WorldWideScience

Sample records for acids inorganic

  1. Studies on inorganic exchangers - polyantimonic acid

    From the detailed experimental investigations carried out, it may be mentioned that the inorganic exchanger polyantimonic acid could be used for effectively separating strontium from fission product waste solutions free from caesium and zirconium at acidities of the order of 2M or so. After thorough washing of the column with 2M HNO3 acid to remove any residual activity unadsorbed, the strontium can be eluted with a mixture of 1M AgNO3 +6M HNO3 at room temperature. The column after regeneration and conditioning can be used for further adsorption and elution up to a maximum of 6 cycles without much deterioration in column characteristics. (author)

  2. Ionisation constants of inorganic acids and bases in aqueous solution

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  3. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  4. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors

    He, Ronghuan; Qingfeng, Li; Gang, Xiao;

    2003-01-01

    Phosphoric acid doped polybenzimidazole (PBI) and PBI composite membranes have been prepared in the present work. The PBI composites contain inorganic proton conductors including zirconium phosphate (ZrP), (Zr(HPO4)2·nH2O), phosphotungstic acid (PWA), (H3PW12O40·nH2O) and silicotungstic acid (Si...

  5. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic protontic conductors

    Li, Qingfeng

    2003-01-01

    contain inorganic protonic conductors including zirconium phosphate (ZrP), (Zr(HPO4)2. nH2O); phosphotungstic acid (PWA), (H3PW12O40. nH2O); and silicotungstic acid (SiWA), (H4SiW12O40 . nH2O). The conductivity of phosphoric acid doped PBI and PBI composite membranes was found to be dependent on the acid...

  6. Nitrate reductase and acid phosphatase activities as affected by inorganic phosphate in corn roots

    Marie Kummerova; Józef Buczek

    2014-01-01

    The deficieny of inorganic phosphate in nutrient solution reduces by about 50 per cent NO3- absorption in corn seedlings, it decreases both in vitro and in vivo nitrate reductase (NR) activity, as well the potential and actual NR level and has a very weak effect on NR induction. Acid phosphatases activities increase in corn roots when the plants are grown in nutrient solution without phosphorus. We suggest that inorganic phosphate is required mainly for maintenance of NR activity rather, than...

  7. Genetic variability for phytic acid and inorganic phosphorous in Indian Sorghum (Sorghum bicolor) landraces

    Ashok Badigannavar, G. Girish and T.R. Ganapathi

    2014-01-01

    Majority of the phosphorous in the seeds of higher plant is stored as phytic acid. Phytate ‘P’ interfere in the protein digestion and chelate nutritionally essential elements, such as Ca, Zn and Fe. Breeding for low phytic acid would help in improving the nutritional quality of sorghum. In the present study, genetic variability for phytic acid (PAP) and inorganic ‘P’(IP) was determined among 92 sorghum landraces and 20 varieties.. The ANOVA showed significant differences for grain yield, 100-...

  8. Mechanisms for the retention of inorganic N in acidic forest soils of southern China

    Zhang, Jin-Bo; Cai, Zu-cong; Zhu, Tong-bin; Yang, Wen-Yan; Müller, Christoph

    2013-01-01

    The mechanisms underlying the retention of inorganic N in acidic forest soils in southern China are not well understood. Here, we simultaneously quantified the gross N transformation rates of various subtropical acidic forest soils located in southern China (southern soil) and those of temperate forest soils located in northern China (northern soil). We found that acidic southern soils had significantly higher gross rates of N mineralization and significantly higher turnover rates but a much ...

  9. Solvent extraction of scandium by TBP from inorganic acid solutions

    Studied has been the distribution of scandium between the 100% TBP and the aqueous solutions of the nitric and hydrochloric acids with the various concentrations of scandium and acids. A relationship has been determined between the concentration constants of the scandium extraction from the solutions of the nitric, hydrochloric, sulfuric and chlorous acid solutions, the hydration energies of the extracting ions and the stability constants of the complexes, comprising scandium and anions

  10. Joint effect of organic acids and inorganic salts on cloud droplet activation

    M. Frosch

    2011-04-01

    Full Text Available We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid and one inorganic salt (sodium chloride or ammonium sulphate. Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not

  11. Effects of Inorganic acid catalysts on liquefaction of wood In phenol

    Zhang Qiuhui; Zhao Guangjie; Chen Jinpeng

    2006-01-01

    In order to obtain the effects of acid catalysts on wood liquefaction in phenol, we investigated the liquefaction of wood powder from Chinese fir (Cunninghamia lanceolata) and poplar (Triploid Populus tomentosa Carr) in the presence of phenol with the following weak inorganic acids as catalysts: phosphoric acid (85%),sulfuric acid (36%),hydrochloric acid (37%)and oxalic acid (99.5%).Results show that phosphoric acid (85%) and sulfuric acid (36%) are better than the other catalysts.It was found that lower residue ratios can be obtained under defined reaction conditions: phenol/wood ratio is 4,a 10% catalyst based on the weight of phenol,a temperature of 150℃ for 2 h and phosphoric or sulfuric acid.The residue ratios are 3.2% and 4.0%,respectively.

  12. Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids.

