WorldWideScience

Sample records for acinar cells

  1. Acinar Cell Carcinoma of the Pancreas

    Hua Li; Qiang Li

    2008-01-01

    Acinar cell carcinoma of the pancreas is a rare tumor which is defined as a carcinoma that exhibits pancreatic enzyme production by neoplastic cells. This review includes re-cent developments in our understanding of the epidemiology and pathogenesis of ACC, imaging and pathological diagnosis and ap-proaches to treatment with reference to the literature.

  2. Papillocystic Variant of Acinar Cell Pancreatic Carcinoma

    Jasim Radhi

    2010-01-01

    Full Text Available Acinar cell pancreatic carcinoma is a rare solid malignant neoplasm. Recent review of the literature showed occasional cases with papillary or papillocystic growth patterns, ranging from 2 to 5 cm in diameter. We report a large 10 cm pancreatic tumor with papillocystic pathology features involving the pancreatic head. The growth pattern of these tumors could be mistaken for intraductal papillary mucinous tumors or other pancreatic cystic neoplasms.

  3. Inflammatory role of the acinar cells during acute pancreatitis

    Isabel; De; Dios

    2010-01-01

    Pancreatic acinar cells are secretory cells whose main function is to synthesize, store and f inally release digestive enzymes into the duodenum. However, in response to noxious stimuli, acinar cells behave like real inflammatory cells because of their ability to activate signalling transduction pathways involved in the expression of inflammatory mediators. Mediated by the kinase cascade, activation of Nuclear factor-κB, Activating factor-1 and Signal transducers and activators of transcription transcription factors has been demonstrated in acinar cells, resulting in overexpression of inflammatory genes. In turn, kinase activity is down-regulated by protein phosphatases and the f inal balance between kinase and phosphatase activity will determine the capability of the acinar cells to produce inflammatory factors. The kinase/ phosphatase pair is a redox-sensitive system in which kinase activation overwhelms phosphatase activity under oxidant conditions. Thus, the oxidative stress developed within acinar cells at early stages of acute pancreatitis triggers the activation of signalling pathways involved in the up-regulation of cytokines, chemokines and adhesion molecules. In this way, acinar cells trigger the release of the f irst inflammatory signals which can mediate the activation and recruitment of circulating inflammatorycells into the injured pancreas. Accordingly, the role of acinar cells as promoters of the inflammatory response in acute pancreatitis may be considered. This concept leads to amplifying the focus from leukocyte to acinar cells themselves, to explain the local inflammation in early pancreatitis.

  4. Acinar Cell Cystadenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    Gumus, Mehmet; Ugras, Serdar; Algin, Oktay; Gundogdu, Haldun

    2011-01-01

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT,...

  5. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun [Ataturk Training and Research Hospital, Ankara (Turkmenistan); Ugras, Serdar [Selcuk University, Selcuklu Medical Faculty, Konya (Turkmenistan)

    2011-02-15

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  6. TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells.

    Liu, Jun; Akanuma, Naoki; Liu, Chengyang; Naji, Ali; Halff, Glenn A; Washburn, William K; Sun, Luzhe; Wang, Pei

    2016-01-01

    Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this system, well-known mouse ADM inducers did not promote ADM in human cells. In contrast, TGF-β1 efficiently converted human acinar cells to duct-like cells (AD) in a SMAD-dependent manner, highlighting fundamental differences between the species. Functionally, AD cells gained transient proliferative capacity. Furthermore, oncogenic KRAS did not induce acinar cell proliferation, but did sustain the proliferation of AD cells, suggesting that oncogenic KRAS requires ADM-associated-changes to promote PDAC initiation. This ADM model provides a novel platform to explore the mechanisms involved in the development of human pancreatic diseases. PMID:27485764

  7. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology

    O.H. Petersen

    2009-01-01

    Full Text Available The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

  8. Effects of Benzodiazepines on Acinar and Myoepithelial Cells

    Mattioli, Tatiana M. F.; Alanis, Luciana R. A.; Sapelli, Silvana da Silva; de Lima, Antonio A. S.; de Noronha, Lucia; Rosa, Edvaldo A. R.; Althobaiti, Yusuf S.; Almalki, Atiah H.; Sari, Youssef; Ignacio, Sergio A.; Johann, Aline C. B. R.; Gregio, Ana M. T.

    2016-01-01

    Background: Benzodiazepines (BZDs), the most commonly prescribed psychotropic drugs with anxiolytic action, may cause hyposalivation. It has been previously shown that BZDs can cause hypertrophy and decrease the acini cell number. In this study, we investigated the effects of BZDs and pilocarpine on rat parotid glands, specifically on acinar, ductal, and myoepithelial cells. Methods: Ninety male Wistar rats were divided into nine groups. Control groups received a saline solution for 30 days (C30) and 60 days (C60), and pilocarpine (PILO) for 60 days. Experimental groups received lorazepam (L30) and midazolam (M30) for 30 days. Another group (LS60 or MS60) received lorazepam or midazolam for 30 days, respectively, and saline for additional 30 days. Finally, other groups (LP60 or MP60) received either lorazepam or midazolam for 30 days, respectively, and pilocarpine for additional 30 days. The expression of calponin in myoepithelial cells and the proliferating cell nuclear antigen (PCNA) in acinar and ductal cells were evaluated. Results: Animals treated with lorazepam showed an increase in the number of positive staining cells for calponin as compared to control animals (p < 0.05). Midazolam administered with pilocarpine (MP60) induced an increase in the proliferation of acinar and ductal cells and a decrease in the positive staining cells for calponin as compared to midazolam administered with saline (MS60). Conclusion: We found that myoepithelial cells might be more sensitive to the effects of BZD than acinar and ductal cells in rat parotid glands.

  9. ANF and exocrine pancreas: ultrastructural autoradiographic localization in acinar cells

    Atrial natriuretic factor (ANF) binding sites have been recently demonstrated to be present in exocrine pancreas by an in vitro autoradiographic approach. An autoradiographic study was carried out to identify the exocrine cells containing ANF binding sites and to monitor the fate of 125I-labeled ANF in acinar cells after removal of pancreas at specific time intervals (1-30 min) after intravenous administration. At the light microscopic level, silver grains were found over acinar and centroacinar cells. Concomitant injection of an excess of unlabeled ANF inhibited the binding of labeled peptide by approximately 60%. At the electron microscopic level, the time-course study in acinar cells has revealed that of the cell compartments examined, plasma membrane, Golgi apparatus, mitochondria, and zymogen granules, the nucleus had distinct labeling patterns. Plasma membrane was maximally labeled 1 and 2 min after injection with 125I-ANF. Golgi apparatus was significantly labeled from 2 to 30 min after injection, mitochondria from 1 to 30 min after injection, zymogen granules at 1 and 15 min, and the nucleus only at 30 min. The lysosomal compartment was not labeled during the 30-min observation period. These results suggest that after binding to the plasma membrane, ANF is rapidly internalized and distributed to the intracellular organelles as a function of time. Labeling of the zymogen granules suggests that they may bind ANF and that the atrial peptide may be secreted by acinar cells. The significance of association of radioactivity with mitochondria and nuclei remains to be elucidated but may represent intracellular sites of action of ANF complementary to those on plasma membranes

  10. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  11. Recurrent Pancreatitis Due to a Cystic Pancreatic Tumor: A Rare Presentation of Acinar Cell Carcinoma

    Raimondo M; Krishna M; Nguyen J; Scolapio J; Aqel B

    2004-01-01

    CONTEXT: Acinar cell carcinoma is an uncommon malignancy of the pancreas. It has characteristic histomorphology, immunohistochemistry profile, and clinicopathological behavior. CASE REPORT: We report a rare case of recurrent pancreatitis secondary to acinar cell carcinoma of the pancreas. We describe the endoscopic ultrasound characteristic, treatment and the surgical outcome. CONCLUSIONS: Acinar cell carcinoma should be considered in the differential diagnosis of cystic pancreatic tumors pre...

  12. Recurrent Pancreatitis Due to a Cystic Pancreatic Tumor: A Rare Presentation of Acinar Cell Carcinoma

    Raimondo M

    2004-05-01

    Full Text Available CONTEXT: Acinar cell carcinoma is an uncommon malignancy of the pancreas. It has characteristic histomorphology, immunohistochemistry profile, and clinicopathological behavior. CASE REPORT: We report a rare case of recurrent pancreatitis secondary to acinar cell carcinoma of the pancreas. We describe the endoscopic ultrasound characteristic, treatment and the surgical outcome. CONCLUSIONS: Acinar cell carcinoma should be considered in the differential diagnosis of cystic pancreatic tumors presenting with recurrent pancreatitis.

  13. Functional somatostatin receptors on a rat pancreatic acinar cell line

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125I-[Tyr11]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/106 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125I-[Tyr11]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein Ni to inhibit adenylate cyclase

  14. Nitric oxide-induced signalling in rat lacrimal acinar cells

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    using the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2). We initiated investigations by adding NO from an external source by means of the NO-donor, S-nitroso-N-acetyl-penicillamine (SNAP). Cellular concentrations of cyclic guanosine 5'-phosphate (cGMP) ([cGMP]) were measured by...... radioimmunoassay (RIA), and we found that SNAP induced a fast increase in the [cGMP], amounting to 350% of the [cGMP] in resting cells. Moreover, addition of SNAP and elevating [cGMP] in fura-2 loaded lacrimal acinar cells, resulted in a cGMP-dependent protein kinase-mediated release of Ca2+ from intracellular......-adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...

  15. Effects of hypothyroidism on the ultrastructure of rat pancreatic acinar cells: a stereological analysis

    Blanco-Molina, A.; González-Reyes, J. A.; Torre-Cisneros, J; López-Miranda, J.; Nicolás, M.; Pérez-Jiménez, F.

    1991-01-01

    The morphological and stereological characteristics of the exocrine pancreas subcellular organelles from healthy and thyroidectomized rats have been studied. The acinar tissue from hypothyroid rats showed an interstitial edema and evidence of degenerative processes. Stereological parameters of zymogen granules were significantly reduced in thyroidectomized rats. The hypothyroidism induced degenerative changes in the pancreatic acinar cells as well as a decr...

  16. KRAS Mutations in Canine and Feline Pancreatic Acinar Cell Carcinoma.

    Crozier, C; Wood, G A; Foster, R A; Stasi, S; Liu, J H W; Bartlett, J M S; Coomber, B L; Sabine, V S

    2016-07-01

    Companion animals may serve as valuable models for studying human cancers. Although KRAS is the most commonly mutated gene in human ductal pancreatic cancers (57%), with mutations frequently occurring at codons 12, 13 and 61, human pancreatic acinar cell carcinomas (ACCs) lack activating KRAS mutations. In the present study, 32 pancreatic ACC samples obtained from 14 dogs and 18 cats, including seven metastases, were analyzed for six common activating KRAS mutations located in codons 12 (n = 5) and 13 (n = 1) using Sequenom MassARRAY. No KRAS mutations were found, suggesting that, similar to human pancreatic ACC, KRAS mutations do not play a critical role in feline or canine pancreatic ACC. Due to the similarity of the clinical disease in dogs and cats to that of man, this study confirms that companion animals offer potential as a suitable model for investigating this rare subtype of pancreatic carcinoma. PMID:27290644

  17. Acinar Cell Carcinoma of the Pancreas: A Possible Role of S-1 as Chemotherapy for Acinar Cell Carcinoma. A Case Report

    Tameyoshi Yamamoto

    2012-01-01

    Full Text Available Context Acinar cell carcinoma of the pancreas is a rare malignancy, accounting for 1-2% of pancreatic exocrine malignancies. This rarity makes it difficult to standardize a protocol of treatment for acinar cell carcinoma. Case report A 71-year-old male without any particular past history was referred to our institute with abdominal distention and mild liver dysfunction. Computed tomography (CT revealed a cystic lesion with a diameter of 3.5 cm, which originated from the neck of pancreas and had solid nodules inside. Several nodules were demonstrated surrounding the cystic tumor. Laparotomy and histological study demonstrated peritoneal dissemination of acinar cell carcinoma. The patient was treated with S-1 monotherapy (80 mg/m2 for four weeks with a two-week interval as one cycle. After one cycle of S-1 monotherapy, CT demonstrated remarkable shrinkage of the main tumor and disappearance of the nodules on the peritoneum. The patient underwent a radical distal pancreatectomy. The patient was then treated with 16 cycles of S-1 monotherapy after the radical pancreatectomy and remains without any recurrence of the disease two years later. Conclusion Initially inoperable acinar cell carcinoma was treated by monotherapy using S-1, resulting in curative operation and two years disease free survival post operation. S-1 might be more effective on acinar cell carcinoma, rather than gemcitabine

  18. Alteration of chaperonin60 and pancreatic enzyme in pancreatic acinar cell under pathological condition

    Li, Yong-Yu; Bendayan, Moise

    2005-01-01

    AIM: To investigate the changes of chaperonin60 (Cpn60) and pancreatic enzymes in pancreatic acinar cells, and to explore their roles in the development of experimental diabetes and acute pancreatitis (AP).

  19. Regeneration of parotid acinar cells after high radiation doses. A morphological study in rat

    The acute and late effects of fractionated irradiation on rat parotid gland acinar cells were studied by light and electron microscopy. At 10 days after the last irradiation session (6 Gy or 9 Gy daily during five consecutive days) no effects were seen. At 180 days, minor loss of acini was detectable after a total dose of 30 Gy. After 45 Gy a massive acinar loss was seen at that time; the number of acini had diminished and minor duct-like structures and scattered amounts of fibrous stroma dominated the slides. The remaining acini were disorganized and usually larger compared with the control side and to non-irradiated animals. The acinar cells appeared larger than in the controls. The custs were better preserved but the intercalated ducts often seemed to be larger than normal. We suggest that this phenomenon indicates a remaining capacity of the parotid gland to regenerate acinar cells even after high radiation doses. (orig.)

  20. Analysis and Optimization of Nutritional Set-up for Murine Pancreatic Acinar Cells.

    Kurup S

    2002-01-01

    Full Text Available CONTEXT: Pancreatic acinar cell cultivation poses a serious problem due to limitations in the in vitro survival time despite variations of dissociation protocols, culture media and nutrient supplements. OBJECTIVE: To establish a long term culture of murine pancreatic acinar cells which retain their viability, monolayer formation and responsiveness to secretagogues. In order to investigate the mechanism of the short-life of acinar cells studied in vitro, we studied their survival under the influence of different supplements on nutrient media. INTERVENTIONS: Dissociated pancreatic acini were prepared from BALB/c mice pancreata by collagenase digestion supplemented with bovine serum albumin fraction V and soybean trypsin inhibitor. A nutrient set-up was designed for their long term survival in vitro. RESULTS: It was observed that mouse pancreatic acinar cells dissociated in presence of bovine serum albumin fraction V and soybean trypsin inhibitor result in 95% viability. Further cultivation of these acinar cells in Waymouth's MB 752/1 medium supplemented with 10% fetal calf serum (v/v, soybean trypsin inhibitor, bovine serum albumin, dexamethasone, and epidermal growth factor results in their survival for more than 6 days in culture with 85% viability, retention of the secretagogue responsiveness and formation of a monolayer without any extracellular matrix coating. CONCLUSIONS: Our study clearly demonstrates that the addition of soybean trypsin inhibitor to culture medium reduces zymogen granule fragility and acinar cell death, thus increasing their viability for sufficiently long periods. The present study offers an excellent, in vitro model for the investigation of exocrine dysfunction in response to acinar cell injury.

  1. A computer-based automated algorithm for assessing acinar cell loss after experimental pancreatitis.

    John F Eisses

    Full Text Available The change in exocrine mass is an important parameter to follow in experimental models of pancreatic injury and regeneration. However, at present, the quantitative assessment of exocrine content by histology is tedious and operator-dependent, requiring manual assessment of acinar area on serial pancreatic sections. In this study, we utilized a novel computer-generated learning algorithm to construct an accurate and rapid method of quantifying acinar content. The algorithm works by learning differences in pixel characteristics from input examples provided by human experts. HE-stained pancreatic sections were obtained in mice recovering from a 2-day, hourly caerulein hyperstimulation model of experimental pancreatitis. For training data, a pathologist carefully outlined discrete regions of acinar and non-acinar tissue in 21 sections at various stages of pancreatic injury and recovery (termed the "ground truth". After the expert defined the ground truth, the computer was able to develop a prediction rule that was then applied to a unique set of high-resolution images in order to validate the process. For baseline, non-injured pancreatic sections, the software demonstrated close agreement with the ground truth in identifying baseline acinar tissue area with only a difference of 1% ± 0.05% (p = 0.21. Within regions of injured tissue, the software reported a difference of 2.5% ± 0.04% in acinar area compared with the pathologist (p = 0.47. Surprisingly, on detailed morphological examination, the discrepancy was primarily because the software outlined acini and excluded inter-acinar and luminal white space with greater precision. The findings suggest that the software will be of great potential benefit to both clinicians and researchers in quantifying pancreatic acinar cell flux in the injured and recovering pancreas.

  2. THE CHANGES OF PANCREATIC ACINAR CELL FUNCTION IN ACUTE NECROTIZING PANCREATITIS OF RATS

    余枭; 韩天权; 汤耀卿; 雷若庆; 夏宗勤

    2000-01-01

    Objective To evaluate the changes of pancreatic acinar cell functions in the rats with acute necrotizing pancreatitis (ANP). Methods Seventy SD rats were randomized into two groups: experimental group (n=35) and control group (n=35). To prepare the experimental model, the retrograde injection of 5% sodium taurocholate into the pancreatic duct was used for inducing ANP. Radioactive tracing by L- 3H-phenylalanine and autoradiography were performed for scoring the differences of changes of amino acid uptake, enzyme-protein synthesis and output from acinar cells in rats between both groups. Results No changes were observed in amino acid uptake and enzyme-protein synthesis in rats with dotted and haemorrhagic necrotizing foci as compared with control group. However, accumulated zymogen granules in the interstitial of acinar cells were seen in the experimental group. Conclusion It indicates that in experimental ANP rats, the functions of acinar cells in both amino acid uptake and protein synthesis were essentially normal, but the pathway of enzyme output was affected into ectopic secretion through the bottom or lateral cellular membrane of pancreatic acinar cell.

  3. Preparation of Pancreatic Acinar Cells for the Purpose of Calcium Imaging, Cell Injury Measurements, and Adenoviral Infection

    Orabi, Abrahim I.; Muili, Kamaldeen A.; Wang, Dong; Jin, Shunqian; Perides, George; Husain, Sohail Z.

    2013-01-01

    The pancreatic acinar cell is the main parenchymal cell of the exocrine pancreas and plays a primary role in the secretion of pancreatic enzymes into the pancreatic duct. It is also the site for the initiation of pancreatitis. Here we describe how acinar cells are isolated from whole pancreas tissue and intracellular calcium signals are measured. In addition, we describe the techniques of transfecting these cells with adenoviral constructs, and subsequently measuring the leakage of lactate de...

  4. Effect of Taurine on Acinar Cell Apoptosis and Pancreatic Fibrosis in Dibutyltin Dichloride-induced Chronic Pancreatitis

    Sawa,Kiminari

    2012-08-01

    Full Text Available The relationship between pancreatic fibrosis and apoptosis of pancreatic acinar cells has not been fully elucidated. We reported that taurine had an anti-fibrotic effect in a dibutyltin dichloride (DBTC-chronic pancreatitis model. However, the effect of taurine on apoptosis of pancreatic acinar cells is still unclear. Therefore, we examined apoptosis in DBTC-chronic pancreatitis and in the AR42J pancreatic acinar cell line with/without taurine. Pancreatic fibrosis was induced by a single administration of DBTC. Rats were fed a taurine-containing diet or a normal diet and were sacrificed at day 5. The AR42J pancreatic acinar cell line was incubated with/without DBTC with taurine chloramines. Apoptosis was determined by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL assay. The expression of Bad and Bcl-2 proteins in the AR42J cells lysates was detected by Western blot analysis. The apoptotic index of pancreatic acinar cells in DBTC-administered rats was significantly increased. Taurine treatment inhibited pancreatic fibrosis and apoptosis of acinar cells induced by DBTC. The number of TUNEL-positive cells in the AR42J pancreatic acinar cell lines was significantly increased by the addition of DBTC. Incubation with taurine chloramines ameliorated these changes. In conclusion, taurine inhibits apoptosis of pancreatic acinar cells and pancreatitis in experimental chronic pancreatitis.

  5. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Yu, Ge [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wan, Rong [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Hu, Yanling [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Ni, Jianbo [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Yin, Guojian; Xing, Miao [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Shen, Jie [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Tang, Maochun [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Chen, Congying [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Fan, Yuting; Xiao, Wenqin; Zhao, Yan [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wang, Xingpeng, E-mail: wangxingpeng@hotmail.com [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  6. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway

  7. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  8. Acinar cell ultrastructure after taurine treatment in rat acute necrotizing pancreatitis

    To evaluate the organelle-based changes in acinar cells in experimental acute necrotizing pancreatitis (ANP) after taurine treatment and the association of electron microscopic findings with histopathalogical changes and oxidative stress markers. The study was performed in February 2005at Gulhane School of Medicine and Hacettepe University, Turkey. Forty-five rats were divided into 3 groups. Acute necrotizing pancreatitis was induced in groups II and III. Groups I and II were treated with saline and Group III with taurine 1000mg/kg/day, i.p, for 48 hours. Histopathological and ultrastructural examinations were determined using one-way analysis of variance and Kruskal-Wallis tests. Histopathologic findings improved significantly after taurine treatment. Degree of injury in rough and smooth endoplasmic reticulums, Golgi apparatus, mitochondria and nucleus of acinar cells also decreased with taurine in correlation with biochemical and histological results. Taurine improves acinar cell organelle structure, and ultrastructural recovery in ANP reflects histological improvement. (author)

  9. Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis.

    Mfopou, Josué K; Houbracken, Isabelle; Wauters, Elke; Mathijs, Iris; Song, Imane; Himpe, Eddy; Baldan, Jonathan; Heimberg, Harry; Bouwens, Luc

    2016-06-01

    The regenerative medicine field is expanding with great successes in laboratory and preclinical settings. Pancreatic acinar cells in diabetic mice were recently converted into β-cells by treatment with ciliary neurotrophic factor (CNTF) and epidermal growth factor (EGF). This suggests that human acinar cells might become a cornerstone for diabetes cell therapy in the future, if they can also be converted into glucose-responsive insulin-producing cells. Presently, studying pancreatic acinar cell biology in vitro is limited by their high plasticity, as they rapidly lose their phenotype and spontaneously transdifferentiate to a duct-like phenotype in culture. We questioned whether human pancreatic acinar cell phenotype could be preserved in vitro by physico-chemical manipulations and whether this could be valuable in the study of β-cell neogenesis. We found that culture at low temperature (4°C) resulted in the maintenance of morphological and molecular acinar cell characteristics. Specifically, chilled acinar cells did not form the spherical clusters observed in controls (culture at 37°C), and they maintained high levels of acinar-specific transcripts and proteins. Five-day chilled acinar cells still transdifferentiated into duct-like cells upon transfer to 37°C. Moreover, adenoviral-mediated gene transfer evidenced an active Amylase promoter in the 7-day chilled acinar cells, and transduction performed in chilled conditions improved acinar cell labelling. Together, our findings indicate the maintenance of human pancreatic acinar cell phenotype at low temperature and the possibility to efficiently label acinar cells, which opens new perspectives for the study of human acinar-to-β-cell transdifferentiation. PMID:26987985

  10. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice.

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-Ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  11. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  12. Transdifferentiation of human amniotic epithelial cells into acinar cells using a double-chamber system.

    Huang, Gui-Lin; Zhang, Ni-Ni; Wang, Jun-Sheng; Yao, Li; Zhao, Yu-Jie; Wang, Yu-Ying

    2012-08-01

    This study investigated the transdifferentiation of stem cells from human amnion tissue into functional acinar cells (ACs) using a co-culture system. Human amniotic epithelial cells (hAECs) were isolated from amnion tissue by mechanical mincing and enzymatic digestion. After primary culture, the phenotype of the cells was identified by flow cytometry (FCM) and immunocytochemical staining. hAECs were co-cultured with submandibular gland acinar cells of SD rats using a double-chamber system. The expression of α-amylase was determined by immunocytochemical method and fluorescent real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) after induction for 1 and 2 weeks, respectively. Digestion with trypsin is an effective method for isolating hAECs from amnion tissue. These cells were positive for CD29 and CK19 and weakly positive for CD44 and α-amylase. Within 2 weeks, α-amylase in hAECs increased with induction time. The expression of α-amylase in hAECs was increased 3.38-fold after co-culturing for 1 week. This ratio increased to 6.6-fold, and these cells were positive for mucins, after co-culturing for 2 weeks. hAECs possess the potential to differentiate into ACs in vitro. They might be a stem cell resource for clinical applications of cell replacement therapy in salivary gland dysfunction diseases. PMID:22800093

  13. Polyethylenimine-mediated expression of transgenes in the acinar cells of rats salivary glands in vivo

    Sramkova, Monika; Parente, Laura; Wigand, Timothy; Aye, Myo-Pale'; Shitara, Akiko; Weigert, Roberto

    2015-01-01

    Non viral-mediated transfection of plasmid DNA provides a fast and reliable way to express various transgenes in selected cell populations in live animals. Here, we show an improvement of a previously published method that is based on injecting plasmid DNA into the ductal system of the salivary glands in live rats. Specifically, using complexes between plasmid DNA and polyethyleneimine (PEI) we show that the expression of the transgenes is directed selectively to the salivary acinar cells. PE...

  14. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  15. Intracellular mediators of Na+-K+ pump activity in guinea pig pancreatic acinar cells

    The involvement of Ca2+ and cyclic nucleotides in neurohormonal regulation of Na+-K+-ATPase (Na+-K+ pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by [3H]ouabain binding and by ouabain-sensitive 86Rb+ uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of [3H]ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in Ca2+-free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular Ca2+, while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free Ca2+ levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent Ca2+ chelator. Basal intracellular Ca2+ concentration ([Ca2+]i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively

  16. Quantitative description of a teleost exocrine pancreas. Ultrastructural morphometric study of nonstimulated acinar cells.

