. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz. PMID:26026514

  1. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    P. Oshkai; M. Geveci; D. Rockwell; M. Pollack

    2002-12-12

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of,these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  2. Wiener-filter-based compensation of a transmitter’s radiation pattern using synthetic transmit aperture acoustic imaging

    Airborne acoustic imaging has the capability of obtaining distance information of an object in a scene, the capability of distinguishing objects from the background or a texture and it can also estimate the velocity of objects. However, the nonideal radiation pattern of a transmitter used for insonifying an imaging space can degrade imaging results. In this work, radiation patterns have been investigated, and a new approach to decrease the effect of a transmitter’s radiation pattern in acoustic imaging is proposed. The novelty of our proposed method is that we used the measurement-based transmitter’s radiation compensation. The compensation can be accomplished without knowing anything about the model and characteristics of the transmitter, the receiver and the medium. We compensated for the transmitter’s radiation pattern and reconstructed acoustic images using the synthetic transmit aperture imaging technique. The compensation was based on the radiation pattern obtained from real measurements using a Wiener filter. The Wiener filter was used to compensate for the nonideal radiation pattern of the ultrasonic transmitter for both the phase and amplitude aspects simultaneously. To verify the proposed method, an indoor airborne acoustic imaging experiment was conducted using a two-dimensional (2D) receiver array and a 2D transmitter array. The results show an obvious improvement in the vertical angular resolution of the reconstructed three-dimensional images as well as a satisfactory horizontal angular resolution. (paper)

  3. Investigating the emotional response to room acoustics: A functional magnetic resonance imaging study.

    Lawless, M S; Vigeant, M C

    2015-10-01

    While previous research has demonstrated the powerful influence of pleasant and unpleasant music on emotions, the present study utilizes functional magnetic resonance imaging (fMRI) to assess the positive and negative emotional responses as demonstrated in the brain when listening to music convolved with varying room acoustic conditions. During fMRI scans, subjects rated auralizations created in a simulated concert hall with varying reverberation times. The analysis detected activations in the dorsal striatum, a region associated with anticipation of reward, for two individuals for the highest rated stimulus, though no activations were found for regions associated with negative emotions in any subject. PMID:26520354

  4. Nonneoplastic enhancement of internal auditory canal contents mimicking intracanalicular acoustic neuroma on MR images

    The authors present five patients with inflammation of facial and/or vestibulocochlear nerves that showed enhancement of structures in the internal auditory canal. (IAC) on MR imaging that mimic intracanalicular acoustic neuroma. MR imaging findings of four patients with unilateral sensorineural hearing loss and one with acute facial paralysis were reviewed along with the operative findings. MR imaging included pre-and postcontrast T1- and T2-weighted images. Three patients who presented with unilateral sensorineural hearing loss underwent surgery for exploration and decompression of the IAC. One patient with facial paralysis showed vesicular eruption in the external auditory canal and was diagnosed as having Ramsay Hunt syndrome (herpes zosteroticus) clinically. The fifth patient is also being followed up clinically. MR imaging findings in all five cases were similar. There was focal enhancement in the lateral portion of the IAC on postcontrast T1-weighted images with minimal mass effect. The swollen and edematous nerves were noted on surgery without any evidence of neoplasm. The patients not operated on showed no progression of symptoms. The enhancement of IAC contents on MR imaging in patients with nonspecific neuritis or Ramsay Hunt syndrome may be difficult to differentiate from a small intracanalicular neuroma, which may have important therapeutic implications

  5. Underwater Applications of Acoustical Holography

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  6. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  7. Negative refraction and imaging of acoustic waves in a two-dimensional square chiral lattice structure

    Zhao, Sheng-Dong; Wang, Yue-Sheng

    2016-05-01

    The negative refraction behavior and imaging effect for acoustic waves in a kind of two-dimensional square chiral lattice structure are studied in this paper. The unit cell of the proposed structure consists of four zigzag arms connected through a thin circular ring at the central part. The relation of the symmetry of the unit cell and the negative refraction phenomenon is investigated. Using the finite element method, we calculate the band structures and the equi-frequency surfaces of the system, and confirm the frequency range where the negative refraction is present. Due to the rotational symmetry of the unit cell, a phase difference is induced to the waves propagating from a point source through the structure to the other side. The phase difference is related to the width of the structure and the frequency of the source, so we can get a tunable deviated imaging. This kind of phenomenon is also demonstrated by the numerical simulation of two Gaussian beams that are symmetrical about the interface normal with the same incident angle, and the different negative refractive indexes are presented. Based on this special performance, a double-functional mirror-symmetrical slab is proposed for realizing acoustic focusing and beam separation. xml:lang="fr"

  8. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography.

    Ma, Jianguo; Martin, K Heath; Li, Yang; Dayton, Paul A; Shung, K Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers. PMID:25856384

  9. Green's Function Retrieval and Marchenko Imaging in a Dissipative Acoustic Medium

    Slob, Evert

    2016-04-01

    Single-sided Marchenko equations for Green's function construction and imaging relate the measured reflection response of a lossless heterogeneous medium to an acoustic wave field inside this medium. I derive two sets of single-sided Marchenko equations for the same purpose, each in a heterogeneous medium, with one medium being dissipative and the other a corresponding medium with negative dissipation. Double-sided scattering data of the dissipative medium are required as input to compute the surface reflection response in the corresponding medium with negative dissipation. I show that each set of single-sided Marchenko equations leads to Green's functions with a virtual receiver inside the medium: one exists inside the dissipative medium and one in the medium with negative dissipation. This forms the basis of imaging inside a dissipative heterogeneous medium. I relate the Green's functions to the reflection response inside each medium, from which the image can be constructed. I illustrate the method with a one-dimensional example that shows the image quality. The method has a potentially wide range of imaging applications where the material under test is accessible from two sides.

  10. Preliminary study of copper oxide nanoparticles acoustic and magnetic properties for medical imaging

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-03-01

    The implementation of multimodal imaging in medicine is highly beneficial as different physical properties may provide complementary information, augmented detection ability, and diagnosis verification. Nanoparticles have been recently used as contrast agents for various imaging modalities. Their significant advantage over conventional large-scale contrast agents is the ability of detection at early stages of the disease, being less prone to obstacles on their path to the target region, and possible conjunction to therapeutics. Copper ions play essential role in human health. They are used as a cofactor for multiple key enzymes involved in various fundamental biochemistry processes. Extremely small size copper oxide nanoparticles (CuO-NPs) are readily soluble in water with high colloidal stability yielding high bioavailability. The goal of this study was to examine the magnetic and acoustic characteristics of CuO-NPs in order to evaluate their potential to serve as contrast imaging agent for both MRI and ultrasound. CuO-NPs 7nm in diameter were synthesized by hot solution method. The particles were scanned using a 9.4T MRI and demonstrated a concentration dependent T1 relaxation time shortening phenomenon. In addition, it was revealed that CuO-NPs can be detected using the ultrasonic B-scan imaging. Finally, speed of sound based ultrasonic computed tomography was applied and showed that CuO-NPs can be clearly imaged. In conclusion, the preliminary results obtained, positively indicate that CuO-NPs may be imaged by both MRI and ultrasound. The results motivate additional in-vivo studies, in which the clinical utility of fused images derived from both modalities for diagnosis improvement will be studied.

  11. Imaging of 3D Ocean Turbulence Microstructure Using Low Frequency Acoustic Waves

    Minakov, Alexander; Kolyukhin, Dmitriy; Keers, Henk

    2015-04-01

    In the past decade the technique of imaging the ocean structure with low-frequency signal (Hz), produced by air-guns and typically employed during conventional multichannel seismic data acquisition, has emerged. The method is based on extracting and stacking the acoustic energy back-scattered by the ocean temperature and salinity micro- and meso-structure (1 - 100 meters). However, a good understanding of the link between the scattered wavefield utilized by the seismic oceanography and physical processes in the ocean is still lacking. We describe theory and the numerical implementation of a 3D time-dependent stochastic model of ocean turbulence. The velocity and temperature are simulated as homogeneous Gaussian isotropic random fields with the Kolmogorov-Obukhov energy spectrum in the inertial subrange. Numerical modeling technique is employed for sampling of realizations of random fields with a given spatial-temporal spectral tensor. The model used is shown to be representative for a wide range of scales. Using this model, we provide a framework to solve the forward and inverse acoustic scattering problem using marine seismic data. Our full-waveform inversion method is based on the ray-Born approximation which is specifically suitable for the modelling of small velocity perturbations in the ocean. This is illustrated by showing a good match between synthetic seismograms computed using ray-Born and synthetic seismograms produced with a more computationally expensive finite-difference method.

  12. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    Dutta, Gaurav

    2014-08-05

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  13. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.

    Shih, Cho-Chiang; Lai, Ting-Yu; Huang, Chih-Chung

    2016-08-01

    The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the

  14. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  15. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas; Bruus, Henrik

    2012-01-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming ...

  16. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement

    2010-01-01

    A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.

  17. Failure prediction in ceramic composites using acoustic emission and digital image correlation

    Whitlow, Travis; Jones, Eric; Przybyla, Craig

    2016-02-01

    The objective of the work performed here was to develop a methodology for linking in-situ detection of localized matrix cracking to the final failure location in continuous fiber reinforced CMCs. First, the initiation and growth of matrix cracking are measured and triangulated via acoustic emission (AE) detection. High amplitude events at relatively low static loads can be associated with initiation of large matrix cracks. When there is a localization of high amplitude events, a measurable effect on the strain field can be observed. Full field surface strain measurements were obtained using digital image correlation (DIC). An analysis using the combination of the AE and DIC data was able to predict the final failure location.

  18. System design of programmable 4f phase modulation techniques for rapid intensity shaping: a conceptual comparison

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2016-03-01

    The present study analyses three beam shaping approaches with respect to a light-efficient generation of i) patterns and ii) multiple spots by means of a generic optical 4f-setup. 4f approaches share the property that due to the one-to-one relationship between output intensity and input phase, the need for time-consuming, iterative calculation can be avoided. The resulting low computational complexity offers a particular advantage compared to the widely used holographic principles and makes them potential candidates for real-time applications. The increasing availability of high-speed phase modulators, e.g. on the basis of MEMS, calls for an evaluation of the performances of these concepts. Our second interest is the applicability of 4f methods to high-power applications. We discuss the variants of 4f intensity shaping by phase modulation from a system-level point of view which requires the consideration of application relevant boundary conditions. The discussion includes i) the micro mirror based phase manipulation combined with amplitude masking in the Fourier plane, ii) the Generalized Phase Contrast, and iii) matched phase-only correlation filtering combined with GPC. The conceptual comparison relies on comparative figures of merit for energy efficiency, pattern homogeneity, pattern image quality, maximum output intensity and flexibility with respect to the displayable pattern. Numerical simulations illustrate our findings.

  19. A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model

    Maeda, Azusa; Conroy, Leigh; McMullen, Jesse D.; Silver, Jason I.; Stapleton, Shawn; Vitkin, Alex; Lindsay, Patricia; Burrell, Kelly; Zadeh, Gelareh; Fehlings, Michael G.; DaCosta, Ralph S.

    2013-01-01

    In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal in vivo imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for ex vivo tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature in situ. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) in vivo. In vivo power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous in vivo imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich

  20. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    P Oshkai; M Geveci; D Rockwell; M Pollack

    2004-05-24

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  1. Experimental study on acoustic subwavelength imaging of holey-structured metamaterials by resonant tunneling.

    Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai

    2014-04-01

    A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency. PMID:25234968

  2. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data. (paper)

  3. Quantitative observations of a deep-sea hydrothermal plume using an acoustic imaging sonar

    Xu, Guangyu

    The Cabled Observatory Vent Imaging Sonar (COVIS) is used to quantitatively monitor the hydrothermal discharge from the Grotto mound, a venting sulfide structure on the Endeavour Segment of the Juan de Fuca Ridge. Since its deployment in September 2010, COVIS has recorded a multi-year long, near-continuous acoustic backscatter dataset. Further analysis of this dataset sheds light on the backscattering mechanisms within the buoyant plumes above Grotto and yields quantitative information on the influences of oceanic, atmospheric, and geological processes on the dynamics and heat source of the plumes. An investigation of the acoustic scattering mechanisms within the buoyant plumes issuing from Grotto suggests the dominant scattering mechanism within the plumes is the temperature fluctuations caused by the turbulent mixing of the buoyant plumes with the ambient seawater. In comparison, the backscatter from plume particles is negligible at lower levels of the plume but can potentially be significant at higher levels. Furthermore, this finding demonstrates the potential of inverting the acoustic backsatter to estimate the temperature fluctuations within the plumes. Processing the backscatter dataset recorded by COVIS yields time-series measurements of the vertical flow rate, volume transport, expansion rate of the largest buoyant plume above Grotto. Further analysis of those time-series measurements suggests the rate at which the ambient seawater is entrained into the plume increases with the magnitude of the ambient ocean currents---the current-driven entrainment. Furthermore, the oscillations in the ambient ocean currents that are driven by tidal and atmospheric forcing are introduced into the flow field within the plume through the current-driven entrainment. An inverse method has been developed to estimate the source heat transport driving the largest plume above Grotto from its volume transport estimates. The result suggests the heat transport driving the plume was

  4. A Compressive Multi-Frequency Linear Sampling Method for Underwater Acoustic Imaging.

    Alqadah, Hatim F

    2016-06-01

    This paper investigates the use of a qualitative inverse scattering method known as the linear sampling method (LSM) for imaging underwater scenes using limited aperture receiver configurations. The LSM is based on solving a set of unstable integral equations known as the far-field equations and whose stability breaks down even further for under-sampled observation aperture data. Based on the results of a recent study concerning multi-frequency LSM imaging, we propose an iterative inversion method that is founded upon a compressive sensing framework. In particular, we leverage multi-frequency diversity in the data by imposing a partial frequency variation prior on the solution which we show is justified when the frequency bandwidth is sampled finely enough. We formulate an alternating direction method of multiplier approach to minimize the proposed cost function. Proof of concept is established through numerically generated data as well as experimental acoustic measurements taken in a shallow pool facility at the U.S Naval Research Laboratory. PMID:27093719

  5. Assessment of liver steatosis in chicken by using acoustic radiation force impulse imaging: preliminary results

    To evaluate acoustic radiation force impulse (ARFI) imaging as a non-invasive tool for quantification of the grades of liver steatosis in chickens. We used two different diets: a standard diet (SD group) and a hyperlipidaemic diet (HD group). The ARFI technique was performed in all the animals in the right hepatic lobe and shear wave velocity (SWV) was measured and expressed in metres per second (m/s). Plasma lipid levels were analysed. Steatosis was quantified by using semiquantitative analysis. Statistical analysis was used and Pearson's correlation coefficient was calculated. Mean SWV was 0.94 ± 0.16 m/s (range 0.8-1.3 m/s) in the SD group and 1.91 ± 0.25 m/s (range 1.3-2.2 m/s) in the HD group (p < 0.001). The lowest SWVs (≤1.3 m/s) corresponded to the chickens in the SD group, with 100% of the animals returning a score of 0, whereas the range of SWV in the HD group chickens was between 1.6 and 2.2 m/s. A substantial correlation was observed between SWVs with histological semiquantitative analysis of steatosis (r = 0.85, p < 0.001). ARFI imaging is a non-invasive diagnostic tool that allows discrimination between the grades of liver steatosis in chickens. (orig.)

  6. Assessment of liver steatosis in chicken by using acoustic radiation force impulse imaging: preliminary results

    Guzman Aroca, Florentina; Serrano, Laura; Berna-Serna, Juan D.; Reus, Manuel [Virgen de la Arrixaca University Hospital, Department of Radiology, El Palmar, Murcia (Spain); Ayala, Ignacio [University of Murcia, Department of Animal Medicine and Surgery, Murcia (Spain); Castell, Maria T. [University of Murcia, Department of Cell Biology, Murcia (Spain); Garcia-Perez, Bartolome [Virgen de la Arrixaca University Hospital, Internal Medicine Service, El Palmar, Murcia (Spain)

    2010-10-15

    To evaluate acoustic radiation force impulse (ARFI) imaging as a non-invasive tool for quantification of the grades of liver steatosis in chickens. We used two different diets: a standard diet (SD group) and a hyperlipidaemic diet (HD group). The ARFI technique was performed in all the animals in the right hepatic lobe and shear wave velocity (SWV) was measured and expressed in metres per second (m/s). Plasma lipid levels were analysed. Steatosis was quantified by using semiquantitative analysis. Statistical analysis was used and Pearson's correlation coefficient was calculated. Mean SWV was 0.94 {+-} 0.16 m/s (range 0.8-1.3 m/s) in the SD group and 1.91 {+-} 0.25 m/s (range 1.3-2.2 m/s) in the HD group (p < 0.001). The lowest SWVs ({<=}1.3 m/s) corresponded to the chickens in the SD group, with 100% of the animals returning a score of 0, whereas the range of SWV in the HD group chickens was between 1.6 and 2.2 m/s. A substantial correlation was observed between SWVs with histological semiquantitative analysis of steatosis (r = 0.85, p < 0.001). ARFI imaging is a non-invasive diagnostic tool that allows discrimination between the grades of liver steatosis in chickens. (orig.)

  7. High resolution imaging beyond the acoustic diffraction limit in deep tissue via ultrasound-switchable NIR fluorescence

    Pei, Yanbo; Wei, Ming-Yuan; Cheng, Bingbing; Liu, Yuan; Xie, Zhiwei; Nguyen, Kytai; Yuan, Baohong

    2014-04-01

    Fluorescence imaging in deep tissue with high spatial resolution is highly desirable because it can provide details about tissue's structural, functional, and molecular information. Unfortunately, current fluorescence imaging techniques are limited either in penetration depth (microscopy) or spatial resolution (diffuse light based imaging) as a result of strong light scattering in deep tissue. To overcome this limitation, we developed an ultrasound-switchable fluorescence (USF) imaging technique whereby ultrasound was used to switch on/off the emission of near infrared (NIR) fluorophores. We synthesized and characterized unique NIR USF contrast agents. The excellent switching properties of these agents, combined with the sensitive USF imaging system developed in this study, enabled us to image fluorescent targets in deep tissue with spatial resolution beyond the acoustic diffraction limit.

  8. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2001-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  9. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    Cassiède, M.; Shaw, J. M. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada)

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  10. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study

  11. Acoustic Radiation Force Impulse Imaging for Non-Invasive Assessment of Renal Histopathology in Chronic Kidney Disease

    Qiao Hu; Xiao-Yan Wang; Hong-Guang He; Hai-Ming Wei; Li-Ke Kang; Gui-Can Qin

    2014-01-01

    OBJECTIVE: To investigate the stiffness values obtained by acoustic radiation force impulse (ARFI) quantification in assessing renal histological fibrosis of chronic kidney disease (CKD). METHODS: 163 patients with CKD and 32 healthy volunteers were enrolled between June 2013 and April 2014. ARFI quantification, given as shear wave velocity (SWV), was performed to measure renal parenchyma stiffness. Diagnostic performance of ARFI imaging and conventional ultrasound (US) were compared with his...

  12. Acoustic radiation force imaging sonoelastography for noninvasive staging of liver fibrosis

    Carmen Fierbinteanu-Braticevici; Dan Andronescu; Radu Usvat; Dragos Cretoiu; Cristian Baicus; Gabriela Marinoschi

    2009-01-01

    AIM: To investigate the diagnostic accuracy of acoustic radiation force impulse (ARFI) imaging as a noninvasive method for the assessment of liver fibrosis in chronic hepatitis C (CHC) patients.METHODS: We performed a prospective blind comparison of ARFI elastography, APRI index and FibroMax in a consecutive series of patients who underwent liver biopsy for CHC in University Hospital Bucharest. Histopathological staging of liver fibrosis according to the METAVIR scoring system served as the reference. A total of 74 patients underwent ARFI elastography, APRI index, FibroMax and successful liver biopsy.RESULTS: The noninvasive tests had a good correlation with the liver biopsy results. The most powerful test in predicting fibrosis was ARFI elastography. The diagnostic accuracy of ARFI elastography, expressed as area under receiver operating characteristic curve (AUROC) had a validity of 90.2% (95% CI AUROC =0.831-0.972, P < 0.001) for the diagnosis of significant fibrosis (F ≥ 2). ARFI sonoelastography predicted even better F3 or F4 fibrosis (AUROC = 0.993, 95% CI =0.979-1).CONCLUSION: ARFI elastography had very good accuracy for the assessment of liver fibrosis and was superior to other noninvasive methods (APRI Index,FibroMax) for staging liver fibrosis.

  13. Detecting crack profile in concrete using digital image correlation and acoustic emission

    Loukili A.

    2010-06-01

    Full Text Available Failure process in concrete structures is usually accompanied by cracking of concrete. Understanding the cracking pattern is very important while studying the failure governing criteria of concrete. The cracking phenomenon in concrete structures is usually complex and involves many microscopic mechanisms caused by material heterogeneity. Since last many years, fracture or damage analysis by experimental examinations of the cement based composites has shown importance to evaluate the cracking and damage behavior of those heterogeneous materials with damage accumulation due to microcracks development ahead of the propagating crack tip; and energy dissipation resulted during the evolution of damage in the structure. The techniques used in those experiments may be the holographic interferometry, the dye penetration, the scanning electron microscopy, the acoustic emission etc. Those methods offer either the images of the material surface to observe micro-features of the concrete with qualitative analysis, or the black-white fringe patterns of the deformation on the specimen surface, from which it is difficult to observe profiles of the damaged materials.

  14. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit. PMID:23039546

  15. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  16. A simulation technique for 3D MR-guided acoustic radiation force imaging

    Payne, Allison, E-mail: apayne@ucair.med.utah.edu [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84112 (United States); Bever, Josh de [Department of Computer Science, University of Utah, Salt Lake City, Utah 84112 (United States); Farrer, Alexis [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Coats, Brittany [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Parker, Dennis L. [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84108 (United States); Christensen, Douglas A. [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  17. Elasticity imaging of speckle-free tissue regions with moving acoustic radiation force and phase-sensitive optical coherence tomography

    Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew

    2016-03-01

    Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.

  18. Electronic excitation of C4F6 isomers by electron impact

    We have measured electronic excitation differential cross sections for C4F6 molecules isomers by electron impact. In the case of hexafluoro-1,3-butadiene we observed an optical forbidden transition at around 5 eV. The spectra of the three C4F6 isomers show the most intense band clearly shifted to lower energies when going from 2-C4F6, to c-C4F6 and to 1,3-C4F6.

  19. Seeing Sound - Image Analysis of the Lift-off Acoustic Field Project

    National Aeronautics and Space Administration — A launch vehicle and its launch facilities are subjected to intense acoustic loads generated by the vehicle's propulsion system. The vehicle, its payload, and...

  20. Acoustic radiation force impulse imaging for assessing liver fibrosis in alcoholic liver disease

    Kiani, Anita; Brun, Vanessa; Lainé, Fabrice; Turlin, Bruno; Morcet, Jeff; Michalak, Sophie; Le Gruyer, Antonia; Legros, Ludivine; Bardou-Jacquet, Edouard; Gandon, Yves; Moirand, Romain

    2016-01-01

    AIM: To evaluate the performance of elastography by ultrasound with acoustic radiation force impulse (ARFI) in determining fibrosis stage in patients with alcoholic liver disease (ALD) undergoing alcoholic detoxification in relation to biopsy. METHODS: Eighty-three patients with ALD undergoing detoxification were prospectively enrolled. Each patient underwent ARFI imaging and a liver biopsy on the same day. Fibrosis was staged according to the METAVIR scoring system. The median of 10 valid ARFI measurements was calculated for each patient. RESULTS: Sixty-nine males and thirteen females (one patient excluded due to insufficient biopsy size) were assessed with a mean alcohol consumption of 132.4 ± 128.8 standard drinks per week and mean cumulative year duration of 17.6 ± 9.5 years. Sensitivity and specificity were respectively 82.4% (0.70-0.95) and 83.3% (0.73-0.94) (AUROC = 0.87) for F ≥ 2 with a cut-off value of 1.63m/s; 82.4% (0.64-1.00) and 78.5% (0.69-0.89) (AUROC = 0.86) for F ≥ 3 with a cut-off value of 1.84m/s; and 92.3% (0.78-1.00] and 81.6% (0.72-0.90) (AUROC = 0.89) for F = 4 with a cut-off value of 1.94 m/s. CONCLUSION: ARFI is an accurate, non-invasive and easy method for assessing liver fibrosis in patients with ALD undergoing alcoholic detoxification. PMID:27239119

  1. /sup 3/He and 4f instable compounds

    Flouquet, J.; Jaccard, J. (Centre de Recherches sur les Tres Basses Temperatures, C.N.R.S., 38 - Grenoble (France)); Ribault, M. (Laboratoire de Physique des Solides, Universite de Paris-Sud, 91 - Orsay (France))

    1984-01-01

    The high localization of the 4f electron and the possibility of a weak delocalization through the coupling with the itinerant electrons lead to Fermi liquid properties. With the example of CeAl/sub 3/, the main role of the coherence between the Ce is emphasized at low temperature. Thermal dilatation data show the transition from a regime of almost independent Kondo centers to a regime of coherent Kondo centers. The occurence of the superconductivity in the heavy fermion CeCu/sub 2/Si/sub 2/ is discussed and compared to the superfluidity of liquid /sup 3/He.

  2. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    Kuehn, Kerry, K.

    2008-10-28

    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii

  3. Acoustic imaging of a duct spinning mode by the use of an in-duct circular microphone array.

    Wei, Qingkai; Huang, Xun; Peers, Edward

    2013-06-01

    An imaging method of acoustic spinning modes propagating within a circular duct simply with surface pressure information is introduced in this paper. The proposed method is developed in a theoretical way and is demonstrated by a numerical simulation case. Nowadays, the measurements within a duct have to be conducted using in-duct microphone array, which is unable to provide information of complete acoustic solutions across the test section. The proposed method can estimate immeasurable information by forming a so-called observer. The fundamental idea behind the testing method was originally developed in control theory for ordinary differential equations. Spinning mode propagation, however, is formulated in partial differential equations. A finite difference technique is used to reduce the associated partial differential equations to a classical form in control. The observer method can thereafter be applied straightforwardly. The algorithm is recursive and, thus, could be operated in real-time. A numerical simulation for a straight circular duct is conducted. The acoustic solutions on the test section can be reconstructed with good agreement to analytical solutions. The results suggest the potential and applications of the proposed method. PMID:23742352

  4. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing.

    Mougenot, Charles; Pichardo, Samuel; Engler, Steven; Waspe, Adam; Colas, Elodie Constanciel; Drake, James M

    2016-08-01

    Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n  =  4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum. PMID:27401452

  5. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for

  6. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing

    Mougenot, Charles; Pichardo, Samuel; Engler, Steven; Waspe, Adam; Constanciel Colas, Elodie; Drake, James M.

    2016-08-01

    Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n  =  4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum.

  7. Encoding degree testing in a 4f architecture

    Amaya, Dafne; Tebaldi, Myrian; Torroba, Roberto; Bolognini, Néstor

    2011-08-01

    The distribution of the encrypted information at the output of an encoding system is of major concern. When the encrypted information is conveyed to the final user, the finite size of the recording medium affects the quality of the encoded information. In this case, we face possible information degradation when recovering. In the present contribution we focus our attention on the finite size of the recorder medium in an actual experimental situation. In order to improve the quality of the decrypted data, we study the role that both the scattering element size of the masks and the input object size play in the encrypting system. Therefore, we analyze the optimal spatial distribution of the encoded information at the output of a 4f encrypting system. We present examples that support our proposal.

  8. A new route for graphene wrapping LiVPO4F/C nano composite toward superior lithium storage property

    Highlights: • Simple solution route was used for coating process. • Core–shell structure with multi conductive shell was obtained. • Greatly enhanced electrochemical performance was demonstrated. - Abstract: To enhance the electronic conductivity of LiVPO4F, graphene-decorated LiVPO4F/C nano composites were prepared via a solution route followed by low-temperature calcination. XRD results reveal that the crystal structure of LiVPO4F/C with graphene wrapping remains unchanged. SEM and TEM images demonstrate that the as-synthesized graphene modified particles tend to become smaller and are dispersed uniformly into the graphene layers. The graphene sheets stretch out and cross-link into a conducting network around the LiVPO4F particles, resulting in improved electronic conductivity and enhanced electrolyte permeability. SAED patterns confirmed the presence of graphene, as well as crystalline nature of LiVPO4F with clear lattice structure and sharp diffraction spots. When applied as cathodes for lithium ion batteries, the graphene wrapped LiVPO4F/C nano composites exhibit better cycle ability and rate capability than the pristine one. Particularly, the sample prepared by using 60 mL graphene oxide dispersion demonstrates a superior rate capability with a discharge capacity of 117 mA h g−1 at 8 C, as well as excellent cycling stability, maintaining 83.7% capacity retention after 350 cycles at 8 C. CV and EIS tests separately indicate that the graphene modified samples possess lower polarization and faster charge transfer than the bare sample

  9. Clinical utility of acoustic radiation force impulse imaging for identification of malignant liver lesions: a meta-analysis

    To assess the performance of acoustic radiation force impulse (ARFI) imaging for identification of malignant liver lesions using meta-analysis. PubMed, the Cochrane Library, the ISI Web of Knowledge and the China National Knowledge Infrastructure were searched. The studies published in English or Chinese relating to evaluation accuracy of ARFI imaging for identification of malignant liver lesions were collected. A hierarchical summary receiver operating characteristic (HSROC) curve was used to examine the ARFI imaging accuracy. Clinical utility of ARFI imaging for identification of malignant liver lesions was evaluated by Fagan plot analysis. A total of eight studies which included 590 liver lesions were analysed. The summary sensitivity and specificity for identification of malignant liver lesions were 0.86 (95 % confidence interval (CI) 0.74-0.93) and 0.89 (95 % CI 0.81-0.94), respectively. The HSROC was 0.94 (95 % CI 0.91-0.96). After ARFI imaging results over the cut-off value for malignant liver lesions (''positive'' result), the corresponding post-test probability for the presence (if pre-test probability was 50 %) was 89 %; in ''negative'' measurement, the post-test probability was 13 %. ARFI imaging has a high accuracy in the classification of liver lesions. (orig.)

  10. Applications of Lorentz force in medical acoustics: Lorentz force hydrophone, Lorentz Force Electrical Impedance Tomography, Imaging of shear waves induced by Lorentz force

    Grasland-Mongrain, Pol

    2014-01-01

    The ability of the Lorentz force to link a mechanical displacement to an electrical current presents a strong interest for medical acoustics, and three applications were studied in this thesis. In the first part of this work, a hydrophone was developed for mapping the particle velocity of an acoustic field. This hydrophone was constructed using a thin copper wire and an external magnetic field. A model was elaborated to determine the relationship between the acoustic pressure and the measured electrical current, which is induced by Lorentz force when the wire vibrates in the acoustic field of an ultrasound transducer. The built prototype was characterized and its spatial resolution, frequency response, sensitivity, robustness and directivity response were investigated. An imaging method called Lorentz Force Electrical Impedance Tomography was also studied. In this method, a biological tissue is vibrated by ultrasound in a magnetic field, which induces an electrical current by Lorentz force. The electrical imp...