    Guo, Xuming; Sturgeon, Ralph E; Mester, Zoltán; Gardner, Graeme J

    2003-12-15

    Using a flow-through photochemical reactor and a low pressure mercury lamp as a UV source, alkyl selenium species are formed from inorganic selenium(IV) in the presence of low molecular weight organic acids (LMW acids). The volatile alkyl Se species were cryogenically trapped and identified by GC-MS and GC-ICP-MS. In the presence of formic, acetic, propionic and malonic acids, inorganic selenium(IV) is converted by UV irradiation to volatile selenium hydride and carbonyl, dimethylselenide and diethylselenide, respectively. Se(IV) was successfully removed from contaminated agricultural drainage waters (California, U.S.A.) using a batch photoreactor system Se. Photochemical alkylation may thus offer a promising means of converting toxic selenium salts, present in contaminated water, to less toxic dimethylselenide. The LMW acids and photochemical alkylation process may also be key to understanding the source of atmospheric selenium and are likely involved in its mobility in the natural anaerobic environment. PMID:14717175

  13. Joint effect of organic acids and inorganic salts on cloud droplet activation

    M. Frosch

    2010-07-01

    Full Text Available We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid and one inorganic salt (sodium chloride or ammonium sulphate. Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with K

  14. Effect of dietary phytic acid and inorganic iron on the quality of chilled pork.

    Renilda Terezinha Monteiro

    2015-09-01

    Full Text Available The objective of this study was to evaluate the effect of supplementing inorganic iron and phytic acid to the diet for finishing pigs on meat quality after 24 hours and 7 days of refrigeration. Forty castrated male finishing pigs of a commercial genotype, with an initial mean weight of 64.34 ± 6.64 kg and age of 108 days, were used. The animals were weighed and housed individually in brick pens with an area of three m2 and compact floor, receiving water and ration ad libitum for 30 days. A randomized block design in a 2 x 2 factorial scheme was used, corresponding to diets supplemented or not with inorganic iron and with two levels of phytic acid, high (4.85% and low (2.98%. The animals were slaughtered when they had reached a mean weight of 100.76 ± 6.54 kg and longissimus dorsi muscle samples were collected for the analysis of meat quality. The following parameters were analyzed in the samples: pH, color, marbling, water loss through pressure, shear force, iron composition, and lipid oxidation. No differences in the variables analyzed were observed between factors, except for muscle iron concentration, which was higher for the diet with inclusion of inorganic iron. Lipid oxidation was not influenced by the presence or absence of phytic acid and inorganic iron. The results show that diets with elevated phytic acid levels supplemented or not with inorganic iron can be used for finishing pigs without compromising meat quality during the refrigeration phase.

  15. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  16. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Beleze Fábio A.; Zarbin Aldo J. G.

    2001-01-01

    In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA) and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V) present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic...

  17. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    E. Gioseffi

    2012-04-01

    Full Text Available Soil-borne amino acids may constitute a source of nitrogen (N for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly and glutamine (Gln by wheat roots and their interactions with nitrate (NO3 and ammonium (NH4+ during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake, thereby resulting in similar total N uptake rates. Amino acids were enriched with double-labelled 15N and 13C, while NO3 and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3 and NH4+ did not differ from each other and were generally about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50% of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3 did not affect glycine uptake, while the presence of glycine down-regulated NO3 uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction

  18. Inorganic-Organic hybrid materials for uranium extraction from phosphoric acid

    Phosphate rocks are industrially processed in large quantities to produce phosphoric acid and fertilisers. These rocks contain significant concentration of uranium (50 to 300 ppm) which could be interesting for nuclear industry. This work deals with the valorisation of uranium as a by-product from fertiliser industry. The aim of this study is to develop a hybrid material, constituted of an inorganic solid support grafted with an extractant (complexing molecule), which can extract selectively uranium from phosphoric acid medium. The first step of our approach was to identify an inorganic support which is stable under these particular conditions (strong acidity and complexing medium). The chemical and mechanical stability of different meso-porous materials, such as silica, glass and carbon was studied. In a second phase, we focused on the identification and the optimisation of complexing molecules, specific of uranium in phosphoric acid. These ligands were then grafted on the most stable solids. Finally, the efficiency of these hybrid systems was evaluated through different tests of extraction, selectivity and de-extraction. (author)

  19. Effect of dietary phytic acid and inorganic iron on the quality of chilled pork.

    Renilda Terezinha Monteiro; Caio Abercio Silva; Ana Maria Bridi; Alexandre Obra; Arturo Pardo Lozano; Louise Manha Peres; Aliny Ketilim Novais; Eduardo Raele Oliveira

    2015-01-01

    The objective of this study was to evaluate the effect of supplementing inorganic iron and phytic acid to the diet for finishing pigs on meat quality after 24 hours and 7 days of refrigeration. Forty castrated male finishing pigs of a commercial genotype, with an initial mean weight of 64.34 ± 6.64 kg and age of 108 days, were used. The animals were weighed and housed individually in brick pens with an area of three m2 and compact floor, receiving water and ration ad libitum for 30 days. A ra...

  20. SNL-1, a highly selective inorganic crystalline ion exchange material for Sr2+ in acidic solutions

    A new inorganic ion exchange material, called SNL-1, has been prepared at Sandia National Laboratories. Developmental samples of SNL-1 have been determined to have high selectivity for the adsorption of Strontium from highly acidic solutions (1 M HNO3). This paper presents results obtained for the material in batch ion exchange tests conducted at various solution pH values and in the presence of a number of competing cations. Results from a continuous flow column ion exchange experiment are also presented

  1. Effects of inorganic components in acid rain on tube elongation of Camellia pollen

    Masaru, N.; Katsuhisa, F.; Sankichi, T.; Yutaka, W.

