WorldWideScience

Sample records for acids lipoprotein lipase

  1. Familial lipoprotein lipase deficiency

    ... medlineplus.gov/ency/article/000408.htm Familial lipoprotein lipase deficiency To use the sharing features on this page, please enable JavaScript. Familial lipoprotein lipase deficiency is a group of rare genetic disorders ...

  2. Lipoprotein lipase deficiency.

    Shankar K; Bava H; Shetty J; Joshi M

    1997-01-01

    A rare case of a 3 month old child with lipoprotein lipase deficiency who presented with bronchopneumonia is reported. After noticing lipaemic serum and lipaemia retinalis, a diagnosis of hyperlipoproteinaemia was considered. Lipoprotein lipase deficiency was confirmed with post heparin lipoprotein lipase enzyme activity estimation.

  3. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid

  4. Homology of lipoprotein lipase to pancreatic lipase.

    Ben-Avram, C M; Ben-Zeev, O; Lee, T.D. (Taunia D.); Haaga, K; Shively, J. E.; Goers, J; Pedersen, M.E; Reeve, J R; Schotz, M C

    1986-01-01

    Bovine milk lipoprotein lipase was subjected to amino acid sequence analysis. The first 19 amino-terminal residues were Asp-Arg-Ile-Thr-Gly-Gly-Lys-Asp-Phe-Arg-Asp-Ile-Glu-Ser-Lys-Phe-Ala-Leu- Arg. In addition, reversed-phase high-performance liquid chromatography of a tryptic digest of reduced and alkylated lipase resolved a number of peptides, five of which contained cysteine. Sequence analysis of the tryptic peptides revealed in most instances a close homology to porcine pancreatic lipase....

  5. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J., E-mail: rbrown@mun.ca

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  6. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL

  7. Domain exchange: characterization of a chimeric lipase of hepatic lipase and lipoprotein lipase.

    Wong, H; Davis, R. C.; Nikazy, J; Seebart, K E; Schotz, M C

    1991-01-01

    Hepatic lipase and lipoprotein lipase hydrolyze fatty acids from triacylglycerols and are critical in the metabolism of circulating lipoproteins. The two lipases are similar in size and amino acid sequence but are distinguished by functional differences in substrate preference and cofactor requirement. Presumably, these distinctions result from structural differences in functional domains. To begin localization of these domains, a chimeric lipase was constructed composed of the N-terminal 329...

  8. Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men

    Tholstrup, T.; Sandstrøm, B.; Bysted, Anette;

    2001-01-01

    , plasma fatty acids, and preheparin lipoprotein lipase and cholesterol ester transfer protein (CETP) activities. Design: Six test fats high (approximate to 43% by wt) in stearic acid, palmitic acid, palmitic + myristic acid, oleic acid, elaidic acid (trans 18:1), and linoleic acid were produced by......Background: There is increasing evidence that postprandial triacylglycerol-rich lipoproteins may be related to atherogenic risk. Objective: The objective was to investigate the effect of individual fatty acid intakes on postprandial plasma lipoprotein triacylglycerol and cholesterol concentrations...... to the test-fat meals were observed for plasma lipoprotein triacylglycerol and cholesterol concentrations, plasma fatty acid concentrations, and lipoprotein lipase and CETP activities (diet x time interaction: 0.001

    acids stearic and palmitic acids...

  9. Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men

    Tholstrup, T.; Sandstrøm, B.; Bysted, Anette; Hølmer, Gunhild Kofoed

    2001-01-01

    Background: There is increasing evidence that postprandial triacylglycerol-rich lipoproteins may be related to atherogenic risk. Objective: The objective was to investigate the effect of individual fatty acid intakes on postprandial plasma lipoprotein triacylglycerol and cholesterol concentration...... of saturation appear to affect the extent and duration of lipemia and affect hepatic output indirectly. These effects may not be mediated via effects on lipoprotein lipase and CETP activities....

  10. Structural studies on lipoprotein lipase

    The structure of lipoprotein lipase is not known. The lack of information on its primary sequence has been due to the inability of preparing it in homogeneous and stable form. This research has focused on the structural characterization of lipoprotein lipase. The first approach taken was to develop a purification method using bovine milk and affinity chromatography on heparin-Sepharose. The protein obtained was a heterogeneous peak with the activity shifted towards the trailing edge fractions. These fractions only presented a 55 Kdalton band on polyacrylamide gel electrophoresis. Monoclonal antibodies against this band detected an endogenous, phenyl methane sulfonyl fluoride-sensitive protease responsible for the presence of lower molecular weight fragments. The second approach was to label the lipoprotein lipase with a radioactive, active site, directed probe. After incubation and affinity chromatography a complex [3H]inhibitor enzyme was isolated with a stoichiometry of 1.00 +/- 0.2. The complex was digested with CNBr and the insoluble peptides at low ionic strength (>90% [3H]dpm) were used for further purification. Differential extraction of the [3H]-peptide, digestion with S. aureus V8 protease, and high performance liquid chromatography yielded a hexapeptide with a composition consistent with the consensus sequence of the active site peptides of many serine-esterase. This and the kinetic data imply this being the mechanism of action for lipoprotein lipase

  11. Potential of essential fatty acid deficiency with extremely low fat diet in lipoprotein lipase deficiency during pregnancy: A case report

    Anderson Gregory J; Veldee Megan Y; Brown Judy A; Tsai Elaine C; Chait Alan; Brunzell John D

    2004-01-01

    Abstract Background Pregnancy in patients with lipoprotein lipase deficiency is associated with high risk of maternal pancreatitis and fetal death. A very low fat diet (< 10% of calories) is the primary treatment modality for the prevention of acute pancreatitis, a rare but potentially serious complication of severe hypertriglyceridemia. Since pregnancy can exacerbate hypertriglyceridemia in the genetic absence of lipoprotein lipase, a further reduction of dietary fat intake to < 1–2% of tota...

  12. Potential of essential fatty acid deficiency with extremely low fat diet in lipoprotein lipase deficiency during pregnancy: A case report

    Anderson Gregory J

    2004-12-01

    Full Text Available Abstract Background Pregnancy in patients with lipoprotein lipase deficiency is associated with high risk of maternal pancreatitis and fetal death. A very low fat diet ( Case presentation A 23 year-old gravida 1 woman with primary lipoprotein lipase deficiency was seen at 7 weeks of gestation in the Lipid Clinic for management of severe hypertriglyceridemia that had worsened with pregnancy. While on her habitual fat intake of 10% of total calories, her pregnancy resulted in an exacerbation of the hypertriglyceridemia, which prompted further restriction of fat intake to Conclusions An extremely low fat diet in combination with topical sunflower oil and gemfibrozil administration was safely implemented in pregnancy associated with the severe hypertriglyceridemia of lipoprotein lipase deficiency.

  13. Acid Lipase Disease

    ... Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage Disease, ... Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs when ...

  14. Lipoprotein lipase links dietary fat to solid tumor cell proliferation

    Kuemmerle, Nancy B.; Rysman, Evelien; Lombardo, Portia S.; Flanagan, Alison J.; Lipe, Brea C.; Wells, Wendy A.; Pettus, Jason R.; Froehlich, Heather M.; Memoli, Vincent A.; Morganelli, Peter M.; Swinnen, Johannes V.; Timmerman, Luika A.; Chaychi, Leila; Fricano, Catherine J.; Eisenberg, Burton L.

    2011-01-01

    Many types of cancer cells require a supply of fatty acids (FA) for growth and survival, and interrupting de novo FA synthesis in model systems causes potent anticancer effects. We hypothesized that, in addition to synthesis, cancer cells may obtain pre-formed, diet-derived fatty acids by uptake from the bloodstream. This would require hydrolytic release of FA from triglyceride in circulating lipoprotein particles by the secreted enzyme lipoprotein lipase (LPL), and the expression of CD36, th...

  15. Lipoprotein lipase expression, serum lipid and tissue lipid deposition in orally-administered glycyrrhizic acid-treated rats

    Ton So

    2009-07-01

    Full Text Available Abstract Background The metabolic syndrome (MetS is a cluster of metabolic abnormalities comprising visceral obesity, dyslipidaemia and insulin resistance (IR. With the onset of IR, the expression of lipoprotein lipase (LPL, a key regulator of lipoprotein metabolism, is reduced. Increased activation of glucocorticoid receptors results in MetS symptoms and is thus speculated to have a role in the pathophysiology of the MetS. Glycyrrhizic acid (GA, the bioactive constituent of licorice roots (Glycyrrhiza glabra inhibits 11β-hydroxysteroid dehydrogenase type 1 that catalyzes the activation of glucocorticoids. Thus, oral administration of GA is postulated to ameliorate the MetS. Results In this study, daily oral administration of 50 mg/kg of GA for one week led to significant increase in LPL expression in the quadriceps femoris (p p > 0.05 of the GA-treated rats compared to the control. Decrease in adipocyte size (p > 0.05 in both the visceral and subcutaneous adipose tissue depots accompanies such selective induction of LPL expression. Consistent improvement in serum lipid parameters was also observed, with decrease in serum free fatty acid, triacylglycerol, total cholesterol and LDL-cholesterol but elevated HDL-cholesterol (p > 0.05. Histological analysis using tissue lipid staining with Oil Red O showed significant decrease in lipid deposition in the abdominal muscle and quadriceps femoris (p p > 0.05. Conclusion Results from this study may imply that GA could counteract the development of visceral obesity and improve dyslipidaemia via selective induction of tissue LPL expression and a positive shift in serum lipid parameters respectively, and retard the development of IR associated with tissue steatosis.

  16. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats

    Eu Chia; Lim Wai; Ton So; Kadir Khalid

    2010-01-01

    Abstract Background The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is th...

  17. Structure of the human lipoprotein lipase gene

    Human genomic clones that span the entire lipoprotein lipase (LPL) gene have been isolated and used to determine its structure. The gene is approximately 30 kilobase (kb) pairs in length in which the mRNA specifying sequence is divided into 10 exons. Exons 1-9 are of average size (105-276 bp) whereas exon 10, which specifies the entire 3' uncoding sequence, is 1,948 bp in length. Exon 1 codes for the signal peptide, exon 2 includes the protein domain that was shown to bind to the lipoprotein substrate, and exons 6 and 9 code for sequences that are relatively rich in basic amino acids and therefore likely to be involved in anchoring of the enzyme to the capillary endothelium by interaction with the acidic domain of heparan sulfate. Four closely spaced mRNA 5' termini were observed, indicating multiple transcription initiation sites, one of which seems to be favored. Two potential enhancer sequence motifs in the 5' upstream region were observed. One may specify expression in response to intracellular Ca2+ mobilization, and the other may be responsible for expression in adipocytes

  18. Lipoprotein Lipase, Tissue Expression and Effects on Genes Related to Fatty Acid Synthesis in Goat Mammary Epithelial Cells

    Wang-Sheng Zhao

    2014-12-01

    Full Text Available Lipoprotein lipase (LPL serves as a central factor in hydrolysis of triacylglycerol and uptake of free fatty acids from the plasma. However, there are limited data concerning the action of LPL on the regulation of milk fat synthesis in goat mammary gland. In this investigation, we describe the cloning and sequencing of the LPL gene from Xinong Saanen dairy goat mammary gland, along with a study of its phylogenetic relationships. Sequence analysis showed that goat LPL shares similarities with other species including sheep, bovine, human and mouse. LPL mRNA expression in various tissues determined by RT-qPCR revealed the highest expression in white adipose tissue, with lower expression in heart, lung, spleen, rumen, small intestine, mammary gland, and kidney. Expression was almost undetectable in liver and muscle. The expression profiles of LPL gene in mammary gland at early, peak, mid, late lactation, and the dry period were also measured. Compared with the dry period, LPL mRNA expression was markedly greater at early lactation. However, compared with early lactation, the expression was lower at peak lactation and mid lactation. Despite those differences, LPL mRNA expression was still greater at peak, mid, and late lactation compared with the dry period. Using goat mammary epithelial cells (GMEC, the in vitro knockdown of LPL via shRNA or with Orlistat resulted in a similar degree of down-regulation of LPL (respectively. Furthermore, knockdown of LPL was associated with reduced mRNA expression of SREBF1, FASN, LIPE and PPARG but greater expression of FFAR3. There was no effect on ACACA expression. Orlistat decreased expression of LIPE, FASN, ACACA, and PPARG, and increased FFAR3 and SREBF1 expression. The pattern of LPL expression was similar to the changes in milk fat percentage in lactating goats. Taken together, results suggest that LPL may play a crucial role in fatty acid synthesis.

  19. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate

  20. Comparative Analyses of Lipoprotein Lipase, Hepatic Lipase, and Endothelial Lipase, and Their Binding Properties with Known Inhibitors

    Wang, Ziyun; Li, Shen; Sun, Lidan; Fan, Jianglin; Liu, Zhenming

    2013-01-01

    The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investiga...

  1. Lipoprotein lipase deficiency with visceral xanthomas

    Servaes, Sabah; Bellah, Richard [Department of Radiology, Philadelphia, PA (United States); Verma, Ritu [Department of Gastroenterology, Philadelphia, PA (United States); Pawel, Bruce [Department of Pathology, Philadelphia, PA (United States)

    2010-08-15

    Lipoprotein lipase deficiency (LLD) is a rare metabolic disorder that typically presents with skin xanthomas and pancreatitis in childhood. We report a case of LLD in an infant who presented with jaundice caused by a pancreatic head mass. Abdominal imaging also incidentally revealed hyperechoic renal masses caused by renal xanthomas. This appearance of the multiple abdominal masses makes this a unique infantile presentation of LLD. (orig.)

  2. Lipoprotein lipase is produced, regulated, and functional in rat brain.

    Eckel, R.H.; Robbins, R J

    1984-01-01

    Lipoprotein lipase (LP lipase, triacylglycero-protein acylhydrolase EC 3.1.1.34) activity was found in four dissimilar brain regions (hypothalamus, cortex, cerebellum, and midbrain) of adult male rats. Progressive accumulation of LP lipase activity in cultured fetal rat hypothalamic cells was also observed, indicating de novo synthesis of the lipase. The brain LP lipase activity was serum-dependent and was inhibited by 1 M NaCl and by protamine sulfate. Kinetic analysis revealed an apparent K...

  3. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Beigneux, Anne P; Gårdsvoll, Henrik; Loren, Fong G; Bensadouen, André; Jørgensen, Thomas Jd; Young, Stephen G; Ploug, Michael

    2016-01-01

    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and...

  4. Effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture Efeito da suplementação com ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1

    Adriana Prais Botelho; Lilia Ferreira Santos-Zago; Admar Costa de Oliveira

    2009-01-01

    Supplementation with conjugated linoleic acid may reduce fat body mass and increase lean body mass in various species. Some studies have demonstrated that conjugated linoleic acid reduces body fat, in part, by inhibiting the activity of lipoprotein lipase in adipocytes. The objective of this work was to study the effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture. 3T3-L1 adipocytes received linoleic acid (group C) or conjugated linole...

  5. Metabolic fate of rat heart endothelial lipoprotein lipase

    When isolated rat hearts were perfused with medium containing 125I-labeled bovine lipoprotein lipase (LPL), they bound both lipase activity and radioactivity. More than 80% of the bound lipase could be rapidly released by heparin. Low concentrations of bovine LPL displaced 50-60% of the endogeneous, endothelial-bound LPL. Higher concentrations caused additional binding. Both binding and exchange were rapid processes. The hearts continuously released endogenous LPL into the medium. An antiserum that inhibited bovine but not rat LPL was used to differentiate endogeneous and exogeneous LPL activity. When the pool of endothelial LPL was labeled with bovine 125I-labeled LPL and then chased with unlabeled bovine LPL, approximately 50% of the labeled lipase was rapidly displaced. During chase perfusion with medium only, catalytically active bovine LPL appeared in the perfusate. The rate of release was similar to that observed for endogeneous LPL activity and amounted to 10-13% of the heparin-releasable fraction in the first 5 min of perfusion. There was little or no degradation of bovine 125I-labeled LPL to fragments or acid-soluble products. These results indicate that endothelial LPL is accessible for exchange with exogeneous LPL and that detachment rather than degradation may be the pathway for catabolism of endothelial LPL

  6. LIPOPROTEIN LIPASE RELEASES ESTERIFIED OXYLIPINS FROM VERY LOW-DENSITY LIPOPROTEINS.

    Defects in lipoprotein metabolism alter the lipoprotein distribution of oxidized PUFAs, and we speculate that lipoprotein lipase (LpL) is a determinant in the release of VLDL-associated oxylipins. Here, using 12 wk old normolipidemic (lean) and hyperlipidemic (obese) Zucker-rats, we measured PUFA al...

  7. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.

    Marius R Robciuc

    Full Text Available Peroxisome proliferator-activated receptor (PPAR delta is an important regulator of fatty acid (FA metabolism. Angiopoietin-like 4 (Angptl4, a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR, PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.

  8. Lipoprotein lipase increases low density lipoprotein retention by subendothelial cell matrix.

    Saxena, U; Klein, M. G.; Vanni, T M; Goldberg, I J

    1992-01-01

    Lipoprotein lipase (LPL), the rate-limiting enzyme for hydrolysis of plasma lipoprotein triglycerides, is a normal constituent of the arterial wall. We explored whether LPL affects (a) lipoprotein transport across bovine aortic endothelial cells or (b) lipoprotein binding to subendothelial cell matrix (retention). When bovine milk LPL was added to endothelial cell monolayers before addition of 125I-labeled LDL, LDL transport across the monolayers was unchanged; but, at all concentrations of L...

  9. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats

    Eu Chia

    2010-07-01

    Full Text Available Abstract Background The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL, an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR. Glycyrrhizic acid (GA, a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state. Results Oral administration of 100 mg/kg of GA to high-fat diet-induced obese rats for 28 days led to significant reduction in blood glucose concentration and improvement in insulin sensitivity as indicated by the homeostasis model assessment of insulin resistance (HOMA-IR (p Conclusion In conclusion, GA may be a potential compound in improving dyslipidaemia by selectively inducing LPL expression in non-hepatic tissues. Such up-regulation was accompanied by a GA-mediated improvement in insulin sensitivity, which may be associated with a decrease in tissue lipid deposition. The HDL-raising effect of GA suggests the antiatherosclerotic properties of GA.

  10. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  11. Serum lipoprotein lipase mass: Clinical significance of its measurement

    Kobayashi, Junji; Nohara, Atsushi; Kawashiri, Masaaki; Inazu, Akihiro; Koizumi, Junji; Nakajima, Katsuyuki; Mabuchi, Hiroshi

    2007-01-01

    Lipoprotein lipase (LPL) is a lipolytic enzyme involved in catalyzing hydrolysis of triglycerides (TG) in chylomicrons and very low-density lipoprotein (VLDL) particles. Over the last decade, increasing attention has been paid to the clinical significance of measuring serum LPL protein mass without heparin injection to the study subjects. In earlier studies, this marker was utilized to classify LPL deficient subjects, which is an extremely rare metabolic disorder with a frequency of one in on...

  12. Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: Direct evidence that lipoprotein lipase bridging occurs in vivo

    Merkel, Martin; Kako, Yuko; Radner, Herbert; Cho, Irene S.; Ramasamy, Ravi; Brunzell, John D.; Goldberg, Ira J.; Breslow, Jan L.

    1998-01-01

    Lipoprotein lipase (LPL) is the central enzyme in plasma triglyceride hydrolysis. In vitro studies have shown that LPL also can enhance lipoprotein uptake into cells via pathways that are independent of catalytic activity but require LPL as a molecular bridge between lipoproteins and proteoglycans or receptors. To investigate whether this bridging function occurs in vivo, two transgenic mouse lines were established expressing a muscle creatine kinase promoter-driven human LPL (hLPL) minigene ...

  13. Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy

    Orlando Robert A

    2007-10-01

    Full Text Available Abstract Background A major portion of available fatty acids for adipocyte uptake is derived from lipoprotein lipase (LPL-mediated hydrolysis of circulating lipoprotein particles. In vivo studies aimed at identifying the precise role of adipocyte-derived LPL in fat storage function of adipose tissue have been unable to provide conclusive evidence due to compensatory mechanisms that activate endogenous fatty acid synthesis. To address this gap in knowledge, we have measured the effect of reducing adipocyte LPL expression on intracellular lipid accumulation using a well-established cultured model of adipocyte differentiation. Methods siRNA specific for mouse LPL was transfected into 3T3-L1 adipocytes. Expression of LPL was measured by quantitative real-time PCR and cell surface-associated LPL enzymatic activity was measured by colorimetric detection following substrate (p-nitrophenyl butyrate hydrolysis. Apolipoprotein CII and CIII expression ratios were also measured by qRT-PCR. Intracellular lipid accumulation was quantified by Nile Red staining. Results During differentiation of 3T3-L1 pre-adipocytes, LPL mRNA expression increases 6-fold resulting in a 2-fold increase in cell surface-associated LPL enzymatic activity. Parallel to this increase in LPL expression, we found that intracellular lipids increased ~10-fold demonstrating a direct correlation between adipocyte-derived LPL expression and lipid storage. We next reduced LPL expression in adipocytes using siRNA transfections to directly quantify the contributions of adipocyte-derived LPL to lipid storage, This treatment reduced LPL mRNA expression and cell surface-associated LPL enzymatic activity to ~50% of non-treated controls while intracellular lipid levels were reduced by 80%. Exogenous addition of purified LPL (to restore extracellular lipolytic activity or palmitate (as a source of free fatty acids to siRNA-treated cells restored intracellular lipid levels to those measured for non

  14. Direct solid phase radioimmunoassay for chicken lipoprotein lipase

    A direct, noncompetitive immunoassay for chicken lipoprotein lipase (LPL) was developed. Antibodies to LPL were purified by immunoadsorption chromatography of goat antisera on an LPL-Sepharose column. Purified anti-LPL immunoglobulins were coupled covalently to hydrophilic polyacrylamide beads by a carbodiimide reagent. An excess amount of these beads was incubated with the sample on the standard to be assayed. The amount of LPL immobilized by the heads was then detected by an excess amount of 125I-labeled anti-LPL immunoglobulin. A linear relationship was obtained between the radioactivity bound and the amount of highly purified LPL used as a standard. The range of the assay was from 0.1 to 1.1 ng PLP. The assay was specific for chicken LPL and showed no cross-reactivity with liver lipase. It does not distinguish heat-inactivated from catalytically active enzyme species. This assay should be useful in studies of lipoprotein lipase where both catalytic activity and enzyme mass need to be quantitated

  15. Changes in lipoprotein lipase activity in the adipose tissue, heart and liver of continuously irradiated rats

    Adult male Wistar rats were continuously irradiated for 30 days on an experimental field from a 60Co source of radiation. Lipoprotein lipase activity was determined in their adipose tissue, heart and liver at intervals of 1, 3, 7, 14, 21 and 30 days from the beginning of irradiation and triacylglycerol, total cholesterol, phospholipid and non-esterified fatty acid concentrations were determined in their serum. Throughout the whole of the study, lipoprotein lipase activity was lower in the adipose tissue and higher in the heart of irradiated rats than in the controls. In the liver it was low 3 days from the onset of irradiation; at the other intervals it was variable and differed only non-significantly from the controls. Serum lipid concentrations were raised in irradiated rats - triacylglycerol from the 7th day, phospholipids from the 14th day and non-esterified fatty acids throughout the whole period of irradiation. In keeping with the high triacylglycerol values in the serum of irradiated rats, lipoprotein lipase activity in their adipose tissue was low. (author)

  16. Radiochemical determination of lipoprotein lipase activity (LPLA) in human adipose tissue

    Lipoprotein lipase activity (LPLA) is measured in samples (20 to 100 mg) of human fatty tissue obtained by needle biopsy. The material is converted into an acetone-ether powder by defatting. 3H-labelled triolein which is suspended in glycerol, using inactive triolein, lecithin and ultrasonication, serves as a substrate concentrate, from which a substrate is prepared by adding Tris buffer, albumin and serum. The amount of oleic acid liberated from the suspended acetone-ether powder during incubation is measured by its radioactivity. 78 determinations in patients with hyperlipoproteinemia yielded a mean LPLA value of 0.606 +- 0.501 μmoles/g-1h-1. (author)

  17. Effects of Glycyrrhizic Acid on Peroxisome Proliferator-Activated Receptor Gamma (PPARγ, Lipoprotein Lipase (LPL, Serum Lipid and HOMA-IR in Rats

    Chia Yoke Yin

    2010-01-01

    Full Text Available Studies on ligand binding potential of glycyrrhizic acid, a potential agonist to PPARγ, displayed encouraging results in amelioration of metabolic syndrome. The regulation of gene cassettes by PPARγ affects glucose homeostasis, lipid, lipoprotein metabolism and adipogenesis. This study was performed to determine the effects of GA on total PPARγ and LPL expression levels, lipid parameters and HOMA-IR. Oral administration of 100 mg/kg GA for 24 hours resulted in an increase in insulin sensitivity with decreases in blood glucose, serum insulin and HOMA-IR. Improvement in serum lipid parameters was also observed with a decrease in triacylglycerol, total cholesterol and LDL-cholesterol and an elevation in HDL-cholesterol. GA administration also resulted in up-regulation of total PPARγ and LPL expression levels in the visceral and subcutaneous adipose tissues, abdominal and quadriceps femoris muscles, as well as liver and kidney, with a significant up-regulation only in the visceral adipose tissue, abdominal and quadriceps femoris muscles. Thus, oral administration of 100 mg/kg GA for 24 hours improved insulin sensitivity and lipid profiles and induced upregulation of total PPARγ and LPL expression levels in all studied tissues.

  18. Involvement of cell surface heparin sulfate in the binding of lipoprotein lipase to cultured bovine endothelial cells.

    Shimada, K.; Gill, P J; Silbert, J E; Douglas, W H; Fanburg, B L

    1981-01-01

    It has been postulated that lipoprotein lipase, an enzyme important in the uptake of fatty acids into tissues, is bound to the vascular endothelial cell surface and that this binding occurs through attachment to heparinlike glycosaminoglycans. Furthermore, it is thought that heparin releases the enzyme from its attachment to the endothelium into the circulation. These hypotheses have never been tested directly in cell systems in vitro. In the present study we have directly evaluated the inter...

  19. Regulation of lipoprotein lipase synthesis in 3T3-L1 adipocytes by interleukin-1

    When fully differentiated 3T3-L1 fatty fibroblasts were exposed to purified, recombinant murine interleukin-1, a dose dependent suppression of lipoprotein lipase activity was observed. The loss of activity reached a maximum of 60-70% of control and appeared to be due to a specific effect on the synthesis of the enzyme as judged by a suppression of the ability to incorporate [35S]methionine into immunoprecipitable lipoprotein lipase. There was no general effect on protein synthesis as determined by radiolabel incorporated into acid precipitable protein, however, after a 17 h exposure of the 3T3-L1 cells to interleukin-1, the synthesis of two proteins (molecular weights, 19,400 and 165,000 daltons) was enhanced several fold. The observed effects on protein synthesis in the adipocytes occur at a concentration of interleukin-1 which is similar to the concentration necessary for the stimulation of [3H]thymidine incorporation into mouse thymocyte DNA. The present study represents the first unequivocal report of the ability of interleukin-1 to regulate protein synthesis in intact cells, specifically adipocytes. Moreover, their results demonstrate the ability of interleukin-1 to regulate metabolism by controlling the synthesis of specific proteins

  20. The lipoprotein lipase gene in combined hyperlipidemia: evidence of a protective allele depletion

    Malloy Mary J; Pullinger Clive R; Kulkarni Medha V; Wung Shu-Fen; Kane John P; Aouizerat Bradley E

    2006-01-01

    Abstract Background Lipoprotein Lipase (LPL), a key enzyme in lipid metabolism, catalyzes the hydrolysis of triglycerides (TG) from TG-rich lipoproteins, and serves a bridging function that enhances the cellular uptake of lipoproteins. Abnormalities in LPL function are associated with pathophysiological conditions, including familial combined hyperlipidemia (FCH). Whereas two LPL susceptibility alleles were found to co-segregate in a few FCH kindred, a role for common, protective alleles rema...

  1. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions. PMID:7870347

  2. Leu452His mutation in lipoprotein lipase gene transfer associated with hypertriglyceridemia in mice in vivo.

    Kaiyue Sun

    Full Text Available Mutated mouse lipoprotein lipase (LPL containing a leucine (L to histidine (H substitution at position 452 was transferred into mouse liver by hydrodynamics-based gene delivery (HD. Mutated-LPL (MLPL gene transfer significantly increased the concentrations of plasma MLPL and triglyceride (TG but significantly decreased the activity of plasma LPL. Moreover, the gene transfer caused adiposis hepatica and significantly increased TG content in mouse liver. To understand the effects of MLPL gene transfer on energy metabolism, we investigated the expression of key functional genes related to energy metabolism in the liver, epididymal fat, and leg muscles. The mRNA contents of hormone-sensitive lipase (HSL, adipose triglyceride lipase (ATGL, fatty acid-binding protein (FABP, and uncoupling protein (UCP were found to be significantly reduced. Furthermore, we investigated the mechanism by which MLPL gene transfer affected fat deposition in the liver, fat tissue, and muscle. The gene expression and protein levels of forkhead Box O3 (FOXO3, AMP-activated protein kinase (AMPK, and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α were found to be remarkably decreased in the liver, fat and muscle. These results suggest that the Leu452His mutation caused LPL dysfunction and gene transfer of MLPL in vivo produced resistance to the AMPK/PGC-1α signaling pathway in mice.

  3. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    Harrison Michael

    2012-07-01

    Full Text Available Abstract Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS, it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL responses were evaluated in eight men on the morning after i an inactive control trial (CON, ii exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF, and iii after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL. Results The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium particle range. VLDL-TG in smaller particles (29–43 nm was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. Conclusions These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in

  4. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    Harrison, Michael

    2012-06-06

    AbstractBackgroundMany of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects.MethodsUsing a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL).ResultsThe intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium) particle range. VLDL-TG in smaller particles (29–43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state.ConclusionsThese findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity.

  5. Impact of lipoprotein lipase gene polymorphisms on ulcerative colitis

    Toshihito Kosaka; Taizou Shiraishi; Masatoshi Watanabe; Takayuki Yamamoto; Ai Nakahara; Takahiko Katoh; Junji Yoshino; Kazuo Inui; Takao Wakabayashi; Kazumu Okushima; Takashi Kobayashi; Hironao Miyoshi; Yuta Nakamura; Shigekazu Hayashi

    2006-01-01

    AIM: To examine the influence of lipoprotein lipase (LPL)gene polymorphism in ulcerative colitis (UC) patients.METHODS: Peripheral blood was obtained from 131 patients with UC and 106 healthy controls for DNA extraction. We determined LPL gene polymorphisms affecting the enzyme at Ser447stop, as well as Hind Ⅲ and Pvu Ⅱ polymorphisms using PCR techniques. PCR products were characterized by PCR-RFLP and direct sequencing.Polymorphisms were examined for association with clinical features in UC patients. Genotype frequencies for LPL polymorphisms were also compared between UC patients and controls.RESULTS: In patients with onset at age 20 years or younger, C/G and G/G genotypes for Ser447stop polymorphism were more prevalent than C/C genotype (OR= 3.13, 95% CI = 0.95-10.33). Patients with H+/- or H-/-genotype for HindⅢ polymorphism also were more numerous than those with H+/+ genotype (OR = 2.51, 95%CI = 0.85-7.45). In the group with H+/+ genotype for HindⅢ polymorphism, more patients had serum triglyceride concentrations over 150 mg/dL than patients with H+/- or H-/- genotype (P < 0.01, OR = 6.46, 95% CI =1.39-30.12). Hypertriglycemia was also more prevalent in patients with P+/+ genotypes for Pvu Ⅱ polymorphism (P< 0.05, OR = 3.0, 95% CI = 1.06-8.50). Genotype frequency for LPL polymorphism did not differ significantly between UC patients and controls.CONCLUSION: Ser447stop and HindⅢ LPL polymorphisms may influence age of onset of UC, while HindⅢand PvuⅡ polymorphisms influence serum triglyceride in UC patients.

  6. Metabolism of apolipoproteins B-48 and B-100 of triglyceride-rich lipoproteins in normal and lipoprotein lipase-deficient humans.

    Stalenhoef, A.F.; Malloy, M J; Kane, J P; Havel, R J

    1984-01-01

    The metabolism of apolipoproteins B-48 and B-100 (apo B-48 and B-100) in large triglyceride-rich lipoproteins (300 to 1500 A in diameter) has been compared in three normal subjects and two subjects with genetically determined deficiency of lipoprotein lipase. The triglyceride-rich lipoproteins were obtained from a lipoprotein lipase-deficient donor 4 hr after a fat-rich meal in order to obtain chylomicrons (containing apo B-48) and very low density lipoproteins (VLDL) (containing apo B-100), ...

  7. Iodine-125-labeled lipoprotein lipase as a tool to detect and study spontaneous lipolysis in bovine milk

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1986-07-01

    The distribution of lipoprotein lipase among cream, casein, and milk serum can be evaluated by addition of a trace amount of /sup 125/I-labeled lipoprotein lipase to milk. Radioactive lipase was distributed in parallel to endogenous lipase under several conditions. In some milk samples, binding of lipase to cream increased when the milk was cooled. Correlation was good between bound labeled lipase and degree of cold-induced lipolysis in corresponding milk samples. Binding of lipase to cream or to casein was not saturable by addition of two-to threefold more lipase than is normally present in milk. In milk with a relatively high fraction of lipase bound to cream, a correspondingly lower fraction was associated with casein, whereas the fraction of lipase in milk serum was similar in all milk samples. Cold-induced binding of lipoprotein lipase to cream was not fully reversed when the milk was warmed again. Heparin released lipase from casein and increased the amount of lipase bound to cream after cooling.

  8. Iodine-125-labeled lipoprotein lipase as a tool to detect and study spontaneous lipolysis in bovine milk

    The distribution of lipoprotein lipase among cream, casein, and milk serum can be evaluated by addition of a trace amount of 125I-labeled lipoprotein lipase to milk. Radioactive lipase was distributed in parallel to endogenous lipase under several conditions. In some milk samples, binding of lipase to cream increased when the milk was cooled. Correlation was good between bound labeled lipase and degree of cold-induced lipolysis in corresponding milk samples. Binding of lipase to cream or to casein was not saturable by addition of two-to threefold more lipase than is normally present in milk. In milk with a relatively high fraction of lipase bound to cream, a correspondingly lower fraction was associated with casein, whereas the fraction of lipase in milk serum was similar in all milk samples. Cold-induced binding of lipoprotein lipase to cream was not fully reversed when the milk was warmed again. Heparin released lipase from casein and increased the amount of lipase bound to cream after cooling

  9. SINGLE NUCLEOTIDE POLYMORPHISMS OF LIPOPROTEIN LIPASE GENE AND ITS ASSOCIATION WITH MARBLING QUALITY IN LOCAL SHEEPS

    H. Hidayati

    2015-09-01

    Full Text Available Lipoprotein lipase (LPL is a key enzyme that plays in metabolism and transport lipoprotein andtherefore has an influence on blood triglyceride levels. LPL controls triacylglycerol partitioning betweenadipose tissue and muscle that increases fat storage or provides energy in the form of fatty acids formuscle growth. The research was aimed to explore Single Nucleotide Polymorphisms of LPL gene andto associate SNP with marbling quality. A total of 66 genomic DNAs consisted of sumatera thin-tail edsheep (50 heads and garut sheep (16 heads were used in this study. Polymerase Chain Reaction wasused to amplify genomic DNA and direct sequencing method was to identify polymorphism sequences.The sequences were analyzed with Bio Edit and MEGA 5.2. The BLAST sequence was obtained fromgene bank X.68308.1. The association between the genotype and marbling quality was analyze by oneway ANOVA and further between mean differences were tested using least sgnificant difference. Theresults showed that 3 novel SNPs i.e. insertion g.26>C; insertion g.27> G and c.192T>C on garut sheepand a SNP insertion g.26>C/G on sumatera thin-tail ed sheep. The diversity of LPL gene at c.192T>Cwas associated with heneicosanoic acid, whereas TT genotype (0.04% was higher than CC (0.03% andCT (0.02%.

  10. Endothelial and lipoprotein lipases in human and mouse placenta

    Lindegaard, Marie Louise Skakkebæk; Olivecrona, Gunilla; Christoffersen, Christina;

    2005-01-01

    protein associated with both cell types. In mouse placentas, lack of LPL expression resulted in increased EL mRNA expression. These results suggest that the cellular expression of EL and LPL in human placenta is different. Nevertheless, the two lipases might have overlapping functions in the mouse......Placenta expresses various lipase activities. However, a detailed characterization of the involved genes and proteins is lacking. In this study, we compared the expression of endothelial lipase (EL) and LPL in human term placenta. When placental protein extracts were separated by heparin...... placenta. Our data also suggest that the major portions of both proteins are stored in an inactive form in human term placenta....

  11. The relationship between lipoprotein lipase-447C/G genepolymorphism and cerebral infarction in the elderly

    胡晓雁

    2013-01-01

    Objective To explore the relationship between the lipoprotein lipase(LPL)-447C/G gene polymorphism and cerebral infarction in the elderly. Methods This was a case-control study,which enrolled 206 cases with cerebral infarction in the elderly and 203 elderly

  12. Lipoprotein lipase gene polymorphisms and the risk of target vessel revascularization after percutaneous coronary intervention

    Monraats, Pascalle S; Rana, Jamal S; Nierman, Melchior C; Pires, Nuno M M; Zwinderman, Aeilko H; Kastelein, John J P; Kuivenhoven, Jan Albert; de Maat, Moniek P M; Rittersma, Saskia Z H; Schepers, Abbey; Doevendans, Pieter A F; de Winter, Robbert J; Tio, René A; Frants, Rune R; Quax, Paul H A; van der Laarse, Arnoud; van der Wall, Ernst E; Jukema, J Wouter

    2005-01-01

    OBJECTIVES: We sought to identify polymorphisms in genes that predispose to restenosis. BACKGROUND: Variations in the lipoprotein lipase (LPL) gene have been implicated in a number of pathophysiologic conditions associated with coronary heart disease. The present study examines the impact of polymor

  13. Post-heparin plasma lipoprotein lipase, but not hepatic lipase activity, is related to plasma adiponectin in type 2 diabetic patients and healthy subjects

    De Vries, R; Wolffenbuttel, BHR; Sluiter, WJ; Van Tol, A; Dullaart, RPF

    2005-01-01

    The aim of this study was to determine the relationships of plasma adiponectin with post-heparin plasma lipoprotein lipase (LPL) and hepatic lipase (HL) activities, and to evaluate whether plasma adiponectin contributes to diabetes-associated dyslipidaemia. Plasma adiponectin, post-heparin plasma li

  14. Hepatic Lipase: a Comprehensive View of its Role on Plasma Lipid and Lipoprotein Metabolism.

    Kobayashi, Junji; Miyashita, Kazuya; Nakajima, Katsuyuki; Mabuchi, Hiroshi

    2015-01-01

    Hepatic lipase (HL) is a key enzyme catalyzing the hydrolysis of triglycerides (TG) and phospholipids (PLs) in several lipoproteins. It is generally recognized that HL is involved in the remodeling of remnant, low-density lipoprotein (LDL), high-density lipoprotein (HDL) and the production of small, dense low-density lipoproteins (sd-LDLs).On the other hand, it is unclear whether HL accelerates or retards atherosclerosis. From the clinical point of view, HL deficiency may provide useful information on answering this question, but the rarity of this disease makes it impossible to conduct epidemiological study.In this review, we describe a comprehensive and updated view of the clinical significance of HL on lipid and lipoprotein metabolism. PMID:26194979

  15. PLTP activity in premenopausal women. Relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance.

    Murdoch, S J; Carr, M C; Hokanson, J E; Brunzell, J D; Albers, J J

    2000-02-01

    Plasma phospholipid transfer protein (PLTP) is thought to play a major role in the facilitated transfer of phospholipids between lipoproteins and in the modulation of high density lipoprotein (HDL) particle size and composition. However, little has been reported concerning the relationships of PLTP with plasma lipoprotein parameters, lipolytic enzymes, body fat distribution, insulin, and glucose in normolipidemic individuals, particularly females. In the present study, 50 normolipidemic healthy premenopausal females were investigated. The relationships between the plasma PLTP activity and selected variables were assessed. PLTP activity was significantly and positively correlated with low density lipoprotein (LDL) cholesterol (r(s) = 0.53), apoB (r(s) = 0.44), glucose (r(s) = 0.40), HDL cholesterol (r(s) = 0.38), HDL(3) cholesterol (r(s) = 0.37), lipoprotein lipase activity (r(s) = 0.36), insulin (r(s) = 0.33), subcutaneous abdominal fat (r(s) = 0.36), intra-abdominal fat (r(s) = 0.29), and body mass index (r(s) = 0.29). HDL(2) cholesterol, triglyceride, and hepatic lipase were not significantly related to PLTP activity. As HDL(2) can be decreased by hepatic lipase and hepatic lipase is increased in obesity with increasing intra-abdominal fat, the participants were divided into sub-groups of non-obese (n = 35) and obese (n = 15) individuals and the correlation of PLTP with HDL(2) cholesterol was re-examined. In the non-obese subjects, HDL(2) cholesterol was found to be significantly and positively related to PLTP activity (r(s) = 0.44). Adjustment of the HDL(2) values for the effect of hepatic lipase activity resulted in a significant positive correlation between PLTP and HDL(2) (r(s) = 0.41), indicating that the strength of the relationship between PLTP activity and HDL(2) can be reduced by the opposing effect of hepatic lipase on HDL(2) concentrations. We conclude that PLTP-facilitated lipid transfer activity is related to HDL and LDL metabolism, as well as

  16. Effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture Efeito da suplementação com ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1

    Adriana Prais Botelho

    2009-10-01

    Full Text Available Supplementation with conjugated linoleic acid may reduce fat body mass and increase lean body mass in various species. Some studies have demonstrated that conjugated linoleic acid reduces body fat, in part, by inhibiting the activity of lipoprotein lipase in adipocytes. The objective of this work was to study the effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture. 3T3-L1 adipocytes received linoleic acid (group C or conjugated linoleic acid (group AE, supplemented with AdvantEdge® CLA, and group CO, supplemented with CLA One® in concentrations of 1 mmol/L. Heparin-releasable lipoprotein lipase activity was analyzed by means of a 3T3-L1 adipocyte culture. After 7 days, heparin-releasable lipoprotein lipase activity was lower in the groups AE and CO supplemented with conjugated linoleic acid. These results suggest that one of the mechanisms by which CLA is capable of reducing body fat is by reducing lipoprotein lipase activity.A suplementação com ácido linoléico conjugado pode reduzir a gordura corporal e aumentar a massa magra em diferentes espécies. Alguns estudos têm demonstrado que o ácido linoléico conjugado reduz a gordura corporal, por meio da inibição da atividade de lípase lipoprotéica em adipócitos. O objetivo deste estudo foi avaliar o efeito da suplementação com uma mistura de isômeros do ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1. Os adipócitos 3T3-L1 receberam ácido linoléico (grupo controle ou ácido linoléico conjugado (grupo AE, suplementado com AdvantEdge® CLA, e grupo CO, suplementado com CLA One® na concentração de 1 mmol/L. A atividade de lípase lipoprotéica livre de heparina foi analisada pela média da cultura de adipócitos. Após 7 dias, a atividade da lípase lipoprotéica livre de heparina mostrou menores valores nos grupos AE e CO, suplementados com ácido linol

  17. Endothelial and lipoprotein lipases in human and mouse placenta

    Lindegaard, Marie L S; Olivecrona, Gunilla; Christoffersen, Christina;

    2005-01-01

    protein associated with both cell types. In mouse placentas, lack of LPL expression resulted in increased EL mRNA expression. These results suggest that the cellular expression of EL and LPL in human placenta is different. Nevertheless, the two lipases might have overlapping functions in the mouse...

  18. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

    Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S.; Shachter, Neil S.

    2003-12-01

    We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.

  19. Angiopoietin-like protein 4 inhibition of lipoprotein lipase: evidence for reversible complex formation.

    Lafferty, Michael J; Bradford, Kira C; Erie, Dorothy A; Neher, Saskia B

    2013-10-01

    Elevated triglycerides are associated with an increased risk of cardiovascular disease, and lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of triglycerides from circulating lipoproteins. The N-terminal domain of angiopoietin-like protein 4 (ANGPTL4) inhibits LPL activity. ANGPTL4 was previously described as an unfolding molecular chaperone of LPL that catalytically converts active LPL dimers into inactive monomers. Our studies show that ANGPTL4 is more accurately described as a reversible, noncompetitive inhibitor of LPL. We find that inhibited LPL is in a complex with ANGPTL4, and upon dissociation, LPL regains lipase activity. Furthermore, we have generated a variant of ANGPTL4 that is dependent on divalent cations for its ability to inhibit LPL. We show that LPL inactivation by this regulatable variant of ANGPTL4 is fully reversible after treatment with a chelator. PMID:23960078

  20. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes.

    Kern, P A; Marshall, S; Eckel, R H

    1985-01-01

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific 125I-insulin binding. In addition, chloroquine induced an increase in cell-asso...

  1. Abnormal Patterns of Lipoprotein Lipase Release into the Plasma in GPIHBP1-deficient Mice*

    Weinstein, Michael M.; Yin, Liya; Beigneux, Anne P.; Davies, Brandon S. J.; Gin, Peter; Estrada, Kristine; Melford, Kristan; Bishop, Joseph R.; Esko, Jeffrey D.; Dallinga-Thie, Geesje M.; Fong, Loren G.; Bensadoun, André; Young, Stephen G.

    2008-01-01

    GPIHBP1-deficient mice (Gpihbp1–/–) exhibit severe chylomicronemia. GPIHBP1 is located within capillaries of muscle and adipose tissue, and expression of GPIHBP1 in Chinese hamster ovary cells confers upon those cells the ability to bind lipoprotein lipase (LPL). However, there has been absolutely no evidence that GPIHBP1 actually interacts with LPL in vivo. Heparin is known to release LPL from its in vivo binding sites, allowing it to enter the plasma. After an injection ...

  2. The common biological basis for common complex diseases: evidence from lipoprotein lipase gene

    Xie, Cui; Wang, Zeng Chan; Liu, Xiao Feng; Yang, Mao Sheng

    2009-01-01

    The lipoprotein lipase (LPL) gene encodes a rate-limiting enzyme protein that has a key role in the hydrolysis of triglycerides. Hypertriglyceridemia, one widely prevalent syndrome of LPL deficiency and dysfunction, may be a risk factor in the development of dyslipidemia, type II diabetes (T2D), essential hypertension (EH), coronary heart disease (CHD) and Alzheimer's disease (AD). Findings from earlier studies indicate that LPL may have a role in the pathology of these diseases and therefore...

  3. Triglyceride kinetics, tissue lipoprotein lipase, and liver lipogenesis in septic rats

    Lanza-Jacoby, S.; Tabares, A. (Jefferson Medical College, Philadelphia, PA (USA))

    1990-04-01

    The mechanism for the development of hypertriglyceridemia during gram-negative sepsis was studied by examining liver production and clearance of very-low-density lipoprotein (VLDL) triglyceride (TG). To assess liver output and peripheral clearance the kinetics of VLDL-TG were determined by a constant iv infusion of (2-3H)glycerol-labeled VLDL. Clearance of VLDL-TG was also evaluated by measuring activities of lipoprotein lipase (LPL) in heart, soleus muscle, and adipose tissue from fasted control, fasted E. coli-treated, fed control, and fed E. coli-treated rats. Lewis inbred rats, 275-300 g, were made septic with 8 x 10(7) live E. coli colonies per 100 g body wt. Twenty-four hours after E. coli injection, serum TG, free fatty acids (FFA), and cholesterol of fasted E. coli-treated rats were elevated by 170, 76, and 16%, respectively. The elevation of serum TG may be attributed to the 67% decrease in clearance rate of VLDL-TG in fasted E. coli-treated rats compared with their fasted controls. The suppressed activities of LPL in adipose tissue, skeletal muscle, and heart were consistent with reduced clearance of TG. Secretion of VLDL-TG declined by 31% in livers of fasted E. coli-treated rats, which was accompanied by a twofold increase in the composition of liver TG. Rates of in vivo TG synthesis in livers of the fasted E. coli-treated rats were twofold higher than in those of fasted control rats. Decreased rate of TG appearance along with the increase in liver synthesis of TG contributed to the elevation of liver lipids in the fasted E. coli-treated rats.

  4. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    Deckelbaum, R.J. (Columbia Univ., New York, NY (USA)); Hamilton, J.A.; Butbul, E.; Gutman, A. (Boston Univ. Medical Center, MA (USA)); Moser, A. (Hadassah Univ. Hospital, Jerusalem (Israel)); Bengtsson-Olivecrona, G.; Olivecrona, T. (Univ. of Umea (Sweden)); Carpentier, Y.A. (St. Pierre Univ. Hospital, Brussels (Belgium))

    1990-02-06

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility for MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.

  5. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of [13C]carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T1, were also shorter for trioctanoin, showing greater mobility for MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface

  6. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    Harrison Michael; Moyna Niall M; Zderic Theodore W; O’Gorman Donal J; McCaffrey Noel; Carson Brian P; Hamilton Marc T

    2012-01-01

    Abstract Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on...

  7. Molecular size of bovine lipoprotein lipase as determined by radiation inactivation

    The authors have determined the size of the functional unit of bovine lipoprotein lipase by radiation inactivation. This was done in five different situations: 1) in a buffer with high salt concentration. In this situation the enzyme is relatively soluble and stable. 2) For an enzyme-heparin complex. This may reflect the physiological state of the enzyme at the vascular endothelium, where it is believed to be bound to a heparin-like molecule. 3) In the presence of lipid substrate and 4) with lipid substrate and activator protein. Here most of the enzyme is adsorbed to the substrate droplets. 5) For an enzyme-detergent complex; another model for enzyme-lipid interaction. In all five situations the enzyme activity decayed as an exponential function of radiation dose, and the target sizes were similar. The target size did not vary with the concentration of lipase protein. The combined data for bovine lipoprotein lipase yield a functional size of 72 kDa which is close to that expected for a dimer, 77 kDa

  8. Hydrolysis of bovine and caprine milk fat globules by lipoprotein lipase. Effects of heparin and skim milk on lipase distribution and on lipolysis

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1987-12-01

    Heparin can dissociate lipoprotein lipase from casein micelles, and addition of heparin enhances lipolysis in bovine but not in caprine milk. Heparin shortened the lag-time for binding of lipoprotein lipase to milk fat globules and for lipolysis. Heparin counteracted the inhibitory effects of skim milk on binding of lipase and on lipolysis. Heparin stimulated lipolysis in all bovine milk samples when added before cooling and in spontaneously lipolytic milk samples also when added after cooling. Heparin enhanced lipolysis of isolated milk fat globules. Hence, its effect is not solely due to dissociation of lipoprotein lipase from the casein micelles. Cooling of goat milk caused more marked changes in the distribution of lipase than cooling of bovine milk; the fraction of added /sup 125/I-labeled lipase that bound to cream increased from about 8 to 60%. In addition, caprine skim milk caused less inhibition of lipolysis than bovine skim milk. These observations provide an explanation for the high degree of cold storage lipolysis in goat milk. Heparin had only small effects on the distribution of lipoprotein lipase in caprine milk, which explains why heparin has so little effect on lipolysis in caprine milk. The distribution of /sup 35/S-labeled heparin in bovine milk was studied. In warm milk less than 10% bound to the cream fraction, but when milk was cooled, binding of heparin to cream increased to 45%. These results suggest that there exists in the skim fraction a relatively small amount of a heparin-binding protein, which on cooling of milk adsorbs to the milk fat, or suggests that cooling induces a conformational change in a membrane protein such that its affinity for heparin increases.

  9. Hydrolysis of bovine and caprine milk fat globules by lipoprotein lipase. Effects of heparin and skim milk on lipase distribution and on lipolysis

    Heparin can dissociate lipoprotein lipase from casein micelles, and addition of heparin enhances lipolysis in bovine but not in caprine milk. Heparin shortened the lag-time for binding of lipoprotein lipase to milk fat globules and for lipolysis. Heparin counteracted the inhibitory effects of skim milk on binding of lipase and on lipolysis. Heparin stimulated lipolysis in all bovine milk samples when added before cooling and in spontaneously lipolytic milk samples also when added after cooling. Heparin enhanced lipolysis of isolated milk fat globules. Hence, its effect is not solely due to dissociation of lipoprotein lipase from the casein micelles. Cooling of goat milk caused more marked changes in the distribution of lipase than cooling of bovine milk; the fraction of added 125I-labeled lipase that bound to cream increased from about 8 to 60%. In addition, caprine skim milk caused less inhibition of lipolysis than bovine skim milk. These observations provide an explanation for the high degree of cold storage lipolysis in goat milk. Heparin had only small effects on the distribution of lipoprotein lipase in caprine milk, which explains why heparin has so little effect on lipolysis in caprine milk. The distribution of 35S-labeled heparin in bovine milk was studied. In warm milk less than 10% bound to the cream fraction, but when milk was cooled, binding of heparin to cream increased to 45%. These results suggest that there exists in the skim fraction a relatively small amount of a heparin-binding protein, which on cooling of milk adsorbs to the milk fat, or suggests that cooling induces a conformational change in a membrane protein such that its affinity for heparin increases

  10. Apolipoproteins C-I and C-III Inhibit Lipoprotein Lipase Activity by Displacement of the Enzyme from Lipid Droplets*

    Larsson, Mikael; Vorrsjö, Evelina; Talmud, Philippa; Lookene, Aivar; Olivecrona, Gunilla

    2013-01-01

    Apolipoproteins (apo) C-I and C-III are known to inhibit lipoprotein lipase (LPL) activity, but the molecular mechanisms for this remain obscure. We present evidence that either apoC-I or apoC-III, when bound to triglyceride-rich lipoproteins, prevent binding of LPL to the lipid/water interface. This results in decreased lipolytic activity of the enzyme. Site-directed mutagenesis revealed that hydrophobic amino acid residues centrally located in the apoC-III molecule are critical for attachment to lipid emulsion particles and consequently inhibition of LPL activity. Triglyceride-rich lipoproteins stabilize LPL and protect the enzyme from inactivating factors such as angiopoietin-like protein 4 (angptl4). The addition of either apoC-I or apoC-III to triglyceride-rich particles severely diminished their protective effect on LPL and rendered the enzyme more susceptible to inactivation by angptl4. These observations were seen using chylomicrons as well as the synthetic lipid emulsion Intralipid. In the presence of the LPL activator protein apoC-II, more of apoC-I or apoC-III was needed for displacement of LPL from the lipid/water interface. In conclusion, we show that apoC-I and apoC-III inhibit lipolysis by displacing LPL from lipid emulsion particles. We also propose a role for these apolipoproteins in the irreversible inactivation of LPL by factors such as angptl4. PMID:24121499

  11. Apolipoproteins C-I and C-III inhibit lipoprotein lipase activity by displacement of the enzyme from lipid droplets.

    Larsson, Mikael; Vorrsjö, Evelina; Talmud, Philippa; Lookene, Aivar; Olivecrona, Gunilla

    2013-11-22

    Apolipoproteins (apo) C-I and C-III are known to inhibit lipoprotein lipase (LPL) activity, but the molecular mechanisms for this remain obscure. We present evidence that either apoC-I or apoC-III, when bound to triglyceride-rich lipoproteins, prevent binding of LPL to the lipid/water interface. This results in decreased lipolytic activity of the enzyme. Site-directed mutagenesis revealed that hydrophobic amino acid residues centrally located in the apoC-III molecule are critical for attachment to lipid emulsion particles and consequently inhibition of LPL activity. Triglyceride-rich lipoproteins stabilize LPL and protect the enzyme from inactivating factors such as angiopoietin-like protein 4 (angptl4). The addition of either apoC-I or apoC-III to triglyceride-rich particles severely diminished their protective effect on LPL and rendered the enzyme more susceptible to inactivation by angptl4. These observations were seen using chylomicrons as well as the synthetic lipid emulsion Intralipid. In the presence of the LPL activator protein apoC-II, more of apoC-I or apoC-III was needed for displacement of LPL from the lipid/water interface. In conclusion, we show that apoC-I and apoC-III inhibit lipolysis by displacing LPL from lipid emulsion particles. We also propose a role for these apolipoproteins in the irreversible inactivation of LPL by factors such as angptl4. PMID:24121499

  12. Study of Common Genetic Variant S447X in Lipoprotein Lipase and Its Association with Lipids and Lipoproteins in Type 2 Diabetic Patients.