  11. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Nonlinear acoustics, synthetic aperture imaging

    This report contains results concerning inspection of copper canisters for spent nuclear fuel by means of ultrasound obtained at Signals and Systems, Uppsala University in year 2001/2002. The first chapter presents results of an investigation of a new method for synthetic aperture imaging. The new method presented here takes the form of a 2D filter based on minimum mean squared error (MMSE) criteria. The filter, which varies with the target position in two dimensions includes information about spatial impulse response (SIR) of the imaging system. Spatial resolution of the MMSE method is investigated and compared experimentally to that of the classical SAFT and phased array imaging. It is shown that the resolution of the MMSE algorithm, evaluated for imaging immersed copper specimen is superior to that observed for the two above-mentioned methods. Extended experimental and theoretical research concerning the potential of nonlinear waves and material harmonic imaging is presented in the second chapter. An experimental work is presented that was conducted using the RITEC RAM-5000 ultrasonic system capable of providing a high power tone-burst output. A new method for simulation of nonlinear acoustic waves that is a combination of the angular spectrum approach and the Burger's equation is also presented. This method was used for simulating nonlinear elastic waves radiated by the annular transducer that was used in the experiments

  12. Effect of MRI Acoustic Noise on Cerebral FDG Uptake in Simultaneous MR-PET Imaging

    Chonde, Daniel B.; Abolmaali, Nasreddin; Arabasz, Grae; Guimaraes, Alexander R.; Catana, Ciprian

    2013-01-01

    Integrated scanners capable of simultaneous PET and MRI data acquisition are now available for human use. Although the scanners’ manufacturers have made substantial efforts to understand and minimize the mutual electromagnetic interference between the two modalities, the potential physiological inference has not been evaluated. In this work, we have studied the influence of the acoustic noise produced by the MR gradients on brain FDG uptake in the Siemens MR-BrainPET prototype. While particul...

  13. Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes

    Christensen, J; García de Abajo, F. Javier

    2010-01-01

    We present a theoretical study on the amplification of evanescent sound waves produced by coupling to trapped modes hosted by a fluidic planar waveguide. Total internal reflection at interfaces of different refractive indexes can be frustrated by the introduction of a slow slab waveguide which is leading to a gigantic field enhancement, useful for sensitive transducers and acoustic shock lithotripsy. The mechanism behind the evanescent field coupling that is also known as tunnelling barrier p...

  14. Electron interactions with c-C4F8

    The limited electron collision cross-section and transport-coefficient data for the plasma processing gas perfluorocyclobutane (c-C4F8) are synthesized, assessed, and discussed. These include cross sections for total electron scattering, differential elastic electron scattering, partial and total ionization, dissociation into neutral fragments, and electron attachment, as well as data on electron transport, ionization, and attachment coefficients. The available data on both the electron collision cross sections and the electron transport coefficients require confirmation. Also, measurements are needed of the momentum transfer and elastic integral cross sections, and of the cross sections for other significant low-energy electron collision processes such as vibrational and electronic excitation. In addition, electron transport data over a wider range of values of the density-reduced electric field are needed. The present assessment of data on electron affinity, attachment, and scattering suggests the existence of negative ion states near -0.6, 4.9, 6.9, 9.0, and 10.5 eV

  15. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

    Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

    2016-04-01

    This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

  16. Rare earth 4f hybridization with the GaN valence band

    The placement of the Gd, Er and Yb 4f states within the GaN valence band has been explored by both experiment and theory. The 4d–4f photoemission resonances for various rare-earth(RE)-doped GaN thin films (RE = Gd, Er, Yb) provide an accurate depiction of the occupied 4f state placement within the GaN. The resonant photoemission show that the major Er and Gd RE 4f weight is at about 5–6 eV below the valence band maximum, similar to the 4f weights in the valence band of many other RE-doped semiconductors. For Yb, there is a very little resonant enhancement of the valence band of Yb-doped GaN, consistent with a large 4f14-δ occupancy. The placement of the RE 4f levels is in qualitative agreement with theoretical expectations. (paper)

  17. Copper Causes Regiospecific Formation of C4F8-Containing Six-Membered Rings and their Defluorination/Aromatization to C4F4-Containing Rings in Triphenylene/1,4-C4F8I2 Reactions

    Rippy, Kerry C.; Bukovsky, Eric V.; Clikeman, Tyler T.; Chen, Yu-Sheng; Hou, Gao-Lei; Wang, Xue B.; Popov, Alexey; Boltalina, Olga V.; Strauss, Steven H.

    2016-01-18

    The presence of Cu in reactions of triphenylene (TRPH) and 1,4-C4F8I2 at 360 °C led to regiospecific substitution of TRPH ortho C(β) atoms to form C4F8-containing rings, completely suppressing substitution on C(α) atoms. In addition, Cu caused selective reductive-defluorination/aromatization (RD/A) to form C4F4- containing aromatic rings. Without Cu, the reactions of TRPH and 1,4- C4F8I2 were not regiospecific and no RD/A was observed. These results, supported by DFT calculations, are the first examples of Cupromoted (i) regiospecific perfluoroannulation, (ii) preparative C–F activation, and (iii) RD/A. HPLC-purified products were characterized by X-ray diffraction, low-temperature PES, and 1H/19F NMR.

  18. Comparing a phased combination of acoustical radiosity and the image source method with other simulation tools

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho;

    2015-01-01

    and diffuse reflections when simulating the acoustics of small rooms with non-diffuse sound fields, since scattering from walls add to the diffuseness in the room. This room type is often seen in class rooms and offices, as they are often small rectangular rooms with most of the absorption placed...... on the ceiling. Here, PARISM is used for comparisons with other simulation tools and measurements. An empty, rectangular room with a suspended absorbing ceiling is used for the comparisons. It was found that including the phase information in simulations increases the spatial standard deviation, even if only...

  19. Enhanced delivery of gold nanoparticles by acoustic cavitation for photoacoustic imaging and photothermal therapy

    Wang, Yu-Hsin; Liao, Ai-Ho; Lin, Jia-Yu; Lee, Cheng-Ru; Wu, Cheng-Ham; Liu, Tzu-Min; Wang, Churng-Ren; Li, Pai-Chi

    2013-03-01

    Gold-nanorods incorporated with microbubbles (AuMBs) were introduced as a photoacoustic/ultrasound dual- modality contrast agent in our previous study. The application can be extended to theragnosis purpose. With the unique physical characteristics of AuMBs, we propose an enhanced delivery method for the encapsulated particles. For example, laser thermotherapy mediated by plasmonic nanoparticles can be made more effective by using microbubbles as a targeted carrier and acoustic cavitation for enhanced sonoporation. The hypothesis was experimentally tested. Firts, these AuMBs first act as molecular probes with binding to specific ligands. The improved targeting efficacy was macroscopically observed by an ultrasound system. The extended retention of targeted AuMB was observed and recorded for 30 minutes in a CT-26 tumor bearing mouse. Secondly, cavitation induced by time-varying acoustic field was also applied to disrupt the microbubbles and cause increased transient cellular permeability (a.k.a., sonoporation). Multimodal optical microscope based on a Cr:forsterite laser was used to directly observe these effects. The microscope can acquired third-harmonic generation (THG) and two-photon fluorescent (2PF) signals produced by the AuMBs. In vitro examination shows approximately a 60% improvement in terms of fluorescence signals from the cellular uptake of gold nanoparticles after sonoporation treatment. Therefore, we conclude that the controlled release is feasible and can further improve the therapeutic effects of the nanoparticles.

  20. Assessing hepatic fibrosis: comparing the intravoxel incoherent motion in MRI with acoustic radiation force impulse imaging in US

    This study compared the diagnostic performance of intravoxel incoherent motion (IVIM) in magnetic resonance imaging (MRI) and acoustic radiation force impulse imaging (ARFI) in ultrasound (US) for liver fibrosis (LF) evaluation. A total of 49 patients scheduled for liver surgery were recruited. LF in the non-tumorous liver parenchyma at the right lobe was estimated using a slow diffusion coefficient, fast diffusion coefficient (Dfast), perfusion fraction (f) of the IVIM parameters, the total apparent diffusion coefficient of conventional diffusion-weighted imaging and the shear wave velocity (Vs) of ARFI. LF was graded using the Metavir scoring system on histological examination. The Spearman rank correlation coefficient for correlation and analysis of variance was used for determining difference. The diagnostic performance was compared using receiver operating characteristic curve analysis. LF exhibited significant correlation with the three parameters Dfast, f, and Vs (r = -0.528, -0.337, and 0.481, respectively, P < 0.05). The Dfast values in the F4 group were significantly lower than those in the F0, F1 and F2 groups. Dfast exhibited a non-inferior performance for diagnosing all fibrosis grades compared with that of Vs. Both IVIM and ARFI provide reliable estimations for the noninvasive assessment of LF. (orig.)

  1. Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging

    Johnson, Jami L.; van Wijk, Kasper; Caron, James N.; Timmerman, Miriam

    2016-02-01

    Conventional contacting transducers for ultrasonic wave detection are highly sensitive and tuned for real-time imaging with fixed array geometries. However, optical detection provides an alternative to contacting transducers when a small sensor footprint, a large frequency bandwidth, or non-contacting detection is required. Typical optical detection relies on a Doppler-shifted reflection of light from the target, but gas coupled-laser acoustic detection (GCLAD) provides an alternative optical detection method for photoacoustic (PA) and ultrasound imaging that does not involve surface reflectivity. Instead, GCLAD is a line-detector that measures the deflection of an optical beam propagating parallel to the sample, as the refractive index of the air near the sample is affected by particle displacement on the sample surface. We describe the underlying principles of GCLAD and derive a formula for quantifying the surface displacement from a remote GCLAD measurement. We discuss a design for removing the location-dependent displacement bias along the probe beam and a method for measuring the attenuation coefficient of the surrounding air. GCLAD results are used to quantify the surface displacement in a laser-ultrasound experiment, which shows 94% agreement to line-integrated data from a commercial laser vibrometer point detector. Finally, we demonstrate the feasibility of PA imaging of an artery-sized absorber using a detector 5.8 cm from a phantom surface.

  2. Assessing hepatic fibrosis: comparing the intravoxel incoherent motion in MRI with acoustic radiation force impulse imaging in US

    Wu, Chih-Horng; Liang, Po-Chin; Shih, Tiffany Ting-Fang [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); National Taiwan University College of Medicine, Department of Radiology, Taipei (China); Ho, Ming-Chih; Hu, Rey-Heng; Lai, Hong-Shiee [National Taiwan University Hospital and College of Medicine, Department of Surgery, Taipei (China); Jeng, Yung-Ming [National Taiwan University Hospital and College of Medicine, Department of Pathology, Taipei (China)

    2015-12-15

    This study compared the diagnostic performance of intravoxel incoherent motion (IVIM) in magnetic resonance imaging (MRI) and acoustic radiation force impulse imaging (ARFI) in ultrasound (US) for liver fibrosis (LF) evaluation. A total of 49 patients scheduled for liver surgery were recruited. LF in the non-tumorous liver parenchyma at the right lobe was estimated using a slow diffusion coefficient, fast diffusion coefficient (D{sub fast}), perfusion fraction (f) of the IVIM parameters, the total apparent diffusion coefficient of conventional diffusion-weighted imaging and the shear wave velocity (Vs) of ARFI. LF was graded using the Metavir scoring system on histological examination. The Spearman rank correlation coefficient for correlation and analysis of variance was used for determining difference. The diagnostic performance was compared using receiver operating characteristic curve analysis. LF exhibited significant correlation with the three parameters D{sub fast}, f, and Vs (r = -0.528, -0.337, and 0.481, respectively, P < 0.05). The D{sub fast} values in the F4 group were significantly lower than those in the F0, F1 and F2 groups. D{sub fast} exhibited a non-inferior performance for diagnosing all fibrosis grades compared with that of Vs. Both IVIM and ARFI provide reliable estimations for the noninvasive assessment of LF. (orig.)

  3. Laser Spectroscopy of Dysprosium Monofluoride: Ligand Field Assignments of States Belonging to the 4 f96 s2, 4 f106 s, and 4 f96 s6 pSuperconfigurations

    McCarthy, Michael C.; Bloch, Jonathan C.; Field, Robert W.; Kaledin, Leonid A.

    1996-10-01

    The techniques of selectively detected fluorescence excitation and dispersed fluorescence spectroscopy have been used to characterize two [19.3]8.5 and [20.3]8.5 electronic states of DyF in the region of ∼2.5 eV and five electronic states withT0< 6500 cm-1. Superconfigurational assignments of the observed low-lying states have been made on the basis of vibrational frequencies. TheX(1)7.5 ground state, with ΔG1/2≈ 605 cm-1, is assigned to the Dy+4f96s2superconfiguration, whereas four states, (1)8.5, (2)7.5, (3)7.5, and (4)7.5, with ΔG1/2≈ 508-544 cm-1are assigned to the Dy+4f106ssuperconfiguration. The lowest 4f106s(Ω = 8.5) state is found to lie 2431 cm-1above the 4f96s2X(1)7.5 ground state, thus establishing the linkage between the 4f96s2and 4f106ssuperconfigurations. The upper states in the region of ∼2.5 eV ([19.3]8.5 and [20.3]8.5) are assigned to the Dy+4f96s6psuperconfiguration on the basis of computed ligand field monopoleB00(nl,nl) orbital destabilization energies. The observed electronic states are discussed in relation to predictions of the ligand field theoretical model.

  4. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  5. Localized Acoustic Surface Modes

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  6. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu

    2009-12-01

    Full Text Available Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surface evanescent waves have also been recognized to play key roles to reach acoustic subwavelength imaging and enhanced transmission.

  7. Acoustic rhinometry (AR): An Alternative Method to Image Nasal Airway Geometry

    Straszek, Sune; Pedersen, O.F.

    , generated by a spark, propagates through a sound tube and enters the nasal cavity. The reflected waves travel back through the tube and are recorded by a [OFP1] microphone. Measurements are computed from changes in the local impedance by comparing the incident and reflected acoustic pressure waves by...... inverse fast Fourier transform. Based on the Ware and Aki algorithm measurements are displayed as an area-distance curve where cross-sectional area of the nasal cavity is a function of distance travelled by the sound wave.     DEMONSTRATION[OFP2] : Current problems using AR are demonstrated based on...... laboratory animals. Future prospects therefore could include development of new algorithms for computing data, more sensitive microphones measuring higher frequencies and optimal relationship between sound tube dimensions and the cavity measured. Achieving that may improve measurements, making...

  8. Acoustic response of a rectangular fluid region by the method of images

    Cheng, W.H.; Karim-Panahi, K.; Fitch, J.R.

    1982-01-01

    An abrupt excitation to a fluid contained in a system with flexible boundaries creates a coupling effect between the pressure response in the fluid and the flexible structure. Measurement of pressures within such a system may be contaminated by this coupling effect. A method to study acoustic wave propagation inside a rigid container is developed in this paper to address such a problem. With this method, the predicted pressure response for the fluid within a rigid container can be compared to test data from a flexible system. The results of this comparison can lead to a determination of the extent of contamination of the measured pressure response by the interaction of the fluid with the flexible structure. 6 refs.

  9. Acoustic response of a rectangular fluid region by the method of images

    An abrupt excitation to a fluid contained in a system with flexible boundaries creates a coupling effect between the pressure response in the fluid and the flexible structure. Measurement of pressures within such a system may be contaminated by this coupling effect. A method to study acoustic wave propagation inside a rigid container is developed in this paper to address such a problem. With this method, the predicted pressure response for the fluid within a rigid container can be compared to test data from a flexible system. The results of this comparison can lead to a determination of the extent of contamination of the measured pressure response by the interaction of the fluid with the flexible structure. 6 refs

  10. Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock

    Vidal, Jeanne; Genter, Albert; Schmittbuhl, Jean

    2016-08-01

    Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index fivefold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation well-logging (acoustic and temperature [T] logs) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.

  11. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  12. Digital confocal microscopy using a virtual 4f-system based on numerical beam propagation for depth measurement without mechanical scanning

    Goto, Yuta; Okamoto, Atsushi; Toda, Masataka; Kuno, Yasuyuki; Nozawa, Jin; Ogawa, Kazuhisa; Tomita, Akihisa

    2016-08-01

    We propose a digital confocal microscope using a virtual 4f-system based on numerical beam propagation for depth measurement without mechanical scanning. In our technique, the information in the sample target along the depth direction is obtained by defocusing the virtual 4f-system, which consists of two virtual lenses arranged in a computer simulation. The principle of our technique is completely different from that of the mechanical scanning method used in the conventional confocal microscope based on digital holography. By using the virtual 4f-system, the measurement and exposure time can be markedly reduced because multilayered tomographic images are generated using a single measurement. In this study, we tested the virtual depth imaging technique by measuring cover glasses arranged along the depth direction.

  13. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    Stepinski, Tadeusz (ed.); Olofsson, Tomas; Wennerstroem, Erik [Uppsala Univ., Dept. of Technical Sciences (Sweden). Signals and Systems

    2006-12-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the {omega}-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization.

  14. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the ω-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization

  15. Basic investigation on acoustic velocity change imaging method for quantitative assessment of fat content in human liver

    Mano, Kazune; Tanigawa, Shohei; Hori, Makoto; Yokota, Daiki; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2016-07-01

    Fatty liver is a disease caused by the excess accumulation of fat in the human liver. The early diagnosis of fatty liver is very important, because fatty liver is the major marker linked to metabolic syndrome. We already proposed the ultrasonic velocity change imaging method to diagnose fatty liver by using the fact that the temperature dependence of ultrasonic velocity is different in water and in fat. For the diagonosis of a fatty liver stage, we attempted a feasibility study of the quantitative assessment of the fat content in the human liver using our ultrasonic velocity change imaging method. Experimental results showed that the fat content in the tissue mimic phantom containing lard was determined by its ultrasonic velocity change in the flat temperature region formed by a circular warming ultrasonic transducer with an acoustic lens having an appropriate focal length. By considering the results of our simulation using a thermal diffusion equation, we determined whether this method could be applied to fatty liver assessment under the condition that the tissue had the thermal relaxation effect caused by blood flow.

  16. Ultrasonic imaging of an object at the presence of Fourier and non-Fourier transformation in the transmitted through the object acoustic field.

    Andreeva, A; Burova, M; Burov, J

    2007-06-01

    A metal object is computer visualized by registration of the amplitudes of the transmitted through the object short acoustic pulses. The pulses are separated by time, because of the presence of holes and internal compact components in the longitudinal section (structure along the propagation direction of acoustic wave). The acoustic field transmitted through the object is composited from a field presenting Fourier transformation of the hole shape and field, transmitted through the metal components in the longitudinal section of the object. A computer Fourier transformation of the digital data of the amplitude fields transmitted through the object components is performed instead of converging lens. The Fourier series of the object obtained as digital data after the transformation is multiplied with a term, describing the angle distribution of the field on spatial frequencies. The reconstruction of the image of the metal components is performed by reverse transformation, i.e. summing up in all spatial frequencies. 3D visualization of the transmitted through the hole acoustic field determines the hole geometry (circular, square, rectangular). It is shown that at the transmission of a short acoustic pulse through the components with different thicknesses and holes, presenting Fourier and non-Fourier transformation can be registered separately in contrast to the optics. PMID:17395232

  17. Potential Hazards Relating to Pyrolysis of c-C4F8O, n-C4F10 and c-C4F8 in selected gaseous diffusion plant operations

    As part of a program intended to replace the present evaporative coolant at the gaseous diffusion plants (GDPs) with a non-ozone-depleting alternate, a series of investigations of the suitability of candidate substitutes is under way. This report summarizes studies directed at estimating the chemical and thermal stability of three candidate coolants, c-C4F8O, n-C4F10 and c-C44F8, in a few specific environments to be found in gaseous diffusion plant operations

  18. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.

    Berry, Gearóid P; Bamber, Jeffrey C; Armstrong, Cecil G; Miller, Naomi R; Barbone, Paul E

    2006-04-01

    The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography. PMID:16616601

  19. Postoperative magnetic resonance imaging after acoustic neuroma surgery. Influence of packing materials in the drilled internal auditory canal on assessment of residual tumor

    Umezu, Hiromichi; Seki, Yojiro [Toranomon Hospital, Tokyo (Japan)

    1999-02-01

    Serial magnetic resonance (MR) images taken after acoustic neuroma surgery were analyzed to evaluate the pattern and timing of postoperative contrast enhancement in 22 patients who underwent acoustic neuroma removal via the suboccipital transmeatal approach. The opened internal auditory canal (IAC) was covered with a muscle piece in nine patients and with fibrin glue in 13. A total of 56 MR imaging examinations were obtained between days 1 and 930 after surgery. MR imaging showed linear enhancement at the IAC within the first 2 days after surgery, and revealed nodular enhancement on day 3 or later in patients with a muscle piece. MR imaging tended to show linear enhancement at the IAC, irrespective of the timing of the examination in the patients with fibrin glue. Postoperative MR imaging on day 3 or later showed the incidence of nodular enhancement in patients with muscle was significantly higher than in patients with fibrin glue. The results illustrate the difficulty in differentiating nodular enhancement of a muscle piece from tumor by a single postoperative MR imaging study. Therefore, fibrin glue is generally advocated as a packing material of the IAC because it rarely shows masslike enhancement on postoperative MR imaging. When a muscle piece is used in patients at high risk for postoperative cerebrospinal fluid leaks, MR imaging should be obtained within the first 2 days after surgery, since benign enhancement of muscle will not occur and obscure the precise extent of tumor resection. (author)

  20. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. PMID:26116161

  1. Ocean acoustic reverberation tomography.

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  2. Field ionization process of Eu 4f76snp Rydberg states

    张婧; 沈礼; 戴长建

    2015-01-01

    The field ionization process of the Eu 4f76snp Rydberg states, converging to the first ionization limit, 4f76s 9S4, is systematically investigated. The spectra of the Eu 4f76snp Rydberg states are populated with three-step laser excitation, and detected by electric field ionization (EFI) method. Two different kinds of the EFI pulses are applied after laser excitation to observe the possible impacts on the EFI process. The exact EFI ionization thresholds for the 4f76snp Rydberg states can be determined by observing the corresponding EFI spectra. In particular, some structures above the EFI threshold are found in the EFI spectra, which may be interpreted as the effect from black body radiation (BBR). Finally, the scaling law of the EFI threshold for the Eu 4f76snp Rydberg states with the effective quantum number is built.

  3. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  4. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  5. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  6. Photo-acoustic imaging of blue nanoparticle targeted brain tumor for intra-operative glioma delineation

    Ray, Aniruddha; Wang, Xueding; Koo Lee, Yong-Eun; Hah, HoeJin; Kim, Gwangseong; Chen, Thomas; Orrienger, Daniel; Sagher, Oren; Kopelman, Raoul

    2011-07-01

    Distinguishing the tumor from the background neo-plastic tissue is challenging for cancer surgery such as surgical resection of glioma. Attempts have been made to use visible or fluorescent markers to delineate the tumors during surgery. However, the systemic injection of the dyes requires high dose, resulting in negative side effects. A novel method to delineate rat brain tumors intra-operatively, as well as post-operatively, using a highly sensitive photoacoustic imaging technique enhanced by tumor targeting blue nanoparticle as contrast agent is demonstrated. The nanoparticles are made of polyacrylamide (PAA) matrix with covalently linked Coomassie-Blue dye. They contain 7.0% dye and the average size is 80nm. Their surface was conjugated with F3 peptide for active tumor targeting. These nanoparticles are nontoxic, chemically inert and have long plasma circulation lifetime, making them suitable as nanodevices for imaging using photoacoustics. Experiments on phantoms and rat brains tumors ex-vivo demonstrate the high sensitivity of photoacoustic imaging in delineating the tumor, containing contrast agent at concentrations too low to be visualized by eye. The control tumors without nanoparticles did not show any enhanced signal. This study shows that photoacoustic imaging facilitated with the nanoparticle contrast agent could contribute to future surgical procedures for glioma.

  7. Description and validation of a combination of acoustical radiosity and the image source method

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas;

    2014-01-01

    furthermore describes how a pressure impulse response is obtained from the energy based radios- ity model. Validation of the image source model with real-valued boundary conditions is done by comparison with the analytical Green’s function in an enclosure. The full model is compared with measurements done in...... a rectangular room with a highly absorbing ceilings...

  8. High-field MR imaging of acoustic neuromas using contrast media

    False-negative results on MR imaging may be encountered in the diagnosis of small neuromas and neuromas strictly confined to the internal auditory canal; intracanalicular extension of pontocerebellar neuromas may also be missed. Using a 1.5-T unit, we studied 20 patients, including nine with pontocerebellar neuromas (with intracanalicular extension in six cases), six with intracanalicular neuromas, and three with multiple neuromas (von Recklinghausen disease). Correlations were established with findings on intravenous (IV) contrast agent-enhanced CT, CT-air cisternography, and surgery. Gd-DTPa or Gd-DOTA was injected IV in a dosage of 0.2 ml/kg (0.1 mmol/kg). Images were acquired before and after injection. In the last phase of the study, patients were injected 10 minutes before the MR imaging examination, which allowed workup to be completed within 30 minutes. The 3- or 5-mm axial and coronal (occasionally sagittal) T1-weighted images displayed neuromas as variably sized (4-20 mm), contrast-enhanced, hyperintense structures

  9. Acoustic hemostasis

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  10. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine.

    Uehara, Shotaro; Uno, Yasuhiro; Yuki, Yukako; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-06-01

    Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans. PMID:27044800

  11. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings.

    Le-Hang Guo

    Full Text Available OBJECTIVE: To evaluate the diagnostic value of acoustic radiation force impulse (ARFI to test the elasticity of renal parenchyma by measuring the shear wave velocity (SWV which might be used to detect chronic kidney disease (CKD. METHODS: 327 healthy volunteers and 64 CKD patients were enrolled in the study. The potential influencing factors and measurement reproducibility were evaluated in the healthy volunteers. Correlations between SWV and laboratory tests were analyzed in CKD patients.?Receiver-operating characteristic curve (ROC analyses were performed to assess the diagnostic performance of ARFI. RESULTS: The SWV of healthy volunteers correlated significantly to age (r = -0.22, P<0.001, n = 327 and differed significantly between men and women (2.06±0.48 m/s vs. 2.2±0.52 m/s, P = 0.018, n = 327. However, it did not correlate significantly to height, weight, body mass index, waistline, kidney dimension and the depth for SWV measurement (n = 30. Inter- and intraobserver agreement expressed as intraclass coefficient correlation were 0.64 (95% CI: 0.13 to 0.82, P = 0.011 and 0.6 (95% CI: 0.31 to 0.81, P = 0.001 (n = 40. The mean SWV in healthy volunteers was 2.15±0.51 m/s, while was 1.81±0.43 m/s, 1.79±0.29 m/s, 1.81±0.44 m/s, 1.64±0.55 m/s, and 1.36±0.17 m/s for stage 1, 2, 3, 4 and 5 in CKD patients respectively. The SWV was significantly higher for healthy volunteers compared with each stage in CKD patients. ARFI could not predict the different stages of CKD except stage 5. In CKD patients, SWV correlated to e-GFR (r = 0.3, P = 0.018, to urea nitrogen (r =  -0.3, P = 0.016, and to creatinine (r =  -0.41, P = 0.001. ROC analyses indicated that the area under the ROC curve was 0.752 (95% CI: 0.704 to 0.797 (P<0.001. The cut-off value for predicting CKD was 1.88 m/s (sensitivity 71.87% and specificity 69.69%. CONCLUSION: ARFI may be a potentially useful tool in detecting CKD.

  12. Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock

    Vidal, Jeanne; Genter, Albert; Schmittbuhl, Jean

    2016-05-01

    Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index five-fold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation logs and well-logging (temperature [T] log) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.

  13. Acoustic radiation force impulse imaging for non-invasive assessment of renal histopathology in chronic kidney disease.

    Qiao Hu

    Full Text Available OBJECTIVE: To investigate the stiffness values obtained by acoustic radiation force impulse (ARFI quantification in assessing renal histological fibrosis of chronic kidney disease (CKD. METHODS: 163 patients with CKD and 32 healthy volunteers were enrolled between June 2013 and April 2014. ARFI quantification, given as shear wave velocity (SWV, was performed to measure renal parenchyma stiffness. Diagnostic performance of ARFI imaging and conventional ultrasound (US were compared with histologic scores at renal biopsy. Intra- and inter-observer reliability of SWV measurement was analyzed. RESULTS: In CKD patients, SWV measurements correlated significantly with pathological parameters (r = -0.422--0.511, P<0.001, serum creatinine (r = -0.503, P<0.001, and glomerular filtration rate (r = 0.587, P<0.001. The mean SWV in kidneys with severely impaired (histologic score: ≥19 points was significant lower than that mildly impaired (histologic score: ≤9 points, moderately impaired (histologic score: 10-18 points, and control groups (all P<0.001. Receiver operating characteristic (ROC curves analyses indicated that the area under the ROC curve for the diagnosis of renal histological fibrosis using ARFI imaging was superior to these conventional US parameters. Using the optimal cut-off value of 2.65 m/s for the diagnosis of mildly impaired kidneys, 2.50 m/s for moderately impaired kidneys, and 2.33 m/s for severely impaired kidneys, the corresponding area under the ROC curves were 0.735, 0.744, and 0.895, respectively. Intra- and intre-observer agreement of SWV measurements were 0.709 (95% CI: 0.390-0.859, P<0.001 and 0.627 (95% CI: 0.233-0.818, P = 0.004, respectively. CONCLUSIONS: ARFI may be an effective tool for evaluating renal histological fibrosis in CKD patients.

  14. Photoemission study of the 4f character in gamma- and alpha-cerium

    A temperature dependent photoemission study was performed on cerium metal to understand the role of the 4f electron in the isostructural ν-α phase transition. The partial yield spectra clearly indicate a 4f occupation number of one for both phases. The observed differences in the partial yield spectra consist mainly of a broadening of the multiplet structure. This broadening has been interpreted in terms of a slight delocalization of the 4f electron in transforming from the high volume ν phase to the more compact α phase. The energy distribution curves show two 4f related features in the valence band spectra. The feature located at -2.0 eV has been assigned to a direct emission of the 4f electron. The second feature is located near the Fermi level and has been attributed to a screening process involving the 5d valence electrons. Upon transforming to α-Ce, the screened feature increases in intensity at the expense of the direct feature. This has been interpreted as a decrease in the 4f-5d Coulomb repulsion. From the two complementary experiments, we conclude that both phases contain a single 4f electron that becomes slightly delocalized in the α-phase

  15. Bioenergetic programming of macrophages by the apolipoprotein A-I mimetic peptide 4F

    Datta, Geeta; Kramer, Philip A.; Johnson, Michelle S.; Sawada, Hirotaka; Smythies, Lesley E.; Crossman, David K.; Chacko, Balu; Ballinger, Scott W.; Westbrook, David G.; Mayakonda, Palgunachari; Anantharamaiah, G.M.; Darley-Usmar, Victor M.; White, C. Roger

    2015-01-01

    The apoA-I (apolipoprotein A-I) mimetic peptide 4F favours the differentiation of human monocytes to an alternatively activated M2 phenotype. The goal of the present study was to test whether the 4F-mediated differentiation of MDMs (monocyte-derived macrophages) requires the induction of an oxidative metabolic programme. 4F treatment induced several genes in MDMs that play an important role in lipid metabolism, including PPARγ (peroxisome-proliferator-activated receptor γ) and CD36. Addition ...

