WorldWideScience

Sample records for acinar cells implication

  1. Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis.

    Mfopou, Josué K; Houbracken, Isabelle; Wauters, Elke; Mathijs, Iris; Song, Imane; Himpe, Eddy; Baldan, Jonathan; Heimberg, Harry; Bouwens, Luc

    2016-06-01

    The regenerative medicine field is expanding with great successes in laboratory and preclinical settings. Pancreatic acinar cells in diabetic mice were recently converted into β-cells by treatment with ciliary neurotrophic factor (CNTF) and epidermal growth factor (EGF). This suggests that human acinar cells might become a cornerstone for diabetes cell therapy in the future, if they can also be converted into glucose-responsive insulin-producing cells. Presently, studying pancreatic acinar cell biology in vitro is limited by their high plasticity, as they rapidly lose their phenotype and spontaneously transdifferentiate to a duct-like phenotype in culture. We questioned whether human pancreatic acinar cell phenotype could be preserved in vitro by physico-chemical manipulations and whether this could be valuable in the study of β-cell neogenesis. We found that culture at low temperature (4°C) resulted in the maintenance of morphological and molecular acinar cell characteristics. Specifically, chilled acinar cells did not form the spherical clusters observed in controls (culture at 37°C), and they maintained high levels of acinar-specific transcripts and proteins. Five-day chilled acinar cells still transdifferentiated into duct-like cells upon transfer to 37°C. Moreover, adenoviral-mediated gene transfer evidenced an active Amylase promoter in the 7-day chilled acinar cells, and transduction performed in chilled conditions improved acinar cell labelling. Together, our findings indicate the maintenance of human pancreatic acinar cell phenotype at low temperature and the possibility to efficiently label acinar cells, which opens new perspectives for the study of human acinar-to-β-cell transdifferentiation. PMID:26987985

  2. Acinar Cell Carcinoma of the Pancreas

    Hua Li; Qiang Li

    2008-01-01

    Acinar cell carcinoma of the pancreas is a rare tumor which is defined as a carcinoma that exhibits pancreatic enzyme production by neoplastic cells. This review includes re-cent developments in our understanding of the epidemiology and pathogenesis of ACC, imaging and pathological diagnosis and ap-proaches to treatment with reference to the literature.

  3. Papillocystic Variant of Acinar Cell Pancreatic Carcinoma

    Jasim Radhi

    2010-01-01

    Full Text Available Acinar cell pancreatic carcinoma is a rare solid malignant neoplasm. Recent review of the literature showed occasional cases with papillary or papillocystic growth patterns, ranging from 2 to 5 cm in diameter. We report a large 10 cm pancreatic tumor with papillocystic pathology features involving the pancreatic head. The growth pattern of these tumors could be mistaken for intraductal papillary mucinous tumors or other pancreatic cystic neoplasms.

  4. Inflammatory role of the acinar cells during acute pancreatitis

    Isabel; De; Dios

    2010-01-01

    Pancreatic acinar cells are secretory cells whose main function is to synthesize, store and f inally release digestive enzymes into the duodenum. However, in response to noxious stimuli, acinar cells behave like real inflammatory cells because of their ability to activate signalling transduction pathways involved in the expression of inflammatory mediators. Mediated by the kinase cascade, activation of Nuclear factor-κB, Activating factor-1 and Signal transducers and activators of transcription transcription factors has been demonstrated in acinar cells, resulting in overexpression of inflammatory genes. In turn, kinase activity is down-regulated by protein phosphatases and the f inal balance between kinase and phosphatase activity will determine the capability of the acinar cells to produce inflammatory factors. The kinase/ phosphatase pair is a redox-sensitive system in which kinase activation overwhelms phosphatase activity under oxidant conditions. Thus, the oxidative stress developed within acinar cells at early stages of acute pancreatitis triggers the activation of signalling pathways involved in the up-regulation of cytokines, chemokines and adhesion molecules. In this way, acinar cells trigger the release of the f irst inflammatory signals which can mediate the activation and recruitment of circulating inflammatorycells into the injured pancreas. Accordingly, the role of acinar cells as promoters of the inflammatory response in acute pancreatitis may be considered. This concept leads to amplifying the focus from leukocyte to acinar cells themselves, to explain the local inflammation in early pancreatitis.

  5. Acinar Cell Cystadenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    Gumus, Mehmet; Ugras, Serdar; Algin, Oktay; Gundogdu, Haldun

    2011-01-01

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT,...

  6. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun [Ataturk Training and Research Hospital, Ankara (Turkmenistan); Ugras, Serdar [Selcuk University, Selcuklu Medical Faculty, Konya (Turkmenistan)

    2011-02-15

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  7. TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells.

    Liu, Jun; Akanuma, Naoki; Liu, Chengyang; Naji, Ali; Halff, Glenn A; Washburn, William K; Sun, Luzhe; Wang, Pei

    2016-01-01

    Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this system, well-known mouse ADM inducers did not promote ADM in human cells. In contrast, TGF-β1 efficiently converted human acinar cells to duct-like cells (AD) in a SMAD-dependent manner, highlighting fundamental differences between the species. Functionally, AD cells gained transient proliferative capacity. Furthermore, oncogenic KRAS did not induce acinar cell proliferation, but did sustain the proliferation of AD cells, suggesting that oncogenic KRAS requires ADM-associated-changes to promote PDAC initiation. This ADM model provides a novel platform to explore the mechanisms involved in the development of human pancreatic diseases. PMID:27485764

  8. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology

    O.H. Petersen

    2009-01-01

    Full Text Available The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

  9. Effects of Benzodiazepines on Acinar and Myoepithelial Cells

    Mattioli, Tatiana M. F.; Alanis, Luciana R. A.; Sapelli, Silvana da Silva; de Lima, Antonio A. S.; de Noronha, Lucia; Rosa, Edvaldo A. R.; Althobaiti, Yusuf S.; Almalki, Atiah H.; Sari, Youssef; Ignacio, Sergio A.; Johann, Aline C. B. R.; Gregio, Ana M. T.

    2016-01-01

    Background: Benzodiazepines (BZDs), the most commonly prescribed psychotropic drugs with anxiolytic action, may cause hyposalivation. It has been previously shown that BZDs can cause hypertrophy and decrease the acini cell number. In this study, we investigated the effects of BZDs and pilocarpine on rat parotid glands, specifically on acinar, ductal, and myoepithelial cells. Methods: Ninety male Wistar rats were divided into nine groups. Control groups received a saline solution for 30 days (C30) and 60 days (C60), and pilocarpine (PILO) for 60 days. Experimental groups received lorazepam (L30) and midazolam (M30) for 30 days. Another group (LS60 or MS60) received lorazepam or midazolam for 30 days, respectively, and saline for additional 30 days. Finally, other groups (LP60 or MP60) received either lorazepam or midazolam for 30 days, respectively, and pilocarpine for additional 30 days. The expression of calponin in myoepithelial cells and the proliferating cell nuclear antigen (PCNA) in acinar and ductal cells were evaluated. Results: Animals treated with lorazepam showed an increase in the number of positive staining cells for calponin as compared to control animals (p < 0.05). Midazolam administered with pilocarpine (MP60) induced an increase in the proliferation of acinar and ductal cells and a decrease in the positive staining cells for calponin as compared to midazolam administered with saline (MS60). Conclusion: We found that myoepithelial cells might be more sensitive to the effects of BZD than acinar and ductal cells in rat parotid glands.

  10. ANF and exocrine pancreas: ultrastructural autoradiographic localization in acinar cells

    Atrial natriuretic factor (ANF) binding sites have been recently demonstrated to be present in exocrine pancreas by an in vitro autoradiographic approach. An autoradiographic study was carried out to identify the exocrine cells containing ANF binding sites and to monitor the fate of 125I-labeled ANF in acinar cells after removal of pancreas at specific time intervals (1-30 min) after intravenous administration. At the light microscopic level, silver grains were found over acinar and centroacinar cells. Concomitant injection of an excess of unlabeled ANF inhibited the binding of labeled peptide by approximately 60%. At the electron microscopic level, the time-course study in acinar cells has revealed that of the cell compartments examined, plasma membrane, Golgi apparatus, mitochondria, and zymogen granules, the nucleus had distinct labeling patterns. Plasma membrane was maximally labeled 1 and 2 min after injection with 125I-ANF. Golgi apparatus was significantly labeled from 2 to 30 min after injection, mitochondria from 1 to 30 min after injection, zymogen granules at 1 and 15 min, and the nucleus only at 30 min. The lysosomal compartment was not labeled during the 30-min observation period. These results suggest that after binding to the plasma membrane, ANF is rapidly internalized and distributed to the intracellular organelles as a function of time. Labeling of the zymogen granules suggests that they may bind ANF and that the atrial peptide may be secreted by acinar cells. The significance of association of radioactivity with mitochondria and nuclei remains to be elucidated but may represent intracellular sites of action of ANF complementary to those on plasma membranes

  11. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  12. Recurrent Pancreatitis Due to a Cystic Pancreatic Tumor: A Rare Presentation of Acinar Cell Carcinoma

    Raimondo M; Krishna M; Nguyen J; Scolapio J; Aqel B

    2004-01-01

    CONTEXT: Acinar cell carcinoma is an uncommon malignancy of the pancreas. It has characteristic histomorphology, immunohistochemistry profile, and clinicopathological behavior. CASE REPORT: We report a rare case of recurrent pancreatitis secondary to acinar cell carcinoma of the pancreas. We describe the endoscopic ultrasound characteristic, treatment and the surgical outcome. CONCLUSIONS: Acinar cell carcinoma should be considered in the differential diagnosis of cystic pancreatic tumors pre...

  13. Recurrent Pancreatitis Due to a Cystic Pancreatic Tumor: A Rare Presentation of Acinar Cell Carcinoma

    Raimondo M

    2004-05-01

    Full Text Available CONTEXT: Acinar cell carcinoma is an uncommon malignancy of the pancreas. It has characteristic histomorphology, immunohistochemistry profile, and clinicopathological behavior. CASE REPORT: We report a rare case of recurrent pancreatitis secondary to acinar cell carcinoma of the pancreas. We describe the endoscopic ultrasound characteristic, treatment and the surgical outcome. CONCLUSIONS: Acinar cell carcinoma should be considered in the differential diagnosis of cystic pancreatic tumors presenting with recurrent pancreatitis.

  14. Functional somatostatin receptors on a rat pancreatic acinar cell line

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125I-[Tyr11]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/106 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125I-[Tyr11]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein Ni to inhibit adenylate cyclase

  15. Nitric oxide-induced signalling in rat lacrimal acinar cells

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    using the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2). We initiated investigations by adding NO from an external source by means of the NO-donor, S-nitroso-N-acetyl-penicillamine (SNAP). Cellular concentrations of cyclic guanosine 5'-phosphate (cGMP) ([cGMP]) were measured by...... radioimmunoassay (RIA), and we found that SNAP induced a fast increase in the [cGMP], amounting to 350% of the [cGMP] in resting cells. Moreover, addition of SNAP and elevating [cGMP] in fura-2 loaded lacrimal acinar cells, resulted in a cGMP-dependent protein kinase-mediated release of Ca2+ from intracellular......-adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...

  16. Effects of hypothyroidism on the ultrastructure of rat pancreatic acinar cells: a stereological analysis

    Blanco-Molina, A.; González-Reyes, J. A.; Torre-Cisneros, J; López-Miranda, J.; Nicolás, M.; Pérez-Jiménez, F.

    1991-01-01

    The morphological and stereological characteristics of the exocrine pancreas subcellular organelles from healthy and thyroidectomized rats have been studied. The acinar tissue from hypothyroid rats showed an interstitial edema and evidence of degenerative processes. Stereological parameters of zymogen granules were significantly reduced in thyroidectomized rats. The hypothyroidism induced degenerative changes in the pancreatic acinar cells as well as a decr...

  17. KRAS Mutations in Canine and Feline Pancreatic Acinar Cell Carcinoma.

    Crozier, C; Wood, G A; Foster, R A; Stasi, S; Liu, J H W; Bartlett, J M S; Coomber, B L; Sabine, V S

    2016-07-01

    Companion animals may serve as valuable models for studying human cancers. Although KRAS is the most commonly mutated gene in human ductal pancreatic cancers (57%), with mutations frequently occurring at codons 12, 13 and 61, human pancreatic acinar cell carcinomas (ACCs) lack activating KRAS mutations. In the present study, 32 pancreatic ACC samples obtained from 14 dogs and 18 cats, including seven metastases, were analyzed for six common activating KRAS mutations located in codons 12 (n = 5) and 13 (n = 1) using Sequenom MassARRAY. No KRAS mutations were found, suggesting that, similar to human pancreatic ACC, KRAS mutations do not play a critical role in feline or canine pancreatic ACC. Due to the similarity of the clinical disease in dogs and cats to that of man, this study confirms that companion animals offer potential as a suitable model for investigating this rare subtype of pancreatic carcinoma. PMID:27290644

  18. Acinar Cell Carcinoma of the Pancreas: A Possible Role of S-1 as Chemotherapy for Acinar Cell Carcinoma. A Case Report

    Tameyoshi Yamamoto

    2012-01-01

    Full Text Available Context Acinar cell carcinoma of the pancreas is a rare malignancy, accounting for 1-2% of pancreatic exocrine malignancies. This rarity makes it difficult to standardize a protocol of treatment for acinar cell carcinoma. Case report A 71-year-old male without any particular past history was referred to our institute with abdominal distention and mild liver dysfunction. Computed tomography (CT revealed a cystic lesion with a diameter of 3.5 cm, which originated from the neck of pancreas and had solid nodules inside. Several nodules were demonstrated surrounding the cystic tumor. Laparotomy and histological study demonstrated peritoneal dissemination of acinar cell carcinoma. The patient was treated with S-1 monotherapy (80 mg/m2 for four weeks with a two-week interval as one cycle. After one cycle of S-1 monotherapy, CT demonstrated remarkable shrinkage of the main tumor and disappearance of the nodules on the peritoneum. The patient underwent a radical distal pancreatectomy. The patient was then treated with 16 cycles of S-1 monotherapy after the radical pancreatectomy and remains without any recurrence of the disease two years later. Conclusion Initially inoperable acinar cell carcinoma was treated by monotherapy using S-1, resulting in curative operation and two years disease free survival post operation. S-1 might be more effective on acinar cell carcinoma, rather than gemcitabine

  19. Alteration of chaperonin60 and pancreatic enzyme in pancreatic acinar cell under pathological condition

    Li, Yong-Yu; Bendayan, Moise

    2005-01-01

    AIM: To investigate the changes of chaperonin60 (Cpn60) and pancreatic enzymes in pancreatic acinar cells, and to explore their roles in the development of experimental diabetes and acute pancreatitis (AP).

  20. Regeneration of parotid acinar cells after high radiation doses. A morphological study in rat

    The acute and late effects of fractionated irradiation on rat parotid gland acinar cells were studied by light and electron microscopy. At 10 days after the last irradiation session (6 Gy or 9 Gy daily during five consecutive days) no effects were seen. At 180 days, minor loss of acini was detectable after a total dose of 30 Gy. After 45 Gy a massive acinar loss was seen at that time; the number of acini had diminished and minor duct-like structures and scattered amounts of fibrous stroma dominated the slides. The remaining acini were disorganized and usually larger compared with the control side and to non-irradiated animals. The acinar cells appeared larger than in the controls. The custs were better preserved but the intercalated ducts often seemed to be larger than normal. We suggest that this phenomenon indicates a remaining capacity of the parotid gland to regenerate acinar cells even after high radiation doses. (orig.)

  1. Analysis and Optimization of Nutritional Set-up for Murine Pancreatic Acinar Cells.

    Kurup S

    2002-01-01

    Full Text Available CONTEXT: Pancreatic acinar cell cultivation poses a serious problem due to limitations in the in vitro survival time despite variations of dissociation protocols, culture media and nutrient supplements. OBJECTIVE: To establish a long term culture of murine pancreatic acinar cells which retain their viability, monolayer formation and responsiveness to secretagogues. In order to investigate the mechanism of the short-life of acinar cells studied in vitro, we studied their survival under the influence of different supplements on nutrient media. INTERVENTIONS: Dissociated pancreatic acini were prepared from BALB/c mice pancreata by collagenase digestion supplemented with bovine serum albumin fraction V and soybean trypsin inhibitor. A nutrient set-up was designed for their long term survival in vitro. RESULTS: It was observed that mouse pancreatic acinar cells dissociated in presence of bovine serum albumin fraction V and soybean trypsin inhibitor result in 95% viability. Further cultivation of these acinar cells in Waymouth's MB 752/1 medium supplemented with 10% fetal calf serum (v/v, soybean trypsin inhibitor, bovine serum albumin, dexamethasone, and epidermal growth factor results in their survival for more than 6 days in culture with 85% viability, retention of the secretagogue responsiveness and formation of a monolayer without any extracellular matrix coating. CONCLUSIONS: Our study clearly demonstrates that the addition of soybean trypsin inhibitor to culture medium reduces zymogen granule fragility and acinar cell death, thus increasing their viability for sufficiently long periods. The present study offers an excellent, in vitro model for the investigation of exocrine dysfunction in response to acinar cell injury.

  2. A computer-based automated algorithm for assessing acinar cell loss after experimental pancreatitis.

    John F Eisses

    Full Text Available The change in exocrine mass is an important parameter to follow in experimental models of pancreatic injury and regeneration. However, at present, the quantitative assessment of exocrine content by histology is tedious and operator-dependent, requiring manual assessment of acinar area on serial pancreatic sections. In this study, we utilized a novel computer-generated learning algorithm to construct an accurate and rapid method of quantifying acinar content. The algorithm works by learning differences in pixel characteristics from input examples provided by human experts. HE-stained pancreatic sections were obtained in mice recovering from a 2-day, hourly caerulein hyperstimulation model of experimental pancreatitis. For training data, a pathologist carefully outlined discrete regions of acinar and non-acinar tissue in 21 sections at various stages of pancreatic injury and recovery (termed the "ground truth". After the expert defined the ground truth, the computer was able to develop a prediction rule that was then applied to a unique set of high-resolution images in order to validate the process. For baseline, non-injured pancreatic sections, the software demonstrated close agreement with the ground truth in identifying baseline acinar tissue area with only a difference of 1% ± 0.05% (p = 0.21. Within regions of injured tissue, the software reported a difference of 2.5% ± 0.04% in acinar area compared with the pathologist (p = 0.47. Surprisingly, on detailed morphological examination, the discrepancy was primarily because the software outlined acini and excluded inter-acinar and luminal white space with greater precision. The findings suggest that the software will be of great potential benefit to both clinicians and researchers in quantifying pancreatic acinar cell flux in the injured and recovering pancreas.

  3. THE CHANGES OF PANCREATIC ACINAR CELL FUNCTION IN ACUTE NECROTIZING PANCREATITIS OF RATS

    余枭; 韩天权; 汤耀卿; 雷若庆; 夏宗勤

    2000-01-01

    Objective To evaluate the changes of pancreatic acinar cell functions in the rats with acute necrotizing pancreatitis (ANP). Methods Seventy SD rats were randomized into two groups: experimental group (n=35) and control group (n=35). To prepare the experimental model, the retrograde injection of 5% sodium taurocholate into the pancreatic duct was used for inducing ANP. Radioactive tracing by L- 3H-phenylalanine and autoradiography were performed for scoring the differences of changes of amino acid uptake, enzyme-protein synthesis and output from acinar cells in rats between both groups. Results No changes were observed in amino acid uptake and enzyme-protein synthesis in rats with dotted and haemorrhagic necrotizing foci as compared with control group. However, accumulated zymogen granules in the interstitial of acinar cells were seen in the experimental group. Conclusion It indicates that in experimental ANP rats, the functions of acinar cells in both amino acid uptake and protein synthesis were essentially normal, but the pathway of enzyme output was affected into ectopic secretion through the bottom or lateral cellular membrane of pancreatic acinar cell.

  4. Preparation of Pancreatic Acinar Cells for the Purpose of Calcium Imaging, Cell Injury Measurements, and Adenoviral Infection

    Orabi, Abrahim I.; Muili, Kamaldeen A.; Wang, Dong; Jin, Shunqian; Perides, George; Husain, Sohail Z.

    2013-01-01

    The pancreatic acinar cell is the main parenchymal cell of the exocrine pancreas and plays a primary role in the secretion of pancreatic enzymes into the pancreatic duct. It is also the site for the initiation of pancreatitis. Here we describe how acinar cells are isolated from whole pancreas tissue and intracellular calcium signals are measured. In addition, we describe the techniques of transfecting these cells with adenoviral constructs, and subsequently measuring the leakage of lactate de...

  5. Effect of Taurine on Acinar Cell Apoptosis and Pancreatic Fibrosis in Dibutyltin Dichloride-induced Chronic Pancreatitis

    Sawa,Kiminari

    2012-08-01

    Full Text Available The relationship between pancreatic fibrosis and apoptosis of pancreatic acinar cells has not been fully elucidated. We reported that taurine had an anti-fibrotic effect in a dibutyltin dichloride (DBTC-chronic pancreatitis model. However, the effect of taurine on apoptosis of pancreatic acinar cells is still unclear. Therefore, we examined apoptosis in DBTC-chronic pancreatitis and in the AR42J pancreatic acinar cell line with/without taurine. Pancreatic fibrosis was induced by a single administration of DBTC. Rats were fed a taurine-containing diet or a normal diet and were sacrificed at day 5. The AR42J pancreatic acinar cell line was incubated with/without DBTC with taurine chloramines. Apoptosis was determined by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL assay. The expression of Bad and Bcl-2 proteins in the AR42J cells lysates was detected by Western blot analysis. The apoptotic index of pancreatic acinar cells in DBTC-administered rats was significantly increased. Taurine treatment inhibited pancreatic fibrosis and apoptosis of acinar cells induced by DBTC. The number of TUNEL-positive cells in the AR42J pancreatic acinar cell lines was significantly increased by the addition of DBTC. Incubation with taurine chloramines ameliorated these changes. In conclusion, taurine inhibits apoptosis of pancreatic acinar cells and pancreatitis in experimental chronic pancreatitis.

  6. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Yu, Ge [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wan, Rong [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Hu, Yanling [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Ni, Jianbo [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Yin, Guojian; Xing, Miao [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Shen, Jie [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Tang, Maochun [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Chen, Congying [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Fan, Yuting; Xiao, Wenqin; Zhao, Yan [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wang, Xingpeng, E-mail: wangxingpeng@hotmail.com [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  7. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway

  8. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  9. Acinar cell ultrastructure after taurine treatment in rat acute necrotizing pancreatitis

    To evaluate the organelle-based changes in acinar cells in experimental acute necrotizing pancreatitis (ANP) after taurine treatment and the association of electron microscopic findings with histopathalogical changes and oxidative stress markers. The study was performed in February 2005at Gulhane School of Medicine and Hacettepe University, Turkey. Forty-five rats were divided into 3 groups. Acute necrotizing pancreatitis was induced in groups II and III. Groups I and II were treated with saline and Group III with taurine 1000mg/kg/day, i.p, for 48 hours. Histopathological and ultrastructural examinations were determined using one-way analysis of variance and Kruskal-Wallis tests. Histopathologic findings improved significantly after taurine treatment. Degree of injury in rough and smooth endoplasmic reticulums, Golgi apparatus, mitochondria and nucleus of acinar cells also decreased with taurine in correlation with biochemical and histological results. Taurine improves acinar cell organelle structure, and ultrastructural recovery in ANP reflects histological improvement. (author)

  10. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice.

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-Ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  11. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  12. Transdifferentiation of human amniotic epithelial cells into acinar cells using a double-chamber system.

    Huang, Gui-Lin; Zhang, Ni-Ni; Wang, Jun-Sheng; Yao, Li; Zhao, Yu-Jie; Wang, Yu-Ying

    2012-08-01

    This study investigated the transdifferentiation of stem cells from human amnion tissue into functional acinar cells (ACs) using a co-culture system. Human amniotic epithelial cells (hAECs) were isolated from amnion tissue by mechanical mincing and enzymatic digestion. After primary culture, the phenotype of the cells was identified by flow cytometry (FCM) and immunocytochemical staining. hAECs were co-cultured with submandibular gland acinar cells of SD rats using a double-chamber system. The expression of α-amylase was determined by immunocytochemical method and fluorescent real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) after induction for 1 and 2 weeks, respectively. Digestion with trypsin is an effective method for isolating hAECs from amnion tissue. These cells were positive for CD29 and CK19 and weakly positive for CD44 and α-amylase. Within 2 weeks, α-amylase in hAECs increased with induction time. The expression of α-amylase in hAECs was increased 3.38-fold after co-culturing for 1 week. This ratio increased to 6.6-fold, and these cells were positive for mucins, after co-culturing for 2 weeks. hAECs possess the potential to differentiate into ACs in vitro. They might be a stem cell resource for clinical applications of cell replacement therapy in salivary gland dysfunction diseases. PMID:22800093

  13. Polyethylenimine-mediated expression of transgenes in the acinar cells of rats salivary glands in vivo

    Sramkova, Monika; Parente, Laura; Wigand, Timothy; Aye, Myo-Pale'; Shitara, Akiko; Weigert, Roberto

    2015-01-01

    Non viral-mediated transfection of plasmid DNA provides a fast and reliable way to express various transgenes in selected cell populations in live animals. Here, we show an improvement of a previously published method that is based on injecting plasmid DNA into the ductal system of the salivary glands in live rats. Specifically, using complexes between plasmid DNA and polyethyleneimine (PEI) we show that the expression of the transgenes is directed selectively to the salivary acinar cells. PE...