    Stipp, A C; Ferri, S; Sesso, A

    1984-01-01

    The quantitative analysis of exocrine pancreas was fulfilled in teleost fish ( Pimelodus maculatus). The volume fraction occupied by acinar cells, blood vessels and ducts has been assessed by point-counting volumetry in 0.25 micron araldite sections. Measurements of the diameters of the transections of acinar cells nuclei and nucleolus allowed the assessment of the mean nuclear and nucleolar volume according to the method of Bach (1963). With these data, the cytoplasm nuclei and nucleolus volume was calculated in cubic micrometers. Morphometric ultrastructural data was obtained by applying over the electronmicrophotographs (X 21,000) a test system of 84 segments regularly spaced one from another (Weibel 1966). The results obtained was analysed and compared to the mammalian. PMID:6721199

  17. Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells

    Neeraj Manhas; James Sneyd; K R Pardasani

    2014-06-01

    A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.

  18. Regulating effects of arsenic trioxide on cell death pathways and inflammatory reactions of pancreatic acinar cells in rats

    XUE Dong-bo; ZHANG Wei-hui; YUN Xiao-guang; SONG Chun; ZHENG Biao; SHI Xing-ye; WANG Hai-yang

    2007-01-01

    Background It is accepted that inflammatory cytokines play a key role in the development of acute pancreatitis, so blocking the initiation of inflammatory reactions may alleviate pathological changes of acute pancreatitis. We studied the regulatory effect of arsenic trioxide (As2O3) on apoptosis and oncosis of pancreatic acinar cells in vitro and in vivo and its therapeutic effect on acute pancreatitis.Methods Pancreatic acinar cells were isolated by collagenase digestion method. Apoptosis and oncosis of isolated pancreatic acinar cells were detected with Hoechst 33258+PI or Annexin V+PI double fluorescent staining. Amylase and lactate dehydrogenase release were measured. Acute pancreatitis was induced in Wistar rats by intraperitoneal injections of caerulein, and apoptosis was detected with terminal dUTP nick-end labeling method. Tumor necorsis factor α (TNF-α) mRNA, myeloperoxidase, nuclear factor-κB and histological grading of pancreatic damage were measured.Results There was an increased apoptosis but a decreased oncosis of pancreatic acinar cell after the treatment with As2O3. The levels of lactate dehydrogenase and amylase release were markedly decreased in As2O3 treated group.Myeloperoxidase content, TNF-α mRNA level, nuclear factor-κB activation and pathological score in As2O3 treated group were significantly lower than in the untreated group.Conclusions As2O3 can induce apoptosis and reduce oncosis of pancreatic acinar cell, thus resulting in reduced release of endocellular enzyme of acinar cells, reduced inflammatory cell infiltration and decreased the production of inflammatory cytokines, so that the outcome of alleviated pathological changes was finally achieved.

  19. Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo

    Baumann, Bernd; Wagner, Martin; Aleksic, Tamara; von Wichert, Götz; Weber, Christoph K.; Adler, Guido; Wirth, Thomas

    2007-01-01

    Activation of the inhibitor of NF-κB kinase/NF-κB (IKK/NF-κB) system and expression of proinflammatory mediators are major events in acute pancreatitis. However, the in vivo consequences of IKK activation on the onset and progression of acute pancreatitis remain unclear. Therefore, we modulated IKK activity conditionally in pancreatic acinar cells. Transgenic mice expressing the reverse tetracycline-responsive transactivator (rtTA) gene under the control of the rat elastase promoter were gene...

  20. Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells

    Yamasaki, M.; Masgrau, R.; Morgan, A. J.; Churchill, G. C.; Patel, S.; Ashcroft, S. J. H.; Galione, A

    2004-01-01

    How different extracellular stimuli can evoke different spatiotemporal Ca2+ signals is uncertain. We have elucidated a novel paradigm whereby different agonists use different Ca2+-storing organelles ("organelle seleetion") to evoke unique responses. Some agonists select the endoplasmic reticulum (ER), and others select lysosome-related (acidic) organelles, evoking spatial Ca2+ responses that mirror the organellar distribution. In pancreatic acinar cells, acetylcholine and bombesin exclusively...

  1. The role of protein synthesis and digestive enzymes in acinar cell injury

    Logsdon, Craig D.; Ji, Baoan

    2013-01-01

    The exocrine pancreas is the organ with the highest level of protein synthesis in the adult—each day the pancreas produces litres of fluid filled with enzymes that are capable of breaking down nearly all organic substances. For optimal health, the pancreas must produce sufficient enzymes of the right character to match the dietary intake. Disruption of normal pancreatic function occurs primarily as a result of dysfunction of the acinar cells that produce these digestive enzymes, and can lead ...

  2. Functional role of MicroRNA-19b in acinar cell necrosis in acute necrotizing pancreatitis.

    Hu, Ming-Xing; Zhang, Hong-Wei; Fu, Qiang; Qin, Tao; Liu, Chuan-Jiang; Wang, Yu-Zhu; Tang, Qiang; Chen, Yu-Xin

    2016-04-01

    The expression of microRNA-19b (miR-19b) in acute necrotizing pancreatitis (ANP) and its functional role in acinar cell necrosis of SD rats were investigated. Twelve SD rats were divided into two groups randomly, including control group and ANP group. The rat ANP models were established by intraperitoneal injection of L-arginine (2400 mg/kg body weight), and equal volume of 0.9% NaCl was injected in the control group. MiRNA chip assay was performed to examine the expression of miRNAs in the pancreas in two different groups. Besides, to further explore the role of miR-19b in ANP in vitro, taurolithocholic acid 3-sulfate disodium salt (TLC-S) (200 μmol/L) was administrated to treat the rat pancreatic acinar cell line, AR42J, for establishing the ANP cells model. The quantitative real-time PCR (qRT-PCR) was adopted to measure the miR-19b expression. Moreover, the mimic miRNA, miRNA antisense oligonucleotide (AMO) and control vector were used to transfect AR42J cells, the expression of miR-19b was confirmed by qRT-PCR and the necrotizing rate of AR42J cells was detected with AO/EB method. The expression of miR-19b was significantly higher in ANP group than in control group as displayed by the miRNA chip assay. Furthermore, after inducing necrosis of AR42J cells in vitro, the expression of miR-19b was significantly increased by 2.51±0.14 times in comparison with the control group. As revealed by qRT-PCR assay, the expression of miR-19b was 5.94±0.95 times higher in the mimic miRNA group than in the control vector group, companied with an obviously increased acinar cell necrotizing rate (50.3%±1.5% vs. 39.6%±2.3%, P0.05). The expression of miR-19b was significantly induced in ANP. In addition, up-regulation of miR-19b could promote the necrosis of pancreatic acinar cells and miR-19b deficiency could decrease the rate of pancreatic acinar cell necrosis. PMID:27072966

  3. Phorbol esters and A23187 regulate Na+=K+-pump activity in pancreatic acinar cells

    To clarify the subcellular mechanisms that mediate stimulation of Na+-K+-pump activity in pancreatic acinar cells by cholinergic agonists, the authors examined the effects of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca2+ ionophore A23187 on [3H]ouabain binding to dispersed guinea pig pancreatic acinar cells under conditions in which binding reflects the average rate of pump cycling. The phorbol ester more than doubled Na+-K+-pump activity as did the diacylglycerol analogue, 1-oleoyl-2-acetolyl-sn-3-glycerol. A23187 increased pump activity by a maximum of 31% at 0.3 μM but was progressively inhibitory at higher concentrations. The stimulatory effects of TPA and A23187 were additive, although either secretagogue elicited a less than additive response when added together with a maximally effective concentration of the cholinergic agonist, carbachol. Removal of extracellular Ca2+ had little effect on the pump response to TPA and did not reduce the maximal effect of A23187 but abolished the inhibitory effect seen at high ionophore concentrations in Ca2+-containing medium. These results indicate that both Ca2+ and protein kinase c are involved in regulating Na+-K+-pump activity in the pancreatic acinar cell

  4. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer. PMID:26510396

  5. Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

    Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I; Williams, John A

    2016-03-18

    Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D. PMID:26845357

  6. The econobiology of pancreatic acinar cells granule inventory and the stealthy nano-machine behind it.

    Hammel, Ilan; Meilijson, Isaac

    2016-03-01

    The pancreatic gland secretes most of the enzymes and many other macromolecules needed for food digestion in the gastrointestinal tract. These molecules play an important role in digestion, host defense and lubrication. The secretion of pancreatic proteins ensures the availability of the correct mix of proteins when needed. This review describes model systems available for the study of the econobiology of secretory granule content. The secretory pancreatic molecules are stored in large dense-core secretory granules that may undergo either constitutive or evoked secretion, and constitute the granule inventory of the cell. It is proposed that the Golgi complex functions as a distribution center for secretory proteins in pancreatic acinar cells, packing the newly formed secretory molecules into maturing secretory granules, also known functionally as condensing vacuoles. Mathematical modelling brings forward a process underlying granule inventory maintenance at various physiological states of condensation and aggregation by homotypic fusion. These models suggest unique but simple mechanisms accountable for inventory buildup and size, as well as for the distribution of secretory molecules into different secretory pathways in pancreatic acinar cells. PMID:26702787

  7. Secretory pathways in animal cells: with emphasis on pancreatic acinar cells.

    Beaudoin, A R; Grondin, G

    1991-01-01

    Studies over the past three decades have clearly established the existence of at least two distinct pathways for the intracellular transport and release of secretory proteins by animal cells. These have been identified as the regulated and constitutive pathways. Many observations have indicated that in certain cells, such as those of the exocrine pancreas and parotid glands at least, these pathways coexist in the same cells. Although the general scheme of protein transport within these pathways is well established, many fundamental aspects of intracellular transport remain to be unraveled. How are proteins transported through the endoplasmic reticulum? How are the transitional vesicles formed and what are the underlying mechanisms involved in their fusion with the cis-Golgi cisterna? Even the general mode of transfer through the Golgi stack is debated: Is there a diffusion through the stack by flow through intercisternal tubules and openings or is there a vesicle transfer system where membrane quanta hop from one cisterna to the other? What is the fate of secretory proteins in the trans-Golgi area and by what mechanisms is a fraction of newly synthesized molecules of a given secretory protein released spontaneously while the majority of such nascent molecules are diverted into a secretory granule compartment? In this review, we have examined these and other aspects of intracellular transport of secretory proteins using pancreatic acinar cells as our reference model and we present some evidence to support the existence of a paragranular pathway of secretion associated with secretory granule maturation. PMID:1993938

  8. Aquaporin expression and cell volume regulation in the SV40 immortalized rat submandibular acinar cell line.

    Hansen, Ann-Kristin; Galtung, Hilde Kanli

    2007-03-01

    The amount of aquaporins present and the cellular ability to perform regulatory volume changes are likely to be important for fluid secretions from exocrine glands. In this work these phenomena were studied in an SV40 immortalized rat submandibular acinar cell line. The regulatory cell volume characteristics have not previously been determined in these cells. Cell volume regulation following hyposmotic exposure and aquaporin induction was examined with Coulter counter methodology, radioactive efflux studies, fura-2 fluorescence, and polymerase chain reaction and Western blot techniques. Cell volume regulation was inhibited by the K(+) channel antagonists quinine and BaCl(2) and the Cl(-) channel blocker 5-nitro-2-(3-phenypropylamino)benzoic acid. A concomitant increase in cellular (3)H-taurine release and Ca(2+) concentration was also observed. Chelation of both intra- and extracellular Ca(2+) with EGTA and the Ca(2+) ionophore A23187 did not, however, affect cell volume regulation. Aquaporin 5 (AQP5) mRNA and protein levels were upregulated in hyperosmotic conditions and downregulated upon return to isosmotic solutions, but were reduced by the mitogen-activated ERK-activating kinase (MEK) inhibitor U0126. A 24-h MEK inhibition also diminished hyposmotically induced cell swelling and cell volume regulation. In conclusion, it was determined that regulatory volume changes in this immortalized cell line are due to KCl and taurine efflux. In conditions that increased AQP5 levels, the cells showed a faster cell swelling and a more complete volume recovery following hyposmotic exposure. This response could be overturned by MEK inhibition. PMID:17021794

  9. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas

    Toru Furukawa; Hitomi Sakamoto; Shoko Takeuchi; Mitra Ameri; Yuko Kuboki; Toshiyuki Yamamoto; Takashi Hatori; Masakazu Yamamoto; Masanori Sugiyama; Nobuyuki Ohike; Hiroshi Yamaguchi; Michio Shimizu; Noriyuki Shibata; Kyoko Shimizu; Keiko Shiratori

    2015-01-01

    Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we ide...

  10. Immunocytochemical localization of the [3H]estradiol-binding protein in rat pancreatic acinar cells

    Significant amounts of an estradiol-binding protein (EBP) are present in pancreatic acinar cells. This protein differs from the one found in female reproductive tissues and secondary sex organs (which is commonly referred to as estrogen receptor). EBP has now been purified from rat pancreas and was used as an antigen to induce polyclonal antibodies in rabbits. The antiserum obtained was purified initially by ammonium sulfate fractionation and then still further by interaction with a protein fraction from pancreas that was devoid of estradiol-binding activity. The latter procedure was used to precipitate nonspecific immunoglobulin Gs. Western blot analysis demonstrated that the anti-EBP antibody reacted specifically with a doublet of protein bands having mol wt of 64K and 66K. When this purified antibody was used as an immunocytochemical probe in conjunction with protein-A-gold, acinar cells were labeled on the surface of the endoplasmic reticulum, on the plasma membrane, and in mitochondria. This specific labeling pattern was not observed when preimmune serum was used. No labeling was observed over the nucleus, Golgi apparatus, or zymogen granules with purified anti-EBP antibodies. The unexpected distribution of EBP in both the endoplasmic reticulum and mitochondria is discussed

  11. Curative resection of a primarily unresectable acinar cell carcinoma of the pancreas after chemotherapy

    Dobrowolski Frank

    2009-02-01

    Full Text Available Abstract Background Acinar cell carcinoma (ACC represents only 1–2% of pancreatic cancers and is a very rare malignancy. At the time of diagnosis only 50% of the tumors appear to be resectable. Reliable data for an effective adjuvant or neoadjuvant treatment are not available. Case presentation A 65-year old male presented with obstructive jaundice and non-specific upper abdominal pain. MRI-imaging showed a tumor within the head of the pancreas concomitant with Serum-Lipase and CA19-9. During ERCP, a stent was placed. Endosonographic fine needle biopsy confirmed an acinar cell carcinoma. Laparotomy presented an locally advanced tumor with venous infiltration that was consequently deemed unresectable. The patient was treated with five cycles of 5-FU monotherapy with palliative intention. Chemotherapy was well tolerated, and no severe complications were observed. Twelve months later, the patient was in stable condition, and CT-scanning showed an obvious reduction in the size of the tumor. During further operative exploration, a PPPD with resection of the portal vein was performed. Histopathological examination gave evidence of a diffuse necrotic ACC-tumor, all resection margins were found to be negative. Eighteen months later, the patient showed no signs of recurrent disease. Conclusion ACC responded well to 5-FU monochemotherapy. Therefore, neoadjuvant chemotherapy could be an option to reduce a primarily unresectable ACC to a point where curative resection can be achieved.

  12. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis.

    Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M

    2016-07-01

    Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. PMID:27226576

  13. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway. PMID:26542397

  14. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation.

    Melissa A Metzler

    Full Text Available The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process.A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation.Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1 activates the Mist1 promoter [corrected]. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation.This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  15. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice

    Matthew D. Keefe

    2012-07-01

    The size of the pancreas is determined by intrinsic factors, such as the number of progenitor cells, and by extrinsic signals that control the fate and proliferation of those progenitors. Both the exocrine and endocrine compartments of the pancreas undergo dramatic expansion after birth and are capable of at least partial regeneration following injury. Whether the expansion of these lineages relies on similar mechanisms is unknown. Although we have shown that the Wnt signaling component β-catenin is selectively required in mouse embryos for the generation of exocrine acinar cells, this protein has been ascribed various functions in the postnatal pancreas, including proliferation and regeneration of islet as well as acinar cells. To address whether β-catenin remains important for the maintenance and expansion of mature acinar cells, we have established a system to follow the behavior and fate of β-catenin-deficient cells during postnatal growth and regeneration in mice. We find that β-catenin is continuously required for the establishment and maintenance of acinar cell mass, extending from embryonic specification through juvenile and adult self-renewal and regeneration. This requirement is not shared with islet cells, which proliferate and function normally in the absence of β-catenin. These results make distinct predictions for the relative role of Wnt–β-catenin signaling in the etiology of human endocrine and exocrine disease. We suggest that loss of Wnt–β-catenin activity is unlikely to drive islet dysfunction, as occurs in type 2 diabetes, but that β-catenin is likely to promote human acinar cell proliferation following injury, and might therefore contribute to the resolution of acute or chronic pancreatitis.

  16. A resected case of symptomatic acinar cell cystadenoma of the pancreas displacing the main pancreatic duct.

    Tanaka, Haruyoshi; Hatsuno, Tsuyoshi; Kinoshita, Mitsuru; Hasegawa, Kazuya; Ishihara, Hiromasa; Takano, Nao; Shimoyama, Satofumi; Nakayama, Hiroshi; Kataoka, Masato; Ichihara, Shu; Kanda, Mitsuro; Kodera, Yasuhiro; Kondo, Ken

    2016-12-01

    Acinar cell cystadenoma (ACA) of the pancreas has been newly recognized as an entity by the World Health Organization (WHO) definition (2010), and its pathogenesis has not been known adequately because of the rarity. Here, we report a case of a 22-year-old female who had been followed up for a cystic lesion at the tail of the pancreas pointed out by a screening computed tomography (CT) scan 7 years ago. The tumor grew in size from 3.3 to 5.1 cm in diameter for 6 years (0.3 cm per year). Particularly, it rapidly grew up to 6.3 cm in the latest 3 months in concurrence with the emergence of epigastralgia. A contrasted CT scan revealed the irregularly formed, multilocular cystic tumor having thin septum and calcification. The intratumoral magnetic resonance imaging intensity in the T1 and T2 weighted images were low and high, respectively. No communications between the tumor and the main pancreatic duct (MPD) were found, but the tumor displaced the MPD. She underwent surgical resection because the tumor was growing, turned symptomatic, and it seemed difficult to be diagnosed correctly until totally biopsied. Spleen-preserved distal pancreatectomy was performed. It was pathologically diagnosed as ACA; the cyst was lined by cells with normal acinar differentiation; cuboidal cells with round, basally oriented nuclei and eosinophilic granules in its apical cytoplasm. The abdominal pain has disappeared, and no recurrences have been found during a 5-year follow-up. Clinicians are recommended to consider an ACA as one of differential diagnoses of cystic tumors of the pancreas to provide appropriate diagnostics and therapeutics. PMID:27108123

  17. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  18. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells.

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  19. Prolonged Survival in a Patient with a Pancreatic Acinar Cell Carcinoma.

    Ploquin, Anne; Baldini, Capucine; Vuagnat, Perrine; Makhloufi, Samira; Desauw, Christophe; Hebbar, Mohamed

    2015-01-01

    Pancreatic acinar cell carcinoma (ACC) is a rare entity. Herein we present the case of a 50-year-old male patient with an unlimited mass on the pancreatic corpus and tail with peripancreatic effusion and multiple metastases in the liver and spleen. A liver biopsy showed a pancreatic ACC. The patient received 9 cycles of gemcitabine plus oxaliplatin (GEMOX regimen), which had to be stopped because of a persistent grade 2 neuropathy. A CT scan showed complete response after 14 years. At the age of 61 years, a localized prostatic cancer was diagnosed, treated by prostatectomy. The patient carried a BRCA2 mutation. None of the precedent case reports describe a chemosensibility to the GEMOX regimen. In spite of the lack of study in these patients, chemotherapy with oxaliplatin seems to be the most effective. Long survival can be expected. PMID:26600777

  20. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  1. Effect of ionizing radiation on acinar morphogenesis of human prostatic epithelial cells under three-dimensional culture conditions.

    Wang, T; X, S Ma; Kong, D; Yi, H; Wang, X; Liang, B; Xu, H; He, M; Jia, L; Qased, A B; Yang, Y; Liu, X

    2012-01-01

    Homeostasis is maintained by the interplay of multiple factors that directly or indirectly regulate cell proliferation and cell death. Complex multiple interactions between cells and the extracellular matrix occur during acinar morphogenesis and changes in these might indicate carcinogenesis of cells from a normal to a malignant, invasive phenotype. In this study, the human prostatic epithelial cell line RWPE-1 was cultured under three-dimensional (3-D) culture conditions, and the effect of ionizing radiation on acinar morphogenesis and its association with autophagy were discussed. The results illustrated that formation of specific spheroid (acinar) structures was detectable under 3-D culture conditions. Radiation induced the disruption of acini in different cell models using either gene overexpression (Akt) or gene knock-down (Beclin 1 and ATG7). Introduction of Akt not only accelerated the growth of cells (i.e., caused the cells to manifest elongating and microspike-like structures that are obviously different from structures seen in wild-type RWPE-1 cells under two-dimensional conditions), but also changed their morphological characteristics under 3-D culture conditions. Knock-down of autophagy-related genes (Beclin 1 and ATG7) increased the radiosensitivity of cells under 3-D culture conditions, and cells died of non-apoptotic death after radiation. The results suggested that ionizing radiation may change the cell phenotype and the formation of acini. Additionally even the autophagy mechanism may play a role in these processes. PMID:22296497

  2. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2011-01-01

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends o...

  3. Rab27A Is Present in Mouse Pancreatic Acinar Cells and Is Required for Digestive Enzyme Secretion.

    Yanan Hou

    Full Text Available The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1. Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.

  4. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion. PMID:24646566

  5. 99mTc-pertechnetate uptake in parotid acinar cells by the Na+/K+/Cl- co-transport system.

    Helman, J; Turner, R J; Fox, P C; Baum, B.J.

    1987-01-01

    99mTc-Pertechnetate (99mTcO4-) has widespread clinical use in the diagnosis and evaluation of dysfunctions in many different tissues. However, despite the broad clinical application of this radionuclide, very little is known about the mechanism by which 99mTcO4- enters a cell. We report evidence here that 99mTcO4- shares the Na+/K+/Cl- co-transport system localized to the basolateral membrane of rat parotid acinar cells. 99mTcO4- uptake by these cells was quite rapid (t1/2 approximately 30 s)...

  6. Atp2c2 Is Transcribed From a Unique Transcriptional Start Site in Mouse Pancreatic Acinar Cells.

    Fenech, Melissa A; Sullivan, Caitlin M; Ferreira, Lucimar T; Mehmood, Rashid; MacDonald, William A; Stathopulos, Peter B; Pin, Christopher L

    2016-12-01

    Proper regulation of cytosolic Ca(2+) is critical for pancreatic acinar cell function. Disruptions in normal Ca(2+) concentrations affect numerous cellular functions and are associated with pancreatitis. Membrane pumps and channels regulate cytosolic Ca(2+) homeostasis by promoting rapid Ca(2+) movement. Determining how expression of Ca(2+) modulators is regulated and the cellular alterations that occur upon changes in expression can provide insight into initiating events of pancreatitis. The goal of this study was to delineate the gene structure and regulation of a novel pancreas-specific isoform for Secretory Pathway Ca(2+) ATPase 2 (termed SPCA2C), which is encoded from the Atp2c2 gene. Using Next Generation Sequencing of RNA (RNA-seq), chromatin immunoprecipitation for epigenetic modifications and promoter-reporter assays, a novel transcriptional start site was identified that promotes expression of a transcript containing the last four exons of the Atp2c2 gene (Atp2c2c). This region was enriched for epigenetic marks and pancreatic transcription factors that promote gene activation. Promoter activity for regions upstream of the ATG codon in Atp2c2's 24th exon was observed in vitro but not in in vivo. Translation from this ATG encodes a protein aligned with the carboxy terminal of SPCA2. Functional analysis in HEK 293A cells indicates a unique role for SPCA2C in increasing cytosolic Ca(2+) . RNA analysis indicates that the decreased Atp2c2c expression observed early in experimental pancreatitis reflects a global molecular response of acinar cells to reduce cytosolic Ca(2+) levels. Combined, these results suggest SPCA2C affects Ca(2+) homeostasis in pancreatic acinar cells in a unique fashion relative to other Ca(2+) ATPases. J. Cell. Physiol. 231: 2768-2778, 2016. © 2016 Wiley Periodicals, Inc. PMID:27017909

  7. Hydrogen sulfide: a novel gaseous signaling molecule and intracellular Ca2+ regulator in rat parotid acinar cells.

    Moustafa, Amira; Habara, Yoshiaki

    2015-10-01

    In addition to nitric oxide (NO), hydrogen sulfide (H2S) is recognized as a crucial gaseous messenger that exerts many biological actions in various tissues. An attempt was made to assess the roles and underlying mechanisms of both gases in isolated rat parotid acinar cells. Ductal cells and some acinar cells were found to express NO and H2S synthases. Cevimeline, a muscarinic receptor agonist upregulated endothelial NO synthase in parotid tissue. NO and H2S donors increased the intracellular Ca(2+) concentration ([Ca(2+)]i). This was not affected by inhibitors of phospholipase C and inositol 1,4,5-trisphosphate receptors, but was decreased by blockers of ryanodine receptors (RyRs), soluble guanylyl cyclase, and protein kinase G. The H2S donor evoked NO production, which was decreased by blockade of NO synthases or phosphoinositide 3-kinase or by hypotaurine, an H2S scavenger. The H2S donor-induced [Ca(2+)]i increase was diminished by a NO scavenger or the NO synthases blocker. These results suggest that NO and H2S play important roles in regulating [Ca(2+)]i via soluble guanylyl cyclase-cGMP-protein kinase G-RyRs, but not via inositol 1,4,5-trisphosphate receptors. The effect of H2S may be partially through NO produced via phosphoinositide 3-kinase-Akt-endothelial NO synthase. It was concluded that both gases regulate [Ca(2+)]i in a synergistic way, mainly via RyRs in rat parotid acinar cells. PMID:26224578

  8. Gramicidin-perforated Patch Recording Revealed the Oscillatory Nature of Secretory Cl− Movements in Salivary Acinar Cells

    Sugita, Makoto; Hirono, Chikara; Shiba, Yoshiki

    2004-01-01

    Elevations of cytoplasmic free calcium concentrations ([Ca2+]i) evoked by cholinergic agonists stimulate isotonic fluid secretion in salivary acinar cells. This process is driven by the apical exit of Cl− through Ca2+-activated Cl− channels, while Cl− enters the cytoplasm against its electrochemical gradient via a loop diuretic-sensitive Na+-K+-2Cl− cotransporter (NKCC) and/or parallel operations of Cl−-HCO3 − and Na+-H+ exchangers, located in the basolateral membrane. To characterize the con...