    1980-01-01

    Pollen grains of Camellia japonica were cultivated in culture plates containing individual inorganic components found in acid rain (SO/sub 4//sup 2 -/, NO/sub 3//sup -/, Cl/sup -/, H/sup +/, Pb/sup +2/, Mg/sup +2/ or Mn/sup +2/). In the case of three acids (HNO/sub 3/, HCl or H/sub 2/SO/sub 4/), a promotion of pollen tube elongation due to nitric acid or hydrogen chloride occurred in the range 0-0.5 millimole/litre and a marked inhibition was observed when the acid concentrations were above 0.6 millimole/litre (pH<3.2). Sulphuric acid promoted tube elongation in the range 0-0.2 millimole/litre and markedly inhibited tube elongation above 0.3 millimole/litre (pH<3.2). Nitric acid promoted tube elongation more than hydrogen chloride and sulphuric acid. However, individual inhibitions due to the three acids were similar to each other. In the case of three metallic salts (Pb(NO/sub 3/)/sub 2/, Mg(NO/sub 3/)/sub 2/ or Mn(NO/sub 3/)/sub 2/), those of lead and manganese showed a slight promotion of tube elongation at low concentrations (0.005-0.015 millimole/litre). However, the salt of magnesium had no effect in this range. Interaction of various combinations of three acids (HNOHNO/sub 3/, HCl and H/sub 2/SO/sub 4/) or three ammonium salts (NH/sub 4/NO/sub 3/, NH/sub 4/Cl and (NH/sub 4/)/sub 2/SO/sub 4/) were studied. A marked inhibition of tube elongation occurred above 0.47 millimole/litre (pH<3.2) with a combination of the three acids. However, no inhibition occurred in the same concentration range with a combination of the three ammonium salts.

  2. Genetic variability for phytic acid and inorganic phosphorous in Indian Sorghum (Sorghum bicolor landraces

    Ashok Badigannavar, G. Girish and T.R. Ganapathi

    2014-09-01

    Full Text Available Majority of the phosphorous in the seeds of higher plant is stored as phytic acid. Phytate ‘P’ interfere in the protein digestion and chelate nutritionally essential elements, such as Ca, Zn and Fe. Breeding for low phytic acid would help in improving the nutritional quality of sorghum. In the present study, genetic variability for phytic acid (PAP and inorganic ‘P’(IP was determined among 92 sorghum landraces and 20 varieties.. The ANOVA showed significant differences for grain yield, 100-seed weight, PAP and IP among these genotypes. Wide range values were observed for grain yield (2.5-76.5 g/plant, 100-seed weight (2.06-4.1 g, PAP (0.015-4.450 mg/g and IP (0.006-1.320 mg/g. Land race Malkhed-1 recorded high yield (69.03 g with the lowest PAP values for phytic acid (0.015mg/g and 0.67 mg/g of IP with IP/PAP ratio of 43.94. Correlation studies indicated that PAP and IP were negatively correlated (r = - 0.34. Cluster analysis based on the grain yield and seed ‘P’ traits grouped 112 genotypes into five clusters. Landrace Tengalli-6 was found highly diverse compared to rest of the genotypes. High yielding genotypes with low phytic acid identified in this study would be helpful in increased bioavailability of mineral nutrients.

  3. Separation of cesium from acid ILW-Purex solutions by sorption on inorganic ion exchangers

    The separation of cesium by use of the inorganic ion exchanger ammonium molybdatophosphate from nitric acid solutions of intermediate level waste (ILW) from reprocessing of spent fuel elements according to the PUREX PROCESS has been demonstrated. Other inorganic exchange materials have shown high sorption values only for certain pH ranges: ammonium hexacyano cobaltous ferrate (pH 12, 35 g Cs/kg), potassium hexacyano nickel ferrate (pH 10, 30 g Cs/kg), zirconium phosphate (pH 7, 100 g Cs/kg), titanium phosphate (pH 7, 15 g Cs/kg), antimony pentoxide (pH 2, 30 g Cs/kg) and titanium oxide (pH 7, 1 g Cs/kg). Except for high salt loading of 3.6 M NaNO3, a significant loss of capacities usually occurs; this does not allow the use of these exchangers. However, ammonium molybdatophosphate shows excellent performance with high salt loadings and in a broad pH-range from pH 9 to conc. HNO3 with a breakthrough-capacity of 60 g Cs/kg. (orig.)

  4. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.;

    2009-01-01

    Surface contaminants as a result of thermo-mechanical processing of magnesium alloys, e.g. sheet rolling, can have a negative effect on the corrosion resistance of magnesium alloys. Especially contaminants such as Fe, Ni and Cu, left on the surface of magnesium alloys result in the formation...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...... cleaning the AZ31 sheet. However, to obtain reasonable corrosion resistance at least 5 mu m of the surface of AZ31 magnesium alloy sheet have to be removed....