    Momin, A A; Bankar, M P; Bhoite, G M

    2016-07-01

    Elevated plasma triglyceride and non-esterified fatty acid concentrations may cause insulin resistance and type 2 diabetes mellitus. Lipoprotein lipase (LPL) is a rate-determining enzyme in lipid metabolism. A variant in the LPL gene has been identified which alters the penultimate amino acid Serine at 447 to a stop codon (S447X), and results in a truncated LPL molecule lacking the C-terminal dipeptide Ser-Gly. The present study was designed to evaluate the frequency of S447X variant in the LPL gene and its effect on the lipid and lipoprotein levels in type 2 diabetic subjects. The genotype frequency distributions of type 2 diabetes patients and controls were in Hardy-Weinberg equilibrium. Comparison of the genotype and allelic frequencies of S447X in subjects with type 2 diabetics compared to controls demonstrated no significant difference. In subjects with type 2 diabetics having hypertriglyceridemia (TG ≥ 150 mg/dl) compared to diabetics with TG level <150 mg/dl, significant difference in genotype frequency was found among these groups, while allelic frequency of X was significantly differed. Logistic regression analysis showed the negative association of LPL S447X variant with TG and VLDL cholesterol, while no association with total cholesterol, HDL cholesterol and LDL cholesterol was found. The lipid levels except for HDL cholesterol were found to be significantly lower in carriers for S447X than wild type in diabetes group. The decreased level of TG and TG rich lipoprotein in subjects with SNP S447X in LPL, predicts anti-atherogenic activity of carriers for S447X variant in general population as well as type 2 diabetic patients. PMID:27382199

  13. GPIHBP1 Missense Mutations Often Cause Multimerization of GPIHBP1 and Thereby Prevent Lipoprotein Lipase Binding

    Beigneux, Anne P; Fong, Loren G; Bensadoun, Andre;

    2015-01-01

    understand mechanisms by which GPIHBP1 mutations prevent LPL binding and lead to chylomicronemia. Methods and Results: We expressed mutant forms of GPIHBP1 in Chinese hamster ovary cells, rat and human endothelial cells, and Drosophila S2 cells. In each expression system, mutation of cysteines in GPIHBP1's......Rationale: GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1 missense mutations that interfere with LPL binding cause familial chylomicronemia. Objective: We sought to...... Ly6 domain (including mutants identified in chylomicronemia patients) led to the formation of disulfide-linked dimers and multimers. GPIHBP1 dimerization/multimerization was not unique to cysteine mutations; mutations in other amino acid residues, including several associated with chylomicronemia...

  14. An update on gene therapy for the treatment of lipoprotein lipase deficiency

    Libby AE

    2014-05-01

    Full Text Available Andrew E Libby, Hong Wang Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado at Denver, Aurora, CO, USA Abstract: Lipoprotein lipase (LPL is responsible for clearance of triglyceride-rich lipoproteins from the blood. Deficiency or defects in this enzyme result in profound hypertriglyceridemia and susceptibility to chronic, life-threatening pancreatitis. Management of LPL deficiency has traditionally been restricted to palliative care and strategies to reduce the risk of pancreatitis, including severe dietary restrictions of fat. Recently, the European Commission approved the first gene therapy treatment in the West to treat this rare disease. Alipogene tiparvovec (Glybera® was granted marketing authorization in November 2012 to treat LPL deficiency in a subset of patients that are at increased risk for pancreatitis. Designed as a one-time treatment, the drug uses adeno-associated virus (AAV1 delivery of transgenic LPL to muscle in patients lacking functional enzyme. Although statistically significant reduction of serum triglycerides was initially observed in trial subjects, this effect was found to be transient, with triglyceride levels eventually rebounding to basal levels by 26 weeks in all participants. Nevertheless, despite the return of triglycerides to pretreatment levels, alipogene tiparvovec was found to have a long-term impact on postprandial chylomicron metabolism by lowering the fraction of triglyceride found in this subset of lipoproteins. Furthermore, the drug led to a clinically significant reduction in the incidence of pancreatitis in LPL-deficient patients. The regulatory approval of alipogene tiparvovec was a historic process and serves as an example of the challenges that future orphan drugs will face. Keywords: lipoprotein lipase deficiency, gene therapy, AAV, chylomicron, pancreatitis

  15. [Lack of association between the S447X variant of the lipoprotein lipase gene and plasma lipids. A preliminary study].

    Zambrano Morales, Mariana; Fernández Salgado, Erika; Balzán Urdaneta, Ligia; Labastidas, Neila; Aranguren-Méndez, José; Connell, Lissette; Molero Paredes, Tania; Rojas, Alicia; Panunzio, Amelia

    2014-06-01

    The increase in lipid plasma values is an important cardiovascular risk factor. Lipoprotein lipase (LPL) plays an important role in the lipoprotein metabolism and metabolic and genetic factors may influence its levels and functions. The S447X variant of the lipoprotein lipase gene is associated with changes in plasma lipids in different populations. The objective of this research was to analyze the S447X variant of the LPL gene and its relation with plasma lipids of individuals in Zulia state, Venezuela. With this purpose, we studied 75 individuals (34 men and 41 women) between 20 and 60 years of age. Each subject had a medical history which included family history, anthropometric characteristics, nutritional status evaluation and biochemical tests. Genomic DNA was extracted for the molecular study and the polymerase chain reaction was used, followed by enzyme digestion, for restriction fragments length polymorphisms using the Hinf I enzyme. The individuals studied had normal levels of blood glucose, triglycerides, total cholesterol and low density lipoproteins (LDL-C) and slightly decreased levels of high density lipoproteins (HDL-C). The genotypic distribution of the LPL gene S447X variant in the studied population was 90.6% for the homozygous genotype SS447 and 9.4% for the heterozygote SX447. The genotype 447XX was not identified. The population was found in Hardy Weinberg genetic equilibrium. No association between the S447X polymorphism of lipoprotein lipase gene and plasma lipids was observed. PMID:24974629

  16. Physical inactivity amplifies the sensitivity of skeletal muscle to the lipid-induced downregulation of lipoprotein lipase activity.

    Zderic, Theodore W; Hamilton, Marc T

    2006-01-01

    Physical inactivity is a risk factor for lipoprotein disorders and the metabolic syndrome. Physical inactivity has a powerful effect on suppressing lipoprotein lipase (LPL) activity in skeletal muscle, the rate-limiting enzyme for hydrolysis of triglyceride (TG)-rich lipoproteins. We tested the ability of several compounds to prevent the decrease in LPL. The present study minimized standing and ordinary light nonexercise movements in rats to compare the effects of inactivity and nonexercise activity thermogenesis (NEAT) on LPL activity. The key new insight was that the typically quick decrease in LPL activity of oxidative muscle caused by physical inactivity was prevented by nicotinic acid (NA), whereas inhibitors of TNF-alpha, inducible nitric oxide synthase, and NF-kappaB had no such effect. NA was administered at a dose known to acutely impede the appearance of plasma TG from the liver and free fatty acids from adipose tissue, and it was effective at intentionally lowering plasma lipid concentrations to the same level in active and inactive groups. As measured from heparin-releasable LPL activity, LPL in the microvasculature of the most oxidative muscles was approximately 90% lower in the inactive group compared with controls, and this suppression was completely blocked by NA. In contrast to inactivity, NA did not raise muscle LPL in ambulatory controls, whereas a large exogenous fat delivery did decrease LPL activity. In vitro control studies revealed that NA did not have a direct effect on skeletal muscle LPL activity. In conclusion, physical inactivity amplifies the ability of plasma lipids to suppress muscle LPL activity. The light ambulatory contractions responsible for NEAT are sufficient for mitigating these deleterious effects. PMID:16195388

  17. Lipoprotein lipase and hepatic lipase: their relationship with HDL subspecies Lp(A-I) and Lp(A-I,A-II)

    Cheung, Marian C.; Sibley, Shalamar D.; Palmer, Jerry P.; Oram, John F.; Brunzell, John D.

    2003-01-01

    HDL subspecies Lp(A-I) and Lp(A-I,A-II) have different anti-atherogenic potentials. To determine the role of lipoprotein lipase (LPL) and hepatic lipase (HL) in regulating these particles, we measured these enzyme activities in 28 healthy subjects with well-controlled Type 1 diabetes, and studied their relationship with Lp(A-I) and Lp(A-I,A-II). LPL was positively correlated with the apolipoprotein A-I (apoA-I), cholesterol, and phospholipid mass in total Lp(A-I), and with the apoA-I in large...

  18. Lipase catalyzed synthesis of epoxy-fatty acids

    CHEN, Qian; LI, Zu-Yi

    2000-01-01

    Lipase catalyzed synthesis of epoxy-fatty acidas from unsaturated carboxylic acids was investigated.Under mild conditions unsaturated arboxylic acids were convcveed to peroxide,then the unsaturated peroxycarboxylic acids epoxidised the C=C bond of themselves

  19. The lipoprotein lipase gene in combined hyperlipidemia: evidence of a protective allele depletion

    Malloy Mary J

    2006-07-01

    Full Text Available Abstract Background Lipoprotein Lipase (LPL, a key enzyme in lipid metabolism, catalyzes the hydrolysis of triglycerides (TG from TG-rich lipoproteins, and serves a bridging function that enhances the cellular uptake of lipoproteins. Abnormalities in LPL function are associated with pathophysiological conditions, including familial combined hyperlipidemia (FCH. Whereas two LPL susceptibility alleles were found to co-segregate in a few FCH kindred, a role for common, protective alleles remains unexplored. The LPL Ser447Stop (S447X allele is associated with anti-atherogenic lipid profiles and a modest reduction in risk for coronary disease. We hypothesize that significant depletion of the 447X allele exists in combined hyperlipidemia cases versus controls. A case-control design was employed. The polymorphism was assessed by restriction assay in 212 cases and 161 controls. Genotypic, allelic, and phenotypic associations were examined. Results We found evidence of significant allelic (447Xcontrol: 0.130 vs. 447Xcase: 0.031, χ2 = 29.085; 1df; p 2 = 26.09; 1df; p Conclusion These findings suggest a role for the S447X polymorphism in combined hyperlipidemia and demonstrate the importance of evaluating both susceptibility and protective genetic risk factors.

  20. Apolipoprotein AV Accelerates Plasma Hydrolysis OfTriglyceride-Rich Lipoproteins By Interaction With Proteoglycan BoundLipoprotein Lipase

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A.; Laatsch, Alexander; Heeren, Joerg

    2005-02-22

    Apolipoprotein A5 (APOA5) is associated with differences intriglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasmatriglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In hAPOA5 transgenic mice(hAPOA5tr), catabolism of chylomicrons and VLDL was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL).Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by crossbreeding a human LPL transgene with the apoa5 knockout, and the hAPOA5tr to an LPL deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5 deficient mice,however, over expression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr HDL, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line.A direct interaction between LPL and apoAV was found by ligand blotting.It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycans bound LPL for lipolysis.

  1. Lipase

    Lipase is a digestive enzyme that is found in many plants, animals, bacteria, and molds. An enzyme ... particular biochemical reaction in the body. People use lipase as a medicine. Lipase is used for indigestion, ...

  2. Evaluation of the immediate vascular stability of lipoprotein lipase-generated 2-monoacylglycerol in mice

    Kleberg, Karen; Nielsen, Louise Lundeman; Stuhr-Hansen, Nicolai; Nielsen, John; Hansen, Harald Severin

    2014-01-01

    2-Monoacylglycerols are gaining increasing interest as signaling lipids, beyond endocannabinoids, for example, as ligands for the receptor GPR119 and as mediators of insulin secretion. In the vascular system, they are formed by the action of lipoprotein lipase (LPL); however, their further...... after intravenous coadministration in a ratio of 1:1 to mice. We found that peripheral tissues and the liver in particular are able to take up 2-monoacylglycerols as seen from 3H uptake. In muscle and adipose tissue, 2-monoacylglycerols are probably further hydrolyzed as seen by an increased 3H/14C...... ratio, whereas in the liver and the heart, data suggest that they are also subjected to re-esterification to triacylglycerol, as seen by an unchanged 3H/14C ratio in the lipid fraction of the tissues. Our findings suggest that LPL-generated 2-monoacylglycerol is likely to be stable in the vascular...

  3. Lysosomal acid lipase: At the crossroads of normal and atherogenic cholesterol metabolism

    Joshua A Dubland

    2015-02-01

    Full Text Available Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.

  4. A micromethod for assay of lipoprotein lipase activity in needle biopsy samples of human adipose tissue and skeletal muscle

    A rapid and simple procedure for assay of lipoprotein lipase (LPL) activity in small amounts of human adipose tissue and skeletal muscle is described and validated. The enzyme is eluted from tissues with heparin and the activity is determined from the eluate by measuring the release of [14C]oleic acid from a gum arabic stabilized emulsion of glycerol-tri[14C]oleate in a Tris-buffer medium containing albumin and pooled normal human serum. Reproducible results are obtained with amounts of tissue ranging from 2 to 25 mg. The Ksub(m) values of the adipose tissue and skeletal muscle LPL for the triolein substrate were 0.74 +- 0.06 and 0.77 +- 0.05 mmol/l, respectively. The standard radioactive triolein emulsion was hydrolyzed by adipose tissue LPL at a rate closely similar to rat VLDL-triglyceride labeled in vivo with [1-14C]palmitic acid, suggesting that the experimental substrate behaved in a similar manner to the natural substrate. The LPL activity was much higher in adipose tissue than in muscle. In adipose tissue the LPL activity was 2-4 times higher in women than in men whereas no sex difference was present in the LPL activity of muscle. (Auth.)

  5. Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia.

    Merkel, M.; Weinstock, P H; Chajek-Shaul, T; Radner, H; B. Yin; Breslow, J L; Goldberg, I J

    1998-01-01

    Lipoprotein lipase (LPL), the rate-limiting enzyme in triglyceride hydrolysis, is normally not expressed in the liver of adult humans and animals. However, liver LPL is found in the perinatal period, and in adults it can be induced by cytokines. To study the metabolic consequences of liver LPL expression, transgenic mice producing human LPL specifically in the liver were generated and crossed onto the LPL knockout (LPL0) background. LPL expression exclusively in liver rescued LPL0 mice from n...

  6. Angiopoietin-like 4 Modifies the Interactions between Lipoprotein Lipase and Its Endothelial Cell Transporter GPIHBP1.

    Chi, Xun; Shetty, Shwetha K; Shows, Hannah W; Hjelmaas, Alexander J; Malcolm, Emily K; Davies, Brandon S J

    2015-05-01

    The release of fatty acids from plasma triglycerides for tissue uptake is critically dependent on the enzyme lipoprotein lipase (LPL). Hydrolysis of plasma triglycerides by LPL can be disrupted by the protein angiopoietin-like 4 (ANGPTL4), and ANGPTL4 has been shown to inactivate LPL in vitro. However, in vivo LPL is often complexed to glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) on the surface of capillary endothelial cells. GPIHBP1 is responsible for trafficking LPL across capillary endothelial cells and anchors LPL to the capillary wall during lipolysis. How ANGPTL4 interacts with LPL in this context is not known. In this study, we investigated the interactions of ANGPTL4 with LPL-GPIHBP1 complexes on the surface of endothelial cells. We show that ANGPTL4 was capable of binding and inactivating LPL complexed to GPIHBP1 on the surface of endothelial cells. Once inactivated, LPL dissociated from GPIHBP1. We also show that ANGPTL4-inactivated LPL was incapable of binding GPIHBP1. ANGPTL4 was capable of binding, but not inactivating, LPL at 4 °C, suggesting that binding alone was not sufficient for ANGPTL4's inhibitory activity. We observed that although the N-terminal coiled-coil domain of ANGPTL4 by itself and full-length ANGPTL4 both bound with similar affinities to LPL, the N-terminal fragment was more potent in inactivating both free and GPIHBP1-bound LPL. These results led us to conclude that ANGPTL4 can both bind and inactivate LPL complexed to GPIHBP1 and that inactivation of LPL by ANGPTL4 greatly reduces the affinity of LPL for GPIHBP1. PMID:25809481

  7. Lagenaria siceraria ameliorates atheromatous lesions by modulating HMG-CoA reductase and lipoprotein lipase enzymes activity in hypercholesterolemic rats

    Mithun Singh Rajput; Neelam Balekar; Dinesh Kumar Jain

    2014-01-01

    Objective:To investigate the antiatherosclerotic potential ofLagenaria siceraria(L. siceraria) by calculating percentage plaque area in aorta and grade of atheromatous lesions modulated byHMG-CoA reductase enzyme and lipoprotein lipase enzymes levels in hyperlipidemic rats. Methods:Rats were divided into different groups, fed with high cholesterol atherogenic diet and in addition supplemented with ethanolic extract of fruits ofL. siceraria and standard drug atorvastatin.At the end of the treatment schedule, the atherosclerotic lesion area was measured in cross-sections of the aortic root and grading of atherosclerotic lesions was done.The blood samples from animals of different groups were evaluated for serum lipid profile determination and plasma lipoprotein lipase activity and the hepaticHMG-CoA activity was also determined. Results:Treatment of rats with ethanolic extract of fruits ofL. siceraria significantly lowers the risk of atherosclerosis by lowering percentage plaque area in aorta and grade of atheromatous lesions in hypercholesterolemic rats and also serum cholesterol, triglyceride,LDL-c,VLDL-c and increasedHDL-c levels as well.The extract also induced lipoprotein lipase activity and significantly decreased cholesterogenesis inliver by reducingHMG-CoA reductase activity in hypercholeaterolemic rats.Conclusion:It can be concluded that ethanolic extract of fruits of L. siceraria contains active components which ameliorates the atheromatous lesions in rat aorta and lowers the risk of atherosclerosis in hypercholesterolemic rats.

  8. Mouse hepatic lipase alleles with variable effects on lipoprotein composition and size[S

    Pratt, Serena M; Chiu, Sally; Espinal, Glenda M.; Shibata, Noreene M.; Wong, Howard; Warden, Craig H.

    2010-01-01

    The structural features responsible for the activities of hepatic lipase (HL) can be clarified by in vivo comparisons of naturally occurring variants. The coding sequence of HL from C57BL/6J (B6) and SPRET/EiJ (SPRET) mice differs by four amino acids (S106N, A156V, L416V, S480T); however, these changes are not predicted to influence HL function. To test for allelic effects, we generated SPRET-HL transgenics with physiological levels of HL mRNA and HL activity that was parallel in female trans...

  9. Effect of extended-release niacin on hormone-sensitive lipase and lipoprotein lipase in patients with HIV-associated lipodystrophy syndrome

    Dominic C Chow

    2008-11-01

    Full Text Available Dominic C Chow, Anne Tasaki, Jill Ono, Bruce Shiramizu, Scott A SouzaHawaii AIDS Clinical Research Program, University of Hawaii, Honolulu, HI, USABackground: HIV-associated lipodystrophy syndrome is strongly associated with antiretroviral treatment in patients with human immunodeficiency virus (HIV. Niacin is thought to affect hormone-sensitive lipase (HSL and lipoprotein lipase (LPL expression in peripheral and intra-abdominal fat (IAF.Objective: This study investigated the effect of extended-release niacin (ERN on adipose HSL and LPL expression in patients with HIV-associated lipodystrophy syndrome.Methods: Changes in IAF and peripheral fat content and HSL and LPL expression were examined in 4 HIV-infected patients recruited from a prospective study treated with ERN. Patients underwent limited 8 slice computerized tomography abdominal scans, dual-energy X-ray absorptiometry scans, and skin punch biopsies of the mid-thigh at baseline and after 12 weeks of ERN. All subjects were on stable highly active antiretroviral therapy prior to and during the study. Changes in body habitus were self-reported.Results: Normalized HSL expression decreased in 3 patients and normalized LPL expression increased in all 4 patients when comparing pre- and post-ERN treated samples. All subjects showed a decrease in total cholesterol (TC and triglyceride (TG levels.Conclusions: Preliminary analysis suggests ERN may induce changes in HSL and LPL expression. This method is a feasible approach to identify changes in adipose RNA expression involved with lipolysis.Keywords: extended-release niacin, HIV, lipodystrophy syndrome, hormone-sensitive lipase (HSL, lipoprotein lipase (LPL

  10. Lipoprotein lipase: size of the functional unit determined by radiation inactivation

    Radiation inactivation was used to determine the functional molecular weight of lipoprotein lipase (LPL) in rat heart and adipose tissues. This technique reveals the size of the smallest unit required to carry out the enzyme function. Supernatant fractions of the tissue homogenates were exposed to high energy electrons at -135 degrees C. LPL activity showed a simple exponential decay in all samples tested. Because changes in nutritional state shift the distribution of LPL between the capillary endothelial and parenchymal cells within heart and adipose tissues, fasted and refed rats were used for the radiation studies. The functional molecular weight was calculated to be 127,000 +/- 15,000 (mean +/- SD) daltons for heart and adipose. Thus, the smallest unit required for enzyme function was the same in both of these tissues and did not vary with nutritional state. The data suggest that, compared with LPL monomer sizes reported in the range 55,000 to 72,000, this active unit constitutes a dimer

  11. Evaluation of the immediate vascular stability of lipoprotein lipase-generated 2-monoacylglycerol in mice.

    Kleberg, Karen; Nielsen, Louise Lundeman; Stuhr-Hansen, Nicolai; Nielsen, John; Hansen, Harald Severin

    2014-01-01

    2-Monoacylglycerols are gaining increasing interest as signaling lipids, beyond endocannabinoids, for example, as ligands for the receptor GPR119 and as mediators of insulin secretion. In the vascular system, they are formed by the action of lipoprotein lipase (LPL); however, their further disposition is unclear. Assuming similar affinity for uptake and incorporation into tissues of 2-oleoylglycerol and 2-oleylglyceryl ether, we have synthesized a (3)H-labeled 2-ether analog of triolein (labeled in alkyl group) and compared its disposition with (14)C-labeled triolein (labeled in glycerol) 20 min after intravenous coadministration in a ratio of 1:1 to mice. We found that peripheral tissues and the liver in particular are able to take up 2-monoacylglycerols as seen from (3)H uptake. In muscle and adipose tissue, 2-monoacylglycerols are probably further hydrolyzed as seen by an increased (3)H/(14)C ratio, whereas in the liver and the heart, data suggest that they are also subjected to re-esterification to triacylglycerol, as seen by an unchanged (3)H/(14)C ratio in the lipid fraction of the tissues. Our findings suggest that LPL-generated 2-monoacylglycerol is likely to be stable in the vascular system and thus have a potential to circulate or at least exert effects in tissues where it may be locally produced. PMID:25359532

  12. Alipogene tiparvovec: a review of its use in adults with familial lipoprotein lipase deficiency.

    Scott, Lesley J

    2015-02-01

    Alipogene tiparvovec (Glybera®; AMT-011, AAV1-LPL(S447X)) is an adeno-associated virus serotype 1-based gene therapy for adult patients with familial lipoprotein lipase (LPL) deficiency (LPLD) and suffering from severe or multiple pancreatitis attacks despite dietary fat restrictions. It is administered as a one-time series of intramuscular injections in the legs. LPLD, a rare autosomal recessive disorder, results in hyperchylomicronaemia and severe hypertriglyceridaemia, which in turn, are associated with an increased risk of clinical complications, the most debilitating of which is recurrent severe and potentially life-threatening pancreatitis. In clinical studies (n = 27 patients), one-time administration of alipogene tiparvovec was associated with significant reductions in plasma triglyceride levels during the 12 or 14 week study period post administration. Although triglyceride levels returned to pre-treatment levels within 16-26 weeks after administration, patients had sustained improvements in postprandial chylomicron metabolism, with sustained expression of functional copies of the LPL (S477X) gene and of biologically active LPL in skeletal muscle. Moreover, after up to 6 years' follow-up post administration, there were clinically relevant reductions in the incidence of documented pancreatitis and acute abdominal pain events consistent with pancreatitis. Alipogene tiparvovec was generally well tolerated, with most adverse events being localized, transient, mild to moderate injection-site reactions. This article reviews the pharmacology of alipogene tiparvovec and its efficacy and safety in adults with LPLD. PMID:25559420

  13. Mechanism of the hepatic lipase induced accumulation of high-density lipoprotein cholesterol by cells in culture

    Bamberger, M.; Lund-Katz, S.; Phillips, M.C.; Rothblat, G.H.

    1985-07-02

    Hepatic lipase can enhance the delivery of high-density lipoprotein (HDL) cholesterol to cells by a process which does not involve apoprotein catabolism. The incorporation of HDL-free (unesterified) cholesterol, phospholipid, and cholesteryl ester by cells has been compared to establish the mechanism of this delivery process. Human HDL was reconstituted with /sup 3/H-free cholesterol and (/sup 14/C)sphingomyelin, treated with hepatic lipase in the presence of albumin to remove the products of lipolysis, reisolated, and then incubated with cultured rat hepatoma cells. Relative to control HDL, modification of HDL with hepatic lipase stimulated both the amount of HDL-free cholesterol taken up by the cell and the esterification of HDL-free cholesterol but did not affect the delivery of sphingomyelin. Experiments utilizing HDL reconstituted with /sup 14/C-free cholesterol and (/sup 3/H)cholesteryl oleoyl ether suggest that hepatic lipase enhances the incorporation of HDL-esterified cholesterol. However, the amount of free cholesterol delivered as a result of treatment with hepatic lipase was 4-fold that of esterified cholesterol. On the basis of HDL composition, the cellular incorporation of free cholesterol was about 10 times that which would occur by the uptake and degradation of intact particles. The preferential incorporation of HDL-free cholesterol did not require the presence of lysophosphatidylcholine. To correlate the events observed at the cellular level with alterations in lipoprotein structure, high-resolution, proton-decoupled /sup 13/C nuclear magnetic resonance spectroscopy (90.55 MHz) was performed on HDL3 in which the cholesterol molecules were replaced with (4-/sup 13/C)cholesterol by particle reconstitution.

  14. Mechanism of the hepatic lipase induced accumulation of high-density lipoprotein cholesterol by cells in culture

    Hepatic lipase can enhance the delivery of high-density lipoprotein (HDL) cholesterol to cells by a process which does not involve apoprotein catabolism. The incorporation of HDL-free (unesterified) cholesterol, phospholipid, and cholesteryl ester by cells has been compared to establish the mechanism of this delivery process. Human HDL was reconstituted with 3H-free cholesterol and [14C]sphingomyelin, treated with hepatic lipase in the presence of albumin to remove the products of lipolysis, reisolated, and then incubated with cultured rat hepatoma cells. Relative to control HDL, modification of HDL with hepatic lipase stimulated both the amount of HDL-free cholesterol taken up by the cell and the esterification of HDL-free cholesterol but did not affect the delivery of sphingomyelin. Experiments utilizing HDL reconstituted with 14C-free cholesterol and [3H]cholesteryl oleoyl ether suggest that hepatic lipase enhances the incorporation of HDL-esterified cholesterol. However, the amount of free cholesterol delivered as a result of treatment with hepatic lipase was 4-fold that of esterified cholesterol. On the basis of HDL composition, the cellular incorporation of free cholesterol was about 10 times that which would occur by the uptake and degradation of intact particles. The preferential incorporation of HDL-free cholesterol did not require the presence of lysophosphatidylcholine. To correlate the events observed at the cellular level with alterations in lipoprotein structure, high-resolution, proton-decoupled 13C nuclear magnetic resonance spectroscopy (90.55 MHz) was performed on HDL3 in which the cholesterol molecules were replaced with [4-13C]cholesterol by particle reconstitution

  15. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L® and Novozym 388®, were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 oC and total reaction time 6 h. Lipozyme TL-100L® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  16. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Thulin, Petra; Ehrenborg, Ewa [Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm (Sweden); Olivecrona, Thomas [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Olivecrona, Gunilla, E-mail: Gunilla.Olivecrona@medbio.umu.se [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  17. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    Highlights: ► Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. ► Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. ► Only monomers of ANGPTL4 are present within THP-1 macrophages. ► Covalent oligomers of ANGPTL4 appear on cell surface and in medium. ► Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  18. Expression of lipases and lipid receptors in sperm storage tubules and possible role of fatty acids in sperm survival in the hen oviduct.

    Huang, A; Isobe, N; Obitsu, T; Yoshimura, Y

    2016-04-15

    The aim of this study was to determine the role of fatty acids for sperm survival in the sperm storage tubules (SSTs) of the hen oviduct. The mucosa tissues of uterovaginal junction (UVJ) of White Leghorn laying hens with or without artificial insemination using semen from Barred Plymouth Rock roosters were collected. The lipid density in the epithelium of UVJ and SST was analyzed by Sudan black B staining. The expressions of genes encoding lipid receptors and lipases were assayed by polymerase chain reaction in UVJ mucosa and SST cells isolated by laser microdissection. Fatty acid composition was analyzed by gas chromatography, and sperm were cultured with or without the identified predominant fatty acids for 24 hours to examine their effect on sperm viability. The lipid droplets were localized in the epithelium of UVJ mucosa and SSTs. The expression of genes encoding very low-density lipoprotein receptor(VLDLR), low-density lipoprotein receptor (LDLR), and fatty acid translocase (FAT/CD36) were found in SST cells. Expression of genes encoding endothelial lipase (EL), lipase H (LIPH), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL) were found in UVJ. In contrast, only ATGL was found in SST cells, and its expression was significantly upregulated after artificial insemination. In UVJ mucosal tissues, five fatty acids, namely myristic acid (C14), palmitic acid (C16), stearic acid (C18), oleic acid (C18:1n9), and linoleic acid (C18:2n6), were identified as predominant fatty acids. The viability of sperm cultured with 1 mM oleic acid or linoleic acid was significantly higher than the sperm in the control culture without fatty acids. These results suggest that lipids in the SST cells may be degraded by ATGL, and fatty acids including oleic acid and linoleic acid may be released into the SST lumen to support sperm survival. PMID:26777559

  19. Isolated milk fat globules as substrate for lipoprotein lipase: study of factors relevant to spontaneous lipolysis in milk

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1987-03-01

    Fat globules isolated from normal and from spontaneous milk samples were compared as substrates for purified lipoprotein lipase. Only slight differences were observed. Fat globules isolated from fresh warm milk were almost resistant to lipolysis. This included globules from milk prone to spontaneous lipolysis. Cooling made the globules accessible to rapid lipolysis even if they were from normal milk. Rewarming the fat globules did not reverse the process. Maximum rate of lipolysis (after rewarming) required fat globules be stored at 10/sup 0/C or below for 5 to 10 h. Lipolysis at 4/sup 0/C usually started after a lag time of 3 to 5 h, but with fat globules from spontaneous milk the lag time was shorter. Fat globules isolated from cold milk were a poor substrate at 4/sup 0/C but were lipolyzed when warmed. When /sup 125/I-labeled lipase was added to fresh warm milk, some of the lipase bound to the milk fat globules but it caused little lipolysis. Binding increased after cooling, as did lipolysis. Both binding of lipase and lipolysis were impeded by the presence of skim milk. Another way to make fat globules isolated from fresh warm milk susceptible to lipolysis was to treat them with chemicals known to remove proteins.

  20. Isolated milk fat globules as substrate for lipoprotein lipase: study of factors relevant to spontaneous lipolysis in milk

    Fat globules isolated from normal and from spontaneous milk samples were compared as substrates for purified lipoprotein lipase. Only slight differences were observed. Fat globules isolated from fresh warm milk were almost resistant to lipolysis. This included globules from milk prone to spontaneous lipolysis. Cooling made the globules accessible to rapid lipolysis even if they were from normal milk. Rewarming the fat globules did not reverse the process. Maximum rate of lipolysis (after rewarming) required fat globules be stored at 100C or below for 5 to 10 h. Lipolysis at 40C usually started after a lag time of 3 to 5 h, but with fat globules from spontaneous milk the lag time was shorter. Fat globules isolated from cold milk were a poor substrate at 40C but were lipolyzed when warmed. When 125I-labeled lipase was added to fresh warm milk, some of the lipase bound to the milk fat globules but it caused little lipolysis. Binding increased after cooling, as did lipolysis. Both binding of lipase and lipolysis were impeded by the presence of skim milk. Another way to make fat globules isolated from fresh warm milk susceptible to lipolysis was to treat them with chemicals known to remove proteins

  1. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes

    Kern, P.A.; Marshall, S.; Eckel, R.H.

    1985-01-01

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific /sup 125/I-insulin binding. In addition, chloroquine induced an increase in cell-associated /sup 125/I-insulin at 24, 48, and 72 h after preparation. Thus, isolated adipocytes retained their ability to bind, internalize, and degrade insulin. LPL was measured as activity secreted into the culture medium (CM), released from cells by heparin (HR), and extracted from cell digests. A broad range of heparin concentrations produced a prompt release of LPL from a rapidly replenishable pool of cellular activity. When cells were cultured in medium containing 10% fetal bovine serum, there was a marked stimulation of CM and HR. The secretory response to serum (CM) correlated strongly with HR 24 h after preparation. In addition, HR was found to correlate logarithmically and inversely with body mass index. Insulin, at 400 ng/ml only, increased HR by 36 +/- 10%, an effect simulated by lower concentrations of insulin-like growth factor-1 (IGF1). Thus, LPL is produced and regulated in isolated human adipocytes. The degree of adiposity and serum are important regulators of HR activity, whereas insulin is stimulatory only at a pharmacologic concentration. This effect of insulin may be mediated through the IGF1 receptor. Isolated human adipocytes represent a novel and useful system for the study of LPL and lipid metabolism as well as for other aspects of adipocyte biology.

  2. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific 125I-insulin binding. In addition, chloroquine induced an increase in cell-associated 125I-insulin at 24, 48, and 72 h after preparation. Thus, isolated adipocytes retained their ability to bind, internalize, and degrade insulin. LPL was measured as activity secreted into the culture medium (CM), released from cells by heparin (HR), and extracted from cell digests. A broad range of heparin concentrations produced a prompt release of LPL from a rapidly replenishable pool of cellular activity. When cells were cultured in medium containing 10% fetal bovine serum, there was a marked stimulation of CM and HR. The secretory response to serum (CM) correlated strongly with HR 24 h after preparation. In addition, HR was found to correlate logarithmically and inversely with body mass index. Insulin, at 400 ng/ml only, increased HR by 36 +/- 10%, an effect simulated by lower concentrations of insulin-like growth factor-1 (IGF1). Thus, LPL is produced and regulated in isolated human adipocytes. The degree of adiposity and serum are important regulators of HR activity, whereas insulin is stimulatory only at a pharmacologic concentration. This effect of insulin may be mediated through the IGF1 receptor. Isolated human adipocytes represent a novel and useful system for the study of LPL and lipid metabolism as well as for other aspects of adipocyte biology

  3. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    Rihui Lin; He Li; Han Long; Jiating Su; Wenqin Huang

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from e...

  4. [Possibility of New Circulating Atherosclerosis-Related Lipid Markers Measurement in Medical and Complete Medical Checkups: Small Dense Low-Density Lipoprotein Cholesterol and Lipoprotein Lipase].

    Sumino, Hiroyuki; Nakajima, Katsuyuki; Murakami, Masami

    2016-03-01

    Small dense low-density lipoprotein cholesterol (sdLDL-C) concentrations correlate more strongly with cardiovascular disease (CVD) than other LDL-C and large LDL particle concentrations. Lipoprotein lipase (LPL) plays a central role in triglyceride-rich lipoprotein metabolism by catalyzing the hydrolysis of triglycerides in chylomicrons and very low-density lipoprotein particles and is a useful biomarker in diagnosing Type I, Type IV, and Type V hyperlipidemia. Therefore, the measurement of circulating sdLDL-C and LPL concentrations contributes to the assessment of circulating atherosclerosis-related lipid markers. However, the measurement of these lipids has not been fully adopted in medical and complete medical checkups. Recently, novel automated homogenous assay for measuring sdLDL-C and latex particle-enhanced turbidimetric immunoassay (LTIA) for measuring LPL have been developed, respectively. Using these new assays, sdLDL-C values showed excellent agreement with those obtained by isolation of the d = 1.044 - 1.063 g/mL plasma fraction by sequential ultracentrifugation, and LPL values measured with and without heparin injection were highly correlated with the values measured by the LPL-enzyme-linked immunosorbent assay (ELISA). These assays may be superior to the previous assays for the measurement of sdLDL-C and LPL concentrations due their simplicity and reproducibility. The measurements of sdLDL-C and LPL concentrations may be useful as lipid markers in the assessment of the development and progression of atherosclerosis and the detection of pathological conditions and diseases if these markers are measured in medical and complete medical checkups. We have introduced the possibility of the novel measurement of circulating atherosclerosis-related lipid markers such as sdLDL-C and LPL in medical and complete medical checkups. Further studies are needed to clarify whether sdLDL-C and LPL concentrations are related to the development and progression of

  5. Effects of 2 G on adiposity, leptin, lipoprotein lipase, and uncoupling protein-1 in lean and obese Zucker rats

    Warren, L. E.; Horwitz, B. A.; Hamilton, J. S.; Fuller, C. A.

    2001-01-01

    Male Zucker rats were exposed to 2 G for 8 wk to test the hypothesis that the leptin regulatory pathway contributes to recovery from effects of 2 G on feeding, growth, and nutrient partitioning. After initial hypophagia, body mass-independent food intake of the lean rats exposed to 2 G surpassed that of the lean rats maintained at 1 G, but food intake of the obese rats exposed to 2 G remained low. After 8 wk at 2 G, body mass and carcass fat were less in both genotypes. Leptin and percent fat were lower in lean rats exposed to 2 G vs. 1 G but did not differ in obese rats exposed to 2 G vs. 1 G. Although exposure to 2 G did not alter uncoupling protein-1 levels, it did elicit white fat pad-specific changes in lipoprotein lipase activity in obese but not lean rats. We conclude that 2 G affects both genotypes but that the lean Zucker rats recover their food intake and growth rate and retain "normal" lipoprotein lipase activity to a greater degree than do the obese rats, emphasizing the importance of a functional leptin regulatory pathway in this acclimation.

  6. Differential regulation of lipoprotein lipase in the macrophage J774.2 cell line by cytokines.

    Tengku-Muhammad, T S; Hughes, T R; Cryer, A; Ramji, D P

    1996-07-01

    The regulation of macrophage lipoprotein lipase (LPL) by cytokines is of potentially crucial importance in the pathogenesis of atherosclerosis and in the responses to endotoxin challenge. However, the precise mechanisms by which different cytokines modulate the expression of macrophage LPL activity are poorly understood. The action of six cytokines and bacterial lipopolysaccharide (LPS) on LPL function using the murine J774.2 cell line as a model system has, therefore, been studied. Although exposure to LPS, interleukin 11 (IL-11), tumour necrosis factor alpha (TNF-alpha), interferon gamma (IFN-gamma) and IL-1, over the physiological range of concentrations, resulted in a decrease in the heparin-releasable LPL activity, LPL-mRNA levels and LPL-protein content of the cells, stimulation with IL-6 and leukaemia inhibitory factor (LIF) had no effect. The maximum suppression of LPL activity and mRNA levels in the cells by IFN-gamma (60%) was lower than that produced by LPS, IL-11, TNF-alpha and IL-1 (78-97%). Each cytokine displayed a characteristic dose-dependent pattern for the suppression of LPL activity and mRNA levels with IL-11/TNF-alpha being more potent than IFN-gamma/IL-1. More than 80% of the decrease in the LPL activity, at all doses of IL-11, TNF-alpha, IFN-gamma and IL-1, was due to a corresponding reduction in the mRNA levels. The time course of responses to LPS, IL-11, TNF-alpha, IFN-gamma and IL-1 were similar, with the time required to achieve half maximal suppression of LPL activity being between 7 and 9.5 h in each case. These results indicate that LPL in J774.2 macrophages is regulated differentially by various cytokines and that the major control responsible for the reduction of LPL activity by IL-11, TNF-alpha, IFN-gamma and IL-1 is exerted at the level of mRNA metabolism (decreased transcription or RNA stability). The responses identified also displayed several differences to those described previously for adipocytes (e.g. 3T3-L1 cell line

  7. Fatty Acid Signaling: The New Function of Intracellular Lipases

    Zuzana Papackova

    2015-02-01

    Full Text Available Until recently, intracellular triacylglycerols (TAG stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.

  8. Lipoprotein complex formation

    Transfers of lipids and proteins between different lipoproteins are known to occur in the course of their metabolism. It is likely that these transfers take place during transient physical associations between lipoprotein particles, but the nature and chemical basis for such interactions are poorly understood. The fact that lipid and apolipoprotein movements are particularly prevalent during the intravascular lipolysis of triglyceride-rich lipoproteins suggested to us that lipolysis products accumulating on these particles might promote physical binding with other lipoproteins. To test this hypothesis, we studied interactions between very low-density, low density, and high-density lipoproteins in the setting of partial lipolysis by bovine milk lipoprotein lipase in the presence of limited unesterified fatty acid acceptor. 2 figs., 1 tab

  9. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    Rihui Lin

    2014-01-01

    Full Text Available Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435 under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch.

  10. The effect of a single lethal X-irradiation exposure on the activity of lipoprotein lipase in the tissues of the rat

    Wistar male rats, both fed and fasting for 16 h prior to irradiation, were exposed to a single lethal X-ray dose of 387 mC/kg (1500R). The activity of lipoprotein lipase in white adipose (epididymal) tissue and heart muscle and the concentration of serum triglycerides were determined at 1, 6, 24, 48, and 72 h after irradiation. In the early time periods, at 1 and 6 h after exposure, the activity of lipoprotein lipase decreased in adipose tissue and increased in heart muscle of the irradiated fed rats; in fasting rats it decreased in heart muscle at 1 h after exposure. The concentration of serum triglycerides increased at 1 h and decreased at 6 h after exposure in fed rats. In these rats, alterations in serum triglycerides correlated with changes in lipoprotein lipase activity in adipose tissue. Alterations observed at the later time periods were more dependent on the time interval between irradiation and the analysis. Lipoprotein lipase activity increased with time after irradiation up to the maximal values at 72 h. Fasting prior to and after irradiation substantially modified the response of animals to radiation. (author)

  11. Effect of Lipoprotein Lipase Gene Polymorphism on Plasma Lipid Levels, BMI and Subcutaneous Fat Distribution in Simple Obesity Children

    2000-01-01

    Objective To study the effects of Hind Ⅲ DNA polymorphis in the lipoprotein lipase ( LPL )gene on plasma lipid levels, body mass index ( BMI) and subcutaneous fat distribution in simple obesity children. Methods The LPL Hind Ⅲ genotypes were detected with the polymerase chain reaction ( PCR ) and restriction fragment length polymorphism ( RFLP ) techniques in 92 children with simple obesity. The levels of the plnsma lipid, plasma lipoproteins, BMI and skinfold thickness in three regions (biceps, subscapular and abdominal uall) were also measured. Results It was shown that the levels of TG, TC, LDL-C, ApoB, BMI, biceps and subscapular skinfold thickness, and the average value of the skinfold thickness in three regions were significantly higher in the obese children uyith H -H- genotype than those with H-+-H- genotype. Conclusions It can be concluded that LPL-Hind Ⅲ polymorphism may modify the levels of plasma lipid, plasma lipoprotein and BMI in children with simple obesity, and meanwhile alters the distribution of subcutaneous fat.

  12. Effect of Lipoprotein Lipase Gene Polymorphism on Plasma Lipid Levels, BMI and Subcutaneous Fat Distribution in Simple Obesity Children

    2000-01-01

    Objective To study the effects of Hind Ⅲ DNA polymorphis in the lipoprotein lipase ( LPL )gene on plasma lipid levels, body mass index ( BMI) and subcutaneous fat distribution in simple obesity children. Methods The LPL Hind Ⅲ genotypes were detected with the polymerase chain reaction ( PCR ) and restriction fragment length polymorphism ( RFLP ) techniques in 92 children with simple obesity. The levels of the plnsma lipid, plasma lipoproteins, BMI and skinfold thickness in three regions (biceps, subscapular and abdominal uall) were also measured. Results It was shown that the levels of TG, TC, LDL-C, ApoB, BMI, biceps and subscapular skinfold thickness, and the average value of the skinfold thickness in three regions were significantly higher in the obese children uyith H -H- genotype than those with H-+-H- genotype. Conclusions It can be concluded that LPL-Hind Ⅲ polymorphism may modify the levels of plasma lipid, plasma lipoprotein and BMI in children with simple obesity, and meanwhile alters the distribution of subcutaneous fat.

  13. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans

  14. Lipase test

    ... the bowel (bowel obstruction) Celiac disease Duodenal ulcer Cancer of the pancreas Infection or swelling of the pancreas This test may also be done for familial lipoprotein lipase deficiency . Risks ... Update Date 2/4/2015 Updated ...

  15. Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis

    García-Arias Carlota

    2009-06-01

    Full Text Available Abstract Background Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. Methods Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases and 31 patients with severe hypertriglyceridaemia (controls were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. Results Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS. Conclusion Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during chilhood.

  16. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src.

    Tsuyoshi Uchiyama

    Full Text Available Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes-all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT and subcutaneous adipose tissue (SAT for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4, protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome.

  17. Mechanisms of lipase maturation

    Doolittle, Mark H.; Péterfy, Miklós

    2010-01-01

    Lipases are acyl hydrolases that represent a diverse group of enzymes present in organisms ranging from prokaryotes to humans. This article focuses on an evolutionarily related family of extracellular lipases that include lipoprotein lipase, hepatic lipase and endothelial lipase. As newly synthesized proteins, these lipases undergo a series of co- and post-translational maturation steps occurring in the endoplasmic reticulum, including glycosylation and glycan processing, and protein folding ...

  18. Gain-of-Function Lipoprotein Lipase Variant rs13702 Modulates Lipid Traits through Disruption of a MicroRNA-410 Seed Site

    Richardson, Kris; Nettleton, Jennifer A.; Rotllan, Noemi; Tanaka, Toshiko; Smith, Caren E.; Lai, Chao-Qiang; Parnell, Laurence D.; Lee, Yu-Chi; Lahti, Jari; Lemaitre, Rozenn N.; Manichaikul, Ani; Keller, Margaux; Mikkilä, Vera; Ngwa, Julius; van Rooij, Frank J.A.; Ballentyne, Christie M.; Borecki, Ingrid B.; Cupples, L. Adrienne; Garcia, Melissa; Hofman, Albert; Ferrucci, Luigi; Mozaffarian, Dariush; Perälä, Mia-Maria; Raitakari, Olli; Tracy, Russell P.; Arnett, Donna K.; Bandinelli, Stefania; Boerwinkle, Eric; Eriksson, Johan G.; Franco, Oscar H.; Kähönen, Mika; Nalls, Michael; Siscovick, David S.; Houston, Denise K.; Psaty, Bruce M.; Viikari, Jorma; Witteman, Jacqueline C.M.; Goodarzi, Mark O.; Lehtimäki, Terho; Liu, Yongmei; Zillikens, M. Carola; Chen, Yii-Der I.; Uitterlinden, André G.; Rotter, Jerome I.; Fernandez-Hernando, Carlos; Ordovas, Jose M.

    2013-01-01

    Genome-wide association studies (GWAS) have identified hundreds of genetic variants that are associated with lipid phenotypes. However, data supporting a functional role for these variants in the context of lipid metabolism are scarce. We investigated the association of the lipoprotein lipase (LPL) variant rs13702 with plasma lipids and explored its potential for functionality. The rs13702 minor allele had been predicted to disrupt a microRNA (miR) recognition element (MRE) seed site (MRESS) for the human microRNA-410 (miR-410). Furthermore, rs13702 is in linkage disequilibrium (LD) with several SNPs identified by GWAS. We performed a meta-analysis across ten cohorts of participants that showed a statistically significant association of rs13702 with triacylglycerols (TAG) (p = 3.18 × 10−42) and high-density lipoprotein cholesterol (HDL-C) (p = 1.35 × 10−32) with each copy of the minor allele associated with 0.060 mmol/l lower TAG and 0.041 mmol/l higher HDL-C. Our data showed that an LPL 3′ UTR luciferase reporter carrying the rs13702 major T allele was reduced by 40% in response to a miR-410 mimic. We also evaluated the interaction between intake of dietary fatty acids and rs13702. Meta-analysis demonstrated a significant interaction between rs13702 and dietary polyunsaturated fatty acid (PUFA) with respect to TAG concentrations (p = 0.00153), with the magnitude of the inverse association between dietary PUFA intake and TAG concentration showing −0.007 mmol/l greater reduction. Our results suggest that rs13702 induces the allele-specific regulation of LPL by miR-410 in humans. This work provides biological and potential clinical relevance for previously reported GWAS variants associated with plasma lipid phenotypes. PMID:23246289

  19. Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro.

    Shamir, R; W.J. Johnson; Morlock-Fitzpatrick, K; Zolfaghari, R; Li, L.; E. Mas; Lombardo, D; Morel, D W; Fisher, E A

    1996-01-01

    Pancreatic carboxyl ester lipase (CEL) hydrolyzes cholesteryl esters (CE), triglycerides (TG), and lysophospholipids, with CE and TG hydrolysis stimulated by cholate. Originally thought to be confined to the gastrointestinal system, CEL has been reported in the plasma of humans and other mammals, implying its potential in vivo to modify lipids associated with LDL, HDL (CE, TG), and oxidized LDL (lysophosphatidylcholine, lysoPC). We measured the concentration of CEL in human plasma as 1.2+/-0....

  20. Associations of Lipoprotein Lipase Gene rs326 with Changes of Lipid Profiles after a High-Carbohydrate and Low-Fat Diet in Healthy Chinese Han Youth

    Xing-chun Zhu; Jia Lin; Qian Wang; Hui Liu; Li Qiu; Ding-zhi Fang

    2014-01-01

    To investigate the effects of a high-carbohydrate and low-fat (HC/LF) diet on plasma lipids and apolipoproteins (Apos) of healthy Chinese Han youth with different genotypes of lipoprotein lipase gene (LPL) rs326, 56 subjects were given a washout diet of 30.1% fat and 54.1% carbohydrate for seven days, followed by the HC/LF diet of 13.8% fat and 70.1% carbohydrate for six days, with no total energy restriction. Plasma glucose, triglyceride (TG), total cholesterol (TC), high density lipoprotein...

  1. Acid resistant lipase as replacement therapy in chronic pancreatic exocrine insufficiency: a study in dogs.

    S. M. Griffin; Alderson, D.; Farndon, J R

    1989-01-01

    Conventional treatment of pancreatic steatorrhoea in man has been unsatisfactory because 90% of the lipase content of therapy is inactivated by acid in the stomach and large doses of replacement treatment are needed to provide adequate supplementation. An acid stable agent (fungal lipase) was investigated in the treatment of pancreatic deficiency steatorrhoea in 11 pancreatectomised dogs maintained on a fixed dietary intake of fat and treated with pancreatin or fungal lipase. Ten grams (60,00...

  2. Uptake of Dietary Retinoids at the Maternal-Fetal Barrier: IN VIVO EVIDENCE FOR THE ROLE OF LIPOPROTEIN LIPASE AND ALTERNATIVE PATHWAYS*

    Wassef, Lesley; Quadro, Loredana

    2011-01-01

    Dietary retinoids (vitamin A and its derivatives) contribute to normal embryonic development. However, the mechanism(s) involved in the transfer of recently ingested vitamin A from mother to embryo is not fully understood. We investigated in vivo whether lipoprotein lipase (LPL) facilitates the placental uptake of dietary retinyl ester incorporated in chylomicrons and their remnants and its transfer to the embryo. We examined the effects of both genetic ablation (MCK-L0 mice) and pharmacologi...

  3. [THE EFFECT OF SATINS: ACTIVATION OF LIPOLYSIS AND ABSORPTION BY INSULIN-DEPENDED CELLS LIPOPROTEINS OF VERY LOW DENSITY, INCREASING OF BIO-AVAILABILITY OF POLYENOIC FATTY ACIDS AND DECREASING OF CHOLESTEROL OF LIPOPROTEINS OF LOW DENSITY].