  9. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro.

    Ghazalli, Nadiah; Mahdavi, Alborz; Feng, Tao; Jin, Liang; Kozlowski, Mark T; Hsu, Jasper; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2015-09-01

    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133(high) fraction and among 230 micro-manipulated single CD133(high) cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro. PMID

  10. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  11. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease.

    Teos, L Y; Zheng, C-Y; Liu, X; Swaim, W D; Goldsmith, C M; Cotrim, A P; Baum, B J; Ambudkar, I S

    2016-07-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  12. Pancreatic panniculitis in a patient with pancreatic-type acinar cell carcinoma of the liver – case report and review of literature

    Zundler, Sebastian; Erber, Ramona; Agaimy, Abbas; Hartmann, Arndt; Kiesewetter, Franklin; Strobel, Deike; Neurath, Markus F; Wildner, Dane

    2016-01-01

    Background Pancreatic panniculitis is a rare condition, which has only been described in relation with pancreatic diseases up to now. It is characterized by necrotizing subcutaneous inflammation and is thought to be triggered by adipocyte necrosis due to systemic release of pancreatic enzymes with consecutive infiltration of neutrophils. We present the first case of a patient with pancreatic panniculitis caused by pancreatic-type primary acinar cell carcinoma (ACC) of the liver and without un...

  13. The natural history of pancreatic acinar cell cystadenoma: Is resection better than surveillance? An update to a case report from 2010

    Darcy, David G.; Dominique Jan

    2016-01-01

    Cystic lesions of the pancreas are a rare entity, and few reports have described their natural history in children. A previously published report described a 9-year-old boy with an acinar cell cystadenoma, discovered during a laparoscopic appendectomy. Initially asymptomatic and followed by serial MRI, this patient presented to our institution several years later with chronic obstructive symptoms that required surgical intervention. Planning for resection included multidisciplinary input from...

  14. E-cadherin-negative acinar cell carcinoma of the pancreas: report of a case showing a solid pseudopapillary growth pattern.

    Tajima, Shogo; Waki, Michihiko; Azuma, Masaki; Koda, Kenji; Ohata, Akihiko

    2016-09-01

    E-cadherin expression patterns in acinar cell carcinomas (ACCs) of the pancreas have not been well documented. Herein, we present a hitherto undescribed case of E-cadherin-negative ACC with a solid pseudopapillary growth pattern in a 65-year-old man. We used an antibody against the extracellular domain of E-cadherin. As a further unusual status in ACC, faint β-catenin expression was observed in the cytoplasm of carcinoma cells. Morphological distinction from a solid pseudopapillary neoplasm (SPN) of the pancreas might be problematic in such a case, because of their similarities concerned with the growth pattern and E-cadherin negativity. Without nuclear accumulation of β-catenin, a diagnosis of SPN was almost excluded. Immunoreactivity for trypsin and BCL10 made an accurate diagnosis of ACC to this case. The tumor recurred 10 months post-surgery as rapidly enlarging masses in the liver, presumably indicating the aggressiveness of the E-cadherin-negative phenotype among ACCs. PMID:25600280

  15. Early events of secretory granule formation in the rat parotid acinar cell under the influence of isoproterenol. An ultrastructural and lectin cytochemical study

    F D’Amico

    2009-12-01

    Full Text Available The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, Glycine max agglutinin (SBA, Arachys hypogaea agglutinin (PNA]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory gran- ules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.

  16. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy

  17. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  18. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by γ-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment

  19. Zinc induces necrosis on rat pancreatic acinar AR42J cells

    Complete text of publication follows. Zinc is one of the essential metals, but high amounts of zinc induce several kinds of tissue damage. In those tissues, pancreatic exocrine cells are very sensitive to zinc, but the cause is still unclear. When 600 μM of zinc was added to AR42J cells, necrosis, but not apoptosis, quickly occurred. Zinc and sodium ions did not increase in the cytosol of AR42J cells even if 600 μM of zinc was added. However, calcium ion immediately increased in the cytosol after the addition of zinc and decreased quickly. Then, cytosol calcium content gradually increased again in a time-dependent manner. When 1.5 mM of calcium was added to the medium, the effect of 600 μM of zinc disappeared. On the contrary, rat pancreatic insulinoma cell line, RIN cells, did not increase cytosolic calcium concentration from zinc and necrosis was not induced by zinc. It is thought that zinc induces necrosis on AR42J cells by the increase of cytosolic calcium concentration, and the increase of extracellular calcium content inhibits the action of zinc that stimulates calcium transportation.

  20. Autophagy in pancreatic acinar cells in caerulein-treated mice: immunolocalization of related proteins and their potential as markers of pancreatitis.

    Zhang, Leshuai; Zhang, Jun; Shea, Katherine; Xu, Lin; Tobin, Grainne; Knapton, Alan; Sharron, Stewart; Rouse, Rodney

    2014-01-01

    Drug-induced pancreatitis (DIP) is an underdiagnosed condition that lacks sensitive and specific biomarkers. To better understand the mechanisms of DIP and to identify potential tissue biomarkers, we studied experimental pancreatitis induced in male C57BL/6 mice by intraperitoneal injection of caerulein (10 or 50 μg/kg) at 1-hr intervals for a total of 7 injections. Pancreata from caerulein-treated mice exhibited consistent acinar cell autophagy and apoptosis with infrequent necrosis. Kinetic assays for serum amylase and lipase also showed a dose-dependent increase. Terminal deoxynucleotidyl transferase-mediated biotin-dNTP nick labeling (TUNEL) detected dose-dependent acinar cell apoptosis. By light microscopy, autophagy was characterized by the formation of autophagosomes and autolysosomes (ALs) within the cytoplasm of acinar cells. Immunohistochemical studies with specific antibodies for proteins related to autophagy and pancreatic stress were conducted to evaluate these proteins as potential biomarkers of pancreatitis. Western blots were used to confirm immunohistochemical results using pancreatic lysates from control and treated animals. Autophagy was identified as a contributing process in caerulein-induced pancreatitis and proteins previously associated with autophagy were upregulated following caerulein treatment. Autophagosomes and ALs were found to be a common pathway, in which cathepsins, lysosome-associated membrane protein 2, vacuole membrane protein 1, microtubule-associated protein 1 light chain 3 (LC3), autophagy-related protein 9, Beclin1, and pancreatitis-associated proteins were simultaneously involved in response to caerulein stimulus. Regenerating islet-derived 3 gamma (Reg3γ), a pancreatic acute response protein, was dose-dependently induced in caerulein-treated mice and colocalized with the autophagosomal marker, LC3. This finding supports Reg3γ as a candidate biomarker for pancreatic injury. PMID:23640381

  1. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Loo Jr., Billy W.

    2000-06-09

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  2. Fractionated irradiation and late changes in rat parotid gland: effects on the number of acinar cells, potassium efflux, and amylase secretion

    The authors used different in vitro secretory models and quantitative morphological characterization of rat parotid gland following fractionated unilateral irradiation to one gland on a 5-day fraction schedule with 6 MV photons (total dose 30, 35, 40 and 45 Gy) or a two-fractions regimen in 5 days with total dose of 24 and 32 Gy. The contralateral shielded gland served as control, and parallel analyses of irradiated and control glands were performed 180 days following the last irradiation. The relative noradrenaline stimulated electrolyte secretion (86rubidium tracer for potassium) was decreased in the irradiated compared with control glands. The noradrenaline-stimulated exocytotic amylase release was not significantly affected by irradiation, but the gland content of amylase was decreased dose-dependently. The quantitative morphological analysis revealed a dose-dependent decline in the number of acinar cells; the other parenchymal cells were unaffected by irradiation compared with controls. (author)

  3. Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia

    Kazumi Ebine; Chow, Christina R.; DeCant, Brian T.; Hattaway, Holly Z.; Grippo, Paul J.; Krishan Kumar; Munshi, Hidayatullah G.

    2016-01-01

    Cells in the pancreas that have undergone acinar-ductal metaplasia (ADM) can transform into premalignant cells that can eventually become cancerous. Although the epithelial-mesenchymal transition regulator Snail (Snai1) can cooperate with Kras in acinar cells to enhance ADM development, the contribution of Snail-related protein Slug (Snai2) to ADM development is not known. Thus, transgenic mice expressing Slug and Kras in acinar cells were generated. Surprisingly, Slug attenuated Kras-induced...

  4. The effect of irradiation on the intracellular transportation of the parotid gland acinar cells in the mouse. Localization of monosaccharides studied by electron microscopic autoradiography

    The present study was designed to investigate the effects of radiation on the ability to ingest monosaccharides and intracellular transportation in the parotid gland in mice. The submandibular regions, including the parotid gland, was exposed to 10 Gy of X-rays. Three days after irradiation, the localization of reducing silver grains in organelles was determined, using electron microscopic autoradiography with H-3 labeled galactosamine, glucosamine, fucose, and mannose. In the non-irradiated group, the proportion of reducing silver grains in the acinar cells began to increase 15 min after administration of monosaccharides, reached a peak at 180 min, and thereafter decreased. Similar findings were observed in the irradiated group, although the values were lower than the non-irradiated group. The proportion of reducing silver grains in the endoplasmic reticulum reached a peak at 15 min in both the non-irradiated and irradiated groups, and gradually decreased until 120 min. Thereafter, it became almost constant and low, but the proportion in the irradiated group was slightly higher than in the non-irradiated group. The proportion of reducing silver grains in the Golgi apparatus was maximum at 60 min in the non-irradiated group, and gradually decreased until 360 min. A similar tendency was seen in the irradiated group, although its variation was not so marked as in the non-irradiated group. The proportion of reducing silver grains in the condensing vacuoles was maximum at 120 min, and thereafter, it decreased; the decrease was only slight in the irradiated group. The proportion of reducing silver grains in secretory granules increased with time in both the non-irradiated and irradiated groups, although this was only slight in the irradiated group, and reached a peak at 360 min. Transportation of monosaccharides in an acinar cell was found to be delayed by irradiation. (N.K.)

  5. The effect of irradiation on the intracellular transportation of the parotid gland acinar cells in the mouse. Localization of monosaccharides studied by electron microscopic autoradiography

    Matsunaga, Hajime (Nippon Dental Univ., Tokyo (Japan))

    1994-06-01

    The present study was designed to investigate the effects of radiation on the ability to ingest monosaccharides and intracellular transportation in the parotid gland in mice. The submandibular regions, including the parotid gland, was exposed to 10 Gy of X-rays. Three days after irradiation, the localization of reducing silver grains in organelles was determined, using electron microscopic autoradiography with H-3 labeled galactosamine, glucosamine, fucose, and mannose. In the non-irradiated group, the proportion of reducing silver grains in the acinar cells began to increase 15 min after administration of monosaccharides, reached a peak at 180 min, and thereafter decreased. Similar findings were observed in the irradiated group, although the values were lower than the non-irradiated group. The proportion of reducing silver grains in the endoplasmic reticulum reached a peak at 15 min in both the non-irradiated and irradiated groups, and gradually decreased until 120 min. Thereafter, it became almost constant and low, but the proportion in the irradiated group was slightly higher than in the non-irradiated group. The proportion of reducing silver grains in the Golgi apparatus was maximum at 60 min in the non-irradiated group, and gradually decreased until 360 min. A similar tendency was seen in the irradiated group, although its variation was not so marked as in the non-irradiated group. The proportion of reducing silver grains in the condensing vacuoles was maximum at 120 min, and thereafter, it decreased; the decrease was only slight in the irradiated group. The proportion of reducing silver grains in secretory granules increased with time in both the non-irradiated and irradiated groups, although this was only slight in the irradiated group, and reached a peak at 360 min. Transportation of monosaccharides in an acinar cell was found to be delayed by irradiation. (N.K.).

  6. Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling

    Blaine, Stacy A.; Ray, Kevin C.; Anunobi, Reginald; Gannon, Maureen A.; Washington, Mary K.; Means, Anna L.

    2010-01-01

    Studies in both humans and rodents have found that insulin+ cells appear within or near ducts of the adult pancreas, particularly following damage or disease, suggesting that these insulin+ cells arise de novo from ductal epithelium. We have found that insulin+ cells are continuous with duct cells in the epithelium that makes up the hyperplastic ducts of both chronic pancreatitis and pancreatic cancer in humans. Therefore, we tested the hypothesis that both hyperplastic ductal cells and their...

  7. Knockdown of GRP78 promotes apoptosis in pancreatic acinar cells and attenuates the severity of cerulein and LPS induced pancreatic inflammation.

    Yong Liu

    Full Text Available Acute pancreatitis (AP is a potentially lethal disease characterized by inflammation and parenchymal cell death; also, the severity of AP correlates directly with necrosis and inversely with apoptosis. However, mechanisms of regulating cell death in AP remain unclear. The endoplasmic reticulum (ER chaperone protein GRP78 has anti-apoptotic properties, in addition to modulating ER stress responses. This study used RNA interference (RNAi approach to investigate the potential role of GRP78 in regulating apoptosis during AP. In vitro models of AP were successfully developed by treating AR42J cells with cerulein or cerulein plus lipoplysaccharide (LPS. There was more pancreatic inflammation and less apoptosis with the cerulein plus LPS treatment. Furthermore, knockdown of GRP78 expression markedly promoted apoptosis and reduced necrosis in pancreatic acinar cells. This was accomplished by enhancing the activation of caspases and inhibiting the activity of X-linked inhibitor of apoptosis protein (XIAP, as well as a receptor interacting protein kinase-1(RIPK1, which is a key mediator of necrosis. This attenuated the severity of pancreatic inflammation, especially after cerulein plus LPS treatment. In conclusion, these findings indicate that GRP78 plays an anti-apoptotic role in regulating the cell death response during AP. Therefore, GRP78 is a potential therapeutic target for AP.

  8. Pancreatic ductal bicarbonate secretion: challenge of the acinar acid load

    Peter eHegyi

    2011-07-01

    Full Text Available Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel, however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.

  9. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells. PMID:26235267

  10. Pancreatic Acinar Cells Employ miRNAs as Mediators of Intercellular Communication to Participate in the Regulation of Pancreatitis-Associated Macrophage Activation.

    Zhao, Yong; Wang, Hao; Lu, Ming; Qiao, Xin; Sun, Bei; Zhang, Weihui; Xue, Dongbo

    2016-01-01

    Macrophage activation plays an important role in the inflammatory response in acute pancreatitis. In the present study, the activation of AR42J pancreatic acinar cells was induced by taurolithocholate treatment. The results showed that the culture medium from the activated AR42J cells significantly enhanced NFκB activation in the macrophages compared to that without taurolithocholate treatment. Additionally, the precipitates obtained from ultracentrifugation of the culture media that were rich in exosomes were markedly more potent in activating macrophages compared with the supernatant fraction lacking exosomes. The results indicated that the mediators carried by the exosomes played important roles in macrophage activation. Exosomal miRNAs were extracted and examined using microarrays. A total of 115 differentially expressed miRNAs were identified, and 30 showed upregulated expression, while 85 displayed downregulated expression. Target genes of the differentially expressed miRNAs were predicted using TargetScan, MiRanda, and PicTar software programs. The putative target genes were subjected to KEGG functional analysis. The functions of the target genes were primarily enriched in MAPK pathways. Specifically, the target genes regulated macrophage activation through the TRAF6-TAB2-TAK1-NIK/IKK-NFκB pathway. As the mediators of signal transduction, miRNAs and their predicted target mRNAs regulate every step in the MAPK pathway. PMID:27546996

  11. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events.

    Nuche-Berenguer, Bernardo; Ramos-Álvarez, Irene; Jensen, R T

    2016-06-01

    In a recent study we explored Group-1-p21-activated kinases (GP.1-PAKs) in rat pancreatic acini. Only PAK2 was present; it was activated by gastrointestinal-hormones/neurotransmitters and growth factors in a PKC-, Src- and small-GTPase-mediated manner. PAK2 was required for enzyme-secretion and ERK/1-2-activation. In the present study we examined PAK2's role in CCK and TPA-activation of important distal signaling cascades mediating their physiological/pathophysiological effects and analyzed its role in pathophysiological processes important in early pancreatitis. In rat pancreatic acini, PAK2-inhibition by the specific, GP.1.PAK-inhibitor, IPA-3-suppressed cholecystokinin (CCK)/TPA-stimulated activation of focal-adhesion kinases and mitogen-activated protein-kinases. PAK2-inhibition reversed the dual stimulatory/inhibitory effect of CCK/TPA on the PI3K/Akt/GSK-3β pathway. However, its inhibition did not affect PKC activation. PAK2-inhibition protected acini from CCK-induced ROS-generation; caspase/trypsin-activation, important in early pancreatitis; as well as from cell-necrosis. Furthermore, PAK2-inhibition reduced proteolytic-activation of PAK-2p34, which is involved in programmed-cell-death. To ensure that the study did not only rely in the specificity of IPA-3 as a PAK inhibitor, we used two other approaches for PAK inhibition, FRAX597 a ATP-competitive-GP.1-PAKs-inhibitor and infection with a PAK2-dominant negative(DN)-Advirus. Those two approaches confirmed the results obtained with IPA-3. This study demonstrates that PAK2 is important in mediating CCK's effect on the activation of signaling-pathways known to mediate its physiological/pathophysiological responses including several cellular processes linked to the onset of pancreatitis. Our results suggest that PAK2 could be a new, important therapeutic target to consider for the treatment of diseases involving deregulation of pancreatic acinar cells. PMID:26912410

  12. Nonenzymatic cryogenic isolation of therapeutic cells: novel approach for enzyme-free isolation of pancreatic islets using in situ cryopreservation of islets and concurrent selective freeze destruction of acinar tissue.

    Taylor, Michael J; Baicu, Simona C

    2014-01-01

    Cell-based therapies, which all involve processes for procurement and reimplantation of living cells, currently rely upon expensive, inconsistent, and even toxic enzyme digestion processes. A prime example is the preparation of isolated pancreatic islets for the treatment of type 1 diabetes by transplantation. To avoid the inherent pitfalls of these enzymatic methods, we have conceptualized an alternative approach based on the hypothesis that cryobiological techniques can be used for differential freeze destruction of the pancreas (Px) to release islets that are selectively cryopreserved in situ. Pancreata were procured from juvenile pigs using approved procedures. The concept of cryoisolation is based on differential processing of the pancreas in five stages: 1) infiltrating islets in situ preferentially with a cryoprotectant (CPA) cocktail via antegrade perfusion of the major arteries; 2) retrograde ductal infusion of water to distend the acinar; 3) freezing the entire Px solid to dithizone for identification of intact islets and with Syto 13/PI for fluorescence viability testing and glucose-stimulated insulin release assessment. As predicted, the cryoisolate contained small fragments of residual tissue comprising an amorphous mass of acinar tissue with largely intact and viable (>90%) embedded islets. Islets were typically larger (range 50-500 µm diameter) than their counterparts isolated from juvenile pigs using conventional enzyme digestion techniques. Functionally, the islets from replicate cryoisolates responded to a glucose challenge with a mean stimulation index = 3.3 ± 0.7. An enzyme-free method of islet isolation relying on in situ cryopreservation of islets with simultaneous freeze destruction of acinar tissue is feasible and proposed as a new and novel method that avoids the problems associated with conventional collagenase digestion methods. PMID:23992741

  13. Damage to pancreatic acinar cells and preservation of islets of Langerhans in a rat model of acute pancreatitis induced by Karwinskia humboldtiana (buckthorn).

    Carcano-Diaz, Katya; Garcia-Garcia, Aracely; Segoviano-Ramirez, Juan Carlos; Rodriguez-Rocha, Humberto; Loera-Arias, Maria de Jesus; Garcia-Juarez, Jaime

    2016-09-01

    Karwinskia humboldtiana (Kh) is a poisonous plant that grows in some regions of the American continent. Consuming large amounts of Kh fruit results in acute intoxication leading to respiratory failure, culminating in death within days. There is evidence of histological damage to the lungs, liver, and kidneys following accidental and experimental Kh intoxication. To date, the microscopic effect of Kh consumption on the pancreas has not been described. We examined the early effects of Kh fruit on pancreatic tissue at different stages of acute intoxication in the Wistar rat. We found progressive damage confined to the exocrine pancreas, starting with a reduction in the number of zymogen granules, loss of acinar architecture, the presence of autophagy-like vesicles, apoptosis and inflammatory infiltrate. The pancreatic pathology culminated in damaged acini characterized by necrosis and edema, with a complete loss of lobular architecture. Interestingly, the morphology of the islets of Langerhans was conserved throughout our evaluations. Taken together, our results indicate the damage induced by a high dose of Kh fruit in the Wistar rat is consistent with an early acute necrotizing pancreatitis that exclusively affects the exocrine pancreas. Therefore, this system might be useful as an animal model to study the treatment of pancreatic diseases. More importantly, as the islets of Langerhans were preserved, the active compounds of Kh fruit could be utilized for the treatment of acinar pancreatic cancer. Further studies might provide insight into the severity of acute Kh intoxication in humans and influence the design of treatments for pancreatic diseases and acinar pancreatic cancer. PMID:26877198

  14. Congenital acinar dysplasia. Case Report

    Pulmonary hypoplasia (PH) is a rare cause of pulmonary insufficiency , and had a significant rate of morbidity and mortality among affected infants. In most cases ,pulmonary hypoplasia is secondry to underlying abnormalities . These may include space occupying lesions as infants with cogential diaphragmatic hernia; malformation of chest wall resulting in a small thorcacic cavity; severe and prolonged olygohydramnios; and neuromuscular disorders, which prevent normal fetal chest expansion.All lead to poor lung development. Primary PH as a result of cogenital acinar dysplasia is exceedingly rare and is diagnosed by exclusionof all known etiologies of secondary PH. (author)

  15. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  16. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    Abasolo, Ibane [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Pujal, Judit; Navarro, Pilar [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Rabanal, Rosa M.; Serafin, Anna [Universitat Autonoma de Barcelona, Departament de Medicina i Cirurgia Animals, Barcelona (Spain); Millan, Olga [Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Real, Francisco X. [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Programa de Patologia Molecular, Centro Nacional de Investigaciones Oncologicas, Madrid (Spain)

    2009-07-15

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  17. Monoclonal Antibody 16D10 to the C-Terminal Domain of the Feto-Acinar Pancreatic Protein Binds to Membrane of Human Pancreatic Tumoral SOJ-6 Cells and Inhibits the Growth of Tumor Xenografts

    Laurence Panicot-Dubois

    2004-11-01

    Full Text Available Feto-acinar pancreatic protein (FAPP characterized by mAbJ28 reactivity is a specific component associated with ontogenesis and behaves as an oncodevelopment-associated antigen. We attempted to determine whether pancreatic tumoral SOJ-6 cells are expressed at their surface FAPP antigens and to examine if specific antibodies directed against these FAPP epitopes could decrease the growth of pancreatic tumors in a mice model. For this purpose, we used specific antibodies against either the whole FAPP, the O-glycosylated C-terminal domain, or the N-terminal domain of the protein. Our results indicate that SOJ-6 cells expressed at their surface a 32-kDa peptide corresponding to the C-terminal domain of the FAPP. Furthermore, we show, by using endoproteinase Lys-C or geldanamycin, a drug able to impair the FAPP secretion, that this 32-kDa peptide expressed on the SOJ-6 cell surface comes from the degradation of the FAPP. Finally, an in vivo prospective study using a preventative tumor model in nude mice indicates that targeting this peptide by the use of mAb16D10 inhibits the growth of SOJ-6 xenografts. The specificity of mAb16D10 for pancreatic tumors and the possibility to obtain recombinant structures of mucin-like peptides recognized by mAb16D10 and mAbJ28 are promising tools in immunologic approaches to cure pancreatic cancers.

  18. Effects of a diet high in fish oil (MaxEPA) on the formation of micronucleated erythrocytes in blood and on the number of atypical acinar cell foci Induced in rat pancreas by azaserine.

    Appel, Marko J; Woutersen, Ruud A

    2003-01-01

    The present study was performed to investigate the influence of fish oil on the genotoxic effects of azaserine, using the formation of micronucleated erythrocytes as a measure for the degree of initiating potency and the number and size of putative preneoplastic pancreatic atypical acinar cell foci (AACF) as a measure for the actual number of initiated cells. Male Wistar rats were treated twice i.p. with 30 mg azaserine per kg body weight to induce AACF. During the initiation/early promotion phase the rats were maintained on diets containing 5 wt% vegetable oil (safflower and high-oleic sunflower oil), 25 wt% vegetable oil, 25 wt% fat (15% vegetable oil + 10 wt% fish oil), or 25 wt% fat (5% vegetable oil + 20 wt% fish oil), respectively. One day after carcinogen treatment, the numbers of micronucleated polychromatic erythrocytes were determined in blood smears obtained from 10 animals per group. Each high-fat diet resulted in higher percentages of micronucleated polychromatic erythrocytes than the low-fat diet. Dietary fish oil did not significantly influence the number of micronucleated cells. Two weeks after carcinogen treatment, the diets containing fish oil were replaced by the diet containing 25% vegetable oil, and the animals were further maintained for about 14 wk. Pancreatic tissue slides were microscopically evaluated for the number and size of AACF. Dietary fish oil caused an increase in the number and size of AACF, although a clear dose-effect relationship was absent. It was concluded that a high level of dietary fish oil, when given during the induction/early promotion phase, enhances azaserine-induced pancreatic carcinogenesis in rats. PMID:14769538

  19. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    Luciana Reis AZEVEDO-ALANIS

    2015-10-01

    Full Text Available Although some morphological investigations on aged human sublingual glands (HSG found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated.Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death.Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years; II (31–60, and III (61–90. Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM. Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05.Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001. However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis.Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death.