  14. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  15. Intracellular mediators of Na+-K+ pump activity in guinea pig pancreatic acinar cells

    The involvement of Ca2+ and cyclic nucleotides in neurohormonal regulation of Na+-K+-ATPase (Na+-K+ pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by [3H]ouabain binding and by ouabain-sensitive 86Rb+ uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of [3H]ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in Ca2+-free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular Ca2+, while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free Ca2+ levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent Ca2+ chelator. Basal intracellular Ca2+ concentration ([Ca2+]i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively

  16. Quantitative description of a teleost exocrine pancreas. Ultrastructural morphometric study of nonstimulated acinar cells.

    Stipp, A C; Ferri, S; Sesso, A

    1984-01-01

    The quantitative analysis of exocrine pancreas was fulfilled in teleost fish ( Pimelodus maculatus). The volume fraction occupied by acinar cells, blood vessels and ducts has been assessed by point-counting volumetry in 0.25 micron araldite sections. Measurements of the diameters of the transections of acinar cells nuclei and nucleolus allowed the assessment of the mean nuclear and nucleolar volume according to the method of Bach (1963). With these data, the cytoplasm nuclei and nucleolus volume was calculated in cubic micrometers. Morphometric ultrastructural data was obtained by applying over the electronmicrophotographs (X 21,000) a test system of 84 segments regularly spaced one from another (Weibel 1966). The results obtained was analysed and compared to the mammalian. PMID:6721199

  17. Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells

    Neeraj Manhas; James Sneyd; K R Pardasani

    2014-06-01

    A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.

  18. Regulating effects of arsenic trioxide on cell death pathways and inflammatory reactions of pancreatic acinar cells in rats

    XUE Dong-bo; ZHANG Wei-hui; YUN Xiao-guang; SONG Chun; ZHENG Biao; SHI Xing-ye; WANG Hai-yang

    2007-01-01

    Background It is accepted that inflammatory cytokines play a key role in the development of acute pancreatitis, so blocking the initiation of inflammatory reactions may alleviate pathological changes of acute pancreatitis. We studied the regulatory effect of arsenic trioxide (As2O3) on apoptosis and oncosis of pancreatic acinar cells in vitro and in vivo and its therapeutic effect on acute pancreatitis.Methods Pancreatic acinar cells were isolated by collagenase digestion method. Apoptosis and oncosis of isolated pancreatic acinar cells were detected with Hoechst 33258+PI or Annexin V+PI double fluorescent staining. Amylase and lactate dehydrogenase release were measured. Acute pancreatitis was induced in Wistar rats by intraperitoneal injections of caerulein, and apoptosis was detected with terminal dUTP nick-end labeling method. Tumor necorsis factor α (TNF-α) mRNA, myeloperoxidase, nuclear factor-κB and histological grading of pancreatic damage were measured.Results There was an increased apoptosis but a decreased oncosis of pancreatic acinar cell after the treatment with As2O3. The levels of lactate dehydrogenase and amylase release were markedly decreased in As2O3 treated group.Myeloperoxidase content, TNF-α mRNA level, nuclear factor-κB activation and pathological score in As2O3 treated group were significantly lower than in the untreated group.Conclusions As2O3 can induce apoptosis and reduce oncosis of pancreatic acinar cell, thus resulting in reduced release of endocellular enzyme of acinar cells, reduced inflammatory cell infiltration and decreased the production of inflammatory cytokines, so that the outcome of alleviated pathological changes was finally achieved.

  19. Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo

    Baumann, Bernd; Wagner, Martin; Aleksic, Tamara; von Wichert, Götz; Weber, Christoph K.; Adler, Guido; Wirth, Thomas

    2007-01-01

    Activation of the inhibitor of NF-κB kinase/NF-κB (IKK/NF-κB) system and expression of proinflammatory mediators are major events in acute pancreatitis. However, the in vivo consequences of IKK activation on the onset and progression of acute pancreatitis remain unclear. Therefore, we modulated IKK activity conditionally in pancreatic acinar cells. Transgenic mice expressing the reverse tetracycline-responsive transactivator (rtTA) gene under the control of the rat elastase promoter were gene...

  20. Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells

    Yamasaki, M.; Masgrau, R.; Morgan, A. J.; Churchill, G. C.; Patel, S.; Ashcroft, S. J. H.; Galione, A

    2004-01-01

    How different extracellular stimuli can evoke different spatiotemporal Ca2+ signals is uncertain. We have elucidated a novel paradigm whereby different agonists use different Ca2+-storing organelles ("organelle seleetion") to evoke unique responses. Some agonists select the endoplasmic reticulum (ER), and others select lysosome-related (acidic) organelles, evoking spatial Ca2+ responses that mirror the organellar distribution. In pancreatic acinar cells, acetylcholine and bombesin exclusively...

  1. The role of protein synthesis and digestive enzymes in acinar cell injury

    Logsdon, Craig D.; Ji, Baoan

    2013-01-01

    The exocrine pancreas is the organ with the highest level of protein synthesis in the adult—each day the pancreas produces litres of fluid filled with enzymes that are capable of breaking down nearly all organic substances. For optimal health, the pancreas must produce sufficient enzymes of the right character to match the dietary intake. Disruption of normal pancreatic function occurs primarily as a result of dysfunction of the acinar cells that produce these digestive enzymes, and can lead ...

  2. Functional role of MicroRNA-19b in acinar cell necrosis in acute necrotizing pancreatitis.

    Hu, Ming-Xing; Zhang, Hong-Wei; Fu, Qiang; Qin, Tao; Liu, Chuan-Jiang; Wang, Yu-Zhu; Tang, Qiang; Chen, Yu-Xin

    2016-04-01

    The expression of microRNA-19b (miR-19b) in acute necrotizing pancreatitis (ANP) and its functional role in acinar cell necrosis of SD rats were investigated. Twelve SD rats were divided into two groups randomly, including control group and ANP group. The rat ANP models were established by intraperitoneal injection of L-arginine (2400 mg/kg body weight), and equal volume of 0.9% NaCl was injected in the control group. MiRNA chip assay was performed to examine the expression of miRNAs in the pancreas in two different groups. Besides, to further explore the role of miR-19b in ANP in vitro, taurolithocholic acid 3-sulfate disodium salt (TLC-S) (200 μmol/L) was administrated to treat the rat pancreatic acinar cell line, AR42J, for establishing the ANP cells model. The quantitative real-time PCR (qRT-PCR) was adopted to measure the miR-19b expression. Moreover, the mimic miRNA, miRNA antisense oligonucleotide (AMO) and control vector were used to transfect AR42J cells, the expression of miR-19b was confirmed by qRT-PCR and the necrotizing rate of AR42J cells was detected with AO/EB method. The expression of miR-19b was significantly higher in ANP group than in control group as displayed by the miRNA chip assay. Furthermore, after inducing necrosis of AR42J cells in vitro, the expression of miR-19b was significantly increased by 2.51±0.14 times in comparison with the control group. As revealed by qRT-PCR assay, the expression of miR-19b was 5.94±0.95 times higher in the mimic miRNA group than in the control vector group, companied with an obviously increased acinar cell necrotizing rate (50.3%±1.5% vs. 39.6%±2.3%, P0.05). The expression of miR-19b was significantly induced in ANP. In addition, up-regulation of miR-19b could promote the necrosis of pancreatic acinar cells and miR-19b deficiency could decrease the rate of pancreatic acinar cell necrosis. PMID:27072966

  3. Phorbol esters and A23187 regulate Na+=K+-pump activity in pancreatic acinar cells

    To clarify the subcellular mechanisms that mediate stimulation of Na+-K+-pump activity in pancreatic acinar cells by cholinergic agonists, the authors examined the effects of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca2+ ionophore A23187 on [3H]ouabain binding to dispersed guinea pig pancreatic acinar cells under conditions in which binding reflects the average rate of pump cycling. The phorbol ester more than doubled Na+-K+-pump activity as did the diacylglycerol analogue, 1-oleoyl-2-acetolyl-sn-3-glycerol. A23187 increased pump activity by a maximum of 31% at 0.3 μM but was progressively inhibitory at higher concentrations. The stimulatory effects of TPA and A23187 were additive, although either secretagogue elicited a less than additive response when added together with a maximally effective concentration of the cholinergic agonist, carbachol. Removal of extracellular Ca2+ had little effect on the pump response to TPA and did not reduce the maximal effect of A23187 but abolished the inhibitory effect seen at high ionophore concentrations in Ca2+-containing medium. These results indicate that both Ca2+ and protein kinase c are involved in regulating Na+-K+-pump activity in the pancreatic acinar cell

  4. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer. PMID:26510396

  5. Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

    Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I; Williams, John A

    2016-03-18

    Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D. PMID:26845357

  6. The econobiology of pancreatic acinar cells granule inventory and the stealthy nano-machine behind it.

    Hammel, Ilan; Meilijson, Isaac

    2016-03-01

    The pancreatic gland secretes most of the enzymes and many other macromolecules needed for food digestion in the gastrointestinal tract. These molecules play an important role in digestion, host defense and lubrication. The secretion of pancreatic proteins ensures the availability of the correct mix of proteins when needed. This review describes model systems available for the study of the econobiology of secretory granule content. The secretory pancreatic molecules are stored in large dense-core secretory granules that may undergo either constitutive or evoked secretion, and constitute the granule inventory of the cell. It is proposed that the Golgi complex functions as a distribution center for secretory proteins in pancreatic acinar cells, packing the newly formed secretory molecules into maturing secretory granules, also known functionally as condensing vacuoles. Mathematical modelling brings forward a process underlying granule inventory maintenance at various physiological states of condensation and aggregation by homotypic fusion. These models suggest unique but simple mechanisms accountable for inventory buildup and size, as well as for the distribution of secretory molecules into different secretory pathways in pancreatic acinar cells. PMID:26702787

  7. Secretory pathways in animal cells: with emphasis on pancreatic acinar cells.

    Beaudoin, A R; Grondin, G

    1991-01-01

    Studies over the past three decades have clearly established the existence of at least two distinct pathways for the intracellular transport and release of secretory proteins by animal cells. These have been identified as the regulated and constitutive pathways. Many observations have indicated that in certain cells, such as those of the exocrine pancreas and parotid glands at least, these pathways coexist in the same cells. Although the general scheme of protein transport within these pathways is well established, many fundamental aspects of intracellular transport remain to be unraveled. How are proteins transported through the endoplasmic reticulum? How are the transitional vesicles formed and what are the underlying mechanisms involved in their fusion with the cis-Golgi cisterna? Even the general mode of transfer through the Golgi stack is debated: Is there a diffusion through the stack by flow through intercisternal tubules and openings or is there a vesicle transfer system where membrane quanta hop from one cisterna to the other? What is the fate of secretory proteins in the trans-Golgi area and by what mechanisms is a fraction of newly synthesized molecules of a given secretory protein released spontaneously while the majority of such nascent molecules are diverted into a secretory granule compartment? In this review, we have examined these and other aspects of intracellular transport of secretory proteins using pancreatic acinar cells as our reference model and we present some evidence to support the existence of a paragranular pathway of secretion associated with secretory granule maturation. PMID:1993938

  8. Aquaporin expression and cell volume regulation in the SV40 immortalized rat submandibular acinar cell line.

    Hansen, Ann-Kristin; Galtung, Hilde Kanli

    2007-03-01

    The amount of aquaporins present and the cellular ability to perform regulatory volume changes are likely to be important for fluid secretions from exocrine glands. In this work these phenomena were studied in an SV40 immortalized rat submandibular acinar cell line. The regulatory cell volume characteristics have not previously been determined in these cells. Cell volume regulation following hyposmotic exposure and aquaporin induction was examined with Coulter counter methodology, radioactive efflux studies, fura-2 fluorescence, and polymerase chain reaction and Western blot techniques. Cell volume regulation was inhibited by the K(+) channel antagonists quinine and BaCl(2) and the Cl(-) channel blocker 5-nitro-2-(3-phenypropylamino)benzoic acid. A concomitant increase in cellular (3)H-taurine release and Ca(2+) concentration was also observed. Chelation of both intra- and extracellular Ca(2+) with EGTA and the Ca(2+) ionophore A23187 did not, however, affect cell volume regulation. Aquaporin 5 (AQP5) mRNA and protein levels were upregulated in hyperosmotic conditions and downregulated upon return to isosmotic solutions, but were reduced by the mitogen-activated ERK-activating kinase (MEK) inhibitor U0126. A 24-h MEK inhibition also diminished hyposmotically induced cell swelling and cell volume regulation. In conclusion, it was determined that regulatory volume changes in this immortalized cell line are due to KCl and taurine efflux. In conditions that increased AQP5 levels, the cells showed a faster cell swelling and a more complete volume recovery following hyposmotic exposure. This response could be overturned by MEK inhibition. PMID:17021794

  9. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas

    Toru Furukawa; Hitomi Sakamoto; Shoko Takeuchi; Mitra Ameri; Yuko Kuboki; Toshiyuki Yamamoto; Takashi Hatori; Masakazu Yamamoto; Masanori Sugiyama; Nobuyuki Ohike; Hiroshi Yamaguchi; Michio Shimizu; Noriyuki Shibata; Kyoko Shimizu; Keiko Shiratori

    2015-01-01

    Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we ide...

  10. Immunocytochemical localization of the [3H]estradiol-binding protein in rat pancreatic acinar cells

    Significant amounts of an estradiol-binding protein (EBP) are present in pancreatic acinar cells. This protein differs from the one found in female reproductive tissues and secondary sex organs (which is commonly referred to as estrogen receptor). EBP has now been purified from rat pancreas and was used as an antigen to induce polyclonal antibodies in rabbits. The antiserum obtained was purified initially by ammonium sulfate fractionation and then still further by interaction with a protein fraction from pancreas that was devoid of estradiol-binding activity. The latter procedure was used to precipitate nonspecific immunoglobulin Gs. Western blot analysis demonstrated that the anti-EBP antibody reacted specifically with a doublet of protein bands having mol wt of 64K and 66K. When this purified antibody was used as an immunocytochemical probe in conjunction with protein-A-gold, acinar cells were labeled on the surface of the endoplasmic reticulum, on the plasma membrane, and in mitochondria. This specific labeling pattern was not observed when preimmune serum was used. No labeling was observed over the nucleus, Golgi apparatus, or zymogen granules with purified anti-EBP antibodies. The unexpected distribution of EBP in both the endoplasmic reticulum and mitochondria is discussed

  11. Curative resection of a primarily unresectable acinar cell carcinoma of the pancreas after chemotherapy

    Dobrowolski Frank

    2009-02-01

    Full Text Available Abstract Background Acinar cell carcinoma (ACC represents only 1–2% of pancreatic cancers and is a very rare malignancy. At the time of diagnosis only 50% of the tumors appear to be resectable. Reliable data for an effective adjuvant or neoadjuvant treatment are not available. Case presentation A 65-year old male presented with obstructive jaundice and non-specific upper abdominal pain. MRI-imaging showed a tumor within the head of the pancreas concomitant with Serum-Lipase and CA19-9. During ERCP, a stent was placed. Endosonographic fine needle biopsy confirmed an acinar cell carcinoma. Laparotomy presented an locally advanced tumor with venous infiltration that was consequently deemed unresectable. The patient was treated with five cycles of 5-FU monotherapy with palliative intention. Chemotherapy was well tolerated, and no severe complications were observed. Twelve months later, the patient was in stable condition, and CT-scanning showed an obvious reduction in the size of the tumor. During further operative exploration, a PPPD with resection of the portal vein was performed. Histopathological examination gave evidence of a diffuse necrotic ACC-tumor, all resection margins were found to be negative. Eighteen months later, the patient showed no signs of recurrent disease. Conclusion ACC responded well to 5-FU monochemotherapy. Therefore, neoadjuvant chemotherapy could be an option to reduce a primarily unresectable ACC to a point where curative resection can be achieved.

  12. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis.

    Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M

    2016-07-01

    Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. PMID:27226576

  13. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells. PMID:26235267

  14. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway. PMID:26542397

  15. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation.

    Melissa A Metzler

    Full Text Available The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process.A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation.Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1 activates the Mist1 promoter [corrected]. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation.This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  16. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice

    Matthew D. Keefe

    2012-07-01

    The size of the pancreas is determined by intrinsic factors, such as the number of progenitor cells, and by extrinsic signals that control the fate and proliferation of those progenitors. Both the exocrine and endocrine compartments of the pancreas undergo dramatic expansion after birth and are capable of at least partial regeneration following injury. Whether the expansion of these lineages relies on similar mechanisms is unknown. Although we have shown that the Wnt signaling component β-catenin is selectively required in mouse embryos for the generation of exocrine acinar cells, this protein has been ascribed various functions in the postnatal pancreas, including proliferation and regeneration of islet as well as acinar cells. To address whether β-catenin remains important for the maintenance and expansion of mature acinar cells, we have established a system to follow the behavior and fate of β-catenin-deficient cells during postnatal growth and regeneration in mice. We find that β-catenin is continuously required for the establishment and maintenance of acinar cell mass, extending from embryonic specification through juvenile and adult self-renewal and regeneration. This requirement is not shared with islet cells, which proliferate and function normally in the absence of β-catenin. These results make distinct predictions for the relative role of Wnt–β-catenin signaling in the etiology of human endocrine and exocrine disease. We suggest that loss of Wnt–β-catenin activity is unlikely to drive islet dysfunction, as occurs in type 2 diabetes, but that β-catenin is likely to promote human acinar cell proliferation following injury, and might therefore contribute to the resolution of acute or chronic pancreatitis.

  17. A resected case of symptomatic acinar cell cystadenoma of the pancreas displacing the main pancreatic duct.

    Tanaka, Haruyoshi; Hatsuno, Tsuyoshi; Kinoshita, Mitsuru; Hasegawa, Kazuya; Ishihara, Hiromasa; Takano, Nao; Shimoyama, Satofumi; Nakayama, Hiroshi; Kataoka, Masato; Ichihara, Shu; Kanda, Mitsuro; Kodera, Yasuhiro; Kondo, Ken

    2016-12-01

    Acinar cell cystadenoma (ACA) of the pancreas has been newly recognized as an entity by the World Health Organization (WHO) definition (2010), and its pathogenesis has not been known adequately because of the rarity. Here, we report a case of a 22-year-old female who had been followed up for a cystic lesion at the tail of the pancreas pointed out by a screening computed tomography (CT) scan 7 years ago. The tumor grew in size from 3.3 to 5.1 cm in diameter for 6 years (0.3 cm per year). Particularly, it rapidly grew up to 6.3 cm in the latest 3 months in concurrence with the emergence of epigastralgia. A contrasted CT scan revealed the irregularly formed, multilocular cystic tumor having thin septum and calcification. The intratumoral magnetic resonance imaging intensity in the T1 and T2 weighted images were low and high, respectively. No communications between the tumor and the main pancreatic duct (MPD) were found, but the tumor displaced the MPD. She underwent surgical resection because the tumor was growing, turned symptomatic, and it seemed difficult to be diagnosed correctly until totally biopsied. Spleen-preserved distal pancreatectomy was performed. It was pathologically diagnosed as ACA; the cyst was lined by cells with normal acinar differentiation; cuboidal cells with round, basally oriented nuclei and eosinophilic granules in its apical cytoplasm. The abdominal pain has disappeared, and no recurrences have been found during a 5-year follow-up. Clinicians are recommended to consider an ACA as one of differential diagnoses of cystic tumors of the pancreas to provide appropriate diagnostics and therapeutics. PMID:27108123

  18. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  19. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells.

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  20. Prolonged Survival in a Patient with a Pancreatic Acinar Cell Carcinoma.

    Ploquin, Anne; Baldini, Capucine; Vuagnat, Perrine; Makhloufi, Samira; Desauw, Christophe; Hebbar, Mohamed

    2015-01-01

    Pancreatic acinar cell carcinoma (ACC) is a rare entity. Herein we present the case of a 50-year-old male patient with an unlimited mass on the pancreatic corpus and tail with peripancreatic effusion and multiple metastases in the liver and spleen. A liver biopsy showed a pancreatic ACC. The patient received 9 cycles of gemcitabine plus oxaliplatin (GEMOX regimen), which had to be stopped because of a persistent grade 2 neuropathy. A CT scan showed complete response after 14 years. At the age of 61 years, a localized prostatic cancer was diagnosed, treated by prostatectomy. The patient carried a BRCA2 mutation. None of the precedent case reports describe a chemosensibility to the GEMOX regimen. In spite of the lack of study in these patients, chemotherapy with oxaliplatin seems to be the most effective. Long survival can be expected. PMID:26600777

  1. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  2. Effect of ionizing radiation on acinar morphogenesis of human prostatic epithelial cells under three-dimensional culture conditions.

    Wang, T; X, S Ma; Kong, D; Yi, H; Wang, X; Liang, B; Xu, H; He, M; Jia, L; Qased, A B; Yang, Y; Liu, X

    2012-01-01

    Homeostasis is maintained by the interplay of multiple factors that directly or indirectly regulate cell proliferation and cell death. Complex multiple interactions between cells and the extracellular matrix occur during acinar morphogenesis and changes in these might indicate carcinogenesis of cells from a normal to a malignant, invasive phenotype. In this study, the human prostatic epithelial cell line RWPE-1 was cultured under three-dimensional (3-D) culture conditions, and the effect of ionizing radiation on acinar morphogenesis and its association with autophagy were discussed. The results illustrated that formation of specific spheroid (acinar) structures was detectable under 3-D culture conditions. Radiation induced the disruption of acini in different cell models using either gene overexpression (Akt) or gene knock-down (Beclin 1 and ATG7). Introduction of Akt not only accelerated the growth of cells (i.e., caused the cells to manifest elongating and microspike-like structures that are obviously different from structures seen in wild-type RWPE-1 cells under two-dimensional conditions), but also changed their morphological characteristics under 3-D culture conditions. Knock-down of autophagy-related genes (Beclin 1 and ATG7) increased the radiosensitivity of cells under 3-D culture conditions, and cells died of non-apoptotic death after radiation. The results suggested that ionizing radiation may change the cell phenotype and the formation of acini. Additionally even the autophagy mechanism may play a role in these processes. PMID:22296497

  3. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2011-01-01

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends o...

  4. Rab27A Is Present in Mouse Pancreatic Acinar Cells and Is Required for Digestive Enzyme Secretion.

    Yanan Hou

    Full Text Available The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1. Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.

  5. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion. PMID:24646566

  6. 99mTc-pertechnetate uptake in parotid acinar cells by the Na+/K+/Cl- co-transport system.

    Helman, J; Turner, R J; Fox, P C; Baum, B.J.

    1987-01-01

    99mTc-Pertechnetate (99mTcO4-) has widespread clinical use in the diagnosis and evaluation of dysfunctions in many different tissues. However, despite the broad clinical application of this radionuclide, very little is known about the mechanism by which 99mTcO4- enters a cell. We report evidence here that 99mTcO4- shares the Na+/K+/Cl- co-transport system localized to the basolateral membrane of rat parotid acinar cells. 99mTcO4- uptake by these cells was quite rapid (t1/2 approximately 30 s)...

  7. Atp2c2 Is Transcribed From a Unique Transcriptional Start Site in Mouse Pancreatic Acinar Cells.

    Fenech, Melissa A; Sullivan, Caitlin M; Ferreira, Lucimar T; Mehmood, Rashid; MacDonald, William A; Stathopulos, Peter B; Pin, Christopher L

    2016-12-01

    Proper regulation of cytosolic Ca(2+) is critical for pancreatic acinar cell function. Disruptions in normal Ca(2+) concentrations affect numerous cellular functions and are associated with pancreatitis. Membrane pumps and channels regulate cytosolic Ca(2+) homeostasis by promoting rapid Ca(2+) movement. Determining how expression of Ca(2+) modulators is regulated and the cellular alterations that occur upon changes in expression can provide insight into initiating events of pancreatitis. The goal of this study was to delineate the gene structure and regulation of a novel pancreas-specific isoform for Secretory Pathway Ca(2+) ATPase 2 (termed SPCA2C), which is encoded from the Atp2c2 gene. Using Next Generation Sequencing of RNA (RNA-seq), chromatin immunoprecipitation for epigenetic modifications and promoter-reporter assays, a novel transcriptional start site was identified that promotes expression of a transcript containing the last four exons of the Atp2c2 gene (Atp2c2c). This region was enriched for epigenetic marks and pancreatic transcription factors that promote gene activation. Promoter activity for regions upstream of the ATG codon in Atp2c2's 24th exon was observed in vitro but not in in vivo. Translation from this ATG encodes a protein aligned with the carboxy terminal of SPCA2. Functional analysis in HEK 293A cells indicates a unique role for SPCA2C in increasing cytosolic Ca(2+) . RNA analysis indicates that the decreased Atp2c2c expression observed early in experimental pancreatitis reflects a global molecular response of acinar cells to reduce cytosolic Ca(2+) levels. Combined, these results suggest SPCA2C affects Ca(2+) homeostasis in pancreatic acinar cells in a unique fashion relative to other Ca(2+) ATPases. J. Cell. Physiol. 231: 2768-2778, 2016. © 2016 Wiley Periodicals, Inc. PMID:27017909

  8. Hydrogen sulfide: a novel gaseous signaling molecule and intracellular Ca2+ regulator in rat parotid acinar cells.

    Moustafa, Amira; Habara, Yoshiaki

    2015-10-01

    In addition to nitric oxide (NO), hydrogen sulfide (H2S) is recognized as a crucial gaseous messenger that exerts many biological actions in various tissues. An attempt was made to assess the roles and underlying mechanisms of both gases in isolated rat parotid acinar cells. Ductal cells and some acinar cells were found to express NO and H2S synthases. Cevimeline, a muscarinic receptor agonist upregulated endothelial NO synthase in parotid tissue. NO and H2S donors increased the intracellular Ca(2+) concentration ([Ca(2+)]i). This was not affected by inhibitors of phospholipase C and inositol 1,4,5-trisphosphate receptors, but was decreased by blockers of ryanodine receptors (RyRs), soluble guanylyl cyclase, and protein kinase G. The H2S donor evoked NO production, which was decreased by blockade of NO synthases or phosphoinositide 3-kinase or by hypotaurine, an H2S scavenger. The H2S donor-induced [Ca(2+)]i increase was diminished by a NO scavenger or the NO synthases blocker. These results suggest that NO and H2S play important roles in regulating [Ca(2+)]i via soluble guanylyl cyclase-cGMP-protein kinase G-RyRs, but not via inositol 1,4,5-trisphosphate receptors. The effect of H2S may be partially through NO produced via phosphoinositide 3-kinase-Akt-endothelial NO synthase. It was concluded that both gases regulate [Ca(2+)]i in a synergistic way, mainly via RyRs in rat parotid acinar cells. PMID:26224578

  9. Gramicidin-perforated Patch Recording Revealed the Oscillatory Nature of Secretory Cl− Movements in Salivary Acinar Cells

    Sugita, Makoto; Hirono, Chikara; Shiba, Yoshiki

    2004-01-01

    Elevations of cytoplasmic free calcium concentrations ([Ca2+]i) evoked by cholinergic agonists stimulate isotonic fluid secretion in salivary acinar cells. This process is driven by the apical exit of Cl− through Ca2+-activated Cl− channels, while Cl− enters the cytoplasm against its electrochemical gradient via a loop diuretic-sensitive Na+-K+-2Cl− cotransporter (NKCC) and/or parallel operations of Cl−-HCO3 − and Na+-H+ exchangers, located in the basolateral membrane. To characterize the con...