  5. Brief report on screening maize mutants with high inorganic phosphorus and low phytic acid content

    Four and two mutants with high inorganic phosphorus (IP) and low phytic acid (LP) content were identified from 'Huang C' and 'X178', the parents of the leading commercial hybrid maize cultivar 'Nongda 108', when the dry seeds were irradiated by 200 Gy Cobalt-60 gamma rays. The mutation frequencies for 'Huang C' and 'X178' in panical basis were 8.04 x 10-4 and 10.48 x 10-4, respectively. Compared to the wild type, the contents of total phosphorus (TP) were basically unchanged, phytic acid phosphorus (PAP) were detected with 79.09%, 66.06%, 47.58%, 43.94%, 70.00%, 48.28% decreases, and IP with 11.22, 9.91, 7.04, 6.43, 6.43, 4.33 times increases in six mutants, H-lpa1, H-lpa2, H-lpa3, H-lpa4, X-lpa1, X-lpa2, respectively. (authors)

  6. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol

    Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Tsai, Ying I.

    The distribution of nano/micron dicarboxylic acids and inorganic ions in size-segregated suburban aerosol of southern Taiwan was studied for a PM episode and a non-episodic pollution period, revealing for the first time the distribution of these nanoscale particles in suburban aerosols. Inorganic species, especially nitrate, were present in higher concentrations during the PM episode. A combination of gas-to-nuclei conversion of nitrate particles and accumulation of secondary photochemical products originating from traffic-related emissions was likely a crucial cause of the PM episode. Sulfate, ammonium, and oxalic acid were the dominant anion, cation, and dicarboxylic acid, respectively, accounting for a minimum of 49% of the total anion, cation or dicarboxylic acid mass. Peak concentrations of these species occurred at 0.54 μm in the droplet mode during both non-episodic and PM episode periods, indicating an association with cloud-processed particles. On average, sulfate concentration was 16-17 times that of oxalic acid. Oxalic acid was nevertheless the most abundant dicarboxylic acid during both periods, followed by succinic, malonic, maleic, malic and tartaric acid. The mass median aerodynamic diameter (MMAD) of oxalic acid was 0.77 μm with a bi-modal presence at 0.54 μm and 18 nm during non-episodic pollution and an MMAD of 0.67 μm with mono-modal presence at 0.54 μm in PM episode aerosol. The concomitant formation of malonic acid and oxalic acid was attributed to in-cloud processes. During the PM episode in the 5-100 nm nanoscale range, an oxalic acid/sulfate mass ratio of 40.2-82.3% suggested a stronger formation potential for oxalic acid than for sulfate in the nuclei mode. For total cations (TC), total inorganic anions (TIA) and total dicarboxylic acids (TDA), major contributing particles were in the droplet mode, with least in the nuclei mode. The ratio of TDA to TIA in the nuclei mode increased greatly from 8.40% during the non-episodic pollution

  7. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid

    Xingxun Liu

    2014-01-01

    Full Text Available Addition of filler to polylactic acid (PLA may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC, scanning electron microscope (SEM, instron tensile tester, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, and dynamic mechanical analysis (DMA. It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  8. Photochemical production of dissolved inorganic carbon from suwannee river humic acid

    WANG Xuejun; LOU Tao; XIE Huixiang

    2009-01-01

    The photochemical mineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) is a key process in carbon cycling. Using a Suntest CPS solar simulator, Suwannee River humic acid (SRHA) was photooxidated to examine the effects of O2 levels, the wavelength of incident light, and the concentration of Fe on the photoproduction of DIC. Increasing the O2 abundance enhanced photodegradation of SRHA. The rate of DIC photoproduction under air saturation in the first 24 h (4.40 μmol/(L h)) was increased by a factor of 1.56 under O2 saturation, but fell by only 36% under N2 saturation. To evaluate the relative importance of UV-B, UV-A, and visible radiation in the photodegradation, we examined the above process using Mylar-d films and UF-3 and UF-4 plexiglass filters. The results indicated that the UV-B, UV-A and visible wavelengths accounted for 31.8%, 32.6% and 25.6%, respectively, of DIC production with simulated sunlight irradiation. The above results also indicated that photoproduction of DIC could take place in natural water at depths greater than those that UV light can reach. When 20 μmol/L desferrioxamine mesylate (DFOM, a strong Fe complexing ligand) was added, the rate of DIC photoproduction fell to 55.6% that of the original SRHA samples with 5.46 μmol/L Fe.

  9. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg2+) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg2+ intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3

  10. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    Gill, Randall [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States); Lanni, Lydia; Jen, K.-L. Catherine [Department of Nutrition and Food Science, Wayne State University, Detroit MI (United States); McCabe, Michael J. [Department of Environmental Medicine, University of Rochester, Rochester NY (United States); Rosenspire, Allen, E-mail: arosenspire@wayne.edu [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States)

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  11. Correlations between the contents of phytic acid and inorganic phosphorous and downy mildew resistance of corn inbred lines

    Pantipa Na Chiangmai*; Phrutiya Nilprapruck; Warapon Bunkoed; Phakatip Yodmingkhwan; Chokechai Aekatasanawan; Mana Kanjanamaneesathian

    2015-01-01

    Seeds of corn inbred lines collected at the National Corn and Sorghum Research Center (NCSRC), Kasetsart University, were analyzed to determine the contents of phytic acid (PA) and inorganic phosphorous (InP). These 28 and 29 inbred lines were cultivated at the NCSRC (in the 2008 late rainy season and 2009 early rainy season) to evaluate their resistance to corn downy mildew caused by Peronosclerospora sorghi. Results showed that the values of the PA, InP contents and downy mildew...