  16. Enhanced characterization of calcified areas in intravascular ultrasound virtual histology images by quantification of the acoustic shadow: validation against computed tomography coronary angiography.

    Broersen, Alexander; de Graaf, Michiel A; Eggermont, Jeroen; Wolterbeek, Ron; Kitslaar, Pieter H; Dijkstra, Jouke; Bax, Jeroen J; Reiber, Johan H C; Scholte, Arthur J

    2016-04-01

    We enhance intravascular ultrasound virtual histology (VH) tissue characterization by fully automatic quantification of the acoustic shadow behind calcified plaque. VH is unable to characterize atherosclerosis located behind calcifications. In this study, the quantified acoustic shadows are considered calcified to approximate the real dense calcium (DC) plaque volume. In total, 57 patients with 108 coronary lesions were included. A novel post-processing step is applied on the VH images to quantify the acoustic shadow and enhance the VH results. The VH and enhanced VH results are compared to quantitative computed tomography angiography (QTA) plaque characterization as reference standard. The correlation of the plaque types between enhanced VH and QTA differs significantly from the correlation with unenhanced VH. For DC, the correlation improved from 0.733 to 0.818. Instead of an underestimation of DC in VH with a bias of 8.5 mm(3), there was a smaller overestimation of 1.1 mm(3) in the enhanced VH. Although tissue characterization within the acoustic shadow in VH is difficult, the novel algorithm improved the DC tissue characterization. This algorithm contributes to accurate assessment of calcium on VH and could be applied in clinical studies. PMID:26667446

  17. Sm2+ fluorescence and absorption in cubic BaCl2: Strong thermal crossover of fluorescence between 4f6 and 4f55d1 configurations

    The optical absorption and fluorescence spectra of polycrystalline cubic-phase barium chloride doped with divalent samarium is reported. X-ray diffraction shows that the cubic phase is stabilised at room temperature by the addition of 12.5% lanthanum trichloride; no evidence for the more common orthorhombic or hexagonal phases of barium chloride is found. Optical absorption measurements are in good agreement with a calculated spectrum for Sm2+ ions at a single site of cubic symmetry, even though the material must contain a substantial fraction of chlorine interstitials and lanthanum substitutional ions. The photoluminescence spectrum shows sharp red line emission from the 5D1 and 5D0 levels of the 4f6 configuration, again consistent with a single site of cubic symmetry, together with a broad emission, also in the red, which arises from the lowest levels of the 4f55d1 configuration. The relative strengths of these emissions are strongly temperature dependent; at room temperature the broad band from the lowest 4f55d1 levels peaking at 15,130 cm−1 is dominant, while at low temperature (∼12 K) sharp lines from the 5D0 level dominate. The most intense line corresponds to the 5D0→7F1 transition at 14,300 cm−1, but the nominally forbidden 5D0→7F0 transition also has significant intensity. The marked temperature dependence of the intensity of the lines and bands is successfully modelled by rate equations and is explained on the basis of thermally activated crossovers between the 4f6 (5D0,1) levels and the lowest levels of the 4f55d1 configuration; it is necessary to include the three lowest levels of the 4f55d1 configuration sandwiched between the 5D0 and 5D1 levels. - Highlights: ► Strong red 5d emission matched to semiconductor-based radiation detectors. ► Stabilisation of the high temperature cubic phase of Sm-doped BaCl2 at 295 K. ► Dramatic temperature-induced intensity transfer between 5d and 4f PL emissions. ► Most comprehensive model yet achieved

  18. Communication Acoustics

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  19. Optical evidence of 4f-band formation in CeN

    We report ab initio calculations of the ground state and optical properties of CeN, which show that the 4f electrons in CeN are itinerant and that the intra-atomic 4f-Coulomb interaction is largely screened. A coherent 4f band of width ∼2 eV is formed, from which an accurate description of the optical spectrum is obtained. The lattice parameter, linear specific heat coefficient, and magnetic susceptibility are also well reproduced. While CeN was previously classified to be a mixed valence compound, our results show that the more appropriate picture is that of a 4f-band material. copyright 1997 The American Physical Society

  20. Complexation and extraction of series 4f, 5f and 4d ions by dialkyldithiophosphoric acids

    A study was carried out on the complexing and extracting properties of various dialkyldithiophosphoric acids towards ions of the 4f, 5f and 4d series. Sulphurated donors complex and extract ions of the 4f and 5f series less strongly than their oxygenated homologues. However the affinity of trivalent actinide ions for dialkythiophosphate ions is shown to be greater than that of lanthanides. The conditions of ruthenium extraction from nitric acid are defined

  1. Tetranuclear Zn/4f coordination clusters as highly efficient catalysts for Friedel-Crafts alkylation.

    Griffiths, Kieran; Kumar, Prashant; Akien, Geoffrey R; Chilton, Nicholas F; Abdul-Sada, Alaa; Tizzard, Graham J; Coles, Simon J; Kostakis, George E

    2016-06-14

    A series of custom-designed, high yield, isoskeletal tetranuclear Zn/4f coordination clusters showing high efficiency as catalysts with low catalytic loadings in Friedel-Crafts alkylation are described for the first time. The possibility of altering the 4f centers in these catalysts without altering the core topology allows us to further confirm their stability via EPR and NMR, as well to gain insights into the plausible reaction mechanism, showcasing the usefulness of these bimetallic systems as catalysts. PMID:27248829

  2. Acoustic radiation force impulse (ARFI) ultrasound imaging of pancreatic cystic lesions

    Purpose: To evaluate the ARFI ultrasound imaging with Virtual Touch tissue quantification in studying pancreatic cystic lesions, compared with phantom fluid models. Materials and methods: Different phantom fluids at different viscosity or density (water, iodinate contrast agent, and oil) were evaluated by two independent operators. From September to December 2008, 23 pancreatic cystic lesions were prospectively studied. All lesions were pathologically confirmed. Results: Non-numerical values on water and numerical values on other phantoms were obtained. Inter-observer evaluation revealed a perfect correlation (rs = 1.00; p < 0.0001) between all measurements achieved by both operators per each balloon and fluid. Among the pancreatic cystic lesions, 14 mucinous cystadenomas, 4 pseudocysts, 3 intraductal papillary-mucinous neoplasms and 2 serous cystadenomas were studied. The values obtained ranged from XXXX/0-4,85 m/s in mucinous cystadenomas, from XXXX/0-3,11 m/s in pseudocysts, from XXXX/0-4,57 m/s in intraductal papillary-mucinous neoplasms. In serous cystadenomas all values measured were XXXX/0 m/s. Diagnostic accuracy in benign and non-benign differentiation of pancreatic cystic lesions was 78%. Conclusions: Virtual Touch tissue quantification can be applied in the analysis of fluids and is potentially able to differentiate more complex (mucinous) from simple (serous) content in studying pancreatic cystic lesions.

  3. Acoustic radiation force impulse (ARFI) ultrasound imaging of pancreatic cystic lesions

    D' Onofrio, M., E-mail: mirko.donofrio@univr.it [Department of Radiology, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy); Gallotti, A. [Department of Radiology, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy); Salvia, R. [Department of Surgery, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy); Capelli, P. [Department of Pathology, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy); Mucelli, R. Pozzi [Department of Radiology, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy)

    2011-11-15

    Purpose: To evaluate the ARFI ultrasound imaging with Virtual Touch tissue quantification in studying pancreatic cystic lesions, compared with phantom fluid models. Materials and methods: Different phantom fluids at different viscosity or density (water, iodinate contrast agent, and oil) were evaluated by two independent operators. From September to December 2008, 23 pancreatic cystic lesions were prospectively studied. All lesions were pathologically confirmed. Results: Non-numerical values on water and numerical values on other phantoms were obtained. Inter-observer evaluation revealed a perfect correlation (rs = 1.00; p < 0.0001) between all measurements achieved by both operators per each balloon and fluid. Among the pancreatic cystic lesions, 14 mucinous cystadenomas, 4 pseudocysts, 3 intraductal papillary-mucinous neoplasms and 2 serous cystadenomas were studied. The values obtained ranged from XXXX/0-4,85 m/s in mucinous cystadenomas, from XXXX/0-3,11 m/s in pseudocysts, from XXXX/0-4,57 m/s in intraductal papillary-mucinous neoplasms. In serous cystadenomas all values measured were XXXX/0 m/s. Diagnostic accuracy in benign and non-benign differentiation of pancreatic cystic lesions was 78%. Conclusions: Virtual Touch tissue quantification can be applied in the analysis of fluids and is potentially able to differentiate more complex (mucinous) from simple (serous) content in studying pancreatic cystic lesions.

  4. Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-07-01

    We present a 26 day time series (October 2010) of physical properties (volume flux, flow velocity, expansion rate) of a vigorous deep-sea hydrothermal plume measured using our Cabled Observatory Vent Imaging Sonar (COVIS), which is connected to the Northeast Pacific Time Series Underwater Experiment Canada Cabled Observatory at the Main Endeavour Field on the Juan de Fuca Ridge. COVIS quantitatively monitors the initial buoyant rise of the plume from ˜5 m to ˜15 m above the vents. The time series exhibits temporal variations of the plume vertical volume flux (1.93-5.09 m3/s ), centerline vertical velocity component (0.11-0.24 m/s ) and expansion rate (0.082-0.21 m/m ); these variations have major spectral peaks at semidiurnal (˜2 cycle/day) and inertial oscillation (˜1.5 cycle/day) frequencies. The plume expansion rate (average ˜0.14 m/m ) is inversely proportional to the plume centerline vertical velocity component (coefficient of determination R2˜0.5). This inverse proportionality, as well as the semidiurnal frequency, indicates interaction between the plume and ambient ocean currents consistent with an entrainment of ambient seawater that increases with the magnitude of ambient currents. The inertial oscillations observed in the time series provide evidence for the influence of surface storms on the dynamics of hydrothermal plumes.

  5. CYP4F18-Deficient Neutrophils Exhibit Increased Chemotaxis to Complement Component C5a

    Rachel Vaivoda

    2015-01-01

    Full Text Available CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4 (LTB4. CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type and Cyp4f18 knockout neutrophils using an in vitro assay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9–2.25-fold in knockout cells compared to wild-type (P < 0.01. This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxis in vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type and Cyp4f18 knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4 as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores the in vivo challenges of CYP knockout studies.

  6. Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging

    Objectives: To evaluate the feasibility and age-related changes of shear wave velocity (SWV) in normal livers, kidneys, and spleens of children using acoustic radiation force impulse (ARFI) imaging. Materials and methods: Healthy pediatric volunteers prospectively underwent abdominal ultrasonography and ARFI. The subjects were divided into three groups according to age: group 1: <5 years old; group 2: 5–10 years old; and group 3: >10 years old. The SWV was measured using a 4–9 MHz linear probe for group 1 and a 1–4 MHz convex probe for groups 2 and 3. Three valid SWV measurements were acquired for each organ. Results: Two hundred and two children (92 male, 110 female) with an average age of 8.1 years (±4.7) were included in this study and had a successful measurement rate of 97% (196/202). The mean SWVs were 1.12 m/s for the liver, 2.19 m/s for the right kidney, 2.33 m/s for the left kidney, and 2.25 m/s for the spleen. The SWVs for the right and left kidneys, and the spleen showed age-related changes in all children (p < 0.001). And the SWVs for the kidneys increased with age in group 1, and those for the liver changed with age in group 3. Conclusions: ARFI measurements are feasible for solid abdominal organs in children using high or low frequency probes. The mean ARFI SWV for the kidneys increased according to age in children less than 5 years of age and in the liver, it changed with age in children over 10

  7. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  8. Acoustic Neuroma

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  9. Simultaneous observation of low temperature 4f-4f and 3d-3d emission spectra in a series of Cr(III)(ox)Ln(III) assembly

    Subhan, M A; Suzuki, T; Choi, J H; Kaizaki, S

    2003-01-01

    We report here the low temperature emission spectra in the heterometal dinuclear 3d-4f assembled molecular system [(acac) sub 2 Cr sup I sup I sup I (mu-ox)Ln sup I sup I sup I (HBpz sub 3) sub 2] (Cr(ox)Ln:acac sup - =acetylacetonate, ox sup 2 sup - =oxalate, HBpz sub 3 sup - =hydrotris(pyrazol-1-yl)borate; Ln=La, Nd, Ho, Er , Tm and Yb) in comparison with those of Na[Cr(acac) sub 2 (ox)] and [(HBpz sub 3) sub 2 Ln(mu-ox)Ln(HBpz sub 3) sub 2](Ln=Nd and Er). From 10 to 150 K the Cr(ox)Ln complexes show a broad emission band around 800 nm from the sup 2 E state of Cr(III) moiety. At room temperature no sup 2 E- sup 4 A sub 2 emission was observed in the Cr(ox)Ln except for the La and Lu complexes. On warming from 10 to 300 K rapid quenching of the sup 2 E- sup 4 A sub 2 emission of Cr(III) is suggested to result from the energy transfer from Cr to Ln in the Cr(ox)Ln. The excitation spectra and the life-time were also measured with monitoring the 4f-4f emission peaks of the Cr(ox)Yb complex.

  10. Plasma diagnostic potential of 2p4f in N$^+$ -- accurate wavelengths and oscillator strengths

    Shen, Xiaozhi; Jönsson, Per; Wang, Jianguo

    2015-01-01

    Radiative emission lines from nitrogen and its ions are often observed in nebulae spectra, where the N$^{2+}$ abundance can be inferred from lines of the 2p4f configuration. In addition, intensity ratios between lines of the 2p3p -- 2p3s and 2p4f -- 2p3d transition arrays can serve as temperature diagnostics. To aid abundance determinations and plasma diagnostics, wavelengths and oscillator strengths were calculated with high-precision for electric-dipole (E1) transitions from levels in the 2p4f configuration of N$^{+}$. Electron correlation and relativistic effects, including the Breit interaction, were systematically taken into account within the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Except for the 2p4f - 2p4d transitions with quite large wavelengths and the two-electron-one-photon 2p4f -2s2p$^3$ transitions, the uncertainties of the present calculations were controlled to within 3% and 5% for wavelengths and oscillator strengths, respectively. We also compared our results w...

  11. Field ionization process of Eu 4f76snp Rydberg states

    Zhang, Jing; Shen, Li; Dai, Chang-Jian

    2015-11-01

    The field ionization process of the Eu 4f76snp Rydberg states, converging to the first ionization limit, 4f76s 9S4, is systematically investigated. The spectra of the Eu 4f76snp Rydberg states are populated with three-step laser excitation, and detected by electric field ionization (EFI) method. Two different kinds of the EFI pulses are applied after laser excitation to observe the possible impacts on the EFI process. The exact EFI ionization thresholds for the 4f76snp Rydberg states can be determined by observing the corresponding EFI spectra. In particular, some structures above the EFI threshold are found in the EFI spectra, which may be interpreted as the effect from black body radiation (BBR). Finally, the scaling law of the EFI threshold for the Eu 4f76snp Rydberg states with the effective quantum number is built. Project supported by the National Natural Science Foundation of China (Grant Nos. 11004151 and 11174218).

  12. Determination of the clean 4f peak shape in XPS for plutonium metal

    Morrall, P. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)], E-mail: peter.morrall@awe.co.uk; Roussel, P. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Jolly, L.; Brevet, A.; Delaunay, F. [Commissariat a l' Energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-03-15

    Many of the interesting properties observed with plutonium are ascribed to the influence of 5f electrons, and to the degree of localisation observed within these electrons. Indeed, changes in 5f localisation are sensitively reflected in the final states observed in core-level photoemission measurements. However, when analysing the 4f manifold of elemental plutonium, it is essential to obtain spectra without the influence of oxidation, which can easily be misinterpreted as 5f localisation. The ideal method to extract elemental plutonium 4f spectra is to remove any influence of oxidation from the 'clean' plutonium data by careful measurement of the oxygen 1s region, and the subsequent subtraction of the unwanted oxide features. However, in order to achieve this objective it is essential to determine the relative sensitivity factor (RSF) for plutonium 4f and the precise shape of the 4f features from plutonium sesqui-oxide. In this paper, we report an experimental determination of the RSF for the plutonium 4f manifold using experimental data captured from two different Vacuum Generators spectrometers; an ESCALAB Mk II and an ESCALAB 220i.

  13. Silicon etch using SF6/C4F8/Ar gas mixtures

    While plasmas using mixtures of SF6, C4F8, and Ar are widely used in deep silicon etching, very few studies have linked the discharge parameters to etching results. The authors form such linkages in this report. The authors measured the optical emission intensities of lines from Ar, F, S, SFx, CF2, C2, C3, and CS as a function of the percentage C4F8 in the gas flow, the total gas flow rate, and the bias power. In addition, the ion current density and electron temperature were measured using a floating Langmuir probe. For comparison, trenches were etched of various widths and the trench profiles (etch depth, undercut) were measured. The addition of C4F8 to an SF6/Ar plasma acts to reduce the availability of F as well as increase the deposition of passivation film. Sulfur combines with carbon in the plasma efficiently to create a large optical emission of CS and suppress optical emissions from C2 and C3. At low fractional flows of C4F8, the etch process appears to be controlled by the ion flux more so than by the F density. At large C4F8 fractional flows, the etch process appears to be controlled more by the F density than by the ion flux or deposition rate of passivation film. CF2 and C2 do not appear to cause deposition from the plasma, but CS and other carbon containing molecules as well as ions do

  14. Determination of the clean 4 f peak shape in XPS for plutonium metal

    Morrall, P.; Roussel, P.; Jolly, L.; Brevet, A.; Delaunay, F.

    2009-03-01

    Many of the interesting properties observed with plutonium are ascribed to the influence of 5 f electrons, and to the degree of localisation observed within these electrons. Indeed, changes in 5 f localisation are sensitively reflected in the final states observed in core-level photoemission measurements. However, when analysing the 4 f manifold of elemental plutonium, it is essential to obtain spectra without the influence of oxidation, which can easily be misinterpreted as 5 f localisation. The ideal method to extract elemental plutonium 4 f spectra is to remove any influence of oxidation from the 'clean' plutonium data by careful measurement of the oxygen 1 s region, and the subsequent subtraction of the unwanted oxide features. However, in order to achieve this objective it is essential to determine the relative sensitivity factor (RSF) for plutonium 4 f and the precise shape of the 4 f features from plutonium sesqui-oxide. In this paper, we report an experimental determination of the RSF for the plutonium 4 f manifold using experimental data captured from two different Vacuum Generators spectrometers; an ESCALAB Mk II and an ESCALAB 220i.

  15. R and D studies of a RICH detector using pressurized C4F8O radiator gas and a CsI-based gaseous photon detector

    We report on studies of layout and performance of a new Ring Imaging Cherenkov detector using for the first time pressurized C4F8O radiator gas and a photon detector consisting of a MWPC equipped with a CsI photocathode. In particular, we present here the results of beam tests of a MWPC having an adjustable anode–cathode gap, aiming at the optimization of single photoelectron detection and Cherenkov angle resolution. This system was proposed as a Very High Momentum Particle Identification (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identification in the momentum range 5–25 GeV/c. -- Highlights: •The concept and design of a novel RICH counter operated with pressurized gaseous Cherenkov radiator have been validated. •We used for the first time C4F8O gaseous Cherenkov radiator pressurized up to 3.5 atm in a RICH counter. •The refractive index of C4F8O in the UV range is similar to the per-mil level to that of C4F10. •A variable gap MWPC has been used to optimize the layout of the gaseous photon counter, based on CsI photocathodes and MWPC, for the detection of single photoelectrons

  16. Evaluating the Acoustic Effect of Over-the-Rotor Foam-Metal Liner Installed on a Low Speed Fan Using Virtual Rotating Microphone Imaging

    Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.

    2010-01-01

    An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.

  17. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  18. Acoustic cloaking and transformation acoustics

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  19. Acoustic cloaking and transformation acoustics

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  20. Does the 4f-shell contribute to bonding in tetravalent lanthanide halides?

    Lanthanide tetrahalide molecules LnX4 (Ln = Ce, Pr, Tb; X = F, Cl, Br, I) have been investigated by density functional theory at the levels of the relativistic Zero Order Regular Approximation and the relativistic energy-consistent pseudopotentials, using frozen small- and medium-cores. The calculated bond lengths and vibrational frequencies are close to the experimental data. Our calculations indicate 4f shell contributions to bonding in LnX4, in particular for the early lanthanides, which show significant overlap between the Ln 4f-shell and the halogen np-shells. The 4f shells contribute to Ln-X bonding in LnX4 about one third more than in LnX3

  1. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    Mishra, S.; Gammon, W.J.; Pappas, D.P. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  2. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers

    Simmons, Aaron B.; Bloomsburg, Samuel J.; Billingslea, Samuel A.; Merrill, Morgan M.; Li, Shuai; Thomas, Marshall W.

    2016-01-01

    Purpose: A transgenic mouse that expresses Cre recombinase under control of the Pou4f2-promoter (also referred to as Brn-3b and Brn-3.2) was characterized. Pou4f2 expression has been reported in a subset of retinal ganglion cells (RGCs) in the retina, in the midbrain, and in the germline. In this study, we characterize the expression pattern of this Cre-recombinase line and report its utility in targeted deletion, temporal deletion, RGC depletion, and germline targeting, which can be regulated by the sex of the Cre-carrying mouse. Methods: Pou4f2Cre was mapped by using a combination of PCR and sequencing of PCR products to better understand the construct and to locate where it was inserted within the Pou4f2 locus. Cre expression patterns were examined by crossing Pou4f2Cre/+ mice to Cre reporter mice. Immunohistochemistry was used to further define the pattern of Cre expression and Cre-mediated recombination within the retina, brain, and other tissues. Results: An internal ribosome entry site (IRES)-Cre cassette was inserted into the Pou4f2 gene disrupting normal gene function, as verified by the depletion of RGCs in mice homozygous for the insert. Pou4f2Cre expression was observed in the retina, brain, peripheral neurons, and male germ cells. Germline recombination was observed when the sire carried the Cre and the target for recombination. In all other breeding schemes, recombination was observed within subsets of cells within the retina, brain, intestines, heart, and gonads. In the retina, Cre efficiently targets recombination in neurons within the RGC layer (RGL), the inner nuclear layer (INL), and a small percentage of photoreceptors, activity that has not been previously reported. Unlike most other Cre lines active in the inner retina, recombination in Müller and other glia was not observed in mice carrying Pou4f2Cre. Within the visual centers of the brain, Cre targets recombination in about 15% of cells within the superchiasmatic nucleus, lateral geniculate

  3. SF6 and C4F8 global kinetic models coupled to sheath models

    Global kinetic models combined with Monte Carlo sheath models are developed for SF6 and C4F8 plasma discharges for silicon etching under the Bosch process. In SF6 plasma, the dominant positive ions are SF5+, SF4+, SF3+ and F+ while in C4F8 the dominant positive ions are CF3+ and C2F3+. The simulation results show that the electrical parameters, such as the electron density and electron temperature, clearly affect the sheath dynamics and consequently the ion energy distribution function evolutions. In this context, we showed the effects of the operating conditions, such as the pressure and the radiofrequency power, on the electron density and electron temperature evolutions as well as the reactive particle fluxes (neutral and positive ions) involved in the plasma surface interactions for etching/deposition under the Bosch process. Ion energy distribution functions obtained from SF6 and C4F8 plasmas are compared with each other as regards the electrical properties of their associated plasmas. The simulation results show that the bimodal peaks of ion energy distribution functions are wider for SF6 plasma than for C4F8 plasma due to the high sheath thickness of SF6 compared to that of C4F8. This is explained by the low electron density due to the high electronegativity of SF6 in comparison to that of C4F8. The simulations also reveal that the bimodal peak of the ion energy distribution function is wider when the ion mass is low. (paper)

  4. Plasma diagnostic potential of 2p4f in N$^+$ -- accurate wavelengths and oscillator strengths

    Shen, Xiaozhi; Li, Jiguang; Jönsson, Per; Wang, Jianguo

    2015-01-01

    Radiative emission lines from nitrogen and its ions are often observed in nebulae spectra, where the N$^{2+}$ abundance can be inferred from lines of the 2p4f configuration. In addition, intensity ratios between lines of the 2p3p -- 2p3s and 2p4f -- 2p3d transition arrays can serve as temperature diagnostics. To aid abundance determinations and plasma diagnostics, wavelengths and oscillator strengths were calculated with high-precision for electric-dipole (E1) transitions from levels in the 2...

  5. Studies on flowering behavior and seed yield of BC4F1 hybrid progenies in Jatropha

    Umamaheswari.D, K.Sumathi, R.Jude Sudhagar, P.S.Devanand, PL. Viswanathan and M.Paramathma

    2010-01-01

    Field investigation was carried out by the Centre of Excellence in Biofuels, TNAU, Coimbatore during kharif 2009, tostudy the number of male and female flowers per cluster and seed yield per plant in BC4F1 progenies of Jatropha. Theeighteen BC4F1 progenies used in this study were developed from interspecific hybridization of Jatropha curcas x J.integerrima followed by four repeated backcrossing with Jatropha curcas (TNMC-7). Based on the per se performance,three introgressed progenies viz., 3...

  6. Latest Trends in Acoustic Sensing

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  7. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development

    Mocko-Strand, Julie A.; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W.; Arnone, Maria Ina; Frishman, Laura J.; Klein, William H.

    2016-01-01

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. PMID:26962139

  8. VHMPID RICH prototype using pressurized C{sub 4}F{sub 8}O radiator gas and VUV photon detector

    Acconcia, T.V. [UNICAMP, University of Campinas, Campinas (Brazil); Agócs, A.G. [Wigner RCP of the HAS, Budapest (Hungary); Barile, F. [INFN Sezione di Bari and Universitá degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Barnaföldi, G.G. [Wigner RCP of the HAS, Budapest (Hungary); Bellwied, R. [University of Houston, Houston (United States); Bencédi, G. [Wigner RCP of the HAS, Budapest (Hungary); Bencze, G., E-mail: Gyorgy.Bencze@cern.ch [Wigner RCP of the HAS, Budapest (Hungary); Berényi, D.; Boldizsár, L. [Wigner RCP of the HAS, Budapest (Hungary); Chattopadhyay, S. [Saha Institute, Kolkata (India); Chinellato, D.D. [University of Houston, Houston (United States); Cindolo, F. [University of Salerno, Salerno (Italy); Cossyleon, K. [Chicago State University, Chicago, IL (United States); Das, D.; Das, K.; Das-Bose, L. [Saha Institute, Kolkata (India); Dash, A.K. [UNICAMP, University of Campinas, Campinas (Brazil); D' Ambrosio, S. [University of Salerno, Salerno (Italy); De Cataldo, G. [INFN Sezione di Bari and Universitá degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); De Pasquale, S. [University of Salerno, Salerno (Italy); and others

    2014-12-11

    A small-size prototype of a new Ring Imaging Cherenkov (RICH) detector using for the first time pressurized C4F8O radiator gas and a photon detector consisting of MWPC equipped with a CsI photocathode has been built and tested at the PS accelerator at CERN. It contained all the functional elements of the detector proposed as Very High Momentum Particle Identification (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identification in the momentum range starting from 5 potentially up to 25 GeV/c. In the paper the equipment and its elements are described and some characteristic test results are shown.

  9. Fluoride Bridges as Structure-Directing Motifs in 3d-4f Cluster Chemistry

    Birk, Torben; Pedersen, Kasper; Thuesen, Christian Aa.;

    2012-01-01

    The use of kinetically robust chromium(III) fluorido complexes as synthons for mixed 3d-4f clusters is reported. The tendency toward linear {CrIII–F–LnIII} units dictates the cluster topology. Specifically, we show that reaction of cis-[CrIIIF2(NN)2]NO3 (NN = 1,10-phenanthroline (“phen”) or 2,2′-...

  10. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model

  11. Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals

    Aldén, Magnus; Johansson, Börje; Skriver, Hans Lomholt

    1995-01-01

    The surface energy shifts of the occupied and unoccupied 4f levels for the lanthanide metals have been calculated from first principles by means of a Green’s-function technique within the tight-binding linear muffin-tin orbitals method. We use the concept of complete screening to identify the...

  12. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds

    Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵc(1,3+,A) in Ce3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵc(1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated

  13. Radiation acoustics

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  14. Experiments for possible hydroacoustic discrimination of free-swimming juvenile gadoid fish by analysis of broadband pulse spectra as well as 3D fish position form video images and split beam acoustics

    Lundgren, Bo; Nielsen, J. Rasmus

    Measurements were made of the broad-bandwidth (80–220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad-bandwidth ec......Measurements were made of the broad-bandwidth (80–220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad...... were estimated from stereo-images captured synchronously when broad-bandwidth echoes were received from passing fish. Fish positions were also estimated from data collected with a synchronized split-beam echosounder. Software was developed for image analysis and modelling, including calibration......, alignment of acoustic and optical-reference frames, and automatic position-fitting of fish models to manually marked fix-points on fish images. The software also performs Fourier spectrum analysis and pulse-shape analysis of broad-bandwidth echoes. Therefore, several measurement series on free-swimming...

  15. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation

    Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5 ) and in vitro canine livers (n=3 ) were tested, as well as HIFU lesions in in vitro canine livers (n=5 ). Results demonstrated that attenuations obtained from the phantoms showed a good correlation ({{R}2}=0.976 ) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm-1 MHz-1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm-1 MHz-1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  16. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. PMID:26371501

  17. Characterization of Core Samples from a Hardened Crust Layer in Tank 4F

    Hay, M. L.

    2005-09-28

    Waste removal operations in Tank 4F are scheduled to begin in late 2005 to provide material for Sludge Batch 5. Mining/probing operations to support installation of submersible mixer pumps encountered a hard layer of material at {approx}45'' to 50'' from the bottom of the tank. Attempts at penetrating the hard layer using a manual mining tool in several different risers were not successful. A core-sampling tool was used to obtain samples of the hard crust layer in Tank 4F for characterization. Three 12'' core samples and a dip sample of the supernate near the surface of the hard layer were sent to Savannah River National Laboratory (SRNL) for characterization. X-ray Diffraction (XRD) results for the crystalline solids from both sample FTF-434 and FTF-435 identifies the major component of both samples as Burkeite (Na{sub 6}(CO{sub 3})(SO{sub 4}){sub 2}). All of the other data collected on the crystalline solids from the Tank 4F core samples support this conclusion. The conditions in Tank 4F for the last twenty years have been ideal for Burkeite formation. The tank has been largely undisturbed with a tank temperature consistently above 30 C, a carbonate to sulfate molar ratio in the supernate conducive to Burkeite formation, and slow evaporation of the supernate phase. Thermodynamic modeling and the results of a Burkeite solubility test confirm that a ratio of 1:1:12 for the volumes of Burkeite solids, supernate, and inhibited water will dissolve all of the Burkeite. These ratios could be used to remove the 6'' layer of Burkeite from Tank 4F with no mixing. However, the thermodynamic modeling and the solubility test neglect the sludge layer beneath the Burkeite crust in Tank 4F. Settled sludge in Savannah River Site (SRS) high-level waste tanks usually contains greater than 75% interstitial supernate by volume. If the supernate in the sludge layer should mix into the solution used to dissolve the Burkeite, significantly more

  18. Heavy Fermion Behavior of Pr 4f Electrons in Filled Skutterudites Studied by Bulk-Sensitive Photoemission

    Pr 4 f electronic structures in Pr-based filled skutterudites PrT4X12 (T = Fe and Ru; X = P and Sb) have been studied by the high-resolution bulk-sensitive Pr 3d → 4f resonance photoemission spectroscopy. A very strong Pr 4f spectral intensity is observed just below the Fermi level in the heavy-Fermion PrFe4P12. This is the first observation of the Kondo resonance due to the quadrupolar Kondo effect, the origin of which is attributed to the strong hybridization between the Pr 4f and the conduction electrons. (author)

  19. Studies on flowering behavior and seed yield of BC4F1 hybrid progenies in Jatropha

    Umamaheswari.D, K.Sumathi, R.Jude Sudhagar, P.S.Devanand, PL. Viswanathan and M.Paramathma

    2010-07-01

    Full Text Available Field investigation was carried out by the Centre of Excellence in Biofuels, TNAU, Coimbatore during kharif 2009, tostudy the number of male and female flowers per cluster and seed yield per plant in BC4F1 progenies of Jatropha. Theeighteen BC4F1 progenies used in this study were developed from interspecific hybridization of Jatropha curcas x J.integerrima followed by four repeated backcrossing with Jatropha curcas (TNMC-7. Based on the per se performance,three introgressed progenies viz., 3-20-9-3, 3-20-9-2 and 3-95-7-5-4 were found to be significant for the traits viz.,number of female flowers per cluster and seed yield per plant.