  20. p21(WAF1) (/Cip1) limits senescence and acinar-to-ductal metaplasia formation during pancreatitis.

    Grabliauskaite, Kamile; Hehl, Adrian B; Seleznik, Gitta M; Saponara, Enrica; Schlesinger, Kathryn; Zuellig, Richard A; Dittmann, Anja; Bain, Martha; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-02-01

    Trans-differentiation of pancreatic acinar cells into ductal-like lesions, a process defined as acinar-to-ductal metaplasia (ADM), is observed in the course of organ regeneration following pancreatitis. In addition, ADM is found in association with pre-malignant PanIN lesions and correlates with an increased risk of pancreatic adenocarcinoma (PDAC). Human PDAC samples show down-regulation of p21(WAF1) (/Cip1) , a key regulator of cell cycle and cell differentiation. Here we investigated whether p21 down-regulation is implicated in controlling the early events of acinar cell trans-differentiation and ADM formation. p21-mediated regulation of ADM formation and regression was analysed in vivo during the course of cerulein-induced pancreatitis, using wild-type (WT) and p21-deficient (p21(-/-) ) mice. Biochemical and immunohistochemical methods were used to evaluate disease progression over 2 weeks of the disease and during a recovery phase. We found that p21 was strongly up-regulated in WT acinar cells during pancreatitis, while it was absent in ADM areas, suggesting that p21 down-regulation is associated with ADM formation. In support of this hypothesis, p21(-/-) mice showed a significant increase in number and size of metaplasia. In addition, p21 over-expression in acinar cells reduced ADM formation in vitro, suggesting that the protein regulates the metaplastic transition in a cell-autonomous manner. p21(-/-) mice displayed increased expression and relocalization of β-catenin both during pancreatitis and in the subsequent recovery phase. Finally, loss of p21 was accompanied by increased DNA damage and development of senescence. Our findings are consistent with a gate-keeper role of p21 in acinar cells to limit senescence activation and ADM formation during pancreatic regeneration. PMID:25212177

  1. Induction of C-FOS, C-MYC and P53 by β-adrenergic receptor (β-AR) stimulation of rat parotid acinar cells (RPAC)

    Treatment of rats with the β-agonist isoproterenol (ISO) results in dramatically increased parotid gland protein synthesis, processing and cell proliferation. The authors have shown that in RPAC in vitro, β-AR stimulation has similar effect on protein synthesis and processing. Proto-oncogenes have been implicated in growth regulation, differentiation and in mediating some extracellular stimulated events at the level of gene expression. To understand the regulation of cellular events after β-AR stimulation, the expression of c-fos, c-myc and p53 was investigated. RPAC were incubated with or without 10-5M ISO for 15, 30, 60 min. mRNA was isolated from cells and hybridization analysis was performed on nitrocellulose paper-transferred mRNA using 32P-labeled DNA probes. At early time points, the levels of c-fos gene activation in ISO-treated and control cells were comparable. After 60 min of ISO treatment, a sharp 20-30 fold induction of c-fos expression occurred. Similar increases in c-myc and p53 gene expression were observed after 60 min of ISO treatment. The authors data indicate that early effects of β-AR stimulation of RPAC include induction of c-fos, c-myc and p53 gene expression as well as enhanced protein synthesis and processing

  2. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices

    Goldenberg Anna

    2006-06-01

    Full Text Available Abstract Background Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV which serves to match lung perfusion to ventilation. The underlying mechanisms are not fully resolved yet. The major vascular segment contributing to HPV, the intra-acinar artery, is mostly located in that part of the lung that cannot be selectively reached by the presently available techniques, e.g. hemodynamic studies of isolated perfused lungs, recordings from dissected proximal arterial segments or analysis of subpleural vessels. The aim of the present study was to establish a model which allows the investigation of HPV and its underlying mechanisms in small intra-acinar arteries. Methods Intra-acinar arteries of the mouse lung were studied in 200 μm thick precision-cut lung slices (PCLS. The organisation of the muscle coat of these vessels was characterized by α-smooth muscle actin immunohistochemistry. Basic features of intra-acinar HPV were characterized, and then the impact of reactive oxygen species (ROS scavengers, inhibitors of the respiratory chain and Krebs cycle metabolites was analysed. Results Intra-acinar arteries are equipped with a discontinuous spiral of α-smooth muscle actin-immunoreactive cells. They exhibit a monophasic HPV (medium gassed with 1% O2 that started to fade after 40 min and was lost after 80 min. This HPV, but not vasoconstriction induced by the thromboxane analogue U46619, was effectively blocked by nitro blue tetrazolium and diphenyleniodonium, indicating the involvement of ROS and flavoproteins. Inhibition of mitochondrial complexes II (3-nitropropionic acid, thenoyltrifluoroacetone and III (antimycin A specifically interfered with HPV, whereas blockade of complex IV (sodium azide unspecifically inhibited both HPV and U46619-induced constriction. Succinate blocked HPV whereas fumarate had minor effects on vasoconstriction. Conclusion This study establishes the first model for investigation of basic characteristics of HPV

  3. 姜黄素对长期摄入酒精和不同量蛋白质的大鼠胰腺腺泡细胞损伤的保护作用研究%Effects of Curcumin on Pancreatic Acinar Cell Injury in Rats with Long-term Alcohol Intake and Different Amount of Protein

    周旭春

    2011-01-01

    目的:研究姜黄素对长期摄入酒精和不同量蛋白质的大鼠胰腺腺泡细胞损伤的保护作用.方法:实验分为5组,即正常对照(正常饲养)、高蛋白、低蛋白、高蛋白+姜黄素、低蛋白+姜黄素(以25%酒精代替饮水自由饮用,高、低蛋白质占总热量供给的32%、6%,喂饲6个月)组.在光镜和电镜下观察大鼠胰腺腺泡细胞结构变化,用比色法检测胰腺组织匀浆淀粉酶和脂肪酶的含量,TUNEL法检测腺泡细胞凋亡情况,免疫组化检测胰腺组织切片中环氧化酶-2(COX-2)的变化.结果:与高、低蛋白组比较,高、低蛋白+姜黄素组大鼠胰腺腺泡细胞髓样结构减少,线粒体肿胀减轻;淀粉酶和脂肪酶含量均显著升高(P<0.05);胰腺腺泡细胞凋亡显著减少(P<0.05);COX-2的表达降低.结论:姜黄素可预防摄入酒精联合过高或过低蛋白质的大鼠胰腺腺泡细胞损伤,延缓酒精性胰腺损伤的进程.%OBJECTIVE: To investigate the protective effects of curcumin on pancreatic acinar cell injury in rats with long-term alcohol intake and protein consumption. METHODS: Wistar rats were divided into 5 groups, I.e. Normal control group (the group fed with normal feed) ,high protein group, low protein group, high protein+curcumin group, low protein+curcumin group (those groups fed with diet containing 25% ethanol instead of drinking water for 6 months). High and low protein accounted for 32% and 6 % of total heat quantity. The structure change of pancreatic acinar cell was observed under light microscope and electron microscope. The contents of amylase and lipase in pancreatic tissue homogenate were determined by colorimetry. Apoptosis and expression of cyclooxygenase-2(COX-2) in acinar cell were detected by TUNEL and immunohistochemical staining, respectively. RESULTS: Compared with no application of curcumin, myelin figure and enlarged mitochondria were reduced in curcumin treatment groups. Lipase and amylase

  4. A Microfluidic Model of Biomimetically Breathing Pulmonary Acinar Airways.

    Fishler, Rami; Sznitman, Josué

    2016-01-01

    Quantifying respiratory flow characteristics in the pulmonary acinar depths and how they influence inhaled aerosol transport is critical towards optimizing drug inhalation techniques as well as predicting deposition patterns of potentially toxic airborne particles in the pulmonary alveoli. Here, soft-lithography techniques are used to fabricate complex acinar-like airway structures at the truthful anatomical length-scales that reproduce physiological acinar flow phenomena in an optically accessible system. The microfluidic device features 5 generations of bifurcating alveolated ducts with periodically expanding and contracting walls. Wall actuation is achieved by altering the pressure inside water-filled chambers surrounding the thin PDMS acinar channel walls both from the sides and the top of the device. In contrast to common multilayer microfluidic devices, where the stacking of several PDMS molds is required, a simple method is presented to fabricate the top chamber by embedding the barrel section of a syringe into the PDMS mold. This novel microfluidic setup delivers physiological breathing motions which in turn give rise to characteristic acinar air-flows. In the current study, micro particle image velocimetry (µPIV) with liquid suspended particles was used to quantify such air flows based on hydrodynamic similarity matching. The good agreement between µPIV results and expected acinar flow phenomena suggest that the microfluidic platform may serve in the near future as an attractive in vitro tool to investigate directly airborne representative particle transport and deposition in the acinar regions of the lungs. PMID:27214269

  5. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules.

    Karl L Wögenstein

    Full Text Available Epiplakin, a member of the plakin protein family, is exclusively expressed in epithelial tissues and was shown to bind to keratins. Epiplakin-deficient (EPPK-/- mice showed no obvious spontaneous phenotype, however, EPPK-/- keratinocytes displayed faster keratin network breakdown in response to stress. The role of epiplakin in pancreas, a tissue with abundant keratin expression, was not yet known. We analyzed epiplakin's expression in healthy and inflamed pancreatic tissue and compared wild-type and EPPK-/- mice during caerulein-induced acute pancreatitis. We found that epiplakin was expressed primarily in ductal cells of the pancreas and colocalized with apicolateral keratin bundles in murine pancreatic acinar cells. Epiplakin's diffuse subcellular localization in keratin filament-free acini of K8-deficient mice indicated that its filament-associated localization in acinar cells completely depends on its binding partner keratin. During acute pancreatitis, epiplakin was upregulated in acinar cells and its redistribution closely paralleled keratin reorganization. EPPK-/- mice suffered from aggravated pancreatitis but showed no obvious regeneration phenotype. At the most severe stage of the disease, EPPK-/- acinar cells displayed more keratin aggregates than those of wild-type mice. Our data propose epiplakin to be a protective protein during acute pancreatitis, and that its loss causes impaired disease-associated keratin reorganization.

  6. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Suszynski, Thomas M; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2014-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissu...

  7. Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation.

    Sharon J Sequeira

    Full Text Available Endoplasmic reticulum (ER stress signaling can be mediated by the ER kinase PERK, which phosphorylates its substrate eIF2alpha. This in turn, results in translational repression and the activation of downstream programs that can limit cell growth through cell cycle arrest and/or apoptosis. These responses can also be initiated by perturbations in cell adhesion. Thus, we hypothesized that adhesion-dependent regulation of PERK signaling might determine cell fate. We tested this hypothesis in a model of mammary acini development, a morphogenetic process regulated in part by adhesion signaling. Here we report a novel role for PERK in limiting MCF10A mammary epithelial cell proliferation during acinar morphogenesis in 3D Matrigel culture as well as in preventing mammary tumor formation in vivo. We show that loss of adhesion to a suitable substratum induces PERK-dependent phosphorylation of eIF2alpha and selective upregulation of ATF4 and GADD153. Further, inhibition of endogenous PERK signaling during acinar morphogenesis, using two dominant-negative PERK mutants (PERK-DeltaC or PERK-K618A, does not affect apoptosis but results instead in hyper-proliferative and enlarged lumen-filled acini, devoid of proper architecture. This phenotype correlated with an adhesion-dependent increase in translation initiation, Ki67 staining and upregulation of Laminin-5, ErbB1 and ErbB2 expression. More importantly, the MCF10A cells expressing PERKDeltaC, but not a vector control, were tumorigenic in vivo upon orthotopic implantation in denuded mouse mammary fat pads. Our results reveal that the PERK pathway is responsive to adhesion-regulated signals and that it is essential for proper acinar morphogenesis and in preventing mammary tumor formation. The possibility that deficiencies in PERK signaling could lead to hyperproliferation of the mammary epithelium and increase the likelihood of tumor formation, is of significance to the understanding of breast cancer.

  8. PTD-NBD polypeptide down-regulates expression of NF-κB p65 in inflammatory pancreatic acinar cell injury in rats%PTD-NBD多肽对大鼠胰腺腺泡细胞炎症损伤中NF-κB表达的影响

    谢文瑞; 杨元生; 杨新魁; 陈垦; 陈婧华; 崔淑兰; 王晖

    2013-01-01

    To examine the effect of PTD-NBD polypeptide on the expression of nuclear factor κB (NF-κB) p65 in inflammatory pancreatic acinar cell injury in rats.METHODS:Rat pancreatic acinar cells were isolated,cultured,and divided into a normal control group,an acute pancreatitis (AP) group and a PTD-NBD polypeptides group.An in vitro model of AP was induced by treating rat pancreatic acinar cells with lipopolysaccharide (10 mg/L).Cell morphological changes were observed,and the contents of amylase,superoxide dismutase (SOD) and IL-1β in culture medium were tested.Expression of NF-κB p65 mRNA and protein in cells was detected by RT-PCR and Western blot 6 and 12 h after modeling,respectively.RESULTS:Compared to the control group,pancreatic acinar cell swelling and death were increased (6 h:8.9 ± 0.34 vs 1.1 ± 0.13; 12 h:9.4 ± 0.26 vs 1.2 ± 0.15,both P < 0.05),the contents of amylase (6 h:2135.8 ± 347.2 vs 873.5 ± 91.6; 12 h:3299.6 ± 217.7 vs 917.7 ± 101.9,both P < 0.05) and IL-1β (6 h:84.9 ± 15.7 vs 39.3 ± 7.9; 12 h:95.6 ± 17.1 vs 38.9 ± 5.2,both P < 0.05) were increased and the contents of SOD were decreased in culture medium (6 h:116.3 ± 30.3 vs 176.2 ± 21.6; 12h:101.5 ± 25.6 vs 173.6 ± 27.9,P < 0.05),and the expression of NF-kB p65 in pancreatic acinar ceils was increased (P < 0.05) in the AP group at 6 and 12 h after modeling.Compared to the AP group,pancreatic acinar cell swelling and death were lessened (6 h:6.8 ± 0.23 vs 8.9 ± 0.34; 12 h:7.5 ± 0.19 vs 9.4 ± 0.26,both P < 0.05),the contents of SOD were raised (6 h:137.6 ± 27.4 vs 116.3 ± 30.3; 12 h:144.3 ± 23.6 vs 101.5 ± 25.6,both P < 0.05)and the contents of amylase (6 h:1951.5 ± 211.7 vs 2135.8 ± 347.2; 12 h:1761.3 ± 231.5 vs 3299.6 ± 217.7,both P < 0.05) and IL-1β (6 h:66.8 ± 11.6 vs 84.9 ± 15.7; 12 h:54.8 ± 21.2 vs 95.6 ± 17.1,both P < 0.05) were decreased in culture medium,and the expression of NF-κB p65 mRNA and protein was down-regulated in the PAT

  9. Cytotoxic effect of desoxycholic acid on pancreatic acinar cells and its influence on the activity of nuclear transcription factors%脱氧胆酸对胰腺腺泡细胞的损伤及核转录因子活性的影响

    张桂信; 陈海龙; 曹传海; 林小洋; 张利; 纪军; 王永鹏

    2011-01-01

    目的 观察脱氧胆酸(DCA)对AR42J胰腺腺泡细胞的损伤作用并探讨其对核转录因子(TF)活性的影响。方法 应用噻唑蓝(MTT)比色法检测DCA作用下细胞存活率改变,流式细胞术AV/PI双染法检测细胞的凋亡/坏死率。细胞经0.4mmoL/L DCA分别作用15 min、30 min、4h后收集培液上清,收集细胞并提取细胞质和细胞核蛋白,分别检测培液上清和胞质淀粉酶的活性,利用Luminex检测细胞核TF的DNA结合活性。结果 DCA对AR42J胰腺腺泡细胞的损伤作用呈浓度和时间依赖性,对细胞质内和培液中的淀粉酶水平无明显影响。在检测的40种TF活性变化中,DCA诱导ATF2、AR33、STAT5、NFAT、FKHR和NKX-2.5这6种TF活性明显升高,而RUNX/AML、NF-Y、MEF2和E2F1这4种TF活性则明显下降,其余30种TF活性无明显变化。结论 DCA对腺泡细胞的损伤作用主要表现为凋亡和坏死,对细胞内酶的合成和分泌功能没有明显影响。DCA诱导细胞核TF活性的变化,可能是其诱导细胞损伤的分子生物学基础。%Objective To study the cytotoxic effect of desoxycholic acid (DCA) on pancreatic acinar cells AR42J, its impact on the synthesis and secretion function of amylase, and the influence on the activity of nuclear transcription factor (TF). MethodsThe cytotoxic effect of DCS was detected in rat AR42J cells by using methyl thiazol tetrazolium (MTT) assay. The rate of apoptosis or necrosis was determined by flow cytometry. After the cells were incubated with DCA (0. 4 mmol/L) for 15 min, 30 min, or 4 h, the medium was collected to detect the activity of amylase. The cytoplamic protein was extracted to detect the activity of amylase, and nuclear protein was extracted to detect the DNA binding activity of 40 TFs by Luminex. Results DCA exerted cytotoxic effects on AR42J cells in a time-and dose-dependent manner, and induced cell apoptosis and necrosis. DCA had no significant influence on the amylase synthesis and secretion

  10. Peri-ampullary mixed acinar-endocrine carcinoma

    Ayman Walid Soubra

    2011-05-01

    Full Text Available Mixed acinar-endocrine carcinomas (MAEC are rare tumors of the pancreas. We present the case of a patient with peri-ampullary tumor that presented with painless jaundice and after investigation was found to have MAEC. He underwent pancreaticoduodunectomy with tumor free margins and negative lymph nodes. The patient presented with local recurrence and liver metastasis after 1 year and is on chemotherapy with stable lesions 30 months after the diagnosis.

  11. Loss of the BRCA1-interacting helicase BRIP1 results in abnormal mammary acinar morphogenesis.

    Kazuhiro Daino

    Full Text Available BRIP1 is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1 and plays an important role in BRCA1-dependent DNA repair and DNA damage-induced checkpoint control. Recent studies implicate BRIP1 as a moderate/low-penetrance breast cancer susceptibility gene. However, the phenotypic effects of BRIP1 dysfunction and its role in breast cancer tumorigenesis remain unclear. To explore the function of BRIP1 in acinar morphogenesis of mammary epithelial cells, we generated BRIP1-knockdown MCF-10A cells by short hairpin RNA (shRNA-mediated RNA interference and examined its effect in a three-dimensional culture model. Genome-wide gene expression profiling by microarray and quantitative RT-PCR were performed to identify alterations in gene expression in BRIP1-knockdown cells compared with control cells. The microarray data were further investigated using the pathway analysis and Gene Set Enrichment Analysis (GSEA for pathway identification. BRIP1 knockdown in non-malignant MCF-10A mammary epithelial cells by RNA interference induced neoplastic-like changes such as abnormal cell adhesion, increased cell proliferation, large and irregular-shaped acini, invasive growth, and defective lumen formation. Differentially expressed genes, including MCAM, COL8A1, WIPF1, RICH2, PCSK5, GAS1, SATB1, and ELF3, in BRIP1-knockdown cells compared with control cells were categorized into several functional groups, such as cell adhesion, polarity, growth, signal transduction, and developmental process. Signaling-pathway analyses showed dysregulation of multiple cellular signaling pathways, involving LPA receptor, Myc, Wnt, PI3K, PTEN as well as DNA damage response, in BRIP1-knockdown cells. Loss of BRIP1 thus disrupts normal mammary morphogenesis and causes neoplastic-like changes, possibly via dysregulating multiple cellular signaling pathways functioning in the normal development of mammary glands.

  12. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina;

    2000-01-01

    and [Ca2+]i. It was found that a simple correlation between the rise in [Ca2+]i and the rate of NO production following NE stimulation does not exist, and studies in which [Ca2+]i was elevated by means of the Ca 2+ ionophore, ionomycin, further established that even a very large rise in [Ca2+]i did...

  13. Mixed acinar-endocrine carcinoma of pancreas: a case report and brief review of the literature

    Liu Z

    2015-07-01

    Full Text Available Zhenzhen Liu,1,2 Chengyong Dong,1,2 Chengye Wang,1,2 Qinlong Liu,1 Deguang Sun,1 Liming Wang1 1Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 2Dalian Medical University, Dalian, Liaoning Province, People’s Republic of China Abstract: Mixed acinar-endocrine carcinoma (MAEC of the pancreas is a rare entity. We present a 65-year-old Chinese female who was admitted with jaundice and nagging epigastric pain with intermittent diarrhea for 1 month. She eventually underwent abdominal magnetic resonance imaging, which showed an 8×6 cm mass in the head of the pancreas and showed two abnormal lesions in the liver simultaneously. MAEC of the pancreas with synchronous hepatic metastasis was confirmed with immunohistochemistry after Whipple operation and hepatic partial resection of the lesions. Postoperative recovery of this patient was uneventful, and no evidence of recurrence or metastasis was observed after 12 months of follow-up. MAEC of pancreas is thought to be extremely rare and lack of typical clinical symptoms. The prognosis is poor overall, but early detection with complete resection may be beneficial to patients. Keywords: acinar cell carcinoma, neuroendocrine carcinoma of pancreas, neuroendocrine carcinoma, pancreatic neoplasms

  14. Mixed acinar-neuroendocrine-ductal carcinoma of the pancreas: a tale of three lineages.

    Anderson, Mark J; Kwong, Christina A; Atieh, Mohammed; Pappas, Sam G

    2016-01-01

    Most pancreatic cancers arise from a single cell type, although mixed pancreatic carcinomas represent a rare exception. The rarity of these aggressive malignancies and the limitations of fine-needle aspiration (FNA) pose significant barriers to diagnosis and appropriate management. We report a case of a 54-year-old man presenting with abdominal pain, jaundice and a hypodense lesion within the uncinate process on CT. FNA suggested poorly differentiated adenocarcinoma, which was subsequently resected via pancreaticoduodenectomy. Pathological analysis yielded diagnosis of invasive mixed acinar-neuroendocrine-ductal pancreatic carcinoma. Given the rare and deadly nature of these tumours, clinicians must be aware of their pathophysiology and do practice with a high degree of clinical suspicion, when appropriate. Surgical resection and thorough pathological analysis with immunohistochemical staining and electron microscopy remain the standards of care for mixed pancreatic tumours without gross evidence of metastasis. Diligent characterisation of the presentation and histological findings associated with these neoplasms should continue in order to promote optimal diagnostic and therapeutic strategies. PMID:27257019

  15. Experimental evidence of age-related adaptive changes in human acinar airways.

    Quirk, James D; Sukstanskii, Alexander L; Woods, Jason C; Lutey, Barbara A; Conradi, Mark S; Gierada, David S; Yusen, Roger D; Castro, Mario; Yablonskiy, Dmitriy A

    2016-01-15

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized (3)He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized (3)He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  16. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer.

    Steven T Lott

    2009-05-01

    Full Text Available BACKGROUND: Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium-associated RING Chromosome 1, a novel gene encoding a member of the TRIM (tripartite motif subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer. METHODS AND FINDINGS: Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS, an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue

  17. The pattern of fibrosis in the acinar zone 3 areas in early alcoholic liver disease

    Junge, Jette; Horn, T; Vyberg, M;

    1991-01-01

    The degree of fibrosis and the pattern of collagen distribution in the acinar zone 3, as well as the thickness of the terminal hepatic vein walls (THV) were analyzed in 48 consecutive liver needle biopsies from 48 alcoholics with preserved liver architecture. The fibrosis occurred to more or less...

  18. Ectrodactyly and Lethal Pulmonary Acinar Dysplasia Associated with Homozygous FGFR2 Mutations Identified by Exome Sequencing.

    Barnett, Christopher P; Nataren, Nathalie J; Klingler-Hoffmann, Manuela; Schwarz, Quenten; Chong, Chan-Eng; Lee, Young K; Bruno, Damien L; Lipsett, Jill; McPhee, Andrew J; Schreiber, Andreas W; Feng, Jinghua; Hahn, Christopher N; Scott, Hamish S

    2016-09-01

    Ectrodactyly/split hand-foot malformation is genetically heterogeneous with more than 100 syndromic associations. Acinar dysplasia is a rare congenital lung lesion of unknown etiology, which is frequently lethal postnatally. To date, there have been no reports of combinations of these two phenotypes. Here, we present an infant from a consanguineous union with both ectrodactyly and autopsy confirmed acinar dysplasia. SNP array and whole-exome sequencing analyses of the affected infant identified a novel homozygous Fibroblast Growth Factor Receptor 2 (FGFR2) missense mutation (p.R255Q) in the IgIII domain (D3). Expression studies of Fgfr2 in development show localization to the affected limbs and organs. Molecular modeling and genetic and functional assays support that this mutation is at least a partial loss-of-function mutation, and contributes to ectrodactyly and acinar dysplasia only in homozygosity, unlike previously reported heterozygous activating FGFR2 mutations that cause Crouzon, Apert, and Pfeiffer syndromes. This is the first report of mutations in a human disease with ectrodactyly with pulmonary acinar dysplasia and, as such, homozygous loss-of-function FGFR2 mutations represent a unique syndrome. PMID:27323706

  19. In Vivo Detection of Acinar Microstructural Changes in Early Emphysema with 3He Lung Morphometry

    Quirk, James D.; Lutey, Barbara A.; Gierada, David S.; Woods, Jason C.; Senior, Robert M.; Lefrak, Stephen S.; Sukstanskii, Alexander L; Conradi, Mark S; Yablonskiy, Dmitriy A.

    2011-01-01

    In vivo helium 3 lung morphometry has greater sensitivity to early emphysematous changes than does low-dose CT or traditional pulmonary function testing (PFT), and this modality can be used to detect significant changes in acinar airway geometry, even in individuals with clinically normal PFT results.