  12. Phosphorus Status, Inorganic Phosphorus Forms, and Other Physicochemical Properties of Acid Soils of Farta District, Northwestern Highlands of Ethiopia

    Asmare Melese; Heluf Gebrekidan; Markku Yli-Halla; Birru Yitaferu

    2015-01-01

    Soil acidity and low availability of P limit crop production in the highlands of Ethiopia. The objective of this study was to determine the P status, distribution and forms of inorganic P and relate them to selected chemical properties of eight representative acidic surface soil samples from Farta District. Soil pH (H2O) varied between 4.74 and 5.50. The moderate to high CEC suggests that besides kaolinite, the soils also contain expandable 2 : 1 clay minerals. Though the total P content was ...

  13. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-01

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g-1 is realized for the optimised case of binary doping over the entire range of 1 A g-1 to 40 A g-1 with stability of 500 cycles at 40 A g-1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  14. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams

    Dissolved inorganic carbon (DIC) constitutes a significant fraction of a stream's carbon budget, yet the role of acid mine drainage (AMD) in DIC dynamics in receiving streams remains poorly understood. The objective of this study was to evaluate spatial and temporal effects of AMD and its chemical evolution on DIC and stable isotope ratio of DIC (δ13CDIC) in receiving streams. We examined spatial and seasonal variations in physical and chemical parameters, DIC, and δ13CDIC in a stream receiving AMD. In addition, we mixed different proportions of AMD and tap water in a laboratory experiment to investigate AMD dilution and variable bicarbonate concentrations to simulate downstream and seasonal hydrologic conditions in the stream. Field and laboratory samples showed variable pH, overall decreases in Fe2+, alkalinity, and DIC, and variable increase in δ13CDIC. We attribute the decrease in alkalinity, DIC loss, and enrichment of 13C of DIC in stream water to protons produced from oxidation of Fe2+ followed by Fe3+ hydrolysis and precipitation of Fe(OH)3(s). The extent of DIC decrease and 13C enrichment of DIC was related to the amount of HCO3- dehydrated by protons. The laboratory experiment showed that lower 13C enrichment occurred in unmixed AMD (2.7 per mille ) when the amount of protons produced was in excess of HCO3- or in tap water (3.2 per mille ) where no protons were produced from Fe3+ hydrolysis for HCO3- dehydration. The 13C enrichment increased and was highest for AMD-tap water mixture (8.0 per mille ) where Fe2+ was proportional to HCO3- concentration. Thus, the variable downstream and seasonal 13C enrichment in stream water was due in part to: (1) variations in the volume of stream water initially mixed with AMD and (2) to HCO3- input from groundwater and seepage in the downstream direction. Protons produced during the chemical evolution of AMD caused seasonal losses of 50 to >98% of stream water DIC. This loss of DIC in AMD impacted streams may have

  15. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from seeds

    Dragičević Vesna D.

    2011-01-01

    Full Text Available Phytate, as an important mineral storage compound in seeds, is vital for seed/grain development; it is often considered to be an antinutritional substance. The objective of this study was to develop a rapid and inexpensive colorimetric method of measuring phytate and inorganic P (Pi concentrations from maize, soybean and sunflower seed/grain extracts, by combining adequate precision and simplicity, ideal for breeders interested in improving simultaneously Pi and phytate levels. The investigated extraction mediums: double distilled (DD H2O, 2.4 % HCl and 5 % trichloracetic acid (TCA were proved to be suitable for the analysis of phytic acid and inorganic phosphorus in seed extracts. The advantages of 5 % TCA over to DD H2O and 2.4 % HCl were reflected through the low limit of detection for both phytic acid and Pi and good recovery with low bias. A low detection limit for Pi is important for samples with naturally low Pi concentrations, such as soybean seeds.

  16. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  17. An Inorganic Microsphere Composite for the Selective Removal of Cesium 137 from Acidic Nuclear Waste Solutions - Parts 1 and 2

    T. J. Tranter; T. A. Vereschchagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments

  18. A novel Brönsted-Lewis acidic heteropoly organic-inorganic salt: preparation and catalysis for rosin dimerization.

    Yuan, Bing; Xie, Congxia; Yu, Fengli; Yang, Xiaoying; Yu, Shitao; Zhang, Jianling; Chen, Xiaobing

    2016-01-01

    A novel Brönsted-Lewis acidic heteropoly organic-inorganic salt has been prepared via the replacement of protons in neat phosphotungstic acid with both organic and metal cations. This hybrid catalyst, Sm0.33[TEAPS]2PW12O40, exhibited satisfactory performance in the dimerization of rosin to prepare polymerized rosin Under optimum conditions (15.0 g rosin and 5.0 g Sm0.33[TEAPS]2PW12O40 catalyst in 18.0 mL toluene at 90 °C for 10 h), a polymerized rosin product with a softening point of 120.1 °C was obtained. In addition, the Sm0.33[TEAPS]2PW12O40 catalyst maintains excellent catalytic performance over five recycles. PMID:27119064

  19. Separation and immobilization of Sr and Cs contained in acidic media by using inorganic ion-exchangers. Literature survey