  20. Photochromism and Photomagnetism of a 3d-4f Hexacyanoferrate at Room Temperature.

    Cai, Li-Zhen; Chen, Qing-Song; Zhang, Cui-Juan; Li, Pei-Xin; Wang, Ming-Sheng; Guo, Guo-Cong

    2015-09-01

    Polycyanometallate compounds with both photochromism and photomagnetism have appealing applications in optical switches and memories, but such optical behaviors were essentially restricted to the cryogenic temperature. We realized, for the first time, the photochromism and photomagnetism of 3d-4f hexacyanoferrates at room temperature (RT) in [Eu(III)(18C6)(H2O)3]Fe(III)(CN)6·2H2O (18C6 = 18-crown-6). Photoinduced electron transfer (PET) from crown to Fe(III) yields long-lived charge-separated species at RT in air in the solid state and also weakens the magnetic susceptibility significantly. The PET mechanism and changing trend of photomagnetism differ significantly from those reported for known 3d-4f hexacyanoferrates. This work not only develops a new type of inorganic-organic hybrid photochromic material but opens a new avenue for RT photomagnetic polycyanometallate compounds. PMID:26284651

  1. Long-term tropospheric trend of octafluorocyclobutane (c-C4F8 or PFC-318

    T. Röckmann

    2011-07-01

    Full Text Available Air samples collected at Cape Grim, Tasmania between 1978 and 2008 and during a series of more recent aircraft sampling programmes have been analysed to determine the atmospheric abundance and trend of octafluorocyclobutane (-C4F8 or PFC-318. c-C4F8 has an atmospheric lifetime in excess of 3000 yr and a global warming potential (GWP of 10 300 (100 yr time horizon, making it one of the most potent greenhouse gases detected in the atmosphere to date. The abundance of c-C4F8 in the Southern Hemisphere has risen from 0.35 ppt in 1978 to 1.2 ppt in 2010, and is currently increasing at a rate of around 0.03 ppt yr−1. It is the third most abundant perfluorocarbon (PFC in the present day atmosphere, behind CF4 (~75 ppt and C2F6 (~4 ppt. The origin of c-C4F8 is unclear. Using a 2-D global model to derive top-down global emissions based on the Cape Grim measurements yields a recent (2007 emission rate of around 1.1 Gg yr−1 and a cumulative emission up to and including 2007 of 38.1 Gg. Emissions reported on the EDGAR emissions database for the period 1986–2005 represent less than 1 % of the top-down emissions for the same period, which suggests there is a large unaccounted for source of this compound. It is also apparent that the magnitude of this source has varied considerably over the past 30 yr, declining sharply in the late 1980s before increasing again in the mid-1990s.

  2. Distillation and Microdiffusion Modifications for total Nh4f Quantification and 15N Recovery

    Gaius D. Eudoxie

    2008-01-01

    Full Text Available Problem statement: Applying 15N techniques to accurately determine the fate of fixed ammonium (NH4f in the strongly and weakly held pools require modifications to existing methodologies. Modifications are necessary for measurement of total NH4f in soils by direct digestion with 5 M HF: 1 M HCl, excluding alkali pretreatment, followed by distillation and quantification of NH4. Quantification by distillation was used as a precursor to optimize microdiffusion protocols for continuous flow-isotope ratio mass spectrometry (CF-IRMS. This paper reports on the modifications applied to these procedures since the direct 5 M HF: 1 M HCl digestion of soil samples may also dissolve some organic N fractions. Approach: Distillation followed by 15N microdiffusion trials were conducted on soil digests amended with rice husks, manure, compost or glycine, using different molarities (2, 5, and 10 M and volumes (5, 10, 15, 25, 32.5, and 40 mL of KOH. Results: The distillation study identified 32.5 mL of 2 M KOH to be the optimum volume and molarity of KOH that must be combined with 10-mL aliquots of direct 5 M HF: 1 M HCl digests of each of seven soils to ensure that only NH4 in the digest is recovered and none of the organic N is hydrolyzed during the process. Results also showed that a minimum incubation time of 192 h was needed to trap approximately 100 µg 15N on the disks for subsequent accurate analysis by CF-IRMS, with minimal recovery of organic N. Conclusions/Recommendations: These findings support the use of a direct-digestion/distillation method to quantify total NH4f and thereby provide opportunity to distinguish between strongly and weakly held NH4f in soils.

  3. Pb 4f photoelectron spectroscopy on mass-selected anionic lead clusters at FLASH

    4f core level photoelectron spectroscopy has been performed on negatively charged lead clusters, in the size range of 10-90 atoms. We deploy 4.7 nm radiation from the free-electron laser FLASH, yielding sufficiently high photon flux to investigate mass-selected systems in a beam. A new photoelectron detection system based on a hemispherical spectrometer and a time-resolving delayline detector makes it possible to assign electron signals to each micro-pulse of FLASH. The resulting 4f binding energies show good agreement with the metallic sphere model, giving evidence for a fast screening of the 4f core holes. By comparing the present work with previous 5d and valence region data, the paper presents a comprehensive overview of the energetics of lead clusters, from atoms to bulk. Special care is taken to discuss the differences of the valence- and core-level anion cluster photoionizations. Whereas in the valence case the escaping photoelectron interacts with a neutral system near its ground state, core-level ionization leads to transiently highly excited neutral clusters. Thus, the photoelectron signal might carry information on the relaxation dynamics. (paper)

  4. Battlefield acoustics

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  5. Acoustic telemetry

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive...

  6. Acoustics Research

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  7. Digital image correlation, acoustic emission and ultrasonic pulse velocity for the detection of cracks in the concrete buffer of the Belgian nuclear supercontainer

    The long term management of high-level and heat emitting radioactive waste is a worldwide concern, as it directly influences the environment and future generations. To address this issue, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the conceptual design of a massive concrete structure called Supercontainer. The feasibility to construct these structures is being evaluated through a number of scaled models that are tested using classical as well as state of the art measurement techniques. In the current paper, the results obtained from the simultaneous application of the Digital Image Correlation (DIC), the Acoustic Emission (AE) and the Ultrasonic Pulse Velocity (UPV) nondestructive testing techniques on the second scaled model for the detection and monitoring of cracks will be presented.

  8. Digital image correlation, acoustic emission and ultrasonic pulse velocity for the detection of cracks in the concrete buffer of the Belgian nuclear supercontainer

    Iliopoulos, Sokratis; Tsangouri, Eleni; Aggelis, Dimitrios G.; Pyl, Lincy [Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions; Vantomme, John [Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions; Royal Military Academy, Brussels (Belgium). Civil and Material Engineering Dept.; Marcke, Philippe van [ONDRAF/NIRAS (Belgium); Areias, Lou [EURIDICE GIE/SCK.CEN, Mol (Belgium); Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions

    2014-11-01

    The long term management of high-level and heat emitting radioactive waste is a worldwide concern, as it directly influences the environment and future generations. To address this issue, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the conceptual design of a massive concrete structure called Supercontainer. The feasibility to construct these structures is being evaluated through a number of scaled models that are tested using classical as well as state of the art measurement techniques. In the current paper, the results obtained from the simultaneous application of the Digital Image Correlation (DIC), the Acoustic Emission (AE) and the Ultrasonic Pulse Velocity (UPV) nondestructive testing techniques on the second scaled model for the detection and monitoring of cracks will be presented.

  9. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  10. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    Stepinski, Tadeusz (ed.); Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu [Uppsala Univ., Dept. of Materials Science (Sweden). Signals and Systems

    2004-01-01

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated.

  11. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  12. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated

  13. Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotubes anodized in electrolytes with different NH4F concentrations

    Highlights: • Total current curve could be separated into two parts: ionic current and electronic current. • Correlation between NH4F concentration and morphology of TiO2 films is elucidated. • Nanotube length is determined by the ionic current rather than the total current. • Surface morphology is related to the electronic current and the evolution rate of O2. • We also propose a feasible method to predict nanotube length. - Abstract: Anodic TiO2 nanotubes (ATNTs) have been investigated for many years. However, the kinetics of oxide growth still remains unclear as well as the relationship between structural features and anodizing parameters. Here, the simulation and separation of anodizing current-time curves are proposed to overcome this challenge. A series of constant voltage anodizing processes in different concentrations of NH4F solutions have been compared in detail. The effect of NH4F concentration on the morphological structure and length were systematically investigated. The morphology images show that ATNTs with lotus-root-shaped nanostructure can also be fabricated when the same voltage are adopted in the second-step anodization as the first-step anodization. We separate the total anodizing current into ionic current and electronic current according to a theoretical formula and find a linear relationship between nanotube length and steady-state ionic current. The interesting results indicated that, the growth of nanotubes is more dependent on the ionic current while the surface morphology of TiO2 nanotubes is related to electronic current and high NH4F concentration is beneficial to the growth of ribs around the nanotubes

  14. Identifying Clinically Significant Prostate Cancers using 3-D In Vivo Acoustic Radiation Force Impulse Imaging with Whole-Mount Histology Validation.

    Palmeri, Mark L; Glass, Tyler J; Miller, Zachary A; Rosenzweig, Stephen J; Buck, Andrew; Polascik, Thomas J; Gupta, Rajan T; Brown, Alison F; Madden, John; Nightingale, Kathryn R

    2016-06-01

    Overly aggressive prostate cancer (PCa) treatment adversely affects patients and places an unnecessary burden on our health care system. The inability to identify and grade clinically significant PCa lesions is a factor contributing to excessively aggressive PCa treatment, such as radical prostatectomy, instead of more focal, prostate-sparing procedures such as cryotherapy and high-dose radiation therapy. We have performed 3-D in vivo B-mode and acoustic radiation force impulse (ARFI) imaging using a mechanically rotated, side-fire endorectal imaging array to identify regions suspicious for PCa in 29 patients being treated with radical prostatectomies for biopsy-confirmed PCa. Whole-mount histopathology analyses were performed to identify regions of clinically significant/insignificant PCa lesions, atrophy and benign prostatic hyperplasia. Regions of suspicion for PCa were reader-identified in ARFI images based on boundary delineation, contrast, texture and location. These regions of suspicion were compared with histopathology identified lesions using a nearest-neighbor regional localization approach. Of all clinically significant lesions identified on histopathology, 71.4% were also identified using ARFI imaging, including 79.3% of posterior and 33.3% of anterior lesions. Among the ARFI-identified lesions, 79.3% corresponded to clinically significant PCa lesions, with these lesions having higher indices of suspicion than clinically insignificant PCa. ARFI imaging had greater sensitivity for posterior versus anterior lesions because of greater displacement signal-to-noise ratio and finer spatial sampling. Atrophy and benign prostatic hyperplasia can cause appreciable prostate anatomy distortion and heterogeneity that confounds ARFI PCa lesion identification; however, in general, ARFI regions of suspicion did not coincide with these benign pathologies. PMID:26947445

  15. Monte Carlo Simulation of Scattered Light with Shear Waves Generated by Acoustic Radiation Force for Acousto-Optic Imaging

    A Monte Carlo method of multiple scattered coherent light with the information of shear wave propagation in scattering media is presented. The established Monte-Carlo algorithm is mainly relative to optical phase variations due to the acoustic-radiation-force shear-wave-induced displacements of light scatterers. Both the distributions and temporal behaviors of optical phase increments in probe locations are obtained. Consequently, shear wave speed is evaluated quantitatively. It is noted that the phase increments exactly track the propagations of shear waves induced by focus-ultrasound radiation force. In addition, attenuations of shear waves are demonstrated in simulation results. By using linear regression processing, the shear wave speed, which is set to 2.1 m/s in simulation, is estimated to be 2.18 m/s and 2.35 m/s at time sampling intervals of 0.2 ms and 0.5 ms, respectively

  16. Seismo-acoustic imaging of marine hard substrate habitats: a case study from the German Bight (SE North Sea)

    Papenmeier, Svenja; Hass, H. Christian

    2016-04-01

    The detection of hard substrate habitats in sublittoral environments is a considerable challenge in spite of modern high resolution hydroacoustic techniques. In offshore areas those habitats are mainly represented by either cobbles and boulders (stones) often located in wide areas of soft sediments or by glacial relict sediments (heterogeneous mixture of medium sand to gravel size with cobbles and boulders). Sediment classification and object detection is commonly done on the basis of hydroacoustic backscatter intensities recorded with e.g. sidescan sonar (SSS) and multibeam echo sounder (MBES). Single objects lying on the sediment such as stones can generally be recognized by the acoustic shadow behind the object. However, objects close to the sonar's nadir may remain undetected because their shadows are below the data resolution. Further limitation in the detection of objects is caused by sessile communities that thrive on the objects. The bio-cover tends to absorb most of the acoustic signal. Automated identification based on the backscatter signal is often not satisfactory, especially when stones are present in a setting with glacial deposits. Areas characterized by glacial relict sediments are hardly differentiable in their backscatter characteristics from rippled coarse sand and fine gravel (rippled coarse sediments) without an intensive ground-truthing program. From the ecological point of view the relict and rippled coarse sediments are completely different habitats and need to be distinguished. The case study represents a seismo-acoustic approach in which SSS and nonlinear sediment echo sounder (SES) data are combined to enable a reliable and reproducible differentiation between relict sediments (with stones and coarse gravels) and rippled coarse sediments. Elevated objects produce hyperbola signatures at the sediment surface in the echo data which can be used to complement the SSS data. The nonlinear acoustic propagation of the SES sound pulses produces a

  17. Ketoconazole increases fingolimod blood levels in a drug interaction via CYP4F2 inhibition.

    Kovarik, John M; Dole, Kiran; Riviere, Gilles-Jacques; Pommier, Francoise; Maton, Steve; Jin, Yi; Lasseter, Kenneth C; Schmouder, Robert L

    2009-02-01

    The sphingosine-1-phosphate receptor modulator fingolimod is predominantly hydroxylated by cytochrome CYP4F2. In vitro experiments showed that ketoconazole significantly inhibited the oxidative metabolism of fingolimod by human liver microsomes and by recombinant CYP4F2. The authors used ketoconazole as a putative CYP4F2 inhibitor to quantify its influence on fingolimod pharmacokinetics in healthy subjects. In a 2-period, single-sequence, crossover study, 22 healthy subjects received a single 5-mg dose of fingolimod in period 1. In period 2, subjects received ketoconazole 200 mg twice daily for 9 days and a single 5-mg dose of fingolimod coadministered on the 4th day of ketoconazole treatment. Ketoconazole did not affect fingolimod t(max) or half-life, but there was a weak average increase in C(max) of 1.22-fold (90% confidence interval, 1.15-1.30). The AUC over the 5 days of ketoconazole coadministration increased 1.40-fold (1.31-1.50), and the full AUC to infinity increased 1.71-fold (1.53-1.91). The AUC of the active metabolite fingolimod-phosphate was increased to a similar extent by 1.67-fold (1.50-1.85). Ketoconazole predose plasma levels were not altered by fingolimod. The magnitude of this interaction suggests that a proactive dose reduction of fingolimod is not necessary when adding ketoconazole to a fingolimod regimen. The clinician, however, should be aware of this interaction and bear in mind the possibility of a fingolimod dose reduction based on clinical monitoring. PMID:19118083

  18. Systematics in the 4f-3d exchange interaction in intermetallic compounds

    The 4f-3d interaction in a large variety of intermetallic compounds based on a heavy rare-earth (R) and a transition metal (T=Fe, Co, Ni) has been derived from the magnetisation processes associated with the breaking up of the ferrimagnetic ground-state configuration in these compounds. The magnetisation measurements have been carried out at 4.2 K in fields up to 38 T in the High Field Facility at the University of Amsterdam on small single-crystalline particles that are free to rotate in the external field. (orig.)

  19. A pilot study of the characterization of hepatic tissue strain in children with cystic-fibrosis-associated liver disease (CFLD) by acoustic radiation force impulse imaging

    Behrens, Christopher B.; Langholz, Juliane H.; Eiler, Jessika; Jenewein, Raphael; Fuchs, Konstantin; Alzen, Gerhard F.P. [University Hospital Giessen, Department of Pediatric Radiology, Giessen (Germany); Naehrlich, Lutz [University Hospital Giessen, Department of Pediatrics, Giessen (Germany); Harth, Sebastian; Krombach, Gabriele A. [University Hospital Giessen, Department of Radiology, Giessen (Germany)

    2013-03-15

    Progressive fibrotic alterations of liver tissue represent a major complication in children with cystic fibrosis. Correct assessment of cystic-fibrosis-associated liver disease (CFLD) in clinical routine is a challenging issue. Sonographic elastography based on acoustic radiation force impulse imaging (ARFI) is a new noninvasive approach for quantitatively assessing in vivo elasticity of biological tissues in many organs. To characterize ARFI elastography as a diagnostic tool to assess alteration of liver tissue elasticity related to cystic fibrosis in children. ARFI elastography and B-mode US imaging were performed in 36 children with cystic fibrosis. The children's clinical history and laboratory parameters were documented. According to the findings on conventional US, children were assigned to distinct groups indicating severity of hepatic tissue alterations. The relationship between US findings and respective elastography values was assessed. Additionally, differences between ARFI elastography values of each US group were statistically tested. Children with sonomorphologic characteristics of fibrotic tissue remodeling presented significantly increased values for tissue elasticity. Children with normal B-mode US or discrete signs of hepatic tissue alterations showed a tendency toward increased tissue stiffness indicating early tissue remodeling. Assessment of children with CFLD by means of ARFI elastography yields adequate results when compared to conventional US. For detection of early stages of liver disease with mild fibrotic reactions of hepatic tissue, ARFI elastography might offer diagnostic advantages over conventional US. Thus, liver stiffness measured by means of elastography might represent a valuable biological parameter for evaluation and follow-up of CFLD. (orig.)

  20. A pilot study of the characterization of hepatic tissue strain in children with cystic-fibrosis-associated liver disease (CFLD) by acoustic radiation force impulse imaging

    Progressive fibrotic alterations of liver tissue represent a major complication in children with cystic fibrosis. Correct assessment of cystic-fibrosis-associated liver disease (CFLD) in clinical routine is a challenging issue. Sonographic elastography based on acoustic radiation force impulse imaging (ARFI) is a new noninvasive approach for quantitatively assessing in vivo elasticity of biological tissues in many organs. To characterize ARFI elastography as a diagnostic tool to assess alteration of liver tissue elasticity related to cystic fibrosis in children. ARFI elastography and B-mode US imaging were performed in 36 children with cystic fibrosis. The children's clinical history and laboratory parameters were documented. According to the findings on conventional US, children were assigned to distinct groups indicating severity of hepatic tissue alterations. The relationship between US findings and respective elastography values was assessed. Additionally, differences between ARFI elastography values of each US group were statistically tested. Children with sonomorphologic characteristics of fibrotic tissue remodeling presented significantly increased values for tissue elasticity. Children with normal B-mode US or discrete signs of hepatic tissue alterations showed a tendency toward increased tissue stiffness indicating early tissue remodeling. Assessment of children with CFLD by means of ARFI elastography yields adequate results when compared to conventional US. For detection of early stages of liver disease with mild fibrotic reactions of hepatic tissue, ARFI elastography might offer diagnostic advantages over conventional US. Thus, liver stiffness measured by means of elastography might represent a valuable biological parameter for evaluation and follow-up of CFLD. (orig.)

  1. Small-Scale Trial for Evaluating Directional Resolution of Single Spherical Biconcave Acoustic Lens in Designing of Ambient Noise Imaging System

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki

    2008-05-01

    Ambient noise imaging (ANI) is the revolutionary idea of detecting objects by using natural ocean background noise. From the analysis results obtained by the finite difference time domain (FDTD) method in our previous studies, it was supposed that a spherical biconcave lens with an aperture diameter of 2.0 m has a sufficient directional resolution (for example, the beam width is 1° at 60 kHz) for realizing an ANI system. In this study, to confirm the analysis results, we performed a small-scale trial of one-fifth space in a water tank. The lens, made of acrylic resin, has an aperture diameter of 400 mm and a radius of curvature of 500 mm. A burst pulse of 25 cycles at 300 kHz, whose frequency increases 5 times, was radiated from the sound source. The sound pressure after passage through the acoustic lens was measured by moving the receiver around the image point. Results show that the shapes of -3 dB areas are similar to the FDTD analysis results at small incidence angles. It was verified that this lens has a sufficient directional resolution for use in the ANI system, because -3 dB areas do not overlap each other.

  2. Measurement of Swarm Parameters of c-C4F8/CO2 and Its Insulation Characteristics Analysis

    ZHANG Liu-chun; XIAO Deng-ming; ZHANG Dong; WU Bian-tao

    2008-01-01

    In c-C4F8 and c-C4F8/CO2 mixtures, the swarm parameters including ionization coefficient, attachment coefficient and effective ionization coefficient were obtained at the ratio of the electric field strength to the gas density between 150-550 Td by the steady-state Townsend (SST) method. Static breakdown voltages at each ratio were also measured at the SST condition. The limiting field strengths were obtained by two methods:computing the density-normalized effective ionization coefficient as a function of the overall density-reduced electric field strength; and measuring static breakdown voltages as a function of the product of gas density and electrode separation. Good agreement was obtained by these two methods, which ensures the correctness of the former method. The limiting field strengths of c-C4F8 and c-C4F8/CO2 mixtures were compared with those ofpure SF6, SF6/CO2 mixtures and pure c-C4Fs. It is found that buffer gas CO2 does not reduce the limiting field strengths of c-C4F8 greatly, the limiting field strengths of c-C4F8/CO2 mixtures are higher than those of SF6/CO2 mixtures or even pure SF6, and so c-C4F8/CO2 mixtures are suggested to be possible substitutes for SF6.

  3. Acoustic emission

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  4. Dialkyldithiophosphoric acids - chemical properties and 5f and 4f elements ions extraction

    This work is a contribution to the study of the properties of the dialkyldithiophosphoric acids and of the extraction of the 4f and 5f ions from weakly acidic nitrate and phosphate media. Following a complete bibliographic study, synthesis and purification of the di-2-ethylhexyl-dithiophosphoric acid (HDEHDTP) is studied. It is identified with chemical methods and spectroscopic methods (I.R., N.M.R., V.P.C.); its by products, the di-2-ethylhexyl (monothio) phosphoric acids (HDEHTP, HDEHP) are also identified and characterized. Stability against hydrolysis and radiolysis is determined. The extractive properties are studied for the 4f and 5f ions. The presence of a sulfur donor atom in HDEHDTP makes it inefficient for the extraction of trivalent lanthanides and actinides but brings out a certain selectivity for americium. For HDEHTP, the presence of an oxygen donor atom rubs out any selectivity and the extraction constants are greater. Selectivity of HDEHDTP is increased by TBP (tri-n-butylphosphate) in synergistic mixtures. The mechanism of extraction of hexavalent uranium from phosphoric medium is elucidated. A model is developed by NMR for the micellisation of the sodium salts of HDEHDTP, HDEHTP and HDEHP, and extrapolated it to the trivalent rare earth salts of the acids. The structures are verified by light scattering and low angle X-ray diffraction

  5. Atmospheric chemistry of C4F9O(CH2)(3)OC4F9 and CF3CFHCF2O (CH2)(3)OCF3CFHCF2: Lifetimes, degradation products, and enviromental impact

    Toft, A. M.; Hurley, M. D.; Wallington, T. J.;

    2006-01-01

    FTIR smog chamber techniques were used to measure k(Cl + CF3CFHCF2O(CH2)(3)OCF2CFHCF3) = (2.97 +/- 0.17) x 10(-12) k(OH + CF3CFHCF2O(CH2)(3)OCF2CFHCF3) = (2.45 +/- 0.14) x 10(-13), k(Cl + C4F9O(CH2)(3)OC4F9) = (1.45 +/- 0.16) x 10(-12), and k(OH + C4F9O(CH2)(3)OC4F9) = (1.44 +/- 0.10) x 10(-13) c...

  6. Active elastic metamaterials with applications in acoustics

    POPE, Simon; Laalej, Hatim; Daley, Steve

    2012-01-01

    Elastic metamaterials provide a new approach to solving existing problems in acoustics. They have also been associated with novel concepts such as acoustic invisibility and subwavelength imaging. To be applied to many of the proposed applications a metamaterial would need to have the desired mass density and elastic moduli over a wide frequency band. To minimise scatter in acoustics applications the impedance of solid elastic metamaterials also need to be matched to the impedance of the surro...

  7. Hypersensitivity in the 4f-4f absorption spectra of tris (acetylacetonato) neodymium(III) complexes with imidazole and pyrazole in non-aqueous solutions. Effect of environment on hypersensitive transitions

    Ansari, Anees A.; Ilmi, Rashid [Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Iftikhar, K., E-mail: kiftikhar.ch@jmi.ac.in [Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2012-01-15

    The optical absorption spectra of [Nd(acac){sub 3}(H{sub 2}O){sub 2}].H{sub 2}O, [Nd(acac){sub 3}(im){sub 2}] and [Nd(acac){sub 3}(pz){sub 2}] (where acac is the anion of acetylacetone, im is imidazole and pz is pyrazole) complexes in the visible region have been analyzed. The transition {sup 4}G{sub 5/2} <- {sup 4}I{sub 9/2} located near the middle of the visible region (17,500 cm{sup -1}) is hypersensitive. Its behavior is in sharp contrast to many other typically weak and consistently unvaried, normal 4f-4f transitions. It is overlapped by a less intense transition {sup 2}G{sub 7/2} <- {sup 4}I{sub 9/2}. The band shapes of the hypersensitive transition show remarkable changes on passing from aqueous solution to various non-aqueous solutions, which is the result of changes in the environment about the Nd(III) ion in the various solutions and suggests coordination of a solvent molecules. Pyridine has been found especially effective in promoting 4f-4f electric-dipole intensity. The DMSO invades the complexes and replaces the water molecules and heterocyclic amines from the coordination sphere. Two DMSO molecules coordinate and the complexes acquire similar structure, [Nd(acac){sub 3}(DMSO){sub 2}] in solution. The oscillator strength and the band shape of the hypersensitive transition of all the complexes remains the same in this solvent. The IR spectra and the NMR spectra of the complexes have also discussed. - Highlights: > Structurally similar eight-coordinate complexes of neodymium are synthesized. > The 4f-4f absorption spectra are investigated in non-aqueous solvents. > Methanol, isopropanol and acetonitrile are coordinating solvents. > Pyridine and DMSO are coordinating solvents by replacing the ancillary ligands. > Pyridine is most effective in promoting the 4f-4f intensity.

  8. Hypersensitivity in the 4f-4f absorption spectra of tris (acetylacetonato) neodymium(III) complexes with imidazole and pyrazole in non-aqueous solutions. Effect of environment on hypersensitive transitions

    The optical absorption spectra of [Nd(acac)3(H2O)2].H2O, [Nd(acac)3(im)2] and [Nd(acac)3(pz)2] (where acac is the anion of acetylacetone, im is imidazole and pz is pyrazole) complexes in the visible region have been analyzed. The transition 4G5/2 4I9/2 located near the middle of the visible region (17,500 cm-1) is hypersensitive. Its behavior is in sharp contrast to many other typically weak and consistently unvaried, normal 4f-4f transitions. It is overlapped by a less intense transition 2G7/2 4I9/2. The band shapes of the hypersensitive transition show remarkable changes on passing from aqueous solution to various non-aqueous solutions, which is the result of changes in the environment about the Nd(III) ion in the various solutions and suggests coordination of a solvent molecules. Pyridine has been found especially effective in promoting 4f-4f electric-dipole intensity. The DMSO invades the complexes and replaces the water molecules and heterocyclic amines from the coordination sphere. Two DMSO molecules coordinate and the complexes acquire similar structure, [Nd(acac)3(DMSO)2] in solution. The oscillator strength and the band shape of the hypersensitive transition of all the complexes remains the same in this solvent. The IR spectra and the NMR spectra of the complexes have also discussed. - Highlights: → Structurally similar eight-coordinate complexes of neodymium are synthesized. → The 4f-4f absorption spectra are investigated in non-aqueous solvents. → Methanol, isopropanol and acetonitrile are coordinating solvents. → Pyridine and DMSO are coordinating solvents by replacing the ancillary ligands. → Pyridine is most effective in promoting the 4f-4f intensity.