  20. Geometrical influence of pulmonary acinar models on respiratory flows and particle deposition

    Hofemeier, Philipp; Sznitman, Josue

    2012-11-01

    Due to experimental challenges in assessing respiratory flows in the deep regions of the lungs, computational simulations are typically sought to quantify inhaled aerosol transport and deposition in the acinus. Most commonly, simulations are performed using generic geometries of alveoli, including spheres, toroids and polyhedra to mimic the acinar region. However, local respiratory flows and ensuing particle trajectories are anticipated to be highly influenced by the specific geometrical structures chosen. To date, geometrical influences have not yet been thoroughly quantified. Knowing beforehand how geometries affect acinar flows and particle transport is critical in translating simulated data to predictions of aerosol deposition in real lungs. Here, we conduct a systematic investigation on a number of generic acinar models. Simulations are conducted for simple alveolated airways featuring a selection of geometries. Deposition patterns and efficiencies are quantified both for massless particles, highlighting details of the local flow, and micron-scale aerosols. This latter group of particles represents an important class of inhaled aerosols known to reach and deposit in the acinus. Our work emphasizes the subtleties of acinar geometry in determining the fate of inhaled aerosols.

  1. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows

    Fishler, Rami; Mulligan, Molly; Sznitman, Josue; Sznitman Biofluids Team

    2013-11-01

    Convective respiratory flows in the pulmonary acinus and their influence on the fate of inhaled particles are typically studied using computational fluid dynamics (CFD) or scaled-up experimental models. However, current experiments generally capture only flow dynamics, without inhaled particle dynamics, due to difficulties in simultaneously matching flow and particle dynamics. In an effort to overcome these limitations, we have designed a novel microfluidic device mimicking acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Using micro-particle image velocimetry (PIV), we reveal experimentally a gradual transition of alveolar flow patterns along the acinar tree from recirculating to radial streamlines, in support of previous predictions from CFD simulations. We demonstrate the applicability of the device for studying the mechanisms of particle deposition in the pulmonary acinus by mapping deposition sites of airborne fluorescent micro-particles (0.1-1 μm) and visualizing trajectories of airborne incense particles inside the system.

  2. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced 125I-[Tyr1]somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate [Gpp(NH)p]>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg2+. When pancreatic acini were treated with 1 μg/ml pertussis toxin for 4 h, subsequent 125I-[Tyr1]somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor

  3. Inhibition of pancreatic acinar mitochondrial thiamin pyrophosphate uptake by the cigarette smoke component 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    Srinivasan, Padmanabhan; Thrower, Edwin C; Gorelick, Fred S; Said, Hamid M

    2016-05-15

    Thiamin is essential for normal metabolism in pancreatic acinar cells (PAC) and is obtained from their microenvironment through specific plasma-membrane transporters, converted to thiamin pyrophosphate (TPP) in the cytoplasm, followed by uptake of TPP by mitochondria through the mitochondrial TPP (MTPP) transporter (MTPPT; product of SLC25A19 gene). TPP is essential for normal mitochondrial function. We examined the effect of long-term/chronic exposure of PAC in vitro (pancreatic acinar 266-6 cells) and in vivo (wild-type or transgenic mice carrying the SLC25A19 promoter) of the cigarette smoke toxin, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), on the MTPP uptake process. Our in vitro and in vivo findings demonstrate that NNK negatively affects MTPP uptake and reduced expression of MTPPT protein, MTPPT mRNA, and heterogenous nuclear RNA, as well as SLC25A19 promoter activity. The effect of NNK on Slc25a19 transcription was neither mediated by changes in expression of transcriptional factor NFY-1 (known to drive SLC25A19 transcription), nor due to changes in methylation profile of the Slc25a19 promoter. Rather, it appears to be due to changes in histone modifications that involve significant decreases in histone H3K4-trimethylation and H3K9-acetylation (activation markers). The effect of NNK on MTPPT function is mediated through the nonneuronal α7-nicotinic acetylcholine receptor (α7-nAChR), as indicated by both in vitro (using the nAChR antagonist mecamylamine) and in vivo (using an α7-nAchR(-/-) mouse model) studies. These findings demonstrate that chronic exposure of PAC to NNK negatively impacts PAC MTPP uptake. This effect appears to be exerted at the level of Slc25a19 transcription, involve epigenetic mechanism(s), and is mediated through the α7-nAchR. PMID:26999808

  4. Acinar ventilation heterogeneity in COPD relates to diffusion capacity, resistance and reactance.

    Jarenbäck, Linnea; Ankerst, Jaro; Bjermer, Leif; Tufvesson, Ellen

    2016-01-01

    The aim of this study was to investigate heterogenic ventilation in the acinar (Sacin) and conductive (Scond) airways of patients with varying chronic obstructive pulmonary disease (COPD) severity and how these relates to advanced lung function parameters, primarily measured by impulse oscillometry (IOS). A secondary aim was to investigate the effects of a short acting beta2-agonist and a muscarinic antagonist on the heterogenic ventilation. Eleven never smoking controls, 12 smoking controls, and 57 COPD patients (7 GOLD 1, 25 GOLD 2, 14 GOLD 3 and 11 GOLD 4) performed flow-volume spirometry, IOS, body plethysmography, single breath carbon monoxide diffusion, and N2-multiple breath washout. Six smoking controls and 13 of the COPD patients also performed double reversibility test by using salbutamol and its combination with ipratropium. Sacin was significantly higher in GOLD 2-4 compared to never smoking controls and smoking controls, but showed similar levels in GOLD 3 and 4. A factor analysis identified 4 components consisting of; 1) IOS parameters, 2) volume parameters, 3) diffusion parameters, Sacin and some IOS parameters and 4) Scond with central obstruction/air trapping. Salbutamol and its combination with ipratropium had no effect on Sacin and Scond. Increased Sacin in COPD was strongly related to diffusion capacity and lung volumes, but also weakly to resistance and reactance, showing a link between ventilation heterogeneity in the acinar airways and parameters measured by IOS. PMID:26607879

  5. Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results

    Grebenkov, D. S.; Guillot, G.; Sapoval, B.

    2007-01-01

    A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.

  6. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    Speier, Stephan; Marciniak, Anja; Selck, Claudia; Friedrich, Betty

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To ove...

  7. Oral ulceration and bleeding associated with pancreatic enzyme supplementation in a German shepherd with pancreatic acinar atrophy

    Snead, Elisabeth

    2006-01-01

    A 20-month-old German shepherd with primary pancreatic acinar atrophy and exocrine pancreatic insufficiency that was treated with pancreatic enzyme supplementation, vitamin B12, and cimetidine developed oral bleeding. Following discontinuation of the cimetidine, increased preincubation of the enzymes with the food, and symptomatic therapy for the ulceration, the dog’s condition improved.

  8. Estrategias para la diferenciaci??n in vitro de c??lulas ES de rat??n a c??lulas acinares pancre??ticas

    Rovira Clusellas, Meritxell

    2007-01-01

    Las patolog??as m??s importantes del p??ncreas exocrino, como la pancreatitis cr??nica (PC) o el c??ncer de p??ncreas, representan un gran problema de salud p??blica en Europa. En la PC, el tejido acinar es substituido por complejos ductales. Adem??s, es dif??cil mantener el fenotipo diferenciado de las c??lulas acinares en cultivo ya que sufren una transdiferenciaci??n acinar-ductal.Las c??lulas madre embrionarias (ES) de rat??n han sido utilizadas en la ??ltima d??cada para generar in vitro...

  9. Primary alveolar capillary dysplasia (acinar dysplasia) and surfactant protein B deficiency: a clinical, radiological and pathological study

    Hugosson, Claes O.; Khoumais, Nuha [King Faisal Specialist Hospital and Research Centre, Department of Radiology MBC 28, Riyadh (Saudi Arabia); Salama, Husam M.; Kattan, Abdul H. [King Faisal Specialist Hospital and Research Centre, Department of Paediatrics, Riyadh (Saudi Arabia); Al-Dayel, Fouad [King Faisal Specialist Hospital and Research Centre, Department of Pathology, Riyadh (Saudi Arabia)

    2005-03-01

    Full-term infants with severe and prolonged respiratory distress represent a diagnostic challenge. Plain radiographic findings may be nonspecific or similar to classic surfactant deficiency disease for infants with surfactant protein B deficiency and acinar dysplasia. Objectives: To describe the similar clinical-radiolgical patterns of two rare neonatal conditions. Six newborn babies with severe respiratory distress at birth demonstrated clinical and radiographically prolonged and progressive diffuse pulmonary opacification. All infants demonstrated hyperinflation of the lungs. The diffuse hazy opacification, which varied from mild (n=3) to moderate (n=3), progressed to severe diffuse opacification preceding death, which occurred at 12-36 days of life. Open lung biopsy confirmed the diagnosis of primary alveolar acinar dysplasia (AD) in four infants and surfactant protein B deficiency (SPBD) in two infants. In full-term babies with unexplained progressive respiratory distress from birth and progress of radiological changes, both AD and SPBD should be considered. (orig.)

  10. Primary alveolar capillary dysplasia (acinar dysplasia) and surfactant protein B deficiency: a clinical, radiological and pathological study

    Full-term infants with severe and prolonged respiratory distress represent a diagnostic challenge. Plain radiographic findings may be nonspecific or similar to classic surfactant deficiency disease for infants with surfactant protein B deficiency and acinar dysplasia. Objectives: To describe the similar clinical-radiological patterns of two rare neonatal conditions. Six newborn babies with severe respiratory distress at birth demonstrated clinical and radiographically prolonged and progressive diffuse pulmonary opacification. All infants demonstrated hyperinflation of the lungs. The diffuse hazy opacification, which varied from mild (n=3) to moderate (n=3), progressed to severe diffuse opacification preceding death, which occurred at 12-36 days of life. Open lung biopsy confirmed the diagnosis of primary alveolar acinar dysplasia (AD) in four infants and surfactant protein B deficiency (SPBD) in two infants. In full-term babies with unexplained progressive respiratory distress from birth and progress of radiological changes, both AD and SPBD should be considered. (orig.)

  11. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated memb

  12. Intracellular Trypsin Induces Pancreatic Acinar Cell Death but Not NF-κB Activation*

    JI, BAOAN; Gaiser, Sebastian; Chen, Xueqing; Ernst, Stephen A.; Logsdon, Craig D.

    2009-01-01

    Premature intracellular activation of the digestive enzyme trypsinogen is considered to be the initiating event in pancreatitis. However, the direct consequences of intracellular trypsin activity have not previously been examined. In the current study, a mutant trypsinogen (paired basic amino acid cleaving enzyme (PACE)-trypsinogen), which is activated intracellularly by the endogenous protease PACE, was developed. This new construct allowed for the first time direct examination of the effect...

  13. Biopsy follow-up in patients with isolated atypical small acinar proliferation (ASAP in prostate biopsy

    Luca Leone

    2014-12-01

    Full Text Available The incidence of prostate cancer (PCA was evaluated in 155 patients with isolated Atypical Small Acinar Proliferation (ASAP found on initial prostate biopsy, after a medium-term follow-up (40 months with at least one re-biopsy. Clinical and histological data were analysed. Cancer was detected in 81 of 155 (52.3%. The cancer detection rate was 71.6%, 91.3%, 97.5%, 100% at the 1st re-biopsy, 2nd, 3rd, and 4th rebiopsy respectively. At the uni- and multivariate analyses, prostate volume (≤ 30 cc, transition zone volume (≤ 10 cc, small core length at the initial biopsy (≤ 10 mm and few number of cores at initial biopsy (≤ 8 are predictive of cancer. Furthermore, tumour characteristics on the whole surgical specimens was assessed in 30 men: 13 of 30 (43 % had clinically relevant cancer (volume > 0.5 ml or/and Gleason score ≥ 7, or pT3. Most of relevant cancers were detected in the distal apex, anterior gland and midline. These anatomical sites could be under-sampled at the initial biopsy using the transrectal approach. Our data suggest that follow-up biopsy is recommended in all cases of isolated ASAP detected after biopsy using endfire transrectal probe. The re-biopsy strategy should increase the number of cores (or a saturation biopsy, focusing on area of ASAP in the initial biopsy, but also including the under-sampled areas (anterior gland, distal apex and midline to detect clinically relevant cancers.

  14. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells. PMID:27330712

  15. Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms.

    Michler, Thomas; Storr, Martin; Kramer, Johannes; Ochs, Stefanie; Malo, Antje; Reu, Simone; Göke, Burkhard; Schäfer, Claus

    2013-01-15

    The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines. Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases. Cerulein pancreatitis was induced in wild-type, CB(1)-/-, and MK2-/- mice pretreated with selective cannabinoid receptor agonists or antagonists. Severity of pancreatitis was determined by serum amylase and IL-6 levels, intracellular activation of pancreatic trypsinogen, lung myeloperoxidase activity, pancreatic edema, and histological examinations. Pancreatic lysates were investigated by Western blotting using phospho-specific antibodies against p38 and JNK. Quantitative PCR data, Western blotting experiments, and immunohistochemistry clearly show that CB(1) and CB(2) are expressed in mouse pancreatic acini. During acute pancreatitis, an upregulation especially of CB(2) on apoptotic cells occurred. The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2). Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology. Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini. With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications. PMID:23139224

  16. Close association of centroacinar ductular and insular cells in the rat pancreas

    Leeson, Thomas S.; Leeson, Roland

    1986-01-01

    Close contacts between endocrine insular cells and exocrine acinar, centroacinar and ductular cells occur frequently in the rat pancreas as seen by both light and electron microscopy. lslets of Langerhans are surrounded incompletely by a thin connective tissue capsule or mantle but numerous exocrine-endocrine cell contacts occur at the periphery, which is irregular with considerable "intermingling" of the two cell types. Centroacinar ...

  17. The expression of GST isoenzymes in acinar adenocarcinoma, intraepithelial neoplasia, and benign prostate tissue: correlation of clinical parameters with GST isoenzymes

    ŞİMŞEK, Gülçin; Serpil OĞUZTÜZÜN; GÜREŞCİ, Servet; KILIÇ, Murat

    2012-01-01

    This study investigated the immunohistochemical staining characteristics of glutathione-S-transferase (GST) alpha, pi, mu, and theta in prostatic acinar adenocarcinoma (PCA), prostatic intraepithelial neoplasia (PIN), and benign prostatic tissues from 19 patients. Relationships between GST isoenzyme expression in benign, PIN, and PCA tissue were examined by the Wilcoxon signed-rank test and clinicopathological data were examined by the Spearman correlation rank test. When the benign, PIN, and...

  18. LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling

    J. Chang (Jufang); M.M. Nicolau (Monica); T.R. Cox (Thomas); D. Wetterskog (Daniel); J.W.M. Martens (John); H. E Barker (Holly); J.T. Erler (Janine)

    2013-01-01

    textabstractIntroduction: Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expr

  19. The Quest for Tissue Stem Cells in the Pancreas and Other Organs, and their Application in Beta-Cell Replacement

    Houbracken, Isabelle; Bouwens, Luc

    2010-01-01

    Adult stem cell research has drawn a lot of attention by many researchers, due to its medical hope of cell replacement or regenerative therapy for diabetes patients. Despite the many research efforts to date, there is no consensus on the existence of stem cells in adult pancreas. Genetic lineage tracing experiments have put into serious doubt whether β-cell neogenesis from stem/progenitor cells takes place postnatally. Different in vitro experiments have suggested centroacinar, ductal, acinar...

  20. Estrategias para la diferenciación in vitro de células ES de ratón a células acinares pancreáticas

    Rovira Clusellas, Meritxell

    2007-01-01

    Las patologías más importantes del páncreas exocrino, como la pancreatitis crónica (PC) o el cáncer de páncreas, representan un gran problema de salud pública en Europa. En la PC, el tejido acinar es substituido por complejos ductales. Además, es difícil mantener el fenotipo diferenciado de las células acinares en cultivo ya que sufren una transdiferenciación acinar-ductal.Las células madre embrionarias (ES) de ratón han sido utilizadas en la última década para generar in vitro células comple...

  1. ERG gene rearrangements are common in prostatic small cell carcinomas

    Lotan, Tamara L.; Gupta, Nilesh S; Wang, Wenle; Toubaji, Antoun; Haffner, Michael C; Chaux, Alcides; Hicks, Jessica L.; Meeker, Alan K.; Bieberich, Charles J.; De Marzo, Angelo M.; Epstein, Jonathan I; Netto, George J.

    2011-01-01

    Small cell carcinoma of the prostate is a rare subtype with an aggressive clinical course. Despite the frequent occurrence of ERG gene rearrangements in acinar carcinoma, the incidence of these rearrangements in prostatic small cell carcinoma is unclear. In addition, molecular markers to distinguish prostatic small cell carcinomas from lung and bladder small cell carcinomas may be clinically useful. We examined the occurrence of ERG gene rearrangements by fluorescence in situ hybridization in...

  2. Recent advances in stem cell research for the treatment of diabetes

    Noguchi, Hirofumi

    2009-01-01

    The success achieved over the last decade with islet transplantation has intensified interest in treating diabetes, not only by cell transplantation, but also by stem cells. The formation of insulin-producing cells from pancreatic duct, acinar, and liver cells is an active area of investigation. Protocols for the in vitro differentiation of embryonic stem (ES) cells based on normal developmental processes, have generated insulin-producing cells, though at low efficiency and without full respo...

  3. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  4. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  5. Polarization of Calcium Signaling and Fluid Secretion in Salivary Gland Cells

    Ambudkar, I.S.

    2012-01-01

    The secretion of fluid, electrolytes, and protein by exocrine gland acinar cells is a vectorial process that requires the coordinated regulation of multiple channel and transporter proteins, signaling components, as well as mechanisms involved in vesicular fusion and water transport. Most critical in this is the regulation of cytosolic free [Ca2+] ([Ca2+]i) in response to neurotransmitter stimulation. Control of [Ca2+]i increase in specific regions of the cell is the main determinant of fluid...

  6. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  7. A Multifunctional 3D Co-Culture System for Studies of Mammary Tissue Morphogenesis and Stem Cell Biology

    Campbell, Jonathan J.; Davidenko, Natalia; Caffarel, Maria M.; Cameron, Ruth E.; Watson, Christine J

    2011-01-01

    Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this sc...

  8. Stem Cell-Soluble Signals Enhance Multilumen Formation in SMG Cell Clusters.

    Maruyama, C L M; Leigh, N J; Nelson, J W; McCall, A D; Mellas, R E; Lei, P; Andreadis, S T; Baker, O J

    2015-11-01

    Saliva plays a major role in maintaining oral health. Patients with salivary hypofunction exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. At this time, treatments for hyposalivation are limited to medications (e.g., muscarinic receptor agonists: pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells as well as artificial salivary substitutes. Therefore, advancement of restorative treatments is necessary to improve the quality of life in these patients. Our previous studies indicated that salivary cells are able to form polarized 3-dimensional structures when grown on growth factor-reduced Matrigel. This basement membrane is rich in laminin-III (L1), which plays a critical role in salivary gland formation. Mitotically inactive feeder layers have been used previously to support the growth of many different cell types, as they provide factors necessary for cell growth and organization. The goal of this study was to improve salivary gland cell differentiation in primary cultures by using a combination of L1 and a feeder layer of human hair follicle-derived mesenchymal stem cells (hHF-MSCs). Our results indicated that the direct contact of mouse submandibular (mSMG) cell clusters and hHF-MSCs was not required for mSMG cells to form acinar and ductal structures. However, the hHF-MSC conditioned medium enhanced cell organization and multilumen formation, indicating that soluble signals secreted by hHF-MSCs play a role in promoting these features. PMID:26285810

  9. Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer.

    1991-01-01

    The development of pancreatic cancer in transgenic mice expressing the simian virus 40 tumor antigen placed under controlling regions of the elastase I gene is characterized by the sequential appearance of tetraploid and then multiple aneuploid cell populations. Pancreatic tissues from such transgenic mice were studied between 8 and 32 days of age. Virtually 100% of acinar cell nuclei had immunohistochemically detectable tumor antigen by 18 days. Tetraploid cells were demonstrated by DNA cont...

  10. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: A study using photonic force microscopy

    It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 μm in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles

  11. Heat shock protein 70 prevents secretagogue-induced cell injury in the pancreas by preventing intracellular trypsinogen activation

    Bhagat, Lakshmi; Singh, Vijay P.; Hietaranta, Antti J.; Agrawal, Sudhir; Steer, Michael L; Saluja, Ashok K

    2000-01-01

    Rodents given a supramaximally stimulating dose of cholecystokinin or its analogue cerulein develop acute pancreatitis with acinar cell injury, pancreatic inflammation, and intrapancreatic digestive enzyme (i.e., trypsinogen) activation. Prior thermal stress is associated with heat shock protein 70 (HSP70) expression and protection against cerulein-induced pancreatitis. However, thermal stress can also induce expression of other HSPs. The current studies were performed using an in vitro syste...

  12. Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion

    Sørensen, Jakob B.; Larsen, Erik Hviid

    1999-01-01

    Adrenaline; carbachol; Cl- secretion; exocrine gland; isoproterenol; noradrenaline; prostaglandin E*U2......Adrenaline; carbachol; Cl- secretion; exocrine gland; isoproterenol; noradrenaline; prostaglandin E*U2...

  13. Cell Secretion: Current Structural and Biochemical Insights

    Saurabh Trikha

    2010-01-01

    Full Text Available Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150nm in diameter in acinar cells of the exocrine pancreas to 12nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  14. Renal-type clear cell carcinoma of the prostate: a diagnostic challenge

    Patne, Shashikant C. U.; Johri, Nidhi; Katiyar, Richa; Trivedi, Sameer; Dwivedi, Uday Shankar

    2015-01-01

    A 72-year-old male presented with urinary symptoms. His serum prostate specific antigen level was 65.2 ng/ml. His radical prostatectomy specimen showed clear cell lesion reminiscent of the clear cell renal cell carcinoma along with acinar type of prostatic adenocarcinoma, Gleason score 4 + 4. The lesional clear cells were positive for pancytokeratin, epithelial membrane antigen, CD10, vimentin, and AMACR while negative for 34βE12, CK7, prostate specific antigen, and PAX8. The final diagnosis ...

  15. ATP release, generation and hydrolysis in exocrine pancreatic duct cells

    Kowal, Justyna Magdalena; Yegutkin, G.G.; Novak, Ivana

    2015-01-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our...... dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting...

  16. Rescue of salivary gland function after stem cell transplantation in irradiated glands.

    Isabelle M A Lombaert

    Full Text Available Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome. In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit(+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.

  17. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells.

    Marica Vaapil

    Full Text Available INTRODUCTION: Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. METHODS: Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. RESULTS: In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar

  18. Proliferation and Differentiation of Duct Epithelial Cells after Partial Pancreatectomy in Rats

    LIU Tao; WANG Chunyou; WAN Chidan; XIONG Jiongxin; ZHOU Feng

    2006-01-01

    The proliferation and differentiation of pancreatic duct epithelial cells in remnant pancreas during regeneration after partial pancreatectomy in rats were studied, and the source of pancreatic stem cells was characterized. Partial (90 %) pancreatectomy was performed on 4- to 5-week-old Sprague-Dawley rats, and different duct epithelial cells and acinar cells were detected by immunohistrochemical stain method and scored using 5-bromo-2'-deoxyuridine (BrdU) labeling index (LI) at various time points after partial pancreatectomy. It was found that at 24 h after partial pancreatectomy proliferation started in the main, large and small duct cells, and persisted in small duct cells to day 5.There was significant difference between the experimental group and the control group (P<0.001).Acinar cells positive for BrdU were greatly increased and reached the peak LI on day 5. The destroyed lobular architecture almost totally recovered on day 7, and the newly islet cells appeared around the pancreatic ducts. These results suggest that regeneration after partial pancreatectomy is involved in proliferation and differentiation of pancreatic stem cells, and pancreatic stem cells may locate in the pancreatic ductules.

  19. Polarization of calcium signaling and fluid secretion in salivary gland cells.

    Ambudkar, I S

    2012-01-01

    The secretion of fluid, electrolytes, and protein by exocrine gland acinar cells is a vectorial process that requires the coordinated regulation of multiple channel and transporter proteins, signaling components, as well as mechanisms involved in vesicular fusion and water transport. Most critical in this is the regulation of cytosolic free [Ca(2+)] ([Ca(2+)](i)) in response to neurotransmitter stimulation. Control of [Ca(2+)](i) increase in specific regions of the cell is the main determinant of fluid and electrolyte secretion in salivary gland acinar cells as it regulates several major ion flux mechanisms as well as the water channel that are required for this process. Polarized [Ca(2+)](i) signals are also essential for protein secretion in pancreatic acinar cells. Thus, the mechanisms that generate and modulate these compartmentalized [Ca(2+)](i) signals are central to the regulation of exocrine secretion. These mechanisms include membrane receptors for neurotransmitters, intracellular Ca(2+) release channels, Ca(2+) entry channels, as well Ca(2+) as pumps and mitochondria. The spatial arrangement of proteins involved in Ca(2+) signaling is of primary significance in the generation of specific compartmentalized [Ca(2+)](i) signals. Within these domains, both local and global [Ca(2+)](i) changes are tightly controlled. Control of secretion is also dependent on the targeting of ion channels and transporters to specific domains in the cell where their regulation by [Ca(2+)](i) signals is facilitated. Together, the polarized localization of Ca(2+) signaling and secretory components drive vectorial secretion of fluid, electrolytes, and proteins in the exocrine salivary glands and pancreas. This review will discuss recent findings which have led to resolution of the molecular components underlying the spatio-temporal control of [Ca(2+)](i) signals in exocrine gland cells and their role in secretion. PMID:23061636

  20. Creating new β cells: cellular transmutation by genomic alchemy.

    Moss, Larry G

    2013-03-01

    To address insulin insufficiency, diabetes research has long focused on techniques for replacing insulin-producing β cells. Studies in mice have suggested that, under some conditions, α cells possess the capacity to transdifferentiate into β cells, although the mechanisms that drive this conversion are unclear. In this issue, Bramswig et al. analyzed the methylation states of purified human α, β, and acinar cells and found α cells exhibit intrinsic phenotypic plasticity associated with specific histone methylation profiles. In addition to expanding our understanding of this potential source of β cells, this compendium of carefully generated human gene expression and epigenomic data in islet cell subtypes constitutes a truly valuable resource for the field. PMID:23434598

  1. Clear cell renal cell carcinoma with hemangioblastoma-like features: A recently described pattern with unusual immunohistochemical profile

    Sankalp Sancheti

    2015-01-01

    Full Text Available The diagnosis of clear cell renal cell carcinoma may sometimes pose challenges because of the presence of uncharacteristic morphology, varied immunophenotypic patterns and due to lack of molecular or genetic determinants. More often, the morphological variations can be easily overlooked in routine practice and a more common diagnosis is usually put forward. Solid, acinar and alveolar are the common patterns described in the literature. We report a recently described pattern of clear cell renal cell carcinoma which has hemangioblastoma-like morphology and an unusual immunoprofile. In our case, the tumor showed a diffuse hemangioblastoma-like pattern and diffuse positivity for Alpha-inhibin on immunohistochemistry. A thorough literature search, extensive sampling and an expanded immunohistochemistry panel revealed a clear cell renal cell carcinoma component. Presence of renal vein thrombosis and focal necrosis were other helpful features in discerning the malignant nature of tumor.