    The present study deals with the survey of inorganic ion-exchangers suitable for separation and immobilization of Sr and Cs contained in acidic high-level liquid waste. The stabilities of published waste forms and their preparation processes were evaluated from the standpoint of conversion of exchangers containing Sr and Cs into appropriate waste forms. The essential results are below. (1) For separation and immobilization of Cs, crystalline silicotitanate seems to be the most promising exchanger. Insoluble ferrocyanides and phosphates are not suitable for immobilization without additives. Mordenite is inexpensive and commercially available but it would dissolve in highly acidic media. (2) For selective separation of Sr, there is no promising exchanger up to now. It is necessary either to modify separation condition or to synthesize a novel exchanger. (3) Soluble salts, glasses and ceramics are proposed as a storage or disposal form of separated Sr and Cs. Ceramics sintered by hot-pressing are favorable waste forms of inorganic ion-exchangers but their leachabilities and thermal conductivities are largely influenced by qualities of products. Crystallinity of a sintered exchanger depends on its composition. Exchanges of low Cs contents are often converted into amorphous materials whose chemical stabilities depend on solubilities of components of exchangers. (4) A new exchanger to be synthesized is crystalline and selective toward Sr and Cs. One meq/g is enough for Sr and Cs capacities, which are restricted by thermal and transmutation effects. Composition of the exchanger should be selected from the point of a scenario of separation and disposal. The solubilities of SiO2, TiO2, ZrO2, Nb2O5 and Ta2O5 are low in acidic media and those of Al2O3, TiO2 and ZrO2, in disposal circumstances. (5) Future works are optimization of separation scheme including development of exchangers, simplification of solidification step and cost-benefit analysis. (author)

  20. Effect of ammonium sulfate, ammonium chloride and root-zone acidity on inorganic ion content of tobacco

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Tobacco plants (Nicotiana tabacum L. cv NC82) were supplied with (NH4)2SO4 or NH4Cl at root-zone pH of 6.0 and 4.5 in hydroponic culture for 28 days. Dry matter accumulation, total N and C content, and leaf area and number were not affected by the NH4+ source or root-zone pH. Plants supplied with NH4Cl accumulated up to 1.2 mM Cl g DW-1, but accumulated 37% less inorganic H2PO4- and 47% less SO4(2-) than plants supplied with (NH4)2SO4. The large Cl- accumulation resulted in NH4Cl- supplied plants having a 31% higher inorganic anion (NO3-, H2, PO4-, SO4(2-), and Cl-) charge. This higher inorganic anion charge in the NH4Cl-supplied plants was balanced by a similar increase in K+ charge. Plants supplied with NH4Cl accumulated greater concentrations of Cl- in leaves (up to 5.1% of DW) than plants supplied with (NH4)2SO4 (less than -% DW). Despite the high Cl- concentration of leaves in NH4Cl supplied plants, these plants showed no symptoms of Cl- toxicity. This demonstrates that toxicity symptoms are not due solely to an interaction between high Cl- concentration in tissue and NH4+ nutrition. The increase in root-zone acidity to pH 4.5 from 6.0 did not induce toxicity symptoms.

  1. Screening of soybean germplasm for high inorganic phosphorus and low phytic acid

    S. Abirami, A. Kalamani and T. Kalaimagal

    2014-01-01

    Phytic acid, is the major storage form of phosphorus in soybean [Glycine max (L.) Merr.] which comprises 75% of total seed phosphorus. It decreases the availability of some essential elements via bonding between the negatively charged phytic acid and the positively charged elements. Thus, diets high in phytate may lead to nutrient deficiencies. So, identification of lines with low phytic acid is of paramount importance. A germplasm survey was conducted among 250 soybean accessions to identify...

  2. Correlations between the contents of phytic acid and inorganic phosphorous and downy mildew resistance of corn inbred lines

    Pantipa Na Chiangmai

    2015-10-01

    Full Text Available Seeds of corn inbred lines collected at the National Corn and Sorghum Research Center (NCSRC, Kasetsart University, were analyzed to determine the contents of phytic acid (PA and inorganic phosphorous (InP. These 28 and 29 inbred lines were cultivated at the NCSRC (in the 2008 late rainy season and 2009 early rainy season to evaluate their resistance to corn downy mildew caused by Peronosclerospora sorghi. Results showed that the values of the PA, InP contents and downy mildew infection were statistically different among these inbred lines in both seasons. However, there were no correlations between the contents of either PA or InP and downy mildew infection.

  3. Effect of organic/inorganic compounds on the enzymes in soil under acid rain stress

    LIU Guang-shen; XU Dong-mei; WANG Li-ming; LI Ke-bin; LIU Wei-ping

    2004-01-01

    The main effects of pollutions including acid rain, Cu2+, atrazine and their combined products on theactivities of urease, invertin, acid phosphatase and catalase were studied by means of orthogonal test. The resultsshowed that H + and Cu2+ had significant influence on the activities of four enzymes and the ability of their inhibitingfollowed the order: H+ > Cu2+ . Al3+ and atrazine only had litter effects on the activity of urease and phosphatase,respectively. Furthermore, interaction analysis revealed that Cu2+ -H+ affected on the activity of acid phosphatasesignificantly and antagonism on invertin and urease, Cu2+ -atrazine only exhibited the synergism on the activity ofacid phosphatase. But atrazine-H+ had non-interaction within the investigated concentration range. Among fourenzymes, acid phosphatase was the most sensitive one to the contaminations.