    Titov, V N; Malyshev, P P; Amelyushkina, V A; Aripovsky, A V; Smirnov, G P; Polevaya, T Yu; Kabo, S I; Kukhartchuk, V V

    2015-10-01

    The Russian cardiologic R&D production complex of Minzdrav of Russia, 121552 Moscow, Russia The statins are synthetic xenobiotics alien to animal cells. They are unlikely capable to manifest pleiotropic effect. It is feasible to evaluate effect of statins by stages: a) initially a specific inhibition of synthesis of cholesterol alcohol; b) further indirect activation of hydrolysis of triglycerides in lipoproteins of very low density; c) nonspecific activation of cells' receptor absorption of palmitic and oleic lipoproteins of very low density and then d) linoleic and linolenic lipoproteins of low density with all polyenoic fatty acids. On balance, statins activate absorption ofpolyenoic fatty acids by cells. Just they manifest physiological, specific pleiotropic effect. The statins inhibit synthesis of pool of cholesterol alcohol-lipoproteins of very low density condensed between phosphatidylcholines in polar mono-layer phosphatidylcholines+cholesterol alcohol on surface oftriglycerides. The low permeability of mono-layer separates substrate-triglycerides in lipoproteins of very low density and post-heparin lipoprotein lipase in hydrophilic blood plasma. The higher is ratio cholesterol alcohol/phosphatidylcholines in mono-layer of lipoproteins of very low density the slower is lipolysis, formation of ligand lipoproteins of very low density and their absorption by cells under apoB-100-endocytosis. The statins normalize hyperlipemia by force of a) activation of absorption oflipoproteins of very low density by insulin-depended cells and b) activation of absorption of lipoproteins of low density by all cells, increasing of bio-availability of polyenoic fatty acids, activation of apoB-100-endocytosis. The limitation in food of content of palmitic saturated fatty acid and increasing of content of ω-3 polyenoic fatty acids improve "bio-availability" of polyenoic fatty acids and their absorption by cells and also decreases cholesterol alcohol/phosphatidylcholines and

  4. Effect of di(2-ethylhexyl) phthalate (DEHP) on lipolysis and lipoprotein lipase activities in adipose tissue of rats.

    Martinelli, Marcela I; Mocchiutti, Norberto O; Bernal, Claudio A

    2010-09-01

    The di(2-ethylhexyl) phthalate (DEHP) is an ubiquitous environmental chemical with detrimental health effects. The present work was designed to asses some potential mechanisms by which DEHP causes, among others, a reduced body fat retention. Since this effect could be related to an alteration of adipocyte triacylglycerol (TG) metabolism, we evaluated the effects of dietary DEHP in adipose tissues upon (1) the number and size of fat cells; (2) the basal and stimulated lipolysis and (3) the lipoprotein lipase (LPL) activity. Groups of male Wistar rats were fed for 21 days a control diet alone (control group) or the same control diet supplemented with 2% (w/w) of DEHP (DEHP group). The LPL activity of DEHP-fed rats was increased in lumbar and epididymal adipose tissues. These rats had significantly reduced weight in epididymal and lumbar tissues, together with reduced size of epididymal adipocytes. These alterations do not seem to be associated with higher lipid mobility because neither basal lipolysis nor 'in vitro' stimulated lipolysis by noradrenaline (NA) showed to be modified by DEHP. Based on these results, we concluded that the adipose tissue size reduction induced by DEHP intake is not due to changes in lipolysis nor to a decreased LPL activity. More research is needed to achieve a comprehensive understanding of the potential mechanisms by which DEHP causes, among others, a reduced body fat retention. PMID:20144957

  5. Changes in lipoprotein lipase activity in the adipose tissue and heart of non-lethally X-irradiated rats

    After 16 h of nocturnal food deprivation, male Wistar rats were irradiated with a single whole-body dose of 2.40 Gy of X-rays. Both the irradiated and sham-irradiated (control) rats were pair-fed for the first six days after irradiation, but for the rest of the time they were fed ad libitum. Lipoprotein lipase activity (LPLA) in the adipose tissue fell between 24 and 48 h; LPLA in the heart fell at 24 h and 21 days and rose on the 14th day. The serum triacylglycerol concentration rose between 24 and 72 h. A comparison with the fed control group showed LPLA in adipose tissue to be reduced at 6 and 72 h and on the 28th day and raised between the 7th and the 14th day. In the heart it was raised at 1 h and between 72h and the 14th day, it was reduced on the 21st day and rose on the 35th day. The triacylglycerol concentration was raised between 48 and 72 h and on the 28th day. Pair-feeding after non-lethal X-irradiation allowed more exact differentiation of the specific effect of ionizing radiation on LPLA in the adipose tissue and heart at early post-irradiation intervals. (author)

  6. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  7. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad

    2011-01-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, t...

  8. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %. PMID:17898456

  9. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    Alex Fernando de Almeida

    2013-01-01

    Full Text Available Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield ( g/h. Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield ( of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties.

  10. Placental lipoprotein lipase DNA methylation levels are associated with gestational diabetes mellitus and maternal and cord blood lipid profiles.

    Houde, A A; St-Pierre, J; Hivert, M F; Baillargeon, J P; Perron, P; Gaudet, D; Brisson, D; Bouchard, L

    2014-04-01

    Placental lipoprotein lipase (LPL) is crucial for placental lipid transfer. Impaired LPL gene expression and activity were reported in pregnancies complicated by gestational diabetes mellitus (GDM) and intra-uterine growth restriction. We hypothesized that placental LPL DNA methylation is altered by maternal metabolic status and could contribute to fetal programming. The objective of this study was thus to assess whether placental LPL DNA methylation is associated with GDM and both maternal and newborn lipid profiles. Placenta biopsies were sampled at delivery from 126 women including 27 women with GDM diagnosed following a post 75 g-oral glucose tolerance test (OGTT) between weeks 24 and 28 of gestation. Placental LPL DNA methylation and expression levels were determined using bisulfite pyrosequencing and quantitative real-time PCR, respectively. DNA methylation levels within LPL proximal promoter region (CpG1) and intron 1 CpG island (CpGs 2 and 3) were lower in placenta of women with GDM. DNA methylation levels at LPL-CpG1 and CpG3 were also negatively correlated with maternal glucose (2-h post OGTT; r=-0.22; P=0.02) and HDL-cholesterol levels (third trimester of pregnancy; r=-0.20; p=0.03), respectively. Moreover, we report correlation between LPL-CpG2 DNA methylation and cord blood lipid profile. DNA methylation levels within intron 1 CpG island explained up to 26% (r⩽-0.51; Pmethylation dysregulation. Our results suggest that site-specific LPL epipolymorphisms in the placenta are possibly functional and could potentially be involved in determining the future metabolic health of the newborn. PMID:24847699

  11. Effect of Plant Oils upon Lipase and Citric Acid Production in Yarrowia lipolytica Yeast

    Farshad Darvishi; Iraj Nahvi; Hamid Zarkesh-Esfahani; Fariborz Momenbeik

    2009-01-01

    The nonconventional yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates to produce organic acids, single-cell oil, lipases, and so forth. The aim of this study was to investigate the biochemical behavior and simultaneous production of valuable metabolites such as lipase, citric acid (CA), and single-cell protein (SCP) by Yarrowia lipolytica DSM 3286 grown on various plant oils as sole carbon source. Among tested plant oils, olive oil proved to be the best medium for lip...

  12. I. Lipid metabolism stimulated by altered intracellular calcium in cultured fibroblasts. II. Regulation of the activity of rat adipose tissue lipoprotein lipase

    The cell killing process of 3T3 Swiss mouse fibroblasts stimulated by Ca2+ plus A23187, a Ca2+ ionophore has been studied. The aim of this research is to understand the biochemical mechanism of this process, i.e, to elucidate the step involved and to characterize the enzymes involved with each steps in the lipid metabolism stimulated in cultured fibroblasts undergoing a toxic death response. Parallel 3T3 cultures biosynthetically labeled with lipid precursors were examined under Ca2+-mediated killing conditions. Labeled lipids were extracted and analyzed by thin-layer chromatography and autoradiography. Evidence for activation of a phosphatidylinositol-specific phospholipase C has been obtained in injured 3T3 cells labeled with [3H]glycerol and [3H]inositol. To simplify the system for studying the lipoprotein lipase reaction, our laboratory prepared the chromophore containing a substrate: 1,2-dipalmitoyl-3-β-2-furylacryloyltriacylglycerol (DPFATG). By using this artificial lipid we could readily investigate the lipoprotein lipase reactions, since the absorbance change directly represents the hydrolysis of the chromophoric side chain of the substrate

  13. Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update

    Esther M.M. Ooi

    2015-06-01

    Full Text Available Dyslipidemia is a major risk factor for cardiovascular disease (CVD. Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA consumption diminished hepatic triglyceride-rich lipoprotein (TRL secretion and enhanced TRL to low-density lipoprotein (LDL conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids.

  14. Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update.

    Ooi, Esther M M; Watts, Gerald F; Ng, Theodore W K; Barrett, P Hugh R

    2015-06-01

    Dyslipidemia is a major risk factor for cardiovascular disease (CVD). Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA) consumption diminished hepatic triglyceride-rich lipoprotein (TRL) secretion and enhanced TRL to low-density lipoprotein (LDL) conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL) cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids. PMID:26043038

  15. Novel extremely acidic lipases produced from Bacillus species using oil substrates.

    Saranya, P; Kumari, H Sukanya; Jothieswari, M; Rao, B Prasad; Sekaran, G

    2014-01-01

    The extremely acidophilic microorganisms Bacillus pumilus and Bacillus subtilis were isolated from soil collected from the commercial edible oil and fish oil extraction industry. Optimization of conditions for acidic lipase production from B. pumilus and B. subtilis using palm oil and fish oil, respectively, was carried out using response surface methodology. The extremely acidic lipases, thermo-tolerant acidic lipase (TAL) and acidic lipase (AL), were produced by B. pumilus and B. subtilis, respectively. The optimum conditions for B. pumilus obtaining the maximum activity (1,100 U/mL) of TAL were fermentation time, 96 h; pH, 1; temperature, 50 °C; concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the TAL was 55 kDa. The AL from B. subtilis activity was 214 U/mL at a fermentation time of 72 h; pH, 1; temperature, 35 °C; concentration of fish oil, 30 g/L; maltose concentration, 10 g/L. After purification, an 11.4-fold purity of lipase with specific activity of 2,189 U/mg protein was obtained. The molecular weight of the extremely acidic lipase was 22 kDa. The functional groups of lipases were determined by Fourier transform-infrared (FT-IR) spectroscopy. PMID:24185617

  16. Apolipoprotein C-II and lipoprotein lipase show a temporal and geographic correlation with surfactant lipid synthesis in preparation for birth

    Gérard-Hudon Marie-Christine

    2010-11-01

    Full Text Available Abstract Background Fatty acids are precursors in the synthesis of surfactant phospholipids. Recently, we showed expression of apolipoprotein C-II (apoC-II, the essential cofactor of lipoprotein lipase (LPL, in the fetal mouse lung and found the protein on the day of the surge of surfactant synthesis (gestation day 17.5 in secretory granule-like structures in the distal epithelium. In the present study, we will answer the following questions: Does apoC-II protein localization change according to the stage of lung development, thus according to the need in surfactant? Are LPL molecules translocated to the luminal surface of capillaries? Do the sites of apoC-II and LPL gene expression change according to the stage of lung development and to protein localization? Results The present study investigated whether the sites of apoC-II and LPL mRNA and protein accumulation are regulated in the mouse lung between gestation day 15 and postnatal day 10. The major sites of apoC-II and LPL gene expression changed over time and were found mainly in the distal epithelium at the end of gestation but not after birth. Accumulation of apoC-II in secretory granule-like structures was not systematically observed, but was found in the distal epithelium only at the end of gestation and soon after birth, mainly in epithelia with no or small lumina. A noticeable increase in surfactant lipid content was measured before the end of gestation day 18, which correlates temporally with the presence of apoC-II in secretory granules in distal epithelium with no or small lumina but not with large lumina. LPL was detected in capillaries at all the developmental times studied. Conclusions This study demonstrates that apoC-II and LPL mRNAs correlate temporally and geographically with surfactant lipid synthesis in preparation for birth and suggests that fatty acid recruitment from the circulation by apoC-II-activated LPL is regionally modulated by apoC-II secretion. We propose a model

  17. Separation and characterization of the acid lipase and neutral esterases from human liver.

    Warner, T G; Dambach, L M; Shin, J H; O'Brien, J S

    1980-01-01

    Electrophoresis of human liver homogenates followed by reaction with 4-methylumbelliferyl palmitate reveals the presence of two major electrophoretic forms with esterase (lipase) activity toward this substrate. The two enzymes were isolated and partially purified based on their solubility differences and their relative affinities for the lectin column concanavalin A-Sepharose 4B. Lipase A was particulate with an acidic pH optimum (5.2) and could be solubilized with the non-ionic surfactant Tr...

  18. Covalent Immobilization of Lipase on Poly ( acrylonitrile-co-maleic acid) Ultrafiltration Hollow Fiber Membrane

    YE Peng; XU Zhi-kang; WU Jian; DENG Hong-tao; SETA Patrick

    2005-01-01

    Lipase from Candida rugosa was covalently immobilized on the surface of an ultrafiltration hollow fiber membrane fabricated from poly (acrylonitrile-co-maleic acid) (PANCMA) in which the carboxyl groups were activated with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) and dicyclohexyl carbodiimide (DCC)/N-hydroxyl succinimide(NHS), respectively. The properties of the immobilized lipase were assayed and compared with those of the free enzyme. The maximum activities were observed in a relatively broader pH value range at high temperatures for the immobilized lipase compared to the free one. It was also found that the thermal and pH stabilities of lipase were improved upon immobilization and at 50 ℃ the thermal inactivation rate constant values are 2.1×10-2 for the free lipase, 3.2×10-3 for the immobilized lipase on the EDC-activated PANCMA membrane and 3.5×10-3 for the immobilized lipase on the DCC/NHS-activated PANCMA membrane, respectively.

  19. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150). PMID:26724947

  20. Characterization of lipase activities in obese Pima indians. Decreases with weight reduction.

    Reitman, J S; Kosmakos, F C; Howard, B V; Taskinen, M R; Kuusi, T.; Nikkila, E A

    1982-01-01

    Adipose tissue and muscle lipoprotein lipase and postheparin hepatic and lipoprotein lipase activities have been measured in a group of 21 Pima Indian males over a wide range of body weight to determine the relationship between obesity and these lipase activities. There was a significant positive correlation between adipose tissue lipoprotein lipase and obesity; muscle and postheparin lipoprotein lipase and hepatic lipase were not related to degree of obesity. Fasting insulin levels were not ...

  1. Endothelial lipase is a major determinant of HDL level

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    lipase (44 percent identity) and hepatic lipase (41 percent identity), two well-characterized lipases that function at vascular endothelial surfaces. Critical motifs associated with lipase activity (GXSXG and the catalytic triad S169, D193, H274), and with heparin binding were strongly conserved. Interestingly, in contrast to both lipoprotein lipase and hepatic lipase, endothelial lipase has little triglyceride hydrolase activity in vitro but instead cleaves fatty acids from the sn-1 position of phosphatidylcho-line. In in vitro assays the enzyme is most active on lipids presented in HDL, although it will release fatty acids from all classes of lipoproteins. Consistent with this finding, adenovirus-mediated overexpression of endothelial lipase in LDL receptor-deficient mice reduced plasma concentrations of VLDL and LDL cholesterol by about 50 percent, whereas HDL-C decreased to almost zero in these animals. These data suggested that endothelial lipase may play a role in HDL catabolism.

  2. Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization.

    Ye, Peng; Xu, Zhi-Kang; Wu, Jian; Innocent, Christophe; Seta, Patrick

    2006-08-01

    Nanofibrous membranes with an average diameter of 100 and 180 nm were fabricated from poly(acrylonitrile-co-maleic acid) (PANCMA) by the electrospinning process. These nanofibrous membranes contain reactive groups which can be used to covalently immobilize biomacromolecules. Two natural macromolecules, chitosan and gelatin, were tethered on these nanofibrous membranes to fabricate dual-layer biomimetic supports for enzyme immobilization in the presence of 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxyl succinimide (NHS). Lipase from Candida rugosa was then immobilized on these dual-layer biomimetic supports using glutaraldehyde (GA), and on the nascent PANCMA fibrous membrane using EDC/NHS as coupling agent, respectively. The properties of the immobilized lipases were assayed. It was found that there is an increase of the activity retention of the immobilized lipase on the chitosan-modified nanofibrous membrane (45.6+/-1.8%) and on the gelatin-modified one (49.7+/-1.8%), compared to that on the nascent one (37.6+/-1.8%). The kinetic parameters of the free and immobilized lipases, K(m) and V(max), were also assayed. In comparison with the immobilized lipase on the nascent nanofibrous membrane, there is an increase of the V(max) value for the immobilized lipases on the chitosan- and gelatin-modified nanofibrous membranes. Results also indicate that the pH and thermal stabilities of lipases increase upon immobilization. The residual activities of the immobilized lipases are 55% on the chitosan-modified nanofibrous membrane and 60% on the gelatin-modified one, after 10 uses. PMID:16584770

  3. Bacterial lipases

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  4. Efficacy and long term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open label trial

    Gaudet, Daniel; Méthot, Julie; Déry, Stéphane; Brisson, Diane; Essiembre, Christiane; Tremblay, Gérald; Tremblay, Karine; de Wal, Janneke; Twisk, Jaap; van den Bulk, Nick; Sier-Ferreira, Valerie; van Deventer, Sander

    2016-01-01

    We describe the 2-year follow-up of an open-label trial (CT-AMT-011-01) of AAV1-LPLS447X gene therapy for lipoprotein lipase deficiency (LPLD), an orphan disease associated with chylomicronemia, severe hypertriglyceridemia, metabolic complications and potentially life-threatening pancreatitis. The LPL S447X gene variant, in an adeno-associated viral vector of serotype 1 (alipogene tiparvovec), was administered to 14 adult LPLD patients with a prior history of pancreatitis. Primary objectives were to assess the long-term safety of alipogene tiparvovec and achieve a ≥40% reduction in fasting median plasma triglyceride (TG) at 3–12 weeks compared with baseline. Cohorts 1 (n=2) and 2 (n=4) received 3 × 1011gc/kg, and cohort 3 (n=8) received 1 × 1012gc/kg. Cohorts 2 and 3 also received immunosuppressants from the time of alipogene tiparvovec administration and continued for 12 weeks. Alipogene tiparvovec was well tolerated, without emerging safety concerns for 2 years. Half of the patients demonstrated a ≥40% reduction in fasting TG between 3–12 weeks. TG subsequently returned to baseline, although sustained LPL S447X expression and long-term changes in TG-rich lipoprotein characteristics were noted independently of the effect on fasting plasma TG. PMID:22717743

  5. New lipase assay using Pomegranate oil coating in microtiter plates.

    Ülker, Serdar; Placidi, Camille; Point, Vanessa; Gadenne, Benoît; Serveau-Avesque, Carole; Canaan, Stéphane; Carrière, Frédéric; Cavalier, Jean-François

    2016-01-01

    Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step. PMID:26343557

  6. Effect of Plant Oils upon Lipase and Citric Acid Production in Yarrowia lipolytica Yeast

    Farshad Darvishi

    2009-01-01

    Full Text Available The nonconventional yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates to produce organic acids, single-cell oil, lipases, and so forth. The aim of this study was to investigate the biochemical behavior and simultaneous production of valuable metabolites such as lipase, citric acid (CA, and single-cell protein (SCP by Yarrowia lipolytica DSM 3286 grown on various plant oils as sole carbon source. Among tested plant oils, olive oil proved to be the best medium for lipase and CA production. The Y. lipolytica DSM 3286 produced 34.6 ± 0.1 U/mL of lipase and also CA and SCP as by-product on olive oil medium supplemented with yeast extract. Urea, as organic nitrogen, was the best nitrogen source for CA production. The results of this study suggest that the two biotechnologically valuable products, lipase and CA, could be produced simultaneously by this strain using renewable low-cost substrates such as plant oils in one procedure.

  7. Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization.

    Ye, Peng; Xu, Zhi-Kang; Che, Ai-Fu; Wu, Jian; Seta, Patrick

    2005-11-01

    A protocol was used to prepare a dual-layer biomimetic membrane as support for enzyme immobilization by tethering chitosan on the surface of poly(acrylonitrile-co-maleic acid) (PANCMA) ultrafiltration hollow fiber membrane in the presence of 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxylsuccin-imide (NHS). The chemical change of the chitosan-modified PANCMA membrane surface was confirmed with Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Lipase from Candida rugosa was immobilized on this dual-layer biomimetic membrane using glutaraldehyde (GA), and on the nascent PANCMA membrane using EDC/NHS as coupling agent. The properties of the immobilized enzymes were assayed and compared with those of the free one. It was found that both the activity retention of the immobilized lipase and the amount of bound protein on the dual-layer biomimetic membrane (44.5% and 66.5 mg/m2) were higher than those on the nascent PANCMA membrane (33.9% and 53.7 mg/m2). The kinetic parameters of the free and immobilized lipases, Km and Vmax, were also assayed. The Km values were similar for the immobilized lipases, while the Vmax value of the immobilized lipase on the dual-layer biomimetic membrane was higher than that on the nascent PANCMA membrane. Results indicated that the pH and thermal stabilities of lipase increased upon immobilization. The residual activity of the immobilized lipase after 10 uses was 53% on the dual-layer biomimetic membrane and 62% on the nascent PANCMA membrane. PMID:15919112

  8. Catalyzed Ester Synthesis Using Candida rugosa Lipase Entrapped by Poly(N-isopropylacrylamide-co-itaconic Acid) Hydrogel

    2014-01-01

    This study reports the synthesis of polymeric matrices based on N-isopropylacrylamide and itaconic acid and its application for immobilization of lipase from Candida rugosa. The lipase was immobilized by entrapment method. Free and immobilized lipase activities, pH and temperature optima, and storage stability were investigated. The optimum temperature for free and entrapped lipase was found to be 40 and 45°C, while the optimum pH was observed at pH 7 and 8, respectively. Both hydrolytic acti...

  9. Monitoring the Hydrolysis of Olive Oil Catalyzed by Lipase via Acid Value Detection

    2007-01-01

    Hydrolysis of olive oil catalyzed by Candida lipolytica lipase was investigated. The relative concentration of the components in the product was determined by using high performance liquid chromatography(HPLC). Furthermore, a novel rapid method to detect the hydrolytic process of olive oil was developed based on the relationship between the acid value and the relative concentration of the different components.

  10. Synthesis of monoacylglycerol containing pinolenic acid via stepwise esterification using a cold active lipase.

    Pyo, Young-Gil; Hong, Seung In; Kim, Yangha; Kim, Byung Hee; Kim, In-Hwan

    2012-01-01

    High purity monoacylglycerol (MAG) containing pinolenic acid was synthesized via stepwise esterification of glycerol and fatty acids from pine nut oil using a cold active lipase from Penicillium camembertii as a biocatalyst. Effects of temperature, molar ratio, water content, enzyme loading, and vacuum on the synthesis of MAG by lipase-catalyzed esterification of glycerol and fatty acid from pine nut oil were investigated. Diacylglycerol (DAG) as well as MAG increased significantly when temperature was increased from 20 to 40 °C. At a molar ratio of 1:1, MAG content decreased because of the significant increase in DAG content. Water has a profound influence on both MAG and DAG content through the entire course of reaction. The reaction rate increased significantly as enzyme loading increased up to 600 units. Vacuum was an effective method to reduce DAG content. The optimum temperature, molar ratio, water content, enzyme loading, vacuum, and reaction time were 20 °C, 1:5 (fatty acid to glycerol), 2%, 600 units, 5 torr, and 24 h, respectively. MAG content further increased via lipase-catalyzed second step esterification at subzero temperature. P. camembertii lipase exhibited esterification activity up to -30 °C. PMID:22753389

  11. Application of lipases to substances with pharmacological importance (polyunsaturated fatty acids)

    Zarevúcka, Marie; Wimmer, Zdeněk

    New York: Nova Publishers, 2008 - (Romano, F.; Russo, A.; Bavaro, T.), s. 155-186 ISBN 978-1-60456-619-2 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : lipase * polyunsaturated fatty acids * plant oils * structured lipids Subject RIV: CC - Organic Chemistry

  12. Selective Synthesis of Unsaturated N-Acylethanolamines by Lipase-Catalyzed N-Acylation of Ethanolamine with Unsaturated Fatty Acids

    Plastina, P.; Vincken, J.P.; Gruppen, H.; Witkamp, R.F.; Gabriele, B.

    2009-01-01

    The selective synthesis of unsaturated N-acylethanolamines 1b-6b by lipase-catalyzed direct condensation between unsaturated fatty acids 1a-6a and ethanolamine is reported. Reactions were carried out in hexane at 40 °C, in the presence of Candida antarctica Lipase B as the catalyst, to give the corr

  13. Lipoprotein lipase S447X variant associated with VLDL, LDL and HDL diameter clustering in the MetS

    Previous analysis clustered 1,238 individuals from the general population Genetics of Lipid Lowering Drugs Network (GOLDN) study by the size of their fasting very low-density, low-density and high-density lipoproteins (VLDL, LDL, HDL) using latent class analysis. From two of the eight identified gro...

  14. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study

    BACKGROUND: Plasma high density lipoprotein (HDL) cholesterol (HDL-C) concentration is highly heritable but is also modifiable by environmental factors including physical activity. HDL-C response to exercise varies among individuals, and this variability may be associated with genetic polymorphism...

  15. Lipase Maturation Factor 1: a lipase chaperone involved in lipid metabolism

    Péterfy, Miklós

    2011-01-01

    Mutations in lipase maturation factor 1 (LMF1) are associated with severe hypertriglyceridemia in mice and human subjects. The underlying cause is impaired lipid clearance due to lipase deficiency. LMF1 is a chaperone of the endoplasmic reticulum (ER) and it is critically required for the post-translational activation of three vascular lipases: lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). As LMF1 is only required for the maturation of homodimeric, but not monomer...

  16. Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification

    M. Claudia Montiel

    2012-04-01

    Full Text Available Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR, with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG; however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed.

  17. 代谢综合征与脂蛋白脂酶的关系研究进展%Research on Relationship between Lipoprotein Lipase and Metabolic Syndrone

    刘婧

    2011-01-01

    Metaholic syndrome is a complex metabolic disorder syndrome , including obesity, high blood sugar , blood pressure , blood lipid disorders. Lipoprotein lipase ( LPL ) is one of the key enzymes in lipid metabolism,the main catalyze of chylomicrons and verv low-density lipoprotein hydrolysis into triglycerides. Research showed that LPL deficiency and gene mutations cause lipodystrophy. Dfferent gene polymorphisms have a different impact on lipid metabolism.Hind Ⅲ and Pvu Ⅱ mutations cause lipid metabolism,and the S447X polymorphism may have a beneficial lipid changes. LPL is associated with the incidence of metabolic syndrome including obesity , insulin resistance , type 2 diabetes etc.%代谢综合征是一组复杂的代谢紊乱症候群,包括肥胖、高血糖、高血压、血脂紊乱等.脂蛋白脂酶(LPL)是脂代谢关键酶之一,主要催化乳糜微粒和极低密度脂蛋白中的三酰甘油水解.研究显示LPL缺乏和基因突变会导致脂肪代谢障碍,不同的基因多态性对脂代谢有着不同的影响,HindⅢ和PvuⅡ突变会导致脂代谢紊乱,而S447X多态性可能产生有益的血脂改变.LPL与肥胖、胰岛素抵抗和2型糖尿病等代谢综合征的发病有着密切的关系.

  18. Lipase-catalyzed esterification of lactic acid with straight-chain alcohols

    Rønne, Torben Harald; Xu, Xuebing; Tan, Tianwei

    2005-01-01

    Enzymatic synthesis of esters of lactic acid and straight-chain alcohols with different chain lengths (C6–C18) were investigated in batch reactions with hexadecanol (C16) as the model alcohol. Cyclohexane was the best solvent for higher ester yields, and the best biocatalyst was the immobilized...... of lactic acid to alcohol, each at a concentration of 120 mM each; a 50°C reaction temperature; 190 rpm shaking speed; and the addition of 100 mg molecular sieves (4 Å) for drying. The ester yield increased with increasing lipase load, and a yield of 79.2% could be obtained after 24 h of reaction at...... 20 wt% of Novozym 435. The immobilized Candida sp. lipase prepared in the laboratory also could be used to produce esters of lactic acid and straight-chain alcohols, but it had a much lower activity than Novozym 435 with a temperature optimum of 40°C....

  19. Aromatic Amino Acid Mutagenesis at the Substrate Binding Pocket of Yarrowia lipolytica Lipase Lip2 Affects Its Activity and Thermostability

    Guilong Wang; Zimin Liu; Li Xu; Yunjun Yan

    2014-01-01

    The lipase2 from Yarrowia lipolytica (YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F...

  20. Gene expression and enzyme activity of lipoprotein lipase correlate with intramuscular fat content in Guangxi san-huang and Arbor Acres chickens.

    Huang, Y N; Wang, J; Chen, B J; Jiang, Q Y; Guo, Y F; Lan, G Q; Jiang, H S

    2016-01-01

    Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism. This study investigated LPL gene expression, LPL enzyme activity, and the correlation of each with intramuscular fat (IMF) in Chinese Guangxi san-huang (GXSH) and Arbor Acres (AA) chickens. The results showed that age and breed had significant effects on LPL expression and enzyme activity. Correlation analyses showed significant positive correlations between LPL expression levels and IMF contents in the breast and thigh tissues of both GXSH (r = 0.712, P = 0.001; r = 0.792, P < 0.001, respectively) and AA (r = 0.644, P < 0.001; r = 0.545, P < 0.001, respectively) chickens. The results also indicated a significant positive correlation between LPL enzyme activity and IMF contents in the breast and thigh tissues of both GXSH (r = 0.615, P = 0.001; r = 0.685, P < 0.001, respectively) and AA (r = 0.600, P = 0.001; r = 0.528, P = 0.003, respectively) chickens. The results indicated that the LPL gene was significantly correlated with IMF in these two breeds. The results presented here could contribute to knowledge of LPL mRNA developmental expression patterns and enzyme activity, and it could facilitate further research on the molecular mechanisms underlying IMF deposition in chickens. PMID:27323106

  1. Establishment of Real-Time TaqMan-Fluorescence Quantitative RT-PCR Assay for Detection and Quantification of Porcine Lipoprotein Lipase mRNA

    LIAN Hong-xia; LU De-xun; GAO Min

    2009-01-01

    Porcine lipoprotein lipase (LPL) cDNA was cloned as the standard for real-time quantifying LPL mRNA and the TaqMan-fluorescence quantitative PCR assay for detection was established. The total RNA extracted from Longissimus dorsi of porcine was reverse-transcribed to cDNA. LPL cDNA was ligated with pGM-T vector and transformed into Escherichia coli TOP 10. Plasmid DNA extracted from positive clones was verified by PCR amplification and sequenced. LPL was amplified by real-time fluorescence quantitative PCR from the plasmid DNA. The concentration of DNA template purified was detected by analyzing absorbance in 260 nm and then the combined plasmid was diluted to series as standard for fluorescence quantitative PCR (FQ-PCR). The method of LPL mRNA real-time PCR was well established, which detected as low as 103 with the linear range 103 to 1010 copies. The standard curves showed high correlations (R2=0.9871). A series of standards for real-time PCR analysis have been constructed successfully, and real-time TaqMan-fluorescence quantitative RT-PCR is reliable to quantitatively evaluate FQ-PCR mRNA in L. dorsi of porcine.

  2. Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction

    Sunesen, V.H.; Weber, Christine; Hølmer, Gunhild Kofoed

    2001-01-01

    (nine women, nine men), mean age 26 +/- 3 y, recruited among the university students; no dropouts. Interventions: Three supplementation periods of 10 days: 100 m/day CoQ(10), 350 mg/day D-alpha -tocopherol, and 2g/day concentrated fish oil. Fasting venous blood samples were collected twice before the...... first period and then after each period. Plasma and isolated lipoproteins were analysed for cholesterol, triacylglycerol, alpha- and gamma -tocopherol, CoQ(10), and fatty acid composition. Results: Significant (P <0.05) increase in CoQ(10) and -tocopherol occurred in all lipoprotein classes after...... supplementation. CoQ(10) was primarily incorporated into low-density lipoprotein (LDL). alpha -tocopherol and fish oil n-3 PUFAs had similar patterns. They were equally distributed between LDL and high-density lipoprotein (HDL), with a smaller part in VLDL. The total sum of PUFA was unchanged following all...

  3. Lipoprotein Lipase S447X variant associated with VLDL, LDL and HDL diameter clustering in the MetS

    Tiwari Hemant K

    2011-08-01

    Full Text Available Abstract Background Previous analysis clustered 1,238 individuals from the general population Genetics of Lipid Lowering Drugs Network (GOLDN study by the size of their fasting very low-density, low-density and high-density lipoproteins (VLDL, LDL, HDL using latent class analysis. From two of the eight identified groups (N = 251, ~75% of individuals met Adult Treatment Panel III criteria for the metabolic syndrome (MetS. Both showed small LDL diameter (mean = 19.9 nm; however, group 1 (N = 200 had medium VLDL diameter (mean = 53.1 nm while group 2 had very large VLDL diameter (mean = 65.74 nm. Group 2 additionally showed significantly more insulin resistance (IR, and accompanying higher waist circumference and fasting glucose and triglycerides (all P LPL gene variants: D9N (rs1801177 and S447X (rs328. Findings Mixed linear models that controlled for age, sex, center of data collection, and family pedigree revealed no differences between the two groups for the D9N polymorphism (P = .36. However, group 2 contained significantly more carriers (25% of the 447X variant than group 1 (14%; P = .04. Conclusions This was the first study this kind to show an association between LPL and large VLDL particle size within the MetS, a pattern associated with higher IR. Future work should extend this to larger samples to confirm these findings, and examine the long term outcomes of those with this lipoprotein diameter pattern.

  4. Catalyzed Ester Synthesis Using Candida rugosa Lipase Entrapped by Poly(N-isopropylacrylamide-co-itaconic Acid Hydrogel

    Nikola Milašinović

    2014-01-01

    Full Text Available This study reports the synthesis of polymeric matrices based on N-isopropylacrylamide and itaconic acid and its application for immobilization of lipase from Candida rugosa. The lipase was immobilized by entrapment method. Free and immobilized lipase activities, pH and temperature optima, and storage stability were investigated. The optimum temperature for free and entrapped lipase was found to be 40 and 45°C, while the optimum pH was observed at pH 7 and 8, respectively. Both hydrolytic activity in an aqueous medium and esterolytic activity in an organic medium have been evaluated. Maximum reaction rate (Vmax and Michaelis-Menten constants (Km were also determined for immobilized lipase. Storage stability of lipase was increased as a result of immobilization process. Furthermore, the operational stability and reusability of the immobilized lipase in esterification reaction have been studied, and it was observed that after 10 cycles, the residual activity for entrapped lipase was as high as 50%, implying that the developed hydrogel and immobilized system could provide a promising solution for the flavor ester synthesis at the industrial scale.

  5. An Intensified Esterification Process of Palm Oil Fatty Acid Distillate Catalyzed by Delipidated Rice Bran Lipase

    Fui Chin Chong; Beng Ti Tey; Zanariah Mohd. Dom; Nordin Ibrahim; Russly Abd. Rahman; Tau Chuan Ling

    2006-01-01

    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achie...

  6. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M. J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimet...

  7. Utilization of Cow Milk Enriched with Conjugated Linoleic Acid to Decrease Body Weight, Cholesterol, Low Density Lipoprotein and to Increase Blood High Density Lipoprotein

    W Suryapratama; FM Suhartati; S Rahayu

    2012-01-01

    An experiment to investigate the ability of cow milk enriched with conjugated linoleic acid to decrease body weight, total cholesterol, blood Low Density Lipoprotein (LDL), and to increase blood High Density Lipoprotein (HDL) has been conducted using in vivo experimental method. Research material consisted of 40 8-week-old white female rats (Rattus norvegicus) of Wistar strain (as an animal model). The method used was an experimental method with a Completely Randomized Design. The treatments ...

  8. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester.

    Majewska, Paulina; Serafin, Monika; Klimek-Ochab, Magdalena; Brzezińska-Rodak, Małgorzata; Żymańczyk-Duda, Ewa

    2016-06-01

    A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68-93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50-55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids). PMID:26989983

  9. Synthesis of Monoacylglycerol Rich in Polyunsaturated Fatty Acids from Tuna Oil with Immobilized Lipase AK

    Pawongrat, Ratchapol; Xu, Xuebing; H-Kittikun, Aran

    2007-01-01

    The aim of this study was to produce monoacylglycerols (MAG) rich in polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), by glycerolysis of tuna oil with lipase AK from Pseudomonas fluorescence immobilized on Accurel EP-100 (IM-AK). tert...... on tuna oil. The temperature was controlled at 45 degrees C. Under these conditions, with a 24 h reaction, the yield of MAG was 24.6%, but containing 56.0 wt% PUFA (EPA and DHA). Stability of the IM-AK was also studied. The hydrolytic activity of the enzyme remained at 88% and 80% of initial activity...

  10. 脂蛋白脂酶缺失症基因治疗载体的构建及功能验证%Construction and Verification of Gene Therapy Vector for Lipoprotein Lipase Deficiency Disease

    王恺龙; 郑李彬; 张帆; 沈良才; Libby Andrew; 李旭丽; 张瑾

    2013-01-01

    脂蛋白脂酶(lipoprotein lipase,LPL)是甘油三酯分解的限速酶,LPL基因缺失会引起高血脂症,虽然发病率低,但到目前为止,尚无有效治疗手段.该文构建了用于纠正LPL缺失基因型的逆转录病毒载体MSCV-hLPL,结果表明,MSCV-hLPL可以高效侵染体外培养的细胞系C2C12、HEK293和3T3-L1,并且都可以产生具有活性的脂蛋白脂酶.利用MSCV-hLPL侵染后的C2C12、HEK293和3T3-L1,分别注射到裸鼠皮下组织,发现C2C12和3T3-L1可以分泌脂蛋白脂酶到临近的肌肉组织中,显著提高LPL活性.以上工作证明,基因治疗载体可以纠正脂蛋白脂酶缺失的基因型,而脂肪细胞和肌肉细胞移植入裸鼠体内后,均可以作为生物反应器产生具有活性的LPL.这是该领域中的一次开拓性尝试,为脂蛋白脂酶缺失症治疗方法的开发打下了坚实的基础.%Lipoprotein lipase (LPL) is the rate limiting enzyme for triglycerides hydrolysis,which catalyses the hydrolysis of the triacylglycerol component of chylomicrons and very low density lipoproteins,thereby providing fatty acids and monoacylglycerol for tissue utilization.LPL gene mutation or deletion may affect the activity of LPL,and result in lipid metabolism disorder.Although the LPL deficiency disease is rare,no cure method is developed till now.In this study,the gene therapy construct MSCV-hLPL was made,which could infect muscle cell line (C2C12),kidney cell line (HEK293T) and pre-adipocyte cell line (3T3-L1) with over 80% efficiency.Nevertheless,active LPL could be detected at the surface of all these three kinds of cells.Then,three types of cells were injected into nude mice,LPL activity increased significantly in the muscle tissues under the injection sites of the 3T3-L1 line.Our results show that MSCV-hLPL could correct the LPL-/-genotype and the adipose tissue may be the best tissue for transplantation in the future.This is a ground-breaking test in LPL deficiency treatment field

  11. Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase

    Ning Liu

    2015-05-01

    Full Text Available The combination of the ionic liquid co-lyophilized lipase and microwave irradiation was used to improve enzyme performance in enantioselective esterification of α-lipoic acid. Effects of various reaction conditions on enzyme activity and enantioselectivity were investigated. Under optimal condition, the highest enantioselectivity (E = 41.2 was observed with a high enzyme activity (178.1 μmol/h/mg when using the ionic liquid co-lyophilized lipase with microwave assistance. Furthermore, the ionic liquid co-lyophilized lipase exhibited excellent reusability under low power microwave.

  12. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  13. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice

    Cheng, Hai-Peng; Gong, Duo; Lv, Yun-Cheng; Yao, Feng; He, Ping-Ping; Ouyang, Xin-Ping; Lan, Gang; Liu, Dan; Zhao, Zhen-Wang; Tan, Yu-Lin; Zheng, Xi-Long; Yin, Wei-Dong; Tang, Chao-Ke

    2016-01-01

    Atherosclerotic lesions are lipometabolic disorder characterized by chronic progressive inflammation in arterial walls. Previous studies have shown that macrophage-derived lipoprotein lipase (LPL) might be a key factor that promotes atherosclerosis by accelerating lipid accumulation and proinflammatory cytokine secretion. Increasing evidence indicates that microRNA-27 (miR-27) has beneficial effects on lipid metabolism and inflammatory response. However, it has not been fully understood whether miR-27 affects the expression of LPL and subsequent development of atherosclerosis in apolipoprotein E knockout (apoE KO) mice. To address these questions and its potential mechanisms, oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages were transfected with the miR-27 mimics/inhibitors and apoE KO mice fed high-fat diet were given a tail vein injection with miR-27 agomir/antagomir, followed by exploring the potential roles of miR-27. MiR-27 agomir significantly down-regulated LPL expression in aorta and peritoneal macrophages by western blot and real-time PCR analyses. We performed LPL activity assay in the culture media and found that miR-27 reduced LPL activity. ELISA showed that miR-27 reduced inflammatory response as analyzed in vitro and in vivo experiments. Our results showed that miR-27 had an inhibitory effect on the levels of lipid both in plasma and in peritoneal macrophages of apoE KO mice as examined by HPLC. Consistently, miR-27 suppressed the expression of scavenger receptors associated with lipid uptake in ox-LDL-treated THP-1 macrophages. In addition, transfection with LPL siRNA inhibited the miR-27 inhibitor-induced lipid accumulation and proinflammatory cytokines secretion in ox-LDL-treated THP-1 macrophages. Finally, systemic treatment revealed that miR-27 decreased aortic plaque size and lipid content in apoE KO mice. The present results provide evidence that a novel antiatherogenic role of miR-27 was closely related to reducing lipid

  14. Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase

    Chen Jinnan

    2011-03-01

    Full Text Available Abstract Background Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper. Results First, soybean oil was hydrolyzed at 40°C by 100 U of lipase broth per 1 g of oil with approximately 30% to 60% (vol/vol water. The free fatty acid (FFA distilled from this hydrolysis mixture was used for the esterification of FFA to fatty acid ethyl ester by immobilized lipase. A mixture of 2.82 g of FFA and equimolar ethanol (addition in three steps were shaken at 30°C with 18 U of lipase per 1 gram of FFA. The degree of esterification reached 85% after 3 hours. The lipase membranes were taken out, dehydrated and subjected to fresh esterification so that over 82% of esterification was maintained, even though the esterification was repeated every 3 hours for 25 batches. Conclusion The two-step enzymatic process without glycerol released and solvent-free demonstrated higher efficiency and safety than enzymatic transesterification, which seems very promising for lipase-catalyzed, large-scale production of biodiesel, especially from high acid value waste oil.

  15. Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction

    Sunesen, V.H.; Weber, Christine; Hølmer, Gunhild Kofoed

    2001-01-01

    Objective: To study the lipoprotein distribution of supplemented coenzyme Q(10) (CoQ(10)), vitamin E, and polyunsaturated fatty acids (PUFA). Design: Balanced three- period crossover study. Setting: University research unit. Subjects: Eighteen apparently healthy free-living non-smoking volunteers...

  16. Preliminary Study on Lipase-catalyzed Synthesis of Polyesters Containing L-Malic Acid Units

    Da Hu YAO; Guang Ji LI

    2006-01-01

    Terpolymer of 1, 8-octanediol, adipic acid, and L-malic acid was synthesized via a lipase-catalyzed direct polycondensation. The products were characterized by GPC and 1H NMR.The results indicated that the molecular weight of the prepared polymers decreased with increasing L-malic acid content in the monomer feed ratio, and that change in the L-malic acid content from 0to 20 mol % did not remarkably influenced on the molecular weight distribution Mw/Mn of the prepared samples. The 1H NMR spectra of the obtained copolymer samples showed that hydroxyl groups of L-malic acid did not take part in the polymerization reaction.

  17. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.

    Moreno-Perez, Sonia; Filice, Marco; Guisan, Jose M; Fernandez-Lorente, Gloria

    2013-09-01

    The reaction of transesterification between oils (e.g., olive oil) and ascorbic acid in polar anhydrous media (e.g., tert-amyl alcohol) catalyzed by immobilized lipases for the preparation of natural liposoluble antioxidants (e.g., ascorbyl oleate) was studied. Three commercial lipases were tested: Candida antarctica B lipase (CALB), Thermomyces lanuginosus lipase (TLL) and Rhizomucor miehei lipase (RML). Each lipase was immobilized by three different protocols: hydrophobic adsorption, anionic exchange and multipoint covalent attachment. The highest synthetic yields were obtained with CALB adsorbed on hydrophobic supports (e.g., the commercial derivative Novozym 435). The rates and yields of the synthesis of ascorbyl oleate were higher when using the solvent dried with molecular sieves, at high temperatures (e.g. 45°C) and with a small excess of oil (2 mol of oil per mol of ascorbic acid). The coating of CALB derivatives with polyethyleneimine (PEI) improved its catalytic behavior and allowed the achievement of yields of up to 80% of ascorbyl oleate in less than 24h. CALB adsorbed on a hydrophobic support and coated with PEI was 2-fold more stable than a non-coated derivative and one hundred-fold more stable than the best TLL derivative. The best CALB derivative exhibited a half-life of 3 days at 75°C in fully anhydrous media, and this derivative maintained full activity after 28 days at 45°C in dried tert-amyl alcohol. PMID:23891831

  18. Bile Acids Reduce Endocytosis of High-Density Lipoprotein (HDL) in HepG2 Cells

    Clemens Röhrl; Karin Eigner; Stefanie Fruhwürth; Herbert Stangl

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence...

  19. 脂蛋白酯酶研究进展及对动脉粥样硬化的影响%Current Progress in Lipoprotein Lipase and Atherosclerosis

    田国平; 陈五军; 何平平; 尹卫东; 唐朝克

    2012-01-01

    Lipoprotein lipase ( LPL) which is the rate-limiting enzyme for the hydrolysis of the triglycer-ide (TG) core of circulating TG-rich lipoproteins, chylomicrons, low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL) play an important role in reducing TG deposition in vivo. Recent advances indicate that LPL gene structure, synthesis, secretion and degradation had complexity, and it is regulated by many transcription factors, miRNA, interactive proteins and hormonal. Its role in atherosclerosis in the current studies is still controversial. So we focus the LPL on the structure, synthesis and degradation, function, regulation and contribution to atherosclerosis to clarify its role in cardiovascular disease (CVD).%脂蛋白脂酶(lipoprotein lipase,LPL)主要在脏器实质细胞合成和分泌,可以水解乳糜微粒(chylomicron,CM)、低密度脂蛋白(low-density lipoproteins,LDL)及极低密度脂蛋白(very low-density lipoproteins,VLDL)中的甘油三酯(triglyceride,TG),对清除体内过多的TG至关重要.新近研究发现LPL的基因结构、合成、分泌及降解具有复杂性,生物功能的发挥和基因的表达也受到多种转录因子、微小RNA(microRNA,miRNA)、相关蛋白及营养激素的调控,其在动脉硬化性疾病中的作用也存在较大的争议.因此,本文主要针对LPL 基因的结构、合成与降解、生物功能、表达调控及与动脉硬化性心血管疾病关系的研究进展做一综述,以期进一步明确LPL在心血管疾病中的作用和意义.

  20. 3-d structure-based amino acid sequence alignment of esterases, lipases and related proteins

    Gentry, M.K.; Doctor, B.P.; Cygler, M.; Schrag, J.D.; Sussman, J.L.

    1993-05-13

    Acetylcholinesterase and butyrylcholinesterase, enzymes with potential as pretreatment drugs for organophosphate toxicity, are members of a larger family of homologous proteins that includes carboxylesterases, cholesterol esterases, lipases, and several nonhydrolytic proteins. A computer-generated alignment of 18 of the proteins, the acetylcholinesases, butyrylcholinesterases, carboxylesterases, some esterases, and the nonenzymatic proteins has been previously presented. More recently, the three-dimensional structures of two enzymes enzymes in this group, acetylcholinesterase from Torpedo californica and lipase from Geotrichum candidum, have been determined. Based on the x-ray structures and the superposition of these two enzymes, it was possible to obtain an improved amino acid sequence alignment of 32 members of this family of proteins. Examination of this alignment reveals that 24 amino acids are invariant in all of the hydrolytic proteins, and an additional 49 are well conserved. Conserved amino acids include those of the active site, the disulfide bridges, the salt bridges, in the core of the proteins, and at the edges of secondary structural elements. Comparison of the three-dimensional structures makes it possible to find a well-defined structural basis for the conservation of many of these amino acids.

  1. Lipase production by Botryosphaeria ribis EC-01 on soybean meal supplemented with amino acids, and some physicochemical properties of the enzyme

    Milena Martins Andrade

    2014-10-01

    Full Text Available The amino acids that form the chemical structure of several lipase catalytic triads (serine, histidine, glutamic or aspartic acid, as well as glycine, were added to soybean meal in distilled water as nutrient for Botryosphaeria ribis EC-01 to produce lipase under submerged fermentation. The addition of glutamic acid at 0.01% concentration increased lipase activity by 60% (2,684 U/gss, while at 0.1% the increase was 80% (3,039 U/gss by comparison with the control (1,690 U/gss. Glycine also stimulated lipase production on this medium increasing the enzyme production by 31 % (25 UmL-1 by comparison to the control (19 UmL-1. The optimal pH of this lipase was 8.0 in phosphate buffer, and was stable in the pH range (3–10, while the optimal temperature was 55°C. The fungal lipase remained active in methanol, ethanol and glycerol at concentrations of 25, 10 and 50% (v/v, respectively. The addition of the cations Ba2+, Mg2+ and Mn2+ increased lipase activity, while Fe3, Cu2+ and Hg2+ partially inhibited the enzyme. Some kinetic properties demonstrated that B. ribis EC-01 lipase was a true lipase preferring long chain fatty acyl esters as substrates. These properties make B. ribis EC-01 lipase attractive for use in the production of biodiesel.

  2. Disturbances of lipoprotein metabolism in metabolic syndro

    Marta Czyżewska

    2010-01-01

    Full Text Available Dyslipidemia in metabolic syndrome (MS, called the atherogenic triad, includes elevated levels of plasma triglycerides (TGs, low levels of HDL-cholesterol (HDL-CH, and the presence of small dense low-density lipoproteins (sdLDLs with normal or slightly elevated LDL-CH levels. Insulin resistance drives the increase in the three main sources of TG for VLDL synthesis: fatty-acid flux from adipose tissue, de novo lipogenesis, and uptake of remnant lipoproteins. Overproduction of VLDL, predominantly triglyceride-rich large VLDL1 particles, induces the cascade of events which lead to abnormalities of other plasma lipoproteins. The accumulation of VLDL in plasma and decreased activity of lipoprotein lipase (LPL impair the catabolism of chylomicrons. Moreover, hyperinsulinemia induces increased intestinal production of chylomicrons. These factors cause augmented postprandial lipemia. Hepatic overproduction of VLDL leads to an increased level of VLDL remnants in plasma. Highly atherogenic sdLDLs are generated from VLDL1 particles by the action of LPL, cholesterol ester transfer protein (CETP, and hepatic lipase (HL. In the presence of hypertriglyceridemia, accelerated CETP-mediated lipid transfer generates TG-enriched HDL particles. This enhances HDL catabolism mediated by HL and endothelial lipase (EL. The assessment of risk of atherosclerotic cardiovascular disease in MS related to low HDL-CH and the presence of sdLDL particles may be improved by the incorporation of measurements of apolipoproteins (apo-B and apoA-I into clinical practice. In addition, the concentration of non-HDL-CH may be useful in quantifying apo-B-containing atherogenic lipoproteins.

  3. Transfer of fatty acids from the 1-position of phosphatidyl-ethanolamine to the major outer membrane lipoprotein of E coli

    The fatty acids esterified to Braun's lipoprotein are derived from the phospholipid pool in E. coli. Mutants lacking acyl-CoA synthetase activity (fadD) incorporated extracellular fatty acids specifically into the 1-position of phosphatidylethanolamine (PtdEtn). This pathway was blocked by chloramphenicol and was depressed by preventing the acylation of the amino terminus of the lipoprotein with globomycin. Transfer of fatty acids to lipoprotein was investigated in fadD mutants harboring hybrid plasmids containing either the lipoprotein gene or a lipoprotein-β-lactamase gene fusion under control of the lactose promoter. Labeling of the 1-position of the PtdEtn pool prior to induction of lipoprotein biosynthesis resulted in the transfer of fatty acids from PtdEtn to the lipoproteins. Induction of lipoprotein synthesis in the presence of exogenous [1-14C]palmitate increased the amount of radioactivity entering the PtdEtn pool and efficiently labeled lipoprotein acyl moieties. Lipoprotein fatty acids derived from the 1-position of PtdEtn were resistant to hydroxylamine hydrolysis, and globomycin reduced the incorporation of exogenous [1-14C]palmitic acid into lipoproteins by 80% suggesting that the fatty acid is attached to the amino terminus. These data illustrate the metabolic relationship between turnover of fatty acids in the 1-position of PtdEtn and the maturation of the major outer membrane lipoprotein

  4. Activity and tissue-specific expression of lipases and tumor-necrosis factor alpha in lean and obese cats.

    Hoenig, M.; McGoldrick, J.B.; Beer, M. de; Demacker, P.N.M.; Ferguson, D.C.