  9. Controlling sound with acoustic metamaterials

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  10. Scrutinising magnetic disorder through metastable 3d- and 4f-nanostructured alloys

    Fernandez Barquin, L., E-mail: barquinl@unican.es [CITIMAC, Universidad de Cantabria, Santander 39005 (Spain); Alba Venero, D.; Echevarria-Bonet, C.; Garcia Calderon, R. [CITIMAC, Universidad de Cantabria, Santander 39005 (Spain); Rojas, D.P. [CITIMAC, Universidad de Cantabria, Santander 39005 (Spain); Dpto. Fisica, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Rodriguez-Carvajal, J. [Lab. Leon Brillouin, CE-Saclay, Gif-sur-Yvette 91191, France and Inst. Laue-Langevin, BP156, Grenoble 38042 (France); Pankhurst, Q.A. [Royal Inst. Great Britain, Davy Faraday Res. Lab., London W1S 4BS (United Kingdom)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Mechanical milling has been employed to produce 3d- and 4f-alloys in large quantities. Black-Right-Pointing-Pointer In FeCuAg, we show a multipattern Rietveld. It is formed by Fe(Cu) nanoparticles in a Ag matrix as a super spin glass. Black-Right-Pointing-Pointer The exchange of Ag by Au results in larger particles and the behaviour resembles that of a reentrant spin glass state. Black-Right-Pointing-Pointer 150 h milled TbAl{sub 2} shows a disordered Curie transition and a freezing associated to the nanostructure. - Abstract: Mechanical milling of magnetic alloys 3d-(Fe) and 4f-based (Tb) results in the promotion of magnetic disorder. In Fe{sub 22}Cu{sub 14}Ag{sub 64} the nanoscopic arrangement has been revealed by a very comprehensive multipattern Rietveld analysis using a combination of four sets of data including X-ray and neutron diffraction. The nanostructure is formed by Fe{sub 61}Cu{sub 39} particles of D = 4.6 nm with a collinear ferromagnetic structure in a metallic matrix constituted by D = 11.9 nm Ag nanoparticles. The creation of an ensemble of nanoparticles is favoured by the immiscible character of the starting metals. The nanostructured alloy presents a magnetic transition at around 160 K which cannot be considered as a pure single-domain blocking but affected by interparticle dipolar interactions. The latter is confirmed by the spin dynamics, displaying a critical slowing down of the AC-susceptibility and a definite peak of the non-linear susceptibility. When the matrix is alternatively formed by Au nanoparticles in the Fe{sub 14}Au{sub 86} (D = 77 nm) and Fe{sub 10}Cu{sub 10}Au{sub 80} (D = 35 nm) alloys, the magnetic response resembles that of a reentrant state as the milling time is not enough to reduce the particle size, triggering ferromagnetic interparticle coupling enhanced by a multidomain magnetic structure. In milled 4f-alloys formed by miscible Tb and Al, as TbAl{sub 2}, the production process

  11. Surface and bulk 4f-photoemission spectra of CeIn3 and CeSn3

    Resonant photoemission spectroscopy was performed on CeIn3 and CeSn3 at the 4d-4f and 3d-4f core thresholds. Using the different surface sensitivity between the two photon energies, surface and bulk 4f-photoemission spectra were derived for both compounds. With the noncrossing approximation of the Anderson impurity model, the 4d-4f resonant spectra together with the surface and bulk spectra were self-consistently analyzed to obtain the microscopic parameters such as the 4f-electron energy and the hybridization strength with conduction electrons. The result shows a substantial difference in these parameters between the surface and the bulk, indicating that it is important to take into account the surface effect in analyzing photoemission spectra of Ce compounds. It is also found that the 4f surface core-level shift is different between CeIn3 and CeSn3. copyright 1997 The American Physical Society

  12. Magnetostriction of 4f-electron compounds in high magnetic fields

    Magnetostriction gives an insight into the interactions between the electronic and the lattice system of solids. Because only macroscopic methods can be used in fields above 20 T, miniaturized capacitive dilatometers were adapted to the strongest magnets. We performed experiments up to the highest available steady fields of 45 T and in 50 T pulsed field systems. The power of magnetoelastic investigations is illustrated by measurements at two 4f-intermetallics: SmCu2 is an antiferromagnet below 23 K with a nearly compensated magnetic moment and, the monopnictid GdSb orders antiferromagnetically at 24 K. Both materials show magnetic transitions at applied fields of about 30 T when the ferromagnetic state is induced

  13. Optical Evidence of Itinerant-Localized Crossover of 4f Electrons in Cerium Compounds

    Kimura, Shin-ichi; Kwon, Yong Seung; Matsumoto, Yuji; Aoki, Haruyoshi; Sakai, Osamu

    2016-08-01

    Cerium (Ce)-based heavy-fermion materials have a characteristic double-peak structure (mid-IR peak) in the optical conductivity [σ(ω)] spectra originating from the strong conduction (c)-f electron hybridization. To clarify the behavior of the mid-IR peak at a low c-f hybridization strength, we compared the σ(ω) spectra of the isostructural antiferromagnetic and heavy-fermion Ce compounds with the calculated unoccupied density of states and the spectra obtained from the impurity Anderson model. With decreasing c-f hybridization intensity, the mid-IR peak shifts to the low-energy side owing to the renormalization of the unoccupied 4f state, but suddenly shifts to the high-energy side owing to the f-f on-site Coulomb interaction at a slight localized side from the quantum critical point (QCP). This finding gives us information on the change in the electronic structure across QCP.

  14. Thermodynamic functions of 4f metal dichlorides in the condensed state

    The temperature dependences of heat capacity were obtained for solid 4f metal dichlorides LnCl2 (Ln = La, ..., Lu) in the quasi-harmonic approximation over the temperature range from 0 K to the melting point Tm. The correction for systematic underestimation of the lattice heat capacity component in this approximation was determined from high-temperature EuCl2 heat capacity measurements. The literature data were analyzed to select the temperatures and enthalpies of phase transitions and estimate the heat capacities of the substances in the liquid state. The thermodynamic functions of LnCl2 in the condensed state were calculated over the temperature range 298.15-2000 K. The calculations were performed taking into account excited electronic states whose energies did not exceed 10 000 cm-1

  15. 4f and 5f trivalent ions complexation by diamides and uses in solvent extraction

    Extractive properties of N,N'-tetraalkylmalonamides were investigated in view to separate the actinides contained in highly radioactive wastes. N,N'-dimethyldioctylmalonamide (DMDOMA) was selected. It extracts trivalent actinide and lanthanide from concentrated nitric acid. Mineral acids extraction was studied, especially HNO3 extraction. The distribution of HNO3 can be interpreted by assuming that in the organic phase three main species are present: HNO3(DMDOMA)2, HNO3DMDOMA, (HNO3)2DMDOMA. 5f and 4f trivalent ions are extracted according to the mechanism: M3+ + 3NO3- + 4DMDOMA in equilibrium with [M(DMDOMA)2(NO3)3].(DMDOMA)2. The extraction of important ions like U(VI), Np(V), Pu(IV), Pu(VI), Zr(IV) and Fe(III) was investigated. The results showed that DMDOMA behave line the carbamoylmethylenephosphonates and could be an interesting alternative to these organophosphorus extractants

  16. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    Thompson, Joe E [Los Alamos National Laboratory; Nair, S [MAX PLANCK INST.; Stockert, O [MAX PLANCK INST.; Witte, U [INST. FUR FESTKORPERPHYSIK; Nicklas, M [MAX PLANCK INST.; Schedler, R [HELMHOLTZ - ZENTRUM; Bianchi, A [UC, IRVINE; Fisk, Z [UC, IRVINE; Wirth, S [MAX PLANCK INST.; Steglich, K [HELMHOLTZ - ZENTRUM

    2009-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

  17. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10–14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  18. 4f heavy fermion photoelectron spectra do not exhibit the Kondo scale

    It has been the authors contention for some time that the Single Impurity Anderson Model (SIAM), as extended by Gunnarsson and Schonhammer (GS), or the non-crossing approximation (NCA), does not correctly describe the 4f photoelectron spectra of heavy fermions. Recently, they have concentrated on Yb heavy fermions since in these materials the Kondo resonance (KR) is fully occupied and thus accessible via photoemission. In particular, they have repeatedly pointed out that the width, position, spectral weight, lineshape, and temperature dependence of the features assumed to be the KR and its sidebands, are nearly independent of the Kondo temperature, TK, while at the same time bearing a striking resemblance to the simple 4f core level spectra of pure Yb metal, or of Lu in isostructural Lu compounds. It is important to resolve these issues in view of the fundamental nature of the problem. Here, the authors chose to test the bulk vs. surface hypothesis by performing measurements on YbCu2Si2 and YbAl3 single crystals at hv ∼ 120 eV (UPS) and hv ∼ 1,500 eV(XPS) to see if the nf, hole occupancy, values increase markedly at XPS energies as the electron escape depth increases by about a factor of 3--5. Measurements were performed at both 300K and 20K using single crystals cleaved in-situ, with photoelectrons collected in normal emission for maximum bulk sensitivity. UPS measurements were performed at NSLS and the University of Wisconsin SRC, while XPS measurements were done at the University of Minnesota. The UPS, ultraviolet photoelectron spectra, and the LIII edge x-ray absorption and photoemission measurements are in fundamental disagreement

  19. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix

  20. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  1. Detection of non-alcoholic steatohepatitis in patients with morbid obesity before bariatric surgery: preliminary evaluation with acoustic radiation force impulse imaging

    Guzman-Aroca, F.; Reus, M.; Dios Berna-Serna, Juan de [Virgen de la Arrixaca University Hospital, Department of of Radiology, El Palmar, Murcia (Spain); Frutos-Bernal, M.D.; Lujan-Mompean, J.A.; Parrilla, P. [Virgen de la Arrixaca University Hospital, Department of Surgery, El Palmar, Murcia (Spain); Bas, A. [Virgen de la Arrixaca University Hospital, Department of Pathology, El Palmar, Murcia (Spain)

    2012-11-15

    To investigate the utility of acoustic radiation force impulse (ARFI) imaging, with the determination of shear wave velocity (SWV), to differentiate non-alcoholic fatty liver disease (NAFLD) from non-alcoholic steatohepatitis (NASH) in patients with morbid obesity before bariatric surgery. Thirty-two patients with morbid obesity were evaluated with ARFI and conventional ultrasound before bariatric surgery. The ARFI and ultrasound results were compared with liver biopsy findings, which is the reference standard. The patients were classed according to their histological findings into three groups: group A, simple steatosis; group B, inflammation; and group C, fibrosis. The median SWV was 1.57 {+-} 0.79 m/s. Hepatic alterations were observed in the histopathological findings for all the patients in the study (100 %), with the results of the laboratory tests proving normal. Differences in SWV were also observed between groups A, B and C: 1.34 {+-} 0.90 m/s, 1.55 {+-} 0.79 m/s and 1.86 {+-} 0.75 m/s (P < 0.001), respectively. The Az for differentiating NAFLD from NASH or fibrosis was 0.899 (optimal cut-off value 1.3 m/s; sensitivity 85 %; specificity 83.3 %). The ARFI technique is a useful diagnostic tool for differentiating NAFLD from NASH in asymptomatic patients with morbid obesity. (orig.)

  2. Detection of non-alcoholic steatohepatitis in patients with morbid obesity before bariatric surgery: preliminary evaluation with acoustic radiation force impulse imaging

    To investigate the utility of acoustic radiation force impulse (ARFI) imaging, with the determination of shear wave velocity (SWV), to differentiate non-alcoholic fatty liver disease (NAFLD) from non-alcoholic steatohepatitis (NASH) in patients with morbid obesity before bariatric surgery. Thirty-two patients with morbid obesity were evaluated with ARFI and conventional ultrasound before bariatric surgery. The ARFI and ultrasound results were compared with liver biopsy findings, which is the reference standard. The patients were classed according to their histological findings into three groups: group A, simple steatosis; group B, inflammation; and group C, fibrosis. The median SWV was 1.57 ± 0.79 m/s. Hepatic alterations were observed in the histopathological findings for all the patients in the study (100 %), with the results of the laboratory tests proving normal. Differences in SWV were also observed between groups A, B and C: 1.34 ± 0.90 m/s, 1.55 ± 0.79 m/s and 1.86 ± 0.75 m/s (P < 0.001), respectively. The Az for differentiating NAFLD from NASH or fibrosis was 0.899 (optimal cut-off value 1.3 m/s; sensitivity 85 %; specificity 83.3 %). The ARFI technique is a useful diagnostic tool for differentiating NAFLD from NASH in asymptomatic patients with morbid obesity. (orig.)

  3. Evaluation of Transient Elastography, Acoustic Radiation Force Impulse Imaging (ARFI, and Enhanced Liver Function (ELF Score for Detection of Fibrosis in Morbidly Obese Patients.

    Thomas Karlas

    Full Text Available Liver fibrosis induced by non-alcoholic fatty liver disease causes peri-interventional complications in morbidly obese patients. We determined the performance of transient elastography (TE, acoustic radiation force impulse (ARFI imaging, and enhanced liver fibrosis (ELF score for fibrosis detection in bariatric patients.41 patients (median BMI 47 kg/m2 underwent 14-day low-energy diets to improve conditions prior to bariatric surgery (day 0. TE (M and XL probe, ARFI, and ELF score were performed on days -15 and -1 and compared with intraoperative liver biopsies (NAS staging.Valid TE and ARFI results at day -15 and -1 were obtained in 49%/88% and 51%/90% of cases, respectively. High skin-to-liver-capsule distances correlated with invalid TE measurements. Fibrosis of liver biopsies was staged as F1 and F3 in n = 40 and n = 1 individuals. However, variations (median/range at d-15/-1 of TE (4.6/2.6-75 and 6.7/2.9-21.3 kPa and ARFI (2.1/0.7-3.7 and 2.0/0.7-3.8 m/s were high and associated with overestimation of fibrosis. The ELF score correctly classified 87.5% of patients.In bariatric patients, performance of TE and ARFI was poor and did not improve after weight loss. The ELF score correctly classified the majority of cases and should be further evaluated.

  4. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring

    Nozawa, Takashi; Ozawa, Kazumi; Asakura, Yuuki; Kohyama, Akira; Tanigawa, Hiroyasu

    2014-12-01

    Understanding the cracking process of the composites is essential to establish the design basis for practical applications. This study aims to investigate the damage accumulation process and its anisotropy for nano-infiltration transient eutectic sintered (NITE) SiC/SiC composites by various characterization techniques such as the acoustic emission (AE), digital image correlation (DIC) and electrical resistivity (ER) measurements. Cracking behavior below the proportional limit stress (PLS) was specifically addressed. Similar to the other generic SiC/SiC composites, the 1st AE event was identified below the PLS for NITE SiC/SiC composites with a dependency of fabric orientation. The DIC results support that the primary failure mode depending on fiber orientation affected more than the other minor modes did. Detailed AE waveform analysis by wavelet shows a potential to classify the failure behavior depending on architecture. Cracking below the PLS is a potential concern in component deign but the preliminary ER measurements imply that the impact of cracking below the PLS on composite function was limited.

  5. Imaging sciences workshop

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  7. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2009-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce

  8. Acoustic lenses

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  9. Islets of Meningioma in an Acoustic Schwannoma in a Patient with Neurofibromatosis-2: Pathology and Magnetic Resonance Imaging Findings

    Mixed tumors of the cerebellopontine angle, composed of meningioma and schwannoma components, are extremely rare; so far, only 12 cases have been reported in the literature. They are thought to be exclusively associated with neurofibromatosis-2. We present a mixed tumor of schwannoma and meningioma in a patient with neurofibromatosis-2 and discuss the pathology and magnetic resonance imaging (MRI) findings in relation to the literature. Review of the literature shows that a typical MRI pattern has not been established for mixed tumors and it seems unlikely that a meningioma component can be differentiated within a schwannoma preoperatively

  10. Dry acoustic microscope for visualizing the defects in electronic devices

    Acoustic microscopy/imaging has been widely used in electronics industry for the non-destructive detection and evaluation of defects in electronic devices. However, the conventional acoustic microscope requires the immersion of the samples in water, which puts a limitation on the samples that can be analyzed. To realize the high-resolution acoustic inspection of electronic devices without immersing them in water, the dry acoustic microscope, where a polymer film is inserted between water and the devices, has been developed, In this paper, we demonstrate the high-resolution acoustic imaging of two types of electronic devices under the dry environment by the present dry acoustic microscope. One is the silicon chip package with high acoustic impedance, and the other is the plastic package with low acoustic impedance.

  11. Dry acoustic microscope for visualizing the defects in eletronic devices

    Acoustic microscopy/imaging has been widely used in electronics industry for the non-destructive detection and evaluation of defects in electronic devices. However, the conventional acoustic microscope requires the immersion of the samples in water, which puts a limitation on the samples that can be analyzed. To realize the high-resolution acoustic inspection of electronic devices without immersing them in water, the dry acoustic microscope, where a polymer film is inserted between water and the devices, has been developed, In this paper, we demonstrate the high-resolution acoustic imaging of two types of electronic devices under the dry environment by the present dry acoustic microscope. One is the silicon chip package with high acoustic impedance, and the other is the plastic package with low acoustic impedance.

  12. Use of the 4F Roesch Inferior Mesenteric Catheter in Embolization Procedures in the Pelvis: A Review of 300 Cases

    The aim of this study is to evaluate the use of a 4F Roesch inferior mesenteric (RIM) catheter for pelvic embolization procedures. Between October 2000 and January 2006, 364 patients (357 female, 7 male; age: 23-67 years) underwent embolization of various pathologies [uterine fibroids (n = 324), pure adenomyosis of the uterus (n = 19), postpartum hemorrhage (n =1), traumatic or postoperative hemorrhage (n = 9), bleeding related to cervical cancer (n =7), AV malformation of the uterus (n = 2) and high-flow priapism (n = 2)] at a single institution. In all cases, bilateral catheterization was primarily attempted with the use of a 4F hook-shaped braided endhole catheter (Roesch-Inferior-Mesenteric, RIM-Catheter, Cordis, Miami, FL). Frequency of initial failure to catheterize the vascular territory of interest and carry out the embolization were recorded and the types of difficulty encountered were noted. Catherization of the main stem of the vessel territory of interest with the use of a unilateral femoral approach and the 4F RIM catherer was successful in 334/364 (91.8%) the embolization cases. Bilateral catheterization of the internal iliac arteries using a single common femoral artery access and the 4F RIM catheter was achieved in 322/364 (88.5%) patients. In 12/364 (3.3%) patients, a contralateral puncture was performed and the same 4F catheter was used. In 28/364 (7.7%) cases the 4F RIM catheter was exchanged for a catheter with a cobra-shaped or sidewinder configuration. The 4F RIM catheter is a simple and valuable alternative to catheters and techniques commonly employed for pelvic artery embolization

  13. A MoS2 coating strategy to improve the comprehensive electrochemical performance of LiVPO4F

    Liu, Zhaomeng; Peng, Wenjie; Shih, Kaimin; Wang, Jiexi; Wang, Zhixing; Guo, Huajun; Yan, Guochun; Li, Xinhai; Song, Liubin

    2016-05-01

    To improve the electrochemical performance of LiVPO4F at room and elevated temperature focusing on the stability of LiVPO4F electrode/electrolyte interface, for the first time, MoS2 nanosheets are introduced to modify LiVPO4F/C composites. The coating of MoS2 layers on the surface of LiVPO4F/C nanoparticles is realized via a solution method followed by low-temperature calcination. Morphological observations present that the MoS2 sheets are homogeneously wrapped around the LiVPO4F/C particles. When employed as cathode materials for lithium ion batteries, the MoS2-modified LiVPO4F/C composites exhibit superior high-rate capability and greatly improved cycle ability compared to bare one, and the sample coated with 1.75 wt% MoS2 (2M-LVPF) delivers the best electrochemical performance. In particular, it maintains the capacity retention of 91.7% in 100 cycles at 2.0C and delivers a reversible specific capacity of 112 mAh g-1 at a high rate of 8.0C under room temperature. More importantly, it shows greatly improved cycling stability at elevated temperature (55 °C), maintaining 88.1% of its initial capacity at 0.5C after 50 cycles. The reasons for such improvement lie in the MoS2 coating layer acting as a physical barrier between electrode and electrolyte, as well as electronic/ionic conducting framework for LiVPO4F particles.

  14. Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials

    Li, Yong; Yu, Gaokun; Liang, Bin; Zou, Xinye; Li, Guangyun; Cheng, Su; Cheng, Jianchun

    2014-01-01

    Acoustic lenses find applications in various areas ranging from ultrasound imaging to nondestructive testing. A compact-size and high-efficient planar acoustic lens is crucial to achieving miniaturization and integration, and should have deep implication for the acoustic field. However its realization remains challenging due to the trade-off between high refractive-index and impedance-mismatch. Here we have designed and experimentally realized the first ultrathin planar acoustic lens capable ...

  15. Measurements of ionization and attachment coefficients in 0.468% and 4.910% c-C4F8/Ar mixtures and pure c-C4F8

    We measured the density normalized ionization coefficients and attachment coefficients in diluted c-C4F8/Ar mixtures and in pure perfluorocyclobutane (c-C4F8) by the steady-state Townsend method. The ionization coefficients in the mixture gas are almost equal to those in pure argon at the high E/N range but differ considerably at the low E/N range. The present coefficients in pure c-C4F8 agree well with previously reported values at the high E/N range, but there are significant differences at the low E/N range. Measurements in the low E/N range were difficult, and there are few data of the attachment coefficients

  16. The Electronegativity Analysis of c-C4F8 as a Potential Insulation Substitute of SF6

    Zhao, Xiaoling; Jiao, Juntao; Li, Bing; Xiao, Dengming

    2016-03-01

    The density distributions related to gas electronegativity for c-C4F8 gas, including negative ion, electron number and electron energy densities in the discharge process, are derived theoretically in both plane-to-plane and point-to-plane electrode geometries. These calculations have been performed through the Boltzmann equation in the condition of a steady-state Townsend (SST) experiment and a fluid model in the condition of both uniform and non-uniform electric fields. The electronegativity coefficients a = n-/ne of c-C4F8 and SF6 are compared to further describe the electron affinity of c-C4F8. The result shows that c-C4F8 represents an obvious electron-attachment performance in the discharge process. However, c-C4F8 still has much weaker gas electronegativity than SF6, whose electronegativity coefficient is lower than that of SF6 by at least three orders of magnitude. supported by National Natural Science Foundation of China (No. 51337006)

  17. Association of the CYP4F2 rs2108622 genetic polymorphism with hypertension: a meta-analysis.

    Luo, X-H; Li, G-R; Li, H-Y

    2015-01-01

    Previous case-control studies on the relationship between the CYP4F2 gene rs2108622 polymorphism and hypertension have produced contrasting results. In this study, we aimed to further evaluate the relationship between the CYP4F2 gene rs2108622 polymorphism and hypertension. We selected four case-control studies related to the CYP4F2 gene rs2108622 polymorphism and hypertension by searching PubMed, EMBase, the Chinese Biomedical Literature Database, and the Wanfang database. We utilized the Cochran Q-test and the I2 index to measure the heterogeneity across studies. To merge the odds ratio (OR) and the 95% confidence interval (95%CI), we utilized the fixed and random-effect models during the analyses. The present study included 1878 patients with hypertension and 1512 healthy control subjects. By meta-analysis, we did not find any association of the CYP4F2 gene rs2108622 polymorphism with hypertension in either genotype or allele distribution [AA+AG vs GG: OR = 1.18, 95%CI (0.91-1.54), P = 0.21; GG+AG vs AA: OR = 0.91, 95%CI (0.80-1.05), P = 0.20; A allele vs G allele: OR = 1.04, 95%CI (0.93-1.16), P = 0.53]. We concluded that the CYP4F2 gene rs2108622 polymorphism was not associated with hypertension. PMID:26634476

  18. Effects of feedstock availability on the negative ion behavior in a C4F8 inductively coupled plasma

    In this paper, the negative ion behavior in a C4F8 inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (10–30 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C2F6, CHF3, and C4F8. This behavior is explained by the availability of feedstock C4F8 gas as a source of the negative ions, as well as by the presence of low energy electrons due to vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C4F8 molecules, and at high pressure (∼50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C4F8 plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted

  19. Acoustic superlens using membrane-based metamaterials

    Park, Jong Jin; Park, Choon Mahn; Lee, K. J. B.; Lee, Sam H.

    2015-02-01

    We report construction of an acoustic superlensing using two dimensional membrane-based negative-density metamaterials. When two point sources separated by a distance of 1/17 of the wavelength are placed near to a surface of the metamaterial slab, well-resolved images are formed on the opposite surface across the slab. The mechanism for the subwavelength resolution is the surface wave stemming from negative density. Potential applications include acoustic imaging and sensing.

  20. The VMI study on angular distribution of ejected electrons from Eu 4f76p1/26d autoionizing states

    张开; 沈礼; 董程; 戴长建

    2015-01-01

    The combination of a velocity mapping imaging technique and mathematical transformation is adopted to study the angular distribution of electrons ejected from the Eu 4f76p1/26d autoionizing states, which are excited with a three-step excitation scheme via different Eu 4f76s6d 8DJ (J=5/2, 7/2, and 9/2) intermediate states. In order to determine the energy dependence of angular distribution of the ejected electrons, the anisotropic parameters are measured in the spectral profile of the 6p1/26d autoionizing states by tuning the wavelength of the third-step laser across the ionic resonance lines of the Eu 6s+→ 6p+. The configuration interaction is discussed by comparing the angular distributions of ejected electrons from the different states. The present study reveals the profound variations of anisotropic parameters in the entire region of autoionization resonance, highlighting the complicated nature of the autoionization process for the lowest member of 6p1/26d autoionization series.

  1. Time-series observations of hydrothermal discharge using an acoustic imaging sonar: a NEPTUNE observatory case study

    Xu, Guangyu; Bemis, Karen; Jackson, Darrell; Light, Russ

    2015-04-01

    One intriguing feature of a mid-ocean ridge hydrothermal system is the intimate interconnections among hydrothermal, geological, oceanic, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. In this study, we present the time-series observations of a seafloor hydrothermal vent made using the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS is currently connected to the NEPTUNE observatory to monitor the hydrothermal discharge from the Grotto mound on the Endeavour Segment. Since its deployment in 2010, COVIS has recorded a 3-year long dataset of the shape and outflow fluxes of the buoyant plumes above Grotto along with the areal coverage of its diffuse flow discharge. The interpretation of these data in light of contemporaneous observations of ocean currents, venting temperature, and seismicity made using other NEPTUNE observatory instruments reveals significant impacts of ocean currents and geological events on hydrothermal venting. In this study, we summarize these findings in the hope of forming a more complete understanding of the intricate interconnections among oceanic, geological, and hydrothermal processes.

  2. 4 f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering

    Amorese, A.; Dellea, G.; Fanciulli, M.; Seiro, S.; Geibel, C.; Krellner, C.; Makarova, I. P.; Braicovich, L.; Ghiringhelli, G.; Vyalikh, D. V.; Brookes, N. B.; Kummer, K.

    2016-04-01

    The potential of resonant inelastic soft x-ray scattering to measure 4 f crystal electric-field excitation spectra in Ce Kondo lattices has been examined. Spectra have been obtained for several Ce systems and show a well-defined structure determined by crystal-field, spin-orbit, and charge-transfer excitations only. The spectral shapes of the excitation spectra can be well understood in the framework of atomic multiplet calculations. For CeCu2Si2 we found notable disagreement between the inelastic x-ray-scattering spectra and theoretical calculations when using the crystal-field scheme proposed from inelastic neutron scattering. Modified sets of crystal-field parameters yield better agreement. Our results also show that, with the very recent improvements of soft x-ray spectrometers in resolution to below 30 meV at the Ce M4 ,5 edges, resonant inelastic x-ray scattering could be an ideal tool to determine the crystal-field scheme in Ce Kondo lattices and other rare-earth compounds.

  3. Semiempirical Sternheimer shielding factors for the atomic 4f and 5d shells

    In a recent Physical Review Letter, workers at Los Alamos reported new electric-quadrupole moment values for selected nuclei through study of hfs in the X-ray spectra of muonic atoms. On combining these true moment values with the apparent values previously deduced for the same nuclei from many-electron hfs studies, the authors evaluated Sternheimer shielding factors for several electron shells in various atoms. They were struck by the unreasonably large scatter in the resulting shielding factors. After some study, the authors concluded that the scatter arose from (1) questionable assumptions and procedures used earlier in analyzing the many-electron hfs, and (2) the diversity of methods used in evaluating quadrupole radial hfs integrals. Limiting themselves to the atomic 4f and 5d shells, they made a study of all atoms for which (a) a true quadrupole moment value (i.e. one determined either by muonic hfs or Coulomb excitation) was known and (b) the many-electron hfs had been studied

  4. Cryogenic etching processes applied to porous low-k materials using SF6/C4F8 plasmas

    Leroy, F.; Zhang, L.; Tillocher, T.; Yatsuda, K.; Maekawa, K.; Nishimura, E.; Lefaucheux, P.; de Marneffe, J.-F.; Baklanov, M. R.; Dussart, R.

    2015-11-01

    Cryogenic etching processes in SF6 and SF6/C4F8 plasmas were successfully applied to porous organosilicate glasses. Such materials are low-k candidates for advanced interconnects. Their integration is very challenging because of plasma induced damage. These two chemistries (SF6 and SF6/C4F8) have demonstrated a promising capability of significantly reducing the damage caused by plasma etching. Desorbed species were analyzed during the wafer warm-up from cryogenic to room temperature by in situ mass spectrometry. An equivalent damage layer (EDL) was evaluated by ex situ Fourier transform infrared (FTIR) spectroscopy and in situ ellipsometry. An anneal step at 350 °C seems efficient to completely desorb the remaining CF x species. Anisotropic profiles were obtained using both chemistries. The selectivity is enhanced using SF6/C4F8 process at low temperature.

  5. Effect of temperature on the electron attachment and detachment properties of c-C4F6

    The temperature dependence of the low-energy electron attachment and autodetachment processes for c-C4F6 in a N2 buffer gas has been studied in the temperature, T, range of 300 to 600 K and the mean electron energy, , range from 0.19 to 1.0 eV. The low-energy electron attachment rate constant for c-C4F6 shows only a slight dependence on gas temperature. In contrast, the autodetachment frequency increases by more than four orders of magnitude when T is increased from 300 to 600 K. This increase in autodetachment is due to the increase in the internal energy content of the c-C4,F6- anion with increasing T. The autodetachment process under consideration is a heat-activated process and has an activation energy E* of 0.24 eV. Significance of these results to gaseous dielectrics is indicated

  6. A 4F2-cross-point phase change memory using nano-crystalline doped GeSbTe material

    Takaura, Norikatsu; Kinoshita, Masaharu; Tai, Mitsuharu; Ohyanagi, Takasumi; Akita, Kenichi; Morikawa, Takahiro

    2015-04-01

    This paper reports on the use of nano-crystalline doped GeSbTe, or nano-GST, to fabricate a cross-point phase change memory with 4F2 cell size and test results obtained for it. We show the characteristics of a poly-Si diode select device with a high on-off ratio and data writing in a 4F2 memory cell array. The advantages of nano-GST over conventional GeSbTe are presented in terms of neighboring disturbance and 4F2 cross-point array formation. The memory cells’ high drivability, low power, and selective write and read performances are demonstrated. The scalability of the diode current density is also presented.

  7. Description of an optimized ChIP-seq analysis pipeline dedicated to genome wide identification of E4F1 binding sites in primary and transformed MEFs

    Thibault Houlès

    2015-09-01

    To identify this program, we performed E4F1 ChIP-seq analyses in primary Mouse Embryonic Fibroblasts (MEF and in p53−/−, H-RasV12-transformed MEFs. The program directly controlled by E4F1 was obtained by intersecting the lists of E4F1 genomic targets with the lists of genes differentially expressed in E4F1 KO and E4F1 WT cells (Rodier et al., 2015. We describe hereby how we improved our ChIP-seq analyses workflow by applying prefilters on raw data and by using a combination of two publicly available programs, Cisgenome and QESEQ.