  2. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells.

    Bailey, J M; Hendley, A M; Lafaro, K J; Pruski, M A; Jones, N C; Alsina, J; Younes, M; Maitra, A; McAllister, F; Iacobuzio-Donahue, C A; Leach, S D

    2016-08-11

    Pancreatic cancer is one of the most lethal malignancies, with virtually all patients eventually succumbing to their disease. Mutations in p53 have been documented in >50% of pancreatic cancers. Owing to the high incidence of p53 mutations in PanIN 3 lesions and pancreatic tumors, we interrogated the comparative ability of adult pancreatic acinar and ductal cells to respond to oncogenic Kras and mutant Tp53(R172H) using Hnf1b:CreER(T2) and Mist1:CreER(T2) mice. These studies involved co-activation of a membrane-tethered GFP lineage label, allowing for direct visualization and isolation of cells undergoing Kras and mutant p53 activation. Kras activation in Mist1(+) adult acinar cells resulted in brisk PanIN formation, whereas no evidence of pancreatic neoplasia was observed for up to 6 months following Kras activation in Hnf1beta(+) adult ductal cells. In contrast to the lack of response to oncogenic Kras alone, simultaneous activation of Kras and mutant p53 in adult ductal epithelium generated invasive PDAC in 75% of mice as early as 2.5 months after tamoxifen administration. These data demonstrate that pancreatic ductal cells, whereas exhibiting relative resistance to oncogenic Kras alone, can serve as an effective cell of origin for pancreatic ductal adenocarcinoma in the setting of gain-of-function mutations in p53. PMID:26592447

  3. Stem cells and the pancreas: from discovery to clinical approach

    Angelica Dessì

    2016-02-01

    Full Text Available The existence of stem cells within the adult pancreas is supported by the ability of this organ to regenerate its endocrine component in various conditions such as pregnancy and following partial pancreatectomy. Several studies have shown that progenitor or adult stem cells may reside within the pancreas and particularly in the pancreatic ducts, including acinar cells and islets of Langerhans. The discovery of human pluripotent stem cells in the pancreas, and the possibility of development of strategies for generating these, represented a turning point for the therapeutic interventions of type 1 diabetes.Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  4. Small airways dysfunction in long-term survivors of pediatric stem cell transplantation

    Uhlving, Hilde Hylland; Mathiesen, Sidsel; Buchvald, Frederik;

    2015-01-01

    BACKGROUND: Chronic graft-versus-host disease (cGvHD) in the lungs is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Pulmonary cGvHD is initiated in the peripheral airways, and diagnosis may be delayed by low sensitivity of standard pulmonary function...... performed spirometry, whole-body plethysmography and MBWN2 . From MBWN2 the lung clearance index (LCI) and indices reflecting ventilation inhomogeneity arising close to the acinar lung zone (Sacin ) and in the conductive airway zone (Scond ) were derived. Subjective respiratory morbidity was assessed using...

  5. Genetic mutations in accordance with a low malignant potential tumour are not demonstrated in clear cell papillary renal cell carcinoma.

    Raspollini, Maria Rosaria; Castiglione, Francesca; Cheng, Liang; Montironi, Rodolfo; Lopez-Beltran, Antonio

    2016-06-01

    Clear cell papillary renal cell carcinoma (CCPRCC) cases were evaluated for mutations on the following genes: KRAS, NRAS, BRAF, PIK3CA, ALK, ERBB2, DDR2, MAP2K1, RET and EGFR. Four male and three female patients of age 42-74 years were evaluated. All cases were incidentally detected by ultrasound and ranged 1.8-3.5 cm. Microscopic examination showed variably tubulopapillary, tubular acinar, cystic architecture and the characteristic linear arrangement of nuclei. The cells were reactive with CK7 (strong), CA IX (cup-shape) and 34 β E12. CD10, AMACR/RACEMASE and GATA3 were negative. There were no mutations on any of the investigated genes. This preliminary observation supports the concept that CCPRCC might be indeed an indolent tumour worth it to be named as clear cell papillary neoplasm of low potential. PMID:26941183

  6. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne;

    2015-01-01

    BACKGROUND: In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic......) and duct cells (Capan-1). Taurine and glycine conjugated forms of CDCA had smaller effects on ATP release in Capan-1 cells. In duct monolayers, CDCA stimulated ATP release mainly from the luminal membrane; the releasing mechanisms involved both vesicular and non-vesicular secretion pathways. Duct...... cells were not depleted of intracellular ATP with CDCA, but acinar cells lost some ATP, as detected by several methods including ATP sensor AT1.03(YEMK). In duct cells, CDCA caused reversible increase in the intracellular Ca(2+) concentration [Ca(2 +)]i, which could be significantly inhibited by...

  7. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L., E-mail: rodney.rouse@fda.hhs.gov

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  8. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  9. AR42J-B-13 cell: An expandable progenitor to generate an unlimited supply of functional hepatocytes

    Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.

  10. New Insights into Diabetes Cell Therapy.

    Lysy, Philippe A; Corritore, Elisa; Sokal, Etienne M

    2016-05-01

    Since insulin discovery, islet transplantation was the first protocol to show the possibility to cure patients with type 1 diabetes using low-risk procedures. The scarcity of pancreas donors triggered a burst of studies focused on the production of new β cells in vitro. These were rapidly dominated by pluripotent stem cells (PSCs) demonstrating diabetes-reversal potential in diabetic mice. Subsequent enthusiasm fostered a clinical trial with immunoisolated embryonic-derived pancreatic progenitors. Yet safety is the Achilles' heel of PSCs, and a whole branch of β cell engineering medicine focuses on transdifferentiation of adult pancreatic cells. New data showed the possibility to chemically stimulate acinar or α cells to undergo β cell neogenesis and provide opportunities to intervene in situ without the need for a transplant, at least after weighing benefits against systemic adverse effects. The current studies suggested the pancreas as a reservoir of facultative progenitors (e.g., in the duct lining) could be exploited ex vivo for expansion and β cell differentiation in timely fashion and without the hurdles of PSC use. Diabetes cell therapy is thus a growing field not only with great potential but also with many pitfalls to overcome for becoming fully envisioned as a competitor to the current treatment standards. PMID:26983626

  11. Salivary gland NK cells are phenotypically and functionally unique.

    Marlowe S Tessmer

    Full Text Available Natural killer (NK cells and CD8(+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV. However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  12. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  13. Squamous Cell Carcinoma of the Pancreas

    Andre Luiz De Souza

    2014-11-01

    Full Text Available We previously published our and Johns Hopkins data titled: "Platinum-based therapy in adenosquamous pancreatic cancer: experience at two institutions” [1]. We will here like to submit a related case report as a letter to the editor to JOP in reference to the above paper. Squamous cell carcinoma of the pancreas has various reported incidence rates, ranging from 0.5% to as high as 5% of pancreatic ductal carcinomas [2, 3]. Of the 1300 cases of pancreatic cancers observed at autopsy in a survey in Japan in 1992, 0.7% were squamous cell carcinoma [4]. A Mayo clinic review of very rare exocrine tumors showed an even rarer incidence of squamous cell carcinoma when compared to acinar and small cell carcinoma of the pancreas [5]. This discrepancy in the reported incidence rates related to the fact that some of the cases represent adenosquamous carcinoma rather than pure squamous cell carcinoma of pancreas. In an analysis of 25 patients, mean age at diagnosis of pancreatic squamous cell carcinoma was 62 years (range: 33–80 years and there was no gender difference [6]. There is no study about the molecular profile of squamous carcinoma of the pancreas. There are no retrospective or prospective studies about the best therapy for these tumors

  14. Intracellular Ca2+ responses and cell volume regulation upon cholinergic and purinergic stimulation in an immortalized salivary cell line.

    Aure, Marit H; Røed, Asbjørn; Galtung, Hilde Kanli

    2010-06-01

    The water channel aquaporin 5 (AQP5) seems to play a key role in salivary fluid secretion and appears to be critical in the cell volume regulation of acinar cells. Recently, the cation channel transient potential vanilloid receptor 4 (TRPV4) was shown to be functionally connected to AQP5 and also to cell volume regulation in salivary glands. We used the Simian virus 40 (SV40) immortalized cell line SMG C10 from the rat submandibular salivary gland to investigate the effect of ATP and the neurotransmitter analogue carbachol on Ca(2+) signalling and cell volume regulation, as well as the involvement of TRPV4 in the responses. We used fura-2-AM imaging, cell volume measurements, and western blotting. Both carbachol and ATP increased the concentration of intracellular Ca(2+), but no volume changes could be measured. Inhibition of TRPV4 with ruthenium red impaired both ATP- and carbachol-stimulated Ca(2+) signals. Peak Ca(2+) signalling during hyposmotic exposure was significantly decreased following inhibition of TRPV4, while the cells' ability to volume regulate appeared to be unaffected. These results show that in the SMG C10 cells, simulation of nervous stimulation did not induce cell swelling, although the cells had intact volume regulatory mechanisms. Furthermore, even though Ca(2+) signals were not needed for this volume regulation, TRPV4 seems to play a role during ATP and carbachol stimulation. PMID:20572856

  15. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets.

    Revital Sharivkin

    Full Text Available The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+, glucagon-producing alpha cells (CD9-/CD56+ and trypsin-producing acinar cells (CD9-/CD56-. This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.

  16. Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction.

    Christopher J Scarlett

    Full Text Available BACKGROUND AND AIMS: Chronic pancreatitis and pancreatic cancer are characterised by extensive stellate cell mediated fibrosis, and current therapeutic development includes targeting pancreatic cancer stroma and tumor-host interactions. Recent evidence has suggested that circulating bone marrow derived stem cells (BMDC contribute to solid organs. We aimed to define the role of circulating haematopoietic cells in the normal and diseased pancreas. METHODS: Whole bone marrow was harvested from male β-actin-EGFP donor mice and transplanted into irradiated female recipient C57/BL6 mice. Chronic pancreatitis was induced with repeat injections of caerulein, while carcinogenesis was induced with an intrapancreatic injection of dimethylbenzanthracene (DMBA. Phenotype of engrafted donor-derived cells within the pancreas was assessed by immunohistochemistry, immunofluorescence and in situ hybridisation. RESULTS: GFP positive cells were visible in the exocrine pancreatic epithelia from 3 months post transplantation. These exhibited acinar morphology and were positive for amylase and peanut agglutinin. Mice administered caerulein developed chronic pancreatitis while DMBA mice exhibited precursor lesions and pancreatic cancer. No acinar cells were identified to be donor-derived upon cessation of cerulein treatment, however rare occurrences of bone marrow-derived acinar cells were observed during pancreatic regeneration. Increased recruitment of BMDC was observed within the desmoplastic stroma, contributing to the activated pancreatic stellate cell (PaSC population in both diseases. Expression of stellate cell markers CELSR3, PBX1 and GFAP was observed in BMD cancer-associated PaSCs, however cancer-associated, but not pancreatitis-associated BMD PaSCs, expressed the cancer PaSC specific marker CELSR3. CONCLUSIONS: This study demonstrates that BMDC can incorporate into the pancreas and adopt the differentiated state of the exocrine compartment. BMDC that

  17. Inflammatory effects on human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens

    Asthma is currently defined as a chronic inflammatory disease of the airway. Several evidence indicate that vehicle emissions in cities is correlated with the allergic respiratory diseases. In the present study, we evaluated in the A549 cells the production and release of IL-4, IL-5 and IL-13 after treatment with sub-micron PM1.0 particles (PM1.0), Parietaria officinalis (ALL), and PM1.0 + ALL together. Our data demonstrated that PM1.0 + ALL together exhibited the greatest capacity to induce A549 cells to enhance the expression of IL-4 and IL-5 compared with the only PM1.0 or ALL treatment. Interestingly, IL-13 that is necessary for allergen-induced airway hyper responsiveness, is increased in cells treated with PM1.0 + ALL together, but is higher expressed when the cells are treated only with the allergen. Our data support the hypothesis that the urban environment damage the acinar lung units and activates cells of the immune system. - Highlights: ► The genetic factors plays a key role in the development of the asthma. ► Its development can only be made in the presence of specific environmental factors. ► We evaluated in the A549 cells the production and release of IL-4, IL-5 and IL-13. ► IL-4, IL-5 and IL-13 expression increased when the A549 cells are treated with PM1.0 + ALL together. - The urban environment with the combination of inhalable air pollution and particulate are able to damage the acinar lung units and are able to activate cells of the immune system.

  18. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells.

    Korytnikov, Roman; Nostro, Maria Cristina

    2016-05-15

    Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. PMID:26515645

  19. Recovery of pancreas from mild puromycin-induced injury. A histologic and ultrastructure study in rats.

    Longnecker, D S; Crawford, B G; Nadler, D J

    1975-01-01

    Pancreatic acinar cells undergo degeneration or necrosis following injection of puromycin intraperitoneally in rats. The purpose of this study was to characterize recovery following injection of four hourly doses of puromycin, 40mg/kg of body weight, examining the pancreas histologically and by electron microscopy. The number of dividing acinar cells increased following injury. By 12 to 24 hours following treatment, electron microscopy showed numerous autophagic vacuoles and intracisternal granules in the cells. By 48 hours, these were largely cleared from surviving cells although the intracisternal granules persisted in isolated acinar cells as long as 144 hours. At 24 hours, there was debris in the acinar lumens and interstitial space. We conclude that some acinar cells injured by puromycin may survive and be restored to normal structure; that surviving acinar cells can extrude autophagic vacuoles; and that necrotic acinar cells are replaced by regeneration following puromycin-induced injury in rats. PMID:1111495

  20. The role of Cajal cells in chronic prostatitis.

    Haki Yuksel, Ozgur; Urkmez, Ahmet; Verit, Ayhan

    2016-01-01

    Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra), two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis. PMID:27377090

  1. Ionizing radiation induces heritable disruption of epithelial cell interactions

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization

  2. PDX-1 expression and proliferation of duct epithelial cells after partial pancreatectomy in rats

    Tao Liu; Chun-You Wang; Shan-Miao Gou; He-Shui Wu; Jiong-Xin Xiong; Jing Zhou

    2007-01-01

    BACKGROUND:The pancreas has a strong regeneration potential in mammals. Previous studies suggested that pancreas regeneration is correlated with proliferation and differentiation of pancreatic stem cells, but the ifeld of pancreatic stem cells is still in its infancy. This study was undertaken to detect the expression of pancreas/duodenal homeobox-1 (PDX-1) and proliferation of pancreatic duct epithelial cells in remnant pancreas during regeneration after partial pancreatectomy in rats, and characterize the source of pancreatic stem cells. METHODS:Partial pancreatectomy (90%) was performed on four- to ifve-week-old Sprague-Dawley rats, and duct epithelial cells and acinar cells were detected by immunohistochemical staining and scored using the 5-bromo-2-deoxyuridine (BrdU) labelling index at various time points. Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to assess the expression of PDX-1 protein and mRNA, respectively. RESULTS: At 24 hours after partial pancreatectomy, proliferation started in the main, large and small duct cells, and persisted in small duct cells to day 5. The experimental and control groups were signiifcantly different (P CONCLUSIONS:Pancreatic stem cells in pancreatic ductal epithelial cells are involved in the regeneration of remnant pancreas and the expression of PDX-1 in ductal cells is due to posttranscriptional regulation.

  3. Effect of vasoactive intestinal peptide, carbachol and other agonists on the membrane voltage of pancreatic duct cells

    Pahl, C; Novak, I

    pancreatic ducts and, as a physiological response, we measured the basolateral membrane voltage of the duct cells (Vbl) with microelectrodes. Pancreatic ducts were dissected from pancreas of normal rats and bathed in a HCO(3-)(-containing solution. Under control conditions, the average Vbl was between -50......The regulation of pancreatic exocrine secretion involves hormonal, neural and neurohormonal components. Many agonists are known to be effective in pancreatic acinar cells, but less is known about the ducts. Therefore, we wanted to investigate the influence of various agonists on isolated perfused......- concentration in the lumen led to an increase of VIP-induced depolarization of Vbl, suggesting that a luminal Cl- conductance was increased. Cholecystokinin (CCK, 10(-10)-10(-7) mol/l) and bombesin (10(-8), 10(-5) mol/l), which stimulate pancreatic exocrine secretion in acini or whole glands, showed no...

  4. Distribution of Dendritic Cells in Normal Human Salivary Glands

    Dendritic cells (DC) are believed to contribute to development of autoimmune sialadenitis, but little is known about their distribution in normal salivary glands. In this study, DC were identified and their distribution was determined in normal human parotid and submandibular glands. For light microscopy, salivary gland sections were stained with H&E or immunocytochemically using antibodies to DC markers. Transmission electron microscopy (TEM) was used to evaluate the ultrastructural characteristics of DC. In H&E sections, elongated, irregularly shaped nuclei were occasionally seen in the striated and excretory duct epithelium. Immunolabeling with anti-HLA-DR, anti-CD11c and anti-S100 revealed DC with numerous processes extending between ductal epithelial cells, often close to the lumen. Morphometric analyses indicated that HLA-DR-positive DC occupied approximately 4–11% of the duct wall volume. Similar reactive cells were present in acini, intercalated ducts and interstitial tissues. TEM observations revealed cells with indented nuclei containing dense chromatin, pale cytoplasm with few organelles, and lacking junctional attachments to adjacent cells. These results indicate that DC are abundant constituents of normal human salivary glands. Their location within ductal and acinar epithelium suggests a role in responding to foreign antigens and/or maintaining immunological tolerance to salivary proteins

  5. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  6. Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins.

    Mullins, Stefanie R; Sameni, Mansoureth; Blum, Galia; Bogyo, Matthew; Sloane, Bonnie F; Moin, Kamiar

    2012-12-01

    The expression of the cysteine protease cathepsin B is increased in early stages of human breast cancer.To assess the potential role of cathepsin B in premalignant progression of breast epithelial cells, we employed a 3D reconstituted basement membrane overlay culture model of MCF10A human breast epithelial cells and isogenic variants that replicate the in vivo phenotypes of hyper plasia(MCF10AneoT) and atypical hyperplasia (MCF10AT1). MCF10A cells developed into polarized acinar structures with central lumens. In contrast, MCF10AneoT and MCF10AT1 cells form larger structures in which the lumens are filled with cells. CA074Me, a cell-permeable inhibitor selective for the cysteine cathepsins B and L,reduced proliferation and increased apoptosis of MCF10A, MCF10AneoT and MCF10AT1 cells in 3D culture. We detected active cysteine cathepsins in the isogenic MCF10 variants in 3D culture with GB111, a cell-permeable activity based probe, and established differential inhibition of cathepsin B in our 3D cultures. We conclude that cathepsin B promotes proliferation and premalignant progression of breast epithelial cells. These findings are consistent with studies by others showing that deletion of cathepsin B in the transgenic MMTV-PyMT mice, a murine model that is predisposed to development of mammary cancer, reduces malignant progression. PMID:23667900

  7. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands

    Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD = ±7.02) h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2 ± 4.18 vs. 4.5 ± 1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands

  8. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells.

    Jamieson, J D; Palade, G E

    1971-07-01

    Our previous observations on the synthesis and transport of secretory proteins in the pancreatic exocrine cell were made on pancreatic slices from starved guinea pigs and accordingly apply to the resting, unstimulated cell. Normally, however, the gland functions in cycles during which zymogen granules accumulate in the cell and are subsequently discharged from it in response to secretogogues. The present experiments were undertaken to determine if secretory stimuli applied in vitro result in adjustments in the rates of protein synthesis and/or of intracellular transport. To this intent pancreatic slices from starved animals were stimulated in vitro for 3 hr with 0.01 mM carbamylcholine. During the first hour of treatment the acinar lumen profile is markedly enlarged due to insertion of zymogen granule membranes into the apical plasmalemma accompanying exocytosis of the granule content. Between 2 and 3 hr of stimulation the luminal profile reverts to unstimulated dimensions while depletion of the granule population nears completion. The acinar cells in 3-hr stimulated slices are characterized by the virtual complete absence of typical condensing vacuoles and zymogen granules, contain a markedly enlarged Golgi complex consisting of numerous stacked cisternae and electron-opaque vesicles, and possess many small pleomorphic storage granules. Slices in this condition were pulse labeled with leucine-(3)H and the route and timetable of intracellular transport assessed during chase incubation by cell fractionation, electron microscope radioautography, and a discharge assay covering the entire secretory pathway. The results showed that the rate of protein synthesis, the rate of drainage of the rough-surfaced endoplasmic reticulum (RER) compartment, and the over-all transit time of secretory proteins through the cells was not accelerated by the secretogogue. Secretory stimulation did not lead to a rerouting of secretory proteins through the cell sap. In the resting cell, the

  9. SEL1L deficiency impairs growth and differentiation of pancreatic epithelial cells

    Schimenti John C

    2010-02-01

    Full Text Available Abstract Background The vertebrate pancreas contains islet, acinar and ductal cells. These cells derive from a transient pool of multipotent pancreatic progenitors during embryonic development. Insight into the genetic determinants regulating pancreatic organogenesis will help the development of cell-based therapies for the treatment of diabetes mellitus. Suppressor enhancer lin12/Notch 1 like (Sel1l encodes a cytoplasmic protein that is highly expressed in the developing mouse pancreas. However, the morphological and molecular events regulated by Sel1l remain elusive. Results We have characterized the pancreatic phenotype of mice carrying a gene trap mutation in Sel1l. We show that Sel1l expression in the developing pancreas coincides with differentiation of the endocrine and exocrine lineages. Mice homozygous for the gene trap mutation die prenatally and display an impaired pancreatic epithelial morphology and cell differentiation. The pancreatic epithelial cells of Sel1l mutant embryos are confined to the progenitor cell state throughout the secondary transition. Pharmacological inhibition of Notch signaling partially rescues the pancreatic phenotype of Sel1l mutant embryos. Conclusions Together, these data suggest that Sel1l is essential for the growth and differentiation of endoderm-derived pancreatic epithelial cells during mouse embryonic development.

  10. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells.

    Ying Qu

    Full Text Available Breast cancer is the most common cancer in women and a leading cause of cancer-related deaths for women worldwide. Various cell models have been developed to study breast cancer tumorigenesis, metastasis, and drug sensitivity. The MCF10A human mammary epithelial cell line is a widely used in vitro model for studying normal breast cell function and transformation. However, there is limited knowledge about whether MCF10A cells reliably represent normal human mammary cells. MCF10A cells were grown in monolayer, suspension (mammosphere culture, three-dimensional (3D "on-top" Matrigel, 3D "cell-embedded" Matrigel, or mixed Matrigel/collagen I gel. Suspension culture was performed with the MammoCult medium and low-attachment culture plates. Cells grown in 3D culture were fixed and subjected to either immunofluorescence staining or embedding and sectioning followed by immunohistochemistry and immunofluorescence staining. Cells or slides were stained for protein markers commonly used to identify mammary progenitor and epithelial cells. MCF10A cells expressed markers representing luminal, basal, and progenitor phenotypes in two-dimensional (2D culture. When grown in suspension culture, MCF10A cells showed low mammosphere-forming ability. Cells in mammospheres and 3D culture expressed both luminal and basal markers. Surprisingly, the acinar structure formed by MCF10A cells in 3D culture was positive for both basal markers and the milk proteins β-casein and α-lactalbumin. MCF10A cells exhibit a unique differentiated phenotype in 3D culture which may not exist or be rare in normal human breast tissue. Our results raise a question as to whether the commonly used MCF10A cell line is a suitable model for human mammary cell studies.

  11. What is the origin of pancreatic adenocarcinoma?

    Pandey Krishan K

    2003-01-01

    Full Text Available Abstract The concept of pancreatic cancer origin is controversial. Acinar, ductal or islet cells have been hypothesized as the cell of origin. The pros and cons of each of these hypotheses are discussed. Based on the world literature and recent observations, pancreatic cells seem to have potential for phenotypical transdifferentiation, i.e ductal-islet, ductal-acinar, acinar-ductal, acinar-islet, islet-acinar and islet-ductal cells. Although the possibility is discussed that cancer may arise from either islet, ductal or acinar cells, the circumstances favoring the islet cells as the tumor cell origin include their greater transdifferentiation potency into both pancreatic and extrapancreatic cells, the presence of a variety of carcinogen-metabolizing enzymes, some of which are present exclusively in islet cells and the growth factor-rich environment of islets.

  12. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis.