  10. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro.

    Ghazalli, Nadiah; Mahdavi, Alborz; Feng, Tao; Jin, Liang; Kozlowski, Mark T; Hsu, Jasper; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2015-09-01

    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133(high) fraction and among 230 micro-manipulated single CD133(high) cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro. PMID

  11. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  12. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease.

    Teos, L Y; Zheng, C-Y; Liu, X; Swaim, W D; Goldsmith, C M; Cotrim, A P; Baum, B J; Ambudkar, I S

    2016-07-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  13. Pancreatic panniculitis in a patient with pancreatic-type acinar cell carcinoma of the liver – case report and review of literature

    Zundler, Sebastian; Erber, Ramona; Agaimy, Abbas; Hartmann, Arndt; Kiesewetter, Franklin; Strobel, Deike; Neurath, Markus F; Wildner, Dane

    2016-01-01

    Background Pancreatic panniculitis is a rare condition, which has only been described in relation with pancreatic diseases up to now. It is characterized by necrotizing subcutaneous inflammation and is thought to be triggered by adipocyte necrosis due to systemic release of pancreatic enzymes with consecutive infiltration of neutrophils. We present the first case of a patient with pancreatic panniculitis caused by pancreatic-type primary acinar cell carcinoma (ACC) of the liver and without un...

  14. The natural history of pancreatic acinar cell cystadenoma: Is resection better than surveillance? An update to a case report from 2010

    Darcy, David G.; Dominique Jan

    2016-01-01

    Cystic lesions of the pancreas are a rare entity, and few reports have described their natural history in children. A previously published report described a 9-year-old boy with an acinar cell cystadenoma, discovered during a laparoscopic appendectomy. Initially asymptomatic and followed by serial MRI, this patient presented to our institution several years later with chronic obstructive symptoms that required surgical intervention. Planning for resection included multidisciplinary input from...

  15. E-cadherin-negative acinar cell carcinoma of the pancreas: report of a case showing a solid pseudopapillary growth pattern.

    Tajima, Shogo; Waki, Michihiko; Azuma, Masaki; Koda, Kenji; Ohata, Akihiko

    2016-09-01

    E-cadherin expression patterns in acinar cell carcinomas (ACCs) of the pancreas have not been well documented. Herein, we present a hitherto undescribed case of E-cadherin-negative ACC with a solid pseudopapillary growth pattern in a 65-year-old man. We used an antibody against the extracellular domain of E-cadherin. As a further unusual status in ACC, faint β-catenin expression was observed in the cytoplasm of carcinoma cells. Morphological distinction from a solid pseudopapillary neoplasm (SPN) of the pancreas might be problematic in such a case, because of their similarities concerned with the growth pattern and E-cadherin negativity. Without nuclear accumulation of β-catenin, a diagnosis of SPN was almost excluded. Immunoreactivity for trypsin and BCL10 made an accurate diagnosis of ACC to this case. The tumor recurred 10 months post-surgery as rapidly enlarging masses in the liver, presumably indicating the aggressiveness of the E-cadherin-negative phenotype among ACCs. PMID:25600280

  16. Early events of secretory granule formation in the rat parotid acinar cell under the influence of isoproterenol. An ultrastructural and lectin cytochemical study

    F D’Amico

    2009-12-01

    Full Text Available The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, Glycine max agglutinin (SBA, Arachys hypogaea agglutinin (PNA]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory gran- ules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.

  17. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated memb

  18. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy

  19. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  20. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by γ-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment

  1. Zinc induces necrosis on rat pancreatic acinar AR42J cells

    Complete text of publication follows. Zinc is one of the essential metals, but high amounts of zinc induce several kinds of tissue damage. In those tissues, pancreatic exocrine cells are very sensitive to zinc, but the cause is still unclear. When 600 μM of zinc was added to AR42J cells, necrosis, but not apoptosis, quickly occurred. Zinc and sodium ions did not increase in the cytosol of AR42J cells even if 600 μM of zinc was added. However, calcium ion immediately increased in the cytosol after the addition of zinc and decreased quickly. Then, cytosol calcium content gradually increased again in a time-dependent manner. When 1.5 mM of calcium was added to the medium, the effect of 600 μM of zinc disappeared. On the contrary, rat pancreatic insulinoma cell line, RIN cells, did not increase cytosolic calcium concentration from zinc and necrosis was not induced by zinc. It is thought that zinc induces necrosis on AR42J cells by the increase of cytosolic calcium concentration, and the increase of extracellular calcium content inhibits the action of zinc that stimulates calcium transportation.

  2. Autophagy in pancreatic acinar cells in caerulein-treated mice: immunolocalization of related proteins and their potential as markers of pancreatitis.

    Zhang, Leshuai; Zhang, Jun; Shea, Katherine; Xu, Lin; Tobin, Grainne; Knapton, Alan; Sharron, Stewart; Rouse, Rodney

    2014-01-01

    Drug-induced pancreatitis (DIP) is an underdiagnosed condition that lacks sensitive and specific biomarkers. To better understand the mechanisms of DIP and to identify potential tissue biomarkers, we studied experimental pancreatitis induced in male C57BL/6 mice by intraperitoneal injection of caerulein (10 or 50 μg/kg) at 1-hr intervals for a total of 7 injections. Pancreata from caerulein-treated mice exhibited consistent acinar cell autophagy and apoptosis with infrequent necrosis. Kinetic assays for serum amylase and lipase also showed a dose-dependent increase. Terminal deoxynucleotidyl transferase-mediated biotin-dNTP nick labeling (TUNEL) detected dose-dependent acinar cell apoptosis. By light microscopy, autophagy was characterized by the formation of autophagosomes and autolysosomes (ALs) within the cytoplasm of acinar cells. Immunohistochemical studies with specific antibodies for proteins related to autophagy and pancreatic stress were conducted to evaluate these proteins as potential biomarkers of pancreatitis. Western blots were used to confirm immunohistochemical results using pancreatic lysates from control and treated animals. Autophagy was identified as a contributing process in caerulein-induced pancreatitis and proteins previously associated with autophagy were upregulated following caerulein treatment. Autophagosomes and ALs were found to be a common pathway, in which cathepsins, lysosome-associated membrane protein 2, vacuole membrane protein 1, microtubule-associated protein 1 light chain 3 (LC3), autophagy-related protein 9, Beclin1, and pancreatitis-associated proteins were simultaneously involved in response to caerulein stimulus. Regenerating islet-derived 3 gamma (Reg3γ), a pancreatic acute response protein, was dose-dependently induced in caerulein-treated mice and colocalized with the autophagosomal marker, LC3. This finding supports Reg3γ as a candidate biomarker for pancreatic injury. PMID:23640381

  3. p21(WAF1) (/Cip1) limits senescence and acinar-to-ductal metaplasia formation during pancreatitis.

    Grabliauskaite, Kamile; Hehl, Adrian B; Seleznik, Gitta M; Saponara, Enrica; Schlesinger, Kathryn; Zuellig, Richard A; Dittmann, Anja; Bain, Martha; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-02-01

    Trans-differentiation of pancreatic acinar cells into ductal-like lesions, a process defined as acinar-to-ductal metaplasia (ADM), is observed in the course of organ regeneration following pancreatitis. In addition, ADM is found in association with pre-malignant PanIN lesions and correlates with an increased risk of pancreatic adenocarcinoma (PDAC). Human PDAC samples show down-regulation of p21(WAF1) (/Cip1) , a key regulator of cell cycle and cell differentiation. Here we investigated whether p21 down-regulation is implicated in controlling the early events of acinar cell trans-differentiation and ADM formation. p21-mediated regulation of ADM formation and regression was analysed in vivo during the course of cerulein-induced pancreatitis, using wild-type (WT) and p21-deficient (p21(-/-) ) mice. Biochemical and immunohistochemical methods were used to evaluate disease progression over 2 weeks of the disease and during a recovery phase. We found that p21 was strongly up-regulated in WT acinar cells during pancreatitis, while it was absent in ADM areas, suggesting that p21 down-regulation is associated with ADM formation. In support of this hypothesis, p21(-/-) mice showed a significant increase in number and size of metaplasia. In addition, p21 over-expression in acinar cells reduced ADM formation in vitro, suggesting that the protein regulates the metaplastic transition in a cell-autonomous manner. p21(-/-) mice displayed increased expression and relocalization of β-catenin both during pancreatitis and in the subsequent recovery phase. Finally, loss of p21 was accompanied by increased DNA damage and development of senescence. Our findings are consistent with a gate-keeper role of p21 in acinar cells to limit senescence activation and ADM formation during pancreatic regeneration. PMID:25212177

  4. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Loo Jr., Billy W.

    2000-06-09

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  5. Fractionated irradiation and late changes in rat parotid gland: effects on the number of acinar cells, potassium efflux, and amylase secretion

    The authors used different in vitro secretory models and quantitative morphological characterization of rat parotid gland following fractionated unilateral irradiation to one gland on a 5-day fraction schedule with 6 MV photons (total dose 30, 35, 40 and 45 Gy) or a two-fractions regimen in 5 days with total dose of 24 and 32 Gy. The contralateral shielded gland served as control, and parallel analyses of irradiated and control glands were performed 180 days following the last irradiation. The relative noradrenaline stimulated electrolyte secretion (86rubidium tracer for potassium) was decreased in the irradiated compared with control glands. The noradrenaline-stimulated exocytotic amylase release was not significantly affected by irradiation, but the gland content of amylase was decreased dose-dependently. The quantitative morphological analysis revealed a dose-dependent decline in the number of acinar cells; the other parenchymal cells were unaffected by irradiation compared with controls. (author)

  6. Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia

    Kazumi Ebine; Chow, Christina R.; DeCant, Brian T.; Hattaway, Holly Z.; Grippo, Paul J.; Krishan Kumar; Munshi, Hidayatullah G.

    2016-01-01

    Cells in the pancreas that have undergone acinar-ductal metaplasia (ADM) can transform into premalignant cells that can eventually become cancerous. Although the epithelial-mesenchymal transition regulator Snail (Snai1) can cooperate with Kras in acinar cells to enhance ADM development, the contribution of Snail-related protein Slug (Snai2) to ADM development is not known. Thus, transgenic mice expressing Slug and Kras in acinar cells were generated. Surprisingly, Slug attenuated Kras-induced...

  7. The effect of irradiation on the intracellular transportation of the parotid gland acinar cells in the mouse. Localization of monosaccharides studied by electron microscopic autoradiography

    The present study was designed to investigate the effects of radiation on the ability to ingest monosaccharides and intracellular transportation in the parotid gland in mice. The submandibular regions, including the parotid gland, was exposed to 10 Gy of X-rays. Three days after irradiation, the localization of reducing silver grains in organelles was determined, using electron microscopic autoradiography with H-3 labeled galactosamine, glucosamine, fucose, and mannose. In the non-irradiated group, the proportion of reducing silver grains in the acinar cells began to increase 15 min after administration of monosaccharides, reached a peak at 180 min, and thereafter decreased. Similar findings were observed in the irradiated group, although the values were lower than the non-irradiated group. The proportion of reducing silver grains in the endoplasmic reticulum reached a peak at 15 min in both the non-irradiated and irradiated groups, and gradually decreased until 120 min. Thereafter, it became almost constant and low, but the proportion in the irradiated group was slightly higher than in the non-irradiated group. The proportion of reducing silver grains in the Golgi apparatus was maximum at 60 min in the non-irradiated group, and gradually decreased until 360 min. A similar tendency was seen in the irradiated group, although its variation was not so marked as in the non-irradiated group. The proportion of reducing silver grains in the condensing vacuoles was maximum at 120 min, and thereafter, it decreased; the decrease was only slight in the irradiated group. The proportion of reducing silver grains in secretory granules increased with time in both the non-irradiated and irradiated groups, although this was only slight in the irradiated group, and reached a peak at 360 min. Transportation of monosaccharides in an acinar cell was found to be delayed by irradiation. (N.K.)

  8. The effect of irradiation on the intracellular transportation of the parotid gland acinar cells in the mouse. Localization of monosaccharides studied by electron microscopic autoradiography

    Matsunaga, Hajime (Nippon Dental Univ., Tokyo (Japan))

    1994-06-01

    The present study was designed to investigate the effects of radiation on the ability to ingest monosaccharides and intracellular transportation in the parotid gland in mice. The submandibular regions, including the parotid gland, was exposed to 10 Gy of X-rays. Three days after irradiation, the localization of reducing silver grains in organelles was determined, using electron microscopic autoradiography with H-3 labeled galactosamine, glucosamine, fucose, and mannose. In the non-irradiated group, the proportion of reducing silver grains in the acinar cells began to increase 15 min after administration of monosaccharides, reached a peak at 180 min, and thereafter decreased. Similar findings were observed in the irradiated group, although the values were lower than the non-irradiated group. The proportion of reducing silver grains in the endoplasmic reticulum reached a peak at 15 min in both the non-irradiated and irradiated groups, and gradually decreased until 120 min. Thereafter, it became almost constant and low, but the proportion in the irradiated group was slightly higher than in the non-irradiated group. The proportion of reducing silver grains in the Golgi apparatus was maximum at 60 min in the non-irradiated group, and gradually decreased until 360 min. A similar tendency was seen in the irradiated group, although its variation was not so marked as in the non-irradiated group. The proportion of reducing silver grains in the condensing vacuoles was maximum at 120 min, and thereafter, it decreased; the decrease was only slight in the irradiated group. The proportion of reducing silver grains in secretory granules increased with time in both the non-irradiated and irradiated groups, although this was only slight in the irradiated group, and reached a peak at 360 min. Transportation of monosaccharides in an acinar cell was found to be delayed by irradiation. (N.K.).

  9. Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling

    Blaine, Stacy A.; Ray, Kevin C.; Anunobi, Reginald; Gannon, Maureen A.; Washington, Mary K.; Means, Anna L.

    2010-01-01

    Studies in both humans and rodents have found that insulin+ cells appear within or near ducts of the adult pancreas, particularly following damage or disease, suggesting that these insulin+ cells arise de novo from ductal epithelium. We have found that insulin+ cells are continuous with duct cells in the epithelium that makes up the hyperplastic ducts of both chronic pancreatitis and pancreatic cancer in humans. Therefore, we tested the hypothesis that both hyperplastic ductal cells and their...

  10. Knockdown of GRP78 promotes apoptosis in pancreatic acinar cells and attenuates the severity of cerulein and LPS induced pancreatic inflammation.

    Yong Liu

    Full Text Available Acute pancreatitis (AP is a potentially lethal disease characterized by inflammation and parenchymal cell death; also, the severity of AP correlates directly with necrosis and inversely with apoptosis. However, mechanisms of regulating cell death in AP remain unclear. The endoplasmic reticulum (ER chaperone protein GRP78 has anti-apoptotic properties, in addition to modulating ER stress responses. This study used RNA interference (RNAi approach to investigate the potential role of GRP78 in regulating apoptosis during AP. In vitro models of AP were successfully developed by treating AR42J cells with cerulein or cerulein plus lipoplysaccharide (LPS. There was more pancreatic inflammation and less apoptosis with the cerulein plus LPS treatment. Furthermore, knockdown of GRP78 expression markedly promoted apoptosis and reduced necrosis in pancreatic acinar cells. This was accomplished by enhancing the activation of caspases and inhibiting the activity of X-linked inhibitor of apoptosis protein (XIAP, as well as a receptor interacting protein kinase-1(RIPK1, which is a key mediator of necrosis. This attenuated the severity of pancreatic inflammation, especially after cerulein plus LPS treatment. In conclusion, these findings indicate that GRP78 plays an anti-apoptotic role in regulating the cell death response during AP. Therefore, GRP78 is a potential therapeutic target for AP.

  11. Pancreatic ductal bicarbonate secretion: challenge of the acinar acid load

    Peter eHegyi

    2011-07-01

    Full Text Available Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel, however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.

  12. Pancreatic Acinar Cells Employ miRNAs as Mediators of Intercellular Communication to Participate in the Regulation of Pancreatitis-Associated Macrophage Activation.

    Zhao, Yong; Wang, Hao; Lu, Ming; Qiao, Xin; Sun, Bei; Zhang, Weihui; Xue, Dongbo

    2016-01-01

    Macrophage activation plays an important role in the inflammatory response in acute pancreatitis. In the present study, the activation of AR42J pancreatic acinar cells was induced by taurolithocholate treatment. The results showed that the culture medium from the activated AR42J cells significantly enhanced NFκB activation in the macrophages compared to that without taurolithocholate treatment. Additionally, the precipitates obtained from ultracentrifugation of the culture media that were rich in exosomes were markedly more potent in activating macrophages compared with the supernatant fraction lacking exosomes. The results indicated that the mediators carried by the exosomes played important roles in macrophage activation. Exosomal miRNAs were extracted and examined using microarrays. A total of 115 differentially expressed miRNAs were identified, and 30 showed upregulated expression, while 85 displayed downregulated expression. Target genes of the differentially expressed miRNAs were predicted using TargetScan, MiRanda, and PicTar software programs. The putative target genes were subjected to KEGG functional analysis. The functions of the target genes were primarily enriched in MAPK pathways. Specifically, the target genes regulated macrophage activation through the TRAF6-TAB2-TAK1-NIK/IKK-NFκB pathway. As the mediators of signal transduction, miRNAs and their predicted target mRNAs regulate every step in the MAPK pathway. PMID:27546996

  13. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events.

    Nuche-Berenguer, Bernardo; Ramos-Álvarez, Irene; Jensen, R T

    2016-06-01

    In a recent study we explored Group-1-p21-activated kinases (GP.1-PAKs) in rat pancreatic acini. Only PAK2 was present; it was activated by gastrointestinal-hormones/neurotransmitters and growth factors in a PKC-, Src- and small-GTPase-mediated manner. PAK2 was required for enzyme-secretion and ERK/1-2-activation. In the present study we examined PAK2's role in CCK and TPA-activation of important distal signaling cascades mediating their physiological/pathophysiological effects and analyzed its role in pathophysiological processes important in early pancreatitis. In rat pancreatic acini, PAK2-inhibition by the specific, GP.1.PAK-inhibitor, IPA-3-suppressed cholecystokinin (CCK)/TPA-stimulated activation of focal-adhesion kinases and mitogen-activated protein-kinases. PAK2-inhibition reversed the dual stimulatory/inhibitory effect of CCK/TPA on the PI3K/Akt/GSK-3β pathway. However, its inhibition did not affect PKC activation. PAK2-inhibition protected acini from CCK-induced ROS-generation; caspase/trypsin-activation, important in early pancreatitis; as well as from cell-necrosis. Furthermore, PAK2-inhibition reduced proteolytic-activation of PAK-2p34, which is involved in programmed-cell-death. To ensure that the study did not only rely in the specificity of IPA-3 as a PAK inhibitor, we used two other approaches for PAK inhibition, FRAX597 a ATP-competitive-GP.1-PAKs-inhibitor and infection with a PAK2-dominant negative(DN)-Advirus. Those two approaches confirmed the results obtained with IPA-3. This study demonstrates that PAK2 is important in mediating CCK's effect on the activation of signaling-pathways known to mediate its physiological/pathophysiological responses including several cellular processes linked to the onset of pancreatitis. Our results suggest that PAK2 could be a new, important therapeutic target to consider for the treatment of diseases involving deregulation of pancreatic acinar cells. PMID:26912410

  14. Nonenzymatic cryogenic isolation of therapeutic cells: novel approach for enzyme-free isolation of pancreatic islets using in situ cryopreservation of islets and concurrent selective freeze destruction of acinar tissue.

    Taylor, Michael J; Baicu, Simona C

    2014-01-01

    Cell-based therapies, which all involve processes for procurement and reimplantation of living cells, currently rely upon expensive, inconsistent, and even toxic enzyme digestion processes. A prime example is the preparation of isolated pancreatic islets for the treatment of type 1 diabetes by transplantation. To avoid the inherent pitfalls of these enzymatic methods, we have conceptualized an alternative approach based on the hypothesis that cryobiological techniques can be used for differential freeze destruction of the pancreas (Px) to release islets that are selectively cryopreserved in situ. Pancreata were procured from juvenile pigs using approved procedures. The concept of cryoisolation is based on differential processing of the pancreas in five stages: 1) infiltrating islets in situ preferentially with a cryoprotectant (CPA) cocktail via antegrade perfusion of the major arteries; 2) retrograde ductal infusion of water to distend the acinar; 3) freezing the entire Px solid to dithizone for identification of intact islets and with Syto 13/PI for fluorescence viability testing and glucose-stimulated insulin release assessment. As predicted, the cryoisolate contained small fragments of residual tissue comprising an amorphous mass of acinar tissue with largely intact and viable (>90%) embedded islets. Islets were typically larger (range 50-500 µm diameter) than their counterparts isolated from juvenile pigs using conventional enzyme digestion techniques. Functionally, the islets from replicate cryoisolates responded to a glucose challenge with a mean stimulation index = 3.3 ± 0.7. An enzyme-free method of islet isolation relying on in situ cryopreservation of islets with simultaneous freeze destruction of acinar tissue is feasible and proposed as a new and novel method that avoids the problems associated with conventional collagenase digestion methods. PMID:23992741

  15. Damage to pancreatic acinar cells and preservation of islets of Langerhans in a rat model of acute pancreatitis induced by Karwinskia humboldtiana (buckthorn).