  4. ACIDS SOILS’ PH AND NUTRIENT IMPROVEMENT WHEN AMENDED WITH INORGANIC SOLID WASTES FROM KRAFT MILL

    M ZAMBRANO; Parodi, V.; Baeza, J; Vidal, G.

    2007-01-01

    Kraft mill generates a large amount of dregs (D) and grits (G) as solid wastes due to the causticizing process. The disposal of these wastes is expensive in terms of land requirement and maintenance. On the other hand, solid wastes have alkalinity and buffer properties, which make them appropriate for use as amendments to acidic soils. The goal of this work was to determine the physical, chemical, toxicity and hazardousness characteristics of D & G. Additionally, the effect on acidic soils’ p...

  5. Incorporation of 15N-inorganic nitrogen into free-amino acids in germinating corn

    Incorporation of 15N-labeled compounds, (K15NO3) and (15NH4)2SO4, into free-amino acids was measured in germinating corn. Sterilized seeds of sweet corn (Choko No. 865) were sown on the filter papers soaked in 10 ml of the solution containing one of the labeled compounds (40 ppm N, 99 atom % excess) in petri dishes and germinated at 30 deg C. After 48 hours and 72 hours, 15N-incorporation was measured in 5 seedlings selected owing to uniform growth. A GC-MS was used for measuring the ratio of 15N isotopes present in free-amino acids. 15N incorporation into free-amino acids hardly occurred when corn was germinated in the solution containing K15NO3, which suggested that endogenous nitrogen was used during the early germination stage of corn when nitrate is present. Incorporation into amino acids was greater when corn was germinated in the medium containing (15NH4)2SO4, than the case of the solution containing K15NO3. When corn was germinated in the solution containing (15NH4)2SO4, assimilation of 15N into asparagine or aspartic acid was comparatively higher than that into the other amino acids, though the incorporation rate was low. Thus, in intact germinating corn, the hydrolyzed product of protein was utilized for germination with priority, and dependence on exogenous nitrogen was low. (Kaihara, S.)

  6. Effects of pH, organic acids, and inorganic ions on lead desorption from soils

    The desorption characteristics of lead in two variable charge soils (one developed from Arenaceous rock (RAR) and the other derived from Quaternary red earths (REQ)) were studied, and the effects of pH value, organic acid, and competitive ions were examined. Desorption of Pb2+ decreased from nearly 100.0 to 20.0% within pH 1.0-4.0 in both soils, and then the decrease diminished at pH > 4.0. Organic ligands at relatively low concentrations (≤10-3 mol L-1) slightly inhibited Pb2+ desorption, but enhanced Pb2+ desorption at higher concentrations. In this study, citric acid or acetic acid at higher concentrations (>10-3 mol L-1) had the greatest improvement of Pb2+ desorption, followed by malic acid; and the smallest was oxalic acid. Desorption of the adsorbed Pb2+ increased greatly with increasing concentrations of added Cu2+ or Zn2+. Applied Cu2+ increased Pb2+ desorption more than Zn2+ at the same loading. - The adsorption-desorption process is a basic and important reaction in soils controlling Pb2+ mobility and bioavailability

  7. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  8. Fatty Acid Profiles of Supraspinatus, Longissimus lumborum and Semitendinosus Muscles and Serum in Kacang Goats Supplemented with Inorganic Selenium and Iodine

    Aghwan, Z. A.; Alimon, A. R.; Goh, Y. M.; Nakyinsige, K.; Sazili, A. Q.

    2014-01-01

    Fat and fatty acids in muscle and adipose tissues are among the major factors influencing meat quality particularly nutritional value and palatability. The present study was carried out to examine the effects of supplementing inorganic selenium (Se), iodine (I) and a combination of both on fatty acid compositions in serum, and supraspinatus (SS), longissimus lumborum (LL), and semitendinosus (ST) muscles in goats. Twenty-four, 7 to 8 months old, Kacang male goats with a mean live weight of 22...

  9. Separation and immobilization of Sr and Cs contained in acidic media by using inorganic ion-exchangers. Literature survey

    Yamagishi, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    The present study deals with the survey of inorganic ion-exchangers suitable for separation and immobilization of Sr and Cs contained in acidic high-level liquid waste. The stabilities of published waste forms and their preparation processes were evaluated from the standpoint of conversion of exchangers containing Sr and Cs into appropriate waste forms. The essential results are below. (1) For separation and immobilization of Cs, crystalline silicotitanate seems to be the most promising exchanger. Insoluble ferrocyanides and phosphates are not suitable for immobilization without additives. Mordenite is inexpensive and commercially available but it would dissolve in highly acidic media. (2) For selective separation of Sr, there is no promising exchanger up to now. It is necessary either to modify separation condition or to synthesize a novel exchanger. (3) Soluble salts, glasses and ceramics are proposed as a storage or disposal form of separated Sr and Cs. Ceramics sintered by hot-pressing are favorable waste forms of inorganic ion-exchangers but their leachabilities and thermal conductivities are largely influenced by qualities of products. Crystallinity of a sintered exchanger depends on its composition. Exchanges of low Cs contents are often converted into amorphous materials whose chemical stabilities depend on solubilities of components of exchangers. (4) A new exchanger to be synthesized is crystalline and selective toward Sr and Cs. One meq/g is enough for Sr and Cs capacities, which are restricted by thermal and transmutation effects. Composition of the exchanger should be selected from the point of a scenario of separation and disposal. The solubilities of SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} are low in acidic media and those of Al{sub 2}O{sub 3}, TiO{sub 2} and ZrO{sub 2}, in disposal circumstances. (5) Future works are optimization of separation scheme including development of exchangers, simplification of