    2006-01-01

    Post-heparin plasma activity of lipoprotein lipase (LPL) and hepatic lipase (HL), and fat and muscle activity of LPL were measured in neutered lean and obese cats. Lipoprotein lipase, hormone-sensitive lipase (HSL), and tumor necrosis factor a (TNF) mRNA were measured in muscle and fat tissue with r

  5. The specificity of Several Kinds Lipases on n-3 Polyunsaturated Fatty Acids

    Jenny Elisabeth, T Yuliani, P M Tambunan, J M Purba

    2001-04-01

    Full Text Available Several lipases from microbial and plant, i.e Rhizomucor miehei, Pseudomonas sp., Candida antartica, rice bran, and Carica papaya latex (CPL were examined for synthesis of omega-3 (n-3 PUFA-rich glyceride by hydrolysis and acidolysis reaction. Tuna oil was used in hydrolysis reaction, whereas tuna and palm oils were used as source of triglyceride (TAG molecules and n-3 PUFA concentrate from tuna oil as source of EPA and DHA in acidolysis reaction.For hydrolysis reaction, the rice bran and CPL lipases showed the lowest hydrolytic activity of the tuna oil, whereas the R. miehei lipase showed the highest hydrolytic activity but was unable to hydrolyze EPA and DHA. On the contrary, the C. antartica and Pseudomonas sp. lipases acted stronger on hydrolysis of DHA ester bond than EPA.For acidolysis reaction, all the lipases showed ability to incorporate n-3 PUFA into tuna and palm oils. C. antartica lipase had the maximum DHA incorporation into tuna and palm oils, rice bran lipase had relatively similar ability with R. miehei lipase, and the CPL lipase had the lowest ability. This study proved that rice bran and CPL lipases also had transesterification activity and showed the feasibility of the rice bran lipase to be a biocatalyst for n-3 PUFA-rich glyceride production. Increasing the substrate ratio, of n-3 PUFA concentrate and tuna or palm oil, could increase the EPA and DHA incorporation. The R. miehei, rice bran, and CPL lipases unabled to incorporate DHA into DHA-containing glyceride molecule, whereas C. antartica lipase had the capability in high ratio of n-3 PUFA concentrate to oil. Therefore, the lipases were easier to incorporate n-3 PUFA into palm oil than tuna oil, since the TAG molecules of palm oil was not as complex as tuna oil. It could be suggested that the lipases did not only have acyl chain and positional specificity, but also the whole glyceride structure specificity.

  6. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    Alex Fernando Almeida; Sâmia Maria Tauk-Tornisielo; Eleonora Cano Carmona

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of ...

  7. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation. PMID:27282869

  8. Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation.

    Gutarra, Melissa L E; Godoy, Mateus G; Maugeri, Francisco; Rodrigues, Maria Isabel; Freire, Denise M G; Castilho, Leda R

    2009-11-01

    The production of a lipase by a wild-type Brazilian strain of Penicillium simplicissimum in solid-state fermentation of babassu cake, an abundant residue of the oil industry, was studied. The enzyme production reached about 90 U/g in 72 h, with a specific activity of 4.5 U/mg of total proteins. The crude lipase showed high activities at 35-60 degrees C and pH 4.0-6.0, with a maximum activity at 50 degrees C and pH 4.0-5.0. Enzyme stability was enhanced at pH 5.0 and 6.0, with a maximum half-life of 5.02 h at 50 degrees C and pH 5.0. Thus, this lipase shows a thermophilic and thermostable behavior, what is not common among lipases from mesophilic filamentous fungi. The crude enzyme catalysed the hydrolysis of triglycerides and p-nitrophenyl esters (C4:0-C18:0), preferably acting on substrates with medium-chain fatty acids. This non-purified lipase in addition to interesting properties showed a reduced production cost making feasible its applicability in many fields. PMID:19560339

  9. Hydrogenation Alternatives - Effects of Trans-Fatty-Acids and Stearic-Acid Versus Linoleic-Acid on Serum-Lipids and Lipoproteins in Humans

    Zock, P.L.; Katan, M.B.

    1992-01-01

    The objective of this study was to compare the effects of linoleic acid (cis,cis-C18:2(n-6)) and its hydrogenation products elaidic (trans-C18:1(n-9)) and stearic acid (C18:0) on serum lipoprotein levels in humans.Twenty-six men and 30 women, all nor

  10. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    Junker, L.H.; Davis, R.A. (Univ. of Colorado Health Sciences Center, Denver (USA))

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  11. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis

  12. Aromatic Amino Acid Mutagenesis at the Substrate Binding Pocket of Yarrowia lipolytica Lipase Lip2 Affects Its Activity and Thermostability

    Guilong Wang

    2014-01-01

    Full Text Available The lipase2 from Yarrowia lipolytica (YLLip2 is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100 with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM to introduce aromatic amino acid mutations. Two mutants (V94W and I100F were created. The enzymatic properties of the mutant lipases were detected and compared with the wild-type. The activities of mutant enzymes dropped to some extent towards p-nitrophenyl palmitate (pNPC16 and their optimum temperature was 35°C, which was 5°C lower than that of the wild-type. However, the thermostability of I100F increased 22.44% after incubation for 1 h at 40°C and its optimum substrate shifted from p-nitrophenyl laurate (pNPC12 to p-nitrophenyl caprate (pNPC10. The above results demonstrated that the two substituted amino acid residuals have close relationship with such enzymatic properties as thermostability and substrate selectivity.

  13. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    Wang, Yingyao; Xia, Luan; Xu, Xuebing; Xie, Liang; Duan, Zhangqun

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...... screened for their ability to incorporate caprylic acid into the canola oil. The sn-1,3 regiospecificity toward the glycerol backbone of canola oil of the lipases with relatively higher acidolysis activity was compared by investigating the fatty acid profiles of the products. The results showed that...... when reactions were carried with 10% lipase of the total weight of substrates with a 1:4 mole ratio of oil and caprylic acid. The optimal time course and temperature for synthesis SLs were 15 h and 50–60 °C. Possible triacylglycerol species and physical properties of the SLs product obtained at...

  14. Structure of the human hepatic triglyceride lipase gene

    The structure of the human hepatic triglyceride lipase gene was determined from multiple cosmid clones. All the exons, exon-intron junctions, and 845 bp of the 5' and 254 bp of the 3' flanking DNA were sequenced. Comparison of the exon sequences to three previously published cDNA sequences revealed differences in the sequence of the codons for residue 133, 193, 202, and 234 that may represent sequence polymorphisms. By primer extension, hepatic lipase mRNA initiates at an adenine 77 bases upstream of the translation initiation site. The hepatic lipase gene spans over 60 kb containing 9 exons and 8 introns, the latter being all located within the region encoding the mature protein. The exons are all of average size (118-234 bp). Exon 1 encodes the signal peptide, exon 4, a region that binds to the lipoprotein substrate, and exon 5, an evolutionarily highly conserved region of potential catalytic function, and exons 6 and 9 encode sequences rich in basic amino acids thought to be important in anchoring the enzyme to the endothelial surface by interacting with acidic domains of the surface glycosaminoglycans. The human lipoprotein lipase gene has been recently reported to have an identical exon-intron organization containing the analogous structural domains. The observations strongly support the common evolutionary origin of these two lipolytic enzymes

  15. The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds

    Durand, Erwann,; Lecomte, Jérôme,; Figueroa-Espinoza, Maria-Cruz,; Dubreucq, Eric; Fulcrand, Helene; Villeneuve, Pierre

    2014-01-01

    Lipases are versatile enzymes that can be used for various kinds of biocatalyzed reactions. Owing to their selectivity and their mild reaction conditions, they can be often considered as more interesting than classical chemical catalysts. Besides their application in oil and fat processes, these enzymes have proved to be very attractive for other lipase-catalyzed reactions. This review discusses the latest results where lipases are used for the epoxidation of lipid substrates (namely fatty ac...

  16. Fatty acid specificity of hormone-sensitive lipase. Implication in the selective hydrolysis of triacylglycerols.

    Raclot, T; Holm, C; Langin, D

    2001-12-01

    The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of

  17. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol.

    Yin, Ping; Chen, Wen; Liu, Wei; Chen, Hou; Qu, Rongjun; Liu, Xiguang; Tang, Qinghua; Xu, Qiang

    2013-07-01

    An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production. PMID:23688666

  18. Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease: cross-sectional, prospective, and case-control studies from the Copenhagen City Heart Study

    Wittrup, HH; Andersen, RV; Tybjærg-Hansen, Anne;

    2006-01-01

    lipase genotypes on triglycerides, HDL, and IHD. DESIGN: The cross-sectional study involved 9004 adults. The prospective study consisted of 8817 adults developing 1001 IHD events over 23 yr. The case-control study involved 7818 non-IHD individuals vs. cohorts of 915 and 1062 IHD patients, respectively...

  19. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    Adrie J. M. Verhoeven

    2009-10-01

    Full Text Available Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs and sterol regulatory element binding proteins (SREBPs, but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL. We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp. Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells.

  20. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    Mohd Basyaruddin Abdul Rahman

    2012-10-01

    Full Text Available Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2 were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99% under the optimum reaction conditions, including temperature (35 °C, initial H2O2 concentration (30%, H2O2 amount (4.4 mmol, H2O2 addition rate (one step, acid amount (8.8 mmol, and stirring speed (250 rpm. Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker.

  1. Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows.

    Vargas-Bello-Pérez, Einar; Íñiguez-González, Gonzalo; Cancino-Padilla, Nathaly; Loor, Juan J; Garnsworthy, Philip C

    2016-08-01

    The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were used in two different 3 × 3 Latin square experiments that included three periods of 21 d. Dietary treatments for lactating cows consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (500 g/d per cow) or HPO (500 g/d per cow). For non-lactating cows, dietary treatments consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (170 g/d per cow) or HPO (170 g/d per cow). Compared with the control and SO diet, HPO addition increased (p < 0.05) the concentration of C16:0, C18:0, C18:2cis-9,12, C18:3cis-9,12,15 and total saturated and polyunsaturated FA in the plasma of lactating cows. In non-lactating cows, the SO addition increased the plasma concentration of C18:1trans-11. In lactating cows, concentrations of C16:0, C18:0 and total saturated FA were increased (p < 0.05) by HPO addition in the high-density lipoprotein (HDL). Total saturated FA were increased (p < 0.05) by HPO in very-low-density lipoprotein (VLDL). In non-lactating cows, the concentration of C18:0 was increased (p < 0.05) by HPO in HDL, whereas C18:1trans-11 was increased (p < 0.05) by SO in the low-density lipoprotein. Overall, it was found that distribution and transport of FA within the bovine plasma lipoproteins may be influenced by chain length and degree of unsaturation of dietary lipids. Also, the distribution of individual FA isomers such as C18:1trans-11 and C18:2cis-9,trans-11 may vary depending on the physiological state of the cow (lactating or non-lactating), and are increased in plasma (lactating cows) and the HDL (non-lactating cows) when cows are fed SO. PMID:27216557

  2. The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout

    Gemfibrozil (GEM) is a fibrate drug consistently found in effluents from sewage treatment plants. This study characterizes the pharmacological effects of GEM on the plasma lipoproteins of rainbow trout (Oncorhynchus mykiss). Our goals were to quantify the impact of the drug on: 1) lipid constituents of lipoproteins (phospholipids (PL), triacylglycerol (TAG), and cholesterol), 2) lipoprotein classes (high, low and very low density lipoproteins), and 3) fatty acid composition of lipoproteins. Potential mechanisms of GEM action were investigated by measuring lipoprotein lipase activity (LPL) and the hepatic gene expression of LPL and of the peroxisome proliferator-activated receptor (PPAR) α, β, and γ isoforms. GEM treatment resulted in decreased plasma lipoprotein levels (- 29%) and a reduced size of all lipoprotein classes (lower PL:TAG ratios). However, the increase in HDL-cholesterol elicited by GEM in humans failed to be observed in trout. Therefore, HDL-cholesterol cannot be used to assess the impact of the drug on fish. GEM also modified lipoprotein composition by reducing the abundance of long-chain n-3 fatty acids, thereby potentially reducing the nutritional quality of exposed fish. The relative gene expression of LPL was increased, but the activity of the enzyme was not, and we found no evidence for the activation of PPAR pathways. The depressing effects of GEM on fish lipoproteins demonstrated here may be a concern in view of the widespread presence of fibrates in aquatic environments. Work is needed to test whether exposure to environmental concentrations of these drugs jeopardizes the capacity of fish for reproduction, temperature acclimation or migratory behaviors.

  3. The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses

    Jacobs, D.M.; Mihaleva, V.V.; Schalkwijk, D.B. van; Graaf, A.A. de; Vervoort, J.; Dorsten, F.A. van; Ras, R.T.; Demonty, I.; Trautwein, E.A.; Duynhoven, J. van

    2015-01-01

    Scope: Consumption of a low-fat spread enriched with plant sterols (PS) and different low doses (<2 g/day) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil reduces serum triglycerides (TGs) and low-density lipoprotein-cholesterol (LDL-Chol) and thus beneficially affects tw

  4. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.

    Temoçin, Zülfikar

    2013-01-01

    This study focuses on Candida rugosa lipase (CRL) immobilization by covalent attachment on poly(ethylene terephthalate)-grafted glycidyl methacrylate (PET-g-GMA) fiber. The immobilization yielded a protein loading of 2.38 mg g(-1) of PET-g-GMA fiber. The performances of the immobilized and free CRLs were evaluated with regard to hydrolysis of olive oil and esterification of oleic acid. The optimum activity pH of the CRL was changed by immobilization to neutral range. The maximum activity of the free and immobilized CRLs occurred at 40 and 45 °C respectively. The immobilized lipase retained 65% of its original activity at 50 °C for 2 h. It was found that the immobilized lipase stored at 4 °C retained 90% of its original activity after 35 days, whereas the free lipase stored at 4 °C retained 69% of its original activity after the same period. In the esterification experiments, the immobilized CRL could maintain a high activity at a water content range from 1.5 to 6% (v/v), while the activity of free CRL showed a clear dependence on water content and decreased rapidly at above 3% (v/v) water content. In addition, after five reuses, the esterification percent yield of the immobilized CRL slightly decreased from 29 to 27%. PMID:23574345

  5. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value.

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2011-12-01

    One major problem in the lipase-catalyzed production of biodiesel or fatty acid methyl esters (FAME) is the high acidity of the product, mainly caused by water presence, which produces parallel hydrolysis and esterification reactions instead of transesterification to FAME. Therefore, the use of reaction medium in absence of water (anhydrous medium) was investigated in a lipase-catalyzed process to improve FAME yield and final product quality. FAME production catalyzed by Novozym 435 was carried out using waste frying oil (WFO) as raw material, methanol as acyl acceptor, and 3Å molecular sieves to extract the water. The anhydrous conditions allowed the esterification of free fatty acids (FFA) from feedstock at the initial reaction time. However, after the initial esterification process, water absence avoided the consecutives reactions of hydrolysis and esterification, producing FAME mainly by transesterification. Using this anhydrous medium, a decreasing in both the acid value and the diglycerides content in the product were observed, simultaneously improving FAME yield. Enzyme reuse in the anhydrous medium was also studied. The use of the moderate polar solvent tert-butanol as a co-solvent led to a stable catalysis using Novozym 435 even after 17 successive cycles of FAME production under anhydrous conditions. These results indicate that a lipase-catalyzed process in an anhydrous medium coupled with enzyme reuse would be suitable for biodiesel production, promoting the use of oils of different origin as raw materials. PMID:21889401

  6. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration

    Patricia B.L. Fregolente

    2009-12-01

    Full Text Available Gamma-linolenic acid (GLA, 18:3, cis- 6,9,12-octadecatrienoic acid, an important compound in n-6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids. Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg using both submerged fermentation (SmF and solid state fermentation (SSF. The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC.

  7. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes. PMID:25224149

  8. Rat liver contains a limited number of binding sites for hepatic lipase

    Schoonderwoerd, Kees; Verhoeven, Adrie; Jansen, Hans

    1994-01-01

    textabstractThe binding of hepatic lipase to rat liver was studied in an ex vivo perfusion model. The livers were perfused with media containing partially purified rat hepatic lipase or bovine milk lipoprotein lipase. The activity of the enzymes was determined in the perfusion media before and after passage through the liver. During perfusion with a hepatic-lipase-containing medium the lipase activity in the medium did not change, indicating that there was no net binding of lipase by the live...

  9. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles.

    Ozyilmaz, Elif; Bayrakci, Mevlut; Yilmaz, Mustafa

    2016-04-01

    In the present study, iron oxide magnetite nanoparticles, prepared through a co-precipitation method, were coated with phosphonic acid or iminodicarboxylic acid derivatives of calix[4]arene to modulate their surfaces with different acidic groups. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through sol-gel encapsulation. The catalytic activities and enantioselectivities of the two encapsulated lipases in the hydrolysis reaction of (R/S)-naproxen methyl ester and (R/S)-2-phenoxypropionic acid methyl ester were assessed. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives; the encapsulated lipase with the phosphonic acid derivative of calix[4]arene had an excellent rate of enantioselectivity against the (R/S)-naproxen methyl and (R/S)-2-phenoxypropionic acid methyl esters, with E=350 and 246, respectively, compared to the free enzyme. The encapsulated lipases (Fe-Calix-N(COOH)) and (Fe-Calix-P) showed good loading ability and little loss of enzyme activity, and the stability of the catalyst was very good; they only lost 6-11% of the enzyme's activity after five batches. PMID:26698535

  10. 民猪脂蛋白脂酶基因在冷诱导后表达变化的研究%Study on Expression of Lipoprotein Lipase Gene in Min Pig during Cold Induced

    张冬杰; 刘娣; 汪亮; 别墅; 孙洪涛; 杨国伟; 张海波

    2011-01-01

    脂蛋白脂酶(lipoprotein lipase,LPL)是动物分解代谢的限速酶,是影响脂肪代谢通路中的一个重要基因.本研究将LPL基因作为影响民猪抗寒特性的候选基因,对其在心脏、肝脏、胃、脾脏、肾脏、肺脏、大肠、小肠、子宫、卵巢、背肌、腿肌、脂肪共计13个组织内的表达情况和低温冷诱导后在民猪肌肉组织内的表达变化情况进行了分析.结果表明,LPL基因在所检测的13个组织中均有表达,但表达量存在差异,心脏、背肌、腿肌、脂肪组织中的表达量较高,子宫和卵巢组织的表达量较低;LPL基因在民猪被冷诱导后表达水平无显著变化.%Lipoprotein lipase (LPL) plays a central role in normal lipid metabolism as the key enzyme involved in the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins.In this research, LPL was seen as a candidate gene for cold resistance, analysis the expression of LPL in heart, liver, stomach, spleen, kidney, lung, large intestine,small intestin, uterus, ovary, muscles of back, leg muscle, fat tissues and during cold induced.The results showed that LPL was an abroad expression gene, but the level was different.It was higher expressed in heart, muscles of back, leg muscle and fat, but lower expressed in uterus, ovary.The expression level of LPL was not different after cold induced.

  11. Low Serum Lysosomal Acid Lipase Activity Correlates with Advanced Liver Disease

    Eyal Shteyer

    2016-02-01

    Full Text Available Fatty liver has become the most common liver disorder and is recognized as a major health burden in the Western world. The causes for disease progression are not fully elucidated but lysosomal impairment is suggested. Here we evaluate a possible role for lysosomal acid lipase (LAL activity in liver disease. To study LAL levels in patients with microvesicular, idiopathic cirrhosis and nonalcoholic fatty liver disease (NAFLD. Medical records of patients with microvesicular steatosis, cryptogenic cirrhosis and NAFLD, diagnosed on the basis of liver biopsies, were included in the study. Measured serum LAL activity was correlated to clinical, laboratory, imaging and pathological data. No patient exhibited LAL activity compatible with genetic LAL deficiency. However, serum LAL activity inversely predicted liver disease severity. A LAL level of 0.5 was the most sensitive for detecting both histologic and noninvasive markers for disease severity, including lower white blood cell count and calcium, and elevated γ-glutamyltransferase, creatinine, glucose, glycated hemoglobin, uric acid and coagulation function. Serum LAL activity <0.5 indicates severe liver injury in patients with fatty liver and cirrhosis. Further studies should define the direct role of LAL in liver disease severity and consider the possibility of replacement therapy.

  12. Low Serum Lysosomal Acid Lipase Activity Correlates with Advanced Liver Disease.

    Shteyer, Eyal; Villenchik, Rivka; Mahamid, Mahmud; Nator, Nidaa; Safadi, Rifaat

    2016-01-01

    Fatty liver has become the most common liver disorder and is recognized as a major health burden in the Western world. The causes for disease progression are not fully elucidated but lysosomal impairment is suggested. Here we evaluate a possible role for lysosomal acid lipase (LAL) activity in liver disease. To study LAL levels in patients with microvesicular, idiopathic cirrhosis and nonalcoholic fatty liver disease (NAFLD). Medical records of patients with microvesicular steatosis, cryptogenic cirrhosis and NAFLD, diagnosed on the basis of liver biopsies, were included in the study. Measured serum LAL activity was correlated to clinical, laboratory, imaging and pathological data. No patient exhibited LAL activity compatible with genetic LAL deficiency. However, serum LAL activity inversely predicted liver disease severity. A LAL level of 0.5 was the most sensitive for detecting both histologic and noninvasive markers for disease severity, including lower white blood cell count and calcium, and elevated γ-glutamyltransferase, creatinine, glucose, glycated hemoglobin, uric acid and coagulation function. Serum LAL activity liver injury in patients with fatty liver and cirrhosis. Further studies should define the direct role of LAL in liver disease severity and consider the possibility of replacement therapy. PMID:26927097

  13. Purification and Partial Characterisation of an Acid Lipase in Germinating Lipidbody Linseedlings

    SAMMOUR, R. H.

    2005-01-01

    Electrophoretic analysis of germinating linseed proteins showed a gradual decrease in the quantity of a protein with a molecular weight of 42 kDa. This protein accumulates after 36 h of germination in synchronisation with an increase in lipase activity, and a decrease in the quantity of the total lipids. The 42 kDa subunit was found to be a lipid body membrane protein. This protein was isolated and identified by immunoprecipitation as a subunit of lipase. The linseed lipase acted on a wide ra...

  14. Bile acids reduce endocytosis of high-density lipoprotein (HDL in HepG2 cells.

    Clemens Röhrl

    Full Text Available High-density lipoprotein (HDL transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36. Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  15. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and Cholesteryl Ester Storage Diseases.

    Porto, Anthony F

    2014-09-01

    Lysosomal acid lipase (LAL) is responsible for the hydrolysis of cholesterol esters and triglycerides. LAL is coded by the LIPA gene on chromosome 10q23.31. Its deficiency leads to two autosomal recessive disorders, Wolman disease (WD) and Cholesteryl Ester Storage Disease (CESD). WD has an estimated incidence of 1 in 500,000 live births and is the result of a complete loss of LAL and presents in infancy with vomiting, diarrhea, poor weight gain and hepatomegaly subsequently leading to death. CESD is the result of partial loss of LAL and its presentation is more variable. Patients may be asymptomatic or present with nonspecific gastrointestinal symptoms, hepatomegaly, elevated transaminases and dystipidemia which may be confused with the diagnosis of Non-alcoholic Fatty Liver Disease. CESD is currently underdiagnosed and has an estimated prevalence as high as I in 40,000 individuals. Radiologic findings in WD is calcification of the adrenal glands. Hepatomegaly is noted on CT scan in both WD and CESD. MRI may demonstrate accumulation of cholesterol esters and may be useful to study effects of potential medical therapies. The diagnosis of WD and CESD is based on LIPA gene sequencing and the measurement of LAL levels in peripheral blood leukocytes. Treatment of LAL deficiency is currently limited to control of cholesterol levels and to prevent premature atherosclerosis. Use of enzyme replacement therapy with recombinant human LAL in short-term studies has shown to be safe and effective. PMID:25345094

  16. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants.

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ9-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted. PMID:26630956

  17. Does Lysosomial Acid Lipase Reduction Play a Role in Adult Non-Alcoholic Fatty Liver Disease?

    Francesco Baratta

    2015-11-01

    Full Text Available Lysosomal Acid Lipase (LAL is a key enzyme involved in lipid metabolism, responsible for hydrolysing the cholesteryl esters and triglycerides. Wolman Disease represents the early onset phenotype of LAL deficiency rapidly leading to death. Cholesterol Ester Storage Disease is a late onset phenotype that occurs with fatty liver, elevated aminotransferase levels, hepatomegaly and dyslipidaemia, the latter characterized by elevated LDL-C and low HDL-C. The natural history and the clinical manifestations of the LAL deficiency in adults are not well defined, and the diagnosis is often incidental. LAL deficiency has been suggested as an under-recognized cause of dyslipidaemia and fatty liver. Therefore, LAL activity may be reduced also in non-obese patients presenting non-alcoholic fatty liver disease (NAFLD, unexplained persistently elevated liver transaminases or with elevation in LDL cholesterol. In these patients, it could be indicated to test LAL activity. So far, very few studies have been performed to assess LAL activity in representative samples of normal subjects or patients with NAFLD. Moreover, no large study has been carried out in adult subjects with NAFLD or cryptogenic cirrhosis.

  18. Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquids:Effect of Specific Ions and Reaction Parameters

    王俊; 李晶; 张磊霞; 顾双双; 吴福安

    2013-01-01

    Caffeic acid phenethyl ester (CAPE) is a rare, naturally occurring phenolic food additive. This work systematically reported fundamental data on conversion of caffeic acid (CA), yield of CAPE, and reactive selectiv-ity during the lipase-catalyzed esterification process of CA and phenylethanol (PE) in ionic liquids (ILs). Sixteen ILs were selected as the reaction media, and the relative lipase-catalyzed synthesis properties of CAPE were meas-ured in an effort to enhance the yield of CAPE with high selectivity. The results indicated that ILs containing weakly coordinating anions and cations with adequate alkyl chain length improved the synthesis of CAPE. [Emim][Tf2N] was selected as the optimal reaction media. The optimal parameters were as follows by response surface methodology (RSM):reaction temperature, 84.0 °C;mass ratio of Novozym 435 to CA, 14︰1;and molar ratio of PE to CA, 16︰1. The highest reactive selectivity of CAPE catalyzed by Novozym 435 in [Emim][Tf2N] reached 64.55%(CA conversion 98.76%and CAPE yield 63.75%, respectively). Thus, lipase-catalyzed esterifica-tion in ILs is a promising method suitable for CAPE production.

  19. Nutritional enrichment of vegetable oils with long-chain n-3 fatty acids through enzymatic interesterification with a new vegetable lipase

    J.S. Sousa; Torres, A. G.; D.M.G. Freire

    2015-01-01

    The aim of the present work was to produce vegetable oils enriched with long-chain n-3 fatty acids of nutraceutical interest, through an enzyme-catalyzed interesterification with a new lipase, from physic nut (Jatropha curcas L.). The Vegetable Lipase Powder (biocatalyst) called VLP, which has never been applied in functional foods, was obtained from the physic nut seed, and efficiently hydrolyzed the 95% of waste fish oil in 24 h. Urea precipitation was used to concentrate polyunsaturated fa...

  20. 高甘油三酯血症患者脂蛋白脂肪酶基因检测意义%Significance of lipoprotein lipase gene in patients with hypertriglyceridemia

    潘晓冬; 杜兰萍; 孙立元; 徐胜媛; 蔺洁; 王绿娅

    2012-01-01

    目的 探讨脂蛋白脂肪酶( lipoprotein lipase,LPL)基因突变与高甘油三酯血症的相关性.方法 采用Primer 5.0软件针对LPL基因分片段设计特异性引物.高甘油三脂血症患者12例,抽取外周静脉血提取基因组DNA,扩增LPL基因1~9号外显子及相邻部分内含子,进行核苷酸测序,并与LPL基因全序列进行比对分析.结果 12例患者中1例LPL基因第4外显子存在错义杂合突变;1例LPL基因第8外显子存在同义杂合突变;8例LPL基因第6内含子5'端的几个位点处发生相同的碱基置换(1388+73T>G,1388+ 108G>A,1388+82C>A);2例患者未检出核苷酸变化.结论 LPL基因缺陷与高甘油三脂血症密切相关,LPL基因检测可用于临床上有遗传倾向的严重高甘油三脂血症患者的基因诊断.%Objective To study the correlation of lipoprotein lipase(LPL) gene mutation with hypertriglyceridemia (HTG). Methods Primer 5. 0 software was used to design the LPL gene fragments specific primers. Twelve patients with hypertriglyceridemia were collected peripheral blood to isolate DNA and amplify the LPL gene fragments including 1 to 9 exons of the LPL gene and of the nearby introns. The sequencing results were compared with the normal genome sequence of LPL gene. Results In these 12 patients with hypertriglyceridemia, one patient was found missense heterozygosis mutation in exon 4 of LPL gene, one was found the synonymous heterozygosis mutation in exon 8 of LPL gene, 8 were found single base substitution in the similar sites of the intron of LPL gene(1388 + 73T>G, 1388 + 108G> A, 1388 + 82C>A), and 2 patients were not found nucleotion change. Conclusion LPL gene mutation is closely correlated with hypertriglyceridemia. This LPL sequencing technique provides a reliable gene examination for the family heritable patients with hypertriglyceridemia.

  1. Role of Brown Fat in Lipoprotein Metabolism and Atherosclerosis.

    Hoeke, Geerte; Kooijman, Sander; Boon, Mariëtte R; Rensen, Patrick C N; Berbée, Jimmy F P

    2016-01-01

    Atherosclerosis, for which hyperlipidemia is a major risk factor, is the leading cause of morbidity and mortality in Western society, and new therapeutic strategies are highly warranted. Brown adipose tissue (BAT) is metabolically active in human adults. Although positron emission tomography-computed tomography using a glucose tracer is the golden standard to visualize and quantify the volume and activity of BAT, it has become clear that activated BAT combusts fatty acids rather than glucose. Here, we review the role of brown and beige adipocytes in lipoprotein metabolism and atherosclerosis, with evidence derived from both animal and human studies. On the basis of mainly data from animal models, we propose a model in which activated brown adipocytes use their intracellular triglyceride stores to generate fatty acids for combustion. BAT rapidly replenishes these stores by internalizing primarily lipoprotein triglyceride-derived fatty acids, generated by lipoprotein lipase-mediated hydrolysis of triglycerides, rather than by holoparticle uptake. As a consequence, BAT activation leads to the generation of lipoprotein remnants that are subsequently cleared via the liver provided that an intact apoE-low-density lipoprotein receptor pathway is present. Through these mechanisms, BAT activation reduces plasma triglyceride and cholesterol levels and attenuates diet-induced atherosclerosis development. Initial studies suggest that BAT activation in humans may also reduce triglyceride and cholesterol levels, but potential antiatherogenic effects should be assessed in future studies. PMID:26837747

  2. Lipase Test

    ... be limited. Home Visit Global Sites Search Help? Lipase Share this page: Was this page helpful? Also known as: LPS Formal name: Lipase Related tests: Amylase , Trypsin , Trypsinogen At a Glance ...

  3. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. PMID:26672465

  4. Mechanism for release of arachidonic acid during guinea pig platelet aggregation: a role for the diacylglycerol lipase inhibitor RHC 80267

    The mechanism of the release of arachidonic acid from phospholipids after the stimulation of guinea pig platelets with collagen, thrombin and platelet activating factor (PAF) was studied. RHC 80267, a diacylglycerol lipase inhibitor, and indomethacin, a cyclooxygenase inhibitor, were used. Various in vitro assays for enzymes involved in arachidonic acid release and metabolism were conducted. Platelet aggregation and simultaneous release of ADP from platelets were monitored using a Chrono-log Lumiaggregometer. Platelets were labeled with (14C)arachidonic acid to facilitate sensitive determination of small changes in platelet phospholipids during platelet aggregation. In the present investigation it is shown that collagen, thrombin and PAF increased phospholipase C activity. It was also discovered that cyclooxygenase products were responsible for further stimulation (a positive feed-back) of phospholipase C activity, while diacylglycerol provided a negative feed-back control over receptor-stimulated phospholipase C activity and inhibited ADP release. The guinea pig platelet is an ideal model to study phospholipase C-diacylglycerol lipase pathway for the release of arachidonic acid from platelet phospholipids because it does not have any phospholipase A2 activity. It was observed that cyclooxygenase products were responsible for collagen-induced guinea pig platelet aggregation. Indomethacin completely inhibited collagen-induced platelet aggregation, was less effective against thrombin, and had no effect on PAF-induced platelet aggregation. On the other hand, RHC 80267 was a powerful inhibitor of aggregation and ADP release induced by all three of these potent aggregating agents

  5. Diagnostic value of post-heparin lipase testing in detecting common genetic variants in the LPL and LIPC genes

    van Hoek, Mandy; Dallinga-Thie, Geesje M.; Ewout W Steyerberg; Sijbrands, Eric J. G.

    2009-01-01

    Post-heparin lipoprotein lipase and hepatic lipase activities are used to identify primary disorders of triglyceride and HDL-cholesterol metabolism. Their ability to identify common variants in the lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes is unclear. To investigate the ability of lipase testing to detect common lipase gene variants, we included 183 patients who had undergone post-heparin lipase testing and genotyped the LPL D9N, N291S, PvuII, HindIII, and S447X and the LIPC-51...

  6. Role of lipase-generated free fatty acids in converting mesenteric lymph from a noncytotoxic to a cytotoxic fluid.

    Qin, Xiaofa; Dong, Wei; Sharpe, Susan M; Sheth, Sharvil U; Palange, David C; Rider, Therese; Jandacek, Ronald; Tso, Patrick; Deitch, Edwin A

    2012-10-15

    Recent studies have shown that mesenteric lymph plays a very important role in the development of multiple-organ dysfunction syndrome under critical conditions. Great efforts have been made to identify the biologically active molecules in the lymph. We used a trauma-hemorrhagic shock (T/HS) model and the superior mesenteric artery occlusion (SMAO) model, representing a global and a localized intestinal ischemia-reperfusion insult, respectively, to investigate the role of free fatty acids (FFAs) in the cytotoxicity of mesenteric lymph in rats. Lymph was collected before, during, and after (post) shock or SMAO. The post-T/HS and SMAO lymph, but not the sham lymph, manifested cytotoxicity for human umbilical vein endothelial cells (HUVECs). HUVEC cytotoxicity was associated with increased FFAs, especially the FFA-to-protein ratio. Addition of albumin, especially delipidated albumin, reduced this cytotoxicity. Lipase treatment of trauma-sham shock (T/SS) lymph converted it from a noncytotoxic to a cytotoxic fluid, and its toxicity correlated with the FFA-to-protein ratio in a fashion similar to that of the T/HS lymph, further suggesting that FFAs were the key components leading to HUVEC cytotoxicity. Analysis of lymph by gas chromatography revealed that the main FFAs in the post-T/HS or lipase-treated T/SS lymph were palmitic, stearic, oleic, and linoleic acids. When added to the cell culture at levels comparable to those in T/HS lymph, all these FFAs were cytotoxic, with linoleic acid being the most potent. In conclusion, this study suggests that lipase-generated FFAs are the key components resulting in the cytotoxicity of T/HS and SMAO mesenteric lymph. PMID:22899820

  7. Lipase-Catalyzed Esterification of Betulinic Acid Using Phthalic Anhydride in Organic Solvent Media: Study of Reaction Parameters

    M. Ghaffari Moghaddam

    2010-01-01

    Full Text Available The lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435 was employed for the catalytic reaction of betulinic acid and phthalic anhydride. The influence of different reaction parameters, such as effect of single and mixed solvents, substrate molar ratio, reaction time, temperature, amount of enzyme, effect of inorganic bases and effect of substrate support were investigated and optimized. Optimum conditions to produce 3-O-phthalyl- betulinic acid were observed at reaction time; 24 h, temperature; 55°C, amount of enzyme; 176 mg, substrate molar ratio (betulinic acid: phthalic anhydride, 1:1, inorganic base of K2CO3, amount of celite; 170 mg in 1:1 mixture of chloroform and n-hexane as solvent. At optimum conditions, it gave 61.8% of 3-O-phthalyl- betulinic acid.

  8. Production and Optimization of Oleic Acid Ethyl Ester Synthesis Using Lipase From Rice Bran (Oryza sativa L.) and Germinated Jatropha Seeds (Jatropha curcas L.) by Response Surface Methodology

    Indro Prastowo; Chusnul Hidayat; Pramudji Hastuti

    2015-01-01

    Recently, the fatty acid ethyl ester has been synthesized in place of fatty acid methyl ester since ethanol has been more renewable. In this research, oleic acid ethyl ester (OAEE) was synthesized using germinated jatropha seeds (Jatropha curcas.L) and rice bran (Oryza sativa) as source of lipase. The objective of the research was to optimize the synthesis conditions using Response Surface Methodology. Factors, such as crude enzyme concentration, molar ratio of oleic acid to ethanol, and the...

  9. Biodiesel production with immobilized lipase: A review.

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. PMID:20580809

  10. The effect of polyunsaturated fatty acids on the homeostasis of yolk lipoprotein in C. elegans examined by CARS and two-photon excitation fluorescence (TPE-F) microscopy

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Lin, Yi-Chun; Ma, Tian-Hsiang; Lo, Szecheng J.; Chang, Ta-Chau

    2016-03-01

    Yolk lipoprotein constitutes the major source of energy and the materials for synthesizing signaling factors for the development of oocytes and embryos in C. elegans. Polyunsaturated fatty acids (PUFAs) packed in yolk lipoprotein have been recently recognized as critical molecules for fertilization and reproduction.1 However, the relation between PUFAs and the homeostasis of yolk lipoprotein is not clear. Here we use coherent anti-Stokes Raman scattering (CARS) microscopy and two-photon excitation fluorescence (TPE-F) microscopy to examine the transportation of yolk lipoprotein. We demonstrate that CARS microscopy is a more sensitive method than the traditional Nile Red staining method in probing the abnormal accumulation of yolk lipoprotein in the body cavity of C. elegans. It is found that the accumulation of yolk lipoprotein is a time-dependent process. In addition, a negative correlation (r = -0.955) between reproductive aging and abnormal accumulation of yolk lipoprotein is established. We further examine wild-type, fat-1, and fat-2 worms with or without the expression of GFP-tagged yolk lipoprotein (VIT-2-GFP). Our data reveal that PUFAs have a positive effect on the synthesis and endocytosis of yolk lipoprotein, confirming the model proposed by Edmonds et al.2

  11. Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions

    Nikola Milašinović

    2014-01-01

    Full Text Available Stimuli responsive pH- and temperature-sensitive hydrogel drug delivery systems, as those based on N-isopropylacrylamide (NiPAAm and itaconic acid (IA, have been attracting much of the attention of the scientific community nowadays, especially in the field of drug release. By adjusting comonomer composition, the matrix is enabled to protect the incorporated protein in the highly acidic environment of upper gastrointestinal tract and deliver it in the neutral or slightly basic region of the lower intestine. The protein/poly(NiPAAm-co-IA hydrogels were synthetized by free radical crosslinking copolymerization and were characterized concerning their swelling capability, mechanical properties, and morphology. The pore structure and sizes up to 1.90 nm allowed good entrapment of lipase molecules. Model protein, lipase from Candida rugosa, was entrapped within hydrogels upon mild conditions that provided its protection from harmful environmental influences. The efficiency of the lipase entrapment reached 96.7%, and was dependent on the initial concentration of lipase solution. The swelling of the obtained hydrogels in simulated pH and temperature of gastrointestinal tract, the lipase entrapment efficiency, and its release profiles from hydrogels were investigated as well.

  12. Optimization of transesterification conditions for the production of fatty acid methyl ester (FAME) from Chinese tallow kernel oil with surfactant-coated lipase

    Gao, Yin-yu; Liu, Yuhuan; Lin, Xiangyang [Key Laboratory of Food Science, Ministry of Education, Nanchang University, Nanchang 330047 (China); Chen, Wen-wei [College of Life Science, China Jiliang University, Hangzhou 310018 (China); Lei, Hanwu [Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007 (United States); Ruan, Roger [Key Laboratory of Food Science, Ministry of Education, Nanchang University, Nanchang 330047 (China)]|[Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108-6005 (United States)

    2009-02-15

    Surfactant-coated lipase was used as a catalyst in preparing fatty acid methyl ester (FAME) from Chinese tallow kernel oil from Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) small. FAME transesterification was analyzed using response surface methodology to find out the effect of the process variables on the esterification rate and to establish prediction models. Reaction temperature and time were found to be the main factors affecting the esterification rate with the presence of surfactant-coated lipase. Developed prediction models satisfactorily described the esterification rate as a function of reaction temperature, time, dosage of surfactant-coated lipase, ratio of methanol to oil, and water content. The FAME mainly contained fatty acid esters of C16:0, C18:0, C18:1, C18:2, and C18:3, determined by a gas chromatograph. The optimal esterification rate was 93.86%. The optimal conditions for the above esterification ratio were found to be a reaction time of 9.2 h, a reaction temperature of 49 C, dosage of surfactant-coated lipase of 18.5%, a ratio of methanol to oil of 3:1, and water content of 15.6%. Thus, by using the central composite design, it is possible to determine accurate values of the transesterification parameters where maximum production of FAME occurs using the surfactant-coated lipase as a transesterification catalyst. (author)

  13. Lipases and Its Application in Food Industry

    WANG Ting; QIN Gang

    2010-01-01

    Lipases(triacylglycerol acylhydrolases,EC 3.1.1.3)occur widely in nature.It catalyze the hydrolysis and the synthesis of esters formed from glycerol and long-chain fatty acids.Lipases are commercially significant,this article discusses the source,structure,character and preparative method,the applications of lipases in food industry are discussed too.

  14. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.

    Esmaeilnejad-Ahranjani, Parvaneh; Kazemeini, Mohammad; Singh, Gurvinder; Arpanaei, Ayyoob

    2016-04-01

    A facile approach for the preparation of core-shell structured poly(acrylic acid) (PAA)-coated Fe3O4 cluster@SiO2 nanocomposite particles as the support materials for the lipase immobilization is reported. Low- or high-molecular-weight (1800 and 100 000, respectively) PAA molecules were covalently attached onto the surface of amine-functionalized magnetic silica nanoacomposite particles. The successful preparation of particles were verified by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential measurement, and Fourier-transform infrared (FTIR) techniques. Once lipase is covalently immobilized onto the particles with an average diameter of 210 ± 50 nm, resulting from high binding sites concentrations on the low- and high-molecular-weight PAA-coated particles, high lipase immobilization efficiencies (86.2% and 89.9%, respectively), and loading capacities (786 and 816 mg g(-1), respectively) are obtained. Results from circular dichroism (CD) analysis and catalytic activity tests reveal an increase in the β-sheet content of lipase molecules upon immobilization, along with an enhancement in their activities and stabilities. The lipases immobilized onto the low- and high-molecular-weight PAA-coated particles show maximum activities at 55 and 50 °C, respectively, which are ∼28% and ∼15% higher than that of the free lipase at its own optimum temperature (40 °C), respectively. The immobilized lipases exhibit excellent performance at broader temperature and pH ranges and high thermal and storage stabilities, as well as superior reusability. These prepared magnetic nanocomposite particles can be offered as suitable support materials for efficient immobilization of enzymes and improvement of the immobilized enzymes properties. PMID:26986897

  15. Kinetic study on the enzymatic esterification of octanoic acid and hexanol by immobilized Candida antarctica lipase B

    Lopresto, Catia Giovanna; Calabro, Vincenza; Woodley, John M.;

    2014-01-01

    tThis study investigates reaction kinetics of the esterification of octanoic acid and hexanol into hexyloctanoate, catalyzed by an immobilized Candida antarctica lipase (Novozym®435). The product is considered natural and used as a fresh vegetable and fruity flavour additive in food, cosmetic and...

  16. Optical division of fluorine containing alcohol and carboxylic acid by using lipase; Ripaze ni yoru ganfusso alchol oyobi karubonsan no kogaku bunkatsu

    Kato, T.; Tanaka, S.; Fujii, S.; Katayama, M.; Kimoto, H. [National Industrial Research Institute of Nagoya,Nagoya (Japan)

    1999-01-25

    Steric selective reaction by using lipase was performed to establish a simple optical division method by using as enzyme substrate two kinds of compounds difficult of chemically asymmetric synthesis, 2, 2, 2-trifluoro-1-(naphthyl) ethanols, and 4, 4, 4-trifluoro-3- (indole-3-) butanoic acid, developed by this research institute as a new fluorine containing plant growth adjusting agent. Furthermore, the result thereof revealed that small structural change in the substrate largely affects the steric selectivity and reactivity of lipase. (translated by NEDO)

  17. Lipases in Medicine: An Overview.

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years. PMID:26156413

  18. Effect of tribu saponin from Tribulus terrestris on the lipoprotein lipase and hepatic lipase activity in lipid metabolic disorder mice%蒺藜皂苷对预防小鼠高脂血症中肝脂酶和脂蛋白脂酶的作用及意义

    李家贵; 瞿伟菁; 魏善巧; 王捷思; 庄秀园; 郭小李

    2007-01-01

    目的:观察蒺藜皂苷(tribu saponin from Tribulus terrestris, STT)对预防小鼠高脂血症模型中脂蛋白脂酶(lipoprotein lipase,LPL)、肝脂酶(hepatic lipase,HL)活性的变化.方法:高脂膳食喂饲小鼠,并设正常对照、高脂对照、非诺贝特片阳性对照和STT高中低剂量组.测定血脂生化指标,同时检测血浆、肝组织中HL活性以及血浆、肝组织、脂肪组织和骨骼肌组织中LPL活性.结果:非诺贝特片及SIT均能使肝组织中HL活性升高(P<0.01,P<0.05),STT能降低血浆中HL活性(P<0.05),而非诺贝特片组HL活性与高脂组无显著性差异(P>0.05).肝组织中,非诺贝特片和STT能明显提高LPL活性(P<0.01,P<0.05);各组血浆中LPL活性均无明显改变(P>0.05);非诺贝特片和STT能提高骨骼肌组织中LPL活性(P<0.05),同时明显降低脂肪组织中LPL活性(P<0.01,P<0.05)和脂肪组织与肌肉组织中LPL的活性比值(P<0.01,P<0.05).结论:STT能增加预防小鼠高脂血症模型肝组织中HL和LPL脂酶活性,降低脂肪组织与肌肉组织中LPL的活性比值,这一作用与降低血浆胆固醇水平和预防高脂血症密切相关.

  19. Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids

    Schoiswohl, Gabriele; Schweiger, Martina; Schreiber, Renate; Gorkiewicz, Gregor; Preiss-Landl, Karina; Taschler, Ulrike; Zierler, Kathrin A.; Radner, Franz P. W.; Eichmann, Thomas O.; Kienesberger, Petra C; Eder, Sandra; Lass, Achim; Haemmerle, Guenter; Alsted, Thomas Junker; Kiens, Bente; Hoefler, Gerald; Zechner, Rudolf; Zimmermann, Robert

    2010-01-01

    during exercise. The reduced availability of FA for energy conversion led to rapid depletion of liver glycogen stores and hypoglycemia. Together, our studies suggest that ATGL-ko mice cannot adjust circulating FA levels to the increased energy requirements of the working muscle resulting in an increased......Fatty acids (FA) are mobilized from triglyceride (TG) stores during exercise to supply the working muscle with energy. Mice deficient for adipose triglyceride lipase (ATGLko)exhibit defective lipolysis and accumulate TG in adipose tissue and muscle suggesting that ATGL deficiency affects energy...... availability and substrate utilization in working muscle. In this study, we investigated the effect of moderate treadmill exercise on blood energy metabolites and liver glycogen stores in mice lacking ATGL. Since ATGL-ko mice exhibit massive accumulation of TG in the heart and cardiomyopathy, we also...

  20. Modeling of an immobilized lipase tubular reactor for the production of glycerol and fatty acids from oils

    Advances in the design of a bioreactor in the fats and oils industry have permitted the hydrolysis of triglycerides in mild conditions and improved productivity while avoiding the formation of unwanted byproducts. The present work develops a mathematical model that describes the hydrolytic activity of a tubular reactor with immobilized lipases for the production of glycerol and fatty acids from the oil trade. Runge Kuttas numerical method of high order has been applied, considering that there is no accumulation of the substratum in the surface of the membrane, where the enzyme is. At the same time, different equations based on the kinetic model of Michaelis Mentens and the Ping-Pong bi-bi mechanism were examined. Experimental data in discontinuous systems are the basis for the development of the quantitative mathematical model that was used to simulate the process computationally. The obtained results allow for optimizing both the operative variables and the economic aspects of industrial processes. (Author)

  1. Human Plasma Very Low-Density Lipoproteins Are Stabilized by Electrostatic Interactions and Destabilized by Acidic pH

    Madhumita Guha

    2011-01-01

    Full Text Available Very low-density lipoproteins (VLDL are precursors of low-density lipoproteins (LDL, or “bad cholesterol”. Factors affecting structural integrity of VLDL are important for their metabolism. To assess the role of electrostatic interactions in VLDL stability, we determined how solvent ionic conditions affect the heat-induced VLDL remodeling. This remodeling involves VLDL fusion, rupture, and fission of apolipoprotein E-containing high-density lipoprotein-(HDL- like particles similar to those formed during VLDL-to-LDL maturation. Circular dichroism and turbidity show that increasing sodium salt concentration in millimolar range reduces VLDL stability and its enthalpic component. Consequently, favorable electrostatic interactions stabilize VLDL. Reduction in pH from 7.4 to 6.0 reduces VLDL stability, with further destabilization detected at pH < 6, which probably results from titration of the N-terminal α-amino groups and free fatty acids. This destabilization is expected to facilitate endosomal degradation of VLDL, promote their coalescence into lipid droplets in atherosclerotic plaques, and affect their potential use as drug carriers.

  2. Synthesis of structured triacylglycerols containing medium-chain and long-chain fatty acids by interesterification with a stereoespecific lipase from Mucor miehei.

    Nieto, Susana; Sanhueza, Julio; Valenzuela, Alfonso

    1999-01-01

    The preparation of structured triacylglycerols sn-1, sn-3 dilauryl, sn-2 eicosapentaenoyl glycerol and sn-1, sn-3 dilauryl, sn-2 docosahexaenoyl glycerol by enzymatic interesterification under restricted water availability is described. Laurie acid, one of the substrates for interesterification, was obtained by the controlled hydrolysis of coconut oil by a non-specific lipase obtained from Candida cylindracea. The fatty acid was separated from the hydrolysis products by sil...

  3. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath

    2012-08-01

    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  4. Production and Optimization of Oleic Acid Ethyl Ester Synthesis Using Lipase From Rice Bran (Oryza sativa L. and Germinated Jatropha Seeds (Jatropha curcas L. by Response Surface Methodology

    Indro Prastowo

    2015-11-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Recently, the fatty acid ethyl ester has been synthesized in place of fatty acid methyl ester since ethanol has been more renewable. In this research, oleic acid ethyl ester (OAEE was synthesized using germinated jatropha seeds (Jatropha curcas.L and rice bran (Oryza sativa as source of lipase. The objective of the research was to optimize the synthesis conditions using Response Surface Methodology. Factors, such as crude enzyme concentration, molar ratio of oleic acid to ethanol, and the reaction time, were evaluated. The results show that lipase from germinated jatropha seeds had the hydrolitic and esterifi cation activity about 6.73 U/g and 298.07 U/g, respectively. Lipase from rice bran had the hydrolitic and esterifi cation activity about 10.57 U/g and 324.03 U/g, respectively. The optimum conditions of esterifi cation reaction using germinated jatropha seed lipase as biocatalyst were crude enzyme concentration of 0.31 g/ml, molar ratio of oleic acid to ethanol of 1 : 1.81, and reaction time of 50.9 min. The optimum conditions of esterifi cation reaction using rice bran lipase were crude enzyme concentration of 0.29 g/ml, molar ratio of oleic acid to ethanol of 1 : 2.05, and reaction time of 58.61 min. The obtained amounts of OAEE were 810.77 μmole and 626.92 μmole for lipases from rice bran and germinated jatropha seed, respectively. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  5. Purification and properties of a phospholipase A2/lipase preferring phosphatidic acid, bis(monoacylglycerol) phosphate, and monoacylglycerol from rat testis.

    Ito, Masafumi; Tchoua, Urbain; Okamoto, Mitsuhiro; Tojo, Hiromasa

    2002-11-15

    Phospholipase A(2) (PLA(2)) was purified to homogeneity from the supernatant fraction of rat testis homogenate. The purified 63-kDa enzyme did not require Ca(2+) ions for activity and exhibited both phosphatidic acid-preferring PLA(2) and monoacylglycerol lipase activities with a modest specificity toward unsaturated acyl chains. Anionic detergents enhanced these activities. Serine-modifying irreversible inhibitors, (p-amidinophenyl) methanesulfonyl fluoride and methylarachidonyl fluorophosphonate, inhibited both activities to a similar extent, indicating a single active site is involved in PLA(2) and lipase activities. The sequence of NH(2)-terminal 12 amino acids of purified enzyme was identical to that of a carboxylesterase from rat liver. The optimal pH for PLA(2) activity (around 5.5) differed from that for lipase activity (around 8.0). At pH 5.5 the enzyme also hydrolyzed bis(monoacylglycerol) phosphate, or lysobisphosphatidic acid (LBPA), that has been hitherto known as a secretory PLA(2)-resistant phospholipid and a late endosome marker. LBPA-enriched fractions were prepared from liver lysosome fractions of chloroquine-treated rats, treated with excess of pancreatic PLA(2), and then used for assaying LBPA-hydrolyzing activity. LBPA and the reaction products were identified by microbore normal phase high performance liquid chromatography/electrospray ionization ion-trap mass spectrometry. These enzymatic properties suggest that the enzyme can metabolize phosphatidic and lysobisphosphatidic acids in cellular acidic compartments. PMID:12223468

  6. HIDROLISIS ENZIMATIK MINYAK IKAN UNTUK PRODUKSI ASAM LEMAK OMEGA-3 MENGGUNAKAN LIPASE DARI Aspergillus niger [Enzymatic Hydrolysis of Fish Oil for Production of Omega-3 Fatty Acids Using Lipase Derived from Aspergillus niger

    Sapta Raharja*

    2011-06-01

    Full Text Available Fish oil is the source of important fatty-acid, especially polyunsaturated fatty acid (PUFA omega-3, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. Lipase catalysis activity of Aspergillus niger is low when it is used in fish oil hydrolysis. The activity of the lipase can be increased by adding organic solvent such as hexane into the media. This research aimed to determine temperature, pH and amount of water which produce the highest degree of hydrolysis of fish oil in the presence of hexane. Correlation between the highest degree of hydrolysis and the amount of omega-3 fatty acid was also investigated. The variables used in this research were temperatures (25-65 oC, pH (5-9, and water addition (1-5 %v/v. The highest degree of enzymatic hydrolysis of fish oil in the media without hexane was 28.07 % that was reached at 45oC and pH 5. In the presence of hexane, the highest degree of hydrolysis was 75.12 % which was reached at 5% water addition, temperature 45oC, and pH 5. GC-MS analysis showed that omega-3 fatty acid content especially EPA and DHA increased along with increase in the degree of hydrolysis. Concentration of omega-3 fatty acid produced without hexane addition was 18.42 % with EPA amounted to 12,17% and DHA 0,86%. Meanwhile omega-3 fatty acid content in the presence of hexane reached 21.93 % with EPA amounted to 17.75 % and DHA 1.21 %.