    Carcano-Diaz, Katya; Garcia-Garcia, Aracely; Segoviano-Ramirez, Juan Carlos; Rodriguez-Rocha, Humberto; Loera-Arias, Maria de Jesus; Garcia-Juarez, Jaime

    2016-09-01

    Karwinskia humboldtiana (Kh) is a poisonous plant that grows in some regions of the American continent. Consuming large amounts of Kh fruit results in acute intoxication leading to respiratory failure, culminating in death within days. There is evidence of histological damage to the lungs, liver, and kidneys following accidental and experimental Kh intoxication. To date, the microscopic effect of Kh consumption on the pancreas has not been described. We examined the early effects of Kh fruit on pancreatic tissue at different stages of acute intoxication in the Wistar rat. We found progressive damage confined to the exocrine pancreas, starting with a reduction in the number of zymogen granules, loss of acinar architecture, the presence of autophagy-like vesicles, apoptosis and inflammatory infiltrate. The pancreatic pathology culminated in damaged acini characterized by necrosis and edema, with a complete loss of lobular architecture. Interestingly, the morphology of the islets of Langerhans was conserved throughout our evaluations. Taken together, our results indicate the damage induced by a high dose of Kh fruit in the Wistar rat is consistent with an early acute necrotizing pancreatitis that exclusively affects the exocrine pancreas. Therefore, this system might be useful as an animal model to study the treatment of pancreatic diseases. More importantly, as the islets of Langerhans were preserved, the active compounds of Kh fruit could be utilized for the treatment of acinar pancreatic cancer. Further studies might provide insight into the severity of acute Kh intoxication in humans and influence the design of treatments for pancreatic diseases and acinar pancreatic cancer. PMID:26877198

  16. Congenital acinar dysplasia. Case Report

    Pulmonary hypoplasia (PH) is a rare cause of pulmonary insufficiency , and had a significant rate of morbidity and mortality among affected infants. In most cases ,pulmonary hypoplasia is secondry to underlying abnormalities . These may include space occupying lesions as infants with cogential diaphragmatic hernia; malformation of chest wall resulting in a small thorcacic cavity; severe and prolonged olygohydramnios; and neuromuscular disorders, which prevent normal fetal chest expansion.All lead to poor lung development. Primary PH as a result of cogenital acinar dysplasia is exceedingly rare and is diagnosed by exclusionof all known etiologies of secondary PH. (author)

  17. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  18. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    Abasolo, Ibane [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Pujal, Judit; Navarro, Pilar [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Rabanal, Rosa M.; Serafin, Anna [Universitat Autonoma de Barcelona, Departament de Medicina i Cirurgia Animals, Barcelona (Spain); Millan, Olga [Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Real, Francisco X. [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Programa de Patologia Molecular, Centro Nacional de Investigaciones Oncologicas, Madrid (Spain)

    2009-07-15

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  19. Induction of C-FOS, C-MYC and P53 by β-adrenergic receptor (β-AR) stimulation of rat parotid acinar cells (RPAC)

    Treatment of rats with the β-agonist isoproterenol (ISO) results in dramatically increased parotid gland protein synthesis, processing and cell proliferation. The authors have shown that in RPAC in vitro, β-AR stimulation has similar effect on protein synthesis and processing. Proto-oncogenes have been implicated in growth regulation, differentiation and in mediating some extracellular stimulated events at the level of gene expression. To understand the regulation of cellular events after β-AR stimulation, the expression of c-fos, c-myc and p53 was investigated. RPAC were incubated with or without 10-5M ISO for 15, 30, 60 min. mRNA was isolated from cells and hybridization analysis was performed on nitrocellulose paper-transferred mRNA using 32P-labeled DNA probes. At early time points, the levels of c-fos gene activation in ISO-treated and control cells were comparable. After 60 min of ISO treatment, a sharp 20-30 fold induction of c-fos expression occurred. Similar increases in c-myc and p53 gene expression were observed after 60 min of ISO treatment. The authors data indicate that early effects of β-AR stimulation of RPAC include induction of c-fos, c-myc and p53 gene expression as well as enhanced protein synthesis and processing

  20. Monoclonal Antibody 16D10 to the C-Terminal Domain of the Feto-Acinar Pancreatic Protein Binds to Membrane of Human Pancreatic Tumoral SOJ-6 Cells and Inhibits the Growth of Tumor Xenografts

    Laurence Panicot-Dubois

    2004-11-01

    Full Text Available Feto-acinar pancreatic protein (FAPP characterized by mAbJ28 reactivity is a specific component associated with ontogenesis and behaves as an oncodevelopment-associated antigen. We attempted to determine whether pancreatic tumoral SOJ-6 cells are expressed at their surface FAPP antigens and to examine if specific antibodies directed against these FAPP epitopes could decrease the growth of pancreatic tumors in a mice model. For this purpose, we used specific antibodies against either the whole FAPP, the O-glycosylated C-terminal domain, or the N-terminal domain of the protein. Our results indicate that SOJ-6 cells expressed at their surface a 32-kDa peptide corresponding to the C-terminal domain of the FAPP. Furthermore, we show, by using endoproteinase Lys-C or geldanamycin, a drug able to impair the FAPP secretion, that this 32-kDa peptide expressed on the SOJ-6 cell surface comes from the degradation of the FAPP. Finally, an in vivo prospective study using a preventative tumor model in nude mice indicates that targeting this peptide by the use of mAb16D10 inhibits the growth of SOJ-6 xenografts. The specificity of mAb16D10 for pancreatic tumors and the possibility to obtain recombinant structures of mucin-like peptides recognized by mAb16D10 and mAbJ28 are promising tools in immunologic approaches to cure pancreatic cancers.

  1. Effects of a diet high in fish oil (MaxEPA) on the formation of micronucleated erythrocytes in blood and on the number of atypical acinar cell foci Induced in rat pancreas by azaserine.

    Appel, Marko J; Woutersen, Ruud A

    2003-01-01

    The present study was performed to investigate the influence of fish oil on the genotoxic effects of azaserine, using the formation of micronucleated erythrocytes as a measure for the degree of initiating potency and the number and size of putative preneoplastic pancreatic atypical acinar cell foci (AACF) as a measure for the actual number of initiated cells. Male Wistar rats were treated twice i.p. with 30 mg azaserine per kg body weight to induce AACF. During the initiation/early promotion phase the rats were maintained on diets containing 5 wt% vegetable oil (safflower and high-oleic sunflower oil), 25 wt% vegetable oil, 25 wt% fat (15% vegetable oil + 10 wt% fish oil), or 25 wt% fat (5% vegetable oil + 20 wt% fish oil), respectively. One day after carcinogen treatment, the numbers of micronucleated polychromatic erythrocytes were determined in blood smears obtained from 10 animals per group. Each high-fat diet resulted in higher percentages of micronucleated polychromatic erythrocytes than the low-fat diet. Dietary fish oil did not significantly influence the number of micronucleated cells. Two weeks after carcinogen treatment, the diets containing fish oil were replaced by the diet containing 25% vegetable oil, and the animals were further maintained for about 14 wk. Pancreatic tissue slides were microscopically evaluated for the number and size of AACF. Dietary fish oil caused an increase in the number and size of AACF, although a clear dose-effect relationship was absent. It was concluded that a high level of dietary fish oil, when given during the induction/early promotion phase, enhances azaserine-induced pancreatic carcinogenesis in rats. PMID:14769538

  2. Loss of the BRCA1-interacting helicase BRIP1 results in abnormal mammary acinar morphogenesis.

    Kazuhiro Daino

    Full Text Available BRIP1 is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1 and plays an important role in BRCA1-dependent DNA repair and DNA damage-induced checkpoint control. Recent studies implicate BRIP1 as a moderate/low-penetrance breast cancer susceptibility gene. However, the phenotypic effects of BRIP1 dysfunction and its role in breast cancer tumorigenesis remain unclear. To explore the function of BRIP1 in acinar morphogenesis of mammary epithelial cells, we generated BRIP1-knockdown MCF-10A cells by short hairpin RNA (shRNA-mediated RNA interference and examined its effect in a three-dimensional culture model. Genome-wide gene expression profiling by microarray and quantitative RT-PCR were performed to identify alterations in gene expression in BRIP1-knockdown cells compared with control cells. The microarray data were further investigated using the pathway analysis and Gene Set Enrichment Analysis (GSEA for pathway identification. BRIP1 knockdown in non-malignant MCF-10A mammary epithelial cells by RNA interference induced neoplastic-like changes such as abnormal cell adhesion, increased cell proliferation, large and irregular-shaped acini, invasive growth, and defective lumen formation. Differentially expressed genes, including MCAM, COL8A1, WIPF1, RICH2, PCSK5, GAS1, SATB1, and ELF3, in BRIP1-knockdown cells compared with control cells were categorized into several functional groups, such as cell adhesion, polarity, growth, signal transduction, and developmental process. Signaling-pathway analyses showed dysregulation of multiple cellular signaling pathways, involving LPA receptor, Myc, Wnt, PI3K, PTEN as well as DNA damage response, in BRIP1-knockdown cells. Loss of BRIP1 thus disrupts normal mammary morphogenesis and causes neoplastic-like changes, possibly via dysregulating multiple cellular signaling pathways functioning in the normal development of mammary glands.

  3. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    Luciana Reis AZEVEDO-ALANIS

    2015-10-01

    Full Text Available Although some morphological investigations on aged human sublingual glands (HSG found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated.Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death.Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years; II (31–60, and III (61–90. Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM. Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05.Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001. However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis.Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death.

  4. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices

    Goldenberg Anna

    2006-06-01

    Full Text Available Abstract Background Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV which serves to match lung perfusion to ventilation. The underlying mechanisms are not fully resolved yet. The major vascular segment contributing to HPV, the intra-acinar artery, is mostly located in that part of the lung that cannot be selectively reached by the presently available techniques, e.g. hemodynamic studies of isolated perfused lungs, recordings from dissected proximal arterial segments or analysis of subpleural vessels. The aim of the present study was to establish a model which allows the investigation of HPV and its underlying mechanisms in small intra-acinar arteries. Methods Intra-acinar arteries of the mouse lung were studied in 200 μm thick precision-cut lung slices (PCLS. The organisation of the muscle coat of these vessels was characterized by α-smooth muscle actin immunohistochemistry. Basic features of intra-acinar HPV were characterized, and then the impact of reactive oxygen species (ROS scavengers, inhibitors of the respiratory chain and Krebs cycle metabolites was analysed. Results Intra-acinar arteries are equipped with a discontinuous spiral of α-smooth muscle actin-immunoreactive cells. They exhibit a monophasic HPV (medium gassed with 1% O2 that started to fade after 40 min and was lost after 80 min. This HPV, but not vasoconstriction induced by the thromboxane analogue U46619, was effectively blocked by nitro blue tetrazolium and diphenyleniodonium, indicating the involvement of ROS and flavoproteins. Inhibition of mitochondrial complexes II (3-nitropropionic acid, thenoyltrifluoroacetone and III (antimycin A specifically interfered with HPV, whereas blockade of complex IV (sodium azide unspecifically inhibited both HPV and U46619-induced constriction. Succinate blocked HPV whereas fumarate had minor effects on vasoconstriction. Conclusion This study establishes the first model for investigation of basic characteristics of HPV

  5. 姜黄素对长期摄入酒精和不同量蛋白质的大鼠胰腺腺泡细胞损伤的保护作用研究%Effects of Curcumin on Pancreatic Acinar Cell Injury in Rats with Long-term Alcohol Intake and Different Amount of Protein

    周旭春

    2011-01-01

    目的:研究姜黄素对长期摄入酒精和不同量蛋白质的大鼠胰腺腺泡细胞损伤的保护作用.方法:实验分为5组,即正常对照(正常饲养)、高蛋白、低蛋白、高蛋白+姜黄素、低蛋白+姜黄素(以25%酒精代替饮水自由饮用,高、低蛋白质占总热量供给的32%、6%,喂饲6个月)组.在光镜和电镜下观察大鼠胰腺腺泡细胞结构变化,用比色法检测胰腺组织匀浆淀粉酶和脂肪酶的含量,TUNEL法检测腺泡细胞凋亡情况,免疫组化检测胰腺组织切片中环氧化酶-2(COX-2)的变化.结果:与高、低蛋白组比较,高、低蛋白+姜黄素组大鼠胰腺腺泡细胞髓样结构减少,线粒体肿胀减轻;淀粉酶和脂肪酶含量均显著升高(P<0.05);胰腺腺泡细胞凋亡显著减少(P<0.05);COX-2的表达降低.结论:姜黄素可预防摄入酒精联合过高或过低蛋白质的大鼠胰腺腺泡细胞损伤,延缓酒精性胰腺损伤的进程.%OBJECTIVE: To investigate the protective effects of curcumin on pancreatic acinar cell injury in rats with long-term alcohol intake and protein consumption. METHODS: Wistar rats were divided into 5 groups, I.e. Normal control group (the group fed with normal feed) ,high protein group, low protein group, high protein+curcumin group, low protein+curcumin group (those groups fed with diet containing 25% ethanol instead of drinking water for 6 months). High and low protein accounted for 32% and 6 % of total heat quantity. The structure change of pancreatic acinar cell was observed under light microscope and electron microscope. The contents of amylase and lipase in pancreatic tissue homogenate were determined by colorimetry. Apoptosis and expression of cyclooxygenase-2(COX-2) in acinar cell were detected by TUNEL and immunohistochemical staining, respectively. RESULTS: Compared with no application of curcumin, myelin figure and enlarged mitochondria were reduced in curcumin treatment groups. Lipase and amylase

  6. A Microfluidic Model of Biomimetically Breathing Pulmonary Acinar Airways.

    Fishler, Rami; Sznitman, Josué

    2016-01-01

    Quantifying respiratory flow characteristics in the pulmonary acinar depths and how they influence inhaled aerosol transport is critical towards optimizing drug inhalation techniques as well as predicting deposition patterns of potentially toxic airborne particles in the pulmonary alveoli. Here, soft-lithography techniques are used to fabricate complex acinar-like airway structures at the truthful anatomical length-scales that reproduce physiological acinar flow phenomena in an optically accessible system. The microfluidic device features 5 generations of bifurcating alveolated ducts with periodically expanding and contracting walls. Wall actuation is achieved by altering the pressure inside water-filled chambers surrounding the thin PDMS acinar channel walls both from the sides and the top of the device. In contrast to common multilayer microfluidic devices, where the stacking of several PDMS molds is required, a simple method is presented to fabricate the top chamber by embedding the barrel section of a syringe into the PDMS mold. This novel microfluidic setup delivers physiological breathing motions which in turn give rise to characteristic acinar air-flows. In the current study, micro particle image velocimetry (µPIV) with liquid suspended particles was used to quantify such air flows based on hydrodynamic similarity matching. The good agreement between µPIV results and expected acinar flow phenomena suggest that the microfluidic platform may serve in the near future as an attractive in vitro tool to investigate directly airborne representative particle transport and deposition in the acinar regions of the lungs. PMID:27214269

  7. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules.

    Karl L Wögenstein

    Full Text Available Epiplakin, a member of the plakin protein family, is exclusively expressed in epithelial tissues and was shown to bind to keratins. Epiplakin-deficient (EPPK-/- mice showed no obvious spontaneous phenotype, however, EPPK-/- keratinocytes displayed faster keratin network breakdown in response to stress. The role of epiplakin in pancreas, a tissue with abundant keratin expression, was not yet known. We analyzed epiplakin's expression in healthy and inflamed pancreatic tissue and compared wild-type and EPPK-/- mice during caerulein-induced acute pancreatitis. We found that epiplakin was expressed primarily in ductal cells of the pancreas and colocalized with apicolateral keratin bundles in murine pancreatic acinar cells. Epiplakin's diffuse subcellular localization in keratin filament-free acini of K8-deficient mice indicated that its filament-associated localization in acinar cells completely depends on its binding partner keratin. During acute pancreatitis, epiplakin was upregulated in acinar cells and its redistribution closely paralleled keratin reorganization. EPPK-/- mice suffered from aggravated pancreatitis but showed no obvious regeneration phenotype. At the most severe stage of the disease, EPPK-/- acinar cells displayed more keratin aggregates than those of wild-type mice. Our data propose epiplakin to be a protective protein during acute pancreatitis, and that its loss causes impaired disease-associated keratin reorganization.

  8. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Suszynski, Thomas M; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2014-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissu...

  9. Colon cancer stem cells: implications in carcinogenesis

    Sanders, Matthew A.; Majumdar, Adhip P. N.

    2011-01-01

    The cancer stem cell model was described for hematologic malignancies in 1997 and since then evidence has emerged to support it for many solid tumors as well, including colon cancer. This model proposes that certain cells within the tumor mass are pluripotent and capable of self-renewal and have an enhanced ability to initiate distant metastasis. The cancer stem cell model has important implications for cancer treatment, since most current therapies target actively proliferating cells and may...

  10. Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation.

    Sharon J Sequeira

    Full Text Available Endoplasmic reticulum (ER stress signaling can be mediated by the ER kinase PERK, which phosphorylates its substrate eIF2alpha. This in turn, results in translational repression and the activation of downstream programs that can limit cell growth through cell cycle arrest and/or apoptosis. These responses can also be initiated by perturbations in cell adhesion. Thus, we hypothesized that adhesion-dependent regulation of PERK signaling might determine cell fate. We tested this hypothesis in a model of mammary acini development, a morphogenetic process regulated in part by adhesion signaling. Here we report a novel role for PERK in limiting MCF10A mammary epithelial cell proliferation during acinar morphogenesis in 3D Matrigel culture as well as in preventing mammary tumor formation in vivo. We show that loss of adhesion to a suitable substratum induces PERK-dependent phosphorylation of eIF2alpha and selective upregulation of ATF4 and GADD153. Further, inhibition of endogenous PERK signaling during acinar morphogenesis, using two dominant-negative PERK mutants (PERK-DeltaC or PERK-K618A, does not affect apoptosis but results instead in hyper-proliferative and enlarged lumen-filled acini, devoid of proper architecture. This phenotype correlated with an adhesion-dependent increase in translation initiation, Ki67 staining and upregulation of Laminin-5, ErbB1 and ErbB2 expression. More importantly, the MCF10A cells expressing PERKDeltaC, but not a vector control, were tumorigenic in vivo upon orthotopic implantation in denuded mouse mammary fat pads. Our results reveal that the PERK pathway is responsive to adhesion-regulated signals and that it is essential for proper acinar morphogenesis and in preventing mammary tumor formation. The possibility that deficiencies in PERK signaling could lead to hyperproliferation of the mammary epithelium and increase the likelihood of tumor formation, is of significance to the understanding of breast cancer.

  11. PTD-NBD polypeptide down-regulates expression of NF-κB p65 in inflammatory pancreatic acinar cell injury in rats%PTD-NBD多肽对大鼠胰腺腺泡细胞炎症损伤中NF-κB表达的影响

    谢文瑞; 杨元生; 杨新魁; 陈垦; 陈婧华; 崔淑兰; 王晖

    2013-01-01

    To examine the effect of PTD-NBD polypeptide on the expression of nuclear factor κB (NF-κB) p65 in inflammatory pancreatic acinar cell injury in rats.METHODS:Rat pancreatic acinar cells were isolated,cultured,and divided into a normal control group,an acute pancreatitis (AP) group and a PTD-NBD polypeptides group.An in vitro model of AP was induced by treating rat pancreatic acinar cells with lipopolysaccharide (10 mg/L).Cell morphological changes were observed,and the contents of amylase,superoxide dismutase (SOD) and IL-1β in culture medium were tested.Expression of NF-κB p65 mRNA and protein in cells was detected by RT-PCR and Western blot 6 and 12 h after modeling,respectively.RESULTS:Compared to the control group,pancreatic acinar cell swelling and death were increased (6 h:8.9 ± 0.34 vs 1.1 ± 0.13; 12 h:9.4 ± 0.26 vs 1.2 ± 0.15,both P < 0.05),the contents of amylase (6 h:2135.8 ± 347.2 vs 873.5 ± 91.6; 12 h:3299.6 ± 217.7 vs 917.7 ± 101.9,both P < 0.05) and IL-1β (6 h:84.9 ± 15.7 vs 39.3 ± 7.9; 12 h:95.6 ± 17.1 vs 38.9 ± 5.2,both P < 0.05) were increased and the contents of SOD were decreased in culture medium (6 h:116.3 ± 30.3 vs 176.2 ± 21.6; 12h:101.5 ± 25.6 vs 173.6 ± 27.9,P < 0.05),and the expression of NF-kB p65 in pancreatic acinar ceils was increased (P < 0.05) in the AP group at 6 and 12 h after modeling.Compared to the AP group,pancreatic acinar cell swelling and death were lessened (6 h:6.8 ± 0.23 vs 8.9 ± 0.34; 12 h:7.5 ± 0.19 vs 9.4 ± 0.26,both P < 0.05),the contents of SOD were raised (6 h:137.6 ± 27.4 vs 116.3 ± 30.3; 12 h:144.3 ± 23.6 vs 101.5 ± 25.6,both P < 0.05)and the contents of amylase (6 h:1951.5 ± 211.7 vs 2135.8 ± 347.2; 12 h:1761.3 ± 231.5 vs 3299.6 ± 217.7,both P < 0.05) and IL-1β (6 h:66.8 ± 11.6 vs 84.9 ± 15.7; 12 h:54.8 ± 21.2 vs 95.6 ± 17.1,both P < 0.05) were decreased in culture medium,and the expression of NF-κB p65 mRNA and protein was down-regulated in the PAT

  12. Cytotoxic effect of desoxycholic acid on pancreatic acinar cells and its influence on the activity of nuclear transcription factors%脱氧胆酸对胰腺腺泡细胞的损伤及核转录因子活性的影响

    张桂信; 陈海龙; 曹传海; 林小洋; 张利; 纪军; 王永鹏

    2011-01-01

    目的 观察脱氧胆酸(DCA)对AR42J胰腺腺泡细胞的损伤作用并探讨其对核转录因子(TF)活性的影响。方法 应用噻唑蓝(MTT)比色法检测DCA作用下细胞存活率改变,流式细胞术AV/PI双染法检测细胞的凋亡/坏死率。细胞经0.4mmoL/L DCA分别作用15 min、30 min、4h后收集培液上清,收集细胞并提取细胞质和细胞核蛋白,分别检测培液上清和胞质淀粉酶的活性,利用Luminex检测细胞核TF的DNA结合活性。结果 DCA对AR42J胰腺腺泡细胞的损伤作用呈浓度和时间依赖性,对细胞质内和培液中的淀粉酶水平无明显影响。在检测的40种TF活性变化中,DCA诱导ATF2、AR33、STAT5、NFAT、FKHR和NKX-2.5这6种TF活性明显升高,而RUNX/AML、NF-Y、MEF2和E2F1这4种TF活性则明显下降,其余30种TF活性无明显变化。结论 DCA对腺泡细胞的损伤作用主要表现为凋亡和坏死,对细胞内酶的合成和分泌功能没有明显影响。DCA诱导细胞核TF活性的变化,可能是其诱导细胞损伤的分子生物学基础。%Objective To study the cytotoxic effect of desoxycholic acid (DCA) on pancreatic acinar cells AR42J, its impact on the synthesis and secretion function of amylase, and the influence on the activity of nuclear transcription factor (TF). MethodsThe cytotoxic effect of DCS was detected in rat AR42J cells by using methyl thiazol tetrazolium (MTT) assay. The rate of apoptosis or necrosis was determined by flow cytometry. After the cells were incubated with DCA (0. 4 mmol/L) for 15 min, 30 min, or 4 h, the medium was collected to detect the activity of amylase. The cytoplamic protein was extracted to detect the activity of amylase, and nuclear protein was extracted to detect the DNA binding activity of 40 TFs by Luminex. Results DCA exerted cytotoxic effects on AR42J cells in a time-and dose-dependent manner, and induced cell apoptosis and necrosis. DCA had no significant influence on the amylase synthesis and secretion

  13. Pituitary stem cells: candidates and implications.

    Nassiri, Farshad; Cusimano, Michael; Zuccato, Jeff A; Mohammed, Safraz; Rotondo, Fabio; Horvath, Eva; Syro, Luis V; Kovacs, Kalman; Lloyd, Ricardo V

    2013-09-01

    The pituitary is the master endocrine gland of the body. It undergoes many changes after birth, and these changes may be mediated by the differentiation of pituitary stem cells. Stem cells in any tissue source must display (1) pluripotent capacity, (2) capacity for indefinite self-renewal, and (3) a lack of specialization. Unlike neural stem cells identified in the hippocampus and subventricular zone, pituitary stem cells are not associated with one specific cell type. There are many major candidates that are thought to be potential pituitary stem cell sources. This article reviews the evidence for each of the major cell types and discuss the implications of identifying a definitive pituitary stem cell type. PMID:23423660

  14. Peri-ampullary mixed acinar-endocrine carcinoma

    Ayman Walid Soubra

    2011-05-01

    Full Text Available Mixed acinar-endocrine carcinomas (MAEC are rare tumors of the pancreas. We present the case of a patient with peri-ampullary tumor that presented with painless jaundice and after investigation was found to have MAEC. He underwent pancreaticoduodunectomy with tumor free margins and negative lymph nodes. The patient presented with local recurrence and liver metastasis after 1 year and is on chemotherapy with stable lesions 30 months after the diagnosis.

  15. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina;

    2000-01-01

    and [Ca2+]i. It was found that a simple correlation between the rise in [Ca2+]i and the rate of NO production following NE stimulation does not exist, and studies in which [Ca2+]i was elevated by means of the Ca 2+ ionophore, ionomycin, further established that even a very large rise in [Ca2+]i did...

  16. Mixed acinar-endocrine carcinoma of pancreas: a case report and brief review of the literature

    Liu Z

    2015-07-01

    Full Text Available Zhenzhen Liu,1,2 Chengyong Dong,1,2 Chengye Wang,1,2 Qinlong Liu,1 Deguang Sun,1 Liming Wang1 1Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 2Dalian Medical University, Dalian, Liaoning Province, People’s Republic of China Abstract: Mixed acinar-endocrine carcinoma (MAEC of the pancreas is a rare entity. We present a 65-year-old Chinese female who was admitted with jaundice and nagging epigastric pain with intermittent diarrhea for 1 month. She eventually underwent abdominal magnetic resonance imaging, which showed an 8×6 cm mass in the head of the pancreas and showed two abnormal lesions in the liver simultaneously. MAEC of the pancreas with synchronous hepatic metastasis was confirmed with immunohistochemistry after Whipple operation and hepatic partial resection of the lesions. Postoperative recovery of this patient was uneventful, and no evidence of recurrence or metastasis was observed after 12 months of follow-up. MAEC of pancreas is thought to be extremely rare and lack of typical clinical symptoms. The prognosis is poor overall, but early detection with complete resection may be beneficial to patients. Keywords: acinar cell carcinoma, neuroendocrine carcinoma of pancreas, neuroendocrine carcinoma, pancreatic neoplasms

  17. T cell avidity and tumor recognition: implications and therapeutic strategies

    Roszkowski Jeffrey J

    2005-09-01

    Full Text Available Abstract In the last two decades, great advances have been made studying the immune response to human tumors. The identification of protein antigens from cancer cells and better techniques for eliciting antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor recognition by T cells. Yet, much remains to be learned about the intricate details of T cell – tumor cell interactions. Though the strength of interaction between T cell and target is thought to be a key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or tumor cells reveal complex relationships. Coincident with these investigations, therapeutic strategies have been developed to enhance tumor recognition using antigens with altered peptide structures and T cells modified by the introduction of new antigen binding receptor molecules. The profound effects of these strategies on T cell – tumor interactions and the clinical implications of these effects are of interest to both scientists and clinicians. In recent years, the focus of much of our work has been the avidity and effector characteristics of tumor reactive T cells. Here we review concepts and current results in the field, and the implications of therapeutic strategies using altered antigens and altered effector T cells.