  8. Structural changes and self-activated photoluminescence in reductively annealed Sr3AlO4F

    White light emission of self-activated photoluminescence (PL) in Sr3AlO4F under 254 nm light is only observed after annealing in a reducing atmosphere of 5%H2/95%Ar. High-resolution neutron powder diffraction reveals that the FSr6 octahedrons and AlO4 tetrahedrons in this anti-perovskite structure are closer packed in reduced than in air-annealed samples which show no PL. Careful analysis of temperature-dependent neutron powder diffraction data establishes smaller isotropic displacement parameters for Sr(1) and O in Sr3AlO4F annealed in a reducing atmosphere indicating that the denser packing of the polyhedral sub-units leads to a slightly deeper potential for the Sr(1) and O atoms. Both the air- and reductively-annealed samples have identical thermal expansion within the temperature range between 3 and 350 K. The Debye temperatures were calculated using the atomic displacement parameters and show no significant differences between the air and reductively annealed samples making the Debye temperature a bad proxy for self-activated PL. - Graphical abstract: Annealing Sr3AlO4F under reducing conditions results in an intense self-activated photoluminescence which is correlated with a denser packing of FSr6 and AlO4 polyhedra. - Highlights: • Sr3AlO4F made in air does not show self-activated photoluminescence. • Only when annealing Sr3AlO4F in a reducing gas is photoluminescence observed. • FSr6 and AlO4 polyhedra in reduced Sr3AlO4F structure are packed more efficient. • Smaller displacement parameters are found for under-bonded Sr(1) and O sites

  9. Expression and characterization of human cytochrome P450 4F11: Putative role in the metabolism of therapeutic drugs and eicosanoids

    We previously reported the cDNA cloning of a new CYP4F isoform, CYP4F11. In the present study, we have expressed CYP4F11 in Saccharomyces cerevisiae and examined its catalytic properties towards endogenous eicosanoids as well as some clinically relevant drugs. CYP4F3A, also known as a leukotriene B4 ω-hydroxylase, was expressed in parallel for comparative purposes. Our results show that CYP4F11 has a very different substrate profile than CYP4F3A. CYP4F3A metabolized leukotriene B4, lipoxins A4 and B4, and hydroxyeicosatetraenoic acids (HETEs) much more efficiently than CYP4F11. On the other hand, CYP4F11 was a better catalyst than CYP4F3A for many drugs such as erythromycin, benzphetamine, ethylmorphine, chlorpromazine, and imipramine. Erythromycin was the most efficient substrate for CYP4F11, with a Km of 125 μM and Vmax of 830 pmol min-1 nmol-1 P450. Structural homology modeling of the two proteins revealed some interesting differences in the substrate access channel including substrate recognition site 2 (SRS2). The model of CYP4F11 presents a more open access channel that may explain the ability to metabolize large molecules like erythromycin. Also, some wide variations in residue size, charge, and hydrophobicity in the FG loop region may contribute to differences in substrate specificity and activity between CYP4F3A and CYP4F11

  10. CLEC4F is an inducible C-type lectin in F4/80-positive cells and is involved in alpha-galactosylceramide presentation in liver.

    Chih-Ya Yang

    Full Text Available CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal, N-acetylgalactosamine (GalNAc, and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f-/- mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5 but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3∼4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (α-GalCer in a calcium-dependent manner and participates in the presentation of α-GalCer to natural killer T (NKT cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells.

  11. Elastic and inelastic neutron scattering studies on 3d and 4f magnetic compounds

    First, some theoretical aspects of neutron scattering techniques are given, and the cyrogenic equipment and the neutron spectrometers employed are described. Experiments on a 3-d Ising system are described, performed at very low temperatures and in a magnetic field. Experimental proof has been obtained for the theoretical prediction that the critical behaviour of a d-dimensional Ising system in a transverse magnetic field near T=0 is identical to that of a d+1 dimensional Ising system as a function of temperature in zero field. Experiments are described on a Ni2+ compound which represents a good example of a 1-d antiferromagnetic Heisenberg (HAF), spin s=1, system. The results give evidence for the so called 'Haldane conjecture', a theory which predicts that the ground state of HAF systems with integer spin is a nonmagnetic many-body singlet. The excited states are separated from the ground state by an energy gap. Contrastingly, half-integer spin systems are predicted to have no such gap. A short introduction is given to phenomena in rare earth, 4f compunds, like the Kondo effect and heavy fermion behaviour. Experimental results on the RE hexaborides are reported, among which CeB6, a typical Kondo system with complex magnetic orderings. Furthermore, inelastic neutron scattering experiments on NdB6 and CeB6, performed in order to get insight in the various reaction mechanisms, are presented. Finally a report is given on magnetic correlations and excitations in two nonmagnetically ordered heavy fermion compounds, CeCu6 and CeRu2Si2 and their interpretation in the light of existing theories. 201 refs.; 61 figs.; 4 tabs

  12. The acoustic force density acting on inhomogeneous fluids in acoustic fields

    Karlsen, Jonas T; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  13. Acoustics and Hearing

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  14. Anisotropic metamaterials for full control of acoustic waves.

    Christensen, Johan; García de Abajo, F Javier

    2012-03-23

    We study a class of acoustic metamaterials formed by layers of perforated plates and producing negative refraction and backward propagation of sound. A slab of such material is shown to act as a perfect acoustic lens, yielding images with subwavelength resolution over large distances. Our study constitutes a nontrivial extension of similar concepts from optics to acoustics, capable of sustaining negative refraction over extended angular ranges, with potential application to enhanced imaging for medical and detection purposes, acoustofluidics, and sonochemistry. PMID:22540586

  15. Acoustic telemetry.

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  16. Acoustic Neuroma Educational Video

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  17. Use of acoustic vortices in acoustic levitation

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...

  18. First-principles relativistic calculation for 4f-5d transition energy of Ce3+ in various fluoride hosts

    In this paper, we investigated the 4f-5d transition energy of Ce3+ in various fluoride hosts based on the first-principles discrete-variational Dirac-Slater (DV-DS) calculations using Slater's transition-state theory. Especially, we focused on the lowest energy peak (1st peak) of 4f-5d transition for Ce3+ impurities. As the host crystals, we adopted the 15 fluorides, for which the experimental data of the lowest energy peak (1st peak) in 4f-5d transitions were available from literature except for NaMgF3 and BaMgF4. A high correlation between the experimental 1st peak energies and the theoretical ones was obtained which suggests a possibility to predict the 4f-5d transition energy of Ce3+ in various fluoride hosts using the first-principles calculation. - Graphical abstract: Correlation diagram between the experimental 1st peak energy and the theoretical 1st peak energy. The left figure (A) shows the results without the lattice relaxation by correction of bond length and right one (B) shows the results with the lattice relaxation by correction of bond length. The corresponding coefficients of correlation R are 0.78 and 0.98, respectively

  19. Vestibular impairment in a Dutch DFNA15 family with an L289F mutation in POU4F3.

    Drunen, F.J. van; Pauw, R.J.; Collin, R.W.J.; Kremer, H.; Huygen, P.L.M.; Cremers, C.W.R.J.

    2009-01-01

    Vestibular examination (electronystagmography with rotatory chair and caloric tests) was performed on 18 carriers and 1 phenocopy carrier in a Dutch family with autosomal dominant nonsyndromic DFNA15. This is the second DFNA15 family worldwide to have a novel L289F mutation in POU4F3. Vestibular inv

  20. Dependency of phenprocoumon dosage on polymorphisms in the VKORC1, CYP2C9, and CYP4F2 genes

    Teichert, M.; Eijgelsheim, M.; Uitterlinden, A.G.; Buhre, P.N.; Hofman, A.; Smet, P.A. de; Visser, L.E.; Stricker, B.H.C.

    2011-01-01

    BACKGROUND: Genome-wide association studies (GWAS) on warfarin and acenocoumarol showed that interindividual dosage variation is mainly associated with single nucleotide polymorphisms (SNPs) in VKORC1 and to a lesser extent in CYP2C9 and CYP4F2. For phenprocoumon dosage, the genes encoding CYP3A4 an

  1. Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries

    Cui, Dongming; Chen, Shasha; Han, Chang; Ai, Changchun; Yuan, Liangjie

    2016-01-01

    Carbon coated spherical Na2FePO4F particles with typical diameters from 500 nm to 1 μm have been synthesized through an economical carbothermal reduction method with a simple apparatus. Mixed carbon source consists of citric acid and phenolic resin can form highly graphitized carbon and remarkably improve the electrical conductivity. When cycled against lithium, Na2FePO4F/C cathodes deliver maximum discharge capacity of 119 mAh g-1 at a low rate of 0.05 C. Reversible capacity of 110 mAh g-1, 74 mAh g-1 and 52 mAh g-1 can be obtained at 0.1 C, 1 C and 2 C rates, respectively. And after 30 cycles at 0.1 C, 91% of the discharge capacity can still be maintained. The electrochemical kinetic characteristic of electrode material is investigated by EIS and the apparent Li+ diffusion coefficient in the Li/Na2FePO4F system is evaluated to be as high as 1.152 × 10-11 cm2 s-1. This study demonstrates that the practical and economical synthesis process can be a promising way for industrial production of high performance Na2FePO4F/C electrode material for large-scale lithium ion batteries.

  2. Plasma deposition of fluorocarbon thin films from c-C4F8 using pulsed and continuous rf excitation

    Fluorocarbon films of varying composition have been deposited from pulsed and continuous plasmas of octafluorocyclobutane (c-C4F8) and c-C4F8/Ar. Continuous plasma deposition rates are a very weak function of applied rf power (may be within experimental error). Pulsed plasma deposition rates are significantly lower than continuous plasma rates at the same average power. The pulsed plasma deposition rates can be attributed almost entirely to the plasma on time during the pulse, but there is a slight dependence on pulse off time. Ar addition affects the deposition rates through a residence time effect, but also affects the deposition chemistry by reducing the degree of C4F8 dissociation, resulting in more fluorinated films. Refractive indices for all films increase approximately linearly with applied rf power, with the pulsed plasma-deposited films falling on the same curve. Carbon 1s x-ray photoelectron spectroscopy shows that the continuous plasma-deposited films become increasingly fluorinated as the rf power is decreased. Pulsed plasma films are more fluorinated than similar average power continuous plasma films: 44% CF2 for 10/50 (400 W on time, 67 W average power) versus 37% for 50 W continuous. Literature and preliminary gas-phase measurements suggest that the C4F8 is not fully dissociated in either plasma system and that larger species in the gas phase may play a significant role in the deposition mechanisms

  3. A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode

    Karthikeyan, K.; Amaresh, S.; Kim, K. J.; Kim, S. H.; Chung, K. Y.; Cho, B. W.; Lee, Y. S.

    2013-06-01

    For the first time, we report the possibility of utilizing Li2CoPO4F as a novel cathode material for hybrid capacitor applications. Li2CoPO4F powders were prepared by a conventional two-step solid state method. A hybrid cell was fabricated using Li2CoPO4F as the cathode along with activated carbon (AC) as the anode in 1 M LiPF6 dissolved in 1 : 1 EC/DMC electrolyte and its electrochemical properties were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current charge-discharge (C-D) techniques. The Li2CoPO4F/AC cell is capable of delivering a discharge capacitance of 42 F g-1 at 150 mA g-1 current density within 0-3 V region having excellent coulombic efficiency of over 99% even after 1000 cycles. Furthermore, the Li2CoPO4F/AC cell exhibited excellent rate performance with an energy density of ~24 W h kg-1 at 1100 mA g-1 current and maintained about 92% of its initial value even after 30 000 C-D cycles. Electrochemical impedance spectroscopy was conducted to corroborate the results that were obtained and described.For the first time, we report the possibility of utilizing Li2CoPO4F as a novel cathode material for hybrid capacitor applications. Li2CoPO4F powders were prepared by a conventional two-step solid state method. A hybrid cell was fabricated using Li2CoPO4F as the cathode along with activated carbon (AC) as the anode in 1 M LiPF6 dissolved in 1 : 1 EC/DMC electrolyte and its electrochemical properties were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current charge-discharge (C-D) techniques. The Li2CoPO4F/AC cell is capable of delivering a discharge capacitance of 42 F g-1 at 150 mA g-1 current density within 0-3 V region having excellent coulombic efficiency of over 99% even after 1000 cycles. Furthermore, the Li2CoPO4F/AC cell exhibited excellent rate performance with an energy density of ~24 W h kg-1 at 1100 mA g-1 current and maintained about 92% of its

  4. Acoustic dispersive prism

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  5. The evolution of single-copy Drosophila nuclear 4f-rnp genes: spliceosomal intron losses create polymorphic alleles.

    Feiber, Amy L; Rangarajan, Janaki; Vaughn, Jack C

    2002-10-01

    This study provides the first report in which spliceosomal intron losses within a single-copy gene create functional polymorphic alleles in a population. 4f-rnp has previously been shown to be a nuclear gene that is localized on the X chromosome in D. melanogaster and to have eight short spliceosomal introns. An insect species survey was done via polymerase chain reaction (PCR) amplification and sequencing of a 1028-bp gene fragment spanning introns 4-8, which are located in the 3' half of the gene. The results show that 4f-rnp and (thus far) introns 7 and 8 are at least as old as order Odonata (dragonflies), an early-diverging insect line. Unexpectedly, several species within the dipteran family Drosophilidae were found to contain two differently sized 4f-rnp gene sequence variants, owing to precise in-frame intron losses. Results of single-male D. melanogaster PCR analyses show that the two gene size variants are allelic and that the intron loss mechanism appears to be biased toward the 3' end of the gene. A stable potential stem-loop has been identified in D. melanogaster, predicted to fold the 4f-rnp mRNA 3' terminus into a natural primer for subsequent reverse transcription into cDNA. When results are displayed in a phylogenetic context, multiple independent intron loss events are identified. These observations support a model in which frequently occurring cDNAs have led to numerous independent intron losses via homologous recombination/gene conversion during 4f-rnp gene evolution. The results provide insights into the evolution of intron loss and may lead to improved understanding of the dynamics of this process in natural populations. PMID:12355261

  6. Formation of tavorite-type LiFeSO4F followed by in situ X-ray diffraction

    Eriksson, Rickard; Sobkowiak, Adam; Ångström, Jonas; Sahlberg, Martin; Gustafsson, Torbjörn; Edström, Kristina; Björefors, Fredrik

    2015-12-01

    The tavorite-type polymorph of LiFeSO4F has recently attracted substantial attention as a positive electrode material for lithium ion batteries. The synthesis of this material is generally considered to rely on a topotactic exchange of water (H2O) for lithium (Li) and fluorine (F) within the structurally similar hydrated iron sulfate precursor (FeSO4·H2O) when reacted with lithium fluoride (LiF). However, there have also been discussions in the literature regarding the possibility of a non-topotactic reaction mechanism between lithium sulfate (Li2SO4) and iron fluoride (FeF2) in tetraethylene glycol (TEG) as reaction medium. In this work, we use in situ X-ray diffraction to continuously follow the formation of LiFeSO4F from the two suggested precursor mixtures in a setup aimed to mimic the conditions of a solvothermal autoclave synthesis. It is demonstrated that LiFeSO4F is formed directly from FeSO4·H2O and LiF, in agreement with the proposed topotactic mechanism. The Li2SO4 and FeF2 precursors, on the other hand, are shown to rapidly transform into FeSO4·H2O and LiF with the water originating from the highly hygroscopic TEG before a subsequent formation of LiFeSO4F is initiated. The results highlight the importance of the FeSO4·H2O precursor in obtaining the tavorite-type LiFeSO4F, as it is observed in both reaction routes.

  7. Simulation and experimental verification of acoustic image of echo bright spots for single hull submarine targets%单层壳体潜艇回波亮点声图像仿真和试验验证

    孙昕; 范威; 范军

    2012-01-01

    为了从水下目标回波声图像中获得尺度、要害部位等重要特征信息,提出一种将板块元分析和正交波束形成相结合来实现对潜艇目标进行回波声图像分析的方法,并对多波束系统条件下单层壳体潜艇的时间-角度回波结构和二维几何亮点声图像进行了仿真,通过目标表面高频亮区的分布解释了单层壳体潜艇亮点声图像的形成原因,最后利用湖上试验验证理论仿真结果.试验结果表明;亮点声图像可以反映水下目标几何亮点的分布规律,并在一定程度上反映目标的尺度和姿态特征;单层壳体潜艇回波亮点主要来源于艇体、指挥台围壳、艉舵3个部位.%To obtain the important information about the size and key-parts of a submerged target from its echo geometrical acoustic images, a new analysis method was presented which combined planar element analysis with orthogonal beam-forming to deal with the echo acoustic images of the submarine. Based on the multi-beam system, the method was used to simulate time-angle echo structure and 2D acoustic images of bright spots for the single hull submarine target. The mechanism of forming two-dimensional acoustic image bright spots was explained through the target s surface high frequency highlight distribution. Experiments made on the lake verified the results of the theoretical calculation. The results shows that the characteristics of the size and attitude can be extracted to some extent from the geometrical highlight of the underwater targets, and that the bright spots of the single-hull submarine mainly come from the hull, sail and stern.

  8. Influence of different frequencies and insertion depths on the diagnostic accuracy of liver elastography by acoustic radiation force impulse imaging (ARFI)

    Potthoff, Andrej, E-mail: potthoff.andrej@mh-hannover.de [Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Attia, Dina; Pischke, Sven; Kirschner, Janina; Mederacke, Ingmar; Wedemeyer, Heiner; Manns, Michael P.; Gebel, Michael J.; Rifai, Kinan [Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany)

    2013-08-15

    Background: Acoustic Radiation Force Impulse Imaging (ARFI) is an innovative elastography for staging of liver fibrosis. We evaluated the diagnostic accuracy of different probes to perform ARFI at different insertion depths. Methods: In a prospective study, 89 chronic HCV infected patients underwent ARFI elastography using both available probes (c-ARFI: C4-1-MHz; l-ARFI: L9-4 MHz) in comparison to Fibroscan{sup ®}. Variability of ARFI elastography at different insertion depths was systematically evaluated in 39 patients (44%). According to Fibroscan{sup ®} elastography, 32 patients (36%) presented with liver cirrhosis, 23 patients (26%) had significant fibrosis and 34 patients (38%) had no significant fibrosis. Results: Mean propagation velocity with c-ARFI was 1.70 ± 0.67 m/s and 1.91 ± 0.87 m/s with l-ARFI. Results of both probes were correlated to each other (p < 0.001; r = 0.70) and to Fibroscan{sup ®} (p < 0.001, r = 0.82 and 0.84, respectively). In patients with significant fibrosis or with cirrhosis, mean values by l-ARFI were significantly higher than by c-ARFI (p < 0.001). For detection of liver cirrhosis, AUROC was 0.97 for c-ARFI (cut-off level 1.72 m/s) and 0.90 for l-ARFI (cut-off 2.04 m/s). Correlation coefficients of c-ARFI with Fibroscan{sup ®} were highest at an insertion depth of 5–6 cm (r = 0.882 and 0.864, respectively, p < 0.001) and at 3–4 cm for l-ARFI (r = 0.850 and 0.838, respectively, p < 0.001). Conclusions: ARFI elastography with the linear and with the convex probes showed comparable validity and accuracy in the estimation of liver stiffness. The linear probe gave higher ARFI values. The most accurate insertion depth was 5–6 cm for c-ARFI and 3–4 cm for l-ARFI indicating that measurements should not be performed close to the liver capsule.

  9. Influence of different frequencies and insertion depths on the diagnostic accuracy of liver elastography by acoustic radiation force impulse imaging (ARFI)

    Background: Acoustic Radiation Force Impulse Imaging (ARFI) is an innovative elastography for staging of liver fibrosis. We evaluated the diagnostic accuracy of different probes to perform ARFI at different insertion depths. Methods: In a prospective study, 89 chronic HCV infected patients underwent ARFI elastography using both available probes (c-ARFI: C4-1-MHz; l-ARFI: L9-4 MHz) in comparison to Fibroscan®. Variability of ARFI elastography at different insertion depths was systematically evaluated in 39 patients (44%). According to Fibroscan® elastography, 32 patients (36%) presented with liver cirrhosis, 23 patients (26%) had significant fibrosis and 34 patients (38%) had no significant fibrosis. Results: Mean propagation velocity with c-ARFI was 1.70 ± 0.67 m/s and 1.91 ± 0.87 m/s with l-ARFI. Results of both probes were correlated to each other (p < 0.001; r = 0.70) and to Fibroscan® (p < 0.001, r = 0.82 and 0.84, respectively). In patients with significant fibrosis or with cirrhosis, mean values by l-ARFI were significantly higher than by c-ARFI (p < 0.001). For detection of liver cirrhosis, AUROC was 0.97 for c-ARFI (cut-off level 1.72 m/s) and 0.90 for l-ARFI (cut-off 2.04 m/s). Correlation coefficients of c-ARFI with Fibroscan® were highest at an insertion depth of 5–6 cm (r = 0.882 and 0.864, respectively, p < 0.001) and at 3–4 cm for l-ARFI (r = 0.850 and 0.838, respectively, p < 0.001). Conclusions: ARFI elastography with the linear and with the convex probes showed comparable validity and accuracy in the estimation of liver stiffness. The linear probe gave higher ARFI values. The most accurate insertion depth was 5–6 cm for c-ARFI and 3–4 cm for l-ARFI indicating that measurements should not be performed close to the liver capsule

  10. Acoustic optic hybrid (AOH) sensor

    Matthews; Arrieta

    2000-09-01

    The ability of laser vibrometers to receive and process acoustic echoes from the water surface above a submerged target is established and evaluated. Sonar echoes from a submerged target are collected from the water surface by a laser vibrometer. Feasibility of this approach to sensing underwater sound is demonstrated. If the acoustic excitation at an otherwise undisturbed water surface is 195 to 168 dB re: 1 microPa, signal-to-noise ratio (SNR), at the vibrometer output, is shown to range from about 46 to 6 dB. Capillary waves and gravity waves at the water surface are expected and shown to have some destructive effect on the process of echo retrieval. A series of experiments to quantify the surface wave effects is described. The wave experiment results are reported. A successful attempt to acquire echoes from a submerged target over a grid of points for further processing into a three-dimensional image is made and described. The data acquisition and beamforming techniques constitute a three-dimensional, acoustic optic, synthetic aperture sonar (SAS). Beamformed images are included. For an aircraft towing acoustic sensors through the water with a mechanical link, this technique holds the promise of increased safety and improved fuel efficiency. PMID:11008811

  11. Acoustic Neurinomas

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  12. Acoustic Spatiality

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  13. Springer Handbook of Acoustics

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  14. Responsive acoustic surfaces

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design for the...... acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design was...... simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  15. Active acoustic metamaterials reconfigurable in real time

    Popa, Bogdan-Ioan; Shinde, Durvesh; Konneker, Adam; Cummer, Steven A.

    2015-06-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or are only modestly tunable, tying them to the particular application for which they are designed. We present a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real time by configuring the digital electronics that control the metamaterial acoustic properties. We demonstrate this approach experimentally by designing a metamaterial slab configured to act as a very thin acoustic lens that manipulates differently three identical, consecutive pulses incident on the lens. Moreover, we show that the slab can be configured to simultaneously implement various roles, such as that of a lens and a beam steering device. Finally, we show that the metamaterial slab is suitable for efficient second harmonic acoustic imaging devices capable of overcoming the diffraction limit of linear lenses. These advantages demonstrate the versatility of this active metamaterial and highlight its broad applicability, in particular, to acoustic imaging.

  16. Kinematic viscosity and speed of sound in gaseous CO, CO2, SiF4, SF6, C4F8, and NH3 from 220 K to 375 K and pressures up to 3.4 MPa

    An acoustic Greenspan viscometer was used to measure the kinematic viscosity and speed of sound in the gases: CO, CO2, SiF4, SF6, C4F8, and NH3. The measurements cover the temperature range 220 K to 375 K, and pressures up to 3.4 MPa or 80% of the saturation pressure. The viscometer was calibrated at 298.16 K using five reference gases, Ar, He, N2, CH4, and C3H8, for which the viscosity and the speed of sound are known. With this calibration, we estimated the relative standard uncertainty of the kinematic viscosity ur(η/ρ) = 0.006 and the uncertainty of speed of sound ur(c) = 0.0001, except for very low pressures where the signal-to-noise ratio deteriorates and quality factor for the Helmholtz mode is ≤20

  17. Case-study magnetic resonance imaging and acoustic investigation of the effects of vocal warm-up on two voice professionals

    Laukkanen, A. M.; Horáček, Jaromír; Havlík, R.

    2012-01-01

    Roč. 37, č. 2 (2012), s. 75-82. ISSN 1401-5439 R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : speaker’s formant cluster * singer’s formant cluster * speech and singing training Subject RIV: BI - Acoustics Impact factor: 0.571, year: 2012

  18. Design and Experimental Applications of Acoustic Metamaterials

    Zigoneanu, Lucian

    Acoustic metamaterials are engineered materials that were extensively investigated over the last years mainly because they promise properties otherwise hard or impossible to find in nature. Consequently, they open the door for improved or completely new applications (e.g. acoustic superlens that can exceed the diffraction limit in imaging or acoustic absorbing panels with higher transmission loss and smaller thickness than regular absorbers). Our objective is to surpass the limited frequency operating range imposed by the resonant mechanism that s1ome of these materials have. In addition, we want acoustic metamaterials that could be experimentally demonstrated and used to build devices with overall performances better than the previous ones reported in the literature. Here, we start by focusing on the need of engineered metamaterials in general and acoustic metamaterials in particular. Also, the similarities between electromagnetic metamaterials and acoustic metamaterials and possible ways to realize broadband acoustic metamaterials are briefly discussed. Then, we present the experimental realization and characterization of a two-dimensional (2D) broadband acoustic metamaterial with strongly anisotropic effective mass density. We use this metamaterial to realize a 2D broadband gradient index acoustic lens in air. Furthermore, we optimize the lens design by improving each unit cell's performance and we also realize a 2D acoustic ground cloak in air. In addition, we explore the performance of some novel applications (a 2D acoustic black hole and a three-dimensional acoustic cloak) using the currently available acoustic metamaterials. In order to overcome the limitations of our designs, we approach the active acoustic metamaterials path, which offers a broader range for the material parameters values and a better control over them. We propose two structures which contain a sensing element (microphone) and an acoustic driver (piezoelectric membrane or speaker). The

  19. Acoustic source for generating an acoustic beam

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  20. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  1. CT findings of acoustic neuroma

    Sim, Do Choul; Lee, Jae Mun; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic Univ., Seoul (Korea, Republic of)

    1987-10-15

    Computed Tomography (CT) is very accurate in evaluating the location, size, shape and extension of acoustic neuroma. We analysed CT findings of 23 acoustic neuromas seen at Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College during the period of from January 1981 to June 1987. 1. Five (22%) were men and 18 (78%) were women with the high incidence occurring in the 4th and 5th decades. 2. Twenty two cases were diagnosed satisfactorily by CT examinations which included axial, coronal and reconstruction images. One with the smallest dimension of 8 mm in diameter could not be detected by the conventional CT scan. But is could be seen after metrizamide cisternography. mean size of the tumor masses was estimated 3.6 cm in diameter. 3. The shape of the tumor was oval in 50%, round in 27% and lobulated in 23%. The masses were presented as hypodense in 50%, isodense in 32% and hyperdense in 18%. All tumors were extended from the internal acoustic and toward the cerebellopontine angle. The internal acoustic canal was widened in 77%. Hydrocephalus was associated in 45%. Widening of cerebellopontine angle cistern was noted in 50%. 4. After contrast infusion the tumors were enhanced markedly in 45%, moderately in 32% and mildly in 23%. The enhanced pattern was homogeneous in 41%, mixed in 41% and rim in 18%. The margin of the tumors was sharply defined in 82%. The tumors were attached to the petrous bone with acute angle in 73%. Cystic change within the tumor was found in 27%. The peritumoral edema was noted in 45%. In conclusion, CT is of most effective modalities to evaluate size, shape, extent and internal architecture of acoustic neuroma as well as relationship with adjacent anatomic structures including the internal acoustic canal.

  2. Circadian and individual variability of TSH, fT4, fT3 in patients with subclinical hypothyroidism

    M A Sviridonova; V V Fadeyev; A V Ilyin

    2010-01-01

    To investigate circadian and individual variability of TSH, fТ4, fТ3 in patients with subclinical hypothyroidism (SH).20 patients with earlier diagnosed SH at the age of 18–60 years have been included. Measurements of serum TSH, fT4, fT3 were performed at 8.00–9.00 h and 14.00–16.00 during the day and at 8.00–9.00 h in 4–6 weeks. The median of TSH concentrations in the morning was 5,83 mU/l, at the daytime – 3.79 mU/l (р < 0.05). The amplitude of TSH circadian variability reached 73% (Me –...

  3. Semiempirical and First Principles Study of the Crystal Field Acting on the 4f Electrons in Rare Earth Cuprates

    A theoretical investigation of the rare earth (RE3+) localized 4f energy spectrum at regular sites of RE Ba2Cu3O6+x (x = 0, 1), and RE2CuO4 cuprates was performed. To predict the k=4 and 6 crystal field (CF) parameters Bkq, we employed the semiempirical superposition model (SM) used earlier for quantitative estimates of the CF interaction acting on 4f states in RE cuprates. The SM model does not apply for the k=2 CF parameters where the long range electrostatic contribution dominates. Therefore, to calculate the k=2 CF parameters, we used the parameter-free first-principles method based on the density functional theory. (author)

  4. Predicting the Dielectric Strength of c-C4F8 and SF6 Gas Mixtures by Monte Carlo Method

    WU Bian-tao; XIAO Deng-ming

    2007-01-01

    An improved Monte Carlo method was used to simulate the motion of electrons in c-C4F8 and SF6 gas mixtures for pulsed townsend discharge. The electron swarm parameters such as effective ionization coefficient, (-α) and drift velocity over the E/N range from 280~700 Td(1Td= 10-21 V·m2) were calculated by employing a set of cross sections available in literature. From the variation cure of (-α) with SF6 partial pressure p, the limiting field (E/N)lim of gas mixture at different gas content was determined. It is found that the limiting field of c-C4F8 and SF6gas mixture is higher than that of pure SF6 at any SF6 mixture ratio. Simulation results show excellent agreement with experiment data available in previous literature.

  5. : FMRI in acoustic trauma sequelae

    Job, Agnès; Pons, Yoann; Lamalle, Laurent; Jaillard, Assia; Buck, Karl; Segebarth, Christoph; Delon-Martin, Chantal

    2012-01-01

    International audience The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory "oddball" attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related...

  6. Atlantic Herring Acoustic Surveys

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  7. Acoustic Neuroma Educational Video

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  8. Acoustic Neuroma Educational Video

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  9. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  10. Acoustic Neuroma Educational Video

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  11. Acoustic Neuroma Educational Video

    Full Text Available ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ... Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask ...

  12. Acoustic Neuroma Educational Video

    Full Text Available ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew ... ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA. ...

  13. Cystic acoustic neuromas

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  14. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ploskey, Gene R.

    2011-10-01

    This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for the feasibility study. Juvenile salmonids were present in the immediate forebay of the WTC tower throughout 2010. The juvenile salmonid abundance index was low in the spring (<200 fish per sample-day), began increasing in late April and peaked in mid-May. Fish abundance index began decreasing in early June and remained low in the summer months. Fish abundance increased again in the fall, starting in October, and peaked on November 8-9. A second peak occurred on December 22. Afterwards, abundance was low for the rest of the study (through January 2011). Average fish length for juvenile salmonids during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November

  15. Holographic acoustic elements for manipulation of levitated objects

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  16. High-pressure synthesis and characterization of the first cerium fluoride borate CeB2O4F

    CeB2O4F is the first cerium fluoride borate, which is exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO3]3− groups. This new cerium fluoride borate was synthesized under high-pressure/high-temperature conditions of 0.9 GPa and 1450 °C in a Walker-type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with eight formula units and the lattice parameters a=821.63(5), b=1257.50(9), c=726.71(6) pm, V=750.84(9) Å3, R1=0.0698, and wR2=0.0682 (all data). The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO3]3− groups. Furthermore, IR spectroscopy, Electron Micro Probe Analysis and temperature-dependent X-ray powder diffraction measurements were performed. - Graphical abstract: A new rare-earth fluoride borate CeB2O4F could be synthesized under high-pressure/high-temperature conditions of 0.9 °GPa and 1450 °Cin a Walker-type multianvil apparatus. The crystal structure represents a new structure type in the class of rare-earth fluoride borates. The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO3]3− groups. A closer view on the ac-plane shows an interesting wave-like modulation of the borate chains. Highlights: • CeB2O4F is the first fluoride borate exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO3]3− groups. • CeB2O4F is the first cerium fluoride borate. • High-pressure conditions were necessary to synthesize CeB2O4F

  17. Acoustic characterisation of ultrasound contrast agents at high frequency

    Sun, Chao

    2013-01-01

    This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound in the fields of preclinical, intravascular, ophthalmology and superficial tissue imaging. Although research studying the acoustic response of UCAs at low diagnostic ultrasonic frequencies has been well documented, quantitative information on the acoustical prop...