  7. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels.

    Pang, Jinli; Zhou, Guowei; Liu, Ruirui; Li, Tianduo

    2016-02-01

    Mesoporous silica nanoparticles with a wrinkled structure (wrinkled silica nanoparticles, WSNs) having highly ordered, radially oriented mesochannels were synthesized by a solvothermal method. The method used a mixture of cyclohexane, ethanol, and water as solvent, tetraethoxysilane (TEOS) as source of inorganic silica, ammonium hydroxide as hydrolysis additive, cetyltrimethylammonium bromide (CTAB) as surfactant, and polyvinylpyrrolidone (PVP) as stabilizing agent of particle growth. Particle size (240nm to 540nm), specific surface areas (490m(2)g(-1) to 634m(2)g(-1)), surface morphology (radial wrinkled structures), and pore structure (radially oriented mesochannels) of WSN samples were varied using different molar ratios of CTAB to PVP. Using synthesized WSN samples with radially oriented mesochannels as support, we prepared immobilized Candida rugosa lipase (CRL) as a new biocatalyst for biodiesel production through the esterification of oleic acid with methanol. These results suggest that WSNs with highly ordered, radially oriented mesochannels have promising applications in biocatalysis, with the highest oleic acid conversion rate of about 86.4% under the optimum conditions. PMID:26652346

  8. Inhibitors of monoacylglycerol lipase, fatty-acid amide hydrolase and endocannabinoid transport differentially suppress capsaicin-induced behavioral sensitization through peripheral endocannabinoid mechanisms

    Spradley, Jessica M.; Guindon, Josée; Hohmann, Andrea G.

    2010-01-01

    Monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) degrade the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), respectively. Pharmacological inhibition of these enzymes in the periphery may elucidate the role of endocannabinoids in controlling nociceptive transmission. We compared effects of the MGL inhibitor JZL184, the FAAH inhibitor URB597, and the endocannabinoid uptake inhibitor VDM11, administered locally in the paw, on behavioral hypersensitivities...

  9. Differential expression of lipoprotein genes in Mycoplasma pneumoniae after contact with human lung epithelial cells, and under oxidative and acidic stress

    Tang Sen-Lin

    2008-07-01

    Full Text Available Abstract Background Mycoplasma pneumoniae is a human pathogen that is a common cause of community-acquired pneumonia. It harbours a large number of lipoprotein genes, most of which are of unknown function. Because of their location on the cell surface, these proteins are likely to be involved in the bacterial response to environmental changes, or in the initial stages of infection. The aim of this study was to determine if genes encoding surface lipoproteins are differentially expressed after contact with a human cell line, or after exposure to oxidative or acidic stress. Results Using qRT-PCR assays, we observed that the expression of a number of lipoprotein genes was up-regulated when M. pneumoniae was placed in contact with human cells. In contrast, lipoprotein expression was generally down-regulated or unchanged when exposed to either hydrogen peroxide or low pH (5.5. When exposed to low pH, the mRNA levels of four polycistronically transcribed genes in Lipoprotein Multigene Family 6 formed a gradient of decreasing quantity with increasing distance from a predicted promoter. Conclusion The demonstrated transcriptional changes provide evidence for the functionality of these mostly unassigned genes and indicate that they are regulated in response to changes in environmental conditions. In addition we have shown that the members of Lipoprotein Gene Family 6 may be expressed polycistronically.

  10. Lipoprotein lipase isoelectric point isoforms in humans

    Badia-Villanueva, M.; Carulla, P.; Carrascal, M.;

    2014-01-01

    characterization of these forms was carried out by 2DE combined with Western blotting and mass spectrometry (MALDI-TOF/MS and LC-MS/MS). Further studies are needed to discover their molecular origin, the pattern of pI isoforms in human tissues, their possible physiological functions and possible modifications of......-heparin plasma (PHP), LPL consists of a pattern of more than 8 forms of the same apparent molecular weight, but different isoelectric point (pI). In the present study we describe, for the first time, the existence of at least nine LPL pI isoforms in human PHP, with apparent pI between 6.8 and 8.6. Separation and...

  11. The synthetic pentasaccharide SR 90107A/Org 31540 does not release lipase activity into the plasma.

    Hoffmann, P; Bernat, A; Dumas, A; Petitou, M; Hérault, J P; Herbert, J M

    1997-05-15

    The present study was designed to find out whether the synthetic pentasaccharide SR 90107A/Org 31540, which is presently being evaluated in clinical trials as an antithrombotic agent, influences lipoprotein metabolism in rats as determined by plasma triglyceride (TG) lipase activity. A comparison with three clinically used sulphated polysaccharides-unfractionated heparin (UFH), low molecular weight heparin (LMWH) and pentosan polysulphate (PPS)- was performed. UFH evoked a dose-dependent increase in plasma TG lipase activity which plateaued at doses > or = 1 mg/kg i.v.. PPS and LMWH demonstrated a lower efficacy than heparin at 0.3 and 1 mg/kg i.v., but the maximum lipase releasing effect at 3 mg/kg i.v. was identical for UFH, PPS and LMWH. SR 90107A/Org 31540 did not release TG lipase activity at single i.v. doses up to 3 mg/kg. Repeated-dose experiments with SR 90107A/Org 31540 (1 mg/kg s.c. for 9 days) revealed no influence on the lipase releasing effect of UFH (1 mg/kg i.v. on day 10). These results demonstrate that SR 90107A/Org 31540 does not influence lipid metabolism in rats through lipase release, suggesting that SR 90107A/Org 31540 may offer an advantage over UFH and LMWH in clinical situations where an anticoagulant/antithrombotic effect is desired, but both an increase in plasma free fatty acids and atherogenic alterations of lipoprotein metabolism are considered harmful. PMID:9187020

  12. Lipase Activity of Guinea Pig Peritoneal Macrophages and Mycobacterial Lipase Inhibitor

    Kiyotani, Katsuhiro; Tasaka, Hiromichi; Tsukiyama, Fumiaki; Matsuo, Yoshiyasu

    1983-01-01

    The interaction of mycobacterial lipase inhibitor (MLI), isolated from culture supernatant fluid of Mycobacterium tuberculosis strain H37Rv, and lipase from guinea pig peritoneal macrophages (GP-PMφs) was investigated fluorimetrically by the modified lipase assay system which had previously been proposed. Two peaks of lipase activity were observed in the enzyme preparation from GPPMφs. The activity of MLI against lipase from GP-PMφs was significantly high at acidic pH less than 5.0, and t...

  13. Modification of pancreatic lipase properties by directed molecular evolution

    Colin, Damien; Deprez, Paule; Silva, Noella; Infantes, Lourdes; Kerfelec, Brigitte

    2010-01-01

    Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity ...

  14. Chromatographic, Spectrometric and NMR Characterization of a New Set of Glucuronic Acid Esters Synthesized by Lipase

    Michel Marlier

    2007-01-01

    Full Text Available An enzymatic synthesis was developed on a new set of D-glucuronic acid esters and particularly the tetradecyl-D-glucopyranosiduronate also named tetradecyl D-glucuronate. Chromatographic analyses revealed the presence of the ester as a mixture of anomeric forms for carbon chain lengths superior to 12. TOF/MS and MS/MS studies confirmed the synthesis of glucuronic acid ester. The NMR study also confirmed the structure of glucuronic acid esters and clearly revealed an anomeric (α/β ratio equivalent to 3/2

  15. Lipase Induction in Mucor hiemalis

    Akhtar, M. Waheed; Mirza, A. Q.; Chughtai, M. I. D.

    1980-01-01

    The influence on lipase induction in Mucor hiemalis of different types of triglycerides containing mainly oleic acid (olive oil), erucic acid (mustard oil), or saturated fatty acids of 8 to 16 carbons (coconut oil) was studied. The fungus was grown in shake flasks in a fermentation medium containing peptone, minerals, and glucose or one of the oils as the carbon source. Maximum lipase was produced when the initial pH of the fermentation medium was kept at 4.0. Addition of Ca2+ to the medium d...

  16. Transcriptional modulation of hepatic lipoprotein assembly and secretion : coordinate regulation of the liver-fatty acid binding protein and microsomal triglyceride transfer protein genes

    Spann, Nathanael J.

    2006-01-01

    Hepatic production of apolipoprotein (apo) B-containing lipoproteins provides a means to transport essential lipids and fat-soluble nutrients to peripheral tissues for utilization and storage. Liver-fatty acid binding protein (L-FABP) and microsomal triglyceride transfer protein (MTP) bind fatty acids and glycerolipids, respectively and facilitate their transfer into the VLDL assembly and secretion pathway. Sequence analysis reveals that the proximal promoter regions of L-FABP and MTP contain...

  17. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations. PMID:18838832

  18. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.;

    2004-01-01

    cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... design, 17 healthy young men replaced part of their habitual dietary fat intake with 70 g MCTs (66% 8:0 and 34% 10:0) or high-oleic sunflower oil (89.4% 18:1). Each intervention period lasted 21 d, and the 2 periods were separated by a washout period of 2 wk. Blood samples were taken before and after the...... oleic acid, MCT fat unfavorably affected lipid profiles in healthy young men by increasing plasma LDL cholesterol and triacylglycerol. No changes in the activities of phospholipid transfer protein and cholesterol ester transfer protein were evident....

  19. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  20. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid.

    María Romo Vaquero

    Full Text Available BACKGROUND: Rosemary (Rosmarinus officinalis L. extracts (REs exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40% modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. METHODS AND PRINCIPAL FINDINGS: RE was administered for 64 days to lean (fa/+ and obese (fa/fa female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. CONCLUSIONS: Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption.

  1. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice.

    Park, Tae-Sik; Panek, Robert L; Rekhter, Mark D; Mueller, Sandra Bak; Rosebury, Wendy S; Robertson, Andrew; Hanselman, Jeffrey C; Kindt, Erick; Homan, Reynold; Karathanasis, Sotirios K

    2006-12-01

    Plasma sphingomyelin (SM) has been suggested as a risk factor for coronary heart disease independent of cholesterol levels. A decrease of SM in lipoproteins is known to improve the activities of lecithin:cholesterol acyltransferase (LCAT) and lipoprotein lipase (LPL) in vitro. Inhibition of SM biosynthesis may reduce lipoprotein SM content and thus improve cholesterol distribution in lipoproteins by enhancing reverse cholesterol transport and clearance of triglyceride-rich lipoproteins. To examine this hypothesis, ApoE KO mice were fed a western diet and treated for 4 weeks with various concentrations of myriocin, a specific inhibitor of serine palmitoyltransferase. Myriocin treatment lowered plasma cholesterol and TG levels in a dose-dependent manner. In addition, myriocin treatment reduced cholesterol contents in VLDL and LDL and elevated HDL-cholesterol. Observed lipid-lowering effects of myriocin were associated with suppression of HMG CoA reductase and fatty acid synthase via reduced levels of SREBP-1 RNA and protein. Induction of apoAI and lecithin:cholesterol acytransferase (LCAT) in the liver by myriocin was associated with an increased HDL. Lesion area and macrophage area were also diminished in the cuffed femoral artery of ApoE KO mice. In conclusion, inhibition of sphingolipid biosynthesis can be a novel therapeutic target for dyslipidemia and atherosclerosis. PMID:16458317

  2. Effect of preduodenal lipase inhibition in suckling rats on dietary octanoic acid (C8:0) gastric absorption and plasma octanoylated ghrelin concentration.

    Lemarié, F; Cavalier, J-F; Garcia, C; Boissel, F; Point, V; Catheline, D; Legrand, P; Carrière, F; Rioux, V

    2016-09-01

    Part of medium chain fatty acids (MCFAs) coming from dietary triglycerides (TGs) can be directly absorbed through the gastric mucosa after the action of preduodenal lipase (lingual lipase in the rat). MCFA gastric absorption, particularly that of octanoic acid (C8:0), may have a physiological importance in the octanoylation of ghrelin, the orexigenic gastric peptide acting as an endogenous ligand of the hypothalamic growth hormone secretagogue receptor 1a (GHSR-1a). However, the amount of C8:0 absorbed in the stomach and its metabolic fate still haven't been clearly characterized. The purpose of the present study was to further characterize and quantify the importance of preduodenal lipase activity on the release and gastric absorption of dietary C8:0 and on the subsequent ghrelin octanoylation in the stomach mucosa. Fifteen days old rats received fat emulsions containing triolein or [1,1,1-(13)C]-Tri-C8:0 and a specific inhibitor of preduodenal lipase, 5-(2-(benzyloxy)ethoxy)-3-(3-phenoxyphenyl)-1,3,4-oxadiazol-2(3H)-one or BemPPOX. The fate of the (13)C-C8:0 was followed in rat tissues after 30 and 120min of digestion and octanoylated ghrelin was measured in the plasma. This work (1) demonstrates that part of C8:0 coming from Tri-C8:0 is directly absorbed at the gastric level, (2) allows the estimation of C8:0 gastric absorption level (1.3% of the (13)C-C8:0 in sn-3 position after 30min of digestion), as well as (3) the contribution of rat lingual lipase to total lipolysis and to duodenal absorption of dietary FAs (at least 30%), (4) shows no short-term effect of dietary Tri-C8:0 consumption and subsequent increase of C8:0 gastric tissue content on plasma octanoylated ghrelin concentration. PMID:27317984

  3. Rapid epoxidation of palm acid oil with lipase action under microwave irradiation

    In view of growing environmental concerns and tightened regulations over contaminants and pollution in the environment in recent years, calls for biodegradable and nontoxic vegetable oil-based lubricants are abound. They have very low volatility due to the higher molecular weight of the triacylglycerol molecule and a narrow range of viscosity changes with temperature. Polar ester groups in the molecule are able to adhere to metal surfaces, and therefore, possess good boundary lubrication properties. In addition, vegetable oils have high solubilising power for polar contaminants and additive molecules. However, vegetable oils show poor oxidative and thermal stability primarily due to the presence of unsaturation. The presence of ester functionality also renders these oils susceptible to hydrolytic breakdown. The proposed modification of the vegetable oils is an important manner to obtain potentially useful products using a renewable feedstock. In designing a green process to effectively carry out the epoxidation reaction, we report herein, an inexpensive, practical, safe and environmentally friendly method to epoxidize palm acid oil under extremely mild conditions. This work highlights the increased reaction rate of the epoxidation process when microwave irradiation is introduced. The starting material used is Palm Acid Oil, a by-product of the alkali refining process of palm oil. Acid oil can serve as an inexpensive raw materials and are very good substitute for neat vegetable oil such as palm oil for the production of bio lubricant. It is high in Free Fatty Acids (FFA) and is the ideal material for the epoxidation process due to the importance of FFAs in producing peroxy-acids as an oxygen carrier. The double bonds the triglycerides are reacted with a per acid, generated for safety reasons in situ using hydrogen peroxide. Novozym 435 acts as the catalyst in the process and with its good selectivity, the occurrence of by-products is controlled. The method and

  4. Effect of a novel insulinotropic agent, succinic acid monoethyl ester, on lipids and lipoproteins levels in rats with streptozotocin-nicotinamideinduced type 2 diabetes

    Ramalingam Saravanan; Leelavinothan Pari

    2006-12-01

    In the present study, the effect of succinic acid monoethyl ester (EMS) on the pattern of lipids and lipoproteins in streptozotocin-nicotinamide induced type 2 diabetes was investigated. Type 2 diabetes was induced in male Wistar rats by single intraperitoneal injection (i.p.) of 45 mg/kg streptozotocin, 15 min after the i.p administration of 110 mg/kg body weight of nicotinamide. The carboxylic nutrient EMS was administered intraperitonially at a dose of 8 mol/g body weight for 30 days. At the end of experimental period, the effect of EMS on plasma glucose, insulin, thiobarbituric acid reactive substances (TBARS) and hydroperoxide (HP) and serum triglycerides (TG), phospholipids (PL), free fatty acids (FFA), total cholesterol (TC), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C) and the percentage of antiatherogenic index (AAI) (ratio of HDL-C to total cholesterol) were studied. Administration of EMS to diabetic rats resulted in a significant reduction in the elevated levels of plasma glucose, TBARS and hydroperoxides as well as TG, PL, FFA, TC, VLDL-C and LDC-C levels. The decreased plasma insulin and serum HDL-C and percentage of AAI in diabetic rats were also reversed towards near normal. The effect produced by EMS was compared with metformin, a reference drug. The results indicates that the administration of EMS and metformin to nicotinamide-streptozotocin diabetic rats normalized plasma glucose, insulin concentrations and caused marked improvement in altered lipids, lipoprotein and lipid peroxidation markers during diabetes. Our results show the antihyperlipidemic properties of EMS and metformin in addition to its antidiabetic action. Moreover, the antihyperlipidemic effect could represent a protective mechanism against the development of atherosclerosis.

  5. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    Bysted, Anette; Holmer, G.; Lund, Pia;

    2005-01-01

    interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat......Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five......-rich test meals ( 1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. Results: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three...

  6. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    Bysted, Anette; Holmer, G.; Lund, Pia; Sandstrom, B.; Tholstrup, T.

    2005-01-01

    Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five...... interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat......-rich test meals ( 1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. Results: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three...

  7. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of...

  8. Revisiting the gram-negative lipoprotein paradigm

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  9. Studies on cholesterol and bile acid metabolism in relation to plasma lipoproteins

    Sjöberg, Beatrice

    2016-01-01

    The metabolism of cholesterol and bile acids is tightly controlled but only partially characterized. The liver is responsible for most of the clearance and catabolism of plasma cholesterol, and the hepatocyte expression of LDL receptors is central in this process. The major pathways for net excretion of cholesterol from the body are through biliary excretion as free cholesterol or after conversion to bile acids. Through activation of the nuclear receptor FXR and the G protein-coupled receptor...

  10. Placental lipases in pregnancies complicated by gestational diabetes mellitus (GDM.

    Helen L Barrett

    Full Text Available Infants of women with gestational diabetes mellitus (GDM are more likely to be born large for gestational age with a higher percentage body fat. Elevated maternal lipids may contribute to this. Placental lipases such as lipoprotein lipase (LPL, endothelial lipase (EL and hormone sensitive lipase (HSL are involved in transferring lipids from mother to fetus. Previous studies of expression of these lipases in placentae in women with diabetes in pregnancy have reported divergent results. Intracellular lipases such as adipose triglyceride lipase (ATGL, and HSL are central to lipid droplet metabolism. The activities of these lipases are both influenced by Perilipin 1, and ATGL is also activated by a co-factor comparative gene identification-58 (CGI-58 and inhibited by G0/G1 switch gene 2 (GS02. None of these modifying factors or ATGL have been examined previously in placenta. The purpose of this study was therefore to examine the expression of ATGL, HSL, LPL, EL, as well as Perilipin 1, GS02 and CGI-58 in term pregnancies complicated by GDM. mRNA and protein expression of the lipases were measured in placentae from 17 women with GDM and 17 normoglycaemic pregnancies, matched for maternal BMI and gestational age of delivery. ATGL mRNA expression was increased and HSL mRNA expression reduced in placentae from GDM although there was no differences in protein expression of any of the lipases. All lipases were localised to trophoblasts and endothelial cells. The expression of Perilipin 1 and CGI-58 mRNA was increased and GS02 not altered in GDM. These results suggest that there is no difference in expression in these four lipases between GDM and normoglycaemic placentae, and therefore altered lipid transfer via these lipases does not contribute to large for gestational age in infants of women with GDM.

  11. Raman Spectroscopic Analysis of Biochemical Changes in Individual Triglyceride-Rich Lipoproteins in the Pre- and Postprandial State

    Chan, J; Motton, D; Rutledge, J; Keim, N; Huser, T

    2004-09-13

    Individual triglyceride-rich lipoprotein (TGRL) particles derived from human volunteers are non-destructively analyzed by laser tweezers Raman microspectroscopy and information on their composition and distribution is obtained. The Raman signature of single optically trapped very low-density lipoproteins (VLDL), a subclass of TGRL, which play an important role in cardiovascular disease, exhibits distinct peaks associated with molecular vibrations of fatty acids, proteins, lipids, and structural rearrangements of lipids. Our analysis of pre- and postprandial VLDL exhibits the signature of biochemical changes in individual lipoprotein particles following the consumption of meals. Interaction of VLDL with endothelium leads to the breakdown of complex triacylglycerols and the formation of a highly ordered core of free saturated fatty acids in the particle. A particle distribution analysis reveals trends in the degree to which this process has occurred in particles at different times during the postprandial period. Differences in particle distributions based on the different ratios of polyunsaturated to saturated fats in the consumed meals are also easily discerned. Individual lipoprotein particles hydrolyzed in-vitro through addition of lipoprotein lipase (LpL) exhibit strikingly similar changes in their Raman spectra. These results demonstrate the feasibility of monitoring the dynamics of lipid metabolism of individual TGRL particles as they interact with LpL in the endothelial cell wall using Raman spectroscopy.

  12. n-3 Polyunsaturated Fatty Acid Supplementation Has No Effect on Postprandial Triglyceride-Rich Lipoprotein Kinetics in Men with Type 2 Diabetes

    André J. Tremblay

    2016-01-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been proposed to modulate plasma lipids, lipoprotein metabolism, and inflammatory state and to reduce triglyceride (TG concentrations. The present double-blind, randomized, placebo-controlled, crossover study investigated the effects of n-3 PUFA supplementation at 3 g/d for 8 weeks on the intravascular kinetics of intestinally derived apolipoprotein (apo B-48-containing lipoproteins in 10 men with type 2 diabetes. In vivo kinetics of the TG-rich lipoprotein (TRL apoB-48 and VLDL apoB-100 were assessed using a primed-constant infusion of L-[5,5,5-D3] leucine for 12 hours in a fed state. Compared with the placebo, n-3 PUFA supplementation significantly reduced fasting TG concentrations by −9.7% (P=0.05 but also significantly increased plasma levels of cholesterol (C (+6.0%, P=0.05, LDL-C (+12.2%, P=0.04, and HDL-C (+8.4, P=0.007. n-3 PUFA supplementation had no significant impact on postprandial TRL apoB-48 and VLDL apoB-100 levels or on the production or catabolic rates of these lipoproteins. These data indicate that 8-week supplementation with n-3 PUFAs in men with type 2 diabetes has no beneficial effect on TRL apoB-48 and VLDL apoB-100 levels or kinetics.

  13. Paradoxical effect of omega-3 fatty acids on plasma lipoprotein profile in the Golden Syrian hamster

    The objective was to determine the effect of dietary omega-3 and omega-6 fatty acids, and cholesterol (C) loading or C depletion on plasma lipids and mRNA levels of genes associated with C metabolism. Hamsters were fed high safflower (SO) or fish (FO) oil diets (10% w/w) for 12 weeks, with 0.01% (-C...

  14. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  15. Goat Milk Fat Naturally Enriched with Conjugated Linoleic Acid Increased Lipoproteins and Reduced Triacylglycerol in Rats

    Raphaela Rodrigues; Juliana Soares; Hugo Garcia; Claudenice Nascimento; Maria Medeiros; Marco Bomfim; Maria Carmo Medeiros; Rita Queiroga

    2014-01-01

    Goat milk is source of different lipids, including conjugated linoleic acid (CLA). CLA reduces body fat and protect against cardiovascular diseases. In the present study fat from goat milk naturally enriched with CLA was used. Male Wistar rats were divided into three groups that received during a 10 week diet with different lipid sources: soybean oil (CON), coconut oil (CO) and goat milk fat naturally enriched with CLA (GM-CLA). We evaluated the effects of a GM-CLA on biochemistry parameters ...

  16. Evidence of Immunostimulating Lipoprotein Existing in the Natural Lipoteichoic Acid Fraction▿

    HASHIMOTO, Masahito; Furuyashiki, Maiko; Kaseya, Ryoko; Fukada, Yuka; Akimaru, Mai; Aoyama, Kazue; Okuno, Toshiomi; Tamura, Toshihide; Kirikae, Teruo; Kirikae, Fumiko; Eiraku, Nobutaka; Morioka, Hirofumi; Fujimoto, Yukari; Fukase, Koichi; Takashige, Katsuhiro

    2007-01-01

    Lipoteichoic acid (LTA) is a cell surface glycoconjugate of gram-positive bacteria and is reported to activate the innate immune system. We previously reported that purified LTA obtained from Enterococcus hirae has no immunostimulating activity, but a subfraction (Eh-AF) in an LTA fraction possesses activity. In this study, we established a mouse monoclonal antibody neutralizing the activity of Eh-AF and investigated its inhibitory effects. Monoclonal antibody (MAbEh1) was established by the ...

  17. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans

    Fernando Abarca

    2014-08-01

    Full Text Available Licanantase (Lic is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm “Rosetta Fold-and-Dock”. To assess the structural stability of our model, Molecular Dynamics (MD and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic’s secondary and tertiary structure.

  18. The role of ANGPTL3 in controlling lipoprotein metabolism.

    Tikka, Anna; Jauhiainen, Matti

    2016-05-01

    Angiopoietin-like protein 3 (ANGPTL3) is a secretory protein regulating plasma lipid levels via affecting lipoprotein lipase- and endothelial lipase-mediated hydrolysis of triglycerides and phospholipids. ANGPTL3-deficiency due to loss-of-function mutations in the ANGPTL3 gene causes familial combined hypobetalipoproteinemia (FHBL2, OMIM # 605019), a phenotype characterized by low concentration of all major lipoprotein classes in circulation. ANGPTL3 is therefore a potential therapeutic target to treat combined hyperlipidemia, a major risk factor for atherosclerotic coronary heart disease. This review focuses on the mechanisms behind ANGPTL3-deficiency induced FHBL2. PMID:26754661

  19. Reversible flow of cholesteryl ester between high-density lipoproteins and triacylglycerol-rich particles is modulated by the fatty acid composition and concentration of triacylglycerols

    E.C.R. Quintão

    2010-12-01

    Full Text Available We determined the influence of fasting (FAST and feeding (FED on cholesteryl ester (CE flow between high-density lipoproteins (HDL and plasma apoB-lipoprotein and triacylglycerol (TG-rich emulsions (EM prepared with TG-fatty acids (FAs. TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001 and a negative correlation from EM to HDL (r = -041, P = 0.0088. Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.

  20. Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase

    Chen Jinnan; Liang Xiaomei; Li Yuejuan; Zhou Zhiqi; Yang Na; Wang Guili; Meng Yonghong; Li Ying; Li Jilun

    2011-01-01

    Abstract Background Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is...

  1. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects.

    Tang, Yao; Zhang, Bing; Li, Xihong; Chen, Peter X; Zhang, Hua; Liu, Ronghua; Tsao, Rong

    2016-03-01

    Unextractable phenolics from plant foods and their role in health benefits have become increasingly important. Meal residues of three quinoa seeds free of fat and extractable phenolics were subjected to acid, alkaline, and enzymatic hydrolyses. The total and individual phenolic compounds released were analyzed, and 19 phenolics, predominantly phenolic acids and several flavonoids, were identified. The concentration of bound phenolics was highest in black quinoa followed by red and white, regardless of the hydrolysis method. Higher phenolic contents also showed stronger antioxidant activities and inhibition of α-glucosidase and pancreatic lipase activities. Carbohydrases, that is, pectinase, xylanase and feruloyl esterase, which effectively liberated bound phenolics are known to be secreted by colonic bacteria, suggesting potential antioxidant and anti-inflammatory effects by these compounds in the large intestine during colonic fermentation. These results can also be applied to treat foods high in bound phenolics to enhance bioaccessibility. PMID:26853559

  2. The lipase system of Yarrowia lipolytica

    Choupina, Altino; Gonzalez, Francisco J.; Morín, M.; Burguillo, Francisco J.; Ferminan, E.; Dominguez, Ángel

    1999-01-01

    Among yeast species, Yarrowia lipolytica is one of the highest producers of extracellular proteins ( acid, neutral and alkaline proteases, ácid phosphatase, ribonucleases and lipases). Lipases ( triacylglycerol hydrolases) are important enzymes in fat metabolism, catalyzing the breakdown of triacilglycerols to free fatty acids and glycerol. Owing to the very low solubility of ther natural substrats, this hydrolysis is catalysed at the interfase beteween an insoluble substrat and the aqueous p...

  3. Lipolytic surface remnants of triglyceride-rich lipoproteins are cytotoxic to macrophages but not in the presence of high density lipoprotein. A possible mechanism of atherogenesis?

    Chung, B H; Segrest, J P; Smith, K.; Griffin, F M; Brouillette, C G

    1989-01-01

    Hypertriglyceridemic (HTG) serum, lipolyzed in vitro by purified bovine milk lipoprotein lipase, was found to be cytotoxic to cultured macrophages. Surviving macrophages contained numerous lipid inclusions similar to those found in foam cells. Individual lipoprotein fractions isolated from the lipolyzed HTG serum, including HDL, were also cytotoxic. Lipolysis of isolated lipoprotein fractions (either HTG or normal) allowed localization of cytotoxicity to postlipolysis remnant VLDL and chylomi...

  4. Design, Synthesis and Biological Evaluation of Hydroxamic Acid Derivatives as Potential High Density Lipoprotein (HDL) Receptor CLA-1 Up-Regulating Agents

    Yu Du; Yanbin Wu; Bin Hong; Yuan Yang; Xiaojian Jia; Li Wang; Xiaofang Chen

    2011-01-01

    Trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA) were reported in our recent publication as novel human high density lipoprotein (HDL) receptor CD36 and Lysosomal integral membrane protein-II Analogous-1 (CLA-1) up-regulators. As part of a broader effort to more fully explore the structure-activity relationships (SAR) of CLA-1 up-regulators, we synthesized a series of hydroxamic acid derivatives and evaluated their CLA-1 up-regulating activities in HepG2 cells. Some compounds e...

  5. Polymorphism of the Eighth Intron in Lipoprotein Lipase Gene of Guizhou Indigenous Pig Breeds%贵州地方猪品种脂蛋白脂酶基因第8内含子的多态性研究

    田海蓉; 王嘉福; 冉雪琴

    2011-01-01

    Taking the Kele, Luobo and Xiang pig breeds and the European pig breeds as samples, the polymorphism of lipoprotein lipase (LPL) gene was investigated using single-strand conformation polymorphism (SSCP) method. A DNA fragment of 163 base pairs (bp) was amplified from the genomic DNA of blood sample of pig breeds and classified by native polyacrylamide gel electrophoresis. Both of AA and AB except BB genotypes were detected and the AB genotype was dominant in all pig breeds. Compared with European pig breeds, Guizhou indigenous pig breeds contained a higher B allele percentage and a lower A allele. In previous reports, a Hind III site in the intron 8 of LPL gene was ascertained to be the binding site of transcript factor and its mutation was confirmed to be related with the triglyceride level in blood of human and meat quality in Rongcang pig. The Hind III site was included in the 163 bp-fragment amplified in the present study based on alignment of nucleotide sequence of LPL. It suggested that the dominant B allele might be pivotal for the better meat quality of Guizhou pig breeds. High percentage of allele B would improve the meat quality of pig individuals with taking advantage of the precious resources of Guizhou pig breeds.%以可乐猪、萝卜猪和香猪3个贵州地方猪种和欧洲猪种为材料,采用PCR-SSCP技术对脂蛋白脂酶(Lipoprotein lipase,LPL)基因第8内含子的多态性进行了研究.以特异性PCR从样品基因组中扩增出163bp的DNA片段,经非变性聚丙烯酰胺凝胶电泳,从两个猪群体的LPL基因第8内含子中都检测到了AA基因型和AB基因型,未检测到BB基因型;欧洲猪品种和贵州地方猪品种均以AB基因型占优势;与欧洲猪品种相比,贵州地方猪品种的B等位基因频率明显较高,A等位基因频率则较低.

  6. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil.

    Narita, Yusaku; Iwai, Kazuya; Fukunaga, Taiji; Nakagiri, Osamu

    2012-01-01

    A decaffeinated green coffee bean extract (DGCBE) inhibited porcine pancreas lipase (PPL) activity with an IC50 value of 1.98 mg/mL. Six different chlorogenic acids in DGCBE contributed to this PPL inhibition, accounting for 91.8% of the inhibitory activity. DGCBE increased the droplet size and decreased the specific surface area of an olive oil emulsion. PMID:23221697

  7. Organic Solvent Tolerant Lipases and Applications

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  8. Improvement of mTORC1-driven overproduction of apoB-containing triacylglyceride-rich lipoproteins by short-chain fatty acids, 4-phenylbutyric acid and (R)-α-lipoic acid, in human hepatocellular carcinoma cells.

    Roberts, Joseph L; He, Bo; Erickson, Anjeza; Moreau, Régis

    2016-03-01

    The activation of hepatic kinase mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the development of obesity-related metabolic disorders. This study investigated the metabolic sequelae of mTORC1 hyperactivation in human hepatoma cells and the lipid-regulating mechanisms of two short-chain fatty acids: 4-phenylbutyric acid (PBA) and (R)-α-lipoic acid (LA). We created three stable cell lines that exhibit low, normal, or high mTORC1 activity. mTORC1 hyperactivation induced the expression of lipogenic (DGAT1 and DGAT2) and lipoprotein assembly (MTP and APOB) genes, thereby raising cellular triacylglyceride (TG) and exacerbating secretion of apoB-containing TG-rich lipoproteins. LYS6K2, a specific inhibitor of the p70 S6 kinase branch of mTORC1 signaling, reversed these effects. PBA and LA decreased secreted TG through distinct mechanisms. PBA repressed apoB expression (both mRNA and protein) and lowered secreted TG without mitigation of mTORC1 hyperactivity or activation of AMPK. LA decreased cellular and secreted TG by attenuating mTORC1 signaling in an AMPK-independent manner. LA did not regulate apoB expression but led to the secretion of apoB-containing TG-poor lipoproteins by repressing the expression of lipogenic genes, FASN, DGAT1, and DGAT2. Our studies provide new mechanistic insight into the hypolipidemic activity of PBA and LA in the context of mTORC1 hyperactivation and suggest that the short-chain fatty acids may aid in the prevention and treatment of hypertriglyceridemia. PMID:26680362

  9. Ligand selectivity of 105 kDa and 130 kDa lipoprotein-binding proteins in vascular-smooth-muscle-cell membranes is unique.

    Bochkov, V N; Tkachuk, V A; Philippova, M P; Stambolsky, D V; Bühler, F R; Resink, T J

    1996-07-01

    Using ligand blotting techniques, with low-density lipoprotein (LDL) as ligand, we have previously described the existence of atypical lipoprotein-binding proteins (105 kDa and 130 kDa) in membranes from human aortic medical tissue. The present study demonstrates that these proteins are also present in membranes from cultured human (aortic and mesenteric) and rat (aortic) vascular smooth-muscle cells (VSMCs). To assess the relationship of 105 and 130 kDa lipoprotein-binding proteins to known lipoprotein receptors, ligand binding specificity was studied. We tested effects of substances known to antagonize ligand binding to either the LDL [apolipoprotein B,E (apo B,E)] receptor (dextran sulphate, heparin, pentosan polysulphate, protamine, spermine, histone), the scavenger receptor (dextran sulphate, fucoidin), the very-low-density-lipoprotein (VLDL) receptor [receptor-associated protein (RAP)], or LDL receptor-related protein (RAP, alpha 2-macroglobulin, lipoprotein lipase, exotoxin-A). None of these substances, with the exception of dextran sulphate, influenced binding of LDL to either 105 or 130 kDa proteins. Sodium oleate or oleic acid, known stimuli for the lipoprotein binding activity of the lipolysis-stimulated receptor, were also without effect. LDL binding to 105 and 130 kDa proteins was inhibited by anti-LDL (apo B) antibodies. LDL and VLDL bound to 105 and 130 kDa proteins with similar affinities (approximately 50 micrograms/ml). The unique ligand selectivity of 105 and 130 kDa proteins supports the existence of a novel lipoprotein-binding protein that is distinct from all other currently identified LDL receptor family members. The similar ligand selectivity of 105 and 130 kDa proteins suggests that they may represent variant forms of an atypical lipoprotein-binding protein. PMID:8694779

  10. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    Andreasen, M.F.; Landbo, Anne-Katrine Regel; Christensen, L.P.;

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... neither 5-5-diFA nor 8- 5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 muM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts was significantly...... correlated with their total content of monomeric and dimeric hydroxycinnamates, and the rye bran extract was the most potent. The data suggest that especially rye bran provides a source of dietary phenolic antioxidants that may have potential health effects....

  11. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    Andreasen, Mette Findal; Landbo, A K; Christensen, L P;

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts was...... significantly correlated with their total content of monomeric and dimeric hydroxycinnamates, and the rye bran extract was the most potent. The data suggest that especially rye bran provides a source of dietary phenolic antioxidants that may have potential health effects. Udgivelsesdato: 2001-Aug...

  12. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase

    Johnson, Karin; Ross, Leah; Miller, Rita; Xiao, Xunjun; Lowe, Mark E.

    2013-01-01

    INTRODUCTION Dietary fats must be digested into fatty acids and monoacylglycerols prior to absorption. In adults, colipase-dependent pancreatic triglyceride lipase (PTL) contributes significantly to fat digestion. In newborn rodents and humans, the pancreas expresses low levels of PTL. In rodents, a homologue of PTL, pancreatic lipase related protein 2 (PLRP2) and carboxyl ester lipase (CEL) compensate for the lack of PTL. In human newborns, the role for PLRP2 in dietary fat digestion is uncl...

  13. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  14. TRIGLYCERIDE-RICH LIPOPROTEIN LIPOLYSIS RELEASES NEUTRAL AND OXIDIZED FREE FATTY ACIDS THAT INDUCE ENDOTHELIAL CELL INFLAMMATION

    Objective–Increased products of triglyceride-rich lipoprotein (TGRL) lipolysis provide a pro-inflammatory stimulus that may alter endothelial barrier function. To probe the mechanism of this lipolysis-induced dysfunction, we evaluated the pro-inflammatory potential of lipid classes derived from huma...

  15. Atorvastatin dose-dependently decreases hepatic lipase activity in type 2 diabetes - Effect of sex and the LIPC promoter variant

    Berk-Planken, IIL; Hoogerbrugge, N; Stolk, RP; Bootsma, AH; Jansen, H

    2003-01-01

    OBJECTIVE - Hepatic lipase (HL) is involved in the metabolism of several lipoproteins and may contribute to the atherogenic lipid profile in type 2 diabetes. Little is known about the effect of cholesterol synthesis inhibitors on HL activity in relation to sex and the hepatic lipase gene, the LIPC p

  16. Lipases and proteinases in milk : occurrence, heat inactivation, and their importance for the keeping quality of milk products

    Driessen, F.M.

    1983-01-01

    The occurrence and heat inactivation of native and bacterial lipases and proteinases in milk were studied.Production of these enzymes by Gram-negative psychrotrophic bacteria in milk was found to take place towards the end of exponential growth and in the stationary growth phase.Kinetics of heat inactivation in milk of milk lipoprotein lipase, alkaline milk proteinase and lipases and proteinases of some Gram-negative bacteria are given.The effects of residual lipolytic and proteolytic activit...

  17. Serum pancreatic lipase as a screening test for cystic fibrosis.

    Adriaenssens, K; Van Riel, L

    1982-01-01

    Pancreatic lipase catalyses the hydrolysis of emulsified triglycerides to form a transparent solution of monoglycerides and fatty acids. Levels of serum pancreatic lipase were measured in neonates known to have cystic fibrosis and compared with levels in control infants. During the first weeks of life infants with cystic fibrosis had raised serum pancreatic lipase values in parallel with raised serum trypsin values. A simple and specific turbidimetric dried blood spot assay for serum pancreat...

  18. Revisiting the Gram-Negative Lipoprotein Paradigm

    LoVullo, Eric D.; Wright, Lori F.; Isabella, Vincent; Huntley, Jason F.; Pavelka, Martin S.

    2015-01-01

    The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis str...

  19. Stability of immobilized candida sp. 99-125 Lipase for biodiesel production

    Lu, J. [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China); Bioengineering Department, Zhengzhou University, Zhengzhou (China); Deng, L.; Nie, K.; Wang, F.; Tan, T. [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China)

    2012-12-15

    The stability of the immobilized lipase from Candida sp. 99-125 during biodiesel production was investigated. The lipase was separately incubated in the presence of various reaction components such as soybean oil, oleic acid methyl ester, n-hexane, water, methanol, and glycerol, or the lipase was stored at 60, 80, 100 and 120 C. Thereafter the residual lipase activity was determined by methanolysis reaction. The results showed that the lipase was rather stable in the reaction media, except for methanol and glycerol. The stability study performed in a reciprocal shaker indicated that enzyme desorption from the immobilized lipase mainly contributed to the lipase inactivation in the water system. So the methanol and glycerol contents should be controlled more precisely to avoid lipase inactivation, and the immobilization method should be improved with regard to lipase desorption. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Patrícia de O. Carvalho; Silvana Ap. Calafatti; Maurício Marassi; Daniela M. da Silva; Fabiano J. Contesini; Renato Bizaco; Gabriela Alves Macedo

    2005-01-01

    Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum) were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase ...

  1. Plasma lipids, lipoproteins, and fecal excretion of neutral sterols and bile acids in rats fed various high fat diets or a low fat/high sucrose diet.

    Høstmark, A T; Lystad, E; Haug, A; Eilertsen, E

    1989-03-01

    The effect of feeding various diets on plasma lipids and lipoproteins and on fecal excretion of neutral sterols and bile acids was studied in rats fed for 7 wk diets containing 42% of energy as either coconut oil (CO), sunflower seed oil (SO), fish body oil (FBO), cod liver oil (CLO), or a low fat/high sucrose diet (SU). Triacylglycerols (TG) in whole plasma and VLDL + LDL were lower in rats fed high amounts of polyunsaturated fatty acids (PUFA) than in those fed the CO diet. Plasma HDL2 components in FBO and CLO groups were generally lower than in the other groups. Percentages of liver and heart linoleic and arachidonic acid were higher in the SO group, but lower in groups fed marine oils, than in the CO group. There was a high relative amount of eicosapentaenoic and docosahexaenoic acid in liver and heart of rats fed marine oils. Fecal excretion of bile acids was lower in the PUFA groups than in the CO group, whereas the sum of neutral sterols was similar in all groups. Plasma HDL2 (and VLDL + LDL) correlated positively, but HDL3 negatively, with fecal bile acid excretion. Accordingly, increased bile acid excretion does not seem to account for hypolipemia following intake of PUFA diets. PMID:2921639

  2. Clinical relevance of the biochemical, metabolic, and genetic factors that influence low-density lipoprotein heterogeneity.

    Kwiterovich, Peter O

    2002-10-17

    Traditional risk factors for coronary artery disease (CAD) predict about 50% of the risk of developing CAD. The Adult Treatment Panel (ATP) III has defined emerging risk factors for CAD, including small, dense low-density lipoprotein (LDL). Small, dense LDL is often accompanied by increased triglycerides (TGs) and low high-density lipoprotein (HDL). An increased number of small, dense LDL particles is often missed when the LDL cholesterol level is normal or borderline elevated. Small, dense LDL particles are present in families with premature CAD and hyperapobetalipoproteinemia, familial combined hyperlipidemia, LDL subclass pattern B, familial dyslipidemic hypertension, and syndrome X. The metabolic syndrome, as defined by ATP III, incorporates a number of the components of these syndromes, including insulin resistance and intra-abdominal fat. Subclinical inflammation and elevated procoagulants also appear to be part of this atherogenic syndrome. Overproduction of very low-density lipoproteins (VLDLs) by the liver and increased secretion of large, apolipoprotein (apo) B-100-containing VLDL is the primary metabolic characteristic of most of these patients. The TG in VLDL is hydrolyzed by lipoprotein lipase (LPL) which produces intermediate-density lipoprotein. The TG in intermediate-density lipoprotein is hydrolyzed further, resulting in the generation of LDL. The cholesterol esters in LDL are exchanged for TG in VLDL by the cholesterol ester tranfer proteins, followed by hydrolysis of TG in LDL by hepatic lipase which produces small, dense LDL. Cholesterol ester transfer protein mediates a similar lipid exchange between VLDL and HDL, producing a cholesterol ester-poor HDL. In adipocytes, reduced fatty acid trapping and retention by adipose tissue may result from a primary defect in the incorporation of free fatty acids into TGs. Alternatively, insulin resistance may promote reduced retention of free fatty acids by adipocytes. Both these abnormalities lead to

  3. Covalent functionalization of multi-walled carbon nanotubes by lipase

    Lipase from Candida rugosa was covalently anchored onto acid-treated multi-walled carbon nanotubes (MWNTs) through a self-catalytic mechanism. A variety of characterization techniques including FTIR, Raman spectroscopy, and XPS were employed to demonstrate the formation of the ester linkage between lipase and MWNTs. The MWNTs-lipase biocomposites showed significantly increased solubility in some common-used organic solvents, such as THF, DMF and chloroform. This study may offer a novel and facile route for covalent modification of carbon nanotubes, and expand the potential utilization of both lipases and MWNTs in the fields of biocatalyst and biosensor

  4. Gastric lipase: localization of the enzyme in the stomach

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using 3H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined

  5. Screening for lipase activity in the oil palm.

    Sambanthamurthi, R; Rajanaidu, N; Hasnah Parman, S

    2000-12-01

    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value. PMID:11171201

  6. Human apolipoprotein C-II: complete nucleic acid sequence of preapolipoprotein C-II.

    Fojo, S S; Law, S W; Brewer, H B

    1984-01-01

    Apolipoprotein (apo) C-II is a cofactor for lipoprotein lipase, the enzyme that catalyzes the hydrolysis of triglycerides on plasma triglyceride-rich lipoproteins. The complete coding sequence of apoC-II mRNA has been determined from an apoC-II clone isolated from a human liver cDNA library. A 17-base-long synthetic oligonucleotide based on amino acid residues 5-10 of apoC-II was utilized as a hybridization probe to select recombinant plasmids containing the apoC-II sequence. Two thousand fou...

  7. Butyl acetate synthesis using immobilized lipase in calcium alginate beads

    The esterification reaction of acetic acid and n-butanol using immobilized lipase encapsulated in calcium alginate beads (Lipase - CAB) and in chitosan coated calcium alginate beads (Lipase-CCAB) in n-hexane under mild reaction conditions were studied. Effects of temperature and substrate concentration (acetic acid and n-butanol) using Lipase - CAB, Lipase - CCAB and free lipase on the esterification reaction and their thermal stability towards esterification reaction were investigated. Results of temperature studies showed that the butyl acetate conversion increased with increase of temperature and reached the highest yield of about 70% around 50 degree Celsius for both immobilized systems but the yield of product catalyzed by free enzyme decreased as temperature was increased. Thermal stabilities studies showed that the Lipase-CCAB and Lipase-CAB were stable throughout the temperature range of 30-60 degree Celsius. However, free lipase became less stable at temperatures higher than 50 degree Celsius. The substrates, n-butanol and acetic acid exerted different effects on the esterification reaction and the reaction was favoured by higher acetic acid concentration than butanol. Kinetics parameters, Km and Vmax values for both substrates and the specific activities of the three enzyme system were also determined. The beads morphology was examined using SEM. Batch-wise operational stability studies for both immobilized systems demonstrated that the immobilized lipase performed better in the batch wise reactor system than the continuous bioreactor system and that the immobilized lipase remained active for at least 5 cycles of batch wise esterification reactions. (author)

  8. [THE SPIRIT CHOLESTEROL, BIOLOGICA L ROLE AT STAGES OF PHYLOGENESIS, MECHANISMS OF INHIBITION OF SYNTHESIS OF STEROL BY STATINS, FACTORS OF PHARMACOGENOMICS AND DIAGNOSTIC SIGNIFICANCE OF CHOLESTEROL OF LIPOPROTEINS OF LOW DENSITY].

    Titov, V N; Kotlovskii, M Yu; Pokrovskii, A A; Kotlovskaia, O S; Osedko, A V; Titova, N M; Kotlovskii, Yu V; Digaii, A M

    2015-04-01

    The hypolipidemic effect of statins is realized by inhibition of synthesis of local pool of cholesterol spirit in endoplasmic net of hepatocytes. The cholesterol spirit covers all hydrophobic medium of triglycerides with polar mono layer of phosphatidylcholines and cholesterol spirit prior to secretion of lipoproteins of very low density into hydrophilic medium. The lesser mono layer between lipase enzyme and triglycerides substrate contains of cholesterol spirit the higher are the parameters of hydrolysis of palmitic and oleic lipoproteins of very low density. The sequence of effect of statins is as follows: blocking of synthesis in hepatocytes and decreasing of content of unesterified cholesterol spirit in blood plasma; activation of hydrolysis of triglycerides in palmitic and oleic lipoproteins of very low density; formation of ligand lipoproteins of very low density and their absorption by cells by force of apoB-100 endocytosis; decreasing in blood of content of polyenoic fatty acids, equimolar esterified by cholesterol spirit, polyethers of cholesterol spirit and decreasing of level of cholesterol spirit-lipoproteins of very low density. There is no way to eliminate aphysiological effect of disordered biological function of trophology (nutrition) on metabolism of fatty acids in population by means of pharmaceuticals intake. It is necessary to eliminate aphysiological effect of environment. To decrease rate of diseases of cardiovascular system one has to decrease in food content of saturated fatty acids and in the first instance palmitic saturated fatty acid, trans-form fatty acid, palmitoleic fatty acids up to physiological values and increase to the same degree the content of polyenoic fatty acids. The saturated fatty acids block absorption of polyenoic fatty acids by cells. The atherosclerosis is a deficiency of polyenoic fatty acids under surplus of palmitic saturated fatty acid. PMID:26189285

  9. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency.

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J; Ribes, Antonia

    2015-10-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker. PMID:26239048

  10. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    Our laboratory has reported that the hypolipidemic effect of rice bran oil (RBO) is not entirely explained by its fatty acid composition. Because RBO has a greater content of the unsaponifiables, which also lower cholesterol compared to most vegetable oils, we wanted to know whether oryzanol or ferulic acid, two major unsaponifiables in RBO, has a greater cholesterol-lowering activity. Forty-eight F(1)B Golden Syrian hamsters (Mesocricetus auratus) (BioBreeders, Watertown, MA) were group housed (three per cage) in cages with bedding in an air-conditioned facility maintained on a 12-h light/dark cycle. The hamsters were fed a chow-based hypercholesterolemic diet (HCD) containing 10% coconut oil and 0.1% cholesterol for 2 weeks, at which time they were bled after an overnight fast (16 h) and segregated into 4 groups of 12 with similar plasma cholesterol concentrations. Group 1 (control) continued on the HCD, group 2 was fed the HCD containing 10% RBO in place of coconut oil, group 3 was fed the HCD plus 0.5% ferulic acid and group 4 was fed the HCD plus 0.5% oryzanol for an additional 10 weeks. After 10 weeks on the diets, plasma total cholesterol (TC) and non-high-density lipoprotein cholesterol (HDL-C) (very low- and low-density lipoprotein) concentrations were significantly lower in the RBO (-64% and -70%, respectively), the ferulic acid (-22% and -24%, respectively) and the oryzanol (-70% and -77%, respectively) diets compared to control. Plasma TC and non-HDL-C concentrations were also significantly lower in the RBO (-53% and -61%, respectively) and oryzanol (-61% and -70%, respectively) diets compared to the ferulic acid. Compared to control and ferulic acid, plasma HDL-C concentrations were significantly higher in the RBO (10% and 20%, respectively) and oryzanol (13% and 24%, respectively) diets. The ferulic acid diet had significantly lower plasma HDL-C concentrations compared to the control (-9%). The RBO and oryzanol diets were significantly lower for

  11. Lipase biocatalysis for useful biodegradable products

    Linko, Y.Y.; Wang, Zhuo Lin; Uosukainen, E.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M. [Raisio Group Oil Milling Industry, Raisio (Finland)

    1996-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  12. Eicosapentaenoic Acid Inhibits Oxidation of ApoB-containing Lipoprotein Particles of Different Size In Vitro When Administered Alone or in Combination With Atorvastatin Active Metabolite Compared With Other Triglyceride-lowering Agents.

    Mason, R Preston; Sherratt, Samuel C R; Jacob, Robert F

    2016-07-01

    Eicosapentaenoic acid (EPA) is a triglyceride-lowering agent that reduces circulating levels of the apolipoprotein B (apoB)-containing lipoprotein particles small dense low-density lipoprotein (sdLDL), very-low-density lipoprotein (VLDL), and oxidized low-density lipoprotein (LDL). These benefits may result from the direct antioxidant effects of EPA. To investigate this potential mechanism, these particles were isolated from human plasma, preincubated with EPA in the absence or presence of atorvastatin (active) metabolite, and subjected to copper-initiated oxidation. Lipid oxidation was measured as a function of thiobarbituric acid reactive substances formation. EPA inhibited sdLDL (IC50 ∼2.0 μM) and LDL oxidation (IC50 ∼2.5 μM) in a dose-dependent manner. Greater antioxidant potency was observed for EPA in VLDL. EPA inhibition was enhanced when combined with atorvastatin metabolite at low equimolar concentrations. Other triglyceride-lowering agents (fenofibrate, niacin, and gemfibrozil) and vitamin E did not significantly affect sdLDL, LDL, or VLDL oxidation compared with vehicle-treated controls. Docosahexaenoic acid was also found to inhibit oxidation in these particles but over a shorter time period than EPA. These data support recent clinical findings and suggest that EPA has direct antioxidant benefits in various apoB-containing subfractions that are more pronounced than those of other triglyceride-lowering agents and docosahexaenoic acid. PMID:26945158

  13. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway

    Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized low-density lipoprotein (oxLDL) promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. Previous studies have shown that the phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase/nitric oxide (PI3K/Akt/eNOS/NO) pathway is involved in oxLDL-induced endothelial apoptosis. Ellagic acid, a natural polyphenol found in berries and nuts, has in recent years been the subject of intense research within the fields of cancer and inflammation. However, its protective effects against oxLDL-induced injury in vascular endothelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effect of ellagic acid in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. Our results showed that pretreatment with ellagic acid (5-20 μM) significantly attenuated oxLDL-induced cytotoxicity, apoptotic features, and generation of reactive oxygen species (ROS). In addition, the anti-apoptotic effect of ellagic acid was partially inhibited by a PI3K inhibitor (wortmannin) and a specific eNOS inhibitor (cavtratin) but not by an ERK inhibitor (PD98059). In exploring the underlying mechanisms of ellagic acid action, we found that oxLDL decreased Akt and eNOS phosphorylation, which in turn activated NF-κB and downstream pro-apoptotic signaling events including calcium accumulation, destabilization of mitochondrial permeability, and disruption of the balance between pro- and anti-apoptotic Bcl-2 proteins. Those alterations induced by oxLDL, however, were attenuated by pretreatment with ellagic acid. The inhibition of oxLDL-induced endothelial apoptosis by ellagic acid is due at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  14. Nutritional enrichment of vegetable oils with long-chain n-3 fatty acids through enzymatic interesterification with a new vegetable lipase

    Sousa, J. S.