  18. Mixed acinar-neuroendocrine-ductal carcinoma of the pancreas: a tale of three lineages.

    Anderson, Mark J; Kwong, Christina A; Atieh, Mohammed; Pappas, Sam G

    2016-01-01

    Most pancreatic cancers arise from a single cell type, although mixed pancreatic carcinomas represent a rare exception. The rarity of these aggressive malignancies and the limitations of fine-needle aspiration (FNA) pose significant barriers to diagnosis and appropriate management. We report a case of a 54-year-old man presenting with abdominal pain, jaundice and a hypodense lesion within the uncinate process on CT. FNA suggested poorly differentiated adenocarcinoma, which was subsequently resected via pancreaticoduodenectomy. Pathological analysis yielded diagnosis of invasive mixed acinar-neuroendocrine-ductal pancreatic carcinoma. Given the rare and deadly nature of these tumours, clinicians must be aware of their pathophysiology and do practice with a high degree of clinical suspicion, when appropriate. Surgical resection and thorough pathological analysis with immunohistochemical staining and electron microscopy remain the standards of care for mixed pancreatic tumours without gross evidence of metastasis. Diligent characterisation of the presentation and histological findings associated with these neoplasms should continue in order to promote optimal diagnostic and therapeutic strategies. PMID:27257019

  19. Regulatory T cells and B cells: implication on autoimmune diseases

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  20. 0Adipose-derived stem cells: Implications in tissue regeneration

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  1. Experimental evidence of age-related adaptive changes in human acinar airways.

    Quirk, James D; Sukstanskii, Alexander L; Woods, Jason C; Lutey, Barbara A; Conradi, Mark S; Gierada, David S; Yusen, Roger D; Castro, Mario; Yablonskiy, Dmitriy A

    2016-01-15

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized (3)He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized (3)He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  2. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer.

    Steven T Lott

    2009-05-01

    Full Text Available BACKGROUND: Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium-associated RING Chromosome 1, a novel gene encoding a member of the TRIM (tripartite motif subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer. METHODS AND FINDINGS: Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS, an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue

  3. Implications of shorter cells in PEP

    Further studies on the beam-stay-clear requirements in PEP led to the conclusion that the vertical aperture needed to be enlarged. There are two main reasons for that: Observations at SPEAR indicate that the aperture should be large enough for a fully coupled beam. Full coupling of the horizontal and vertical betatron oscillations occurs not only occasionally when the energy, tune or betatron function at the interaction point is changed but also due to the beam/endash/beam effect of two strong colliding beams. The second reason for an increased aperture requirement is the nonlinear perturbation of the particle trajectories by the sextupoles. This perturbation increases a fully coupled beam by another 50% to 80%. Both effects together with a +-5 mm allowance for closed orbit perturbation result in a vertical beam-stay-clear in the bending magnets of +-4.8 to +-5.6 cm, compared to the present +-2.0 cm. This beam-stay-clear, together with additional space for vacuum chamber, etc., leads to very costly bending magnets. In this note, a shorter cell length is proposed which would reduce considerably the vertical beam-stay-clear requirements in the bending magnets. 7 figs

  4. The pattern of fibrosis in the acinar zone 3 areas in early alcoholic liver disease

    Junge, Jette; Horn, T; Vyberg, M;

    1991-01-01

    The degree of fibrosis and the pattern of collagen distribution in the acinar zone 3, as well as the thickness of the terminal hepatic vein walls (THV) were analyzed in 48 consecutive liver needle biopsies from 48 alcoholics with preserved liver architecture. The fibrosis occurred to more or less...

  5. Ectrodactyly and Lethal Pulmonary Acinar Dysplasia Associated with Homozygous FGFR2 Mutations Identified by Exome Sequencing.

    Barnett, Christopher P; Nataren, Nathalie J; Klingler-Hoffmann, Manuela; Schwarz, Quenten; Chong, Chan-Eng; Lee, Young K; Bruno, Damien L; Lipsett, Jill; McPhee, Andrew J; Schreiber, Andreas W; Feng, Jinghua; Hahn, Christopher N; Scott, Hamish S

    2016-09-01

    Ectrodactyly/split hand-foot malformation is genetically heterogeneous with more than 100 syndromic associations. Acinar dysplasia is a rare congenital lung lesion of unknown etiology, which is frequently lethal postnatally. To date, there have been no reports of combinations of these two phenotypes. Here, we present an infant from a consanguineous union with both ectrodactyly and autopsy confirmed acinar dysplasia. SNP array and whole-exome sequencing analyses of the affected infant identified a novel homozygous Fibroblast Growth Factor Receptor 2 (FGFR2) missense mutation (p.R255Q) in the IgIII domain (D3). Expression studies of Fgfr2 in development show localization to the affected limbs and organs. Molecular modeling and genetic and functional assays support that this mutation is at least a partial loss-of-function mutation, and contributes to ectrodactyly and acinar dysplasia only in homozygosity, unlike previously reported heterozygous activating FGFR2 mutations that cause Crouzon, Apert, and Pfeiffer syndromes. This is the first report of mutations in a human disease with ectrodactyly with pulmonary acinar dysplasia and, as such, homozygous loss-of-function FGFR2 mutations represent a unique syndrome. PMID:27323706

  6. In Vivo Detection of Acinar Microstructural Changes in Early Emphysema with 3He Lung Morphometry

    Quirk, James D.; Lutey, Barbara A.; Gierada, David S.; Woods, Jason C.; Senior, Robert M.; Lefrak, Stephen S.; Sukstanskii, Alexander L; Conradi, Mark S; Yablonskiy, Dmitriy A.

    2011-01-01

    In vivo helium 3 lung morphometry has greater sensitivity to early emphysematous changes than does low-dose CT or traditional pulmonary function testing (PFT), and this modality can be used to detect significant changes in acinar airway geometry, even in individuals with clinically normal PFT results.

  7. Geometrical influence of pulmonary acinar models on respiratory flows and particle deposition

    Hofemeier, Philipp; Sznitman, Josue

    2012-11-01

    Due to experimental challenges in assessing respiratory flows in the deep regions of the lungs, computational simulations are typically sought to quantify inhaled aerosol transport and deposition in the acinus. Most commonly, simulations are performed using generic geometries of alveoli, including spheres, toroids and polyhedra to mimic the acinar region. However, local respiratory flows and ensuing particle trajectories are anticipated to be highly influenced by the specific geometrical structures chosen. To date, geometrical influences have not yet been thoroughly quantified. Knowing beforehand how geometries affect acinar flows and particle transport is critical in translating simulated data to predictions of aerosol deposition in real lungs. Here, we conduct a systematic investigation on a number of generic acinar models. Simulations are conducted for simple alveolated airways featuring a selection of geometries. Deposition patterns and efficiencies are quantified both for massless particles, highlighting details of the local flow, and micron-scale aerosols. This latter group of particles represents an important class of inhaled aerosols known to reach and deposit in the acinus. Our work emphasizes the subtleties of acinar geometry in determining the fate of inhaled aerosols.

  8. Alternative materials for crystalline silicon solar cells - Risks and implications

    Kwapil, Wolfram

    2010-01-01

    This thesis considers the use of alternative silicon materials for photovoltaics – often termed “upgraded metallurgical grade” silicon – from different angles and evaluates the risks and implications for the wafer and solar cell properties at selected steps along the entire process chain.The properties of the alternative, upgraded metallurgical grade silicon materials analyzed in the course of this thesis were governed by the simultaneous presence of boron and phosphorus in high concentration...

  9. Microbes taming mast cells: Implications for allergic inflammation and beyond.

    Forsythe, Paul

    2016-05-01

    There is increasing awareness of a relationship between our microbiota and the pathogenesis of allergy and other inflammatory diseases. In investigating the mechanisms underlying microbiota modulation of allergy the focus has been on the induction phase; alterations in the phenotype and function of antigen presenting cells, induction of regulatory T cells and shifts in Th1/Th2 balance. However there is evidence that microbes can influence the effector phase of disease, specifically that certain potentially beneficial bacteria can attenuate mast cell activation and degranulation. Furthermore, it appears that different non-pathogenic bacteria can utilize distinct mechanisms to stabilize mast cells, acting locally though direct interaction with the mast cell at mucosal sites or attenuating systemic mast cell dependent responses, likely through indirect signaling mechanisms. The position of mast cells on the frontline of defense against pathogens also suggests they may play an important role in fostering the host-microbiota relationship. Mast cells are also conduits of neuro-immuo-endocrine communication, suggesting the ability of microbes to modulate cell responses may have implications for host physiology beyond immunology. Further investigation of mast cell regulation by non-pathogenic or symbiotic bacteria will likely lead to a greater understanding of host microbiota interaction and the role of the microbiome in health and disease. PMID:26130124

  10. The Implications of Cancer Stem Cells for Cancer Therapy

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  11. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows

    Fishler, Rami; Mulligan, Molly; Sznitman, Josue; Sznitman Biofluids Team

    2013-11-01

    Convective respiratory flows in the pulmonary acinus and their influence on the fate of inhaled particles are typically studied using computational fluid dynamics (CFD) or scaled-up experimental models. However, current experiments generally capture only flow dynamics, without inhaled particle dynamics, due to difficulties in simultaneously matching flow and particle dynamics. In an effort to overcome these limitations, we have designed a novel microfluidic device mimicking acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Using micro-particle image velocimetry (PIV), we reveal experimentally a gradual transition of alveolar flow patterns along the acinar tree from recirculating to radial streamlines, in support of previous predictions from CFD simulations. We demonstrate the applicability of the device for studying the mechanisms of particle deposition in the pulmonary acinus by mapping deposition sites of airborne fluorescent micro-particles (0.1-1 μm) and visualizing trajectories of airborne incense particles inside the system.

  12. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced 125I-[Tyr1]somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate [Gpp(NH)p]>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg2+. When pancreatic acini were treated with 1 μg/ml pertussis toxin for 4 h, subsequent 125I-[Tyr1]somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor

  13. Phagocytosis in Teleosts. Implications of the New Cells Involved

    María Ángeles Esteban

    2015-12-01

    Full Text Available Phagocytosis is the process by which cells engulf some solid particles to form internal vesicles known as phagosomes. Phagocytosis is in fact a specific form of endocytosis involving the vesicular interiorization of particles. Phagocytosis is essentially a defensive reaction against infection and invasion of the body by foreign substances and, in the immune system, phagocytosis is a major mechanism used to remove pathogens and/or cell debris. For these reasons, phagocytosis in vertebrates has been recognized as a critical component of the innate and adaptive immune responses to pathogens. Furthermore, more recent studies have revealed that phagocytosis is also crucial for tissue homeostasis and remodeling. Professional phagocytes in teleosts are monocyte/macrophages, granulocytes and dendritic cells. Nevertheless, in recent years phagocytic properties have also been attributed to teleost lymphocytes and thrombocytes. The possible implications of such cells on this important biological process, new factors affecting phagocytosis, evasion of phagocytosis or new forms of phagocytosis will be considered and discussed.

  14. Inhibition of pancreatic acinar mitochondrial thiamin pyrophosphate uptake by the cigarette smoke component 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    Srinivasan, Padmanabhan; Thrower, Edwin C; Gorelick, Fred S; Said, Hamid M

    2016-05-15

    Thiamin is essential for normal metabolism in pancreatic acinar cells (PAC) and is obtained from their microenvironment through specific plasma-membrane transporters, converted to thiamin pyrophosphate (TPP) in the cytoplasm, followed by uptake of TPP by mitochondria through the mitochondrial TPP (MTPP) transporter (MTPPT; product of SLC25A19 gene). TPP is essential for normal mitochondrial function. We examined the effect of long-term/chronic exposure of PAC in vitro (pancreatic acinar 266-6 cells) and in vivo (wild-type or transgenic mice carrying the SLC25A19 promoter) of the cigarette smoke toxin, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), on the MTPP uptake process. Our in vitro and in vivo findings demonstrate that NNK negatively affects MTPP uptake and reduced expression of MTPPT protein, MTPPT mRNA, and heterogenous nuclear RNA, as well as SLC25A19 promoter activity. The effect of NNK on Slc25a19 transcription was neither mediated by changes in expression of transcriptional factor NFY-1 (known to drive SLC25A19 transcription), nor due to changes in methylation profile of the Slc25a19 promoter. Rather, it appears to be due to changes in histone modifications that involve significant decreases in histone H3K4-trimethylation and H3K9-acetylation (activation markers). The effect of NNK on MTPPT function is mediated through the nonneuronal α7-nicotinic acetylcholine receptor (α7-nAChR), as indicated by both in vitro (using the nAChR antagonist mecamylamine) and in vivo (using an α7-nAchR(-/-) mouse model) studies. These findings demonstrate that chronic exposure of PAC to NNK negatively impacts PAC MTPP uptake. This effect appears to be exerted at the level of Slc25a19 transcription, involve epigenetic mechanism(s), and is mediated through the α7-nAchR. PMID:26999808

  15. Acinar ventilation heterogeneity in COPD relates to diffusion capacity, resistance and reactance.

    Jarenbäck, Linnea; Ankerst, Jaro; Bjermer, Leif; Tufvesson, Ellen

    2016-01-01

    The aim of this study was to investigate heterogenic ventilation in the acinar (Sacin) and conductive (Scond) airways of patients with varying chronic obstructive pulmonary disease (COPD) severity and how these relates to advanced lung function parameters, primarily measured by impulse oscillometry (IOS). A secondary aim was to investigate the effects of a short acting beta2-agonist and a muscarinic antagonist on the heterogenic ventilation. Eleven never smoking controls, 12 smoking controls, and 57 COPD patients (7 GOLD 1, 25 GOLD 2, 14 GOLD 3 and 11 GOLD 4) performed flow-volume spirometry, IOS, body plethysmography, single breath carbon monoxide diffusion, and N2-multiple breath washout. Six smoking controls and 13 of the COPD patients also performed double reversibility test by using salbutamol and its combination with ipratropium. Sacin was significantly higher in GOLD 2-4 compared to never smoking controls and smoking controls, but showed similar levels in GOLD 3 and 4. A factor analysis identified 4 components consisting of; 1) IOS parameters, 2) volume parameters, 3) diffusion parameters, Sacin and some IOS parameters and 4) Scond with central obstruction/air trapping. Salbutamol and its combination with ipratropium had no effect on Sacin and Scond. Increased Sacin in COPD was strongly related to diffusion capacity and lung volumes, but also weakly to resistance and reactance, showing a link between ventilation heterogeneity in the acinar airways and parameters measured by IOS. PMID:26607879

  16. Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results

    Grebenkov, D. S.; Guillot, G.; Sapoval, B.

    2007-01-01

    A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.

  17. Implications of epigenetic variability within a cell population for cell type classification

    Inna eTabansky

    2015-12-01

    Full Text Available Here we propose a new approach to defining nerve ‘cell types’ in reaction to recent advances in single cell analysis. Among cells previously thought to be equivalent, considerable differences in global gene expression and biased tendencies among differing developmental fates have been demonstrated within multiple lineages. The model of classifying cells into distinct types thus has to be revised to account for this intrinsic variability. A ‘cell type’ could be a group of cells that possess similar, but not necessarily identical properties, variable within a spectrum of epigenetic adjustments that permit its developmental path toward a specific function to be achieved. Thus, the definition of a cell type is becoming more similar to the definition of a species: sharing essential properties with other members of its group, but permitting a certain amount of deviation in aspects that do not seriously impact function. This approach accommodates, even embraces the spectrum of natural variation found in various cell populations and consequently avoids the fallacy of false equivalence. For example, developing neurons will react to their microenvironments with epigenetic changes resulting in slight changes in gene expression and morphology. Addressing the new questions implied here will have significant implications for developmental neurobiology.

  18. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  19. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    Speier, Stephan; Marciniak, Anja; Selck, Claudia; Friedrich, Betty

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To ove...

  20. Oral ulceration and bleeding associated with pancreatic enzyme supplementation in a German shepherd with pancreatic acinar atrophy

    Snead, Elisabeth

    2006-01-01

    A 20-month-old German shepherd with primary pancreatic acinar atrophy and exocrine pancreatic insufficiency that was treated with pancreatic enzyme supplementation, vitamin B12, and cimetidine developed oral bleeding. Following discontinuation of the cimetidine, increased preincubation of the enzymes with the food, and symptomatic therapy for the ulceration, the dog’s condition improved.

  1. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma.

    Snijders, Antoine M; Schmidt, Brian L; Fridlyand, Jane; Dekker, Nusi; Pinkel, Daniel; Jordan, Richard C K; Albertson, Donna G

    2005-06-16

    Genomes of solid tumors are characterized by gains and losses of regions, which may contribute to tumorigenesis by altering gene expression. Often the aberrations are extensive, encompassing whole chromosome arms, which makes identification of candidate genes in these regions difficult. Here, we focused on narrow regions of gene amplification to facilitate identification of genetic pathways important in oral squamous cell carcinoma (SCC) development. We used array comparative genomic hybridization (array CGH) to define minimum common amplified regions and then used expression analysis to identify candidate driver genes in amplicons that spanned LAMA3, MMP7), as well as members of the hedgehog (GLI2) and notch (JAG1, RBPSUH, FJX1) pathways to be amplified and overexpressed. Deregulation of these and other members of the hedgehog and notch pathways (HHIP, SMO, DLL1, NOTCH4) implicates deregulation of developmental and differentiation pathways, cell fate misspecification, in oral SCC development. PMID:15824737

  2. Estrategias para la diferenciaci??n in vitro de c??lulas ES de rat??n a c??lulas acinares pancre??ticas

    Rovira Clusellas, Meritxell

    2007-01-01

    Las patolog??as m??s importantes del p??ncreas exocrino, como la pancreatitis cr??nica (PC) o el c??ncer de p??ncreas, representan un gran problema de salud p??blica en Europa. En la PC, el tejido acinar es substituido por complejos ductales. Adem??s, es dif??cil mantener el fenotipo diferenciado de las c??lulas acinares en cultivo ya que sufren una transdiferenciaci??n acinar-ductal.Las c??lulas madre embrionarias (ES) de rat??n han sido utilizadas en la ??ltima d??cada para generar in vitro...

  3. Cancer Stem Cell Hypothesis: Implication for Cancer Prevention and Treatment

    Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya

    2016-01-01

    BACKGROUND: Cancer is a disease of genomic instability, evasion of immune cells, and adaptation of the tumor cells to the changing environment. Genetic heterogeneity caused by tumors and tumor microenvironmental factors forms the basis of aggressive behavior of some cancer cell populations. CONTENT: Cancers arise in self-renewing cell populations and that the resulting cancers, like their normal organ counterparts, are composed of hierarchically organized cell populations. Self–renewing “...

  4. Regulation of cell death in cancer - possible implications for immunotherapy

    Simone eFulda

    2013-01-01

    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is e...

  5. Cellular pressure and volume regulation and implications for cell mechanics.

    Jiang, Hongyuan; Sun, Sean X

    2013-08-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death, and migration. Volume and shape regulation also directly impacts the mechanics of cells and tissues. Here, we develop a mathematical model of cellular volume and pressure regulation, incorporating essential elements such as water permeation, mechanosensitive channels, active ion pumps, and active stresses in the cortex. The model can fully explain recent experimental data, and it predicts cellular volume and pressure for several models of cell cortical mechanics. Moreover, we show that when cells are subjected to an externally applied load, such as in an atomic force microscopy indentation experiment, active regulation of volume and pressure leads to a complex cellular response. Instead of the passive mechanics of the cortex, the observed cell stiffness depends on several factors working together. This provides a mathematical explanation of rate-dependent response of cells under force. PMID:23931309

  6. Cancer stem cell markers in common cancers - therapeutic implications

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine;

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues......, the last part of the review discusses future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities....

  7. Ovarian Cancer Stem Cell Markers: Prognostic and Therapeutic Implications

    Burgos-Ojeda, Daniela; Rueda, Bo R.; Buckanovich, Ronald J.

    2012-01-01

    Cancer stem cells are rare chemotherapy resistant cells within a tumor which can serve to populate the bulk of a tumor with more differentiated daughter cells and potentially contribute to recurrent disease. Ovarian cancer is a disease for which at the time of initial treatment we can obtain complete clinical remission in the majority of patients. Unfortunately, most will relapse and succumb to their disease. This clinical course is in line with the cancer stem cell model. In the past five ye...

  8. Aging and the Dendritic Cell System: Implications for Cancer

    Shurin, Michael R.; Shurin, Galina V.; Chatta, Gurkamal S.

    2007-01-01

    The immune system shows a decline in responsiveness to antigens both with aging, as well as in the presence of tumors. The malfunction of the immune system with age can be attributed to developmental and functional alterations in several cell populations. Previous studies have shown defects in humoral responses and abnormalities in T cell function in aged individuals, but have not distinguished between abnormalities in antigen presentation and intrinsic T cell or B cell defects in aged indivi...

  9. Adipose-derived stem cells: Implications in tissue regeneration

    Tsuji, Wakako; Rubin, J. Peter; Marra, Kacey G.

    2014-01-01

    Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and dise...

  10. Cellular Pressure and Volume Regulation and Implications for Cell Mechanics

    Jiang, Hongyuan; Sun, Sean X.

    2013-01-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death, and migration. Volume and shape regulation also directly impacts the mechanics of cells and tissues. Here, we develop a mathematical model of cellular volume and pressure regulation, incorporating essential elements such as water permeation, mechanosensitive channels, active ion pumps, and active stresses in the cortex. The model can fully explain recent experimental data, and it pr...

  11. Apoptosis and cancer stem cells : Implications for apoptosis targeted therapy

    Kruyt, Frank A. E.; Schuringa, Jan Jacob

    2010-01-01

    Evidence is accumulating showing that cancer stem cells or tumor-initiating cells are key drivers of tumor formation and progression. Successful therapy must therefore eliminate these cells, which is hampered by their high resistance to commonly used treatment modalities. Thus far, only a limited nu

  12. Immune regulation of epithelial cell function: Implications for GI pathologies

    The mammalian immune system is a complex and dynamic network that recognizes, responds, and adapts to numerous foreign and self molecules. CD4+ T cells orchestrate adaptive immune responses, and upon stimulation by antigen, naive CD4+ T cells proliferate and differentiate into various T cell subsets...

  13. Primary alveolar capillary dysplasia (acinar dysplasia) and surfactant protein B deficiency: a clinical, radiological and pathological study

    Hugosson, Claes O.; Khoumais, Nuha [King Faisal Specialist Hospital and Research Centre, Department of Radiology MBC 28, Riyadh (Saudi Arabia); Salama, Husam M.; Kattan, Abdul H. [King Faisal Specialist Hospital and Research Centre, Department of Paediatrics, Riyadh (Saudi Arabia); Al-Dayel, Fouad [King Faisal Specialist Hospital and Research Centre, Department of Pathology, Riyadh (Saudi Arabia)

    2005-03-01

    Full-term infants with severe and prolonged respiratory distress represent a diagnostic challenge. Plain radiographic findings may be nonspecific or similar to classic surfactant deficiency disease for infants with surfactant protein B deficiency and acinar dysplasia. Objectives: To describe the similar clinical-radiolgical patterns of two rare neonatal conditions. Six newborn babies with severe respiratory distress at birth demonstrated clinical and radiographically prolonged and progressive diffuse pulmonary opacification. All infants demonstrated hyperinflation of the lungs. The diffuse hazy opacification, which varied from mild (n=3) to moderate (n=3), progressed to severe diffuse opacification preceding death, which occurred at 12-36 days of life. Open lung biopsy confirmed the diagnosis of primary alveolar acinar dysplasia (AD) in four infants and surfactant protein B deficiency (SPBD) in two infants. In full-term babies with unexplained progressive respiratory distress from birth and progress of radiological changes, both AD and SPBD should be considered. (orig.)

  14. Primary alveolar capillary dysplasia (acinar dysplasia) and surfactant protein B deficiency: a clinical, radiological and pathological study

    Full-term infants with severe and prolonged respiratory distress represent a diagnostic challenge. Plain radiographic findings may be nonspecific or similar to classic surfactant deficiency disease for infants with surfactant protein B deficiency and acinar dysplasia. Objectives: To describe the similar clinical-radiological patterns of two rare neonatal conditions. Six newborn babies with severe respiratory distress at birth demonstrated clinical and radiographically prolonged and progressive diffuse pulmonary opacification. All infants demonstrated hyperinflation of the lungs. The diffuse hazy opacification, which varied from mild (n=3) to moderate (n=3), progressed to severe diffuse opacification preceding death, which occurred at 12-36 days of life. Open lung biopsy confirmed the diagnosis of primary alveolar acinar dysplasia (AD) in four infants and surfactant protein B deficiency (SPBD) in two infants. In full-term babies with unexplained progressive respiratory distress from birth and progress of radiological changes, both AD and SPBD should be considered. (orig.)

  15. Asthma in Sickle Cell Disease: Implications for Treatment

    Kathryn Blake

    2011-01-01

    Full Text Available Objective. To review issues related to asthma in sickle cell disease and management strategies. Data Source. A systematic review of pertinent original research publications, reviews, and editorials was undertaken using MEDLlNE, the Cochrane Library databases, and CINAHL from 1947 to November 2010. Search terms were [asthma] and [sickle cell disease]. Additional publications considered relevant to the sickle cell disease population of patients were identified; search terms included [sickle cell disease] combined with [acetaminophen], [pain medications], [vitamin D], [beta agonists], [exhaled nitric oxide], and [corticosteroids]. Results. The reported prevalence of asthma in children with sickle cell disease varies from 2% to approximately 50%. Having asthma increases the risk for developing acute chest syndrome , death, or painful episodes compared to having sickle cell disease without asthma. Asthma and sickle cell may be linked by impaired nitric oxide regulation, excessive production of leukotrienes, insufficient levels of Vitamin D, and exposure to acetaminophen in early life. Treatment of sickle cell patients includes using commonly prescribed asthma medications; specific considerations are suggested to ensure safety in the sickle cell population. Conclusion. Prospective controlled trials of drug treatment for asthma in patients who have both sickle cell disease and asthma are urgently needed.