  18. A4F-SAXS online-coupling for the investigation of nanoparticles and polymers; Die A4F-SAXS Online-Kopplung zur Untersuchung von Nanopartikeln und Polymeren

    Knappe, Patrick

    2012-07-13

    In the present thesis the online-coupling of asymmetric flow field-flow fractionation (A4F) with small-angle X-ray scattering (SAXS) as a versatile analytical tool is introduced and applied to current challenges in nanoparticle analysis as well as to model systems of technically relevant polymers. The A4F provides size separation of sample solutions and suspensions. Due to the separation principle only low shear forces are applied which appear in competing methods. Therefore, this method allows processing of very sensitive sample materials. SAXS allows non-destructive probing of nanoscale structures in the range of about one to one hundred nanometers. By coupling with A4F, the complexity of sample systems with broad size distributions, which are therefore frequently hard to characterize, is reduced significantly prior to further analysis. Applying this approach, detailed information about sample properties can be gained accurately with respect to the shape, size and size distribution of particles or conformation of macromolecules in short time. Addition of a dynamic light scattering detector to the setup allows a further conclusion. With the latter, a nanoparticles suspension was characterized rapidly and with good precision with respect to the core properties of the particles as well as the thickness of the stabilizer's shell in a single online run. These parameters are important when dealing not only with functionality but also with the bioavailability or toxicity of nanoparticles. This methodology was also successfully applied to polymer systems for the first time, namely poly(vinyl pyrrolidone)s as well as strong and weak polyelectrolytes. Additionally, due to the applied separation method samples with broad molar mass distributions were processable which otherwise tend to interfere with stationary phase-based chromatography. Furthermore, using SAXS, structural properties can be resolved from smaller polymer size-fractions which are hardly accessible with

  19. Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs.

    Mayberry, Laura K; Allen, M Leah; Dennis, Michael D; Browning, Karen S

    2009-08-01

    Eukaryotic initiation factor (eIF) 4B is known to interact with multiple initiation factors, mRNA, rRNA, and poly(A) binding protein (PABP). To gain a better understanding of the function of eIF4B, the two isoforms from Arabidopsis (Arabidopsis thaliana) were expressed and analyzed using biophysical and biochemical methods. Plant eIF4B was found by ultracentrifugation and light scattering analysis to most likely be a monomer with an extended structure. An extended structure would facilitate the multiple interactions of eIF4B with mRNA as well as other initiation factors (eIF4A, eIF4G, PABP, and eIF3). Eight mRNAs, barley (Hordeum vulgare) alpha-amylase mRNA, rabbit beta-hemoglobin mRNA, Arabidopsis heat shock protein 21 (HSP21) mRNA, oat (Avena sativa) globulin, wheat (Triticum aestivum) germin, maize (Zea mays) alcohol dehydrogenase, satellite tobacco necrosis virus RNA, and alfalfa mosaic virus (AMV) 4, were used in wheat germ in vitro translation assays to measure their dependence on eIF4B and eIF4F isoforms. The two Arabidopsis eIF4B isoforms, as well as native and recombinant wheat eIF4B, showed similar responses in the translation assay. AMV RNA 4 and Arabidopsis HSP21 showed only a slight dependence on the presence of eIF4B isoforms, whereas rabbit beta-hemoglobin mRNA and wheat germin mRNA showed modest dependence. Barley alpha-amylase, oat globulin, and satellite tobacco necrosis virus RNA displayed the strongest dependence on eIF4B. These results suggest that eIF4B has some effects on mRNA discrimination during initiation of translation. Barley alpha-amylase, oat globulin, and rabbit beta-hemoglobin mRNA showed the highest activity with eIF4F, whereas Arabidopsis HSP21 and AMV RNA 4 used both eIF4F and eIF(iso)4F equally well. These results suggest that differential or optimal translation of mRNAs may require initiation complexes composed of specific isoforms of initiation factor gene products. Thus, individual mRNAs or classes of mRNAs may respond to the

  20. Acoustic metamaterial design and applications

    Zhang, Shu

    The explosion of interest in metamaterials is due to the dramatically increased manipulation ability over light as well as sound waves. This material research was stimulated by the opportunity to develop an artificial media with negative refractive index and the application in superlens which allows super-resolution imaging. High-resolution acoustic imaging techniques are the essential tools for nondestructive testing and medical screening. However, the spatial resolution of the conventional acoustic imaging methods is restricted by the incident wavelength of ultrasound. This is due to the quickly fading evanescent fields which carry the subwavelength features of objects. By focusing the propagating wave and recovering the evanescent field, a flat lens with negative-index can potentially overcome the diffraction limit. We present the first experimental demonstration of focusing ultrasound waves through a flat acoustic metamaterial lens composed of a planar network of subwavelength Helmholtz resonators. We observed a tight focus of half-wavelength in width at 60.5 KHz by imaging a point source. This result is in excellent agreement with the numerical simulation by transmission line model in which we derived the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies. Our experiment shows the promise of designing compact and light-weight ultrasound imaging elements. Moreover, the concept of metamaterial extends far beyond negative refraction, rather giving enormous choice of material parameters for different applications. One of the most interesting examples these years is the invisible cloak. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. However, the cloak designed by transformation optics usually calls for a highly anisotropic metamaterial, which

  1. The apolipoprotein-AI mimetic peptide L4F at a modest dose does not attenuate weight gain, inflammation, or atherosclerosis in LDLR-null mice.

    Michelle M Averill

    Full Text Available High density lipoprotein (HDL cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/- model fed a high fat high sucrose with cholesterol (HFHSC diet.Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks.Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis.Our results suggest that neither L4F (100 µg/day/mouse nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.

  2. Structure, stability, and photoluminescence in the anti-perovskites Na3W1−xMoxO4F (0≤x≤1)

    Single-phase ordered oxyfluorides Na3WO4F, Na3MoO4F and their mixed members Na3W1−xMoxO4F can be prepared via facile solid state reaction of Na2MO4·2H2O (M=W, Mo) and NaF. Phases produced from incongruent melts are metastable, but lower temperatures allow for a facile one-step synthesis. In polycrystalline samples of Na3W1−xMoxO4F, the presence of Mo stabilizes the structure against decomposition to spinel phases. Photoluminescence studies show that upon excitation with λ=254 nm and λ=365 nm, Na3WO4F and Na3MoO4F exhibit broad emission maxima centered around 485 nm. These materials constitute new members of the family of self-activating ordered oxyfluoride phosphors with anti-perovskite structures which are amenable to doping with emitters such as Eu3+. - Graphical abstract: Directed synthesis of the ordered oxyfluorides Na3W1−xMoxO4F (0≤x≤1) has shown that a complete solid solution is attainable and provides the first example of photoluminescence in these materials. - Highlights: • Na3W1−xMoxO4F is a complete solid solution with hexagonal anti-perovskite structure. • The presence of even small amounts of Mo stabilizes the structure against decomposition. • Na3W1−xMoxO4F has broad emissions centered ≈485 nm (λex=254 nm and λex=365 nm). • These materials constitute a new family of self-activated oxyfluoride phosphors. • Na3W1−xMoxO4F materials are amenable to doping with emitters such as Eu3+

  3. ACOUSTICAL STANDARDS NEWS.

    Blaeser, Susan B; Struck, Christopher J

    2016-03-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Susan B. Blaeser.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27036268

  4. Visualizing underwater acoustic matched-field processing

    Rosenblum, Lawrence; Kamgar-Parsi, Behzad; Karahalios, Margarida; Heitmeyer, Richard

    1991-06-01

    Matched-field processing is a new technique for processing ocean acoustic data measured by an array of hydrophones. It produces estimates of the location of sources of acoustic energy. This method differs from source localization techniques in other disciplines in that it uses the complex underwater acoustic environment to improve the accuracy of the source localization. An unexplored problem in matched-field processing has been to separate multiple sources within a matched-field ambiguity function. Underwater acoustic processing is one of many disciplines where a synthesis of computer graphics and image processing is producing new insight. The benefits of different volume visualization algorithms for matched-field display are discussed. The authors show how this led to a template matching scheme for identifying a source within the matched-field ambiguity function that can help move toward an automated source localization process.

  5. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

    2012-04-01

    This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish

  6. Inductively Coupled Plasma etching of amorphous silicon nanostructures over nanotopography using C4F8/SF6 chemistry

    Harvey-Collard, Patrick; Jaouad, Abdelatif; Drouin, Dominique; Pioro-Ladrière, Michel

    2013-01-01

    Inductively Coupled Plasma (ICP) etching of amorphous silicon (a-Si) nanostructures using a continuous C4F8/SF6 plasma over nanotopography in silicon dioxide (SiO2) is investigated. The coil power of the ICP system is used to tune the a-Si etch rate from 20 to 125 nm/min. The etch rates of a-Si, SiO2 and electroresist are measured depending on the SF6 ratio, platen power and chamber pressure and used to optimize the a-Si:SiO2 etch selectivity. The results on nanostructures show that the prese...

  7. Magnetic exchange coupling in 3d-4f molecular nanomagnets investigated by X-ray magnetic circular dichroism

    Full text: Single-molecule magnets are exchange-coupled spin clusters showing slow relaxation of magnetization. In recent years, efforts have been intensified to increase the magnetization reversal barrier and thus enhance relaxation times by combining rare earth ions with transition-metal ions. Rare-earth ions exhibit very large magnetic anisotropies due to their strong spin-orbit coupling and their mostly unquenched orbital momentum. In this contribution we use X-ray magnetic circular dichroism to observe element-specific magnetization curves. In conjunction with SQUID magnetization and susceptibility measurements, we are able to obtain information about the magnetic coupling between 3d and 4f ions. (author)

  8. Theoretical study of Pr3+:ZBLAN upconversion ultraviolet fiber laser based on 4f5d state

    Aiping Fang; Zhenwen Dai; Tao Luo; Guijuan Sun; Lijun Wang; Zhankui Jiang

    2005-01-01

    A theoretical study of the kinetics of two-step-excitation upconversion ultraviolet cw fiber laser based on the 4f5d state in Pr3+:ZBLAN is performed using steady population rate equations and light propagation equations. Under different Pr3+ concentrations, the dependence of the threshold pump powers on the other pump power, the variations of laser output power with reflectivity of output coupler, pump powers and fiber length as well as the dependence of the optimum fiber length on pump powers are investigated.The results predict some optimum laser parameters for maximizing output power.

  9. Crystal structure of fluoroantimonate(3) NaCs3Sb4F16 · H2O

    Crystal structure of NaCs3Sb4F16 · H2O fluoroantimonate with mixed cations is investigated. The crystals are monoclinic with lattice parameters: a = 21.694(3), b = 15.791(3), c = 6.290(1) A, γ = 114. 37(1) Deg, ρ(calc.) = 4.165 g/cm2, ρ(exp.) = 4.15 g/cm3, sp.gr. B2/m. Na+, Cs+ cations, H2O molecules and [Sb2F8]2n- anion chains are structural crystal units

  10. AST Launch Vehicle Acoustics

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  11. On the tensor polarizabilities in the 4fN 6s2 ground levels of the neutral rare-earth atoms

    A systematic study of the Stark splitting of the 4fN 6s2 ground levels in the lanthanides was performed by the nonlinear level-crossing technique and the optical pumping method with rf detection in parallel electric and magnetic fields. The tensor polarizabilities of the hyperfine structure levels in 141Pr I, 159Tb I, 165Ho I, 169Tm I and of the fine structure levels in 142Nd I, 164Dy I, and 166Er I were deduced from the level-crossing and rf signals. Values of the tensor polarizability of the 4f electron were evaluated from the experimental results. On average these values decrease with the increasing number of 4f electrons from the value of 141Pr (4f3 6s2) α2(4f) = 1.16(12) kHz/(kV/cm)2 to the value of 169Tm (4f13 6s2) α2(4f) = 0.68(4) kHz/(kV/cm)2. This decrease is caused by the lanthanides contraction. (orig.)

  12. Poly(A) binding protein abundance regulates eukaryotic translation initiation factor 4F assembly in human cytomegalovirus-infected cells.

    McKinney, Caleb; Perez, Cesar; Mohr, Ian

    2012-04-10

    By commandeering cellular translation initiation factors, or destroying those dispensable for viral mRNA translation, viruses often suppress host protein synthesis. In contrast, cellular protein synthesis proceeds in human cytomegalovirus (HCMV)-infected cells, forcing viral and cellular mRNAs to compete for limiting translation initiation factors. Curiously, inactivating the host translational repressor 4E-BP1 in HCMV-infected cells stimulates synthesis of the cellular poly(A) binding protein (PABP), significantly increasing PABP abundance. Here, we establish that new PABP synthesis is translationally controlled by the HCMV-encoded UL38 mammalian target of rapamycin complex 1-activator. The 5' UTR within the mRNA encoding PABP contains a terminal oligopyrimidine (TOP) element found in mRNAs, the translation of which is stimulated in response to mitogenic, growth, and nutritional stimuli, and proteins encoded by TOP-containing mRNAs accumulated in HCMV-infected cells. Furthermore, UL38 expression was necessary and sufficient to regulate expression of a PABP TOP-containing reporter. Remarkably, preventing the rise in PABP abundance by RNAi impaired eIF4E binding to eIF4G, thereby reducing assembly of the multisubunit initiation factor eIF4F, viral protein production, and replication. This finding demonstrates that viruses can increase host translation initiation factor concentration to foster their replication and defines a unique mechanism whereby control of PABP abundance regulates eIF4F assembly. PMID:22431630

  13. Theoretical and experimental verification of acoustic focusing in metal cylinder structure

    Xia, Jian-ping; Sun, Hong-xiang; Cheng, Qian; Xu, Zheng; Chen, Hao; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong; Guan, Yi-jun

    2016-05-01

    We report the realization of a multifocal acoustic focusing lens using a simple metal cylinder structure immersed in water, as determined both experimentally and theoretically. The acoustic waves can be focused on one or more points, because the Mie-resonance modes are excited in the cylinder structure. The acoustic pressure fields measured in the Schlieren imaging system agree with the results calculated using the acoustic scattering theory. Interesting applications of multifocal focusing in the acoustic encryption communication are further discussed. Our work should be helpful in understanding the focusing mechanism and experimentally measuring the acoustic phenomena in cylinder structures.

  14. Acoustic streaming in microchannels

    Tribler, Peter Muller

    , and experimental results for the streaming-induced drag force dominated motion of particles suspended in a water-filled microchannel supporting a transverse half-wavelength resonance. The experimental and theoretical results agree within a mean relative dierence of approximately 20%, a low deviation given state......This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...

  15. Vibro-acoustics

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  16. Springer handbook of acoustics

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  17. Active acoustic metamaterials reconfigurable in real-time

    Popa, Bogdan-Ioan; Konneker, Adam; Cummer, Steven A

    2015-01-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or only modestly tunable, tying them to the particular application for which they are designed. We present in this paper a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real-time by configuring the digital electronics that control the metamaterial acoustic properties. We demonstrate experimentally this approach by designing a metamaterial slab configured to act as a very thin acoustic lens that manipulates differently three identical, consecutive pulses incident on the lens. Moreover, we show that the slab can be configured to implement simultaneously various roles, such as that of a lens and beam steering device. Finally, we show that the metamaterial slab is suitable for efficient second harmonic acoustic imaging devices capable to overcome the diffraction limit of l...

  18. Shallow Water Acoustic Laboratory

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  19. Handbook of Engineering Acoustics

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  20. Acoustic dispersive prism

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  1. Bioeffects due to acoustic droplet vaporization

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  2. High frequency acoustic microscopy with Fresnel zoom lens

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated. Because only 0 and 180 degree phase transducers are used, an imaging system with the Fresnel zoom lens could work at very high frequency, which overcomes the frequency limit of the traditional phased array acoustic imaging system. Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well. Based on the principle of scanning of the focus with the change of frequency for the excited signal, an experimental imaging system is also built. Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz. Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  3. Prospecting Lighting Applications with Ligand Field Tools and Density Functional Theory: A First-Principles Account of the 4f(7)-4f(6)5d(1) Luminescence of CsMgBr3:Eu(2+).

    Ramanantoanina, Harry; Cimpoesu, Fanica; Göttel, Christian; Sahnoun, Mohammed; Herden, Benjamin; Suta, Markus; Wickleder, Claudia; Urland, Werner; Daul, Claude

    2015-09-01

    The most efficient way to provide domestic lighting nowadays is by light-emitting diodes (LEDs) technology combined with phosphors shifting the blue and UV emission toward a desirable sunlight spectrum. A route in the quest for warm-white light goes toward the discovery and tuning of the lanthanide-based phosphors, a difficult task, in experimental and technical respects. A proper theoretical approach, which is also complicated at the conceptual level and in computing efforts, is however a profitable complement, offering valuable structure-property rationale as a guideline in the search of the best materials. The Eu(2+)-based systems are the prototypes for ideal phosphors, exhibiting a wide range of visible light emission. Using the ligand field concepts in conjunction with density functional theory (DFT), conducted in nonroutine manner, we develop a nonempirical procedure to investigate the 4f(7)-4f(6)5d(1) luminescence of Eu(2+) in the environment of arbitrary ligands, applied here on the CsMgBr3:Eu(2+)-doped material. Providing a salient methodology for the extraction of the relevant ligand field and related parameters from DFT calculations and encompassing the bottleneck of handling large matrices in a model Hamiltonian based on the whole set of 33,462 states, we obtained an excellent match with the experimental spectrum, from first-principles, without any fit or adjustment. This proves that the ligand field density functional theory methodology can be used in the assessment of new materials and rational property design. PMID:26270436

  4. Tomography in standing trees: revisiting the determination of acoustic wave velocity

    Arciniegas, Andrés; Brancheriau, Loïc; Lasaygues, Philippe

    2015-01-01

    Abstract• ContextThe quality of acoustic tomographic images in standing trees is mainly function of the accuracy of the acoustic velocity computation. Improving the acoustic velocity determination is, furthermore, of great interest because acoustic tools are widely used in nondestructive testing of wood.• AimsFour different signal processing algorithms were used (1) to study the effect of the signal dynamic on the velocity determination, (2) to determine the validity range of each computation...

  5. Images

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  6. 17 CFR 41.3 - Application for an exemptive order pursuant to section 4f(a)(4)(B) of the Act.

    2010-04-01

    ..., or any broker or dealer exempt from floor broker or floor trader registration pursuant to section 4f... Commission may, in its sole discretion, grant the application, deny the application, decline to entertain...

  7. What Is an Acoustic Neuroma

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  8. Surface resonant states and superlensing in acoustic metamaterials

    Ambati, Muralidhar; Fang, Nicholas; Sun, Cheng; Zhang, Xiang

    2007-05-01

    We report that the negative material responses of acoustic metamaterials can lead to a plethora of surface resonant states. We determine that negative effective-mass density is the necessary condition for the existence of surface states on acoustic metamaterials. We offer the microscopic picture of these unique surface states; in addition, we find that these surface excitations enhance the transmission of evanescent pressure fields across the metamaterial. The evanescent pressure fields scattered from an object can be resonantly coupled and enhanced at the surface of the acoustic metamaterial, resulting in an image with resolution below the diffraction limit. This concept of acoustic superlens opens exciting opportunities to design acoustic metamaterials for ultrasonic imaging.

  9. Structure, stability, and photoluminescence in the anti-perovskites Na3W1-xMoxO4F (0≤x≤1)

    Sullivan, Eirin; Avdeev, Maxim; Blom, Douglas A.; Gahrs, Casey J.; Green, Robert L.; Hamaker, Christopher G.; Vogt, Thomas

    2015-10-01

    Single-phase ordered oxyfluorides Na3WO4F, Na3MoO4F and their mixed members Na3W1-xMoxO4F can be prepared via facile solid state reaction of Na2MO4·2H2O (M=W, Mo) and NaF. Phases produced from incongruent melts are metastable, but lower temperatures allow for a facile one-step synthesis. In polycrystalline samples of Na3W1-xMoxO4F, the presence of Mo stabilizes the structure against decomposition to spinel phases. Photoluminescence studies show that upon excitation with λ=254 nm and λ=365 nm, Na3WO4F and Na3MoO4F exhibit broad emission maxima centered around 485 nm. These materials constitute new members of the family of self-activating ordered oxyfluoride phosphors with anti-perovskite structures which are amenable to doping with emitters such as Eu3+.

  10. Metastable level properties of the excited configuration $4p^{6}4d^{8}4f$

    Karpuškienė, R; Kisielius, R

    2015-01-01

    Metastable levels in rhodium-like ions with the ground configuration $4p^{6}4d^{9}$ and the excited configurations $4p^{6}4d^{8}4f$ and $4p^{5}4d^{10}$ are investigated. The {\\sl ab initio} calculations of the level energies, radiative multipole transition probabilities are performed in a quasirelativistic Hartree-Fock approximation employing an extensive configuration interaction based on quasirelativistic transformed radial orbitals. A systematic trends in behavior of calculated radiative lifetimes of the metastable levels are studied for the ions from $Z=60$ to $Z=92$. The significance of the radiative transitions of higher multipole order ($M2$ and $E3$) for the calculated radiative lifetimes is demonstrated and discussed.

  11. Sistema Óptico de Encriptación de Doble Máscara de Fase bajo Arquitectura 4f

    Carlos A. Ríos

    2010-12-01

    Full Text Available Nowadays the area of optical encryption of information concentrates the efforts of many researchers in laboratories around the world, mainly because contributions presented in the last two decades have shown the reliability, versatility and applicability of such systems. One of the most successful systems, which is currently protected by several patents, is based on the use of two random phase masks and a 4f architecture. In this contribution we do a review of this optical encryption system. We present the theory and the basic procedure explaining the setups and techniques that allow its experimental implementation, andwe present results obtained by computational simulations of the optical virtual system to show the validity of the method.

  12. Synthesis and some properties of Rb2[UO2SO4F2]xH2O

    Rubidium difluorosulfatouranylate monohydrate is prepared by crystallization of aqueous solutions containing rubidium fluoride and uranyl sulfate at a mole ratio of 2:1 and temperature of 20-25 deg C. X-ray and IR spectroscopic investigations of the synthesized complex are conducted. This complex is isostructural to the K2[UO2epslonO4F2]xH2O (epsilon=S, Se or Cr) compounds studied earlier. Crystallographic characteristics of the complex are presented. A conclusion on crystal and molecular structure of the compound is drawn. It is noted that complete difluorosulfatouranylate dehydration proceeds in one stage at 490-530 K and is accompanied by an endothermic effect

  13. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    2010-01-01

    Roč. 4, č. 1 (2010), s. 25-36. ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  14. Acoustic Neuroma Educational Video

    Full Text Available ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ... Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself Post-treatment Post-treatment ...

  15. Ocean acoustic hurricane classification.

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  16. Cochlear bionic acoustic metamaterials

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  17. Computational Ocean Acoustics

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  18. Acoustic Signals and Systems

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will...... present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  19. eshless Method for Acoustic and Elastic Modeling

    JiaXiaofeng; HuTianyue; WangRunqiu

    2005-01-01

    Wave equation method is one of the fundamental techniques for seismic modeling and imaging. In this paper the element-free-method (EFM) was used to solve acoustic and elastic equations.The key point of this method is no need of elements, which makes nodes free from the elemental restraint. Besides, the moving-least-squares (MLS) criterion in EFM leads to a high accuracy and smooth derivatives. The theories of EFM for both acoustic and elastic wave equations as well as absorbing boundary conditions were discussed respectively. Furthermore, some pre-stack models were used to show the good performance of EFM in seismic modeling.

  20. Research in acoustic and optical wave technology

    Siegman, A. E.; Auld, B. A.; Kino, G. S.; Beasley, M. R.; Byer, R. L.

    1982-04-01

    This report summaries the research progress and activity 1 April 1981 through 31 March 1982. Specific Projects are: (81-1) Interaction of Acoustic and Optical Waves with Domains in Ferroic Fibers with Bulk Materials: (B.A. Auld); (81-2) High T Josephson Junctions & Circuits (M. R. Beasley); (81-3) Optical & Nonlinear Optical Studies of Single Crystal Fibers (R. L. Byer); (81-4) Acoustic Surface Wave Scanning of Optical Images, (G. S. Kino); (81-5) Picosecond Raman Studies of Electronic Solids (A. E. Siegman).

  1. SAW-Modulated Image Device

    Benz, H. F.

    1985-01-01

    Imaging device uses surface-acoustic-wave (SAW) charge transfer for image readout. Spatial resolution of image changed electronically by changing frequency of applied signal. Surface acoustic waves create traveling longitudinal electric fields. These fields create potential wells that carry along stored charges. Charges injected into wells by photoelectric conversion when light strikes device.

  2. Flat acoustic lens by acoustic grating with curled slits

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating

  3. Ultrasound-modulated optical tomography with intense acoustic bursts

    Zemp, Roger J.; Kim, Chulhong; Wang, Lihong V.

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  4. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  5. Broad-band acoustic hyperbolic metamaterial

    Shen, Chen; Sui, Ni; Wang, Wenqi; Cummer, Steven A; Jing, Yun

    2015-01-01

    Acoustic metamaterials (AMMs) are engineered materials, made from subwavelength structures, that exhibit useful or unusual constitutive properties. There has been intense research interest in AMMs since its first realization in 2000 by Liu et al. A number of functionalities and applications have been proposed and achieved using AMMs. Hyperbolic metamaterials are one of the most important types of metamaterials due to their extreme anisotropy and numerous possible applications, including negative refraction, backward waves, spatial filtering, and subwavelength imaging. Although the importance of acoustic hyperbolic metamaterials (AHMMs) as a tool for achieving full control of acoustic waves is substantial, the realization of a broad-band and truly hyperbolic AMM has not been reported so far. Here, we demonstrate the design and experimental characterization of a broadband AHMM that operates between 1.0 kHz and 2.5 kHz.

  6. Predicting Acoustics in Class Rooms

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be...

  7. Acoustic metamaterial for subwavelength edge detection

    Molerón, Miguel; Daraio, Chiara

    2015-08-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ~5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions.

  8. Collimator with compensated filtration: clinical adaptation for recommendation 4f of the EU about the radiation protection in oral dental radiology

    Recent recommendations by the European Union (2004) for performing lateral cranial cephalometry (LCC) state that collimation should be maximized so that only those tissues necessary are irradiated when performing clinical diagnoses, although the fact that many manufacturers do not incorporate these elements in their equipment design has been recognised (recommendations 4f). Aim: the manufacture and utilization of a collimator with a pre-patient compensating filter for LLC which may be used in most extraoraldental radiology units, as well as determining the reduction in the dose of radiation absorbed by more sensitive tissues exposed to said clinical exploration. Making use of mannequins, phantom and craniums, we constructed a collimator with a compensating filter and established the necessary technical, dosimetric and quality specifications for its clinical use. Subsequently, we studied 16 patients referred for cephalometric study, determining the radiation dose (TLDs) in both the patients (crystalline lens, frontal lobe, parotid/submaxillary/thyroid glands and brain) and in the radiographic film, as well as in different parts of the collimator/filter. Al presented we are aiming for its clinical use by carrying out LCC in another 16 patients referred of orthodontic treatment but with the pre-a patient introduction of the tested collimator with the compensating filter as a substitute for the usual technique. The collimation reduced the field or radiation by some 40% and with that, so too the radiated tissues. The compensating filter reduced the dose in tissues by some 34.2. Our collimator has allowed the radiological image to be obtained with only one third the usual radiation dose. The dose reaching the film shies only between 17% less than in the usual technique and didn't alter its diagnostic capacity. A reduction of 61,6% of the dose administered to the patient is achieved by incorporating the collimator and filter to most radiological equipment without the need

  9. Tunable acoustic metamaterials

    Babaee, Sahab; Viard, Nicolas; Fang, Nicholas; Bertoldi, Katia

    2015-03-01

    We report a new class of active and switchable acoustic metamaterials composed of three-dimensional stretchable chiral helices arranged on a two-dimensional square lattice. We investigate the propagation of sounds through the proposed structure both numerically and experimentally and find that the deformation of the helices can be exploited as a novel and effective approach to control the propagation of acoustic waves. The proposed concept expands the ability of existing acoustic metamaterials since we demonstrate that the deformation can be exploited to turn on or off the band gap, opening avenues for the design of adaptive noise-cancelling devices.

  10. Calculation and Comparison of Energy Interaction and Intensity Parameters for the Interaction of Nd(III with DL-Valine, DL-Alanine and β-Alanine in Presence and Absence of Ca2+/Zn2+ in Aqueous and Different Aquated Organic Solvents Using 4f-4f Transition Spectra as Probe

    H. Debecca Devi

    2009-01-01

    Full Text Available Absorption difference and comparative absorption spectrophotometric studies involving 4f-4f transitions of Nd(III and different amino acids: DL-valine, DL-alanine, and β-alanine in presence and absence of Ca(II and Zn(II in aqueous and different aquated organic solvents have been carried out. Variations in the spectral energy parameters: Slater-Condon (FK factor, Racah (EK, Lande factor (ξ4f, nephelauxetic ratio (β, bonding (b1/2, percentage covalency (δ are calculated to explore the mode of interaction of Nd(III with different amino acids: DL-valine, DL-alanine, and β-alanine. The values of experimentally calculated oscillator strength (P and computed values of Judd-Ofelt electric dipole intensity parameters, Tλ (λ = 2,4,6, are also determined for different 4f-4f transitions. The variation in the values of P and Tλ parameters explicitly shows the relative sensitivities of the 4f-4f transitions as well as the specific correlation between relative intensities, ligand structures, and nature of Nd(III-ligand interaction.

  11. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries

    Cui, Kai; Hu, Shuchun; Li, Yongkui

    2016-09-01

    In this study, nitrogen-doped graphene decorated LiVPO4F cathode material is firstly synthesized via a facile method. Well-dispersed LiVPO4F nanoparticles are embedded in nitrogen-doped graphene nanosheets, forming an effective conducting network. The added nitrogen-doped graphene nanosheets greatly enhance the electronic conductivity and Li-ion diffusion of LiVPO4F sample. When tested as cathode material for rechargeable lithium-ion batteries, the hybrid electrode exhibits superior high-rate performance and long-term cycling stability between 3.0 and 4.5 V. It delivers a large discharge capacity of 152.7 mAhg-1 at 0.1 C and shows a capacity retention of 97.8% after 60 cycles. Moreover, a reversible capacity of 90.1 mAhg-1 is maintained even after 500 cycles at a high rate of 20 C. The charge-transfer resistance of LiVPO4F electrode is also reduced in the nitrogen-doped graphene, revealing that its electrode-electrolyte complex reactions take place easily and thus improve the electrochemical performance. The above results provide a facile and effective strategy for the synthesis of LiVPO4F cathode material for high-performance lithium-ion batteries.