    2015-06-01

    Full Text Available The aim of the present work was to produce vegetable oils enriched with long-chain n-3 fatty acids of nutraceutical interest, through an enzyme-catalyzed interesterification with a new lipase, from physic nut (Jatropha curcas L.. The Vegetable Lipase Powder (biocatalyst called VLP, which has never been applied in functional foods, was obtained from the physic nut seed, and efficiently hydrolyzed the 95% of waste fish oil in 24 h. Urea precipitation was used to concentrate polyunsaturated fatty acids (PUFA and was further interesterified with oils of different sources by means of enzymatic catalysis. After the interesterification reaction, which was also catalyzed by the VLP, the PUFA content in coconut oil increased almost ten-fold from 1.8% to 17.7%. In palm oil, the PUFA content increased two-fold from 10.5% to 21.8%, while in olive oil the level of PUFA increased from 8.6% to 21.3%. The mixture of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA (3.7% to 3.9% was incorporated into the triacylglycerol fraction of each of the coconut, palm and olive oils. Through the hydroesterification (hydrolysis followed by interesterification all the interesterified vegetable oils tested presented sufficient EPA and DHA levels to satisfy the levels recommended for intake by human adults in one tablespoon.El objetivo del presente trabajo fue producir aceites vegetales enriquecidos con ácidos grasos n-3 de cadena larga de interés nutraceutico, por interesterificación catalizada mediante una nueva lipasa, una enzima de semilla de Jatropha curcas L. La lipasa vegetal en polvo (biocatalizador llamada VLP, nunca ha sido aplicada en alimentos funcionales, se obtuvo mediante procedimientos físicos con semillas de nueces, e hidrolizó eficientemente el 95% de aceites de residuos de pescado en 24 h. La precipitación con urea se utilizó para concentrar los ácidos grasos poliinsaturados (PUFA que fueron posteriormente interesterificados con aceites de

  15. Synthesis of structured triacylglycerols containing medium-chain and long-chain fatty acids by interesterification with a stereoespecific lipase from Mucor miehei.

    Nieto, Susana

    1999-06-01

    Full Text Available The preparation of structured triacylglycerols sn-1, sn-3 dilauryl, sn-2 eicosapentaenoyl glycerol and sn-1, sn-3 dilauryl, sn-2 docosahexaenoyl glycerol by enzymatic interesterification under restricted water availability is described. Laurie acid, one of the substrates for interesterification, was obtained by the controlled hydrolysis of coconut oil by a non-specific lipase obtained from Candida cylindracea. The fatty acid was separated from the hydrolysis products by silverresin column chromatography and converted to methyl ester, sn-2 Eicosapentaenoyl glycerol and sn-2 docosahexaenoyl glycerol were prepared by the hydrolysis of fish oil by the sn-1, sn-3 stereospecific immobilized lipase Lipozyme IM-20 obtained from Mucor miehei as described in the accompanying paper. The interesterification was carried out in a water jacketed glass reactor and the triacylglycerol products were separated and recovered through aluminum oxide column chromatography The interesterification procedure described allows to obtain In laboratory scale structured triacylglycerols containing medium-chain fatty acids at the sn-1 and sn-3 positions and long-chain polyunsaturated fatty acid from marine origin at the sn-2 glycerol position.

    Se describe la preparación de triacilgliceroles estructurados sn-1, sn-3 dilauril, sn-2 ecosapentaenoil glicerol y sn-1, sn-3 diiauril, sn-2 docosahexaenoil glicerol por interesterificación enzimática bajo disponibilidad de agua reducida. Acido láurico, uno de los sustratos para la interesterificación, se obtuvo mediante hidrólisis controlada del aceite de coco por una lipasa no-específica obtenida de Candida cylindracea. Los ácidos grasos se separaron de los productos de hidrólisis mediante cromatografía en columna de resina de plata y convertidos en sus esteres metílicos, sn-2 Eicosapentaenoil glicerol y sn-2 docosahexaenoil glicerol se prepararon mediante hidrólisis de aceite de pescado por la sn-1, sn

  16. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration

    Morcillo, F.; Cros, D.; Billotte, N; Ngando-Ebongue, G.-F.; Domonhédo, H.; Pizot, M.; Cuéllar, T.; Espéout, S.; Dhouib, R.; Bourgis, F.; Claverol, S.; Tranbarger, T. J.; Nouy, B.; Arondel, V.

    2013-01-01

    The oil palm fruit mesocarp contains high lipase activity that increases free fatty acids and necessitates post-harvest inactivation by heat treatment of fruit bunches. Even before heat treatment the mesocarp lipase activity causes consequential oil losses and requires costly measures to limit free fatty acids quantities. Here we demonstrate that elite low-lipase lines yield oil with substantially less free fatty acids than standard genotypes, allowing more flexibility for post-harvest fruit ...

  17. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    Malihe Masomian

    Full Text Available Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.

  18. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+)-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  19. Effect of liver fatty acid binding protein (FABP) T94A missense mutation on plasma lipoprotein responsiveness to treatment with fenofibrate.

    Brouillette, Charles; Bossé, Yohan; Pérusse, Louis; Gaudet, Daniel; Vohl, Marie-Claude

    2004-01-01

    Fenofibrate, a peroxisome proliferated activated receptor alpha (PPARalpha) agonist, has been shown to decrease plasma triglyceride (TG) and increase plasma high-density lipoprotein (HDL) cholesterol levels despite a large interindividual variation in the response. Fenofibrate-activated PPARalpha binds to a DNA sequence element termed PPAR response element (PPRE) present in regulatory regions of target genes. A PPRE has been identified in the proximal 5' flanking region of the gene encoding the liver fatty acid binding protein (LFABP). LFABP is a small cytosolic protein of 14 kDa present in the liver and the intestine and is a member of the superfamily of the fatty acid binding proteins (FABPs). FABPs play a role in the solubilization of long-chain fatty acids (LCFAs) and their CoA-ester to various intracellular organelles. FABPs serves as intracellular acceptors of LCFAs, and they may also have an impact in ligand-dependent transactivation of PPARs in trafficking LCFAs to the nucleus. Since PPARs are known to regulate the transcription of many genes involved in lipid metabolism, the importance of LFABP in fatty acid uptake has to be considered. The aim of this study was to verify whether genetic variations in the LFABP gene may impact on plasma lipoprotein/lipid levels in the fasting state as well as on the response to a lipid-lowering therapy with fenofibrate on plasma lipids and obesity variables. We also wanted to verify whether the presence of the PPARalpha L162V mutation interacts with genetic variants in LFABP gene. To achieve this goal, we first determined the genomic structure of the human LFABP gene and then designed intronic primers to sequence the coding regions, all exon-intron splicing boundaries, and the promoter region of the gene in 24 patients showing divergent plasma lipoprotein/lipid response to fenofibrate. Sequence analysis revealed the presence of a T94A missense mutation in exon 3. Interspecies comparison revealed that threonine 94 is

  20. Stability of Surfactant—coated Candida Rugosa Lipase in Isooctane

    宋宝东; 邢爱华; 吴金川; 王世昌

    2003-01-01

    The stability of Candida rugosa lipase coated with glutamic acid didodecyl ester ribitol amide was investigated taking esterification of lauryl alcohol and lauric acid in isooctane as a model reaction.At 30℃,the half-life of the activity of the coated lipase was ca 10h,the enzyme activity became less changed after 12h and the residual activity was 39% of the initial value ,The coated lipase obeyed a first-order deactivation model with a deactivation energy of 29.9 J.mol-1.

  1. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    Jaeger Karl E

    2011-02-01

    Full Text Available Abstract Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the

  2. A Newly Isolated Thermostable Lipase from Bacillus sp.

    Abu Bakar Salleh

    2011-05-01

    Full Text Available A thermophilic lipolytic bacterium identified as Bacillus sp. L2 via 16S rDNA was previously isolated from a hot spring in Perak, Malaysia. Bacillus sp. L2 was confirmed to be in Group 5 of bacterial classification, a phylogenically and phenotypically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences (98.5–99.2%. Polymerase chain reaction (PCR cloning of L2 lipase gene was conducted by using five different primers. Sequence analysis of the L2 lipase gene revealed an open reading frame (ORF of 1251 bp that codes for 417 amino acids. The signal peptides consist of 28 amino acids. The mature protein is made of 388 amino acid residues. Recombinant lipase was successfully overexpressed with a 178-fold increase in activity compared to crude native L2 lipase. The recombinant L2 lipase (43.2 kDa was purified to homogeneity in a single chromatography step. The purified lipase was found to be reactive at a temperature range of 55–80 °C and at a pH of 6–10. The L2 lipase had a melting temperature (Tm of 59.04 °C when analyzed by circular dichroism (CD spectroscopy studies. The optimum activity was found to be at 70 °C and pH 9. Lipase L2 was strongly inhibited by ethylenediaminetetraacetic acid (EDTA (100%, whereas phenylmethylsulfonyl fluoride (PMSF, pepstatin-A, 2-mercaptoethanol and dithiothreitol (DTT inhibited the enzyme by over 40%. The CD spectra of secondary structure analysis showed that the L2 lipase structure contained 38.6% α-helices, 2.2% ß-strands, 23.6% turns and 35.6% random conformations.

  3. Lipoprotein sorting in bacteria.

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and β-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  4. Lingual lipase activity in the orosensory detection of fat by humans

    Kulkarni, Bhushan V.; Mattes, Richard D.

    2014-01-01

    Lingual lipase generates nonesterified fatty acids (NEFA) from dietary fats during oral processing by lipolysis. Lingual lipase in rodents has strong lipolytic activity and plays a critical role in oral detection of fats. The functional activity of lingual lipase during oral processing of high-fat foods in humans remains poorly characterized. Five commonly consumed high-fat foods varying in physical states and fatty acid composition (almond, almond butter, olive oil, walnut, and coconut) were...

  5. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.

    Mehta, Akshita; Kumar, Rakesh; Gupta, Reena

    2012-12-01

    Lipases catalyze the hydrolysis and the synthesis of esters formed from glycerol and long chain fatty acids. Lipases occur widely in nature, but only microbial lipases are commercially significant. In the present study, thirty-two bacterial strains, isolated from soil sample of a hot spring were screened for lipase production. The strain TS-4, which gave maximum activity, was identified as Geobacillus sp. at MTCC, IMTECH, Chandigarh. The isolated lipase producing bacteria were grown on minimal salt medium containing olive oil. Maximal quantities of lipase were produced when 30 h old inoculum was used at 10% (v/v) in production medium and incubated in shaking conditions (150 rpm) for 72 h. The optimal temperature and pH for the bacterial growth and lipase production were found to be 60°C and 9.5, respectively. Maximal enzyme production resulted when mustard oil was used as carbon source and yeast extract as sole nitrogen source at a concentration of 1% (v/v) and 0.15% (w/v), respectively. The different optimized reaction parameters were temperature 65°C, pH 8.5, incubation time 10 min and substrate p-nitrophenyl palmitate. The Km and Vmax values of enzyme were found to be 14 mM and 17.86 μmol ml-1min-1, respectively, with p-nitrophenyl palmitate as substrate. All metal ions studied (1 mM) increased the lipase activity. PMID:23195552

  6. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA.

    Dolores Pérez

    Full Text Available BACKGROUND: Among extremophiles, halophiles are defined as microorganisms adapted to live and thrive in diverse extreme saline environments. These extremophilic microorganisms constitute the source of a number of hydrolases with great biotechnological applications. The interest to use extremozymes from halophiles in industrial applications is their resistance to organic solvents and extreme temperatures. Marinobacter lipolyticus SM19 is a moderately halophilic bacterium, isolated previously from a saline habitat in South Spain, showing lipolytic activity. METHODS AND FINDINGS: A lipolytic enzyme from the halophilic bacterium Marinobacter lipolyticus SM19 was isolated. This enzyme, designated LipBL, was expressed in Escherichia coli. LipBL is a protein of 404 amino acids with a molecular mass of 45.3 kDa and high identity to class C β-lactamases. LipBL was purified and biochemically characterized. The temperature for its maximal activity was 80°C and the pH optimum determined at 25°C was 7.0, showing optimal activity without sodium chloride, while maintaining 20% activity in a wide range of NaCl concentrations. This enzyme exhibited high activity against short-medium length acyl chain substrates, although it also hydrolyzes olive oil and fish oil. The fish oil hydrolysis using LipBL results in an enrichment of free eicosapentaenoic acid (EPA, but not docosahexaenoic acid (DHA, relative to its levels present in fish oil. For improving the stability and to be used in industrial processes LipBL was immobilized in different supports. The immobilized derivatives CNBr-activated Sepharose were highly selective towards the release of EPA versus DHA. The enzyme is also active towards different chiral and prochiral esters. Exposure of LipBL to buffer-solvent mixtures showed that the enzyme had remarkable activity and stability in all organic solvents tested. CONCLUSIONS: In this study we isolated, purified, biochemically characterized and immobilized a

  7. Fatty acid ethyl esters production using a non-commercial lipase in pressurized propane medium Produção de ésteres etílicos de ácidos graxos utilizando uma lipase não comercial em propano pressurizado

    Cristiane Hildebrand

    2009-09-01

    Full Text Available The objective of this work is to investigate the production of fatty acid ethyl esters from soybean oil in compressed propane using a non-commercial lipase from Yarrowia lipolytica and two commercial ones as catalysts, Amano PS and Amano AY30. The experiments were performed in the temperature range of 35-65 °C. at 50 bar, enzyme concentration of 5 wt%, oil to ethanol molar ratio of 1:6 and 1:9, and solvent to substrates mass ratio of 2:1 and 4:1. The results indicated that low reaction conversions were generally obtained with the use of commercial and non-commercial lipases in pressurized propane medium. On the other hand, the aspects of low solvent to substrates mass ratio and mild temperature and pressure operating conditions used to produce ethyl esters justify further investigations to improve reaction yields.O principal objetivo deste trabalho foi investigar a produção de ésteres etílicos de ácidos graxos a partir de óleo de soja em propano pressurizado, utilizando uma lipase não comercial (obtida por fermentação submersa de Yarrowia lipolytica e duas comerciais, Amano PS e Amano AY30. Os experimentos foram conduzidos no intervalo de temperatura de 35-65 °C, em pressão de 50 bar, concentração de enzima de 5 m/v%, razão molar óleo etanol de 1:6 e 1:9 e razão molar substratos solvente de 2:1 e 4:1. Os resultados obtidos indicaram que baixas conversões foram geralmente obtidas com o emprego das lipases testadas em propano pressurizado. Por outro lado, os aspectos de baixas razões molares entre o solvente e os substratos (óleo e etanol e condições amenas de temperatura e pressão usadas na produção dos ésteres etílicos possam justificar investigações futuras no sentido de aumentar a conversão do processo.

  8. Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus

    Drew, BG; Carey, AL; Natoli, AK; Formosa, MF; Vizi, D; Reddy-Luthmoodoo, M; Weir, JM; CK, Barlow; van Hall, Gerrit; Meikle, PJ; Duffy, SJ; Kingwell, BA

    2011-01-01

    investigated the effect of rHDL infusion on fatty acid oxidation and lipolysis. Thirteen patients with type 2 diabetes received separate infusions of rHDL and placebo in a randomized, cross-over study. Fatty acid metabolism was assessed using steady-state tracer methodology, and plasma lipids were measured by...... mass spectrometry (lipidomics). In vitro studies were undertaken in 3T3-L1 adipocytes. rHDL infusion inhibited fasting-induced lipolysis (P = 0.03), fatty acid oxidation (P < 0.01), and circulating glycerol (P = 0.04). In vitro, HDL inhibited adipocyte lipolysis in part via activation of AMPK......, providing a possible mechanistic link for the apparent reductions in lipolysis observed in vivo. In contrast, circulating NEFA increased after rHDL infusion (P < 0.01). Lipidomic analyses implicated phospholipase hydrolysis of rHDL-associated phosphatidylcholine as the cause, rather than lipolysis of...

  9. Identification of the tliDEF ABC Transporter Specific for Lipase in Pseudomonas fluorescens SIK W1

    Ahn, Jung Hoon; Pan, Jae Gu; Rhee, Joon Shick

    1999-01-01

    Pseudomonas fluorescens, a gram-negative psychrotrophic bacterium, secretes a thermostable lipase into the extracellular medium. In our previous study, the lipase of P. fluorescens SIK W1 was cloned and expressed in Escherichia coli, but it accumulated as inactive inclusion bodies. Amino acid sequence analysis of the lipase revealed a potential C-terminal targeting sequence recognized by the ATP-binding cassette (ABC) transporter. The genetic loci around the lipase gene were searched, and a s...

  10. A solid-state bioprocess for selecting lipase-producing filamentous fungi.

    Colla, Luciane Maria; Rezzadori, Kátia; Câmara, Stela Kochenborger; Debon, Janaina; Tibolla, Márcia; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2009-01-01

    A solid-state bioprocess with wheat bran and rice husk as substrate was used to isolate filamentous fungi with lipase activity from dairy effluent and soil contaminated with diesel oil. The lipase activity was measured in units, with one unit (U) being defined as the amount of enzyme required to liberate 1 micromol of fatty acids per minute per gram of bran substrate (1 U = 1 micromol min(-1) g(-1)). We obtained 24 isolates of filamentous fungi with lipase activity, 17 from the dairy effluent and 7 from the diesel oil-contaminated soil. The best lipase producers were the dairy effluent isolate Aspergillus E-6, with a maximum lipase activity of 49.81 U, and Aspergillus isolate O-4 recovered from the diesel oil-contaminated soil, with a maximum lipase activity of 45.49 U. Both isolates produced their maximum lipase activity eight days after the start of the bioprocess. PMID:19323278

  11. Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans

    Helge, Jørn Wulff; Boolsen, Merete Watt; Richter, E A;

    2001-01-01

    % carbohydrate) and six consumed a carbohydrate-rich diet (20 % fat, 65 % carbohydrate). After 7 weeks of training and diet, 60 min of bicycle exercise was performed at 68 +/- 1 % of maximum oxygen uptake. During exercise [1-(13)C]palmitate was infused, arterial and venous femoral blood samples were collected.......E.M.) than in those consuming the carbohydrate-rich diet (0.93 +/- 0.02). The leg fatty acid (FA) uptake (183 +/- 37 vs. 105 +/- 28 micromol min(-1)) and very low density lipoprotein-triacylglycerol (VLDL-TG) uptake (132 +/- 26 vs. 16 +/- 21 micromol min(-1)) were both higher (each P <0.05) in the subjects...... consuming the fat-rich diet. Whole-body plasma FA oxidation (determined by comparison of (13)CO(2) production and blood palmitate labelling) was 55-65 % of total lipid oxidation, and was higher after the fat-rich diet than after the carbohydrate-rich diet (13.5 +/- 1.2 vs. 8.9 +/- 1.1 micromol min(-1) kg(-1...

  12. Síntese do butirato de n-butila empregando lipase microbiana imobilizada em copolímero de estireno-divinilbenzeno Synthesis of butyl butyrate by microbial lipase immobilized onto styrene-divinylbenzene copolymer

    Pedro Carlos de Oliveira

    2000-10-01

    Full Text Available This work investigates the reaction parameters of an immobilized lipase in the esterification reaction of n-butanol and butyric acid. Microbial lipase from Candida rugosa was immobilized onto styrene-divinylbenzene copolymer (STY-DVB and subsequently introduced in an organic medium containing substrates in appropriate concentrations. Heptane was selected as solvent on the basis of its compatibility with the resin and the enzyme. The influence of molar ratio of acid to alcohol, amount of immobilized lipase and temperature on the butyl butyrate formation was determined. The results were compared with those achieved with free lipase and Lipozyme (commercially immobilized lipase under the same operational conditions.

  13. Superparamagnetic nanotraps containing MIP based mimic lipase for biotransformations uses

    The nanoparticle comprises a superparamagnetic iron oxide nanoparticle core conjugated with trimethoxylsilyl propylmethacrylate (TMSPM) and methacryloylamido serine (MASE), methacryloylamido histidine (MAH), methacryloylamido glutamic acid (MAGA) monomers, and p-nitrophenyl palmitate (p-NPP) which is a substrate of lipase as a template molecule, which enables the creation of lipase active region. The resulting hybrid superparamagnetic nanotraps are magnetically separable, highly active, and stable under harsh conditions. In this study, the advantages of high selectivity of molecular imprinting technique have used to get mimic lipase for the synthesis of methyl jasmonate and methyl oleate.

  14. Different patterns of postprandial lipoprotein metabolism in normal, type IIa, type III, and type IV hyperlipoproteinemic individuals. Effects of treatment with cholestyramine and gemfibrozil.

    Weintraub, M S; Eisenberg, S; Breslow, J L

    1987-01-01

    To study exogenous fat metabolism, we used the vitamin A-fat loading test, which specifically labels intestinally derived lipoproteins with retinyl palmitate (RP). Postprandial RP concentrations were followed in total plasma, and chylomicron (Sf greater than 1,000) and nonchylomicron (Sf less than 1,000) fractions. In normal subjects postprandial lipoproteins were present for more than 14 h, and chylomicron levels correlated inversely with lipoprotein lipase activity and fasting high density ...

  15. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion. PMID:26132857

  16. Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation

    Laranjinha, João; Cadenas, Enrique

    1999-01-01

    This study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models w...

  17. Fatty Acid Synthase and Hormone-sensitive Lipase Expression in Liver Are Involved in Zinc-α2-glycoprotein-induced Body Fat Loss in Obese Mice

    Feng-ying Gong; Jie-ying Deng; Hui-juan Zhu; Hui Pan; Lin-jie Wang; Hong-bo Yang

    2010-01-01

    Objective To explore the effects of zinc-a2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HFD)-induced obesity in mice and the possible mechanism.Methods Thirty-six male mice were fed with standard food (SF) (n=9) and HFD (n=27), respec-tively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone-sensitive lipase (HSL) in liver tissue were de-termined by reverse transcription-polymerase chain reaction.Results Serum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51±0.10 AU vs. 0.75±0.07 AU, P<0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r =-0.56, P<0.001), epididymal fat mass (r=-0. 67, P<0.001), percentage of epididymal fat (r=-0.65, P<0.001 ), and increased weight (r=-0.57, P<0.001) in simple SF-and HFD-fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididy-mal fat. Furthermore, FAS mRNA expression decreased (P<0.01) and HSL mRNA expression increased (P<0.001) in the liver in ZAG over-expressing mice.Conclusions ZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and in-creased HSL expression in the liver of obese mice.

  18. The Collaborative Study on the Enzymatic Analysis of Positional Distribution of Short- and Medium-chain Fatty Acids in Milk Fat Using Immobilized Candida antarctica Lipase B.

    Yoshinaga, Kazuaki; Sato, Shinichi; Sasaki, Ryo; Asada, Mihoko; Hori, Ryuji; Imagi, Jun; Miyazaki, Yosuke; Nagai, Toshiharu; Saito, Katsuyoshi; Sano, Takashi; Sasaki, Akiko; Sato, Chiemi; Tsukahara, Yuki; Yamashita, Atsushi; Watanabe, Shimpei; Watanabe, Yomi

    2016-04-01

    The positional distributions of fatty acids (FAs) in milk fat containing short- and medium-chain FAs were analyzed by sn-1(3)-selective transesterification of triacylglycerols (TAGs) with ethanol using immobilized Candida antarctica lipase B (CALB), in a collaborative study conducted by 10 laboratories. The mean C4:0, C6:0, and C8:0 FA contents, when analyzed as propyl esters (PEs) using gas chromatography (GC) with a DB-23 capillary column, were found to be 3.0, 2.0, and, 1.3 area%, respectively. Their reproducibility standard deviations were 0.33, 0.18, and 0.19, respectively. The mean C4:0, C6:0, and C8:0 contents at the sn-2 position were 0.3, 0.4, and 1.0 area%, respectively. Their reproducibility standard deviations were 0.17, 0.11, and 0.19, respectively. The reproducibility standard deviations of C4:0, C6:0, and C8:0 FAs at the sn-2 position were either the same as or smaller than those for milk fat, although the FA contents at the sn-2 position were smaller than those in the milk fat. Therefore, it was concluded that the CALB method for estimating the regiospecific distribution is applicable to TAGs containing short- and medium-chain FAs. When estimating the short-chain (SC) FA contents in fats and oils by GC, it is better to analyze SCFAs as PEs or butyl esters, and not as methyl esters, in order to prevent loss of SCFAs during the experimental procedure because of their volatility and water solubility. This study also revealed that the stationary phase of the GC capillary column affected the flame ionization detector (FID) response of SCFAs. The theoretical FID correction factor (MWFA / active carbon number / atomic weight of carbon) fitted well with the actual FID responses of C4:0-C12:0 FAs when they were analyzed as PEs using a DB-23 column; however, this was not the case when the GC analysis was performed using wax-type columns. PMID:26972465

  19. FGF21 Lowers Plasma Triglycerides by Accelerating Lipoprotein Catabolism in White and Brown Adipose Tissues.

    Schlein, Christian; Talukdar, Saswata; Heine, Markus; Fischer, Alexander W; Krott, Lucia M; Nilsson, Stefan K; Brenner, Martin B; Heeren, Joerg; Scheja, Ludger

    2016-03-01

    FGF21 decreases plasma triglycerides (TGs) in rodents and humans; however, the underlying mechanism or mechanisms are unclear. In the present study, we examined the role of FGF21 in production and disposal of TG-rich lipoproteins (TRLs) in mice. Treatment with pharmacological doses of FGF21 acutely reduced plasma non-esterified fatty acids (NEFAs), liver TG content, and VLDL-TG secretion. In addition, metabolic turnover studies revealed that FGF21 facilitated the catabolism of TRL in white adipose tissue (WAT) and brown adipose tissue (BAT). FGF21-dependent TRL processing was strongly attenuated in CD36-deficient mice and transgenic mice lacking lipoprotein lipase in adipose tissues. Insulin resistance in diet-induced obese and ob/ob mice shifted FGF21 responses from WAT toward energy-combusting BAT. In conclusion, FGF21 lowers plasma TGs through a dual mechanism: first, by reducing NEFA plasma levels and consequently hepatic VLDL lipidation and, second, by increasing CD36 and LPL-dependent TRL disposal in WAT and BAT. PMID:26853749

  20. Lipoprotein(a)

    Langsted, Anne; Kamstrup, Pia R; Nordestgaard, Børge G

    2014-01-01

    OBJECTIVE: There are no recommendations in guidelines on measuring lipoprotein(a) in the fasting or nonfasting state, or on the influence of inflammation. We tested the hypotheses that lipoprotein(a) levels change only minimally in response to normal food intake, and to inflammation. Also, we......(a) levels did not change in response to normal food intake: median fasting levels were 17.3 mg/dL, while median levels at 3-4 h since last meal were 19.4 mg/dL(p = 0.38). Lipoprotein(a) levels increased minimally with increasing levels of C-reactive protein(CRP): median lipoprotein(a) levels at CRP <1 mg...... tested whether normal food intake or inflammation influenced lipoprotein(a)'s ability to predict ischemic heart disease. METHODS: We studied 34 829 individuals from the Danish general population using the Copenhagen General Population Study and the Copenhagen City Heart Study. RESULTS: Lipoprotein...

  1. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    Korman, Tyler P; Sahachartsiri, Bobby; Charbonneau, David M.; Huang, Grace L.; Beauregard, Marc; Bowie, James U.

    2013-01-01

    Abstract Background Biodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed transesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, ...

  2. The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk.

    Kurtovic, Ivan; Marshall, Susan N; Cleaver, Helen L; Miller, Matthew R

    2016-05-15

    The aim of this research was to determine the potential of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. The lipase was immobilised on hydrophobic resin (Toyopearl® Butyl) and used to hydrolyse milk lipids in a batch reactor. The lipase was stable when immobilised and there was no significant resin fouling or enzyme inhibition between cycles. Eight cycles were achieved before the hydrolysis rate dropped significantly because of physical losses of the immobilised lipase. The immobilised lipase showed the highest specificity towards short-chain fatty acids butanoic and hexanoic acids, the main dairy product flavour and odour compounds. Based on the performance of the reactor, and the ability of the lipase to alter free fatty acid composition and sensory characteristics of milk, the immobilised salmon lipase has potential applications in developing dairy products with unique flavours. PMID:26775978

  3. NEW LIPASE-PRODUCERS MICROORGANISMS FROM PERUVIAN AMAZONIA WHICH HYDROLYZE PALM OIL AND DERIVATIVES

    Roxana Trujillo

    2014-04-01

    Full Text Available Two yeasts: Cryptococcus uchicensis TMY9 and Pichia uchicensis TMY10 and one fungus Verticillium tingalensis TMFMB are described for the first time as lipase producer microorganisms. The strains have been isolated after an ecological screening in a palm oil industry. The yeasts- C. uchicensis and Pichia uchicensis - mainly produce extracellular lipases as active as those produced by traditional lipase producing microorganisms. The extracellular lipases are active in the hydrolysis of crude palm oil and its industrial derivatives. Contrarily in the isolated fungus, the lipase mainly remains bonded to biomass. In all cases, greater hydrolytic activities are observed in the hydrolysis of palm olein and super-olein than with saturated substrates as stearine. P. uchicensis lipase shows moderated selectivity versus saturated acid triglycerides compared to substrates with high proportion of oleic acid (olein or superolein. The opposite behavior is observed with C. uchicensis and fungal lipases. P. uchicensis produces a more active crude lipase than C. uchicensis with lower biomass production. The kinetic runs performed with crude yeast lipases suggest a three steps mechanism where the high penetration of lipase in the fat gouts favors the hydrolysis.

  4. 血清脂蛋白脂肪酶含量与帕金森病患者不同认知损伤程度的相关性分析%Analysis of the Correlation Between Serum Lipoprotein Lipase and Different Cognitive Impairment Extent of PD Patients

    李普蕾; 杨静婷; 恽文伟

    2013-01-01

    [目的]探讨血清脂蛋白脂肪酶(L PL )水平与帕金森病(PD )患者认知损伤程度的相关性。[方法]采用简易精神状态评价量表(MMSE)与蒙特利尔认知评估(MoCA)评价 PD患者认知能力,分为无认知障碍、轻度认知障碍与重度认知障碍,检测不同PD患者血清LPL水平和血脂代谢产物水平,分析LPL水平与认知损伤程度的相关性,并与90名健康体检者相关检测指标水平对照。[结果]无认知障碍的PD患者血清L PL水平与健康体检者比较无显著性差异( P>0.05),有认知障碍的PD患者血清L PL水平较健康对照显著性下降( P<0.05);轻度认知障碍与重度认知障碍患者LPL水平比较无显著性差异( P >0.05)。不同组间血脂代谢产物水平无显著性差异( P >0.05)。[结论]血清L PL水平的降低可能与 PD患者的认知能力下降有关。%[Objective]To explore the correlation between serum lipoprotein lipase (LPL ) and cognitive impairment ex-tent of patients with Parkinson's disease(PD) .[Methods]MMSE and MoCA were used to evaluate the cognitive function of PD patients .The cognitive function was divided into no cognitive impairment ,mild cognitive impairment and severe cognitive impairment .Serum LPL and blood lipid metabolites of PD patients were detected .The correlation between LPL and cognitive impairment extent was analyzed .Meanwhile ,90 healthy volunteers were collected and taken as the controls .[Results]There was no significant difference in serum LPL between PD patients without cognitive impairment and healthy controls ( P >0 .05) .Compared with healthy controls ,serum LDL of PD patients with cognitive impairment was markedly decreased ( P0 .05) .There was no significant difference in blood lipid metabolites among different groups .[Conclusion]The decreasing of serum LPL may be correlated with the decreasing of cognitive ability of PD patients .

  5. Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes*

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M.; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-01-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS ...

  6. Comparison of Carbohydrate Compositions of Total Apolipoproteins in Lipoproteins

    Güldür, Tayfun; OZAN, Sema; İLERİ, Tülay

    1998-01-01

    Terminal carbohydrate moieties of apolipoproteins of lipoproteins in human and goat serum were ascertained and compared. Apolipoproteins of b+pre-b (apolipoprotein B containing lipoproteins) and a lipoproteins separated by phosphotungstic acid/MgCl2 precipitation method were applied to SDS-PAGE and blotted onto nitrocellulose membrane. Digoxigenin labelled lectins, each of which recognizes a specific sugar sequence, were incubated with apolipoproteins immobilized on a western blot membrane to...

  7. Production of Ricinoleic Acid from Castor Oil by Free Lipase-mediated Hydrolysis%游离脂肪酶催化蓖麻油制备蓖麻油酸

    杨威; 杜伟; 刘德华

    2014-01-01

    游离脂肪酶与固定化脂肪酶相比具有成本低、反应速率快等优势,是油脂化工中新的研究方向。前期研究表明,游离脂肪酶NS81006能高效催化多种油脂水解,进一步研究其对含独特羟基的绿色石油材料蓖麻油的水解过程,对于促进游离脂肪酶在新能源领域的应用具有重要意义。本文对影响游离脂肪酶NS81006催化蓖麻油水解过程的主要因素,温度、酶用量、水用量和搅拌速率进行了研究和优化,在优化后的条件下48 h水解率可达94.8%,且发现通过离心分离可有效实现NS81006的重复使用,连续回用5个批次,游离脂肪酶仍能有效催化水解反应。而对比高温高压法水解蓖麻油,发现游离脂肪酶NS81006具有明显优势。%Compared to immobilized lipase, free lipase has the merits of lower cost and faster reaction rate, which is a rising research orientation in oil chemical industry. The previous study showed that free lipase NS81006 is capable of efficiently hydrolyzing oil to fatty acids. Further study on its unique hydrolysis process of castor oil, an environmentally friendly hydroxyl oil, is of great importance for its application in new energy. By means of optimizing the main influence factors of the castor oil hydrolysis catalyzed by NS81006 involving temperature, enzyme dosage, water usage, and stirring speed, 98. 4% degree of hydrolysis was achieved under the optimum conditions at 48 h. The free lipase could be reused after centrifugation and maintained high catalytic efficiency in 5 consecutive recovery batches. It was also found that enzyme catalysis has obvious advantage in castor oil hydrolyzation compared with HTHP .

  8. Microbial lipases: Production, properties and biotechnological applications

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  9. FACTORS INFLUENCING SYNTHESIS OF EXTRACELLULAR LIPASES BY YARROWIA LIPOLYTICA IN MEDIUM CONTAINING VEGETABLE OILS

    Agata Urszula Fabiszewska; Ewa Białecka-Florjańczyk

    2014-01-01

    The aim of this study was to evaluate lipase activity of Yarrowia lipolytica KKP 379 in media containing selected vegetable oils as the sole carbon source. The highest activity for extracellular Yarrowia lipolytica lipases was obtained in a corn oil medium, which was almost two times higher compared to lipase activity in olive oil medium, while the lowest lipolytic activity was observed in medium containing rice and peanut oils. Literature suggested that free fatty acids, especially oleic aci...

  10. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Patrícia de O. Carvalho

    2005-08-01

    Full Text Available Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S-active acid (ee = 6.1% and conversion value (c = 20% in the esterification of (R,S-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2 and commercial lipase from Candida antarctica (E = 20 were employed.

  11. Lipase inactivation in wheat germ by gamma irradiation

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  12. Characterization of Cross-Linked Lipase Aggregates

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2009-01-01

    Commercially available microbial lipases from different sources were immobilized as cross-linked enzyme aggregates (CLEAs) using different precipitants and glutaraldehyde as cross-linkers. These CLEAs were assayed based on esterification between lauric acid and n-propanol in solvent-free systems....... change upon CLEA formation. This work presents a characterization of CLEAs based on an esterification activity assay, which is useful for exploring the synthetic application potential of CLEA technology with favorable perspectives....

  13. Hypolipidemic Activity of Protocatechuic Acid in Atherogenic Diet Induced Hyperlipidemic Rats

    Borate AR

    2012-02-01

    Full Text Available Hyperlipidemia is an abnormally high level of fatty substances called lipids, largely cholesterol andtriglycerides, in the blood. The present study was designed to investigate the hypolipidemic effects ofProtocatechuic acid in atherogenic diet induced hyperlipidemia. In atherogenic diet inducedhyperlipidemic model, the rats receiving treatment of Protocatechuic acid at the dose of 25 and 50mg/kg showed significant reduction in total cholesterol, triglyceride, total protein and elevation in highdensity lipoprotein cholesterol. Hence by considering the effects observed in this model, it has beensuggested that Protocatechuic acid was found to possess significant hypolipidemic activity, this may bedue to its effect on increasing the metabolism of the cholesterol by activating lipoprotein lipase or byincreasing reverse cholesterol transport.

  14. Characterization and catalytic properties of free and silica-bound lipase: a comparative study.

    Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2014-01-01

    In the present study, the commercial lipase from Himedia, Mumbai was immobilized on silica gel matrix in the presence of a cross-linking agent, glutaraldehyde. The silica immobilized lipase exposed to 2% glutaraldehyde showed 94.28% binding efficiency. The activities of the free and immobilized enzymes were investigated in the hydrolysis reaction of p-nitrophenyl palmitate. The activities of the free and the immobilized lipases were measured at different pH values and temperatures, and their thermal stability was also determined. The free and silica immobilized lipase possessed optimum hydrolytic activity at 40°C, pH 8.0 at 10 minutes of reaction time. Among p-nitrophenyl esters of fatty acids of different chain lengths, both free and silica immobilized showed maximum activity towards p-NPP with measured Km of free and immobilized lipase was found at 0.13 and 0.349 mM respectively whereas the Vmax of free and immobilized lipase was 5.08 μmol/min/mL and 10.38 μmol/min/mg respectively. The lipase activity was found to be stimulated only in the presence of Cu(2+) ions whereas other metal ions inhibited activity of the lipase. The silica immobilized lipase was quite stable at 55°C and 60°C. The immobilized lipase was recycled up to 6(th) cycle and it retained 52% of its original activity up to 5(th) cycle. PMID:24829134

  15. Lipase as a marker enzyme for bioassays

    The detection of various biochemical analytes is usually carried out after the biorecognition with labeled molecules. The most common label is still the radioactivity. However, the short half-life and health hazard of the radionuclides make the non-radioactive labels more popular. The fluorescence and chemiluminescence markers allow direct measurements, but they are not as sensitive as the enzymatic labels. Enzyme labels are the most sensitive non-radioactive markers and in combination with suitable colorimetric or chemiluminescence substrates the same detection limits as with radioactivity can be achieved. Direct enzyme markers offer not only a high sensitivity, but also a low background and non problematic and fast detection. The most commonly used enzymatic labels are horse-radish peroxidase and the alkaline phosphatase. In this work a new enzymatic label, lipase from Candida rugosa, was introduced. This 60 kDa large protein from the group of hydrolases is more active then the commercially available enzymes. In this thesis the most important characteristics of the lipase were characterized: specific activity, substrate specificity, temperature stability, pH optimum, storage stability and influence of detergents an the protein. The lipase was used for the labeling of short oligonucleotides (20-30 nucleotides long). The labeling was carried out through a terminal pending reactive group not to prevent the formation of hybrids during the hybridization process. The hybridization with labeled oligonucleotides is a fast process in comparison to the hybridization with long nucleic acids. This process takes place in simple working solutions at relatively low temperatures. Under these condition lipase remains active and stable, which leads to high signals. According to the high stability of lipase under working conditions, wide pH optimum and extreme high specific activity in comparison to the commonly used enzyme labels make it possible to open new perspectives for

  16. The role of a conserved acidic residue in calcium-dependent protein folding for a low density lipoprotein (LDL)-A module: implications in structure and function for the LDL receptor superfamily.

    Guo, Ying; Yu, Xuemei; Rihani, Kayla; Wang, Qing-Yin; Rong, Lijun

    2004-04-16

    One common feature of the more than 1,000 complement-type repeats (or low density lipoprotein (LDL)-A modules) found in LDL receptor and the other members of the LDL receptor superfamily is a cluster of five highly conserved acidic residues in the C-terminal region, DXXXDXXDXXDE. However, the role of the third conserved aspartate of these LDL-A modules in protein folding and ligand recognition has not been elucidated. In this report, using a model LDL-A module and several experimental approaches, we demonstrate that this acidic residue, like the other four conserved acidic residues, is involved in calcium-dependent protein folding. These results suggest an alternative calcium coordination conformation for the LDL-A modules. The proposed model provides a plausible explanation for the conservation of this acidic residue among the LDL-A modules. Furthermore, the model can explain why mutations of this residue in human LDL receptor cause familial hypercholesterolemia. PMID:14749324

  17. Lipoprotein lipase and endothelial lipase in human testis and in germ cell neoplasms

    Nielsen, J E; Lindegaard, M L; Friis-Hansen, L;

    2009-01-01

    carcinoma. The results suggest that both EL and LPL participate in the supply of nutrients and steroidogenesis in the testes, and that especially EL may be important for the supply of cholesterol for testosterone production in the Leydig cells. The partial cellular separation of the expression of the two...

  18. Cloning and Expression of Aspergillus tamarii FS132 Lipase Gene in Pichia pastoris

    Bihong Shi; Liqing Zeng; Haolei Song; Qiaoqin Shi; Songgang Wu

    2010-01-01

    A lipase gene (atl) was cloned from Aspergillustamarii FS132 for the first time. The gene was found to have an open reading frame of 1024 base pairs (bp), and the coding region of the gene contained two introns (51 bp and 52 bp). Multi-alignment analysis of the deduced amino acid sequence indicated high homology between the enzyme and mono- and diacylglycerol lipases from fungi Aspergillus. The recombinant lipase was expressed in Pichia pastoris GS115 cells. The recombinant lipase was found t...

  19. Optimasi Produksi Enzim Lipase dari Bakteri Sumber Air Panas Tamalantik, Mamasa Sulawesi Barat

    Tunggala, Stephanie; Natsir, Hasnah; Hariani, Nunuk

    2014-01-01

    Lipase (EC 3.1.1.3) is one of class hydrolase enzymes that can hydrolyze triglycerides into fatty acids and glycerol. This research determine the optimum conditions of lipase production from Bacillus isolates sp.TM_2a.2 which isolated from hot spring Tamalantik, Mamasa, West Celebes with Various of substrat concentration (olive oil) is 0.2%, 0.4%, 0, 6%, 0.8% and 1%. The activity of lipase production was tested by titrimetric method. The results show that the lipase produced optimum at subst...

  20. Lycopene stabilizes lipoprotein levels during D-galactosamine/lipopolysaccharide induced hepatitis in experimental rats

    Sheik Abdulazeez Sheriff; Thiruvengadam Devaki

    2012-01-01

    Objective: To investigate the effect of lycopene on lipoprotein metabolism during D-galactosamine/lipopolysaccharide (D-Gal/LPS) induced hepatitis in experimental rats. Methods: The efficacy of lycopene was validated during D-Gal/LPS induced hepatitis by analyzing the activity of lipid metabolizing enzymes such as lipoprotein lipase (LPL), lecithin-cholesterol acyl transferase (LCAT) and hepatic triglyceride lipase (HTGL). Lipo protein analyses were done by the estimation of very low density lipoprotein cholesterol (VLDL), low density lipoprotein cholesterol (LDL) and high density lipoprotein cholesterol (HDL). Results: The toxic insult of D-galactosamine/lipopolysaccharide (D-Gal/LPS) in experimental group of animals reduces the normal values of lipid metabolizing enzymes due to liver injury. The significant drop in the levels of HDL and concomitant increase in the values of VLDL and LDL were observed. The pretreatment of lycopene restore these altered values to near normal level in experimental group of animals. Conclusions: In the light of results, it can be concluded that administration lycopene stabilizes the lipoprotein levels by regulating the lipid metabolizing enzymes through its antioxidant defense and helps to maintain the normal lipid metabolism during toxic injury in liver.

  1. Acrolein consumption induces systemic dyslipidemia and lipoprotein modification

    Aldehydes such as acrolein are ubiquitous pollutants present in automobile exhaust, cigarette, wood, and coal smoke. Such aldehydes are also constituents of several food substances and are present in drinking water, irrigation canals, and effluents from manufacturing plants. Oral intake represents the most significant source of exposure to acrolein and related aldehydes. To study the effects of short-term oral exposure to acrolein on lipoprotein levels and metabolism, adult mice were gavage-fed 0.1 to 5 mg acrolein/kg bwt and changes in plasma lipoproteins were assessed. Changes in hepatic gene expression related to lipid metabolism and cytokines were examined by qRT-PCR analysis. Acrolein feeding did not affect body weight, blood urea nitrogen, plasma creatinine, electrolytes, cytokines or liver enzymes, but increased plasma cholesterol and triglycerides. Similar results were obtained with apoE-null mice. Plasma lipoproteins from acrolein-fed mice showed altered electrophoretic mobility on agarose gels. Chromatographic analysis revealed elevated VLDL cholesterol, phospholipids, and triglycerides levels with little change in LDL or HDL. NMR analysis indicated shifts from small to large VLDL and from large to medium-small LDL with no change in the size of HDL particles. Increased plasma VLDL was associated with a significant decrease in post-heparin plasma hepatic lipase activity and a decrease in hepatic expression of hepatic lipase. These observations suggest that oral exposure to acrolein could induce or exacerbate systemic dyslipidemia and thereby contribute to cardiovascular disease risk.

  2. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia.

    Backes, James; Anzalone, Deborah; Hilleman, Daniel; Catini, Julia

    2016-01-01

    Hypertriglyceridemia (triglycerides > 150 mg/dL) affects ~25 % of the United States (US) population and is associated with increased cardiovascular risk. Severe hypertriglyceridemia (≥ 500 mg/dL) is also a risk factor for pancreatitis. Three omega-3 fatty acid (OM3FA) prescription formulations are approved in the US for the treatment of adults with severe hypertriglyceridemia: (1) OM3FA ethyl esters (OM3EE), a mixture of OM3FA ethyl esters, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Lovaza®, Omtryg™, and generics); (2) icosapent ethyl (IPE), EPA ethyl esters (Vascepa®); and (3) omega-3 carboxylic acids (OM3CA), a mixture of OM3FAs in free fatty acid form, primarily EPA, DHA, and docosapentaenoic acid (Epanova®). At approved doses, all formulations substantially reduce triglyceride and very-low-density lipoprotein levels. DHA-containing formulations may also increase low-density lipoprotein cholesterol. However, this is not accompanied by increased non-high-density lipoprotein cholesterol, which is thought to provide a better indication of cardiovascular risk in this patient population. Proposed mechanisms of action of OM3FAs include inhibition of diacylglycerol acyltransferase, increased plasma lipoprotein lipase activity, decreased hepatic lipogenesis, and increased hepatic β-oxidation. OM3CA bioavailability (area under the plasma concentration-time curve from zero to the last measurable concentration) is up to 4-fold greater than that of OM3FA ethyl esters, and unlike ethyl esters, the absorption of OM3CA is not dependent on pancreatic lipase hydrolysis. All three formulations are well tolerated (the most common adverse events are gastrointestinal) and demonstrate a lack of drug-drug interactions with other lipid-lowering drugs, such as statins and fibrates. OM3FAs appear to be an effective treatment option for patients with severe hypertriglyceridemia. PMID:27444154

  3. Modeling of an immobilized lipase tubular reactor for the production of glycerol and fatty acids from oils; Modelado de un reactor tubular de lipasas inmovilizadas para la produccion de glicerol y acidos grasos a partir de aceites

    Oddone, S.; Grasselli, M.; Cuellas, A.

    2010-07-01

    Advances in the design of a bioreactor in the fats and oils industry have permitted the hydrolysis of triglycerides in mild conditions and improved productivity while avoiding the formation of unwanted byproducts. The present work develops a mathematical model that describes the hydrolytic activity of a tubular reactor with immobilized lipases for the production of glycerol and fatty acids from the oil trade. Runge Kuttas numerical method of high order has been applied, considering that there is no accumulation of the substratum in the surface of the membrane, where the enzyme is. At the same time, different equations based on the kinetic model of Michaelis Mentens and the Ping-Pong bi-bi mechanism were examined. Experimental data in discontinuous systems are the basis for the development of the quantitative mathematical model that was used to simulate the process computationally. The obtained results allow for optimizing both the operative variables and the economic aspects of industrial processes. (Author)

  4. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration.

    Morcillo, F; Cros, D; Billotte, N; Ngando-Ebongue, G-F; Domonhédo, H; Pizot, M; Cuéllar, T; Espéout, S; Dhouib, R; Bourgis, F; Claverol, S; Tranbarger, T J; Nouy, B; Arondel, V

    2013-01-01

    The oil palm fruit mesocarp contains high lipase activity that increases free fatty acids and necessitates post-harvest inactivation by heat treatment of fruit bunches. Even before heat treatment the mesocarp lipase activity causes consequential oil losses and requires costly measures to limit free fatty acids quantities. Here we demonstrate that elite low-lipase lines yield oil with substantially less free fatty acids than standard genotypes, allowing more flexibility for post-harvest fruit processing and extended ripening for increased yields. We identify the lipase and its gene cosegregates with the low-/high-lipase trait, providing breeders a marker to rapidly identify potent elite genitors and introgress the trait into major cultivars. Overall, economic gains brought by wide adoption of this material could represent up to one billion dollars per year. Expected benefits concern all planters but are likely to be highest for African smallholders who would be more able to produce oil that meets international quality standards. PMID:23857501

  5. Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae.

    Huge-Jensen, B; Andreasen, F; Christensen, T; Christensen, M; Thim, L; Boel, E

    1989-09-01

    The cDNA encoding the precursor of the Rhizomucor miehei triglyceride lipase was inserted in an Aspergillus oryzae expression vector. In this vector the expression of the lipase cDNA is under control of the Aspergillus oryzae alpha-amylase gene promoter and the Aspergillus niger glucoamylase gene terminator. The recombinant plasmid was introduced into Aspergillus oryzae, and transformed colonies were selected and screened for lipase expression. Lipase-positive transformants were grown in a small fermentor, and recombinant triglyceride lipase was purified from the culture broth. The purified enzymatically active recombinant lipase (rRML) secreted from A. oryzae was shown to have the same characteristics with respect to mobility on reducing SDS-gels and amino acid composition as the native enzyme. N-terminal amino acid sequencing indicated that approximately 70% of the secreted rRML had the same N-terminal sequence as the native Rhizomucor miehei enzyme, whereas 30% of the secreted rRML was one amino acid residue shorter in the N-terminal. The recombinant lipase precursor, which has a 70 amino acid propeptide, is thus processed in and secreted from Aspergillus oryzae. We have hereby demonstrated the utility of this organism as a host for the production of recombinant triglyceride lipases. PMID:2586234

  6. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  7. Synthesis of Wax Esters by Lipase-catalyzed Esterification with Immobilized Lipase from Candida sp. 99-125

    邓利; 王晓静; 聂开立; 王芳; 刘军峰; 王璞; 谭天伟

    2011-01-01

    Wax esters were synthesized in a solvent free system catalyzed by immobilized lipase from Candida sp. 99-125, with oleic acid and cetyl alcohol. The effects of substrate molar ratio, lipase dosage and water removal were investigated in a 50 ml flask incubated in a thermostatic cultivation cabinet. The optimized conditions were: temperature 40 ℃, shaking at 170 r·min-1, acid/alcohol molar ratio 1:0.9, lipase dosage in 10% (by mass) of oleic acid, and open reaction for water removal. As a result, the conversion rate reached 98% for reaction of 8 h. The volume of reactor was scaled up to 1 L three-neck flask. The optimized parameters were: 200 r·min-1 agitation speed, 2.5% (by mass) lipase dosage, others were the same as the parameters described above. The conversion rate reached 95% for reaction of 24 h. The lipase retained 46% conversion rate after reuse for 6, 7 batches. The products were purified by removing remained cetyl alcohol and fatty acids with ethanol and saturated sodium carbonate so-lution, respectively. The purity of the wax ester, cetyl oleate, was 96%. The physical and chemical properties of cetyl oleate were tested and compared with those of jojoba oil. The results show that the product cetyl oleate has great potential to use as the substitute of natural jojoba oil.

  8. Biodiesel production by transesterification using immobilized lipase.

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production. PMID:23247566

  9. Inhibitors of pancreatic lipase

    Lunagariya, Nitin A.; Patel, Neeraj K.; Jagtap, Sneha C.; Bhutani, Kamlesh K.

    2014-01-01

    Obesity is a disorder of lipid metabolism and continues to be a global problem, ranking fifth for deaths worldwide. It also leads to diabetes, cardiovascular disorders, musculoskeletal disorders and some types of cancer. Obesity is regarded as the output of a long-term imbalance between energy intake and energy expenditure. Digestion and absorption of dietary lipids by pancreatic lipase, a major source of excess calorie intake, can be targeted for development of anti-obesity agents. Being the...

  10. BIOCHEMISTRY AND BIOENGINEERING ‘‘NEW APPLICATION OF LIPASES IN LIPID TRANSFORMATION’’ Enzyme-catalysed enrichment of n-3 polyunsaturated fatty acids of salmon oil: optimisation of reaction conditions

    Linder Michel

    2001-01-01

    Full Text Available Extraction and concentration of polyunsaturated fatty acid from salmon oil (Salmo salar by enzymatic hydrolysis were studied. Enzymatic aqueous extraction of oil with Neutrase® 0.5l was applied to the salmon flesh in batch reactor. Reaction kinetics were monitored under nitrogen by measuring the degree of hydrolysis (DH% using the pH-stat method, in order to preserve the functional and nutritional values of hydrolysates. Lipids were separated by centrifugation yielding 14.3% (w/w for the product, compared to 15.2% (w/w obtained using the classical method with solvent. Lipase hydrolysis by Novozym® SP 398, a specific sn-1, sn-3 enzyme, and membrane filtration, were evaluated as means of selectively concentrating polyunsaturated fatty acids (PUFA fractions. A Doehlert matrix was used to study the effect of reaction time, flow and enzyme/protein ratio. Quadratic models were used to generate response surfaces of the liberation of fatty acids during the lipolysis and the composition of major saturated and polyunsaturated fatty acids in the permeate.