  16. Plasticity of T helper cell subsets: Implications in periodontal disease.

    Talwar, Avaneendra; Arun, K V; Kumar, T S S; Clements, Jasmine

    2013-05-01

    T helper (Th) cells have an important role in host defence as well in the pathogenesis of periodontal disease. Th cells differentiate from naive cells into various subsets, each of which is associated with a set of inducing and effector cytokines. Previously, it was thought that this differentiation was an irreversible event. Recent evidence suggest that even differentiated Th cells, retain the flexibility to transform from one lineage to another, a phenomenon referred to as plasticity. This plasticity is thought to be brought about by epigenetic modifications that are regulated by external and internal signals in the micro-environment of these cells. The factors and mechanisms which affect the plasticity of these cells and their potential role in the etio-pathogenesis of periodontal disease has been described in this article. PMID:24049327

  17. Breast cancer stem cells: implications for therapy of breast cancer

    Morrison, Brian J.; Schmidt, Chris W.; Lakhani, Sunil R; Reynolds, Brent A.; Lopez, J. Alejandro

    2008-01-01

    The concept of cancer stem cells responsible for tumour origin, maintenance, and resistance to treatment has gained prominence in the field of breast cancer research. The therapeutic targeting of these cells has the potential to eliminate residual disease and may become an important component of a multimodality treatment. Recent improvements in immunotherapy targeting of tumour-associated antigens have advanced the prospect of targeting breast cancer stem cells, an approach that might lead to...

  18. Implications of mesenchymal stem cells in regenerative medicine.

    Kariminekoo, Saber; Movassaghpour, Aliakbar; Rahimzadeh, Amirbahman; Talebi, Mehdi; Shamsasenjan, Karim; Akbarzadeh, Abolfazl

    2016-05-01

    Mesenchymal stem cells (MSCs) are a population of multipotent progenitors which reside in bone marrow, fat, and some other tissues and can be isolated from various adult and fetal tissues. Self-renewal potential and multipotency are MSC's hallmarks. They have the capacity of proliferation and differentiation into a variety of cell lineages like osteoblasts, condrocytes, adipocytes, fibroblasts, cardiomyocytes. MSCs can be identified by expression of some surface molecules like CD73, CD90, CD105, and lack of hematopoietic specific markers including CD34, CD45, and HLA-DR. They are hopeful tools for regenerative medicine for repairing injured tissues. Many studies have focused on two significant features of MSC therapy: (I) systemically administered MSCs home to sites of ischemia or injury, and (II) MSCs can modulate T-cell-mediated immunological responses. MSCs express chemokine receptors and ligands involved in cells migration and homing process. MSCs induce immunomedulatory effects on the innate (dendritic cells, monocyte, natural killer cells, and neutrophils) and the adaptive immune system cells (T helper-1, cytotoxic T lymphocyte, and B lymphocyte) by secreting soluble factors like TGF-β, IL-10, IDO, PGE-2, sHLA-G5, or by cell-cell interaction. In this review, we discuss the main applications of mesenchymal stem in Regenerative Medicine and known mechanisms of homing and Immunomodulation of MSCs. PMID:26757594

  19. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis. PMID:22223508

  20. Metabolic alterations in cancer cells and therapeutic implications

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  1. The significance of non-T cell pathways in graft rejection--implications for transplant tolerance

    Li, Xian Chang

    2010-01-01

    Both innate and adaptive immune cells are actively involved in the initiation and destruction of allotransplants, there is a true need now to look beyond T cells in the allograft response, examining various non-T cell types in transplant models and how such cell types interact with T cells in determining the fate of an allograft. Studies in this area may lead to further improvement in transplant outcomes. SUMMARY The “T cell-centric paradigm” has dominated transplant research for decades. While T cells are undeniably quintessential in allograft rejection, recent studies have demonstrated unexpected roles for non-T cells such as NK cells, B cells, macrophage and mast cells in regulating transplant outcomes. It has been shown that depending on models, context, and tolerizing protocols, the innate immune cells contribute significantly to both graft rejection and graft acceptance. Some innate immune cells are potent inflammatory cells directly mediating graft injury while others regulate effector programs of alloreactive T cells and ultimately determine whether the graft is rejected or accepted. Furthermore, when properly activated, some innate immune cells promote the induction of Foxp3+ Tregs whereas others readily kill them, thereby differentially affecting the induction of tolerance. In addition, B cells can induce graft damage by producing alloantibodies or by promoting T cell activation. However, B cells also contribute to transplant tolerance by acting as regulatory cells or by stimulating Foxp3+ Tregs. These new findings unravel unexpected complexities for non-T cells in transplant models and may have important clinical implications. In this overview, we highlight recent advances on the role of B cells, NK cells, dendritic cells, and macrophages in the allograft response, and discuss whether such cells can be therapeutically targeted for the induction of transplant tolerance. PMID:20686444

  2. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Maria Ausiliatrice Puglisi

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs, represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases.

  3. Functional Implications of Plasma Membrane Condensation for T Cell Activation

    Rentero, Carles; Zech, Tobias; Quinn, Carmel M.; Engelhardt, Karin; Williamson, David; Grewal, Thomas; Jessup, Wendy; Harder, Thomas; Gaus, Katharina

    2008-01-01

    The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importa...

  4. Visualization of Carbon Nanoparticles Within Cells and Implications for Toxicity

    Porter, Alexandra; Gass, Mhairi

    Carbon nanostructures (CNS), such as C60, single-walled nanotubes (SWNTs) exhibit extraordinary properties and are one of the most commercially relevant class of NS. CNS have already found uses in high-performance sports equipment (nanotubes) and face cream (C60), whilst potential applications include optical and electronic materials and superconductors. Following the huge growth in these nanotechnology-related industries, significant concerns have arisen about their potential toxicity and impact on the environment. A lack in understanding of the interaction of such small structures with cellular material has resulted in concerns over their impact on human health. The potential toxicity of CNS and safety to human health requires an understanding of their interaction with cells and this in turn relies on the measurement of the pathways by which they enter the cell, their spatial distribution within and whether the CNS are transformed by the action of the cell; visualization of intracellular CNS is therefore imperative. However visualizing unlabelled CNS within cells is demanding because it is difficult to distinguish CNS from carbon-rich organelles given their similarity in composition and dimensions. In particular, the challenge lies in translating analytical imaging tools developed for inorganic systems to organic systems. This chapter describes how the state-of-the-art transmission electron microscopy (TEM) techniques, such as low-loss energy-filtered TEM (EFTEM) can be employed to differentiate between unlabelled C60, SWNTs and the cell. Further, we demonstrate how these techniques can be used to trace the uptake of CNS into the cell and to assess their localized effects on cell structure.

  5. Anaesthetic implications of laparoscopic splenectomy in patients with sickle cell anaemia.

    Doodnath, R.

    2010-04-01

    With the increasing immigrant population in the Republic of Ireland, the number of patients with sickle cell disease (SCD) seen in the paediatric hospitals is climbing. In this case report, we review the anaesthetic implications and outcome of the first two paediatric patients with SCD to have a laparoscopic splenectomy due to repeated splenic infarcts in the Republic of Ireland.

  6. Anaesthetic implications of laparoscopic splenectomy in patients with sickle cell anaemia.

    Doodnath, R

    2012-02-01

    With the increasing immigrant population in the Republic of Ireland, the number of patients with sickle cell disease (SCD) seen in the paediatric hospitals is climbing. In this case report, we review the anaesthetic implications and outcome of the first two paediatric patients with SCD to have a laparoscopic splenectomy due to repeated splenic infarcts in the Republic of Ireland.

  7. The Implication of Aberrant GM-CSF Expression in Decidual Cells in the Pathogenesis of Preeclampsia

    Huang, S. Joseph; Zenclussen, Ana C.; Chen, Chie-Pein; Basar, Murat; Yang, Hui; Arcuri, Felice; Min LI; Kocamaz, Erdogan; Buchwalder, Lynn; Rahman, Mizanur; Kayisli, Umit; Schatz, Frederick; Toti, Paolo; Lockwood, Charles J.

    2010-01-01

    Preeclampsia is characterized by an exaggerated systemic inflammatory state as well as shallow placentation. In the decidual implantation site, preeclampsia is accompanied by an excessive number of both macrophages and dendritic cells as well as their recruiting chemokines, which have been implicated in the impairment of endovascular trophoblast invasion. Granulocyte-macrophage colony–stimulating factor is known to regulate the differentiation of both macrophages and dendritic cells, promptin...

  8. Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells: Implications for inflammatory demyelinating disease

    Winkler, Clayton W.; Foster, Scott C.; Itakura, Asako; Matsumoto, Steven G.; Asari, Akira; McCarty, Owen J. T.; Sherman, Larry S.

    2013-01-01

    Inflammatory demyelinating diseases like multiple sclerosis are characterized by mononuclear cell infiltration into the central nervous system. The glycosaminoglycan hyaluronan and its receptor, CD44, are implicated in the initiation and progression of a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Digestion of hyaluronan tethered to brain vascular endothelial cells by a hyaluronidase blocks the slow rolling of lymphocytes along activated brain vascular ...

  9. Esophageal cancer stem cells and implications for future therapeutics

    Qian X

    2016-04-01

    Full Text Available Xia Qian,* Cheng Tan,* Feng Wang,* Baixia Yang, Yangyang Ge, Zhifeng Guan, Jing CaiDepartment of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, People’s Republic of China*These authors contributed equally to this workAbstract: Esophageal carcinoma (EC is a lethal disease with high morbidity and mortality worldwide, and the incidence has been increasing in recent years. Although the diagnosis and treatment of EC have improved considerably, EC has rapidly progressed in the clinical setting and has a poor prognosis for its metastasis and recurrence. The general idea of cancer stem cells (CSCs is primarily based on clinical and experimental observations, indicating the existence of a subpopulation of cells that can self-renew and differentiate. The EC stem cells, which can be isolated from normal pluripotent stem cells by applying similar biomarkers, may participate in promoting esophageal tumorigenesis through renewal and repair. In this review, major emphasis is given to CSC markers, altered CSC-specific pathways, and molecular targeting agents currently available to target CSCs of esophageal cancer. The roles of numerous markers (CD44, aldehyde dehydrogenase, CD133, and ATP-binding cassette subfamily G member 2 and developmental signaling pathways (Wnt/β-catenin, Notch, hedgehog, and Hippo in isolating esophageal CSCs are discussed in detail. Targeting CSCs can be a logical strategy to treat EC, as these cells are responsible for carcinoma recurrence and chemoradiation resistance. Keywords: esophageal cancer, cancer stem cells, CD44, ALDH, CD133, ABCG2

  10. Cell symbioisis theory: Status and implications for the fossil record

    Margulis, L.; Stolz, J. F.

    Although the entire serial endosymbiotic theory has not been proven much progress has been made and the nature of the remaining critical observations can be now identified. There is little doubt that, regardless of the precise details, prokaryotes are single genomic systems and all eukaryotic cells are multigenomic ones. Eukaryotic cells are therefore best thought of as co-evolved microbial communities, entities that emerged as the symbiotic partnerships became tightly integrated by the late Late Proterozoic Aeon. Present address: Control and Energy Conversion Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, U.S.A.

  11. Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    Espersen, Maiken Lise Marcker; Olsen, Jesper; Linnemann, Dorte;

    2015-01-01

    Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic and...

  12. Melanopsin-expressing retinal ganglion cells: implications for human diseases

    La Morgia, Chiara; Ross-Cisneros, Fred N; Hannibal, Jens;

    2011-01-01

    interest on these cells, mainly focused on animal models. Only recently, a few studies have started to address the relevance of the mRGC system in humans and related diseases. We recently discovered that mRGCs resist neurodegeneration in two inherited mitochondrial disorders that cause blindness, i...

  13. Circulating mesenchymal stem cells and their clinical implications

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  14. c-Met in pancreatic cancer stem cells: Therapeutic implications

    Marta Herreros-Villanueva; Aizpea Zubia-Olascoaga; Luis Bujanda

    2012-01-01

    Pancreatic cancer is the deadliest solid cancer and currently the fourth most frequent cause of cancer-related deaths.Emerging evidence suggests that cancer stem cells (CSCs) play a crucial role in the development and progression of this disease.The identification of CSC markers could lead to the development of new therapeutic targets.In this study,the authors explore the functional role of c-Met in pancreatic CSCs,by analyzing self-renewal with sphere assays and tumorigenicity capacity in NOD SCID mice.They concluded that c-Met is a novel marker for identifying pancreatic CSCs and c-Methigh in a higher tumorigenic cancer cell population.Inhibition of c-Met with XL184 blocks self-renewal capacity in pancreatic CSCs.In pancreatic tumors established in NOD SCID mice,c-Met inhibition slowed tumor growth and reduced the population of CSCs,along with preventing the development of metastases.

  15. Intracellular Trypsin Induces Pancreatic Acinar Cell Death but Not NF-κB Activation*

    JI, BAOAN; Gaiser, Sebastian; Chen, Xueqing; Ernst, Stephen A.; Logsdon, Craig D.

    2009-01-01

    Premature intracellular activation of the digestive enzyme trypsinogen is considered to be the initiating event in pancreatitis. However, the direct consequences of intracellular trypsin activity have not previously been examined. In the current study, a mutant trypsinogen (paired basic amino acid cleaving enzyme (PACE)-trypsinogen), which is activated intracellularly by the endogenous protease PACE, was developed. This new construct allowed for the first time direct examination of the effect...

  16. Biopsy follow-up in patients with isolated atypical small acinar proliferation (ASAP in prostate biopsy

    Luca Leone

    2014-12-01

    Full Text Available The incidence of prostate cancer (PCA was evaluated in 155 patients with isolated Atypical Small Acinar Proliferation (ASAP found on initial prostate biopsy, after a medium-term follow-up (40 months with at least one re-biopsy. Clinical and histological data were analysed. Cancer was detected in 81 of 155 (52.3%. The cancer detection rate was 71.6%, 91.3%, 97.5%, 100% at the 1st re-biopsy, 2nd, 3rd, and 4th rebiopsy respectively. At the uni- and multivariate analyses, prostate volume (≤ 30 cc, transition zone volume (≤ 10 cc, small core length at the initial biopsy (≤ 10 mm and few number of cores at initial biopsy (≤ 8 are predictive of cancer. Furthermore, tumour characteristics on the whole surgical specimens was assessed in 30 men: 13 of 30 (43 % had clinically relevant cancer (volume > 0.5 ml or/and Gleason score ≥ 7, or pT3. Most of relevant cancers were detected in the distal apex, anterior gland and midline. These anatomical sites could be under-sampled at the initial biopsy using the transrectal approach. Our data suggest that follow-up biopsy is recommended in all cases of isolated ASAP detected after biopsy using endfire transrectal probe. The re-biopsy strategy should increase the number of cores (or a saturation biopsy, focusing on area of ASAP in the initial biopsy, but also including the under-sampled areas (anterior gland, distal apex and midline to detect clinically relevant cancers.

  17. Sarcomatoid differentiation in renal cell carcinoma: prognostic implications

    Marcos F. Dall'Oglio

    2005-02-01

    Full Text Available INTRODUCTION: Renal cell carcinoma with sarcomatoid differentiation is a tumor with aggressive behavior that is poorly responsive to immunotherapy. The objective of this study is to report our experience in the treatment of 15 patients with this tumor. MATERIALS AND METHODS: We retrospectively analyzed 15 consecutive cases of renal cell carcinoma with sarcomatoid differentiation diagnosed between 1991 and 2003. The clinical presentation and the pathological stage were assessed, as were the tumor's pathological features, use of adjuvant immunotherapy and survival. The study's primary end-point was to assess survival of these individuals. RESULTS: The sample included 8 women and 7 men with mean age of 63 years (44 - 80; follow-up ranged from 1 to 100 months (mean 34. Upon presentation, 87% were symptomatic and 4 individuals had metastatic disease. Mean tumor size was 9.5 cm (4 - 24 with the following pathological stages: 7% pT1, 7% pT2, 33% pT3, and 53% pT4. The pathological features showed high-grade tumors with tumoral necrosis in 87% of the lesions and 80% of intratumoral microvascular invasion. Disease-free and cancer-specific survival rates were 40 and 46% respectively, with 2 cases responding to adjuvant immunotherapy. CONCLUSIONS: Patients with sarcomatoid tumors of the kidney have a low life expectancy, and sometimes surgical resection associated with immunotherapy can lead to a long-lasting therapeutic response.

  18. Implications of irradiating the subventricular zone stem cell niche

    Vivian Capilla-Gonzalez

    2016-03-01

    Full Text Available Radiation therapy is a standard treatment for brain tumor patients. However, it comes with side effects, such as neurological deficits. While likely multi-factorial, the effect may in part be associated with the impact of radiation on the neurogenic niches. In the adult mammalian brain, the neurogenic niches are localized in the subventricular zone (SVZ of the lateral ventricles and the dentate gyrus of the hippocampus, where the neural stem cells (NSCs reside. Several reports showed that radiation produces a drastic decrease in the proliferative capacity of these regions, which is related to functional decline. In particular, radiation to the SVZ led to a reduced long-term olfactory memory and a reduced capacity to respond to brain damage in animal models, as well as compromised tumor outcomes in patients. By contrast, other studies in humans suggested that increased radiation dose to the SVZ may be associated with longer progression-free survival in patients with high-grade glioma. In this review, we summarize the cellular and functional effects of irradiating the SVZ niche. In particular, we review the pros and cons of using radiation during brain tumor treatment, discussing the complex relationship between radiation dose to the SVZ and both tumor control and toxicity.

  19. Detection, staging and clinical implications of renal cell carcinoma

    To compare the epidemiologic, clinical and pathologic characteristics of symptomatic and incidental renal cell carcinoma (RCC)in Jordan.Results were compared with published Western figure. Records of 119 patients with renal tumors diagnosed during the period January1992 to December 2001at Jordan University of Science and Technology, Irbid, Jordan were reviewed. Age,gender, radiologic and biologic workup, treatment,features of tumor were reviewed. The mean patient age was 54 and the male to female ratio was 3.4:1. 26% of tumors were discoverd accidentlly.The incidental detction group had significantly small size of tumor.,lower stage and lower histological grading.In symptomatic group woman have significantly lower mean size of tumor than men. A radical nephrectomy was performed in 92% of the cases, and in 8% of the cases, conservative mangement was adopted. The present study showed that the incidence rate of RCC in Jordan is less than Western countries. Significant number of RCC were detected incidently with lower pathological stage and grade. Subsequently these clinically and histologically less aggressive lesions lead to better survival. These data efforts should be directed to the devlopment of screening protocol to detect these lesions early. (author)

  20. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D0) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  1. The role of stem cells in airway repair: implications for the origins of lung cancer

    Michael S.Mulvihill; Johannes R.Kratz; Patrick Pham; David M.Jablons; Biao He

    2013-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide.Recently,advancements in our ability to identify and study stem cell populations in the lung have helped researchers to elucidate the central role that cells with stem cell-like properties may have in lung tumorigenesis.Much of this research has focused on the use of the airway repair model to study response to injury.In this review,we discuss the primary evidence of the role that cancer stem cells play in lung cancer development.The implications of a stem cell origin of lung cancer are reviewed,and the importance of ongoing research to identify novel therapeutic and prognostic targets is reiterated.

  2. Connexin implication in the control of the murine beta-cell mass.

    Klee, Philippe; Lamprianou, Smaragda; Charollais, Anne; Caille, Dorothée; Sarro, Rossella; Cederroth, Manon; Haefliger, Jacques-Antoine; Meda, Paolo

    2011-08-01

    Diabetes develops when the insulin needs of peripheral cells exceed the availability or action of the hormone. This situation results from the death of most beta-cells in type 1 diabetes, and from an inability of the beta-cell mass to adapt to increasing insulin needs in type 2 and gestational diabetes. We analyzed several lines of transgenic mice and showed that connexins (Cxs), the transmembrane proteins that form gap junctions, are implicated in the modulation of the beta-cell mass. Specifically, we found that the native Cx36 does not alter islet size or insulin content, whereas the Cx43 isoform increases both parameters, and Cx32 has a similar effect only when combined with GH. These findings open interesting perspectives for the in vitro and in vivo regulation of the beta-cell mass. PMID:21527868

  3. The role of stem cells in airway repair: implications for the origins of lung cancer

    Michael S. Mulvihill

    2013-02-01

    Full Text Available Lung cancer is the leading cause of cancer-related deaths worldwide. Recently, advancements in our ability to identify and study stem cell populations in the lung have helped researchers to elucidate the central role that cells with stem cell-like properties may have in lung tumorigenesis. Much of this research has focused on the use of the airway repair model to study response to injury. In this review, we discuss the primary evidence of the role that cancer stem cells play in lung cancer development. The implications of a stem cell origin of lung cancer are reviewed, and the importance of ongoing research to identify novel therapeutic and prognostic targets is reiterated.

  4. The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death

    Pedersen, Stine Falsig

    2006-01-01

    has expanded from one of a household protein involved in ion homeostasis to that of a multifaceted regulator and/or modulator of a wide variety of cell functions. NHE1 plays pivotal roles in response to a number of important physiological stress conditions which, in addition to cell shrinkage and......-protein interactions with, e.g., ezrin/radixin/moesin (ERM) proteins and regulation of cellular signaling events, including the activity of mitogen-activated protein kinases (MAPKs) and Akt/protein kinase B (PKB). The aim of this review is to present and discuss new findings implicating NHE1 activation as a central...

  5. Melanoma-Derived BRAFV600E Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion

    Kurgyis, Zsuzsanna; Kemény, Lajos V.; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell’s phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAFV600E melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAFV600E protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAFV600E with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAFV600E mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAFV600E mutation or protein in the peritumoral stroma of BRAFWT melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome. PMID:27338362

  6. Melanoma-Derived BRAFV600E Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion

    Zsuzsanna Kurgyis

    2016-06-01

    Full Text Available Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell’s phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAFV600E melanoma, melanoma antigen recognized by T-cells (MART1-negative peritumoral stromal cells express BRAFV600E protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAFV600E with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAFV600E mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAFV600E mutation or protein in the peritumoral stroma of BRAFWT melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome.

  7. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells. PMID:27330712

  8. Implications of Time Bomb model of ookinete invasion of midgut cells.

    Han, Yeon Soo; Barillas-Mury, Carolina

    2002-10-01

    In this review, we describe the experimental observations that led us to propose the Time Bomb model of ookinete midgut invasion and discuss potential implications of this model when considering malaria transmission-blocking strategies aimed at arresting parasite development within midgut cells. A detailed analysis of the molecular interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei parasites, as they migrate through midgut cells, revealed that ookinetes induce nitric oxide synthase (NOS) expression, remodeling of the actin cytoskeleton and characteristic morphological changes in the invaded epithelial cells. Parasites inflict extensive damage that ultimately leads to genome fragmentation and cell death. During their migration through the cytoplasm, ookinetes release a subtilisin-like protease (PbSub2) and the surface protein (Pbs21). The model proposes that ookinetes must escape rapidly from the invaded cells, as the responses mediating cell death could be potentially lethal to the parasites. In other words, the physical and/or chemical damage triggered by the parasite can be thought of as a 'lethal bomb'. Once this cascade of events is initiated, the parasite must leave the cellular compartment within a limited time to escape unharmed from the 'bomb' it has activated. The midgut epithelium has the ability to heal rapidly by 'budding off' the damaged cells to the midgut lumen without losing its integrity. PMID:12225921

  9. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma

    Jose J. Ordaz-Ortiz; Susan E. Marcus; J. Paul Knox

    2009-01-01

    Methods developed to isolate intact cells from both unripe and ripe tomato fruit pericarp parenchyma have allowed the cell biological analysis of polysaccharide epitopes at the surface of separated cells. The LM7 pectic homoga-lacturonan epitope is a marker of the junctions of adhesion planes and intercellular spaces in parenchyma systems. The LM7 epitope persistently marked the former edge of adhesion planes at the surface of cells separated from unripe and ripened tomato fruit and also from fruits with the Cnr mutation. The LM 11 xylan epitope was associated, in sections, with cell walls lining intercellular space but the epitope was not detected at the surface of isolated cells, being lost during cell isolation. The LM15 xyloglucan epitope was present at the surface of cells isolated from unripe fruit in a pattern reflecting the former edge of cell adhesion planes/intercellular space but with gaps and apparent breaks, An equivalent pattern ofLM15 epitope occurrence was revealed at the surface of cells isolated by pectate lyase action but was not present in cells isolated from ripe fruit or from Cnr fruit. In contrast to wild-type cells, the LM5 galactan and LM21 mannan epitopes oc-curred predominantly in positions reflecting intercellular space in Cnr, suggesting a concerted alteration in cell wall mi-crostructure in response to this mutation. Galactanase and mannanase, along with pectic homogalacturonan-degrading enzymes, were capable of releasing cells from unripe fruit parenchyma. These observations indicate that hemicellulose polymers are present in architectural contexts reflecting cell adhesion and that several cell wall polysaccharide classes are likely to contribute to cell adhesion/cell separation in tomato fruit pericarp parenchyma.

  10. Implications of Stem Cells and Cancer Stem Cells for Understanding Fomation and Therapy of Cancer

    Guanghui Li; Donglin Wang

    2005-01-01

    Most cancers are heterogeneous with respect to proliferation and differentiation. There is increasing evidence suggesting that only a minority of cancer cells, tumorigenic or tumor initiating cells, possess the capacity to proliferate extensively and form new hematopoietic cancer or solid tumors. Tumor initiating cells share characteristics required for normal stem cells. The dysregulation of self-renewal and proliferation of stem cells is a likely requirement for cancer development. This review formulates a model for the origin of cancer stem cells and regulating self-renewal which influences the way we study and treat cancer.