    Morvaridi, Susan; Dhall, Deepti; Greene, Mark I; Pandol, Stephen J; Wang, Qiang

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis. PMID:26567630

  13. Evidence for Active Electrolyte Transport by Two-Dimensional Monolayers of Human Salivary Epithelial Cells.

    Hegyesi, Orsolya; Földes, Anna; Bori, Erzsébet; Németh, Zsolt; Barabás, József; Steward, Martin C; Varga, Gábor

    2015-12-01

    Functional reconstruction of lost tissue by regenerative therapy of salivary glands would be of immense benefit following radiotherapy or in the treatment of Sjogren's syndrome. The purpose of this study was to develop primary cultures of human salivary gland cells as potential regenerative resources and to characterize their acinar/ductal phenotype using electrophysiological measurements of ion transport. Human salivary gland cultures were prepared either from adherent submandibular gland cells (huSMG) or from mixed adherent and nonadherent cells (PTHSG) and were cultivated in Hepato-STIM or minimum essential medium (MEM). Expression of key epithelial marker proteins was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Transepithelial electrical resistance (TER) was monitored following seeding the cells on Transwell membranes. Transepithelial ion transport was estimated by short-circuit current (Isc) measurements in an Ussing chamber. Both huSMG and PTHSG cells showed epithelial characteristics when cultivated in Hepato-STIM, while fibroblast-like elements dominated in MEM. Compared to intact tissue, cultivation of the cells resulted in substantial decreases in AQP5 and NKCC1 expression and moderate increases in claudin-1 and ENaC expression. Both cultures achieved high TER and transepithelial electrolyte movement in Hepato-STIM, but not in MEM. The Isc was substantially reduced by basolateral Cl(-) and bicarbonate withdrawal, indicating the involvement of basolateral-to-apical anion transport, and by the blockade of apical ENaC by amiloride, indicating the involvement of apical-to-basolateral Na(+) transport. An almost complete inhibition was observed following simultaneous ENaC block and withdrawal of the two anions. Isc was enhanced by either apical adenosine triphosphate (ATP) or basolateral carbachol application, but not by forskolin, confirming the expected role of Ca(2+)-activated regulatory pathways in electrolyte

  14. Expression of ODC Antizyme Inhibitor 2 (AZIN2) in Human Secretory Cells and Tissues.

    Rasila, Tiina; Lehtonen, Alexandra; Kanerva, Kristiina; Mäkitie, Laura T; Haglund, Caj; Andersson, Leif C

    2016-01-01

    Ornithine decarboxylase (ODC) antizyme inhibitor 2 (AZIN2), originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s) of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3) to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated. PMID:26963840

  15. Expression of ODC Antizyme Inhibitor 2 (AZIN2 in Human Secretory Cells and Tissues.

    Tiina Rasila

    Full Text Available Ornithine decarboxylase (ODC antizyme inhibitor 2 (AZIN2, originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3 to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated.

  16. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.

    Kowal, J M; Yegutkin, G G; Novak, I

    2015-12-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide

  17. The pre-synaptic blocker toosendanin does not inhibit secretion in exocrine cells

    Zong-Jie Cui; Xue-Hui He

    2002-01-01

    AIM: Toosendanin is a pre-synaptic blocker at theneuromuscular junction and its inhibitory effect is dividedinto an initial facilitative/stimulatory phase followed by aprolonged inhibitory phase. The present study investigatedwhether the subsequent inhibitory phase was due toexhaustion of the secretory machinery as a result of extensivestimulation during the initial facilitative phase. Morespecifically, this paper examined whether toosendanin coulddirectly inhibit the secretory machinery in exocrine cells.METHODS: Rat pancreatic acinar cells were isolated bycollagenase digestion. Secretion was assessed by measuringthe amount of amylase released into the extracellular mediumas a percentage of the total present in the cells beforestimulation. Cholecystokinin (CCK)-induced increases inintracellular calcium in single cells were measured with fura-2 microfluorometry.RESULTS: Effects of toosendanin on CCK-induced amylasesecretion and calcium oscillations were investigated.Toosendanin of 87-870 tM had no effect on 10 pM-100 nMCCK-stimulated amylase secretion, nor did 8.7-870 μMtoosendanin inhibit 5 pM CCK-induced calcium oscillations.In contrast, 10 nM CCK1 receptor antagonist FK 480 completelyblocked 5 pM CCK-induced calcium oscillations.CONCLUSION: The pre-synaptic "blocker" toosendanin is aselective activator of the voltage-dependent calcium channels,but does not interfere with the secretory machinery itself.

  18. Immunohistochemical localization of hepatopancreatic phospholipase in gastropods mollusc, Littorina littorea and Buccinum undatum digestive cells

    Zarai Zied

    2011-11-01

    Full Text Available Abstract Background Among the digestive enzymes, phospholipase A2 (PLA2 hydrolyzes the essential dietary phospholipids in marine fish and shellfish. However, we know little about the organs that produce PLA2, and the ontogeny of the PLA2-cells. Accordingly, accurate localization of PLA2 in marine snails might afford a better understanding permitting the control of the quality and composition of diets and the mode of digestion of lipid food. Results We have previously producted an antiserum reacting specifically with mSDPLA2. It labeled zymogen granules of the hepatopancreatic acinar cells and the secretory materials of certain epithelial cells in the depths of epithelial crypts in the hepatopancreas of snail. To confirm this localization a laser capture microdissection was performed targeting stained cells of hepatopancreas tissue sections. A Western blot analysis revealed a strong signal at the expected size (30 kDa, probably corresponding to the PLA2. Conclusions The present results support the presence of two hepatopancreatic intracellular and extracellular PLA2 in the prosobranchs gastropods molluscs, Littorina littorea and Buccinum undatum and bring insights on their localizations.

  19. High Volume Washing of the Abdomen in Increasing Survival After Surgery in Patients With Pancreatic Cancer That Can Be Removed by Surgery

    2016-05-03

    Acinar Cell Carcinoma; Ampulla of Vater Adenocarcinoma; Cholangiocarcinoma; Duodenal Adenocarcinoma; Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Pancreatic Intraductal Papillary Mucinous Neoplasm, Pancreatobiliary-Type; Periampullary Adenocarcinoma

  20. Aerosols in the study of convective acinar mixing

    Darquenne, Chantal; Prisk, G. Kim

    2005-01-01

    Convective mixing (CM) refers to the different transport mechanisms except Brownian diffusion that irreversibly transfer inspired air into resident air and can be studied using aerosol bolus inhalations. This paper provides a review of the present understanding of how each of these mechanisms contributes to CM. Original data of the combined effect of stretch and fold and gravitational sedimentation on CM are also presented. Boli of 0.5 μm-diameter particles were inhaled at penetration volumes...

  1. Aerosols in the study of convective acinar mixing

    Darquenne, Chantal; Prisk, G. Kim

    2005-01-01

    Convective mixing (CM) refers to the different transport mechanisms except Brownian diffusion that irreversibly transfer inspired air into resident air and can be studied using aerosol bolus inhalations. This paper provides a review of the present understanding of how each of these mechanisms contributes to CM. Original data of the combined effect of stretch and fold and gravitational sedimentation on CM are also presented. Boli of 0.5 microm-diameter particles were inhaled at penetration volumes (V(p)) of 300 and 1200 ml in eight subjects. Inspiration was followed by a 10-s breath hold, during which small flow reversals (FR) were imposed, and expiration. There was no physiologically significant dependence in dispersion and deposition with increasing FR. The results were qualitatively similar to those obtained in a previous study in microgravity in which it was speculated that the phenomenon of stretch and fold occurred during the first breathing cycle without the need of any subsequent FR.

  2. Hepatocyte growth factor signaling in intrapancreatic ductal cells drives pancreatic morphogenesis.

    Ryan M Anderson

    Full Text Available In a forward genetic screen for regulators of pancreas development in zebrafish, we identified donut(s908 , a mutant which exhibits failed outgrowth of the exocrine pancreas. The s908 mutation leads to a leucine to arginine substitution in the ectodomain of the hepatocyte growth factor (HGF tyrosine kinase receptor, Met. This missense mutation impedes the proteolytic maturation of the receptor, its trafficking to the plasma membrane, and diminishes the phospho-activation of its kinase domain. Interestingly, during pancreatogenesis, met and its hgf ligands are expressed in pancreatic epithelia and mesenchyme, respectively. Although Met signaling elicits mitogenic and migratory responses in varied contexts, normal proliferation rates in donut mutant pancreata together with dysmorphic, mislocalized ductal cells suggest that met primarily functions motogenically in pancreatic tail formation. Treatment with PI3K and STAT3 inhibitors, but not with MAPK inhibitors, phenocopies the donut pancreatic defect, further indicating that Met signals through migratory pathways during pancreas development. Chimera analyses showed that Met-deficient cells were excluded from the duct, but not acinar, compartment in the pancreatic tail. Conversely, wild-type intrapancreatic duct and "tip cells" at the leading edge of the growing pancreas rescued the donut phenotype. Altogether, these results reveal a novel and essential role for HGF signaling in the intrapancreatic ducts during exocrine morphogenesis.

  3. Myoepithelial cell carcinoma of the oral cavity: A case report and review of literature

    Yashwant Ingle

    2014-01-01

    Full Text Available Myoepithelial carcinoma (MC is a malignant salivary gland neoplasm whose tumor cells demonstrate cytologic differentiation toward myoepithelial cells and lack ductal or acinar differentiation. It is a relatively rare tumor and many a times remains undiagnosed because of histopathological heterogeneity. It represents about 0.4-0.6% of all salivary gland tumors and 1.2-1.5% of carcinomas. It occurs predominantly in the parotid gland with a mean age of presentation being 55 years (range 14-86 with no sex predilection. MC appears to be a low grade malignancy when arising in a pleomorphic adenoma, but tends to be more aggressive and has a higher metastatic potential when arising de novo. The clinical behavior of MC is variable and there are no pathologic features that correlate with patients′ outcome. Most tumors that display marked cytologic atypia, high mitotic activity and necrosis tend to behave aggressively. The current case is of a 42-year-old male with recurrent tumor mass in the mandibular right posterior region. The purpose of this article was to describe the clinicopathological and immunohistochemical features of intraoral MC and to discuss review of literature of this rare tumor.

  4. γ-aminobutyric acid secreted from islet β-cells modulates exocrine secretion in rat pancreas

    Yong-Deuk Park; Zheng-Yun Cui; Guang Wu; Hyung-Seo Park; Hyoung-Jin Park

    2006-01-01

    AIM: To investigate the role of endogenous γ-aminobutyric acid (GABA) in pancreatic exocrine secretion.METHODS: The isolated, vascularly perfused rat pancreas was employed in this study to eliminate the possible influences of extrinsic nerves and hormones.Cholecystokinin (CCK; 10 pmol/L) was intra-arterially given to stimulate exocrine secretion of the pancreas.RESULTS: Glutamine, a major precursor of GABA, which was given intra-arterially at concentrations of 1, 4 and 10 mmol/L, dose-dependently elevated the CCK-stimulated secretions of fluid and amylase in the normal pancreas.Bicuculline (10 μmol/L), a GABAA receptor antagonist,blocked the enhancing effect of glutamine (4 mmol/L) on the CCK-stimulated exocrine secretions. Glutamine, at concentrations of 1, 4 and 10 mmol/L, dose-dependently increased the GABA concentration in portal effluent of the normal pancreas. The effects of glutamine on the CCK-stimulated exocrine secretion as well as the GABA secretion were markedly reduced in the streptozotocintreated pancreas.CONCLUSION: GABA could be secreted from β-cells into the islet-acinar portal system after administration of glutainine, and could enhance the CCK-stimulated exocrine secretion through GABAA receptors. Thus,GABA in islet β-cells is a hormone modulating pancreatic exocrine secretion.

  5. Profile of blood glucose and ultrastucture of beta cells pancreatic islet in alloxan compound induced rats

    I Nyoman Suarsana

    2010-06-01

    Full Text Available Diabetes is marked by elevated levels of blood glucose, and progressive changes of the structure of pancreatic islet histopathology. The objective of this research was to analyse the glucose level and histophatological feature in pancreatic islet in alloxan compound induced rats. A total of ten male Spraque Dawley rats of 2 months old were used in this study. The rats were divided into two groups: (1 negative control group (K-, and (2 positif induced alloxan group (diabetic group =DM. The rats were induced by a single dose intraperitonial injection of alloxan compound 120 mg/kg of body weight. The treatment was conducted for 28 days. Blood glucose levels of rats were analysed at 0, 4, 7, 14, 21, and 28 days following treatment. At the end of the experiment, rats were sacrificed by cervical dislocation. Pancreas was collected for analysis of histopathological study by Immunohistochemical technique, and ultrastructural study using transmission electron microscope (TEM. The result showed that Langerhans islet of diabetic rat (rat of DM group showed a marked reduction of size, number of Langerhans islet of diabetic rat decrease, and characterized by hyperglycemic condition. By using TEM, beta cells of DM group showed the rupture of mitochondrial membrane, the lost of cisternal structure of inner membrane of mitocondria, reduction of insulin secretory granules, linkage between cells acinar with free Langerhans islet, and the caryopicnotic of nucleus.

  6. The Cyan Fluorescent Protein (CFP Transgenic Mouse as a Model for Imaging Pancreatic Exocrine Cells

    Hop S Tran Cao

    2009-03-01

    Full Text Available The use of fluorescent proteins for in vivo imaging has opened many new areas of research. Among the important advances in the field have been the development of transgenic mice expressing various fluorescent proteins. Objective To report whole-body and organ-specific fluorescence imaging to characterize the transgenic cyan fluorescent protein mouse. Design Mice were imaged using two devices. Brightfield images were obtained with the OV100 Small Animal Imaging System (Olympus Corp., Tokyo, Japan. Fluorescence imaging was performed under the cyan fluorescent protein filter using the iBox Small Animal Imaging System (UVP, Upland, CA, USA. Intervention All animals were sacrificed immediately before imaging. They were imaged before and throughout multiple steps of a complete necropsy. Harvested organs were also imaged with both devices. Selected organs were then frozen and processed for histology, fluorescence microscopy, and H&E staining. Fluorescence microscopy was performed with an Olympus IMT-2 inverted fluorescence microscope. Main outcome measure Determination of fluorescence intensity of different organs. Results Surprisingly, we found that there is differential enhancement of fluorescence among organs; most notably, the pancreas stands out from the rest of the gastrointestinal tract, displaying the strongest fluorescence of all organs in the mouse. Fluorescence microscopy demonstrated that the cyan fluorescent protein fluorescence resided in the acinar cells of the pancreas and not the islet cells. Conclusions The cyan fluorescent protein mouse should lead to a deeper understanding of pancreatic function and pathology, including cancer.

  7. 胰腺上皮细胞可能成为胰岛β细胞再生的新来源%Pancreatic epithelium may be a new source of islet β cells regeneration

    曹书义; 袁莉

    2015-01-01

    促进β细胞再生,维持功能性β细胞的数量,是治疗糖尿病的根本.胰腺上皮细胞包括β细胞、导管细胞、腺泡细胞及α细胞.研究表明,与多能干细胞相比,这些成体细胞具有更明显的优势,可能通过不同途径重新生成β细胞从而实现β细胞的再生.已分化的β细胞可以被诱导增殖或者退回至祖细胞状态重新分化为β细胞.而在胰腺受损、代谢应激、基因操作等条件下,其他胰腺上皮细胞可能直接转分化为β细胞或者成为内分泌兼性祖细胞再分化为β细胞.%Promoting β cells regeneration and increasing the number of functional β cells is crucial to treat diabetes.Pancreatic epithelial cells include β cell,duct cell acinar cell,and α cell.Compared with pluripotent stem cells,the adult cells have a clear advantage to realize the regeneration of β cells through different pathways.The differentiated β cells can be induced to proliferation or lost to dedifferentiation.Then the dedifferentiated cells may redifferentiate to β cells.Under specific conditions such as damaged pancreas,metabolic stress,genetic operation,other cells in pancreatic epithelium also exhibit the plasticity to go directly to β cells or become endocrine facultative progenitor cells to reprogramme into β cells.

  8. TNF-like weak inducer of apoptosis (TWEAK promotes beta cell neogenesis from pancreatic ductal epithelium in adult mice.

    Fei Wu

    Full Text Available AIM/HYPOTHESIS: The adult mammalian pancreas has limited ability to regenerate in order to restore adequate insulin production from multipotent progenitors, the identity and function of which remain poorly understood. Here we test whether the TNF family member TWEAK (TNF-like weak inducer of apoptosis promotes β-cell neogenesis from proliferating pancreatic ductal epithelium in adult mice. METHODS: C57Bl/6J mice were treated with Fc-TWEAK and pancreas harvested at different time points for analysis by histology and immunohistochemistry. For lineage tracing, 4 week old double transgenic mice CAII-CreER(TM: R26R-eYFP were implanted with tamoxifen pellet, injected with Fc-TWEAK or control Ig twice weekly and analyzed at day 18 for TWEAK-induced duct cell progeny by costaining for insulin and YFP. The effect of TWEAK on pancreatic regeneration was determined by pancytokeratin immunostaining of paraffin embedded sections from wildtype and TWEAK receptor (Fn14 deficient mice after Px. RESULTS: TWEAK stimulates proliferation of ductal epithelial cells through its receptor Fn14, while it has no mitogenic effect on pancreatic α- or β-cells or acinar cells. Importantly, TWEAK induces transient expression of endogenous Ngn3, a master regulator of endocrine cell development, and induces focal ductal structures with characteristics of regeneration foci. In addition, we identify by lineage tracing TWEAK-induced pancreatic β-cells derived from pancreatic duct epithelial cells. Conversely, we show that Fn14 deficiency delays formation of regenerating foci after Px and limits their expansion. CONCLUSIONS/INTERPRETATION: We conclude that TWEAK is a novel factor mediating pancreatic β-cell neogenesis from ductal epithelium in normal adult mice.

  9. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  10. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  11. Quantitative analysis of cell composition and purity of human pancreatic islet preparations.

    Pisania, Anna; Weir, Gordon C; O'Neil, John J; Omer, Abdulkadir; Tchipashvili, Vaja; Lei, Ji; Colton, Clark K; Bonner-Weir, Susan

    2010-11-01

    Despite improvements in outcomes for human islet transplantation, characterization of islet preparations remains poorly defined. This study used both light microscopy (LM) and electron microscopy (EM) to characterize 33 islet preparations used for clinical transplants. EM allowed an accurate identification and quantification of cell types with measured cell number fractions (mean±s.e.m.) of 35.6±2.1% β-cells, 12.6±1.0% non-β-islet cells (48.3±2.6% total islet cells), 22.7±1.5% duct cells, and 25.3±1.8% acinar cells. Of the islet cells, 73.6±1.7% were β-cells. For comparison with the literature, estimates of cell number fraction, cell volume, and extracellular volume were combined to convert number fraction data to volume fractions applicable to cells, islets, and the entire preparation. The mathematical framework for this conversion was developed. By volume, β-cells were 86.5±1.1% of the total islet cell volume and 61.2±0.8% of intact islets (including the extracellular volume), which is similar to that of islets in the pancreas. Our estimates produced 1560±20 cells in an islet equivalent (volume of 150-μm diameter sphere), of which 1140±15 were β-cells. To test whether LM analysis of the same tissue samples could provide reasonable estimates of purity of the islet preparations, volume fraction of the islet tissue was measured on thin sections available from 27 of the clinical preparations by point counting morphometrics. Islet purity (islet volume fraction) of individual preparations determined by LM and EM analyses correlated linearly with excellent agreement (R²=0.95). However, islet purity by conventional dithizone staining was substantially higher with a 20-30% overestimation. Thus, both EM and LM provide accurate methods to determine the cell composition of human islet preparations and can help us understand many of the discrepancies of islet composition in the literature. PMID:20697378

  12. Epidermal growth factor receptor expression in pancreatic lesions induced in the rat by azaserine.

    Visser, C. J.; de Weger, R. A.; van Blokland, W. T.; Seifert-Bock, I.; Kobrin, M. S.; Korc, M.; Woutersen, R. A.

    1996-01-01

    In the present study, the expression of the epidermal growth factor receptor (EGFR) was investigated in putative preneoplastic and neoplastic acinar cell lesions induced in the rat pancreas by azaserine, using Northern blotting, in situ hybridisation (ISH) and immunohistochemistry. EGFR protein levels were decreased in putative preneoplastic eosinophilic acinar cell lesions (atypical acinar cell nodules, AACN) in comparison with normal acinar cells of the pancreas. However, EGFR mRNA expression correlated positively with the volume of AACN in pancreatic homogenates and ISH showed equal or stronger EGFR mRNA expression in AACN than in the surrounding normal acinar cells. Neither EGFR protein nor EGFR mRNA was detected in more advanced lesions such as acinar adenocarcinomas (in situ). Moreover, EGFR protein expression showed an inverse relationship with the mitotic rate of the acinar cells. These findings suggest that down-regulation of EGFR at the protein level may abrogate negative constraints on cell growth, which may stimulate the development of putative preneoplastic AACN to more advanced lesions and, ultimately, acinar adenocarcinomas. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8679465

  13. The 18-kDa translocator protein (TSPO disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration.

    Xiaoting Wu

    Full Text Available Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO, are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864 and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.

  14. Types of voltage—dependent calcium channels involved in high potassium depolarization—induced amylase secretion in the exocrine pancreatic tumour cell line AR4—2J

    CUIZONGJIE

    1998-01-01

    In the perifused fura-2 loaded exocrine pancreatic acinar cell line AR4-2J pulses of high potassium induced repetitive increases in intracellular calcium,Attached cells when stimulated with high potassium secreted large amount of amylase.High potassium-induced secretion was dependent both on the concentration of potassium and duration of stimulation.High potassium induced increases in intracellular calcium were inhibited by voltage-dependent calcium channel anatagonists with an order of potency as follows:nifedipine>ω-agatoxin IVA>ω-conotoxin GVIA.In contrast,the L-type calcium channel anatagonist nifedipine almost completely inhibited potassium-induced amylase secretion,whereas the N-type channel antagonist ω-conotoxin GVIA was without effect.The P-type channel antagonist ω-agatoxin IVA had a small inhibitory effect,but this inhibition was not significant at the level of amylase secretion.In conclusion,the AR4-2J cell line posesses different voltage-dependent calcium channels(L,P,N)with the L-type predominantly involved in depolarization induced amylase secretion.

  15. Effects of hyperprolactinemia on toxicological parameters and proliferation of islet cells in male rats.

    Ose, Keiko; Miyata, Kaori; Yoshioka, Kaoru; Okuno, Yasuyoshi

    2009-04-01

    Prolactin has a wide variety of biological effects. Consequences of hyperprolactinemia on islet B cell proliferation as well as general toxicological parameters were here examined using anterior pituitary-grafted rats. Three or six anterior pituitary glands were implanted under single renal capsules of F344 male rats and left there for 13 weeks afterward. Clinical observation along with measurement of body weight and food consumption was conducted during the observation period, and subsequently hematology, blood biochemistry, gross pathology, organ weights and histopathology were examined. In addition, the proliferation rate of islet B cells was measured by a 5-bromo-2'-deoxy-uridine (BrdU) labeling technique. Serum prolactin concentrations at week 13 were 36, 70, 75 and 105 ng/ml in the sham-operated, 3-pituitary-grafted groups from male or female donors, and 6-pituitary-grafted group from male donors, respectively. Higher cholinesterase and total cholesterol values, lower trigriceride and leutenizing hormones (LH) values, and higher adrenal weights compared to those in the sham-operated group were apparent in the 3- and/or 6-pituitary-grafted groups. Also, the study revealed that mammary gland structure was transformed with change of differentiation from a male to a female acinar pattern. Furthermore a specific increase of islet cell proliferation rate was found, positively correlated with serum prolactin concentration. These findings suggest that elevation of serum prolactin level over 13 weeks induces islet cell proliferation and changes in toxicological parameters, including cholinesterase activity, elements of lipid metabolism and histopathology/morphology of the adrenals and mammary glands in male rats. PMID:19336972

  16. Fine structural analysis of a teleost exocrine pancreas cellular components - a freeze-fracture and transmission electron microscopic study.

    Stipp, A C; Ferri, S; Sesso, A

    1980-01-01

    The normal exocrine pancreas of Pimelodus maculatus (Teleostei) has been studied by freeze-fracture and conventional transmission electron microscopy. 4 cellular types in the acini are observed: the acinar cells, the argentaffin cells, the intermediate cells and the centroacinar cells. The most proeminent cytoplasmic feature of the acinar cells is that the well developed rough endoplasmic reticulum, which appear predominantly under the vesicular form. The argentaffin cells are found lodged between the acinar cells and duct cells, in the connective tissue they are isolated principally that surrounds the ducts. The typical granules are the cytoplasmic component wich characterize the argentaffin cells. The indermediate cells are characterized by the presence of two distinct granule types: one resembling that found in the endocrine cells and the other resembling the granules of the acinar cells. The centroacinar cells is similar that found in other species. PMID:7396226

  17. OVEREXPRESSIONS OF Ha-ras AND p53 PREDICT THE PROGNOSIS OF PATIENTS WITH NON-SMALL-CELL LUNG CARCINOMA

    李庆昌; 林东; 王妍; 邱雪杉; 王恩华

    2004-01-01

    Objective: To understand the relationship between the expression of ras and p53 and histological types, degree of differentiation, TNM classification, stage, and patients'prognoses of non-small-cell lung cancer, we examined Haras and p53 production in 143 non-small-cell lung carcinomas. Methods: One hundred and forty-three paraffin-embedded surgically resected specimens of primary non-small-cell lung carcinomas (57 squamous cell carcinomas, 63 acinar adenocarcinomas, 15 bronchioloalveolar carcinomas, and 8 large-cell carcinomas) were stained by streptavidin-peroxidase immunohistochemical method using anti-Ha-ras monoclonal and anti-p53monoclonal (DO-1) antibodies. Results: Ha-ras was found in 68% (87 of 143) of lung carcinomas. The positive rate of Ha-ras staining in well differentiated carcinoma was 89%,significantly higher than that in moderately differentiated carcinoma (66%, P<0.05) and that in poorly differentiated carcinoma (48%, P<0.01). The 5-year survival rates of patients whose tumors had no (39%, P<0.01) or moderate (33%, P<0.05) Ha-ras production were significantly higher than that of patients whose tumors had strong staining (14%) for Ha-ras. Sixty percent lung carcinomas (86 of 143)had p53 accumulation. Patients whose tumors did not express p53 survived, on average, significantly longer after tumor resection than did patients whose tumors expressed p53. With increasing p53 accumulation, the average length of survival after tumor resection significantly decreased.Conclusion: Ha-ras overproduction and p53 accumulation correlate with unfavorable prognoses of patients with nonsmall-cell lung carcinomas. Ha-ras production in non-smallcell lung carcinoma was related to the degree of differentiation.

  18. [Experimental pancreatitis of ductal origin. Anatomo-pathologic and ultrastructural study].