  11. Research progress of lipase-catalyzed synthesis of L-ascorbyl organic acid ester%脂肪酶催化合成L-抗坏血酸有机酸酯的研究进展

    蒋相军; 胡燚; 刘维明; 黄和

    2011-01-01

    To broaden the applications of L-ascorbic acid, it is an economical and feasible way to convert L-aseorbic acid into L-ascorbyl organic acid ester. The recent research progress of enzymatic synthesis of L-ascorbyl organic acid ester is summarized, by focusing on enzymatic synthesis of L-ascorbyl saturated fatty acid ester, unsaturated fatty acid ester and mixed fatty acid ester in organic solvents. The types of lipase, organic solvents and methods of separation and purification in the synthesis are discussed. Furthermore, the prospect of enzymatic synthesis of L-ascorbyl organic acid ester is also presented.%为了拓宽L-抗坏血酸酯在维护人体健康中的应用,将L-抗坏血酸转化成L-抗坏血酸酯是经济可行的手段。综述了近年来酶催化L-抗坏血酸有机酸酯的研究进展,重点介绍了有机相中L-抗坏血酸饱和脂肪酸酯、不饱和脂肪酸酯、脂肪酸混合酯的酶促合成,对于酶的种类、有机溶剂的选择及分离纯化方法进行了探讨,并对酶催化L-抗坏血酸有机酸酯合成前景进行了展望。

  12. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.; Petersen, M.; Høy, Carl-Erik; Lund, Pia; Sandstrøm, B.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... design, 17 healthy young men replaced part of their habitual dietary fat intake with 70 g MCTs (66% 8:0 and 34% 10:0) or high-oleic sunflower oil (89.4% 18:1). Each intervention period lasted 21 d, and the 2 periods were separated by a washout period of 2 wk. Blood samples were taken before and after the...... intervention periods. Results: Compared with the intake of high-oleic sunflower oil, MCT intake resulted in 11% higher plasma total cholesterol (P = 0.0005), 12% higher LDL cholesterol (P = 0.0001), 32% higher VLDL cholesterol (P = 0.080), a 12% higher ratio of LDL to HDL cholesterol (P = 0.002), 22% higher...

  13. pH-responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy

    Shin JY

    2012-06-01

    Full Text Available Jae-Yoon Shin,1,* Yoosoo Yang,1,* Paul Heo,1 Ji-Chun Lee,1 ByoungJae Kong,1 Jae Youl Cho,1 Keejung Yoon,1 Cheol-Su Shin,2 Jin-Ho Seo,3 Sung-Gun Kim,4 Dae-Hyuk Kweon11Department of Genetic Engineering, College of Biotechnology and Bioengineering, and Center for Human Interface Nano Technology, Sungkyunkwan University, 2APTech Research Center, Suwon, 3Department of Agricultural Biotechnology, Seoul National University, Seoul, 4Department of Biomedical Science, Youngdong University, Chungbuk, South Korea*These authors contributed equally to this workBackground: Nanoparticles undergoing physicochemical changes to release enclosed drugs at acidic pH conditions are promising vehicles for antitumor drug delivery. Among the various drug carriers, high-density lipoprotein (HDL-like nanoparticles have been shown to be beneficial for cancer chemotherapy, but have not yet been designed to be pH-responsive.Methods and results: In this study, we developed a pH-responsive HDL-like nanoparticle that selectively releases paclitaxel, a model antitumor drug, at acidic pH. While the well known HDL-like nanoparticle containing phospholipids, phosphatidylcholine, and apolipoprotein A-I, as well as paclitaxel (PTX-PL-NP was structurally robust at a wide range of pH values (3.8–10.0, the paclitaxel nanoparticle that only contained paclitaxel and apoA-I selectively released paclitaxel into the medium at low pH. The paclitaxel nanoparticle was stable at physiological and basic pH values, and over a wide range of temperatures, which is a required feature for efficient cancer chemotherapy. The homogeneous assembly enabled high paclitaxel loading per nanoparticle, which was 62.2% (w/w. The molar ratio of apolipoprotein A-I and paclitaxel was 1:55, suggesting that a single nanoparticle contained approximately 110 paclitaxel particles in a spherical structure with a 9.2 nm diameter. Among the several reconstitution methods applied, simple dilution following sonication

  14. Avaliação e comparação da eficiência de imobilização de lipase pancreática em quitosana para produção de ácidos graxos em frascos agitados = Evaluation and comparison of the efficiency of detention in chitosan pancreatic lipase for production of fatty acids in flasks under shaking

    Rafael Oliveira de Aguiar

    2010-01-01

    Full Text Available A hidrólise enzimática de óleos e gorduras ou lipólise é um processotecnológico que permite a obtenção de ácidos graxos com alto valor agregado e baixo consumo energético. Lipases são enzimas de origem vegetal, animal ou microbiana, que catalisam a hidrólise total ou parcial de óleos e gorduras. Neste estudo, avaliou-se a ação dalipase comercial (pancreatina na reação de hidrólise do óleo de girassol e de milho, num período de 24h. Foram avaliados os principais parâmetros (pH, tempo, temperatura e concentração do substrato, visando expressar, ao máximo, suas atividades catalíticas. O tempo ideal para melhor expressão enzimática nos dois substratos foi de 5 min. Verificou-se que o pH ótimo nos dois substratos utilizados foi de 7,5. A temperatura ótima foi de 50ºCno óleo de girassol e 40ºC no óleo de milho. O efeito da concentração do substrato sobre a atividade foi na concentração de 50% para o óleo de girassol e de 30% para o óleo de milho. A melhor produção de ácidos graxos totais foi de 36,52 g L-1, utilizando o óleo de girassol e de 29,05 g L-1, com o óleo de milho num período de 15h de reação. The enzymatic hydrolysis of oils and fats (or lipolysis is a technological process that allows the attainment of fatty acids with high aggregate value and low energy consumption. Lipases areenzymes of vegetal, animal or microbial origin that catalyze total or partial hydrolysis of oils and fats. This work had as objective to verify the action of commercial lipase in the hydrolysis reaction of the sunflower oil and corn oil, at time of 24h. Analyses of the mainparameters are evaluated (pH, time, temperature and concentration of the substrate, in order to express the maximum of its catalytic activities. The ideal time for better expression of activity in the two substrates was 5 min. It was found that the optimum pH for bothsubstrates was 7.5. The optimum temperature was 50°C in sunflower oil and 40°C in

  15. Purification et fonctionnalisation d’acides gras polyinsaturés Oméga-3 par des lipases et production de lipides structurés

    Casas Godoy, Leticia,

    2012-01-01

    Les lipases sont des enzymes présentant un grand intérêt industriel. L’intérêt de ces enzymes a conduit à caractériser ces enzymes, à mieux comprendre leur mécanisme réactionnel et leur cinétique, et à établir des méthodes efficaces de production en système d’expression homologue et hétérologue. Plus récemment, l’ingénierie enzymatique permet d’améliorer les caractéristiques des enzymes. Ce thèse s’est fixé deux objectifs principaux: premièrement, la purification et la fonctionnalisation d’ac...

  16. Interesterification of butter fat by partially purified extracellular lipases from Pseudomonas putida, Aspergillus niger and Rhizopus oryzae.

    Pabai, F; Kermasha, S; Morin, A

    1995-11-01

    Three extracellular lipases were produced by batch fermentation of Pseudomonas putida ATCC 795, Aspergillus niger CBS 131.52 and Rhizopus oryzae ATCC 34612 during the late phase of growth, at 72, 96 and 96 h, respectively. The lipases were partially purified by (NH4)2SO4 fractionation. The lipase of P. putida was optimal at pH 8.0 whereas those from A. niger and R. oryzae were optimal at pH 7.5. The A. niger lipase had the lowest V max value (0.51×10(-3) U/min) and R. oryzae the highest (1.86×10(-3) U/min). The K m values for P. putida, A. niger and R. oryzae lipases were 1.18, 0.97, and 0.98 mg/ml, respectively. Native PAGE of the partially-purified lipase extracts showed two to four major bands. The interesterification of butter fat by A. niger lipase decreased the water activity as well as the hydrolytic activity. The A. niger lipase had the highest interesterification yield value (26%) and the R. oryzae lipase the lowest (4%). In addition, A. niger lipase exhibited the highest decrease (17%) in long-chain hypercholesterolemic fatty acids (C12:0, C14:0 and C16:0) at the sn-2-position; the P. putida lipase demonstrated the least favourable changes in specificity at the same position. PMID:24415019

  17. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10.

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30°C for 96h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50°C, and substrate concentration of 1.5%. The enzyme was thermostable at 60°C for 1h, and the optimum enzyme-substrate reaction time was 30min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30°C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn(2+), followed by Mg(2+) and Fe(2+). Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation. PMID:26887237

  18. Lipase cocktail for efficient conversion of oils containing phospholipids to biodiesel.

    Amoah, Jerome; Ho, Shih-Hsin; Hama, Shinji; Yoshida, Ayumi; Nakanishi, Akihito; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-07-01

    The presence of phospholipid has been a challenge in liquid enzymatic biodiesel production. Among six lipases that were screened, lipase AY had the highest hydrolysis activity and a competitive transesterification activity. However, it yielded only 21.1% FAME from oil containing phospholipids. By replacing portions of these lipases with a more robust bioFAME lipase, CalT, the combination of lipase AY-CalT gave the highest FAME yield with the least amounts of free fatty acids and partial glycerides. A higher methanol addition rate reduced FAME yields for lipase DF-CalT and A10D-CalT combinations while that of lipase AY-CalT combination improved. Optimizing the methanol addition rate for lipase AY-CalT resulted in a FAME yield of 88.1% at 2h and more than 95% at 6h. This effective use of lipases could be applied for the rapid and economic conversion of unrefined oils to biodiesel. PMID:27019125

  19. Triglyceride selectivity of immobilized Thermomyces lanuginosa lipase in interesterification

    Rønne, Torben Harald; Pedersen, Lars S.; Xu, Xuebing

    2005-01-01

    The triglyceride (fatty acid) selectivity of an immobilized lipase from Thermomyces lanuginosa (Lipozyme TL IM) was investigated in lipase-catalyzed interesterification reactions between two mono-acid TG in n-hexane. Tristearin (tri-C18:0) was used as a reference in a series of TG with saturated FA......-C16:0) and trilaurin (tri-C12:0) in n-hexane. An increase in temperature (40 to 60°C) was found to affect the reactivity of the lipase significantly. The reactivity of Lipozyme TL IM was unaffected by the change in aw from 0.1130 to 0.5289. An increase in aw only led to an increase in FFA formation....

  20. Effect of fermentation conditions on lipase production by Candida utilis

    SANJA Z. GRBAVCIC

    2007-08-01

    Full Text Available A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3 in submerged culture in a universal yeast medium containing 2 % malt extract. Stu­dies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as indu­cers, but higher concentrations of the former (> 0.5 % had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80®. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium.

  1. Lapacho tea (Tabebuia impetiginosa) extract inhibits pancreatic lipase and delays postprandial triglyceride increase in rats.

    Kiage-Mokua, Beatrice Nyanchama; Roos, Nils; Schrezenmeir, Jürgen

    2012-12-01

    Earlier work in our laboratory indicated that ethanolic extracts of Tabebuia impetiginosa, Arctium lappa L., Calendula officinalis, Helianthus annuus, Linum usitatissimum and L. propolis, inhibit pancreatic lipase in vitro. In a follow-up study we assessed their effects on plasma triglycerides in rats fed on a fatty meal. Extracts, orlistat or only ethanol were given orally to the rats together with the test meal and the rate of increase of postprandial triglycerides was assessed over 4 h. Clearing of the triglycerides from the blood compartment was abolished by inhibiting lipoprotein lipase with Triton WR-1339. Our results showed that out of all the extracts, the bark of Tabebuia impetiginosa led to a significant delay in the postprandial increase of plasma triglycerides. However, lapachol, which is contained in the bark of Tabebuia impetiginosa and soluble in ethanol, had no lipase inhibitory effect in vitro and hence this substance did not seem to mediate the pertinent effect. PMID:22431070

  2. Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles

    Lipase was covalently immobilized onto magnetic Fe3O4 nano-particles by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as an activating agent, and the bound lipase was used to catalyze the transesterification of vegetable oils with methanol to produce fatty acid methyl esters. The binding of lipase to magnetic particles was confirmed by enzyme assays, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectra. It was determined that the immobilized lipase exhibited better resistance to temperature and pH inactivation in comparison to free lipase. Using the immobilized lipase, the major parameters affecting the transesterification reaction, such as the alcohol/oil molar ratio, enzyme loading and free fatty acid present in reactants were investigated to obtain the optimum reaction condition. The conversion of soybean oil to methyl esters reached over 90% in the three-step transesterification when 40% immobilized lipase was used. Moreover, the lipase catalyst could be used for 3 times without significant decrease of the activity.

  3. Assaying lipase activity from oil palm fruit (Elaeis guineensis Jacq.) mesocarp.

    Ngando Ebongue, G F; Dhouib, R; Carrière, F; Amvam Zollo, P-H; Arondel, V

    2006-10-01

    The mesocarp of mature oil palm fruit undergoes intensive triglycerides hydrolysis upon abscission and bruising. This generates such a high amount of free fatty acids that the oil might become unfit for human consumption without appropriate refining. The lipase (EC 3.1.1.3) involved in the breakdown of the oil is not stable after homogenization of the tissue in aqueous buffers. In this study, we have devised a solvent-based procedure that allowed us to obtain fractions with stable lipase activity. Using these fractions, we have determined the optimal conditions for assaying mesocarp lipase activity. The activity was highest at a temperature of 35 degrees C and a pH of 9. The lipase was found to be strictly calcium dependent. The specific activity of the lipase measured in optimal conditions was found to be 33 mumol fatty acids released min(-1) mg(-1) protein using olive oil as substrate. The mesocarp contains about 190 U of lipase g(-1) fresh weight. This activity was found to be inhibited by the lipase inhibitor tetrahydrolipstatin (THL), suggesting that the lipase is a serine hydrolase. PMID:17064925

  4. A lipidomic analysis approach in patients undergoing lipoprotein apheresis.

    Schmöcker, C; Kassner, U; Kiesler, S; Bismarck, M; Rothe, M; Steinhagen-Thiessen, E; Weylandt, K H

    2016-06-01

    Lipoprotein apheresis such as heparin-induced extracorporal LowDensityLipoprotein (LDL) Cholesterol precipitation (HELP) reduces apolipoprotein B-containing lipoproteins, most importantly low-density-lipoprotein (LDL), and lipoprotein (a) [Lp(a)]. It is used in patients with atherosclerotic disease and therapy-refractory hypercholesterolemia or progressive atherosclerotic disease in patients with elevated Lp(a). While lipid-lowering effects of lipoprotein apheresis are well-established, there are only sparse data regarding the effect of apheresis on individual omega-6 and omega-3 polyunsaturated fatty acids (n-6 PUFA and n-3 PUFA), such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which could increase (AA) or decrease (EPA and DHA) cardiovascular risk. Here we analyzed different omega-6 and omega-3 fatty acids in the blood of patients undergoing a single HELP apheresis procedure using gas chromatography (GC). Furthermore, we assessed the effect of HELP treatment on formation of lipid metabolites and mediators arising from these polyunsaturated fatty acids in the plasma by LC/ESI-MS/MS. Lipoprotein apheresis reduced the concentrations of fatty acids analyzed in the plasma by 40-50%. This was similar for AA, EPA and DHA. The reduction in fatty acid plasma levels was similar to the reduction of total triglycerides. However there was a trend towards an increase of PUFA metabolites associated with platelet activation, such as 12-hydroxyeicosatetraenoic acid (12-HETE) and 14-hydroxydocosahexaenoic acid (14-HDHA). These data indicate that HELP apheresis could interfere with achieving higher levels of n-3 PUFA in the plasma. Lipid apheresis treatment might also increase the formation of potentially pro- as well as anti-inflammatory lipid mediators derived from AA or EPA and DHA. PMID:27062407

  5. Antioxidant property and [Formula: see text]-glucosidase, [Formula: see text]-amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes.

    Alakolanga, A G A W; Kumar, N Savitri; Jayasinghe, Lalith; Fujimoto, Yoshinori

    2015-12-01

    Flacourtia inermis Roxb. (Flacourtiaceae), is a moderate sized tree cultivated in Sri Lanka for its fruits known as Lovi. The current study was undertaken to study the biological activity of extracts of the fruits in an attempt to increase the value of the under exploited fruit crops. Fruits of F. inermis were found to be rich in phenolics and anthocyanins. Polyphenol content of the fruits was determined to be 1.28 g gallic acid equivalents per 100 g of fresh fruit and anthocyanin content was estimated as 108 mg cyanidin-3-glucoside equivalents per 100 g of fresh fruits. The EtOAc extract showed moderate antioxidant activity in the DPPH radical scavenging assay with IC50 value of 66.2 ppm. The EtOAc and MeOH extracts of the fruits also exhibited inhibitory activities toward α-glucosidase, α-amylase and lipase enzymes with IC50values ranging from 549 to 710 ppm, 1021 to 1949 ppm and 1290 to 2096 ppm, respectively. The active principle for the enzyme inhibition was isolated through activity-guided fractionation and was characterized as (S)-malic acid. The results of this study indicate that F. inermis fruits have the potential to be used in health foods and in nutritional supplements. PMID:26604419

  6. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    Silva Jane E. S.

    2003-01-01

    Full Text Available In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25ºC in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester.

  7. The V227A polymorphism at the PPARA locus is associated with serum lipid concentrations and modulates the association between dietary polyunsaturated fatty acid intake and serum high density lipoprotein concentrations in Chinese women.

    Chan, Edmund; Tan, Chuen Seng; Deurenberg-Yap, Mabel; Chia, Kee Seng; Chew, Suok Kai; Tai, E Shyong

    2006-08-01

    Peroxisome proliferators activated receptor alpha (PPARalpha) regulates the transcription of several proteins involved in human lipoprotein metabolism. We screened the PPARA locus for polymorphisms in 20 unrelated subjects from each of three ethnic groups (Chinese, Malays and Asian Indians). Only the V227A polymorphism was observed. We genotyped 4248 subjects (2899 Chinese, 761 Malay and 588 Asian Indians) and found allele frequencies for the A227 allele of 0.04 in Chinese, 0.006 in Malays and 0.003 in Asian Indians. We examined the associations between this polymorphism and serum lipid concentrations in Chinese. In women, but not in men, the presence of the A227 allele was associated with lower serum concentrations of total cholesterol [5.38mmol/l (95%CI: 5.22-5.54) versus 5.21mmol/l (95%CI: 4.99-5.43), p=0.047] and triglycerides [1.19mmol/l (95%CI: 1.10-1.28) versus 1.09mmol/l (95%CI: 0.98-1.21), p=0.048]. We also found that the V227A polymorphism modulates the association between dietary polyunsaturated fatty acid intake and serum high density lipoprotein concentration (p-value for interaction=0.049). Our findings implicate PPARalpha in the lipid lowering associated with diets high in PUFA and suggests that genetic variation at the PPARA locus may determine the lipid response to changes in PUFA intake. PMID:16288935

  8. Applications of immobilized Thermomyces lanuginosa lipase in interesterification

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2003-01-01

    catalytic activity than Lipozyme RM IM in the acidolysis of sunflower oil with caprylic acid. However, the activity of T. lanuginosa lipase was only slightly lower than that of Lipozyme RM IM in the ester-ester exchange between tripalmitin (PPP) and the ethyl esters of EPA and DHA (EE). For this reason, the...

  9. Enzymatic Production of FAME Biodiesel with Soluble Lipases

    T. Gundersen, Maria; Heltborg, Carsten Kirstejn; Yang, V;

    Biodiesel is a viable alternative to fossil fuels, and biocatalysis is gaining interest as a greener process. We focus on converting oils to Fatty Acid Methyl Ester (FAME) using soluble lipases, which offer an advantage compared to immobilized enzymes by cost efficiency and ease of implementation...... the defined operating space concerning: temperature, water content, initial methanol concentration and enzyme content. The identified optimum range was experimentally evaluated, and model findings were confirmed. Another barrier in lipase use in biodiesel production is the higher melting point (m...

  10. Lipase inactivation in wheat germ by gamma irradiation

    Jha, Pankaj Kumar; Kudachikar, V. B.; Kumar, Sourav

    2013-05-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0-30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy.

  11. The Effects of Extended Release Niacin in Combination with Omega 3 Fatty Acid Supplements in the Treatment of Elevated Lipoprotein (a

    Alan F. Helmbold

    2010-01-01

    Full Text Available Objective. To assess the effectiveness of niacin/fish oil combination therapy in reducing Lipoprotein (a [Lp(a] levels after twelve weeks of therapy. Background. Lipoprotein (a accumulates in atherosclerotic lesions and promotes smooth muscle cell growth and is both atherogenic and thrombogenic. A clinical trials of combination therapy for the reduction of Lp(a has not been previously reported. Methods. The study was an observational study following subjects with an elevated Lp(a (>70 nmol/L to assess impact of 12 weeks of combination Omega 3FA, niacin, and the Mediterranean diet on Lp(a. Results. Twenty three patients were enrolled with 7 patients lost to follow up and 2 patients stopped due to adverse events. The average Lp(a reduction in the remaining 14 subjects after 12 weeks of combination therapy was 23%± 17% [=.003] with a significant association of the reduction of Lp(a with increasing baseline levels of Lp(a [R2=0.633, =.001]. Conclusions. There was a significant reduction in Lp(a levels with combination therapy. A more pronounced effect was noted in patients with higher baseline levels of Lp(a.

  12. Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16

    Lu, Jingnan; Brigham, Christopher J.; Rha, ChoKyun; Sinskey, Anthony J.

    2012-01-01

    Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using...

  13. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein

    Shen, Wen-Jun; Sridhar, Kunju; Bernlohr, David A.; Fredric B Kraemer

    1999-01-01

    Hormone-sensitive lipase (HSL) is a cytosolic neutral lipase that functions as the rate-limiting enzyme for the mobilization of free fatty acids in adipose tissue. By using the yeast two-hybrid system to examine the potential interaction of HSL with other cellular proteins, evidence is provided to demonstrate a direct interaction of HSL with adipocyte lipid-binding protein (ALBP), a member of the family of intracellular lipid-binding proteins that binds fatty acids, retinoids, and other hydro...

  14. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  15. Extracellular lipase production by a sapwood-staining fungus, Ophiostoma piceae.

    Gao, Y; Breuil, C

    1995-11-01

    The extracellular lipase production of a sapwood-staining fungus, Ophiostoma piceae, grown in liquid media, was optimally active at pH 5.5 and 37°C. Although glucose, fructose, sucrose, starch and dextrin, as carbon sources for growth gave similar mycelial yields, which were higher than those obtained with arabinose, galactose or raffinose, the cells growing on those carbohydrates produced little extracellular lipase. However, both high biomass and lipase activity were obtained when plant oils (olive, soybean, corn, sunflower seed, sesame, cotton seed or peanut) were used as carbon sources. Among the nitrogen sources examined, Casamino acids gave the best growth, whereas (NH4)2SO4 gave the best lipase production. The highest lipase productivity seen was obtained in a medium with olive oil as carbon source and a combination of (NH4)2SO4and peptone as nitrogen source. PMID:24415011

  16. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  17. Characterization of neutral lipase BT-1 isolated from the labial gland of Bombus terrestris males.

    Jana Brabcová

    Full Text Available BACKGROUND: In addition to their general role in the hydrolysis of storage lipids, bumblebee lipases can participate in the biosynthesis of fatty acids that serve as precursors of pheromones used for sexual communication. RESULTS: We studied the temporal dynamics of lipolytic activity in crude extracts from the cephalic part of Bombus terrestris labial glands. Extracts from 3-day-old males displayed the highest lipolytic activity. The highest lipase gene expression level was observed in freshly emerged bumblebees, and both gene expression and lipase activity were lower in bumblebees older than 3 days. Lipase was purified from labial glands, further characterized and named as BT-1. The B. terrestris orthologue shares 88% sequence identity with B. impatiens lipase HA. The molecular weight of B. terrestris lipase BT-1 was approximately 30 kDa, the pH optimum was 8.3, and the temperature optimum was 50°C. Lipase BT-1 showed a notable preference for C8-C10 p-nitrophenyl esters, with the highest activity toward p-nitrophenyl caprylate (C8. The Michaelis constant (Km and maximum reaction rate (Vmax for p-nitrophenyl laurate hydrolysis were Km = 0.0011 mM and Vmax = 0.15 U/mg. CONCLUSION: This is the first report describing neutral lipase from the labial gland of B. terrestris. Our findings help increase understanding of its possible function in the labial gland.

  18. [Rapid and high throughput measurement of lipase thermo-stability through ANS fluorescence signal assay].

    Feng, Weizong; Lin, Junhan; Cai, Shaoli; Zou, Youtu; Chen, Guoren; Huang, Ping; Lin, Yajing; Wang, Bingbing; Lin, Lin

    2011-04-01

    We have developed a rapid and high throughput lipase-ANS (8-Anilino-l-naphthalenesulfonic acid) assay to evaluate the thermo-stability of lipases based on the ANS fluorescence signal's increasing and shifting when this small fluorescence probes binds to lipase. The testing lipase samples were incubated at a temperature range of 25 degrees C to 65 degrees C for 30 min before mixed with ANS solution (0.20 mg/mL lipase and 0.05 mmol/L ANS in the buffer of 20 mmol/L Tris-HCl, 100 mmol/L NaCl, pH 7.2) in a cuvette or microplate. Fluorescence signals of the samples were measured at EX 378 nm, EM 465 nm with a fluorescence photometer or a plate reader, and Tm was calculated with the software of GraphPad Prism5.0. The Tm values of several mutants of Penicillium expansum lipase (PEL) were measured with this ANS assay and conventional method simultaneously and the results show that Tm values are comparative and consistent between these methods, suggesting that the lipase-ANS assay is a reliable, rapid and high throughput method for lipase thermo-stability measurement. PMID:21847993

  19. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides.

    Zaher, F. A.; Aly, Saadia M.; El-Kinawy, O. S.

    1998-01-01

    Partial glycerides were prepared by glycerolysis of sunflower oil in presence of lipase enzyme as catalyst. Six lipases of different origins were used and compared for their catalytic activity. These include Chromobacterium lipase, pancreatic lipase, Rhizopus arrhizus lipase, lyophilized lipase (plant lipase) in addition to two lipase preparations derived from Rhizopus japonicas; Lilipase A-10 and Lilipase B-2. Chromobacterium&...

  20. Comparison between radioactive and naturally fluorescent triacyglycerols to detect lipase activity from brassica napus seedlings

    Lipases (Triacylglycerol acyl hydrolass EC 3.1.1.3) defined as enzymes that catalyse the hydrolysis of triacylglycerols, releasing long-chain fatty acids. Germinating oilseeds have been explored as a possible source of lipases for biotechnological processing of oils and fats. However, purification and sensitive assays to be able to detect a true lipase activity in plant cellular homogenates and culture media. The aim of this study was to evaluate the advantage of a new lipase activity assay using natural long-chain triacyiglycerois (TAGs). Oil was extracted from Parnari glabernimunm seed kernels and the purified TAGs were used as a substrate for detecting low levels of lipase activities. The purified TAGs are naturally fluorescent because more than half of the fatty acids from Parinari oil are known to contain 9,11,13,1 5- octadecatetraenoic acid (parinaric acid) in its esterified form. We tested the rapeseed lipase activity using two different substrates, the naturally fluorescent TAGs and the radiolabeled TAGs. A significant level of lipase activity was detected by the used methods. Results obtained by the naturally fluorescent TAGs are identical of the obtained ones using the radiolabeled method. The specific activity obtained by the two methods was about 92 nkat.mg-1 using the naturally fluorescent TAGs and about 94 nkat.mg-1 using the radioactive method. Our results prove that this new method, performed under non-oxidative conditions, was applied successfully to detect low lipase levels in crude protein extracts form plant seeds and it can be used as a continuous and a specific lipase activity assay

  1. Glycerol acyl-transfer kinetics of a circular permutated Candida antarctica Lipase B

    Triacylglycerols containing a high abundance of unusual fatty acids, such as y-linolenic acid, or novel arylaliphatic acids, such as ferulic acid, are useful in pharmaceutical and cosmeceutical applications. Candida antarctica lipase B (CALB) is quite often used for non-aqueous synthesis, although ...

  2. Crystal structure of a triacylglycerol lipase from Penicillium expansum at 1.3 A determined by sulfur SAD

    Bian, Chuanbing; Yuan, Cai; Chen, Liqing; Meehan, Edward J.; Jiang, Longguang; Huang, Zixiang; Lin, Lin; Huang, Mingdong; (UAH); (Fujian); (Chinese Aca. Sci.)

    2010-04-05

    Triacylglycerol lipases (EC 3.1.1.3) are present in many different organisms including animals, plants, and microbes. Lipases catalyze the hydrolysis of long-chain triglycerides into fatty acids and glycerol at the interface between the water insoluble substrate and the aqueous phase. Lipases can also catalyze the reverse esterification reaction to form glycerides under certain conditions. Lipases of microbial origin are of considerable commercial interest for wide variety of biotechnological applications in industries, including detergent, food, cosmetic, pharmaceutical, fine chemicals, and biodiesel. Nowadays, microbial lipases have become one of the most important industrial enzymes. PEL (Penicillium expansum lipase) is a fungal lipase from Penicillium expansum strain PF898 isolated from Chinese soil that has been subjected to several generations of mutagenesis to increase its enzymatic activity. PEL belongs to the triacylglycerol lipases family, and its catalytic characteristics have been studied. The enzyme has been used in Chinese laundry detergent industry for several years (http://www.leveking.com). However, the poor thermal stability of the enzyme limits its application. To further study and improve this enzyme, PEL was cloned and sequenced. Furthermore, it was overexpressed in Pichia pastoris. PEL contains GHSLG sequence, which is the lipase consensus sequence Gly-X1-Ser-X2-Gly, but has a low amino acid sequence identities to other lipases. The most similar lipases are Rhizomucor miehei (PML) and Rhizopus niveus (PNL) with a 21% and 20% sequence identities to PEL, respectively. Interestingly, the similarity of PEL with the known esterases is somewhat higher with 24% sequence identity to feruloyl esterase A. Here, we report the 1.3 {angstrom} resolution crystal structure of PEL determined by sulfur SAD phasing. This structure not only presents a new lipase structure at high resolution, but also provides a structural platform to analyze the published

  3. Synthesis of naringin 6"-ricinoleate using immobilized lipase

    Almeida Verônica M

    2012-05-01

    Full Text Available Abstract Background Naringin is an important flavanone with several biological activities, including antioxidant action. However, this compound shows low solubility in lipophilic preparations, such as is used in the cosmetic and food industries. One way to solve this problem is to add fatty acids to the flavonoid sugar unit using immobilized lipase. However, there is limited research regarding hydroxylation of unsaturated fatty acids as an answer to the low solubility challenge. In this work, we describe the reaction of naringin with castor oil containing ricinoleic acid, castor oil's major fatty acid component, using immobilized lipase from Candida antarctica. Analysis of the 1H and 13 C NMR (1D and 2D spectra and literature comparison were used to characterise the obtained acyl derivative. Results After allowing the reaction to continue for 120 hours (in acetone media, 50°C, the major product obtained was naringin 6″-ricinoleate. In this reaction, either castor oil or pure ricinoleic acid was used as the acylating agent, providing a 33% or 24% yield, respectively. The chemical structure of naringin 6″-ricinoleate was determined using NMR analysis, including bidimensional (2D experiments. Conclusion Using immobilized lipase from C. antarctica, the best conversion reaction was observed using castor oil containing ricinoleic acid as the acylating agent rather than an isolated fatty acid. Graphical abstract

  4. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway.

    Kawamura, M.; Heinecke, J W; Chait, A.

    1994-01-01

    Oxidized lipoproteins may be important in the pathogenesis of atherosclerosis. Because diabetic subjects are particularly prone to vascular disease, and glucose autoxidation and protein glycation generate reactive oxygen species, we explored the role of glucose in lipoprotein oxidation. Glucose enhanced low density lipoprotein (LDL) oxidation at concentrations seen in the diabetic state. Conjugated dienes, thiobarbituric acid reactive substances, electrophoretic mobility, and degradation by m...

  5. Serum and urinary lipoproteins in the human nephrotic syndrome: evidence for renal catabolism of lipoproteins

    Shore, V.G.; Forte, T.; Licht, H.; Lewis, S.B.

    1982-03-01

    The urinary excretion of lipoproteins and the possibility of catabolic alterations on glomerular filtration were investigated in four nephrotic subjects difering in etiology, serum lipoprotein profile, and 24 hr urinary output of protein and lipids. The apolipoproteins and lipoproteins of urine were compared with those of serum with respect to distribution profile, physical properties, and composition. As expected from molecular sieving effects during glomerular filtration, the urinary HDL were more abundant than the lower density lipoproteins even when the plasma LDL was elevated markedly. Intact apolipoproteins were not found in the concentrated urinary fraction isolated by ultrafiltration between the limits of 10/sup 4/ and 5 x 10/sup 4/ daltons. On the basis of immunoreactivity, gel electrophoresis, and amino acid composition, apolipoproteins B and AI are the major and minor proteins, respectively, of urinary LDL, and apo B is the major protein of the urinary IDL and VLDL. Apolipoproteins AI, AII, CI, CIII, and possibly AIV were isolated from the urinary HDL. As much as 20% of the protein moiety of the urinary HDL appeared to be large apolipoprotien fragments with molecular weights and isoelectric points similar to those of apo CII and apo CIII. The lower density classes of urinary lipoproteins also appeared to have lost apo E and apo C's and to have undergone partial proteolysis.

  6. Lipoprotein marker for hypertriglyceridemia

    Cubicciotti, Roger S.; Karu, Alexander E.; Krauss, Ronald M.

    1986-01-01

    Methods and compositions are provided for the detection of a particular low density lipoprotein which has been found to be a marker for patients suffering from type IV hypertriglyceridemia. A monoclonal antibody capable of specifically binding to a characteristic epitopic site on this LDL subspecies can be utilized in a wide variety of immunoassays. Hybridoma cell line SPL.IVA5A1 was deposited at the American Type Culture Collection on Mar. 29, 1984, and granted accession no. HB 8535.

  7. Application of alkaline thermo-stable lipase(s) enzyme produced from irradiated microbial isolate in the field of detergent technology

    ) from Bacillus brevis B2 was studied. It was found that:1-The optimum incubation temperature for maximum lipase(s) formation is 70 degree C after 24h at ph 11.5.2- Maximum lipase(s) biosynthesis attained at concentration of 1% for each of fish-wastes and yeast extract with inoculum size equal 2 ml/100 ml culture medium incubating under shaking condition.3-Using fish-wastes-yeast extract medium fortified with disaccharide (sucrose or maltose or lactose) was the best nutritional medium for lipase formation. On contrary none of the tested nitrogen sources affect the induction of the enzyme.4-The addition of some surfactant to the nutritional medium revealed that Tween-20 slightly increase lipase(s) synthesis while the presence of zinc sulfate (100 ppm) and folic acid (500 ppm) enhanced the formation of lipase(s) by B. brevis B2. 5-Exposure of the experimental organism to 1 KGy gamma-irradiation resulted in slight increase in the level of enzyme. Thermoalkalo-stable lipase(s) from B. brevis B2 was purified 21.8-fold using ammonium sulphate precipitation (100% saturation) followed by fractionation on Sephadex G-200 column chromatography. The properties of the enzyme were studied.Maximal enzyme activity occurred at 80 degree C. In addition, exposure of the enzyme to 70-80 degree C for 1h resulted remaining activities equal 98-90% respectively, indicating that it was thermo-stable. Optimum ph for maximal enzyme activity was ph 9.5 and exposure of the enzyme to alkaline condition (ph 9 - 10.5) for 1h resulted remaining activity from 80-90%, indicating the alkalo-stable nature of the enzyme. - The relationship between enzyme activity and enzyme concentration indicated that the extent of catalytic action was a function of the concentration of the enzyme. Maximal enzyme activity obtained after 60 minute and the reaction rate increased as a result of increasing substrate concentration, up to 1.2 mg of p-nitrophenyl palmitate, with some saturation at the highest concentration. - B

  8. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  9. N-acylation of ethanolamine using lipase: a chemoselective catalyst

    Mazaahir Kidwai; Roona Poddar; Poonam Mothsra

    2009-01-01

    The N-acylation of ethanolamine (2) with various fatty acids 1a–d and esters of fatty acids 1e–h using Candida antarctica B lipase (Novozym® 435) are described and optimum conditions for selective N-acylation rather than O-acylation are also discussed. Microwave assisted solution phase, solid supported and conventional methods were investigated and results were compared. There is a synergy between the enzyme catalysis and microwave irradiation.

  10. N-acylation of ethanolamine using lipase: a chemoselective catalyst

    Mazaahir Kidwai

    2009-03-01

    Full Text Available The N-acylation of ethanolamine (2 with various fatty acids 1a–d and esters of fatty acids 1e–h using Candida antarctica B lipase (Novozym® 435 are described and optimum conditions for selective N-acylation rather than O-acylation are also discussed. Microwave assisted solution phase, solid supported and conventional methods were investigated and results were compared. There is a synergy between the enzyme catalysis and microwave irradiation.

  11. Synthesis of naringin 6"-ricinoleate using immobilized lipase

    Almeida Verônica M; Branco Carla RC; Assis Sandra A; Vieira Ivo JC; Braz-Filho Raimundo; Branco Alexsandro

    2012-01-01

    Abstract Background Naringin is an important flavanone with several biological activities, including antioxidant action. However, this compound shows low solubility in lipophilic preparations, such as is used in the cosmetic and food industries. One way to solve this problem is to add fatty acids to the flavonoid sugar unit using immobilized lipase. However, there is limited research regarding hydroxylation of unsaturated fatty acids as an answer to the low solubility challenge. In this work,...

  12. Overview of fungal lipase: a review.

    Singh, Abhishek Kumar; Mukhopadhyay, Mausumi

    2012-01-01

    Lipases (triacylglycerolacyl hydrolases, EC3.1.1.3) are class of enzymes which catalyze the hydrolysis of long-chain triglycerides. In this review paper, an overview regarding the fungal lipase production, purification, and application is discussed. The review describes various industrial applications of lipase in pulp and paper, food, detergent, and textile industries. Some important lipase-producing fungal genera include Aspergillus, Penicillium, Rhizopus, Candida, etc. Current fermentation process techniques such as batch, fed-batch, and continuous mode of lipase production in submerged and solid-state fermentations are discussed in details. The purification of lipase by hydrophobic interaction chromatography is also discussed. The development of mathematical models applied to lipase production is discussed with special emphasis on lipase engineering. PMID:22072143

  13. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis.

    Morita, Shin-ya

    2016-01-01

    Increased levels of apolipoprotein B (apoB)-containing lipoproteins, such as low density lipoproteins (LDL) and chylomicron remnants, are associated with the development of atherosclerosis. Chylomicrons containing apoB-48 are secreted from the intestine during the postprandial state, whereas very low density lipoproteins (VLDL) containing apoB-100 are constitutively formed in the liver. Chylomicron remnants and VLDL remnants are produced by the lipoprotein lipase-mediated lipolysis of triglycerides, which is activated by apolipoprotein C-II bound on the particle surfaces. The hepatic uptake of these remnants is facilitated by apolipoprotein E (apoE), but is inhibited by apolipoproteins C-I, C-II and C-III. In the plasma, VLDL remnants are further converted into LDL by the hydrolysis of triglycerides. ApoB-100 is responsible for the hepatic uptake of LDL. LDL receptor, LDL receptor-related protein and heparan sulfate proteoglycans are involved in the hepatic clearance of lipoproteins containing apoB-100 and/or apoE. The subendothelial retention and modification of apoB-containing lipoproteins are crucial events in the initiation of atherosclerosis. In the subendothelium, the uptake of modified lipoproteins by macrophages leads to the formation of foam cells storing excess amounts of cholesteryl esters and subsequently to apoptosis. This review describes the current knowledge about the metabolism and modification of apoB-containing lipoproteins involved in dyslipidemia and atherogenesis. In particular, I focus on the effects of apolipoproteins, lipid composition and particle size on lipoprotein metabolism and on the roles of cholesterol, sphingomyelinase and apoB denaturation in macrophage foam cell formation and apoptosis. A detailed understanding of these mechanisms will help to develop new therapeutic strategies. PMID:26725424

  14. Triglyceride-Rich Lipoproteins and Remnants: Targets for Therapy?

    Dallinga-Thie, Geesje M; Kroon, Jeffrey; Borén, Jan; Chapman, M John

    2016-07-01

    It is now evident that elevated circulating levels of triglycerides in the non-fasting state, a marker for triglyceride (TG)-rich remnant particles, are associated with increased risk of premature cardiovascular disease (CVD). Recent findings from basic and clinical studies have begun to elucidate the mechanisms that contribute to the atherogenicity of these apoB-containing particles. Here, we review current knowledge of the formation, intravascular remodelling and catabolism of TG-rich lipoproteins and highlight (i) the pivotal players involved in this process, including lipoprotein lipase, glycosylphosphatidylinositol HDL binding protein 1 (GPIHBP1), apolipoprotein (apo) C-II, apoC-III, angiopoietin-like protein (ANGPTL) 3, 4 and 8, apoA-V and cholesteryl ester transfer protein; (ii) key determinants of triglyceride (TG) levels and notably rates of production of very-low-density lipoprotein 1 (VLDL1) particles; and (iii) the mechanisms which underlie the atherogenicity of remnant particles. Finally, we emphasise the polygenic nature of moderate hypertriglyceridemia and briefly discuss modalities for its clinical management. Several new therapeutic strategies to attenuate hypertriglyceridemia have appeared recently, among which those targeted to apoC-III appear to hold considerable promise. PMID:27216847

  15. Study on immobilization of lipase onto magnetic microspheres with epoxy groups

    Magnetic microspheres were synthesized by the suspension polymerization of glycidyl methacrylate (GMA), methacrylic acid (MAA) and divinyl benzene (DVB) in the presence of oleic acid-coated Fe3O4 nanoparticles. Triacylglycerol lipase from porcine pancreas was covalently immobilized on the magnetic microspheres via the active epoxy groups with the activity yield up to 63% (±2.3%) and enzyme loading of 39 (±0.5) mg/g supports. The resulting immobilized lipase had higher optimum temperature compared with those of free lipase and exhibited better thermal, broader pH stability and excellent reusability. Furthermore, the catalyzed capability of immobilized lipase was also investigated by catalyzing synthesis of hexyl acetate and the esterification conversion rate reached to 83% (±2.5%) after 12 h in nonaqueous solvent

  16. Comparative study of free and immobilized lipase from Bacillus aerius and its application in synthesis of ethyl ferulate.

    Saun, Nitin Kumar; Narwal, Sunil Kumar; Dogra, Priyanka; Chauhan, Ghanshyam Singh; Gupta, Reena

    2014-01-01

    In the present study, a purified lipase from Bacillus aerius immobilized on celite matrix was used for synthesis of ethyl ferulate. The celite-bound lipase exposed to glutaraldehyde showed 90.02% binding efficiency. It took two hours to bind maximally onto the support. The pH and temperature optima of the immobilized lipase were same as those of free enzyme i.e 9.5 and 55°C. Among different substrates both free and immobilized lipase showed maximum affinity towards p-nitrophenyl palmitate (p-NPP). The lipase activity was found to be stimulated in the presence of Mg(2+) in case of free enzyme while Zn(2+) and Fe(3+) showed stimulatory effect on immobilized lipase whereas salt ions as well as chelating agents inhibited activity of both free and immobilized lipase. Maximum enzyme activity was observed in n-hexane as organic solvent followed by n-heptane for both free and immobilized lipase, however CCl4, acetone and benzene inhibited the enzyme activity. Moreover, all the selected detergents (SDS, Triton X-100, Tween 80 and Tween 20) had an inhibitory effect on both free and immobilized enzyme activity. The celite bound lipase (1.5%) efficiently performed maximum esterification (2.51 moles/l) of ethanol and ferulic acid (100 mM each, at a molar ratio of 1:3) when incubated at 55°C for 48 h resulting in the formation of ester ethyl ferulate. PMID:25099909

  17. Crystal Structure of Proteus mirabilis Lipase, a Novel Lipase from the Proteus/Psychrophilic Subfamily of Lipase Family I.1

    Korman, Tyler P; Bowie, James U.

    2012-01-01

    Bacterial lipases from family I.1 and I.2 catalyze the hydrolysis of triacylglycerol between 25–45°C and are used extensively as biocatalysts. The lipase from Proteus mirabilis belongs to the Proteus/psychrophilic subfamily of lipase family I.1 and is a promising catalyst for biodiesel production because it can tolerate high amounts of water in the reaction. Here we present the crystal structure of the Proteus mirabilis lipase, a member of the Proteus/psychrophilic subfamily of I.1lipases. Th...

  18. Hypolipidemic effect of pantothenic acid derivatives in mice with hypothalamic obesity induced by aurothioglucose.

    Naruta, E; Buko, V

    2001-10-01

    The hypolipidemic effects of pantothenic acid derivatives (phosphopantothenate, panthenol and pantethine) were studied in mice with hypothalamic obesity. Hypothalamic obesity in mice was induced by single injection of aurothioglucose (300 mg/kg body wt, i.p.). All the tested substances were administered during the last 10 days before decapitation (i.m., of dosage equivalent to 150 mg/kg body wt of phosphopantothenate). The studied substances inhibited the weight gain of the animals with hypothalamic obesity over the last 10 days of the experiment. The treatment with aurothioglucose increased food intake and mean body weight, blood glucose level; insulin, serum total cholesterol, triglyceride, the sum of LDL + VLDL and LDL-cholesterol concentration; triglyceride and cholesterol fractions in the liver; triglyceride and FFA content as well as lipoprotein lipase activity in adipose tissue of experimental mice. The administration of the assay compounds lowered food intake and mean body weight, insulin and glucose levels and decreased the content of triglycerides, total cholesterol and cholesterol esters in serum and adipose tissue as well as raised the activity of lipoprotein lipase in adipose tissue and serum lipolytic activity in obese mice. Among the compounds studied the reverse effect of panthenol was especially pronounced. The mechanism of hypolipidemic effects of pantothenic acid derivatives can be related to the reduced resistance to insulin and activation of lipolysis in serum and adipose tissue. PMID:11817109

  19. Microbial lipases with interest in biotechnology and infectious diseases: isolation, characterization and inhibition by natural substances

    Ruiz Rueda, Cristian

    2005-01-01

    [eng] Lipases are carboxylic ester hydrolases which act on acylglycerols to liberate fatty acids and glycerol. These enzymes are currently attracting an enormous attention because they are among the most versatile and widely used enzymes in biotechnological applications and due to their unique properties. Moreover, these enzymes and their inhibitors have a high pharmacological interest because some microbial lipases can act as virulence factors in several infectious diseases. Therefore, the g...

  20. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained. PMID:19552446

  1. Transformation of waste cooking oil into C-18 fatty acids using a novel lipase produced by Penicillium chrysogenum through solid state fermentation

    Kumar, Sunil; Negi, Sangeeta

    2014-01-01

    The prime aim of the current work was to illustrate the components existing in repeatedly used cooking oil and to develop an economical process for the production of fatty acids from low cost feedstock waste. The waste cooking oil was characterized by the occurrence of high molecular weight hydrocarbons and polymerized derivative of esters. Triacontanoic acid methyl ester, 2,3,5,8-Tetramethyldecane, 3,3 dimethyl heptane, and 2,2,3,3-teramethyl pentane were detected as thermal and oxidative co...

  2. Lipoprotein metabolism indicators improve cardiovascular risk prediction

    Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to inves...

  3. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis.

    Köffel, René; Tiwari, Rashi; Falquet, Laurent; Schneiter, Roger

    2005-03-01

    Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization. PMID:15713625

  4. Screening of lipases for the synthesis of xylitol monoesters by chemoenzymatic esterification and the potential of microwave and ultrasound irradiations to enhance the reaction rate.

    Rufino, Alessandra R; Biaggio, Francisco C; Santos, Julio C; de Castro, Heizir F

    2010-07-01

    Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate. PMID:20420851

  5. Marine Fungal and Bacterial Isolates for Lipase Production: A Comparative Study.

    Patnala, H S; Kabilan, U; Gopalakrishnan, L; Rao, R M D; Kumar, D S

    2016-01-01

    Lipases, belonging to the class of enzymes called hydrolases, can catalyze triglycerides to fatty acids and glycerol. They are produced by microbes of plant and animal origin, and also by marine organisms. As marine microorganisms thrive in extreme conditions, lipases isolated from their origin possess characteristics of extremozymes, retain its activity in extreme conditions and can catalyze few chemical reactions which are impossible otherwise relative to the lipase produced from terrestrial microorganisms. Lipases are useful in many industries like detergent, food, leather, pharmaceutical, diary, etc. Few commercial enzymes have been developed and the use of them in certain industries like dairy, soaps are proved to be beneficial. There are few research papers reporting the production of lipase from marine bacteria and fungi. Lipase production involves two types of fermentation processes-solid-state fermentation (SSF) and submerged fermentation (SmF). Although SmF process is used conventionally, SSF process produces lipase in higher amounts. The production is also influenced by the composition of the medium, physiochemical parameters like temperature, pH, carbon, and nitrogen sources. PMID:27452166

  6. Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil

    Biodiesel fuel, produced by transesterification of vegetable oils or animal fats with methanol, is a promising alternative diesel fuel due to the limited resources of fossil fuels and the environmental concerns. An environmentally benign process for the transesterification reaction using immobilized lipase has attracted considerable attention for biodiesel production. In the work, magnetic chitosan microspheres were prepared by the chemical co-precipitation approach using glutaraldehyde as cross-linking reagent for lipase immobilization. The immobilization of lipase onto the magnetic particles was confirmed by magnetic measurements, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectra. Using the immobilized lipase, the conversion of soybean oil to fatty acid methyl esters reached 87% under the optimized conditions of methanol/oil amount-of-substance ratio 4:1 with the three-step addition of methanol, reaction temperature 35 °C, and reaction duration 30 h. Moreover, the immobilized lipase could be used for four times without significant decrease of the activity. -- Highlights: ► The lipase bound on magnetic chitosan microsphere can give 87% biodiesel conversion. ► The immobilization had no significant change in the property of magnetic microsphere. ► The immobilized lipase had a better reusability.

  7. Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis

    Highlights: • Soapstock is a less expensive feedstock reservoir for biodiesel production. • Addition of tert-alcohol can enhance the yield of fatty acid methyl ester significantly. • One-stage lipase catalyzed methanolysis of soapstock oil was successfully developed. • FAME yield of 95.2% was obtained with low lipase loading in a shorter reaction time. - Abstract: A major obstacle in the commercialization of biodiesel is its cost of manufacturing, primarily the raw material cost. In order to decrease the cost of biodiesel, soapstock oil was investigated as the feedstock for biodiesel production. Because the soapstock oil containing large amounts of free fatty acids (FFAs) cannot be effectively converted to biodiesel, complicated two-stage process (esterification followed by transesterification) was generally adopted. In this study, simple one-stage lipase catalyzed methanolysis of soapstock oil was developed via one-pot esterification and transesterification. Water produced by lipase catalyzed esterification of FFAs affected the lipase catalyzed transesterification of glycerides in the soapstock oil severely. Addition of tert-alcohol could overcome this problem and enhance the fatty acid methyl ester (FAME) yield from 42.8% to 76.4%. The FAME yield was further elevated to 95.2% by optimizing the methanol/oil molar ratio, lipase amount, and water absorbent. The developed process enables the simple, efficient, and green production of biodiesel from soapstock oil, providing with a potential industrial application

  8. Increased fluidity and oxidation of malarial lipoproteins: relation with severity and induction of endothelial expression of adhesion molecules

    Looareesuwan Sornchai

    2004-06-01

    Full Text Available Abstract Introduction Oxidative stress has been demonstrated in malaria. The potential oxidative modification of lipoproteins derived from malaria patients was studied. These oxidized lipids may have role in pathogenesis of malaria. Method The plasma lipid profile and existence of oxidized forms of very low density lipoprotein (VLDL, low density lipoprotein (LDL and high density lipoprotein (HDL were investigated in malaria (17 mild and 24 severe patients and 37 control subjects. Thiobarbituric acid reactive substances (TBARs, conjugated dienes, tryptophan fluorescence and fluidity of lipoproteins were determined as markers of oxidation. The biological effect of malarial lipoproteins was assessed by the expression of adhesion molecules on endothelial cells. Results Malarial lipoproteins had decreased cholesterol (except in VLDL and phospholipid. The triglyceride levels were unchanged. The cholesterol/phospholipid ratio of LDL was decreased in malaria, but increased in VLDL and HDL. TBARs and conjugate dienes were increased in malarial lipoproteins, while the tryptophan fluorescence was decreased. The fluidity of lipoproteins was increased in malaria. These indicated the presence of oxidized lipoproteins in malaria by which the degree of oxidation was correlated with severity. Of three lipoproteins from malarial patients, LDL displayed the most pronounced oxidative modification. In addition, oxidized LDL from malaria patients increased endothelial expression of adhesion molecules. Conclusion In malaria, the lipoproteins are oxidatively modified, and the degree of oxidation is related with severity. Oxidized LDL from malarial patients increases the endothelial expression of adhesion molecules. These suggest the role of oxidized lipoproteins, especially LDL, on the pathogenesis of disease.

  9. Biochemical Characterization and Molecular Modeling of Pancreatic Lipase from a Cartilaginous Fish, the Common Stingray (Dasyatis pastinaca).