  11. Role of AQP2 in activation of calcium entry by hypotonicity: implications in cell volume regulation.

    Galizia, L; Flamenco, M P; Rivarola, V; Capurro, C; Ford, P

    2008-03-01

    We previously reported in a rat cortical collecting duct cell line (RCCD(1)) that the presence of aquaporin 2 (AQP2) in the cell membrane is critical for the rapid activation of regulatory volume decrease mechanisms (RVD) (Ford et al. Biol Cell 97: 687-697, 2005). The aim of our present work was to investigate the signaling pathway that links AQP2 to this rapid RVD activation. Since it has been previously described that hypotonic conditions induce intracellular calcium ([Ca(2+)](i)) increases in different cell types, we tested the hypothesis that AQP2 could have a role in activation of calcium entry by hypotonicity and its implication in cell volume regulation. Using a fluorescent probe technique, we studied [Ca(2+)](i) and cell volume changes in response to a hypotonic shock in WT-RCCD(1) (not expressing aquaporins) and in AQP2-RCCD(1) (transfected with AQP2) cells. We found that after a hypotonic shock only AQP2-RCCD(1) cells exhibit a substantial increase in [Ca(2+)](i). This [Ca(2+)](i) increase is strongly dependent on extracellular Ca(2+) and is partially inhibited by thapsigargin (1 muM) indicating that the rise in [Ca(2+)](i) reflects both influx from the extracellular medium and release from intracellular stores. Exposure of AQP2-RCCD(1) cells to 100 muM gadolinium reduced the increase in [Ca(2+)](i) suggesting the involvement of a mechanosensitive calcium channel. Furthermore, exposure of cells to all of the above described conditions impaired rapid RVD. We conclude that the expression of AQP2 in the cell membrane is critical to produce the increase in [Ca(2+)](i) which is necessary to activate RVD in RCCD(1) cells. PMID:18094031

  12. The role of natural killer cells in multiple sclerosis and their therapeutic implications.

    Chanvillard, Coralie; Jacolik, Raymond F; Infante-Duarte, Carmen; Nayak, Ramesh C

    2013-01-01

    Multiple sclerosis (MS) is assumed to be an autoimmune disease initiated by autoreactive T cells that recognize central nervous system antigens. Although adaptive immunity is clearly involved in MS pathogenesis, innate immunity increasingly appears to be implicated in the disease. We and others have presented evidence that natural killer (NK) cells may be involved in immunoregulation in MS, leading to the question of whether a particular NK cell subtype will account for this effect. Changes of NK cell functionality in MS were associated with MS activity, and depletion of NK cells exacerbated the course of disease in a murine model of MS, experimental autoimmune encephalomyelitis. Several studies described a deficiency and transient "valleys" in NK cell killing activity in human MS, which may coincide with symptomatic relapse. However, the molecular basis of the defect in killing activity has not been determined. We discuss results on the expression of perforin in CD16(+) NK cells and the existence of an inverse relationship between myelin loaded phagocytes and the proportion of CD16(+) NK cells expressing perforin in the circulation. This inverse relationship is consistent with a role for NK cell killing activity in dampening autoimmunity. On the other hand, it has been broadly reported that first line MS therapies, such as interferon-beta, glatiramer acetate as well as escalation therapies such as fingolimod, daclizumab, or mitoxantrone seem to affect NK cell functionality and phenotype in vivo. Therefore, in this review we consider evidence for the immunoregulatory role of NK cells in MS and its animal models. Furthermore, we discuss the effect of MS treatments on NK cell activity. PMID:23493880

  13. Convergence of normal stem cell and cancer stem cell developmental stage: Implication for differential therapies

    Shengwen Calvin Li; Lee, Katherine L.; Jane Luo; Jiang F. Zhong; William G Loudon

    2011-01-01

    Increased evidence shows that normal stem cells may contribute to cancer development and progression by acting as cancer-initiating cells through their interactions with abnormal environmental elements. We postulate that normal stem cells and cancer stem cells (CSC) possess similar mechanisms of self-renewal and differentiation. CSC can be the key to the elaboration of anti-cancer-based therapy. In this article, we focus on a controversial new theme relating to CSC. Tumorigenesis may have a c...

  14. Growth regulation of skin cells by epidermal cell-derived factors: implications for wound healing.

    Eisinger, M; Sadan, S; Silver, I. A.; Flick, R B

    1988-01-01

    Epidermal cell-derived factors (EDF), present in extracts and supernatant fluids of cultured epidermal cells, were found to stimulate the proliferation of keratinocytes but to inhibit fibroblasts. In vitro, the effect of EDF on epidermal cells resulted in an increased number of rapidly proliferating colonies composed mainly of basal keratinocytes. Control cultures grown in the absence of EDF had a high proportion of terminally differentiated cells. In fibroblast cultures EDF inhibited the abi...

  15. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje;

    2012-01-01

    Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells gener...

  16. The initial slope of cell survival curves. Its implications in radiotherapy

    The problem of the initial slope of the cell survival curves can be approached in 2 ways: a straightforward approach is the direct and acurate measurement of the cell survival at low dose. This method is practically restricted to experiments in vitro; an indirect approach is the determination of the initial slope of the single cell survival curves from the shape of the ''isoeffect curves'' for fractionated irradiations. This method can be applied to ''non-quantitative'' reactions. Implications in radiotherapy of the existence of a significant initial slope are presented with respect to the 3 following problems: importance of the fraction number N for fractionated irradiations with small doses per fraction and differential effect related to fraction number; variation of the total dose as a function of dose rate for low dose rate irradiation; RBE of high LET radiation and RBE/dose relationship

  17. Lessons and Implications from Genome-Wide Association Studies (GWAS Findings of Blood Cell Phenotypes

    Nathalie Chami

    2014-01-01

    Full Text Available Genome-wide association studies (GWAS have identified reproducible genetic associations with hundreds of human diseases and traits. The vast majority of these associated single nucleotide polymorphisms (SNPs are non-coding, highlighting the challenge in moving from genetic findings to mechanistic and functional insights. Nevertheless, large-scale (epigenomic studies and bioinformatic analyses strongly suggest that GWAS hits are not randomly distributed in the genome but rather pinpoint specific biological pathways important for disease development or phenotypic variation. In this review, we focus on GWAS discoveries for the three main blood cell types: red blood cells, white blood cells and platelets. We summarize the knowledge gained from GWAS of these phenotypes and discuss their possible clinical implications for common (e.g., anemia and rare (e.g., myeloproliferative neoplasms human blood-related diseases. Finally, we argue that blood phenotypes are ideal to study the genetics of complex human traits because they are fully amenable to experimental testing.

  18. Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms.

    Michler, Thomas; Storr, Martin; Kramer, Johannes; Ochs, Stefanie; Malo, Antje; Reu, Simone; Göke, Burkhard; Schäfer, Claus

    2013-01-15

    The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines. Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases. Cerulein pancreatitis was induced in wild-type, CB(1)-/-, and MK2-/- mice pretreated with selective cannabinoid receptor agonists or antagonists. Severity of pancreatitis was determined by serum amylase and IL-6 levels, intracellular activation of pancreatic trypsinogen, lung myeloperoxidase activity, pancreatic edema, and histological examinations. Pancreatic lysates were investigated by Western blotting using phospho-specific antibodies against p38 and JNK. Quantitative PCR data, Western blotting experiments, and immunohistochemistry clearly show that CB(1) and CB(2) are expressed in mouse pancreatic acini. During acute pancreatitis, an upregulation especially of CB(2) on apoptotic cells occurred. The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2). Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology. Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini. With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications. PMID:23139224

  19. Dysregulation of complement system and CD4+ T cell activation pathways implicated in allergic response.

    Alexessander Couto Alves

    Full Text Available Allergy is a complex disease that is likely to involve dysregulated CD4+ T cell activation. Here we propose a novel methodology to gain insight into how coordinated behaviour emerges between disease-dysregulated pathways in response to pathophysiological stimuli. Using peripheral blood mononuclear cells of allergic rhinitis patients and controls cultured with and without pollen allergens, we integrate CD4+ T cell gene expression from microarray data and genetic markers of allergic sensitisation from GWAS data at the pathway level using enrichment analysis; implicating the complement system in both cellular and systemic response to pollen allergens. We delineate a novel disease network linking T cell activation to the complement system that is significantly enriched for genes exhibiting correlated gene expression and protein-protein interactions, suggesting a tight biological coordination that is dysregulated in the disease state in response to pollen allergen but not to diluent. This novel disease network has high predictive power for the gene and protein expression of the Th2 cytokine profile (IL-4, IL-5, IL-10, IL-13 and of the Th2 master regulator (GATA3, suggesting its involvement in the early stages of CD4+ T cell differentiation. Dissection of the complement system gene expression identifies 7 genes specifically associated with atopic response to pollen, including C1QR1, CFD, CFP, ITGB2, ITGAX and confirms the role of C3AR1 and C5AR1. Two of these genes (ITGB2 and C3AR1 are also implicated in the network linking complement system to T cell activation, which comprises 6 differentially expressed genes. C3AR1 is also significantly associated with allergic sensitisation in GWAS data.

  20. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-01-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and sup...

  1. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program

  2. Properties of cellulose/pectins composites: implication for structural and mechanical properties of cell wall.

    Agoda-Tandjawa, G; Durand, S; Gaillard, C; Garnier, C; Doublier, J L

    2012-10-01

    The primary cell wall of dicotyledonous plants can be considered as a concentrated polymer assembly, containing in particular polysaccharides among which cellulose and pectins are known to be the major components. In order to understand and control the textural quality of plant-derived foods, it is highly important to elucidate the rheological and microstructural properties of these components, individually and in mixture, in order to define their implication for structural and mechanical properties of primary plant cell wall. In this study, the rheological and microstructural properties of model systems composed of sugar-beet microfibrillated cellulose and HM pectins from various sources, with varied degrees of methylation and containing different amounts of neutral sugar side chains, were investigated. The influence of the presence of calcium and/or sodium ions and the biopolymer concentrations on the properties of the mixed systems were also studied. The characterizations of the mixed system, considered as a simplified model of primary plant cell wall, showed that whatever the structural characteristics of the pectins, the ionic conditions of the medium and the biopolymer concentrations, the gelation of the composite was mainly controlled by cellulose. Thus, the cellulose network would be the principal component governing the mechanical properties of the cell walls. However, the neutral sugar side chains of the pectins seem to play a part in the interactions with cellulose, as shown by the interesting viscoelastic properties of cellulose/apple HM pectins systems. The rigidity of cellulose/pectins composite was strongly influenced by the structural characteristics of pectins. The particular properties of primary plant cell walls would thus result from the solid viscoelastic properties of cellulose, its interactions with pectins according to their structural characteristics (implication of the neutral sugar side chains and the specific potential calcic

  3. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth

    Feillet, Celine; van der Horst, Gijsbertus T. J.; Levi, Francis; Rand, David A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer. PMID:26029155

  4. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth

    Celine eFeillet

    2015-05-01

    Full Text Available Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumour growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  5. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  6. Prognostic Implication of Predominant Histologic Subtypes of Lymph Node Metastases in Surgically Resected Lung Adenocarcinoma

    Kenichi Suda; Katsuaki Sato; Shigeki Shimizu; Kenji Tomizawa; Toshiki Takemoto; Takuya Iwasaki; Masahiro Sakaguchi; Tetsuya Mitsudomi

    2014-01-01

    The International Association for the Study of Lung Cancer, American Thoracic Society, and European Respiratory Society (IASLC/ATS/ERS) proposed a new classification for lung adenocarcinoma (AD) based on predominant histologic subtypes, such as lepidic, papillary, acinar, solid, and micropapillary; this system reportedly reflects well outcomes of patients with surgically resected lung AD. However, the prognostic implication of predominant histologic subtypes in lymph nodes metastases is uncle...

  7. Close association of centroacinar ductular and insular cells in the rat pancreas

    Leeson, Thomas S.; Leeson, Roland

    1986-01-01

    Close contacts between endocrine insular cells and exocrine acinar, centroacinar and ductular cells occur frequently in the rat pancreas as seen by both light and electron microscopy. lslets of Langerhans are surrounded incompletely by a thin connective tissue capsule or mantle but numerous exocrine-endocrine cell contacts occur at the periphery, which is irregular with considerable "intermingling" of the two cell types. Centroacinar ...

  8. Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy

    Turinetto, Valentina; Vitale, Emanuela; Giachino, Claudia

    2016-01-01

    Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches. PMID:27447618

  9. Potential implications of a monosynaptic pathway from mossy cells to adult-born granule cells of the dentate gyrus.

    Helen Scharfman

    2015-08-01

    Here we first review fundamental information about MCs and the current hypotheses for their role in the normal DG and in diseases that involve the DG. Then we review previously published data which suggest that MCs are a source of input to a subset of GCs that are born in adulthood (adult-born GCs. In addition, we discuss the evidence that adult-born GCs may support the normal inhibitory 'gate' functions of the DG, where the GCs are a filter or gate for information from the entorhinal cortical input to area CA3. The implications are then discussed in the context of seizures and temporal lobe epilepsy (TLE. In TLE, it has been suggested that the DG inhibitory gate is weak or broken and MC loss leads to insufficient activation of inhibitory neurons, causing hyperexcitability. That idea was called the “dormant basket cell hypothesis.” Recent data suggest that loss of normal adult-born GCs may also cause disinhibition, and seizure susceptibility. Therefore, we propose a reconsideration of the dormant basket cell hypothesis with an intervening adult-born GC between the MC and basket cell and call this hypothesis the “dormant immature granule cell hypothesis.”

  10. Interleukin-17 and Its Implication in the Regulation of Differentiation and Function of Hematopoietic and Mesenchymal Stem Cells

    Slavko Mojsilović; Aleksandra Jauković; Santibañez, Juan F.; Diana Bugarski

    2015-01-01

    Adult stem cells have a great potential applicability in regenerative medicine and cell-based therapies. However, there are still many unresolved issues concerning their biology, and the influence of the local microenvironment on properties of stem cells has been increasingly recognized. Interleukin (IL-) 17, as a cytokine implicated in many physiological and pathological processes, should be taken into consideration as a part of a regulatory network governing tissue-associated stem cells’ fa...

  11. Efficient lysis of rhabdomyosarcoma cells by cytokine-induced killer cells: implications for adoptive immunotherapy after allogeneic stem cell transplantation

    Kuçi, Selim; Rettinger, Eva; Voß, Bernhard; Weber, Gerrit; Stais, Miriam; Kreyenberg, Hermann; Willasch, Andre; Kuçi, Zyrafete; Koscielniak, Ewa; Klöss, Stephan; Laer, Dorothee von; Klingebiel, Thomas; Bader, Peter

    2010-01-01

    Background: Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood and has a poor prognosis. Here we assessed the capability of ex vivo expanded cytokine-induced killer cells to lyse both alveolar and embryonic rhabdomyosarcoma cell lines and investigated the mechanisms involved. Design and Methods: Peripheral blood mononuclear cells from six healthy donors were used to generate and expand cytokine-induced killer cells. The phenotype and composition of these cells were deter...

  12. Mesenchymal stem cells in drug/gene delivery: implications for cell therapy.

    Greco, Steven J; Rameshwar, Pranela

    2012-08-01

    Stem cells have been therapeutically utilized in replacement of hematopoetic cells for decades. This is in contrast to the recent emergence of adult stem cells as, perhaps, safe and beneficial therapeutics for multiple diseases and disorders. In particular, mesenchymal stem cells (MSCs) are currently used in multiple human clinical trials. Although MSCs are ubiquitous, bone marrow, umbilical cord and adipose tissue are the sources where MSCs are isolated for research and clinical application. MSCs were thought to be mesodermal due to the initial reports showing their differentiation into specialized mesodermal cells such as chondrocytes. However, it now appears that MSCs might be neuroectodermal in origin. Thus far, there is no evidence of in vivo transformation of MSCs. However, it is too early to prove or disprove that MSCs can be transformed in vivo in clinical trials. MSCs display immunosuppressive properties when placed in a milieu of inflammatory mediators. This phenotype makes MSCs easily available for therapies as 'off-the-shelf cells. Additionally, MSCs express chemotactic receptors, thereby allowing them to migrate to sites of tissue injury. This latter property has proven useful in the embodiment of MSCs as cellular vehicles to deliver targeted therapeutics to precise regions. The MSCs would typically harbor a prodrug or ectopically express a therapeutic gene to be delivered at a targeted site. This approach has been utilized in a number of different indications requiring precise therapeutic delivery, specifically cancer, cardiovascular disorders and neurodegenerative diseases. Combined with their immune-privileged status, safe clinical profile and low tumorigenicity, MSCs offer vast potential to benefit patients with serious diseases, for which limited treatment options exist. PMID:22946432

  13. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications.

    Passos, Giordani Rodrigues Dos; Sato, Douglas Kazutoshi; Becker, Jefferson; Fujihara, Kazuo

    2016-01-01

    Several animal and human studies have implicated CD4+ T helper 17 (Th17) cells and their downstream pathways in the pathogenesis of central nervous system (CNS) autoimmunity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders. PMID:26941483

  14. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy.

    Bao, Bin; Ahmad, Aamir; Azmi, Asfar S; Ali, Shadan; Sarkar, Fazlul H

    2013-06-01

    The identification of small subpopulations of cancer stem cells (CSCs) from blood mononuclear cells in human acute myeloid leukemia (AML) in 1997 was a landmark observation that recognized the potential role of CSCs in tumor aggressiveness. Two critical properties contribute to the functional role of CSCs in the establishment and recurrence of cancerous tumors: their capacity for self-renewal and their potential to differentiate into unlimited heterogeneous populations of cancer cells. These findings suggest that CSCs may represent novel therapeutic targets for the treatment and/or prevention of tumor progression, since they appear to be involved in cell migration, invasion, metastasis, and treatment resistance-all of which lead to poor clinical outcomes. The identification of CSC-specific markers, the isolation and characterization of CSCs from malignant tissues, and targeting strategies for the destruction of CSCs provide a novel opportunity for cancer research. This overview describes the potential implications of several common CSC markers in the identification of CSC subpopulations that are restricted to common malignant diseases, e.g., leukemia, and breast, prostate, pancreatic, and lung cancers. The role of microRNAs (miRNAs) in the regulation of CSC function is also discussed, as are several methods commonly used in CSC research. The potential role of the antidiabetic drug metformin- which has been shown to have effects on CSCs, and is known to function as an antitumor agent-is discussed as an example of this new class of chemotherapeutics. PMID:23744710

  15. Emerging role of microRNAs in cancer stem cells:Implications in cancer therapy

    Minal; Garg

    2015-01-01

    A small subset of cancer cells that act as tumor initiating cells or cancer stem cells(CSCs) maintain self-renewal and growth promoting capabilities of cancer and are responsible for drug/treatment resistance,tumor recurrence and metastasis. Due to their potential clinical importance,many researchers have put their efforts over decades to unravel the molecular mechanisms that regulate CSCs functions. Micro RNAs(mi RNAs) which are 21-23 nucleotide long,endogenous noncoding RNAs,regulate gene expression through gene silencing at post-transcriptional level by binding to the 3’-untranslated regions or the open reading frames of target genes,thereby result in target mR NA degradation or its translational repression and serve important role in several cellular,physiological and developmental processes. Aberrant mi RNAs expression and their implication in CSCs regulation by controlling asymmetric cell division,drug/treatment resistance and metastasis make mi RNAs a tool of great therapeutic potential against cancer. Recent advancements on the biological complexities of CSCs,modulation in CSCs properties by mi RNA network and development of mi RNA based treatment strategies specifically targeting the CSCs as an attractive therapeutic targets for clinical application are being critically analysed.

  16. Targeted cellular ionic calcium chelation by oxalates: Implications for the treatment of tumor cells

    Embi Abraham

    2012-12-01

    Full Text Available Abstract Background In malignant melanoma, it has been published that up to 40% of cancer patients will suffer from brain metastasis. The prognosis for these patients is poor, with a life expectancy of 4 to 6 months. Calcium exchange is involved in numerous cell functions. Recently, three types of cellular calcium sequestration have been reported in the medical literature. The first describes a transgenic mouse model in which an increase of aberrant calcium channels triggers hypertrophy and apoptosis. The second provides a protective mechanism whereby astrocytes in the brain inhibit apoptosis of tumor cells by moving ionic calcium out of the tumor cells thru gap junctions. The third is via calcium chelation, which causes cell apoptosis by converting ionic calcium into a calcium salt. This process has been shown to operate in atrial myocardial cells, thus not allowing the intracellular calcium stores to flow through the myocytes intercalated discs. Ideally chemotherapeutic agents would be those that initiate apoptosis in tumor cells. Presentation of the Hypothesis We hypothesize that the recent reported intracellular calcium sequestration by oxalate chelation, due to its chemical process of converting ionic calcium into a calcium salt, may inhibit the protective effect of astrocytes on brain tumor metastasized melanoma cells by not allowing free calcium to leave the metastatic cells, simultaneously apoptosis of tumor and some healthy adjacent cells could occur. This hypothesis could be extended to include other cancerous tumors such as skin cancers amongst others. Testing the hypothesis Using the experimental model showing the protective mechanism of co-cultured reactive astrocytes and tumor cells treated with oxalates could be used to test this hypothesis in vitro. The calcium specific von Kossa technique could be used to confirm the presence of chelated intracellular calcium architecture of the metastatic cells (which is a sign of apoptosis

  17. Coupling between the circadian clock and cell cycle oscillators: Implication for healthy cells and malignant growth

    C. Feillet (Céline); G.T.J. van der Horst (Gijsbertus); F.A. Lévi (Francis); D.A. Rand (David); F. Delaunay (Franck)

    2015-01-01

    textabstractUncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift wor

  18. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  19. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    Maddika, S; Ande, SR; Panigrahi, S;

    2007-01-01

    The partial cross-utilization of molecules and pathways involved in opposing processes like cell survival, proliferation and cell death, assures that mutations within one signaling cascade will also affect the other opposite process at least to some extent, thus contributing to homeostatic...... regulatory circuits. This review highlights some of the connections between opposite-acting pathways. Thus, we discuss the role of cyclins in the apoptotic process, and in the regulation of cell proliferation. CDKs and their inhibitors like the INK4-family (p16(Ink4a), p15(Ink4b), p18(Ink4c), p19(Ink4d...... highlighted both for their apoptosis-regulating capacity and also for their effect on the cell cycle progression. The PI3-K/Akt cell survival pathway is shown as regulator of cell metabolism and cell survival, but examples are also provided where aberrant activity of the pathway may contribute to the...

  20. The expression of GST isoenzymes in acinar adenocarcinoma, intraepithelial neoplasia, and benign prostate tissue: correlation of clinical parameters with GST isoenzymes

    ŞİMŞEK, Gülçin; Serpil OĞUZTÜZÜN; GÜREŞCİ, Servet; KILIÇ, Murat

    2012-01-01

    This study investigated the immunohistochemical staining characteristics of glutathione-S-transferase (GST) alpha, pi, mu, and theta in prostatic acinar adenocarcinoma (PCA), prostatic intraepithelial neoplasia (PIN), and benign prostatic tissues from 19 patients. Relationships between GST isoenzyme expression in benign, PIN, and PCA tissue were examined by the Wilcoxon signed-rank test and clinicopathological data were examined by the Spearman correlation rank test. When the benign, PIN, and...

  1. Clinical implications of microRNAs in liver cancer stem cells

    Stella Chai; Stephanie Ma

    2013-01-01

    The prognosis of patients diagnosed with hepatocellular carcinoma (HCC) is often dismal,mainly due to late presentation,high recurrence rate,and frequent resistance to chemotherapy and radiotherapy.Accumulating evidence on the differential microRNA (miRNA) expression patterns between non-tumor and HCC tissues or between liver cancer stem cells (CSCs) and non-CSC subsets and the significant clinical implications of these differences suggest that miRNAs are a promising,non-invasive marker for the prognosis and diagnosis of the disease.This perspective article summarizes the current knowledge of miRNAs in liver CSCs and highlights the need for further investigations of the role of miRNAs in regulating liver CSC subsets for possible future clinical applications.

  2. Molecular biology of anal squamous cell carcinoma: implications for future research and clinical intervention.

    Bernardi, Maria-Pia; Ngan, Samuel Y; Michael, Michael; Lynch, A Craig; Heriot, Alexander G; Ramsay, Robert G; Phillips, Wayne A

    2015-12-01

    Anal squamous cell carcinoma is a human papillomavirus-related disease, in which no substantial advances in treatment have been made in over 40 years, especially for those patients who develop disease relapse and for whom no surgical options exist. HPV can evade the immune system and its role in disease progression can be exploited in novel immunotherapy platforms. Although several studies have investigated the expression and inactivation (through loss of heterozygosity) of tumour suppressor genes in the pathways to cancer, no clinically valuable biomarkers have emerged. Regulators of apoptosis, including survivin, and agents targeting the PI3K/AKT pathway, offer opportunities for targeted therapy, although robust data are scarce. Additionally, antibody therapy targeting EGFR may prove effective, although its safety profile in combination with standard chemoradiotherapy has proven to be suboptimal. Finally, progress in the treatment of anal cancer has remained stagnant due to a lack of preclinical models, including cell lines and mouse models. In this Review, we discuss the molecular biology of anal squamous cell carcinoma, clinical trials in progress, and implications for novel therapeutic targets. Future work should focus on preclinical models to provide a resource for investigation of new molecular pathways and for testing novel targets. PMID:26678214

  3. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin.