  12. Phononic crystals and acoustic metamaterials

    Ming-Hui Lu; Liang Feng; Yan-Feng Chen

    2009-01-01

    Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surf...

  13. Soft 3D acoustic metamaterial with negative index.

    Brunet, Thomas; Merlin, Aurore; Mascaro, Benoit; Zimny, Kevin; Leng, Jacques; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2015-04-01

    Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of 'ultra-slow' Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices. PMID:25502100

  14. Soft 3D acoustic metamaterial with negative index

    Brunet, Thomas; Merlin, Aurore; Mascaro, Benoit; Zimny, Kevin; Leng, Jacques; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2015-04-01

    Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of ‘ultra-slow’ Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices.

  15. Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8.

    Cobos, C J; Hintzer, K; Sölter, L; Tellbach, E; Thaler, A; Troe, J

    2015-12-28

    The thermal dissociation of octafluorocyclobutane, c-C4F8, was studied in shock waves over the range 1150-2300 K by recording UV absorption signals of CF2. It was found that the primary reaction nearly exclusively produces 2 C2F4 which afterwards decomposes to 4 CF2. A primary reaction leading to CF2 + C3F6 is not detected (an upper limit to the yield of the latter channel was found to be about 10 percent). The temperature range of earlier single pulse shock wave experiments was extended. The reaction was shown to be close to its high pressure limit. Combining high and low temperature results leads to a rate constant for the primary dissociation of k1 = 10(15.97) exp(-310.5 kJ mol(-1)/RT) s(-1) in the range 630-1330 K, over which k1 varies over nearly 14 orders of magnitude. Calculations of the energetics of the reaction pathway and the rate constants support the conclusions from the experiments. Also they shed light on the role of the 1,4-biradical CF2CF2CF2CF2 as an intermediate of the reaction. PMID:26577435

  16. Potential Hazards Relating to Pyrolysis of c-C4F8 in Selected Gaseous Diffusion Plant Operations

    As part of a program intended to replace the present evaporative coolant at the gaseous diffusion plants (GDPs) with a non-ozone-depleting alternate, a series of investigations of the suitability of candidate substitutes in under way. One issue concerning a primary candidate, c-C4F8, is the possibility that it might produce the highly toxic perfluoroisobutylene (PFIB) in high temperature environments. This study was commissioned to determine the likelihood and severity of decomposition under two specific high temperature thermal environments, namely the use of a flame test for the presence of coolant vapors and welding in the presence of coolant vapors. The purpose of the study was to develop and evaluate available data to provide information that will allow the technical and industrial hygiene staff at the GDPs to perform appropriate safety evaluations and to determine the need for field testing or experimental work. The scope of this study included a literature search and an evaluation of the information developed therefrom. Part of that evaluation consists of chemical kinetics modeling of coolant decomposition in the two operational environments. The general conclusions are that PFIB formation is unlikely in either situation but that it cannot be ruled out completely under extreme conditions. The presence of oxygen, moisture, and combustion products will tend to lead to formation of oxidation products (COF2, CO, CO2, and HF) rather than PFIB

  17. A Multi-Scale Study on Silicon-Oxide Etching Processes in C4F8/Ar Plasmas

    Sui, Jiaxing; Zhang, Saiqian; Liu, Zeng; Yan, Jun; Dai, Zhongling

    2016-06-01

    A multi-scale numerical method coupled with the reactor, sheath and trench model is constructed to simulate dry etching of SiO2 in inductively coupled C4F8 plasmas. Firstly, ion and neutral particle densities in the reactor are decided using the CFD-ACE+ commercial software. Then, the ion energy and angular distributions (IEDs and IADs) are obtained in the sheath model with the sheath boundary conditions provided with CFD-ACE+. Finally, the trench profile evolution is simulated in the trench model. What we principally focus on is the effects of the discharge parameters on the etching results. It is found that the discharge parameters, including discharge pressure, radio-frequency (rf) power, gas mixture ratios, bias voltage and frequency, have synergistic effects on IEDs and IADs on the etched material surface, thus further affecting the trench profiles evolution. supported by National Natural Science Foundation of China (No. 11375040) and the Important National Science & Technology Specific Project of China (No. 2011ZX02403-002)

  18. Inductively Coupled Plasma etching of amorphous silicon nanostructures over nanotopography using C4F8/SF6 chemistry

    Harvey-Collard, Patrick; Drouin, Dominique; Pioro-Ladrière, Michel; 10.1016/j.mee.2013.02.099

    2013-01-01

    Inductively Coupled Plasma (ICP) etching of amorphous silicon (a-Si) nanostructures using a continuous C4F8/SF6 plasma over nanotopography in silicon dioxide (SiO2) is investigated. The coil power of the ICP system is used to tune the a-Si etch rate from 20 to 125 nm/min. The etch rates of a-Si, SiO2 and electroresist are measured depending on the SF6 ratio, platen power and chamber pressure and used to optimize the a-Si:SiO2 etch selectivity. The results on nanostructures show that the presence of an insulating etch-stop layer affects the passivation ratio required to achieve vertical sidewalls. A low pressure is also necessary in order to etch the silicon nanostructure embedded into the oxide nanotrenches to form a highly conformable a-Si nanowire. We argue that both of these behaviors could be explained by surface charging effects. Finally, etching of 20 nm a-Si nanowires that cross 15 nm trenches in oxide with vertical sidewalls and a 4.3:1 a-Si:SiO2 etch selectivity is demonstrated. This etching process ...

  19. Inelastic neutron scattering studies on the 3d-4f heterometallic single-molecule magnet Mn2Nd2

    The discovery of slow relaxation and quantum tunneling of the magnetization in Mn12ac more than 15 years ago has inspired both physicists and chemists alike. This class of molecules, now called single-molecule magnets (SMMs), has very recently been expanded to heterometallic clusters incorporating transition metal and rare earth ions. The 4f ions were chosen because of their large angular momentum and magnetic anisotropy. Inelastic neutron scattering experiments were performed on the time-of-flight disk-chopper spectrometer IN5 at ILL on the SMM Mn2Nd2. A magnetic model was developed which perfectly describes all data, including the magnetic data. It was found that neither the large anisotropy nor the large angular momentum of the NdIII ions is the main reason for the SMM behavior in this molecule. Our analysis of the data indicates that it is the weak coupling of the NdIII ions to the MnIII ions, usually considered as a drawback of rare earth ions, which enhances the relaxation time and therefore leads to SMM behavior.

  20. Detection of Doppler Shifted X-ray Line Profiles from the Wind of Zeta Puppis (O4f)

    Cassinelli, J P; Waldron, W L; MacFarlane, J J; Cohen, D H

    2001-01-01

    We report on a 67 ks HETG observation of the optically brightest early O-star, Zeta Pup (O4 f). Many resolved X-ray lines are seen in the spectra over a wavelength range of 5 to 25 A. Chandra has sufficient spectral resolution to study the velocity structure of isolated X-ray line profiles, and to distinguish the individual forbidden, intercombination, and resonance (fir) emission lines in several He-like ions even where the individual components are strongly Doppler broadened. In contrast with X-ray line profiles in other hot stars, Zeta Pup shows blue-shifted and skewed line profiles, providing the clearest and most direct evidence that the X-ray sources are embedded in the stellar wind. The broader the line, the greater the blueward centroid shift tends to be. The N VII line at 24.78 A is a special case, showing a flat-topped profile. This indicates it is formed in regions beyond most of the wind attenuation. The sensitivity of the He-like ion fir lines to a strong UV radiation field is used to derive the ...

  1. Acoustic integrated extinction

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  2. Acoustics Noise Test Cell

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  3. Principles of musical acoustics

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  4. Compact acoustic refrigerator

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  5. Acoustics lecturing in Mexico

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  6. Acoustic Igniter Project

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  7. Thermal Acoustic Fatigue Apparatus

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  8. Acoustic Neuroma Educational Video

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  9. Acoustic coherent perfect absorbers

    In this paper, we explore the possibility of achieving acoustic coherent perfect absorbers. Through numerical simulations in two dimensions, we demonstrate that the energy of coherent acoustic waves can be totally absorbed by a fluid absorber with specific complex mass density or bulk modulus. The robustness of such absorbing systems is investigated under small perturbations of the absorber parameters. We find that when the resonance order is the lowest and the size of the absorber is comparable to the wavelength in the background, the phenomenon of perfect absorption is most stable. When the wavelength inside both the background and the absorber is much larger than the size of the absorber, perfect absorption is possible when the mass density of the absorber approaches the negative value of the background mass density. Finally, we show that by using suitable dispersive acoustic metamaterials, broadband acoustic perfect absorption may be achieved. (papers)

  10. Autonomous Acoustic Receiver System

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  11. Acoustic emission source modeling

    Hora, Petr; Červená, Olga

    Plzeň : University of West Bohemia, 2009 - (Adámek, V.; Zajíček, M.). s. 1-2 ISBN 978-80-7043-824-4. [Výpočtová mechanika 2009. 09.11.2009-11.11.2009, Nečtiny] R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  12. The autonomous acoustic buoy

    Pellicer, Francisco; Reitsma, Robert; Agüera, Joaquín; Marinas, Alexandra

    2013-01-01

    The Acoustic Buoy is a project between the Laboratory of Applied Bioacoustics (LAB) and the Universitat Politècnica de Catalunya (UPC). In areas that the human activities produce high noise levels, such as oil exploration or construction, there is a need to monitor the environment for the presence of cetaceans. Another need is for fishing, to prevent endangered species from being killed. This can be done with an Autonomous Acoustic Buoy (AAB). Mooring or anchoring at to the seaflo...

  13. Anal acoustic reflectometry

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  14. Electric-dipole allowed (E1) and forbidden (E2, M1 and M2) transition probabilities of 4f for N+

    By applying systematically enlarged multi-configuration Dirac–Fock wavefunction, the transitions for electric-dipole allowed (E1) and forbidden (E2, M1 and M2) lines are studied among 4f pair coupling and low-lying configurations for singly ionized nitrogen. Most important effects of relativity, electron correlation, the rearrangement of electron density, Breit interaction, and quantum electrodynamic effects are included in the computation. Then, allowed (E1) and forbidden (E2, M1 and M2) transition probabilities of 4f for N+ are obtained and compared with experimental results. Good agreement with available experimental results is found and most of the data of 4f are presented for the first time. (atomic and molecular physics)

  15. Luminescence of Ce3+ doped LaPO4 nanophosphors upon Ce3+ 4f-5d and band-to-band excitation

    Luminescence spectral-kinetic studies have been performed for pure and Ce-doped LaPO4 micro- and nanosized phosphates using synchrotron radiation for the excitation within 5-20 eV energy range at T=8-300 K. Mechanisms for the excitation of Ce3+ 5d-4f emission as well as the quenching processes are discussed. The influence of surface defects has been considered to modify considerably the luminescent properties of nanosized phosphors upon the excitation in the energy range of Ce3+ 4f-5d transitions and LaPO4 host absorption

  16. Hyperfine structures in 167Er II: Measurements of high 4f125d levels and ab initio multiconfiguration Dirac-Fock calculations

    Hyperfine-structure measurements in high 4f125d metastable levels of 167Er II have been carried out to supplement earlier data on the low 4f126s levels. Ab initio multiconfiguration Dirac-Fock (MCDF) calculations have been performed, and the effects of core excitations and configuration interaction have been investigated. While good agreement between experiment and calculation was found for the low 6s levels, a less clear interpretation emerges from the higher 6d levels. This points directly to the problems in the MCDF scheme in understanding the effects of core excitation and configuration interaction

  17. POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature

    Fortier, Julie M.; Payton, Jacqueline E.; Cahan, Patrick; Ley, Timothy J.; Walter, Matthew J.; Graubert, Timothy A

    2010-01-01

    The t(8;21)(q22;q22) translocation, present in ~5% of adult acute myeloid leukemia (AML) cases, produces the AML1/ETO fusion protein. Dysregulation of the POU domain-containing transcription factor POU4F1 is a recurring abnormality in t(8;21) AML. Here, we show that POU4F1 over-expression is highly correlated with, but not caused by AML1/ETO. AML1/ETO markedly increases the self-renewal capacity of myeloid progenitors from murine bone marrow or fetal liver and drives expansion of these cells ...

  18. Spectral hole burning in the 4f-5d transition of Ce3+ in LuPO4 and YPO4

    Persistent spectral holes in the inhomogeneously broadened 4f1-4f05d1 zero-phonon transitions in LuPO4:Ce3+ and YPO4:Ce3+ crystals were burned at T=2 K. The holes observed in absorption were deep (up to 50%) and could be observed at least minutes after they were burned. The burning process was very efficient and is due to a single photon process. The observed spectral holes are burned in a photochemical process of photoionization of Ce3+ ions involving electron tunneling from Ce3+ centers to traps

  19. Experiments for possible hydroacoustic discrimination of free-swimming juvenile gadoid fish by analysis of broadband pulse spectra as well as 3D fish position form video images and split beam acoustics

    Lundgren, Bo; Nielsen, J. Rasmus

    2002-01-01

    -bandwidth echosounder and echo-processor system, a narrowband 120 kHz split-beam echosounder, a large tank, and a fishnet cage. The net cage was centred on the acoustic beams and was virtually transparent, both acoustically and optically. Accurate three-dimensional positions and angular orientations of individual fish...

  20. Acoustic vector sensor signal processing

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  1. Optical coherence elastography based on high speed imaging of single-hot laser-induced acoustic waves at 16 kHz frame rate

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; Pelivanov, Ivan; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Shear wave OCE (SW-OCE) is a novel technique that relies on the detection of the localized shear wave speed to map tissue elasticity. In this study, we demonstrate high speed imaging to capture single-shot transient shear wave propagation for SW-OCE. The fast imaging speed is achieved using a Fourier domain mode-locked (FDML) high-speed swept-source OCT (SS-OCT) system. The frame rate of shear wave imaging is 16 kHz, at an A-line rate of ~1.62 MHz, enabling the detection of high-frequency shear waves up to 8 kHz in bandwidth. Several measures are taken to improve the phase-stability of the SS-OCT system, and the measured displacement sensitivity is ~10 nanometers. To facilitate non-contact elastography, shear waves are generated with the photo-thermal effect using an ultra-violet pulsed laser. High frequency shear waves launched by the pulsed laser contain shorter wavelengths and carry rich localized elasticity information. Benefiting from single-shot acquisition, each SWI scan only takes 2.5 milliseconds, and the reconstruction of the elastogram can be performed in real-time with ~20 Hz refresh rate. SW-OCE measurements are demonstrated on porcine cornea ex vivo. This study is the first demonstration of an all-optical method to perform real-time 3D SW-OCE. It is hoped that this technique will be applicable in the clinic to obtain high-resolution localized quantitative measurements of tissue biomechanical properties.

  2. Simultaneous triple-modality imaging of diffuse reflectance, optoacoustic pressure and ultrasonic scattering using an acoustic-resolution photoacoustic microscope: feasibility study

    Subochev, Pavel; Fiks, Ilya; Frenz, Martin; Turchin, llya

    2016-02-01

    The letter discusses the opportunity for cost-effective use of conventional optoacoustic hardware to realize additional imaging modalities such as ultrasonic microscopy and diffuse optical reflectometry within the same laser pulse. Optoacoustic methods for deep biomedical visualization are based on pulsed laser illumination of the internal tissue layers with scattered photons, however some of the back-scattered photons can be absorbed by the optoacoustic detector. Thermoelastic extension of the detector’s surface provides a probing pulse for an ultrasonic modality while the measurement of the amplitude of the probing ultrasonic pulse allows estimation of the diffuse reflectance from the object under investigation.

  3. Prediction of Acoustic Noise in Switched Reluctance Motor Drives

    Lin, CJ; Fahimi, B

    2014-03-01

    Prediction of acoustic noise distribution generated by electric machines has become an integral part of design and control in noise sensitive applications. This paper presents a fast and precise acoustic noise imaging technique for switched reluctance machines (SRMs). This method is based on distribution of radial vibration in the stator frame of the SRM. Radial vibration of the stator frame, at a network of probing points, is computed using input phase current and phase voltage waveforms. Sequentially, the acceleration of the probing network will be expanded to predict full acceleration on the stator frame surface, using which acoustic noise emission caused by the stator can be calculated using the boundary element method.

  4. Acoustically induced transparency using Fano resonant periodic arrays

    Amin, M.; Elayouch, A.; Farhat, M.; Addouche, M.; Khelif, A.; Baǧcı, H.

    2015-10-01

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  5. Acoustically induced transparency using Fano resonant periodic arrays

    Amin, M.

    2015-10-22

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  6. High Resolution X-ray-Induced Acoustic Tomography

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  7. Acoustic comfort in eating establishments

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating...

  8. Decision Making in Acoustic Neuroma Management: The Only Hearing Ear

    Naguib, Maged B.; Saleh, Essam; Aristegui, Miguel; Mazzoni, Antonio; Sanna, Mario

    1994-01-01

    Patients with acoustic neuroma in their only hearing ear are not frequently seen in clinical practice. Managing this group of patients is a challenge to both patient and surgeon. In this study we report on five cases of acoustic neuroma in an only hearing ear. Our decision for nonsurgical management of those patients with regular follow-up using auditory brainstem responses and magnetic resonance imaging is discussed. Other management options currently available are considered as well.

  9. Active elastic metamaterials with applications in vibration and acoustics

    Pope, Simon A.; Laalej, Hatim; Daley, Stephen; Reynolds, Matthew

    2012-01-01

    Elastic metamaterials provide a new approach to solving existing problems in vibration and acoustics. They have also been associated with novel concepts such as acoustic invisibility and subwavelength imaging. To be applied to many of the proposed applications a metamaterial would need to have the desired mass density and elastic moduli over a prescribed frequency band. Importantly active metamaterials provide a degree of adaptability. This paper will focus on extending a previous theoretical...

  10. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... the first phases in the architectural process and set out a reverse strategy for simulation programmes to do so - from developing acoustics from given spaces to developing spaces from given acoustics...

  11. Temperature effect on emission lines and fluorescence lifetime of the 4F3/2 state of Nd:YVO4

    Yanli Mao(毛艳丽); Mingju Huang(黄明举); Changshun Wang(王长顺)

    2004-01-01

    @@ By measuring the absorption and fluorescence spectra and the fluorescence lifetime of 4F3/2 state of Nd3+ions in YVO4 12 at.-%)crystal at different temperature,the effects of temperature on the spectra andthe lifetime of F3/2 state have been investigated.As the temperature is increased,the line width of the4F3/2 → 4I11/2 transitions is found to increase and the spectral line toward the longer wavelength,whichare duo to the ion-phonon interaction.The variation fluorescence lifetime of the 4F3/2 state of Nd:YVO4is found to be anomalous in the measured range 8-300 K.It is about 81 /μs at room temperature anddecreases to 30 /μs at 8 K.The experimental results are explained by ascribing to the thermal mixingbetween the two Stark levels of 4F3/2 state with different lifetime.

  12. CYP4F2 1347 G > A & GGCX 12970 C > G polymorphisms: frequency in north Indians & their effect on dosing of acenocoumarol oral anticoagulant

    Saurabh Singh Rathore

    2014-01-01

    Interpretation & conclusions: We report distinct frequencies of CYP4F2 1347 G > A and GGCX 12970 C > G polymorphisms in north Indians but these polymorphisms did not have significant bearing on maintenance dose of acenocoumarol oral anticoagulant in cardiac valve replacement patients.

  13. Application of Si and SiO2 Etching Mechanisms in CF4/C4F8/Ar Inductively Coupled Plasmas for Nanoscale Patterns.

    Lee, Junmyung; Efremov, Alexander; Yeom, Geun Young; Lim, Nomin; Kwon, Kwang-Ho

    2015-10-01

    An investigation of the etching characteristics and mechanism for both Si and SiO2 in CF4/C4F8/Ar inductively coupled plasmas under a constant gas pressure (4 mTorr), total gas flow rate (40 sccm), input power (800 W), and bias power (150 W) was performed. It was found that the variations in the CF4/C4F8 mixing ratio in the range of 0-50% at a constant Ar fraction of 50% resulted in slightly non-monotonic Si and SiO2 etching rates in CF4-rich plasmas and greatly decreasing etching rates in C4F8-rich plasmas. The zero-dimensional plasma model, Langmuir probe diagnostics, and optical emission spectroscopy provided information regarding the formation-decay kinetics for the plasma active species, along with their densities and fluxes. The model-based analysis of the etching kinetics indicated that the non-monotonic etching rates were caused not by the similar behavior of the fluorine atom density but rather by the opposite changes of the fluorine atom flux and ion energy flux. It was also determined that the great decrease in both the Si and SiO2 etching rates during the transition from the CF4/Ar to C4F8/Ar gas system was due to the deposition of the fluorocarbon polymer film. PMID:26726514

  14. Generation of human iPSC line GRX-MCiPS4F-A2 from adult peripheral blood mononuclear cells (PBMCs with Spanish genetic background

    Sonia Cabrera

    2015-09-01

    Full Text Available We have generated iPSCs from peripheral blood mononuclear cells (PBMCs of a healthy man using heat sensitive and non-integrative Sendai virus containing Sox2, Oct3/4, c-Myc and Klf4. Human GRX-MCiPS4F-A2 cell line was established and characterized through this study.

  15. Analysis of the insulation characteristics of c-C4F8 and N2 gas mixtures by Boltzmann equation method

    Deng, Y. K.; Xiao, D. M.

    2012-02-01

    The present paper concerns itself with the insulation characteristics of c-C4F8/N2 gas mixtures and studies the possibility of applying in the gas insulation of power equipments. We aim to use the theoretical framework of the Boltzmann equation to calculate the density-normalized effective ionization coefficients (α-ƞ)/N and transport parameters of c-C4F8/N2 gas mixtures for E/N values from 180 to 550 Td (1 Td = 10-17 V cm2) in the condition of steady-state Townsend (SST) experiment. From the variation curve of (α-ƞ)/N with the c-C4F8 mixture ratio k, the limiting field strength (E/N)lim of the gas mixtures at different gas content is determined. In order to confirm the validity of the results obtained, comparisons with Monte Carlo simulation and experimental data have been performed. It is found that the insulation properties of c-C4F8 and N2 gas mixtures are much better than those of SF6 and N2 mixtures for applying in the high voltage apparatus as an insulation medium, especially if we take the global warming potential into account.

  16. Resonant acoustic radiation force optical coherence elastography

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  17. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  18. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  19. Acoustic detection of pneumothorax

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  20. Seamount acoustic scattering

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  1. Acoustics waves and oscillations

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  2. Practical acoustic emission testing

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  3. Hydrothermal Synthesis, Crystal Structure and Characterization of a Microporous 3D Pillared-Layer 3d-4f Copper-Holmium Heterometallic Coordination Polymer

    A microporous 3D pillared-layer 3d-4f (Cu+-Ho3+) coordination polymer based on the linkages of 2D wavelike Ho-carboxylate layers and 1D Cu4Br4 inorganic chains in centipede-type structure by IN. pillars has been obtained. Furthermore, the magnetic properties of this complex have been investigated. Our results provide an intriguing example of 3D 3d-4f PCPs and further demonstrate that the pillared-layer approach can be used for constructing novel 3D 3d-4f PCPs. There has been more and more interest in recent years in the design and synthesis of porous coordination polymers (PCPs) not only for their fascinating structural diversity but also for their potential applications as functional materials in magnetism, molecular adsorption, gas storage, ion exchange, catalysis and separation. Up to now, almost all approaches to the construction of porous materials have focused on the 3D monometallic PCPs. However, the preparation of hetero-metallic PCPs especially containing lanthanide (Ln) and transition metal (TM) ions has been drawn less attention. A pillared-layer approach to the construction of 3D 3d-4f coordination polymers upon the connections of Ln-carboxylate layers and TM-inorganic motifs by organic pillars via coordination bonding has been reported. In most such 3D pillared-layer 3d-4f structures, TM-inorganic layers/chains generally obstruct the development of channels based on the pores formed by Ln-carboxylate layers

  4. Genetic Variation of VKORC1 and CYP4F2 Genes Related to Warfarin Maintenance Dose in Patients with Myocardial Infarction

    Marianne K. Kringen

    2011-01-01

    Full Text Available The aim of this study was to investigate whether the VKORC1*3 (rs7294/9041 G > A, VKORC1*4 (rs17708472/6009 C > T, and CYP4F2 (rs2108622/1347 C > T polymorphisms were associated with elevated warfarin maintenance dose requirements in patients with myocardial infarction (n=105 from the Warfarin Aspirin Reinfarction Study (WARIS-II. We found significant associations between elevated warfarin dose requirements and VKORC1*3 and VKORC1*4 polymorphisms (P=.001 and P=.004, resp., whereas CYP4F2 (1347 C > T showed a weak association on higher warfarin dose requirements (P=.09. However, analysing these variant alleles in a regression analysis together with our previously reported data on VKORC1*2, CYP2C9*2 and CYP2C9*3 polymorphisms, gave no significant associations for neither VKORC1*3, VKORC1*4 nor CYP4F2 (1347 C > T. In conclusion, in patients with myocardial infarction, the individual contribution to warfarin dose requirements from VKORC1*3, VKORC1*4, and CYP4F2 (1347 C > T polymorphisms was negligible. Our results indicate that pharmacogenetic testing for VKORC1*2, CYP2C9*2 and CYP2C9*3 is more informative regarding warfarin dose requirements than testing for VKORC1*3, VKORC1*4, and CYP4F2 (1347 C > T polymorphisms.

  5. Advanced Active Acoustics Lab (AAAL)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  6. A New Wave of Acoustics.

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  7. A Century of Acoustic Metrology

    Rasmussen, Knud

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  8. Representations of specific acoustic patterns in the auditory cortex and hippocampus.

    Kumar, Sukhbinder; Bonnici, Heidi M; Teki, Sundeep; Agus, Trevor R; Pressnitzer, Daniel; Maguire, Eleanor A; Griffiths, Timothy D

    2014-09-22

    Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be 'decoded' from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt. PMID:25100695

  9. Strong acoustic wave action

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  10. Acoustic black holes

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  11. Structural Acoustics and Vibrations

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  12. Densitometry By Acoustic Levitation

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  13. Acoustic and seismic imaging of the Adra Fault (NE Alboran Sea: in search of the source of the 1910 Adra earthquake

    E. Gràcia

    2012-11-01

    Full Text Available Recently acquired swath-bathymetry data and high-resolution seismic reflection profiles offshore Adra (Almería, Spain reveal the surficial expression of a NW–SE trending 20 km-long fault, which we termed the Adra Fault. Seismic imaging across the structure depicts a sub-vertical fault reaching the seafloor surface and slightly dipping to the NE showing an along-axis structural variability. Our new data suggest normal displacement of the uppermost units with probably a lateral component. Radiocarbon dating of a gravity core located in the area indicates that seafloor sediments are of Holocene age, suggesting present-day tectonic activity. The NE Alboran Sea area is characterized by significant low-magnitude earthquakes and by historical records of moderate magnitude, such as the Mw = 6.1 1910 Adra Earthquake. The location, dimension and kinematics of the Adra Fault agree with the fault solution and magnitude of the 1910 Adra Earthquake, whose moment tensor analysis indicates normal-dextral motion. The fault seismic parameters indicate that the Adra Fault is a potential source of large magnitude (Mw ≤ 6.5 earthquakes, which represents an unreported seismic hazard for the neighbouring coastal areas.

  14. Theoretical analysis of leaky surface acoustic waves of point-focused acoustic lens and some experiments

    When a point-focused acoustic lens in the scanning acoustic microscope (SAM) is faced to test specimen and defocused to some extent, two effective echoes can be obtained. One is the echo of longitudinal wave, which is normally incident upon the specimen of an on-axis beam in the central region of the lens and is reflected normal to the lens surface, hence detected by the transducer. The other is of leaky surface acoustic waves(LSAW), which are mode converted front a narrow beam of off-axis longitudinal wave, then propagate across the surface of the specimen and reradiate at angles normal to the lens surface, thus detected by the transducer. These two echoes are either interfered or separated with each other depending ell the defocused distance. It turned out theoretically that the LSAW have a narrow focal spot in the central region of the point-focused acoustic lens, whose size is approximately 40% of the LSAW wavelength. On top of that, a wavelength of LSAW is about 50% short as that of longitudinal wave. So, It is expected that high resolution images can be obtained provided LSAW are used in the scanning acoustic microscope.

  15. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences, Uppsala (Sweden))

    2009-08-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  16. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  17. Focusing Ultrasound with Acoustic Metamaterial Network

    Zhang, Shu; Fang, Nicholas

    2009-01-01

    We present the first experimental demonstration of focusing ultrasound waves through a flat acoustic metamaterial lens composed of a planar network of subwavelength Helmholtz resonators. We observed a tight focus of half-wavelength in width at 60.5 KHz by imaging a point source. This result is in excellent agreement with the numerical simulation by transmission line model in which we derived the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies. Our experiment shows the promise of designing compact and light-weight ultrasound imaging elements.

  18. Nonlinear acoustics in biomedical ultrasound

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  19. Validation and application of Acoustic Mapping Velocimetry

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army

  20. Collimator with compensated filtration: clinical adaptation for recommendation 4f of the EU about the radiation protection in oral dental radiology; Colimador con filtracion compensada: adaptacion clinica para alcanzar la recomendacion 4F de la Union Europea sobre proteccion radiologica al paciente en radiologia odontologica

    Alcaraz, M.; Garcia-Vera, C.; Bravo, C. La; Morant, J. J.; Armedo, D. Y.; Canteras, M.

    2006-07-01

    Recent recommendations by the European Union (2004) for performing lateral cranial cephalometry (LCC) state that collimation should be maximized so that only those tissues necessary are irradiated when performing clinical diagnoses, although the fact that many manufacturers do not incorporate these elements in their equipment design has been recognised (recommendations 4f). Aim: the manufacture and utilization of a collimator with a pre-patient compensating filter for LLC which may be used in most extraoraldental radiology units, as well as determining the reduction in the dose of radiation absorbed by more sensitive tissues exposed to said clinical exploration. Making use of mannequins, phantom and craniums, we constructed a collimator with a compensating filter and established the necessary technical, dosimetric and quality specifications for its clinical use. Subsequently, we studied 16 patients referred for cephalometric study, determining the radiation dose (TLDs) in both the patients (crystalline lens, frontal lobe, parotid/submaxillary/thyroid glands and brain) and in the radiographic film, as well as in different parts of the collimator/filter. Al presented we are aiming for its clinical use by carrying out LCC in another 16 patients referred of orthodontic treatment but with the pre-a patient introduction of the tested collimator with the compensating filter as a substitute for the usual technique. The collimation reduced the field or radiation by some 40% and with that, so too the radiated tissues. The compensating filter reduced the dose in tissues by some 34.2. Our collimator has allowed the radiological image to be obtained with only one third the usual radiation dose. The dose reaching the film shies only between 17% less than in the usual technique and didn't alter its diagnostic capacity. A reduction of 61,6% of the dose administered to the patient is achieved by incorporating the collimator and filter to most radiological equipment without the