    Bouchaâla, Emna; BouAli, Madiha; Ben Ali, Yassine; Miled, Nabil; Gargouri, Youssef; Fendri, Ahmed

    2015-05-01

    In order to identify fish enzymes displaying novel biochemical properties, we have chosen the common stingray (Dasyatis pastinaca), one of the most primitive living jawed aquatic vertebrates as a starting biological material to purify a lipase. A stingray pancreatic lipase (SPL) was purified from delipidated pancreatic powder. The SPL molecular weight was around 55 kDa which is slightly higher than that of known classical pancreatic lipases (50 kDa). This increase in the molecular weight was due to glycosylation. Like classic pancreatic lipases, SPL was found to be much more active on short-chain triacylglycerols than on long-chain ones. Natural detergents act as inhibitors of the SPL activity. This inhibition can be reversed by the addition of stingray colipase. Starting from total pancreatic messenger RNAs (mRNAs), partial stingray pancreatic lipase complementary DNA (cDNA) was synthesized by reverse transcriptase-polymerase chain reaction (RT-PCR) and cloned into the PGEM-T vector. Partial amino acid sequence of the SPL was homologous to that of Japanese eel, porcine, and human pancreatic lipases. A 3D structure model of the sequenced part of SPL was built using the 3D structure of porcine pancreatic lipase as template, since both lipases shared an amino acid sequence identity of 60%. PMID:25795061

  10. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase.

    Bernbäck, S; Bläckberg, L; Hernell, O

    1990-01-01

    Gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase all have potential roles in digestion of human milk triacylglycerol. To reveal the function of each lipase, an in vitro study was carried out with purified lipases and cofactors, and with human milk as substrate. Conditions were chosen to resemble those of the physiologic environment in the gastrointestinal tract of breast-fed infants. Gastric lipase was unique in its ability to initiate hydrolysis of milk t...

  11. Adipocyte lipases and defect of lipolysis in human obesity.

    Langin, Dominique; Dicker, Andrea; Tavernier, Geneviève; Hoffstedt, Johan; Mairal, Aline; Rydén, Mikael; Arner, Erik; Sicard, Audrey; Jenkins, Christopher M; Viguerie, Nathalie; van Harmelen, Vanessa; Gross, Richard W; Holm, Cecilia; Arner, Peter

    2005-11-01

    The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on residual triglyceride hydrolysis and lipolysis in HSL-null mice. In human adipocytes, catecholamine- and natriuretic peptide-induced lipolysis were completely blunted by the HSL inhibitor. When fat cells were not stimulated, glycerol but not fatty acid release was inhibited. HSL and ATGL mRNA levels increased concomitantly during adipocyte differentiation. Abundance of the two transcripts in human adipose tissue was highly correlated in habitual dietary conditions and during a hypocaloric diet, suggesting common regulatory mechanisms for the two genes. Comparison of obese and nonobese subjects showed that obesity was associated with a decrease in catecholamine-induced lipolysis and HSL expression in mature fat cells and in differentiated preadipocytes. In conclusion, HSL is the major lipase for catecholamine- and natriuretic peptide-stimulated lipolysis, whereas ATGL mediates the hydrolysis of triglycerides during basal lipolysis. Decreased catecholamine-induced lipolysis and low HSL expression constitute a possibly primary defect in obesity. PMID:16249444

  12. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry. PMID:27067648

  13. Inhibition of neutral lipase from castor bean lipid bodies by coenzyme A (CoA) and Oleoyl-CoA

    The neutral lipase (EC 3.1.1.3) in lipid body membranes isolated from the endosperm of 4 day old castor (Ricinus communis L.) seedlings catalyzes the hydrolysis of [14C]trioleoylglycerol, releasing [14C]oleic acid for up to 4 hours. However, the addition of Mg-ATP and coenzyme A (CoA), which are present in the cytoplasm of plant cells, caused a progressive inhibition of the neutral lipase such that after 15 minutes, release of [14C]oleic acid was almost undetectable. A fatty acyl CoA synthetase was found in the lipid body membrane which converts [14C]oleic acid produced from the lipase reaction to [14C]oleoyl-CoA under these conditions. The concentration of free oleoyl-CoA in the reaction mixture when the lipase was inhibited by 50% was calculated to be about 21 micromolar. It was found that a mixture of exogenously added oleoyl-CoA and CoA was most effective in causing lipase inhibition. Little inhibition of lipase was detected in the presence of CoA alone. It is possible that this effect is important in vivo in coordinating lipase activity with fatty acid oxidation

  14. Lipase-catalyzed synthesis of L-ascorbyl fatty acid esters and D-isoascorbyl fatty acid esters%脂肪酶催化合成L-抗坏血酸脂肪酸酯和D-异抗坏血酸脂肪酸酯

    郑大贵; 祝显虹; 余泗莲; 彭化南; 张小兰

    2012-01-01

    The lipase-catalyzed synthesis of L.-ascorbyl fatty acid esters and D-isoascorbyl fatty acid esters were studied by direct es-terification and transesterification,respectively. The structures of products were confirmed by IR,1H NMR,13C NMR and MS. It was found that the yield of the direct esterification were higher than that of the corresponding transesterification under the similar synthetic conditions. The raw material fatty acids and fatty acid methyl esters could be recycled and reused.%用固定化脂肪酶Lipozyme 435作催化剂,分别用直接酯化法和酯交换法合成L-抗坏血酸脂肪酸酯和D-异抗坏血酸脂肪酸酯.产物结构经IR、1HNMR、13CNMR和MS表征.结果表明,对于同一目标化合物,相似条件下,直接酯化法的效果优于酯交换法,原料脂肪酸和脂肪酸甲酯均可回收循环使用.

  15. Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study

    Berge, Rolf K; Ramsvik, Marie S.; Bohov, Pavol; Svardal, Asbjørn; Nordrehaug, Jan E.; Rostrup, Espen; Bruheim, Inge; Bjørndal, Bodil

    2015-01-01

    Background Lipid abnormalities, enhanced inflammation and oxidative stress seem to represent a vicious circle in atherogenesis, and therapeutic options directed against these processes seems like a reasonable approach in the management of atherosclerotic disorders. Krill oil (RIMFROST Sublime®) is a phospholipid-rich oil with eicosapentaenoic acid (EPA): docosahexaenoic acid (DHA) ratio of 1.8:1. In this pilot study we determined if krill oil could favourable affect plasma lipid parameters an...

  16. Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases

    Kristensen, Janni Brogaard; Xu, X.B.; Mu, Huiling

    2005-01-01

    suggests that glycerol forms a layer around the hydrophilic lipase particles, limiting contact between the lipases and the hydrophobic oil phase. With glycerol absorbed on silica gel, all lipases catalyzed the glycerolysis reaction. Faster conversion of TAG was obtained with Lipase PS-D, Lipase AK, and...

  17. PRODUCTION OF MEDIUM-CHAIN ACYLGLYCEROLS BY LIPASE ESTERIFICATION IN PACKED BED REACTOR: PROCESS OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY

    ZANARIAH MOHD DOM; LING TAU CHUAN; ROZITA YUSOFF

    2014-01-01

    Medium-chain acylglycerols (or glycerides) are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD) with the presence of oil palm mesocarp lipase (OPML) which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA) by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol ar...

  18. Radiochemical methods for studying lipase-catalyzed interesterification of lipids

    Reactions involving lipase-catalyzed interesterification of lipids, which are of commendable interest in biotechnology, have been monitored and assayed by radiochemical methods using 14C-labeled substrates. Medium chain (C12 plus C14) triacylglycerols were reacted in the presence of an immobilized lipase from Mucor miehei and hexane at 450C with methyl [1-14C]oleate, [1-14C]oleic acid, [carboxyl-14C]trioleoylglycerol, [1-14C]octadecenyl alcohol, and [U-14C]glycerol, each of known specific activity. The reactions were monitored and the rate of interesterification determined by radio thin layer chromatography from the incorporation of radioactivity into acyl moieties of triacylglycerols (from methyl oleate, oleic acid, and trioleoylglycerol), alkyl moieties of wax esters (from octadecenyl alcohol), and into glycerol backbone of monoacylglycerols and diacylglycerols (from glycerol). (orig.)

  19. Lipases in Hierarchically Structured Montmorillonite

    Kuncová, Gabriela; Šabata, Stanislav; Kučerová, L.; Fuzik, T.; Duchek, P.

    - : -, 2011, s. 116-117. ISBN N. [International Conference on Bioencapsulation /19./. Amboise (FR), 05.10.2011-08.10.2011] R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40720504 Keywords : montmorillonite * lipase * biocatalyst Subject RIV: CC - Organic Chemistry

  20. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training

    Alsted, Thomas J; Schweiger, Martina; Nybo, Lars;

    2009-01-01

    ) is not changed. Recently, adipose triglyceride lipase (ATGL) was identified as a TG-specific lipase in various rodent tissues. To investigate whether human skeletal muscle ATGL protein is regulated by endurance exercise training, 10 healthy young men completed 8 wk of supervised endurance exercise...... training. Western blotting analysis on lysates of skeletal muscle biopsy samples revealed that exercise training induced a twofold increase in skeletal muscle ATGL protein content. In contrast to ATGL, expression of comparative gene identification 58 (CGI-58), the activating protein of ATGL, and HSL......Mobilization of fatty acids from stored triacylglycerol (TG) in adipose tissue and skeletal muscle [intramyocellular triacylglycerol (IMTG)] requires activity of lipases. Although exercise training increases the lipolytic capacity of skeletal muscle, the expression of hormone-sensitive lipase (HSL...

  1. Efficient Phagocytosis Requires Triacylglycerol Hydrolysis by Adipose Triglyceride Lipase*

    Chandak, Prakash G.; Radović, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-01-01

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of...

  2. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester sy...

  3. FACTORS INFLUENCING SYNTHESIS OF EXTRACELLULAR LIPASES BY YARROWIA LIPOLYTICA IN MEDIUM CONTAINING VEGETABLE OILS

    Agata Urszula Fabiszewska

    2014-12-01

    Full Text Available The aim of this study was to evaluate lipase activity of Yarrowia lipolytica KKP 379 in media containing selected vegetable oils as the sole carbon source. The highest activity for extracellular Yarrowia lipolytica lipases was obtained in a corn oil medium, which was almost two times higher compared to lipase activity in olive oil medium, while the lowest lipolytic activity was observed in medium containing rice and peanut oils. Literature suggested that free fatty acids, especially oleic acid present in olive oil, are good inducers of microbial lipase synthesis, however the results of this study do not support the hypothesis that high oleic acid content stimulates high lipolytic activity. Neither the relationship between the percentage of individual fatty acids in triacylglycerols of vegetable oils nor their content at the sn-1,3 positions influenced the activity of extracellular lipases synthesized by Yarrowia lipolytica KKP 379. Several hypothesis are given regarding the presence of other factors which may determine differences in extracellular lipolytic activity of yeast grown on different vegetable oils, such as presence of metal ions, the content of free fatty acids and critical micellar concentration.

  4. Mycelium-Bound Lipase from a Locally Isolated Strain of Geotrichum candidum

    Joo Ling Loo

    2014-06-01

    Full Text Available Mycelium-bound lipase (MBL, from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL, harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.

  5. Estolides Synthesis Catalyzed by Immobilized Lipases

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  6. Estolides Synthesis Catalyzed by Immobilized Lipases

    Erika C. G. Aguieiras

    2011-01-01

    Full Text Available Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil, using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C, viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C, and viscosity index (153.

  7. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    Rader Daniel J

    2011-10-01

    Full Text Available Abstract Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC n-3 polyunsaturated fatty acids (PUFA is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA or safflower oil (n-6 PUFA (both 10% [w/w] and either cholesterol-supplemented (0.1% cholesterol [w/w] or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]. Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL cholesterol and triglyceride concentrations (P Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  8. KINETICS OF HYDROLYSIS OF TRIBUTYRIN BY LIPASE

    SULAIMAN AL-ZUHAIR

    2006-06-01

    Full Text Available Kinetics of the enzymatic hydrolysis of tributyrin using lipase has been investigated. The initial rate of reaction was determined experimentally at different substrate concentration by measuring the rate of butyric acid produced. Michaels-Menten kinetic model has been proposed to predict the initial rate of hydrolysis of tributyrin in micro-emulsion system. The kinetic parameters were estimated by fitting the data to the model using three methods, namely, the Lineweaver-Burk, Edie-Hofstee and Hanes methods. The Michaels-Menten model with the constant predicted by Edie-Hofstee and Hanes methods predicted the initial rate of reaction at various substrate concentrations better than the model with the constant predicted Lineweaver-Burk method, especially at high substrate concentrations.

  9. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes.

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-07-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes. PMID:19433586

  10. Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes*

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M.; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-01-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes. PMID:19433586

  11. Myristic Acid (MA) Promotes Adipogenic Gene Expression and the Differentiation of Porcine Intramuscular Adipocyte Precursor Cells

    LU Nai-sheng; ZHANG Yong-liang; JIANG Qing-yan; SHU Gang; XIE Qiu-ping; ZHU Xiao-tong; GAO Ping; ZHOU Gui-xuan; WANG Song-bo; WANG Li-na; XI Qian-yun

    2014-01-01

    Intramuscular fat (IMF) content is considered to be a key factor that affects the marbling, tenderness, juiciness and lfavor of pork. To investigate the effects of myristic acid (MA) on the differentiation of porcine intramuscular adipocytes, cells were isolated from longissimus dorsi muscle (LDM) and treated with 0, 10, 50 or 100μmol L-1 MA. The results showed that MA signiifcantly promotes the differentiation of intramuscular adipocytes in a dose-dependent manner. MA also led to a parallel increase in the expression of peroxisome proliferator activated receptor-γ(PPARγ) and adipose-related genes, such as glucose transporter 1 (GLUT1), lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4/aP2), fatty acid translocase (FAT), acetyl-CoA carboxylaseα(ACCα), adipose triglyceride lipase (ATGL) and fatty acid synthase (FASN). However, no signiifcant effects of MA were observed on the expression of CAAT enhancer binding protein-α(C/EBPα) or hormone sensitive lipase (HSL). The expression of pyruvate dehydrogenase kinase 4 (PDK4) was increased by MA during the early stages of differentiation (day 1-3). In addition, MA also increased the absolute content of C14 (P<0.001) and saturated fatty acids (SFA) (P<0.05) to varying degrees, but no effects were observed on other fatty acids. These results suggest that MA might be able to enhance the IMF content of pork and increase the accumulation of myristic and myristoleic acid in muscle, which might have beneifcial implications for human health.

  12. MICROBIAL LIPASES: PRODUCTION OF EXTRACELLULAR LIPASE ENZYME BY ALCALIGENES VISCOSUS (DOGE-1) STRAIN

    P.Sekhar

    2012-01-01

    Industrially important extracellular lipase enzyme production was explored by utilizingmicrobial strain isolated from dairy effluents. Alcaligenes viscosus DOGE-1 strain isolated from dairywaste waters proved to produce extracellular lipase. Various growth factors were attempted to maximizethe lipase production by this strain. Growth factors like NH4PO4, Peptone, Urea coupled with peptone,KH2PO4, Olive oil and pH were found to be favored the maximum lipase production. This microbialstrain was...

  13. Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner

    Bao, Yi; Wang, Li; Xu, Yanni; Yang, Yuan; Wang, Lifei; Si, Shuyi; Cho, Sunghee; Hong, Bin

    2012-01-01

    CD36, a class B scavenger receptor, has been implicated in the pathogenesis of a host of vascular inflammatory diseases. Through a high-throughput screening (HTS) assay for CD36 antagonist, we previously identified salvianolic acid B (SAB), a hydrophilic component derived from the herb Danshen, as a potential candidate. Danshen, the dried roots of Salvia miltiorrhiza, has been widely used in China for the prevention and treatment of atherosclerosis-related disorders. Previous studies showed t...

  14. ENZYMATIC PRODUCTION OF ETHYL OLEATE ESTER USING A LIPASE FROM CANDIDA ANTARCTICA B

    N. Sampaio Neta

    2012-05-01

    Full Text Available Lipases are biocatalysts of great importance in different areas, being able to catalyze reactions in aqueous or organic media. Furthermore, these enzymes are capable of using several substrates being stable in a wide range of pH and temperatures. Lipases promote the esterification between fatty acids and ethanol producing oleate esters. The aim of this work is to produce ethyl oleate ester by enzymatic esterification of oleic acid with ethanol. A lipase from Candida antarctica type B was used at a temperature of 55 °C. The reaction was conducted using oleic acid, sodium sulfate anhydrous, lipase and ethanol, with a ratio of oleic acid (0.03 mol or 10 ml, lipase (0.1 mol or 0.01 g, sodium sulfate anhydrous (5 g and ethanol 99 % (100 ml. Several reaction times were studied, namely 48, 72, 96 and 120 hours. Nuclear Magnetic Resonance (1H and 13C and Infrared spectra confirmed the production of ethyl oleate ester for the studied conditions. The highest ethyl oleate production yield was obtained for 96 hours reaction time. Ethyl oleate esters have been reported to possess interesting applications in several industrial fields, such as food, aromatics, cosmetics, detergents, flavors and pharmaceuticals.

  15. Serum pancreatic lipase activity in cystic fibrosis.

    Junglee, D; Penketh, A; Katrak, A; Hodson, M.E.; Batten, J C; Dandona, P

    1983-01-01

    Patients with cystic fibrosis have been found to have abnormal serum concentrations of immunoreactive trypsin and abnormal activities of pancreatic isoamylase. A study was undertaken to discover whether activity of pancreatic lipase is also altered in cystic fibrosis. Serum from 23 patients with cystic fibrosis was assayed for immunoreactive trypsin and pancreatic lipase. Median serum pancreatic lipase activity was significantly lower in patients with cystic fibrosis than in controls, as was ...

  16. 21 CFR 184.1415 - Animal lipase.

    2010-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Animal lipase. 184.1415 Section 184.1415 Food and... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an...

  17. Improved acylation of phytosterols catalyzed by Candida antarctica lipase A with superior catalytic activity

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    2013-01-01

    with structural identification of products by 1H NMR and Fourier transform-infrared spectroscopy (FTIR). Compared to other immobilized lipases, CAL A achieves 6–14 times faster esterification of ˇ-sitosterol with myristic acid. CAL A shows low activity toward short chain fatty acids (C2–C6), and...

  18. P48 Major Surface Antigen of Mycoplasma agalactiae Is Homologous to a malp Product of Mycoplasma fermentans and Belongs to a Selected Family of Bacterial Lipoproteins

    Rosati, Sergio; Pozzi, Sarah; Robino, Patrizia; Montinaro, Barbara; Conti, Amedeo; Fadda, Manlio; Pittau, Marco

    1999-01-01

    A major surface antigenic lipoprotein of Mycoplasma agalactiae, promptly recognized by the host's immune system, was characterized. The mature product, P48, showed significant similarity and shared conserved amino acid motifs with lipoproteins or predicted lipoproteins from Mycoplasma fermentans, Mycoplasma hyorhinis, relapsing fever Borrelia spp., Bacillus subtilis, and Treponema pallidum.

  19. Lipase-catalyzed Kinetic Resolution of Racemic 1-Trimethylsilylethanol in Organic Solvent

    吴虹; 宗敏华; 王菊芳; 罗涤衡; 娄文勇

    2004-01-01

    The enantioselective esterification of racemic 1-trimethylsilylethanol with acids catalyzed by lipase in organic solvent was successfully performed. The influence of some factors on the reaction was investigated. Among the four lipases explored, Candlda rugosa lipase (CRL) showed the highest activity and enantioselectivity. Octanoic acid was the best acyl donor among the eleven acids studied and n-hexane was the most suitable medium for the reaction. The optimum shaking rate and temperature were found to be 150 r-rain-i and 20~(3 to 30~C, respectively.The enantiomeric excess of the remaining (S)-(-)-1-trimethylsilylethanol was 93% when substrate conversion was 53% upon incubation of the reaction mixture at 30~C, 150 r-rain-i for 12 h.

  20. Lipase catalyzed ester synthesis for food processing industries

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  1. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste.

    Meng, Ying; Li, Sang; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2015-03-01

    The lipase obtained from Aspergillums niger was applied to promote the hydrolysis of food waste for achieving high biomethane production. Two strategies of lipase additions were investigated. One (Group A) was to pre-treat food waste to pre-decompose lipid to fatty acids before anaerobic digestion, and another one (Group B) was to add lipase to anaerobic digester directly to degrade lipid inside digester. The lipase was used at the concentrations of 0.1%, 0.5%, and 1.0% (w/v). The results showed that Group A achieved higher biomethane production, TS and VS reductions than those of Group B. At 0.5% lipase concentration, Group A obtained experimental biomethane yield of 500.1 mL/g VS(added), 4.97-26.50% higher than that of Group B. The maximum Bd of 73.8% was also achieved in Group A. Therefore, lipase pre-treatment strategy is recommended. This might provide one of alternatives for efficient biomethane production from food waste and mitigating environmental impact associated. PMID:25575204

  2. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus.

    Wang, Xiang-Yu; Jiang, Xiao-Ping; Li, Yue; Zeng, Sha; Zhang, Ye-Wang

    2015-04-01

    Magnetic Fe3O4@chitosan nanoparticles were prepared by a simple in situ co-precipitation method and characterized by transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The prepared Fe3O4@chitosan nanoparticles were used for covalent immobilization of lipase from Thermomyces lanuginosus by chemical conjugation after electrostatic entrapment (CCEE). The optimal immobilization conditions were obtained as follows: enzyme/support 19.8 mg/g, pH 5.0, time 4h and temperature 30 °C. Under these conditions, a high immobilization efficiency of 75% and a protein loading of 16.8 mg/g-support were obtained. Broad pH tolerance and high thermostability could be achieved by immobilization. The immobilized lipase retained 70% initial activity after ten cycles. Kinetic parameters Vmax and Km of free and immobilized lipase were determined as 5.72 mM/min, 2.26 mM/min and 21.25 mM, 28.73 mM, respectively. Ascorbyl palmitate synthesis with immobilized lipase was carried out in tert-butanol at 50 °C, and the conversion of ascorbic acid was obtained higher than 50%. These results showed that the immobilization of lipase onto magnetic chitosan nanoparticles by the method of CCEE is an efficient and simple way for preparation of stable lipase. PMID:25603148

  3. Spectroscopic investigations of the chiral interactions between lipase and the herbicide dichlorprop.

    Wen, Yue-Zhong; Yuan, Yu-Li; Shen, Chen-Si; Liu, Hui-Jun; Liu, Wei-Ping

    2009-03-01

    The enantioselective interaction between penicillium expansum alkaline lipase and chiral phenoxypropionic acid herbicide dichlorprop was studied by using UV differential spectrophotometry and fluorescence spectrophotometry in the presence of a pH 8, phosphate buffer solution. Chiral differences in the UV absorption and fluorescence spectra of lipase with dichlorprop were detected. (R)-Dichlorprop interacted the strongest with lipase as measured by both UV absorption and fluorescence spectrophotometry, followed by (Rac)-dichlorprop, while (S)-dichlorprop had the weakest interaction. The hydrophobic interaction seem to play the dominant role in the interactions and the (R)-enantiomer needed the minimum put of energy to drive the endothermic reaction, while the Rac-type and S-type compounds needed more for the reaction to take place. In the meantime, the catalytic hydrolysis of FDA with lipase show that (R)-DCPP could inhibit lipase the most strongly relatively at the same condition, perhaps because (R)-DCPP had a stronger combining effect and high enantiomeric selectivity on lipase than (Rac)-DCPP and (S)-DCPP. PMID:18570309

  4. General characterization of noncommercial microbial lipases in hydrolytic and synthetic reactions.

    Otero, C; Berrendero, M A; Cardenas, F; Alvarez, E; Elson, S W

    2005-03-01

    Fourteen noncommercial preparations of microbial lipases were investigated with respect to their catalytic activity for hydrolysis and synthesis of ester bonds. Six of the lipases were derived from microorganisms that have not previously been described as lipase producers, and another four were characterized for the first time. The synthetic reactions were carried out in two solvents of different polarities (n-heptane and acetone) using a series of fatty acids and primary and secondary alcohols with different chain lengths. Under the culture conditions employed, Pseudomonas cepacia produced more active enzyme than the other microorganisms. The lipase preparations produced using Ovadendron sulphureo-ochraceum, Monascus mucoroides, Monascus sp., Fusarium oxysporum, Penicillium chrysogenum, Rhodotorula araucariae, Pseudomonas cepacia, Streptomyces halstedii, and Streptomyces sp.were the most efficient catalysts for hydrolysis at lipid-water interfaces. Enzyme preparations from P. cepacia, Streptomyces sp., S. halstedii, and R. araucariae were good biocatalysts for esterification in the polar medium (acetone). When the lipase preparations with the greatest activity for hydrolytic reactions were excluded, regression analysis of the data for the hydrolytic and synthetic activities of the remaining lipase preparations yielded high multiple correlation coefficients for these reactions in both n-heptane and acetone (R = 0.82 and 0.91, respectively). PMID:15767695

  5. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    Fernandez, Renny Edwin [Microelectronics and MEMS Laboratory, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: rennyedwin@gmail.com; Bhattacharya, Enakshi [Microelectronics and MEMS Laboratory, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: enakshi@ee.iitm.ac.in; Chadha, Anju [Department of Biotechnology, National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai (India)], E-mail: anjuc@iitm.ac.in

    2008-05-30

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C-V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  6. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C-V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor

  7. A lipase-based electrochemical biosensor for target DNA

    A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The other end of the probe DNA is linked, via carboxy groups, to magnetic nanoparticles. The binding of target DNA transforms the hairpin structure of the probe DNA and causes the exposure of ester bonds. This results in the release of electro-active ferrocene after hydrolysis of the ester bonds, and in an observable electrochemical response. The quantity of target DNA in the concentration range between 1 × 10−12 mol·L−1 and 1 × 10−8 mol·L−1 can be determined by measuring the electrochemical current. The method can detect target DNA with rapid response (30 min) and low interference. (author)

  8. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production.

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2012-04-15

    In this work, lipase produced from an isolated strain Burkholderia sp. C20 was immobilized on magnetic nanoparticles to catalyze biodiesel synthesis. Core-shell nanoparticles were synthesized by coating Fe(3)O(4) core with silica shell. The nanoparticles treated with dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride were used as immobilization supporters. The Burkholderia lipase was then bound to the synthesized nanoparticles for immobilization. The protein binding efficiency on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 97%, while the efficiency was only 76% on non-modified Fe(3)O(4)-SiO(2). Maximum adsorption capacity of lipase on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 29.45 mg g(-1) based on Langmuir isotherm. The hydrolytic kinetics (using olive oil as substrate) of the lipase immobilized on alkyl-grafted Fe(3)O(4)-SiO(2) followed Michaelis-Menten model with a maximum reaction rate and a Michaelis constant of 6251 Ug(-1) and 3.65 mM, respectively. Physical and chemical properties of the nanoparticles and the immobilized lipase were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Moreover, the immobilized lipase was used to catalyze the transesterification of olive oil with methanol to produce fatty acid methyl esters (FAMEs), attaining a FAMEs conversion of over 90% within 30 h in batch operation when 11 wt% immobilized lipase was employed. The immobilized lipase could be used for ten cycles without significant loss in its transesterification activity. PMID:22306108

  9. A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum.

    Mohammed, Suja; Te'o, Junior; Nevalainen, Helena

    2013-08-01

    Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications. PMID:23779196

  10. Genes encoding two lipoproteins in the leuS-dacA region of the Escherichia coli chromosome

    The coding of two rare lipoproteins by two genes, rlpA and rlpB, located in the leuS-dacA region (15 min) on the Escherichia coli chromosome was demonstrated by expression of subcloned genes in a maxicell system. The formation of these two proteins was inhibited by globomycin, which is an inhibitor of the signal peptidase for the known lipoproteins of E. coli. In each case, this inhibition was accompanied by formation of a new protein, which showed a slightly lower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and which we suppose to be a prolipoprotein with an N-terminal signal peptide sequence similar to those of the bacterial major lipoproteins and lysis proteins of some bacteriocins. The incorporation of 3H-labeled palmitate and glycerol into the two lipoproteins was also observed. Sequencing of DNA showed that the two lipoprotein genes contained sequences that could code for signal peptide sequences of 17 amino acids (rlpA lipoprotein) and 18 amino acids (rlpB lipoprotein). The deduced sequences of the mature peptides consisted of 345 amino acids (M/sub r/ 35,615, rlpA lipoprotein) and 175 amino acids (M/sub r/ 19,445, rlpB lipoprotein), with an N-terminal cysteine to which thioglyceride and N-fatty acyl residues may be attached. These two lioproteins may be important in duplication of the cells

  11. Gene cloning and catalytic characterization of cold-adapted lipase of Photobacterium sp. MA1-3 isolated from blood clam.

    Kim, Young Ok; Khosasih, Vivia; Nam, Bo-Hye; Lee, Sang-Jun; Suwanto, Antonius; Kim, Hyung Kwoun

    2012-12-01

    A lipase-producing Photobacterium strain (MA1-3) was isolated from the intestine of a blood clam caught at Namhae, Korea. The lipase gene was cloned by shotgun cloning and encoded 340 amino acids with a molecular mass of 38,015 Da. It had a very low sequence identity with other bacterial lipases, with the exception of that of Photobacterium lipolyticum M37 (83.2%). The MA1-3 lipase was produced in soluble form when Escherichia coli cells harboring the gene were cultured at 18°C. Its optimum temperature and pH were 45°C and pH 8.5, respectively. Its activation energy was calculated to be 2.69 kcal/mol, suggesting it to be a cold-adapted lipase. Its optimum temperature, temperature stability, and substrate specificity were quite different from those of M37 lipase, despite the considerable sequence similarities. Meanwhile, MA1-3 lipase performed a transesterification reaction using olive oil and various alcohols including methanol, ethanol, 1-propanol, and 1-butanol. In the presence of t-butanol as a co-solvent, this lipase produced biodiesel using methanol and plant or waste oils. The highest biodiesel conversion yield (73%) was achieved using waste soybean oil and methanol at a molar ratio of 1:5 after 12 h using 5 units of lipase. PMID:22841866

  12. [Gene cloning, expression and characterization of two cold-adapted lipases from Penicillium sp. XMZ-9].

    Zheng, Xiaomei; Wu, Ningfeng; Fan, Yunliu

    2012-04-01

    Cold-adapted lipases are attractive biocatalysts that can be used at low temperatures as additives in food products, laundry detergents, and the organic synthesis of chiral intermediates. Cold-adapted lipases are normally found in microorganisms that survive at low temperatures. A fungi strain XMZ-9 exhibiting lipolytic activity was isolated from the soil of glaciers in Xinjiang by the screening plates using 1% tributyrin as the substrate and Victoria blue as an indicator. Based on morphological characteristics and phylogenetic comparisons of its 18S rDNA, the strain was identified as Penicillium sp. The partial nucleotide sequences of these two lipase related genes, LipA and LipB, were obtained by touchdown PCR using the degenerate primers designed according to the conservative domains of lipase. The full-length sequences of two genes were obtained by genome walking. The gene lipA contained 1 014 nucleotides, without any intron, comprising one open reading frame encoding a polypeptide of 337 amino acids. The gene lipB comprised two introns (61 bp and 49 bp) and a coding region sequence of 1 122 bp encoding a polypeptide of 373 amino acids, cDNA sequences of both lipA and lipB were cloned and expressed in Escherichia coli BL21 (DE3). The recombinant LipA was mostly expressed as inclusion bodies, and recovered lipase activity at low temperature after in vitro refolded by dilution. Differently, the recombinant LipB was expressed in the soluble form and then purified by Ni-NTA affinity chromatography Column. It showed high lipase activity at low temperature. These results indicated that they were cold-adapted enzymes. This study paves the way for the further research of these cold-adapted lipases for application in the industry. PMID:22803398

  13. Delta-6-desaturase gene polymorphism is associated with lipoprotein oxidation in vitro

    Solakivi, Tiina; Kunnas, Tarja; Jaakkola, Olli; Renko, Jaana; Lehtimäki, Terho; Nikkari, Seppo T

    2013-01-01

    Background Oxidative modification of low-density lipoprotein (LDL) is a key event in the oxidation hypothesis of atherogenesis. We have previously shown that HDL does not protect LDL from oxidation in vitro, but is in fact oxidized fastest of all lipoproteins due to its rich polyunsaturated fatty acid (PUFA) composition, which is oxidation promoting. Evidence has accumulated to show that in addition to diet, common polymorphisms in the fatty acid desaturase (FADS) gene cluster have very marke...

  14. Different effects of diets rich in olive oil, rapeseed oil and sunflower-seed oil on postprandial lipid and lipoprotein concentrations and on lipoprotein oxidation susceptibility

    Nielsen, Nina Skall; Pedersen, A.; Sandstrøm, B.;

    2002-01-01

    Elevated concentrations of fasting and non-fasting triacylglycerol-rich lipoproteins (TRL) as well as oxidative changes of lipoproteins may increase the risk of ischaemic heart disease. To compare the effects of different diets rich in unsaturated fatty acids on the concentrations and in vitro...... oxidation of fasting and postprandial lipoproteins eighteen males consumed diets enriched with rapeseed oil (RO), olive oil (OO), or sunflower-seed oil (SO) in randomised order for periods of 3 weeks followed by a RO test meal. In the postprandial state the concentrations of cholesterol and triacylglycerol...... (TAG) in TRL were higher after consumption of OO compared with RO and SO (P...

  15. Different effects of diets rich in olive oil, rapeseed oil and sunflower-seed oil on postprandial lipid and lipoprotein concentrations and on lipoprotein oxidation susceptibility

    Nielsen, Nina Skall; Pedersen, A.; Sandstrøm, B.;

    2002-01-01

    oxidation of fasting and postprandial lipoproteins eighteen males consumed diets enriched with rapeseed oil (RO), olive oil (OO), or sunflower-seed oil (SO) in randomised order for periods of 3 weeks followed by a RO test meal. In the postprandial state the concentrations of cholesterol and triacylglycerol......Elevated concentrations of fasting and non-fasting triacylglycerol-rich lipoproteins (TRL) as well as oxidative changes of lipoproteins may increase the risk of ischaemic heart disease. To compare the effects of different diets rich in unsaturated fatty acids on the concentrations and in vitro...... (TAG) in TRL were higher after consumption of OO compared with RO and SO (P...

  16. Aerosol preparation of intact lipoproteins

    Benner, W. Henry; Krauss, Ronald M; Blanche, Patricia J

    2012-01-17

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  17. Preliminary studies on immobilization of lipase using chicken eggshell

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  18. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.

    Zhang, Qian; Zheng, Zhong; Liu, Changxia; Liu, Chunqiao; Tan, Tianwei

    2016-04-01

    Superparamagnetic Fe3O4 sub-microspheres with diameters of approximately 200nm were prepared via a solvothermal method, and then modified with epoxychloropropane. Lipase was immobilized on the modified sub-microspheres. The immobilized lipase was used in the production of biodiesel fatty acid methyl esters (FAMEs) from acidified waste cooking oil (AWCO). The effects of the reaction conditions on the biodiesel yield were investigated using a combination of response surface methodology and three-level/three-factor Box-Behnken design (BBD). The optimum synthetic conditions, which were identified using Ridge max analysis, were as follows: immobilized lipase:AWCO mass ratio 0.02:1, fatty acid:methanol molar ratio 1:1.10, hexane:AWCO ratio 1.33:1 (mL/g), and temperature 40°C. A 97.11% yield was obtained under these conditions. The BBD and experimental data showed that the immobilized lipase could generate biodiesel over a wide temperature range, from 0 to 40°C. Consistently high FAME yields, in excess of 80%, were obtained when the immobilized lipase was reused in six replicate trials at 10 and 20°C. PMID:26803008

  19. Guinea pigs: A suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation

    Volek Jeff S

    2006-03-01

    Full Text Available Abstract Numerous animal models have been used to study diet effects on cholesterol and lipoprotein metabolism. However, most of those models differ from humans in the plasma distribution of cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism, these data are of limited use because other metabolic pathways and responses to interventions may differ from the human condition. Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets.

  20. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors.

    Gordts, Philip L S M; Nock, Ryan; Son, Ni-Huiping; Ramms, Bastian; Lew, Irene; Gonzales, Jon C; Thacker, Bryan E; Basu, Debapriya; Lee, Richard G; Mullick, Adam E; Graham, Mark J; Goldberg, Ira J; Crooke, Rosanne M; Witztum, Joseph L; Esko, Jeffrey D

    2016-08-01

    Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO-induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III-rich or ApoC-III-depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis. PMID:27400128

  1. Avaliação e comparação da eficiência de imobilização de lipase pancreática em quitosana para produção de ácidos graxos em frascos agitados = Evaluation and comparison of the efficiency of detention in chitosan pancreatic lipase for production of fatty acids in flasks under shaking

    Rafael Oliveira de Aguiar; Ramiro Macarini Mondardo; Eduardo João Agnes; Heizir Ferreira de Castro; Ernandes Benedito Pereira

    2010-01-01

    A hidrólise enzimática de óleos e gorduras ou lipólise é um processotecnológico que permite a obtenção de ácidos graxos com alto valor agregado e baixo consumo energético. Lipases são enzimas de origem vegetal, animal ou microbiana, que catalisam a hidrólise total ou parcial de óleos e gorduras. Neste estudo, avaliou-se a ação dalipase comercial (pancreatina) na reação de hidrólise do óleo de girassol e de milho, num período de 24h. Foram avaliados os principais parâmetros (pH, tempo, tempera...

  2. Optimization of lipase-catalyzed synthesis of diglycerol monooleate by response surface methodology

    The optimization of the lipase-catalyzed esterification of pure diglycerol (3-(2,3-dihydroxypropoxy)propane-1,2-diol) with pure oleic acid to produce pure diglycerol monooleate (E475) which is a non-ionic surfactants, was performed. Six immobilized lipases were tested and the best oleic acid conversion was attained with Novozym 435 from Candida antarctica which was selected to optimize the reaction conditions by response surface methodology (RSM). Well-fitting quadratic polynomial regression model for acid conversion was established with regard to temperature (65 °C–75 °C) and catalyst concentration (mass fraction of 1–5%). The two factors investigated positively affected acid conversion, with catalyst concentration having the greatest effect. The regression equation obtained by central composite design of RSM predicted optimal reaction conditions of 77 °C and 5.8%. Under these optimal conditions the model obtained in this work has been tested in scale-up experiment, and the resulting acid conversion was 93.9% with an accuracy of 97.4%. Within the experimental range studied the results model give good agreement with the experimental data. - Highlights: • Lipase-catalyzed esterification of pure diglycerol with oleic in solvent-free system. • The modeling and optimization of lipase-catalyzed esterification process was successfully performed. • Under optimal conditions, the esterification process was scaled up using a stirred tank reactor

  3. Activities of Two Lipases and Vitamin C Effects during Embryonic Development in Crucian Carp Carassius auratus%维生素C对普安银鲫胚胎发育中两种脂酶活性的影响

    蒋左玉; 安苗; 姚俊杰; 王金娜; 熊铧龙

    2014-01-01

    The activities of lipoprotein lipase, hepatic lipase and general lipid enzyme and vitamin C effects were studied at water tem-perature of 24℃during embryonic development of crucian carp Carassius auratus by biochemical methods. The results showed that there were higher activities of lipoprotein lipase, hepatic lipase and general lipid enzyme in embryos were than those in mature eggs. During the embryonic development,the specific activity and total activity were found to be increased with embryonic development, significant increase from mid-gastrula stage, and the maximal activities of two lipase enzyme at prehatching. Vitamin C solution at a dose of 30mg/L led to increase in the activities of lipoprotein lipase, hepatic lipase and general lipid enzyme during embryo develop-ment. The findings indicated that lipoprotein lipase and hepatic lipase genes in zygotes may start to play function at gastrula stage when lipid hydrolytic enzymes are synthesized to release energy for embryonic development. The appropriate dose of vitamin C in water could play an important role in maintaining normal lipid metabolism in body, thus promoting embryonic development of the crucian carp.%在水温24℃下,研究了普安银鲫(Carassius auratus)胚胎发育过程中脂蛋白脂酶(LPL)、肝脂酶(HL)和总脂酶(GE)活性的变化特点及维生素C溶液浸泡对其影响。结果显示:(1)胚胎中LPL、HL和GE的比活力与全活力比成熟卵中高。(2)随胚胎发育,LPL、HL和GE比活力与全活力上升,自原肠中期始,LPL和HL的活性显著升高(P<0.05),出膜前期达最高。(3)30mg/L维生素C溶液浸泡促使普安银鲫胚胎发育过程中LPL、HL和GE比活力与全活力升高。合子中LPL和HL基因可能在原肠期开始表达,合成脂质水解酶分解脂质,为胚胎发育提供能量。在水体中添加适宜水平的维生素C能促进普安银鲫胚胎发育,维持机体内脂质的正常代谢。

  4. Purification and properties of a mitochondrial lipoprotein inhibitor of sterol synthesis

    A lipoprotein inhibitor of hydroxymethylglutaryl CoA reductase (EC 1.1.1.34) and of cholesterol synthesis by rat liver homogenates, was isolated from the mitochondria of starved rats' livers. The isolated lipoprotein complex contained a low molecular weight protein and fatty acids. The fatty acids identified were arachidonic, linoleic, oleic, stearic and palmitic. The saturated fatty acids and oleic acid did not inhibit. Inhibition of the enzyme was to a large extent related to the degree of fatty acid unsaturation. (auth.)

  5. Neutrophil chemotaxis by Propionibacterium acnes lipase and its inhibition.

    Lee, W. L.; Shalita, A R; Suntharalingam, K; Fikrig, S M

    1982-01-01

    The chemoattraction of Propionibacterium acnes lipase for neutrophils and the effect of lipase inhibitor and two antibiotic agents on the chemotaxis were evaluated. Of the various fractions tested, partially purified lipase (fraction 2c) was the most active cytotaxin produced by P. acnes. Serum mediators were not required for the generation of chemotaxis by lipase in vitro. Diisopropyl phosphofluoridate at low concentration (10(-4) mM) completely inhibited lipase activity as well as polymorph...

  6. Uremic Toxins and Lipases in Haemodialysis: A Process of Repeated Metabolic Starvation

    Bernd Stegmayr

    2014-04-01

    Full Text Available Severe kidney disease results in retention of uremic toxins that inhibit key enzymes for lipid breakdown such as lipoprotein lipase (LPL and hepatic lipase (HL. For patients in haemodialysis (HD and peritoneal dialysis (PD the LPL activity is only about half of that of age and gender matched controls. Angiopoietin, like protein 3 and 4, accumulate in the uremic patients. These factors, therefore, can be considered as uremic toxins. In animal experiments it has been shown that these factors inhibit the LPL activity. To avoid clotting of the dialysis circuit during HD, anticoagulation such as heparin or low molecular weight heparin are added to the patient. Such administration will cause a prompt release of the LPL and HL from its binding sites at the endothelial surface. The liver rapidly degrades the release plasma compound of LPL and HL. This results in a lack of enzyme to degrade triglycerides during the later part of the HD and for another 3–4 h. PD patients have a similar baseline level of lipases but are not exposed to the negative effect of anticoagulation.

  7. Microbial Lipases and Their Industrial Applications: Review

    Berhanu Andualema

    2012-01-01

    Full Text Available Microbial lipases (triacylglycerol acyl-hydrolases, EC 3.1.1.3 catalyze both the hydrolysis and synthesis of long-chain acylglycerols. They are currently given much attention with the rapid development of enzyme technology. The chemo-, regio- and enantio-specific characteristics of lipase tends to be a focus research area for scientists and industrialists. Compared to plants and animals, microorganisms have been found to produce high yields of lipases. This review describes various industrial applications of microbial lipases in the area of food industry, oil and fat industry, detergent industry, pulp and paper industry, leather industry, textile industry, in organic synthesis, production of cosmetics and biodiesel production. This makes lipases the most widely used class of enzymes in different industrial activities through the application of bioprocess technology. The aim of this review is not to discuss every lipase described in the literature but rather to present recent information on the production, characterization and industrial application of lipases in our daily activities in order to improve our life styles.

  8. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12.

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca(2+), Mg(2+) and K(+), while heavy metals (Fe(3+) and Zn(2+)) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  9. Electrophoretic and zymographic techniques for production monitoring of two lipase forms from Candida antarctica DSM 70725

    Dimitrijević Aleksandra S.

    2012-01-01

    Full Text Available Yeast Candida antarctica produces two lipase forms, which are widely used as catalysts in variety of organic reactions, many of which are applied on a large scale. In this work, production of two forms of lipase from C. antarctica DSM 70725 (CAL A and CAL B was monitored during seven days of cultivation in the optimal medium using different electrophoretic and zymographic techniques. According to electrophoresis after silver staining, C. antarctica lipase A (molecular mass 45 kDa was produced starting from the second day of cultivation. C. antarctica lipase B (CAL B was also produced starting from the second day, but protein was present in the fermentation broth predominantly as dimer (molecular weight 66 kDa, while presence of monomeric form of CAL B (molecular weight of 33 kDa was observed starting from the fourth day of cultivation. Both types of zymograms (based on hydrolysis and synthesis reactions were used for detection of lipase activity in the fermentation broth. C. antarctica lipase A showed activity only in hydrolytic zymogram, when α-naphtyl butyrate was used as substrate. In the same zymogram, with α-naphtyl acetate as substrate no CAL A activity was detected. Similarly, CAL A showed no activity in synthesis based zymograms towards oleic acid and octanol as substrates, indicating that CAL A is not active towards very short or long-chain substrates. As opposite of CAL A, both monomeric and dimeric form of CAL B were detected in the all zymograms, suggesting that CAL B is active towards wide range of substrates, regardless to the chain length. Thus, zymogram based on hydrolysis of α-naphtyl butyrate represents a simple method for monitoring the production of two forms of lipase from C. antarctica, that greatly differ in their characteristics.

  10. Mechanisms involved in the selective transfer of long chain polyunsaturted fatty acids to the fetus

    Alfonso eGil-Sánchez

    2011-09-01

    Full Text Available The concentration of long chain polyunsaturated fatty acid (LCPUFA in the fetal brain increases dramatically from the third trimester until 18 months of life. Several studies have shown an association between the percentage of maternal plasma docosahexaenoic acid (DHA during gestation and development of the cognitive functions in the neonate. Since only very low levels of LCPUFA are synthesized in the fetus and placenta, their primary source for the fetus is that of maternal origin. Both in vitro and human in vivo studies using labelled fatty acids have shown the preferential transfer of LCPUFA from the placenta to the fetus compared with other fatty acids, although the mechanisms involved are still uncertain. The placenta takes up circulating maternal non-esterified fatty acids (NEFA and fatty acids released mainly by maternal lipoprotein lipase and endothelial lipase. These NEFA may enter the cell by passive diffusion or by means of membrane carrier proteins. Once in the cytosol, NEFA bind to cytosolic fatty acid-binding proteins for transfer to the fetal circulation or can be oxidized within the trophoblasts and even re-esterified and stored in lipid droplets (LD. Although trophoblast cells are not specialized in lipid storage, LCPUFA may up-regulate peroxisome proliferator activated receptor-γ (PPARγ and hence the gene expression of fatty acid transport carriers, fatty acid acyl-CoA synthetases and adipophilin or other enzymes related with lipolysis, modifying their rate of placental transfer and metabolization. The placental transfer of LCPUFA during pregnancy seems to be a key factor in the neurological development of the fetus. Increased knowledge on the factors that modify placental transfer of fatty acids would contribute to our understanding of this complex process.

  11. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms

    Krintel, Christian; Klint, Cecilia; Lindvall, Håkan; Mörgelin, Matthias; Holm, Cecilia

    2010-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa) expressed in a tissue...

  12. Cocoa pod husk: A new source of CLEA-lipase for preparation of low-cost biodiesel: An optimized process.

    Khanahmadi, Soofia; Yusof, Faridah; Chyuan Ong, Hwai; Amid, Azura; Shah, Harmen

    2016-08-10

    Enzymatic reactions involving lipases as catalyst in transesterification can be an excellent alternative to produce environmental-friendly biodiesel. In this study, lipase extracted from Cocoa Pod Husk (CPH) and immobilized through cross linked enzyme aggregate (CLEA) technology catalysed the transesterification of Jatropha curcas oil successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of 3% (w/w) enzyme loading, 4h reaction time and 1:6 oil/ethanol ratio to achieve the highest conversion of free fatty acid and glycerides into biodiesel (93%). The reusability of CLEA-lipase was tested and after seven cycles, the conversion percentage reduced to 58%. The results revealed that CLEA lipase from CPH is a potential catalyst for biodiesel production. PMID:27184429

  13. Effect of salt solutions applied during wheat conditioning on lipase activity and lipid stability of whole wheat flour.

    Doblado-Maldonado, Andrés F; Arndt, Elizabeth A; Rose, Devin J

    2013-09-01

    Lipolytic activity in whole wheat flour (WWF) is largely responsible for the loss in baking quality during storage. Metal ions affect the activity of seed lipases; however, no previous studies have applied this information to WWF in a way that reduces lipase activity, is practical for commercial manufacture, and uses common food ingredients. NaCl, KCl, Ca-propionate, or FeNa-ethylenediaminetetraacetic acid (FeNa-EDTA) were applied to hard red winter (HRW) and hard white spring (HWS) wheats during conditioning as aqueous solutions at concentrations that would be acceptable in baked goods. Salts affected lipase activity to different degrees depending on the type of wheat used. Inhibition was greater in HRW compared with HWS WWF, probably due to higher lipase activity in HRW wheat. In HRW WWF, 1% NaCl (flour weight) reduced hydrolytic and oxidative rancidity and resulted in higher loaf volume and lower firmness than untreated WWF after 24 weeks of storage. PMID:23578634

  14. Rapid Estimation of Enantioselectivity in Lipase-catalyzed Resolution of Glycidyl Butyrate Using pH Indicator

    WANG Ping; WANG Lei; WANG Li-cheng; LI Chun-yuan; WANG Ren; MIAO Qing-hua; YANG Ming; WANG Zhi

    2009-01-01

    A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the dif-ference of hydrolysis rates for the racemic ester and its slow reacting enantiomer under the same condition because the difference mainly depends on the enantioselective ratio(E values). The higher the enantiose-lectivity of enzyme, the larger the difference of hydrolysis rate. The bromothymol blue(BTB) can be used as pH indicator for microplate reader to monitor the formation of acid in lipase-catalyzed hydrolysis ofesters. This method has been successfully used to rapidly estimate the enantioselectivity of several lipases in the resolution of glycidyl butyrate.

  15. Bidirectional flux of cholesterol between cells and lipoproteins. Effects of phospholipid depletion of high density lipoprotein

    The bidirectional surface transfer of free cholesterol (FC) between Fu5AH rat hepatoma cells and human high density lipoprotein (HDL) was studied. Cells and HDL were prelabeled with [4-14C]FC and [7-3H]FC, respectively. Influx and efflux of FC were measured simultaneously from the appearance of 3H counts in cells and 14C counts in medium. Results were analyzed by a computerized procedure which fitted sets of kinetic data to a model assuming that cell and HDL FC populations each formed a single homogeneous pool and that together the pools formed a closed system. This analysis yielded values for the first-order rate constants of FC influx and efflux (ki and ke), from which influx and efflux of FC mass (Fi and Fe) could be calculated. With normal HDL, the uptake and release of FC tracers conformed well to the above-described model; Fi and Fe were approximately equal, suggesting an exchange of FC between cells and HDL. HDL was depleted of phospholipid (PL) by treatment with either phospholipase A2 or heparin-releasable rat hepatic lipase, followed by incubation with bovine serum albumin. PL depletion of HDL had little or no effect on ki, but reduced ke, indicating that PL-deficient HDL is a relatively poor acceptor of cell cholesterol. The reduction in ke resulted in initial Fi greater than Fe and, thus, in net uptake of FC by the cells. This result explained previous results demonstrating net uptake of FC from PL-depleted HDL. In the presence of an inhibitor of acyl coenzyme A:cholesterol acyltransferase, the steady state distribution of FC mass between cells and HDL was accurately predicted by the ratio of rate constants for FC flux. This result provided additional validation for describing FC flux in terms of first-order rate constants and homogeneous cell and HDL FC pools

  16. Structure-Guided Modification of Rhizomucor miehei Lipase for Production of Structured Lipids

    Zhang, Jun-Hui; Jiang, Yu-Yan; Lin, Ying; Sun, Yu-Fei; Zheng, Sui-Ping; Han, Shuang-Yan

    2013-01-01

    To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML) in the production of human milk fat substitute (HMFS), we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery St...

  17. Immobilization of Lipase on Single Walled Carbon Nanotubes in Ionic Liquid

    A lipase from Pseudomonas cepacia was immobilized onto single walled carbon nanotubes (SWNTs) in two different ways in each of two solvent systems (buffer and ionic liquid). The most efficient immobilization was achieved in ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM-BF4). In this procedure, carbon nanotubes were first functionalized noncovalently with 1-pyrenebutyric acid N-hydroxysuccinimide ester and then subject to the coupling reaction with the lipase in ionic liquid. The resulting immobilized enzyme displayed the highest activity in the transesterification of 1-phenylethyl alcohol in the presence of vinyl acetate in toluene

  18. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Kai Lin; Le Chang; Chun-Gu Xia; Yan Wang; Tie Liu; Jia-Ying Xin

    2012-01-01

    Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435), was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS) of 1.04 and 0.0072 resp...

  19. Effects of hormones on lipids and lipoproteins

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men and are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.

  20. From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases

    Cristiane D. Anobom

    2014-01-01

    Full Text Available Microbial lipases are highly appreciated as biocatalysts due to their peculiar characteristics such as the ability to utilize a wide range of substrates, high activity and stability in organic solvents, and regio- and/or enantioselectivity. These enzymes are currently being applied in a variety of biotechnological processes, including detergent preparation, cosmetics and paper production, food processing, biodiesel and biopolymer synthesis, and the biocatalytic resolution of pharmaceutical derivatives, esters, and amino acids. However, in certain segments of industry, the use of lipases is still limited by their high cost. Thus, there is a great interest in obtaining low-cost, highly active, and stable lipases that can be applied in several different industrial branches. Currently, the design of specific enzymes for each type of process has been used as an important tool to address the limitations of natural enzymes. Nowadays, it is possible to “order” a “customized” enzyme that has ideal properties for the development of the desired bioprocess. This review aims to compile recent advances in the biotechnological application of lipases focusing on various methods of enzyme improvement, such as protein engineering (directed evolution and rational design, as well as the use of structural data for rational modification of lipases in order to create higher active and selective biocatalysts.