    Lo Sardo, Valentina; Zuccato, Chiara; Gaudenzi, Germano; Vitali, Barbara; Ramos, Catarina; Tartari, Marzia; Myre, Michael A; Walker, James A; Pistocchi, Anna; Conti, Luciano; Valenza, Marta; Drung, Binia; Schmidt, Boris; Gusella, James; Zeitlin, Scott; Cotelli, Franco; Cattaneo, Elena

    2012-05-01

    The Huntington's disease gene product, huntingtin, is indispensable for neural tube formation, but its role is obscure. We studied neurulation in htt-null embryonic stem cells and htt-morpholino zebrafish embryos and found a previously unknown, evolutionarily recent function for this ancient protein. We found that htt was essential for homotypic interactions between neuroepithelial cells; it permitted neurulation and rosette formation by regulating metalloprotease ADAM10 activity and Ncadherin cleavage. This function was embedded in the N terminus of htt and was phenocopied by treatment of htt knockdown zebrafish with an ADAM10 inhibitor. Notably, in htt-null cells, reversion of the rosetteless phenotype occurred only with expression of evolutionarily recent htt heterologues from deuterostome organisms. Conversely, all of the heterologues that we tested, including htt from Drosophila melanogaster and Dictyostelium discoideum, exhibited anti-apoptotic activity. Thus, anti-apoptosis may have been one of htt’s ancestral function(s), but, in deuterostomes, htt evolved to acquire a unique regulatory activity for controlling neural adhesion via ADAM10-Ncadherin, with implications for brain evolution and development. PMID:22466506

  4. Stem cell tourism and future stem cell tourists: policy and ethical implications.

    Einsiedel, Edna F; Adamson, Hannah

    2012-04-01

    Stem cell tourism is a small but growing part of the thriving global medical tourism marketplace. Much stem cell research remains at the experimental stage, with clinical trials still uncommon. However, there are over 700 clinics estimated to be operating in mostly developing countries--from Costa Rica and Argentina to China, India and Russia--that have lured many patients, mostly from industrialized countries, driven by desperation and hope, which in turn continue to fuel the growth of such tourism. While much research has focused on such dimensions as the promotions that allow such businesses to make their services known, media coverage, some patient research, and regulatory conditions for developing country clinics, little attention has been paid to the non-affected members of the general population, the future potential users of such services. This empirical study based on five focus group discussions with a diverse group of healthy adults in a Canadian city, explored participant views of patients who use stem cell tourism services, the likelihood they would avail themselves of such services if they were to suffer similar illnesses, and the conditions under which they might do so, and the impact that admonitions and advice from international expert bodies might have on their decisions. Our findings suggest that these healthy adults are sympathetic to the drivers of hope and desperation, and, despite cautions about research limitations, may seek such treatments themselves under similar conditions. These findings are discussed in the context of the policy and ethical issues raised by this form of medical tourism. PMID:22420450

  5. Biology and clinical implications of CD133+ liver cancer stem cells

    Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver, accounting for 80%–90% of all liver cancers. The disease ranks as the fifth most common cancer worldwide and is the third leading cause of all cancer-associated deaths. Although advances in HCC detection and treatment have increased the likelihood of a cure at early stages of the disease, HCC remains largely incurable because of late presentation and tumor recurrence. Only 25% of HCC patients are deemed suitable for curative treatment, with the overall survival at just a few months for inoperable patients. Apart from surgical resection, loco-regional ablation and liver transplantation, current treatment protocols include conventional cytotoxic chemotherapy. But due to the highly resistant nature of the disease, the efficacy of the latter regimen is limited. The recent emergence of the cancer stem cell (CSC) concept lends insight into the explanation of why treatment with chemotherapy often may seem to be initially successful but results in not only a failure to eradicate the tumor but also possibly tumor relapse. Commonly used anti-cancer drugs in HCC work by targeting the rapidly proliferating and differentiated liver cancer cells that constitute the bulk of the tumor. However, a subset of CSCs exists within the tumor, which are more resistant and are able to survive and maintain residence after treatment, thus, growing and self-renewing to generate the development and spread of recurrent tumors in HCC. In the past few years, compelling evidence has emerged in support of the hierarchic CSC model for solid tumors, including HCC. And in particular, CD133 has drawn significant attention as a critical liver CSC marker. Understanding the characteristics and function of CD133+ liver CSCs has also shed light on HCC management and treatment, including the implications for prognosis, prediction and treatment resistance. In this review, a detailed summary of the recent progress in CD

  6. Calcification in transitional cell carcinoma of urinary bladder: Does it have any implication on calcium metabolism and its management?

    Suresh Kumar; Modi, Pranjal R.; Pal, Bipin C.; Jayesh Modi

    2015-01-01

    Although transitional cell carcinoma (TCC) is most common histological subtype, calcification in TCC is rarely seen. We report a 64-year-old gentleman who on evaluation found to have calcification in TCC of urinary bladder and its implication on calcium metabolism and management.

  7. Prognostic implications of ezrin and phosphorylated ezrin expression in non-small cell lung cancer

    The cytoskeletal organizer ezrin is a member of the ezrin-radixin-moesin (ERM) family and plays important roles in not only cell motility, cell adhesion, and apoptosis, but also in various cell signaling pathways. Phosphorylation at Thr-567 and Tyr-353 are key regulatory events in the transition of the dormant to active form of ezrin. This study investigated the prognostic implications of ezrin and phosphorylated ezrin (p-ezrin) expression in non-small cell lung carcinoma (NSCLC). Ezrin and p-ezrin protein expressions were examined by immunohistochemistry in 150 NSCLC and adjacent non-tumor tissues and 14 normal lung tissues. qRT-PCR was used to determine ezrin mRNA expression levels in fresh tissues. The correlations between overexpression of ezrin and p-ezrin and the clinicopathological features of NSCLC were analyzed. The survival rates were calculated by the Kaplan-Meier method for 108 NSCLC cases. Ezrin and ezrinThr-567 proteins showed cytosolic and membranous staining patterns; however, ezrinTyr-353 protein only showed cytosolic staining. Ezrin and p-ezrin were significantly upregulated in NSCLC compared with the normal counterparts. Increased ezrin, ezrinThr-567, and ezrinTyr-353 levels were correlated with the late stage and poor differentiation of NSCLC. However, only ezrinThr-567 was correlated with the presence of lymph node metastasis. In regard to survival, only ezrinThr-567 was related with the overall survival time of patients with NSCLC, and both ezrin and ezrinThr-567 were associated with shortened survival time for patients with early stage NSCLC. Ezrin and p-ezrin, especially ezrinThr-567, may prove to be useful as a novel prognostic biomarker of NSCLC

  8. Cell and molecular biology of simian virus 40: implications for human infections and disease

    Butel, J. S.; Lednicky, J. A.

    1999-01-01

    Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.

  9. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  10. Prognostic implication of PTPRH hypomethylation in non-small cell lung cancer.

    Sato, Takashi; Soejima, Kenzo; Arai, Eri; Hamamoto, Junko; Yasuda, Hiroyuki; Arai, Daisuke; Ishioka, Kota; Ohgino, Keiko; Naoki, Katsuhiko; Kohno, Takashi; Tsuta, Koji; Watanabe, Shun-Ichi; Kanai, Yae; Betsuyaku, Tomoko

    2015-09-01

    PTPRH is a receptor-type protein tyrosine phosphatase thought to be a potential regulator of tumorigenesis. The aim of the present study was to clarify the significance of PTPRH expression and its regulation by DNA methylation in non-small cell lung cancer (NSCLC), especially in lung adenocarcinoma (LADC). PTPRH mRNA expression was examined in 89 NSCLC and corresponding non-cancerous tissues. The correlation between DNA methylation and PTPRH gene expression was investigated in another cohort that consisted of 145 patients with LADC, a major NSCLC subtype. Gene regulation by DNA methylation was assessed using a DNA methylation inhibitor. PTPRH mRNA expression was significantly upregulated in NSCLC. PTPRH DNA methylation was reduced in LADC samples and inversely correlated with mRNA expression. 5-Aza-2'-deoxycytidine treatment of lung cancer cell lines with low PTPRH expression, restored mRNA PTPRH expression levels. Furthermore, low PTPRH methylation was associated with shorter recurrence-free survival (P=1.64x10(-4)) and overall survival (P=5.54x10(-5)). Multivariate analysis revealed that PTPRH DNA methylation was an independent prognostic factor (P=6.88x10(-3)). It was confirmed that PTPRH is overexpressed in NSCLC. Furthermore, we determined that PTPRH is epigenetically regulated by DNA hypomethylation, with prognostic implications for LADC. PMID:26134684

  11. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  12. Biology and clinical implications of CD133{sup +} liver cancer stem cells

    Ma, Stephanie, E-mail: stefma@hku.hk [Department of Clinical Oncology, State Key Laboratory for Liver Research, LKS Faculty of Medicine, The University of Hong Kong (Hong Kong)

    2013-01-15

    Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver, accounting for 80%–90% of all liver cancers. The disease ranks as the fifth most common cancer worldwide and is the third leading cause of all cancer-associated deaths. Although advances in HCC detection and treatment have increased the likelihood of a cure at early stages of the disease, HCC remains largely incurable because of late presentation and tumor recurrence. Only 25% of HCC patients are deemed suitable for curative treatment, with the overall survival at just a few months for inoperable patients. Apart from surgical resection, loco-regional ablation and liver transplantation, current treatment protocols include conventional cytotoxic chemotherapy. But due to the highly resistant nature of the disease, the efficacy of the latter regimen is limited. The recent emergence of the cancer stem cell (CSC) concept lends insight into the explanation of why treatment with chemotherapy often may seem to be initially successful but results in not only a failure to eradicate the tumor but also possibly tumor relapse. Commonly used anti-cancer drugs in HCC work by targeting the rapidly proliferating and differentiated liver cancer cells that constitute the bulk of the tumor. However, a subset of CSCs exists within the tumor, which are more resistant and are able to survive and maintain residence after treatment, thus, growing and self-renewing to generate the development and spread of recurrent tumors in HCC. In the past few years, compelling evidence has emerged in support of the hierarchic CSC model for solid tumors, including HCC. And in particular, CD133 has drawn significant attention as a critical liver CSC marker. Understanding the characteristics and function of CD133{sup +} liver CSCs has also shed light on HCC management and treatment, including the implications for prognosis, prediction and treatment resistance. In this review, a detailed summary of the recent progress

  13. Stressor-dependent Alterations in Glycoprotein 130: Implications for Glial Cell Reactivity, Cytokine Signaling and Ganglion Cell Health in Glaucoma

    Echevarria, FD; Walker, CC; Abella, SK; Won, M; Sappington, RM

    2013-01-01

    Objective: The interleukin-6 (IL-6) family of cytokines is associated with retinal ganglion cell (RGC) survival and glial reactivity in glaucoma. The purpose of this study was to evaluate glaucoma-related changes in glycoprotein-130 (gp130), the common signal transducer of the IL-6 family of cytokines, as they relate to RGC health, glial reactivity and expression of IL-6 cytokine family members. Methods: For all experiments, we examined healthy retina (young C57), aged retina (aged C57), retina predisposed to glaucoma (young DBA/2) and retina with IOP-induced glaucoma (aged DBA/2). We determined retinal gene expression of gp130 and IL-6 family members, using quantitative PCR, and protein expression of gp130, using multiplex ELISA. For protein localization and cell-specific expression, we performed co-immunolabeling for gp130 and cell type-specific markers. We used quantitative microscopy to measure layer-specific expression of gp130 and its relationships to astrocyte and Müller glia reactivity and RGC axonal transport, as determined by uptake and transport of cholera toxin β-subunit (CTB). Results: Gene expression of gp130 was elevated with all glaucoma-related stressors, but only normal aging increased protein levels. In healthy retina, gp130 localized primarily to the inner retina, where it was expressed by astrocytes, Müller cells and RGCs. Layer-specific analysis of gp130 expression revealed increased expression in aging retina and decreased expression in glaucomatous retina that was eccentricity-dependent. These glaucoma-related changes in gp130 expression correlated with the level of GFAP and glutamine synthetase expression, as well as axonal transport in RGCs. The relationships between gp130, glial reactivity and RGC health could impact signaling by many IL-6 family cytokines, which exhibited overall increased expression in a stressor-dependent manner. Conclusions: Glaucoma-related stressors, including normal aging, glaucoma predisposition and IOP

  14. LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling

    J. Chang (Jufang); M.M. Nicolau (Monica); T.R. Cox (Thomas); D. Wetterskog (Daniel); J.W.M. Martens (John); H. E Barker (Holly); J.T. Erler (Janine)

    2013-01-01

    textabstractIntroduction: Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expr

  15. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3′-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics

  16. Brüstle v. Greenpeace: Implications for Commercialisation of Translational Stem Cell Research.

    Mansnérus, Juli

    2015-04-01

    The lack of consensus on a common definition of the term 'embryo' has resulted in legal uncertainty affecting the permissibility of human embryonic stem cell (hESC) research and the commercialisation prospects and patenting of inventions of hESC origin in the EU. The Brüstle v. Greenpeace case, which by providing a very broad definition of a human embryo restricts the patentability of hESC-based inventions, aims at harmonising the patenting practices regarding interpretation of Article 6.2.c of Directive 98/44/ EC. It fills the gaps in national laws by providing binding interpretation guidelines for national courts. As currently no marketing authorisations have been granted to hESC-based products, implications of this judgment for translational hESC research together with other barriers to commercialisation of such research need to be analysed. In addition, whether the main obstacles relate to patenting restrictions or whether something else in the innovation system is impeding the market entry of these innovative products is discussed. PMID:26399054

  17. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    Ahmad, Aamir; Sakr, Wael A.; Rahman, KM Wahidur, E-mail: kmrahman@med.wayne.edu [Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2011-07-19

    Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3′-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics.

  18. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    KM Wahidur Rahman

    2011-07-01

    Full Text Available Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C and its dimeric product, 3,3´-diindolylmethane (DIM, have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics.

  19. Cell symbiosis [correction of symbioisis] theory: status and implications for the fossil record.

    Margulis, L; Stolz, J F

    1984-01-01

    Recent geological treatises have presented three alternative models of the origins of eukaryotes as if they merited equal treatment. However, modern biological techniques, especially nucleic acid and protein sequencing, have clearly established the validity of the symbiotic theory of the origin of eukaryotic organelles. The serial endosymbiotic theory in its most extreme form states that three classes of eukaryotic cell organelles (mitochondria, plastids and undulipodia) originated as free-living bacteria (aerobic respirers, phototrophic bacteria and spirochetes respectively) in association with hosts that become the nucleocytoplasm (Thermoplasma-like archaebacterial hosts). Molecular biological information, primarily derived from ribosomal RNA nucleotide sequencing studies leads to the conclusion that the symbiotic origin theory for both mitochondria and plastids has been proven. The probability of an ancestral archaebacterial-Thermoplasma-like host for the nucleocytoplasm has been rendered more likely by discoveries by Dennis Searcy and his colleagues and Carl Woese and his colleagues. The most equivocal postulate of the symbiotic theory, the origin of undulipodia (cilia and other organelles of motility that develop from kinetosomes is under investigation now. The status of these postulates, as well as their implications for the fossil record, is briefly summarized here. PMID:11537775

  20. The Quest for Tissue Stem Cells in the Pancreas and Other Organs, and their Application in Beta-Cell Replacement

    Houbracken, Isabelle; Bouwens, Luc

    2010-01-01

    Adult stem cell research has drawn a lot of attention by many researchers, due to its medical hope of cell replacement or regenerative therapy for diabetes patients. Despite the many research efforts to date, there is no consensus on the existence of stem cells in adult pancreas. Genetic lineage tracing experiments have put into serious doubt whether β-cell neogenesis from stem/progenitor cells takes place postnatally. Different in vitro experiments have suggested centroacinar, ductal, acinar...

  1. Ankylosing spondylitis patients display altered dendritic cell and T cell populations that implicate pathogenic roles for the IL-23 cytokine axis and intestinal inflammation

    Wright, Pamela B.; McEntegart, Anne; McCarey, David; McInnes, Iain B.; Siebert, Stefan; Milling, Simon W F

    2015-01-01

    Objective. AS is a systemic inflammatory disease of the SpA family. Polymorphisms at loci including HLA-B27, IL-23R and ERAP-1 directly implicate immune mechanisms in AS pathogenesis. Previously, in an SpA model, we identified HLA-B27–mediated effects on dendritic cells that promoted disease-associated Th17 cells. Here we extend these studies to AS patients using deep immunophenotyping of candidate pathogenic cell populations. The aim of our study was to functionally characterize the immune p...

  2. Impurity of stem cell graft by murine embryonic fibroblasts – implications for cell-based therapy of the central nervous system

    Marek eMolcanyi

    2014-09-01

    Full Text Available Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury. Retrospective evaluation indicated the presence of spindle-shaped cells in several grafts implanted in injured animals, which indicated potential contamination by co-cultured feeder cells (murine embryonic fibroblasts – MEFs. Because feeder-based cell lines have been previously exposed to a justified criticism with regard to contamination by animal glycans, we aimed to evaluate the effects of stem cell/MEF co-transplantation. MEFs accounted for 5.33% ± 2.81 of all cells in the primary FACS-evaluated co-culture. Depending on the culture conditions and subsequent purification procedure, the MEF-fraction ranged from 0.9 to 9.9% of the cell suspensions in vitro. MEF survival and related formation of extracellular substances in vivo were observed after implantation into the uninjured rat brain. Impurity of the stem cell graft by MEFs interferes with translational strategies, which represents a threat to the potential recipient and may affect the graft microenvironment. The implications of these findings are critically discussed.

  3. Estrategias para la diferenciación in vitro de células ES de ratón a células acinares pancreáticas

    Rovira Clusellas, Meritxell

    2007-01-01

    Las patologías más importantes del páncreas exocrino, como la pancreatitis crónica (PC) o el cáncer de páncreas, representan un gran problema de salud pública en Europa. En la PC, el tejido acinar es substituido por complejos ductales. Además, es difícil mantener el fenotipo diferenciado de las células acinares en cultivo ya que sufren una transdiferenciación acinar-ductal.Las células madre embrionarias (ES) de ratón han sido utilizadas en la última década para generar in vitro células comple...

  4. ERG gene rearrangements are common in prostatic small cell carcinomas

    Lotan, Tamara L.; Gupta, Nilesh S; Wang, Wenle; Toubaji, Antoun; Haffner, Michael C; Chaux, Alcides; Hicks, Jessica L.; Meeker, Alan K.; Bieberich, Charles J.; De Marzo, Angelo M.; Epstein, Jonathan I; Netto, George J.

    2011-01-01

    Small cell carcinoma of the prostate is a rare subtype with an aggressive clinical course. Despite the frequent occurrence of ERG gene rearrangements in acinar carcinoma, the incidence of these rearrangements in prostatic small cell carcinoma is unclear. In addition, molecular markers to distinguish prostatic small cell carcinomas from lung and bladder small cell carcinomas may be clinically useful. We examined the occurrence of ERG gene rearrangements by fluorescence in situ hybridization in...

  5. Recent advances in stem cell research for the treatment of diabetes

    Noguchi, Hirofumi

    2009-01-01

    The success achieved over the last decade with islet transplantation has intensified interest in treating diabetes, not only by cell transplantation, but also by stem cells. The formation of insulin-producing cells from pancreatic duct, acinar, and liver cells is an active area of investigation. Protocols for the in vitro differentiation of embryonic stem (ES) cells based on normal developmental processes, have generated insulin-producing cells, though at low efficiency and without full respo...

  6. Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications

    Sunkoju, Sravan Kumar

    conducting oxide (TCO) bi-layer, thus derived were used in a fiber optic-based spectroscopic reflectometry optical monitoring system installed in the pilot line at the PVMC's Halfmoon facility. Results obtained from this study show that the use of regular fiber optics, instead of polarization-maintaining fiber optics, is sufficient for the purpose of process monitoring. Also, the technique does not need to be used "in-situ", but the measurements can be taken in-line, and are applicable to a variety of deposition techniques used for different functional layers deposited on rigid or flexible substrates. In addition, effect of Cu concentration on the CIGS optical properties has been studied. Mixed CIGS/Cu2-xSe phase was observed at the surface at the end of the second stage of 3-stage deposition process, under Cu-rich conditions. A significant change in optical behavior of CIGS due to Cu2-xSe at the surface was observed under Cu-rich conditions, which can be used as end-point detection method to move from 2nd stage to 3rd stage in the deposition process. Developed optical functions were applied to in-line reflectance measurements not only to identify the Cu2-xSe phase at the surface but also to measure the thickness of the mixed CIGS/Cu2-xSe layer. This spectroscopic reflectometry based in-line process control technique can be used for end-point detection as well as to control thickness during the preparation of large area CIGS films. These results can assist in the development of optical process-control tools for the manufacturing of high quality CIGS based photovoltaic cells, increasing the uptime and yield of the production line. Finally, to understand the cost implications, low cost potential of two different deposition technologies has been studied on both rigid and flexible substrates with the help of cost analysis. Cost advantages of employing a contactless optics based process control technique have been investigated in order to achieve a low cost of production. Based

  7. Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations

    Thyroid carcinomas show a high prevalence of mutations in the oncogene BRAF which are inversely associated with RAS or RET/PTC oncogenic activation. The possibility of using inhibitors on the BRAF pathway as became an interesting therapeutic approach. In thyroid cancer cells the target molecules, implicated on the cellular effects, mediated by inhibition of BRAF are not well established. In order to fill this lack of knowledge we studied the proliferation and survival pathways and associated molecules induced by BRAF inhibition in thyroid carcinoma cell lines harbouring distinct genetic backgrounds. Suppression of BRAF pathway in thyroid cancer cell lines (8505C, TPC1 and C643) was achieved using RNA interference (RNAi) for BRAF and the kinase inhibitor, sorafenib. Proliferation analysis was performed by BrdU incorporation and apoptosis was accessed by TUNEL assay. Levels of protein expression were analysed by western-blot. Both BRAF RNAi and sorafenib inhibited proliferation in all the cell lines independently of the genetic background, mostly in cells with BRAFV600E mutation. In BRAFV600E mutated cells inhibition of BRAF pathway lead to a decrease in ERK1/2 phosphorylation and cyclin D1 levels and an increase in p27Kip1. Specific inhibition of BRAF by RNAi in cells with BRAFV600E mutation had no effect on apoptosis. In the case of sorafenib treatment, cells harbouring BRAFV600E mutation showed increase levels of apoptosis due to a balance of the anti-apoptotic proteins Mcl-1 and Bcl-2. Our results in thyroid cancer cells, namely those harbouring BRAFV600Emutation showed that BRAF signalling pathway provides important proliferation signals. We have shown that in thyroid cancer cells sorafenib induces apoptosis by affecting Mcl-1 and Bcl-2 in BRAFV600E mutated cells which was independent of BRAF. These results suggest that sorafenib may prove useful in the treatment of thyroid carcinomas, particularly those refractory to conventional treatment and harbouring BRAF

  8. Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy

    Ok, Chi Young; Xu-Monette, Zijun Y; Tzankov, Alexandar;

    2014-01-01

    BACKGROUND: Cyclin D1 expression has been reported in a subset of patients with diffuse large B-cell leukemia (DLBCL), but studies have been few and generally small, and they have demonstrated no obvious clinical implications attributable to cyclin D1 expression. METHODS: The authors reviewed 1435......1-positive according to immunohistochemistry were also assessed for rearrangements of the cyclin D1 gene (CCND1) using fluorescence in situ hybridization. Gene expression profiling was performed to compare patients who had DLBCL with and without cyclin D1 expression. RESULTS: In total, 30 patients...... patients expressed cyclin D2. Gene expression profiling indicated that 17 tumors were of the germinal center type, and 13 were of the activated B-cell type. Genetic aberrations of B-cell leukemia/lymphoma 2 (BCL2), BCL6, v-myc avian myelocytomatosis viral oncogene homolog (MYC), mouse double minute 2...

  9. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.

    Russo, Rossella; Ciociaro, Antonella; Berliocchi, Laura; Cassiano, Maria Gilda Valentina; Rombolà, Laura; Ragusa, Salvatore; Bagetta, Giacinto; Blandini, Fabio; Corasaniti, Maria Tiziana

    2013-09-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a widely used plant extract showing anxiolytic, analgesic and neuroprotective effects in rodents; also, BEO activates multiple death pathways in cancer cells. Despite detailed knowledge of its chemical composition, the constituent/s responsible for these pharmacological activities remain largely unknown. Aim of the present study was to identify the components of BEO implicated in cell death. To this end, limonene, linalyl acetate, linalool, γ-terpinene, β-pinene and bergapten were individually tested in human SH-SY5Y neuroblastoma cultures at concentrations comparable with those found in cytotoxic dilutions of BEO. None of the tested compounds elicited cell death. However, significant cytotoxicity was observed when cells were cotreated with limonene and linalyl acetate whereas no other associations were effective. Only cotreatment, but not the single exposure to limonene and linalyl acetate, replicated distinctive morphological and biochemical changes induced by BEO, including caspase-3 activation, PARP cleavage, DNA fragmentation, cell shrinkage, cytoskeletal alterations, together with necrotic and apoptotic cell death. Collectively, our findings suggest a major role for a combined action of these monoterpenes in cancer cell death induced by BEO. PMID:23707744

  10. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration

    Condorelli, G.; Borello, U; De Angelis, L.; Latronico, M.; D. Sirabella; Coletta, M; Galli, R; Balconi, G.; Follenzi, A.; Frati, G.; M. G. Cusella De Angelis; Gioglio, L.; Amuchastegui, S.; Adorini, L; Naldini, L

    2001-01-01

    The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogenous cells in culture, dif...