    Testas, P; Bitker, M O; Lautard, M; Vieillefond, A; Fabre, F

    1982-12-01

    The injection of bile under low pressure led in 21 dogs out of 30 to a process of acute pancreatitis and to the reproduction of the different histopathological types of pancreatitis seen in man. This represents a weighty argument in favour of the concept of oedematous pancreatitis, interstitial pancreatitis with sometimes major cytosteatonecrosis and necrosing pancreatitis as different manifestations of the same disease, which is not universally accepted. Our research has once again emphasized the fact that the interstitial phenomena and in particular fatty necrosis precede parenchymatous necrosis. Morphological studies were used to attempt to define the link between fat necrosis and acinar necrosis. Light microscopy showed that there was no topographic evidence of direct involvement of the acinar cell in contact with fat necrosis. By contrast, ultrastructural studies revealed initial involvement of the basal pole of the acinar cell. This would emphasize the responsibility of interstitial phenomena in the maintenance, if not the induction, of acinar necrosis. It cannot be excluded that fat necrosis could indirectly, via the liberation of factors carried by oedema, play a role in these phenomena of acinar necrosis. In addition, it was noted that the apical poles of the acinar cells did not seem to be damaged, the acinar lumina were dilated and there was loss of the intercellular junctions. This would hence indicate the possible passage into the interstitium of a toxic substance (bile salts, enzymes liberated in excess) coming directly from the acinar lumina. PMID:7161318

  19. Morphology changes in human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens

    In the recent literature there has been an increased interest in the effects of particulate matter on the respiratory tract. The objective of this study was to use an in vitro model of type II lung epithelium (A549) to evaluate the cell ability to take up sub-micron PM1.0 particles (PM1.0), Parietaria officinalis (ALL), and PM1.0 + ALL together. Morphological analysis performed by Transmission Electron Microscope (TEM) showed that PM and ALL interacted with the cell surface, then penetrating into the cytoplasm. Each single treatment was able to point out a specific change in the morphology. The cells treated appear healthy and not apoptotic. The main effect was the increase of: multilamellar bodies, lysosomal enzymes, microvilli, and presence of vesicle/vacuoles containing particles. These observations demonstrate morphological and functional alterations related to the PM1.0 and P. officinalis and confirm the induction of the inflammatory response in lung cells exposed to the inhalable particles. - Highlights: ► Cell ability to take up PM1.0 particles, Parietaria officinalis (ALL), PM1.0 + ALL. ► The cells treated appear healthy and not apoptotic. ► Each single treatment was able to point out a specific change in the morphology. ► Increase of multilamellar bodies lysosomal enzymes microvilli vesicle with particles. ► Induction of inflammatory response in lung cells exposed to the inhalable particles. - The urban environment with the combination of inhalable air pollution and particulate can damage the acinar lung units and activate cells of the immune system.

  20. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  1. c-Kit Expression is Rate-Limiting for Stem Cell Factor-Mediated Disease Progression in Adenoid Cystic Carcinoma of the Salivary Glands

    Janyaporn Phuchareon

    2014-10-01

    Full Text Available Adenoid cystic carcinoma (ACC is an aggressive malignant neoplasm of the salivary glands in which c-Kit is overexpressed and activated, although the mechanism for this is as yet unclear. We analyzed 27 sporadic ACC tumor specimens to examine the biologic and clinical significance of c-Kit activation. Mutational analysis revealed expression of wild-type c-Kit in all, eliminating gene mutation as a cause of activation. Because stem cell factor (SCF is c-Kit's sole ligand, we analyzed its expression in the tumor cells and their environment. Immunohistochemistry revealed its presence in c-Kit–positive tumor cells, suggesting an activation of autocrine signaling. We observed a significant induction of ERK1/2 in the cells. SCF staining was also found in other types of non-cancerous cells adjacent to tumors within salivary glands, including stromal fibroblasts, neutrophils, peripheral nerve, skeletal muscle, vascular endothelial cells, mucous acinar cells, and intercalated ducts. Quantitative PCR showed that the top quartile of c-Kit mRNA expression distinguished ACCs from normal salivary tissues and was cross-correlated with short-term poor prognosis. Expression levels of SCF and c-Kit were highly correlated in the cases with perineural invasion. These observations suggest that c-Kit is potentially activated by receptor dimerization upon stimulation by SCF in ACC, and that the highest quartile of c-Kit mRNA expression could be a predictor of poor prognosis. Our findings may support an avenue for c-Kit-targeted therapy to improve disease control in ACC patients harboring the top quartile of c-Kit mRNA expression.

  2. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  3. Stem Cells

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  4. Persistence of gamma-H2AX and 53BP1 foci in proliferating and nonproliferating human mammary epithelial cells after exposure to gamma-rays or iron ions

    Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V.; Barcellos-Hoff, Mary Helen; Parvin, Bahram; Rydberg, Bjorn

    2010-12-22

    To investigate {gamma}-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionizing radiation under different cell culture conditions. HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced {gamma}-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both {gamma}-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after {gamma}-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. Conclusions: The disappearance of radiation induced {gamma}-H2AX and 53BP1 foci in HMEC have different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent {gamma}-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodeling.

  5. Peculiarities of death and regeneration of pancreas cells at early stages of alcoholic chronic pancreatitis

    N. Y. Oshmyanska

    2014-10-01

    Full Text Available The study has been conducted on 39 white laboratory male rats which formed 5 groups: experimental occlusal pancreatitis caused by ligation of the main pancreatic duct (n = 6, experimental alcoholic pancreatitis caused by oral intake of alcohol (n = 6, against the background of an excess (n = 6 or deficiency (n = 6 of nitric oxide, as well as a control group (n = 15. This study provides the detailed description of the processes of death and regeneration in the islets of Langerhans, typical for early stages of the disease. The expression of the proliferation markers (PCNA and Neurogenin-3 has been analyzed using histological and immunohistochemical methods along with the changes of morphological structure, that led to initiation of the alcoholic chronic pancreatitis against the background of imbalance in NO-ergic regulatory system caused by an excess or deficiency of nitric oxide. It has been found that ligation of the pancreatic duct in the experiment reconstructedthe circumstances of chronic pancreatitis in rats and caused the activation of fibrosis and regeneration of endocrine and exocrine tissue. Compared with occlusion, the effects of ethanol on the pancreas also manifested in the activation of fibrogenesis, but the structural changes were negligible and could unlikely lead to advanced fibrosis and chronic pancreatitis in the future. On the other side, an imbalance of NO-system in alcoholic rats leads to disruption of the zymogens secretion in the acinar cells and dilatation of the capillary network in islets. Uneven distribution of zymogen granules may lead to their intracellular activation as evidenced by the deformation of acini and focal apoptosis without inflammatory response. In this case, violation of the key adaptive responses in the pancreas makes it more vulnerable to the effects of ethanol, its metabolites, and other environmental factors, and may increase the probability of chronic pancreatitis development. At the same time

  6. Dynamic Contrast Enhanced MRI in Patients With Advanced Breast or Pancreatic Cancer With Metastases to the Liver or Lung

    2014-05-28

    Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Liver Metastases; Lung Metastases; Recurrent Breast Cancer; Recurrent Pancreatic Cancer; Stage IV Breast Cancer; Stage IV Pancreatic Cancer

  7. Modulation of carbohydrate residues in regenerative nodules and neoplasms of canine and feline pancreas.

    Skutelsky, E.; Alroy, J.; Ucci, A. A.; Carpenter, J.L.; Moore, F. M.

    1987-01-01

    The glycoconjugates of regenerative acinar cells, acinic cell carcinomas, islet cell tumors, and normal canine and feline pancreas were studied. The authors used biotinylated lectins as probes and avidin-biotin-peroxidase complex as visualant to identify and to compare the distribution of carbohydrate residues on paraffin sections from 74 cases. The findings demonstrate a difference in the staining pattern between normal acinar, islet, and ductal cells in each species and small differences in...

  8. Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells.

    Stegajev, Vasili; Kouri, Vesa-Petteri; Salem, Abdelhakim; Rozov, Stanislav; Stark, Holger; Nordström, Dan C E; Konttinen, Yrjö T

    2014-12-01

    Apoptosis is involved in the pathogenesis of Sjögren's syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H₄R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H₄R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H₄R agonist HST-10. Expression and internalization of H₄R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H₄R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H₄R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H₄R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H₄R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H₄R activation on apoptosis of human salivary gland cells. Diminished H₄R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular. PMID:25239604

  9. Non-small Cell Lung Cancer with Concomitant EGFR, KRAS, and ALK Mutation: Clinicopathologic Features of 12 Cases

    Lee, Taebum; Lee, Boram; Choi, Yoon-La; Han, Joungho; Ahn, Myung-Ju; Um, Sang-Won

    2016-01-01

    Background: Although epidermal growth factor receptor (EGFR), v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase (ALK) mutations in non-small cell lung cancer (NSCLC) were thought to be mutually exclusive, some tumors harbor concomitant mutations. Discovering a driver mutation on the basis of morphologic features and therapeutic responses with mutation analysis can be used to understand pathogenesis and predict resistance in targeted therapy. Methods: In 6,637 patients with NSCLC, 12 patients who had concomitant mutations were selected and clinicopathologic features were reviewed. Clinical characteristics included sex, age, smoking history, previous treatment, and targeted therapy with response and disease-free survival. Histologic features included dominant patterns, nuclear and cytoplasmic features. Results: All patients were diagnosed with adenocarcinoma and had an EGFR mutation. Six patients had concomitant KRAS mutations and the other six had KRAS mutations. Five of six EGFR-KRAS mutation patients showed papillary and acinar histologic patterns with hobnail cells. Three of six received EGFR tyrosine kinase inhibitor (TKI) and showed partial response for 7–29 months. All six EGFR-ALK mutation patients showed solid or cribriform patterns and three had signet ring cells. Five of six EGFR-ALK mutation patients received EGFR TKI and/or ALK inhibitor and four showed partial response or stable disease, except for one patient who had acquired an EGFR mutation. Conclusions: EGFR and ALK mutations play an important role as driver mutations in double mutated NSCLC, and morphologic analysis can be used to predict treatment response. PMID:27086595

  10. Intratumoral distribution of EGFR-amplified and EGFR-mutated cells in pulmonary adenocarcinoma.

    Soma, Shingo; Tsuta, Koji; Takano, Toshimi; Hatanaka, Yutaka; Yoshida, Akihiko; Suzuki, Kenji; Asamura, Hisao; Tsuda, Hitoshi

    2014-03-01

    Alterations in the epidermal growth factor receptor (EGFR) gene are associated with carcinogenesis in non-small cell lung cancer. However, the intratumoral distribution of these abnormalities has not been elucidated. This study included patients with surgically resected lung adenocarcinoma. The predominant histological growth pattern was determined. Chromogenic in situ hybridization (CISH) and EGFR-mutation specific-antibodies were used for analysis of changes in gene copy number and EGFR mutations, respectively. EGFR mutation detected immunohistochemistry (IHC) and amplification were identified in 31 (53%) and 30 (52%) cases, respectively. The predominant growth patterns in the 58 tumors evaluated were papillary (28, 48%), lepidic (8, 14%), acinar (15, 26%), and solid (7, 12%). EGFR mutations were the least common in cases with a solid predominant pattern. The incidence of EGFR amplification did not differ among predominant patterns. Analyzing each histological subtype, no differences were noted between the prevalence of EGFR-IHC positive and CISH-positive rates. In the analysis of EGFR amplification, CISH-positive status was more prevalent in IHC-positive cases than in IHC-negative cases. All 19 cases that were both IHC and CISH positive were analyzed. In 17 cases (90%), the IHC-positive area was equal to or larger than the CISH-positive area. Among the histological subtypes of lung adenocarcinoma, the solid predominant subtype was distinguishable by its infrequent EGFR mutations. EGFR gene mutations preceded changes in oncogenic drive, more so than did EGFR gene number alterations during the developmental process of lung adenocarcinoma. PMID:24355440

  11. Emodin protects from deoxycholic acid-induced AR42J cell damage%大黄素对脱氧胆酸诱导的AR42J细胞损伤的调节

    张桂信; 陈海龙; 纪军; 吴圆圆; 尚东; 张利

    2012-01-01

    AIM: To investigate whether emodin exerts a protect effect against deoxycholic acid (DCA)-induced cell damage in rat pancreatic acinar cell line AR42J.METHODS: AR42J cells were divided into five groups: normal control cells, cells treated with 0.4 or 0.8 mmol/L DCA, and those treated with 0.4 or 0.8 mmol/L DCA plus emodin (20 mg/L). The rates of apoptosis and necrosis were detected by flow cytometry and AV/PI double staining. The activity of amylase in the medium and cytoplasm was determined.RESULTS: DCA at a dose of 0.4 mmol/L mainly induced the apoptosis of AR42J cells, while 0.8 mmol/L of DCA induced the necrosis of AR42J cells. Emodin significantly reduced DCA-induced late apoptosis (27.9% vs 34.1%) and necrosis (38.1% vs 45.4%), but did not significantly change the activity of amylase in the medium and cytoplasm of AR42J cells.CONCLUSION: Emodin has some protective effects against DCA-induced AR42J cell damage, but does not influence amylase synthesis and secretion by acinar cells.%目的:研究大黄素(Emodin)对脱氧胆酸(deoxycholic acid,DCA)诱导的胰腺腺泡细胞损伤的调节作用.方法:以大鼠AR42J胰腺腺泡系为研究对象,分为5组,分别为CON组、0.4 mmol/L DCA刺激组、0.4 mmol/LDCA刺激+Emodin(20 mg/L)干预组、0.8 mmol/L DCA刺激组、0.8 mmoi/LDCA刺激+Emodin(20 mg/L)干预组.利用流式细胞术AV/PI双染法检测各组细胞凋亡/坏死率,提取细胞浆蛋白,并分别检测各组细胞培养液上清与细胞浆淀粉酶的活性.结果:0.4 mmol/L DCA诱导AR42J胰腺腺泡细胞损伤以凋亡为主,0.8 mmol/L DCA诱导AR42J细胞损伤则以坏死为主.20 μmol/LEmodin可以明显减少0.4 mmol/L DCA诱导的AR42J胰腺腺泡细胞的晚期凋亡(27.9% vs34.1%),并明显降低0.8 mmol/L DCA诱导的AR42J细胞坏死(38.1% vs 45.4%).大黄素对DCA诱导下AR42J胰腺腺泡细胞培养液上清及细胞浆淀粉酶活性均没有明显变化.结论:Emodin对胆汁酸诱导的胰腺腺泡细胞损伤

  12. Gemcitabine Hydrochloride With or Without Erlotinib Hydrochloride Followed By the Same Chemotherapy Regimen With or Without Radiation Therapy and Capecitabine or Fluorouracil in Treating Patients With Pancreatic Cancer That Has Been Removed By Surgery

    2016-08-29

    Pancreatic Acinar Cell Carcinoma; Pancreatic Ductal Adenocarcinoma; Pancreatic Intraductal Papillary-Mucinous Neoplasm; Stage IA Pancreatic Cancer; Stage IB Pancreatic Cancer; Stage IIA Pancreatic Cancer; Stage IIB Pancreatic Cancer

  13. CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium.

    Liqun Zhang

    2009-07-01

    Full Text Available Dysfunction of CFTR in cystic fibrosis (CF airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL, mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE was used to test whether a human parainfluenza virus (PIV vector engineered to express CFTR (PIVCFTR could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl(- and Na(+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%-65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients

  14. Cell counting.

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  15. T Cells

    T Cells - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign ... Is MS? Definition of MS T Cells T Cells Share Smaller Text Larger Text Print In this ...

  16. First description of an acinic cell carcinoma of the breast in a BRCA1 mutation carrier: a case report

    Acinic cell carcinoma (ACC) is a rare malignant epithelial neoplasm characterized by the presence of malignant tubular acinar exocrine gland structures. Diagnosis is generally made in salivary glands and in the pancreas. ACC of the breast has been reported in few cases only. Carriers of inherited mutations in the BRCA1 gene are prone to the development of breast cancer, mainly invasive ductal or medullary type carcinomas. We describe for the first time a BRCA1 mutation carrier with a diagnosis of ACC of the breast. The patient developed an invasive ductal carcinoma (IDC) at the age of 40 years and an ACC in the contralateral breast at 44 years. Immunohistochemical examination of the ACC revealed a triple negative status (i.e., negativity for estrogen receptor, progesterone receptor and HER2 protein) and positivity for p53. Using a combination of loss of heterozygosity (LOH) and sequencing analyses, the loss of the wild-type BRCA1 allele was detected in both the ACC and the IDC. In addition, two different somatic TP53 mutations, one in the ACC only and another one in the IDC only, were observed. Both the immunohistochemical and molecular features observed in the ACC are typical of BRCA1-associated breast cancers and suggest an involvement of the patient’s germline mutation in the disease. The occurrence of rare histological types of breast cancers, including malignant phyllodes tumor, atypical medullary carcinoma and metaplastic carcinoma, in BRCA1 mutation carriers has been already reported. Our findings further broaden the spectrum of BRCA1-associated breast malignancies

  17. Dimethyl fumarate protects pancreatic islet cells and non-endocrine tissue in L-arginine-induced chronic pancreatitis.

    Lourdes Robles

    Full Text Available Chronic pancreatitis (CP is a progressive disorder resulting in the destruction and fibrosis of the pancreatic parenchyma which ultimately leads to impairment of the endocrine and exocrine functions. Dimethyl Fumarate (DMF was recently approved by FDA for treatment of patients with multiple sclerosis. DMF's unique anti-oxidant and anti-inflammatory properties make it an interesting drug to test on other inflammatory conditions. This study was undertaken to determine the effects of DMF on islet cells and non-endocrine tissue in a rodent model of L-Arginine-induced CP.Male Wistar rats fed daily DMF (25 mg/kg or vehicle by oral gavage were given 5 IP injections of L-Arginine (250 mg/100 g × 2, 1 hr apart. Rats were assessed with weights and intra-peritoneal glucose tolerance tests (IPGTT, 2 g/kg. Islets were isolated and assessed for islet mass and viability with flow cytometry. Non-endocrine tissue was assessed for histology, myeloperoxidase (MPO, and lipid peroxidation level (MDA. In vitro assessments included determination of heme oxygenase (HO-1 protein expression by Western blot.Weight gain was significantly reduced in untreated CP group at 6 weeks. IPGTT revealed significant impairment in untreated CP group and its restoration with DMF therapy (P <0.05. Untreated CP rats had pancreatic atrophy, severe acinar architectural damage, edema, and fatty infiltration as well as elevated MDA and MPO levels, which were significantly improved by DMF treatment. After islet isolation, the volume of non-endocrine tissue was significantly smaller in untreated CP group. Although islet counts were similar in the two groups, islet viability was significantly reduced in untreated CP group and improved with DMF treatment. In vitro incubation of human pancreatic tissue with DMF significantly increased HO-1 expression.Administration of DMF attenuated L-Arginine-induced CP and islet function in rats. DMF treatment could be a possible strategy to improve clinical

  18. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic β-cell mass

    Highlights: → We screened G-protein coupled receptors for imaging pancreatic. → Database mining and immunohistochemistry identified GPCRs enriched in β-cells. → In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. → GPCR candidates for imaging of β-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic β-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet β-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 ∼ GLP-1R > mGluR5. Favorable islet selectivity and biodistribution characteristics suggest several GPCRs as potential

  19. Galvanic Cells

    Young, I. G.

    1973-01-01

    Many standard physical chemistry textbooks contain ambiguities which lead to confusion about standard electrode potentials, calculating cell voltages, and writing reactions for galvanic cells. This article shows how standard electrode potentials can be used to calculate cell voltages and deduce cell reactions. (Author/RH)

  20. Stem Cells

    Madhukar Thakur

    2009-01-01

    Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in ...

  1. Cell Wall

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  2. Homeostasis of the apical plasma membrane during regulated exocytosis in the salivary glands of live rodents

    Masedunskas, Andrius; Sramkova, Monika; Weigert, Roberto

    2011-01-01

    In exocrine organs such as the salivary glands, fluids and proteins are secreted into ductal structures by distinct mechanisms that are tightly coupled. In the acinar cells, the major secretory units of the salivary glands, fluids are secreted into the acinar canaliculi through paracellular and intracellular transport, whereas proteins are stored in large granules that undergo exocytosis and fuse with the apical plasma membranes releasing their content into the canaliculi. Both secretory proc...

  3. Cell Motility

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  4. [The salivary glands of Philodryas patagoniensis Girard, 1857 (Serpentes, Colubridae). A morphological, morphometric and histological study].

    Lopes, R A; Contrera, M G; da Costa, J R; Petenusci, S O; Lima-Verde, J S

    1982-01-01

    Morphological, morphometrical and histochemical studies of the cell types in the salivary glands of Philodryas patagoniensis have been performed. It is concluded: 1) the acini of supra, infralabial and premaxillary glands are formed by mucous and mucoserous cells; the Duvernoy's gland by seromucous cells; 2) mucous cells show neutral and sulphated mucosubstances and sialic acid; mucoserous cells show neutral mucosubstance, sialic acid and protein radicals; seromucous cells of Duvernoy's gland show neutral mucosubstance and protein radicals. The acinar area, height of tubule and duct cells, and nuclear volume of acinar, tubule and duct cells were evaluated morphometrically. PMID:7181506

  5. Histopathology and pathogenesis of caerulein-, duct ligation-, and arginine-induced acute pancreatitis in Sprague-Dawley rats and C57BL6 mice.

    Zhang, Jun; Rouse, Rodney L

    2014-09-01

    Three classical rodent models of acute pancreatitis were created in an effort to identify potential pre-clinical models of drug-induced pancreatitis (DIP) and candidate non-invasive biomarkers for improved detection of DIP. Study objectives included designing a lexicon to minimize bias by capturing normal variation and spontaneous and injury-induced changes while maintaining the ability to statistically differentiate degrees of change, defining morphologic anchors for novel pancreatic injury biomarkers, and improved understanding of mechanisms responsible for pancreatitis. Models were created in male Sprague-Dawley rats and C57BL6 mice through: 1) administration of the cholecystokinin analog, caerulein; 2) administration of arginine; 3) surgical ligation of the pancreatic duct. Nine morphologically detectable processes were used in the lexicon; acinar cell hypertrophy; acinar cell autophagy; acinar cell apoptosis; acinar cell necrosis; vascular injury; interstitial edema, inflammation and hemorrhage; fat necrosis; ductal changes; acinar cell atrophy. Criteria were defined for scoring levels (0 = absent, 1 = mild, 2 = moderate, 3 = severe) for each lexicon component. Consistent with previous studies, histopathology scores were significant greater in rats compared to mice at baseline and after treatment. The histopathology scores in caerulein and ligation-treated rats and mice were significantly greater than those of arginine-treated rats and mice. The present study supports a multifaceted pathogenesis for acute pancreatitis in which intra-acinar trypsinogen activation, damage to acinar cells, fat cells, and vascular cells as well as activation/degranulation of mast cells and activated macrophages all contribute to the initiation and/or progression of acute inflammation of the exocrine pancreas. PMID:24585404

  6. Solar cells

    Cuquel, A.; Roussel, M.

    The physical and electronic characteristics of solar cells are discussed in terms of space applications. The principles underlying the photovoltaic effect are reviewed, including an analytic model for predicting the performance of individual cells and arrays of cells. Attention is given to the effects of electromagnetic and ionizing radiation, micrometeors, thermal and mechanical stresses, pollution and degassing encountered in space. The responses of different types of solar cells to the various performance-degrading agents are examined, with emphasis on techniques for quality assurance in the manufacture and mounting of Si cells.

  7. Expression and Localization of α-amylase in the Submandibular and Sublingual Glands of Mice

    In the major salivary glands of mice, acinar cells in the parotid gland (PG) are known to be the main site for the production of the digestive enzyme α-amylase, whereas α-amylase production in the submandibular gland (SMG) and sublingual gland (SLG), as well as the cell types responsible for α-amylase production, has been less firmly established. To clarify this issue, we examined the expression and localization of both the mRNA and protein of α-amylase in the major salivary glands of male and female mice by quantitative and histochemical methods. α-amylase mRNA levels were higher in the order of PG, SMG, and SLG. No sexual difference was observed in α-amylase mRNA levels in the PG and SLG, whereas α-amylase mRNA levels in the female SMG were approximately 30% those in the male SMG. Using in situ hybridization and immunohistochemistry, signals for α-amylase mRNA and protein were found to be strongly positive in acinar cells of the PG, serous demilune cells of the SLG, and granular convoluted tubule (GCT) cells of the male SMG, weakly positive in seromucous acinar cells of the male and female SMG, and negative in mucous acinar cells of the SLG. These results clarified that α-amylase is produced mainly by GCT cells and partly by acinar cells in the SMG, whereas it is produced exclusively by serous demilune cells in the SLG of mice

  8. Stem Cells

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  9. Early indicators of exocrine pancreas carcinogenesis produced by non-genotoxic agents.

    Woutersen, R A; van Garderen-Hoetmer, A; Lamers, C B; Scherer, E

    1991-06-01

    In the past 40 years the incidence of pancreatic cancer in many Western countries had increased. Since no single factor responsible for the development of pancreatic cancer has been identified, it is believed that non-genotoxic factors may play an important role in the pathogenesis of this highly fatal form of cancer. Focal abnormalities of acinar cells, referred to as atypical acinar cell foci or nodules, occur spontaneously in rats and some other species. Their incidence increases with age from zero at birth to about 75% in 2-year-old rats. These spontaneous lesions have a phenotype that cannot be distinguished from the putative, atypical preneoplastic, acinar cell foci induced in rat pancreas by the carcinogen azaserine. Unsaturated fat (corn oil) has been found to increase the incidence of atypical acinar cell nodules and adenomas in the pancreas of non-carcinogen-treated rats without influencing the weight of the pancreas. Furthermore, unsaturated fat has a specific promoting effect on the growth potential of atypical acinar cell foci and nodules induced in rat pancreas by azaserine, resulting in an increase in the number and size of these lesions. Rats fed raw soya flour or trypsin inhibitors develop an enlarged pancreas as a result of hypertrophy and hyperplasia. They also develop acidophilic atypical acinar cell foci and nodules, adenomas and adenocarcinomas after being fed full-fat raw soya flour for 2 years. It may be concluded from the observations in rat pancreas that non-genotoxic compounds or conditions that enhance pancreatic growth may be classified as non-genotoxic pancreatic tumour promoters. The observations with corn oil, however, indicate that there may be non-genotoxic compounds that specifically enhance growth of spontaneous initiated atypical acinar cell foci without causing hyperplasia of the pancreas. The possible mechanisms whereby unsaturated fat and trypsin inhibitors exert their effects on exocrine pancreatic carcinogenesis are

  10. Types of Stem Cells

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...