  10. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Romagnoli, Marcello [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Pollastri, Simone; Gualtieri, Alessandro F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, Via S. Eufemia 19I, I-41121 Modena (Italy)

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  11. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed

  12. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  13. Anode material selection criteria for selective oxidation of inorganic compounds in nitric acid media

    Significant progress has been made since the 19606 in developing highly effective anode materials for electrochemical processes, The problem areas currently facing electrochemistry researchers include investigating new composite materials obtained by grafting or doping, improving fabrication techniques to extend the lifetime of the materials while maintaining their selectivity, studying their electrochemical properties and relating them to the material structure. Research on materials with high oxygen over-potentials-materials on which water oxidation is kinetically affected, and which open an electro-activity window on high potentials (2.0 VESH or greater) - has opened new avenues such as the use of various metallic oxide deposits. Two oxide classes were identified from a structural standpoint on the basis of their water oxidation properties: chemisorbed active oxygen anodes (e.g. PtOx, IrO2 or RuO2) and physi-sorbed active oxygen anodes (e.g. SnO2 or PbO2). Selective electrochemical generation of powerful oxidants between 1.4 and 2.0 VESH in concentrated nitric acid media is used in the context of the nuclear fuel cycle, and the potential advantages of new materials with a high oxygen over-potential-other than widely used platinum-have attracted attention. The relevant physical, chemical and electrochemical properties of such materials were therefore investigated to assess their selective oxidation performance. The study focused in particular on identifying the specific aspects of concentrated nitric acid media in the processes occurring at the electrode/solution interface, using linear and cyclic voltammetry, imposed-potential electrolysis and impedance spectroscopy. This approach allowed characterization of the electron charge transfer kinetics of the medium (nitric acid, compared with other acids such as methane sulfonic acid) and of the selected redox couple (Ag(II)/Ag(I) in this case). The tests covered a wide range of materials, including IrO2, SnO2, PbO2

  14. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis.

    Simon R Dunn

    Full Text Available The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and conversely, recently observed reduction and/or mortality of corals in response to rapid environmental change. This study specifically focused on one area of metabolic activity within the symbiosis, that of free fatty acid synthesis within both the dinoflagellate symbionts and cnidarian host. The main model system used was Aiptasia pulchella and Symbiodinium sp. in combination with aposymbiotic A. pulchella, the symbiotic coral Acropora millepora system and dinoflagellate culture. Fatty acids (FAs were selected because of their multiple essential roles inclusive of energy storage (resource accumulation, membrane structure fluidity and cell signaling. The study addressed free FA lipogenesis by using a new method of enriched stable isotopic ((13C incorporation from dissolved inorganic carbon (DI(13C combined with HPLC-MS. FAs derived from DI(13C aligned with a mixture of known lipogenesis pathways with the addition of some unusual FAs. After 120 hr, (13C-enriched FA synthesis rates were attributed to only a complex integration of both n-3 and n-6 lipogenesis pathways within the dinoflagellate symbionts. Furthermore, there was no detectible evidence of symbiont derived enriched isotope fatty acids, catabolized (13C derivatives or DI(13C being directly utilized, in host late n-6 pathway long-chain FA lipogenesis. These findings do not align with a popular mutualistic translocation model with respect to the use of translocated symbiont photoassimilates in host long-chain FA lipogenesis, which has important connotations for linking nutrient sources with

  15. Monomethylarsonous acid, but not inorganic arsenic, is a mitochondria-specific toxicant in vascular smooth muscle cells.

    Pace, Clare; Banerjee, Tania Das; Welch, Barrett; Khalili, Roxana; Dagda, Ruben K; Angermann, Jeff

    2016-09-01

    Arsenic exposure has been implicated as a risk factor for cardiovascular diseases, metabolic disorders, and cancer, yet the role mitochondrial dysfunction plays in the cellular mechanisms of pathology is largely unknown. To investigate arsenic-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs), we exposed rat aortic smooth muscle cells (A7r5) to inorganic arsenic (iAs(III)) and its metabolite monomethylarsonous acid (MMA(III)) and compared their effects on mitochondrial function and oxidative stress. Our results indicate that MMA(III) is significantly more toxic to mitochondria than iAs(III). Exposure of VSMCs to MMA(III), but not iAs(III), significantly decreased basal and maximal oxygen consumption rates and concomitantly increased compensatory extracellular acidification rates, a proxy for glycolysis. Treatment with MMA(III) significantly increased hydrogen peroxide and superoxide levels compared to iAs(III). Exposure to MMA(III) resulted in significant decreases in mitochondrial ATP, aberrant perinuclear clustering of mitochondria, and decreased mitochondrial content. Mechanistically, we observed that mitochondrial superoxide and hydrogen peroxide contribute to mitochondrial toxicity, as treatment of cells with MnTBAP (a mitochondrial superoxide dismutase mimetic) and catalase significantly reduced mitochondrial respiration deficits and cell death induced by both arsenic compounds. Overall, our data demonstrates that MMA(III) is a mitochondria-specific toxicant that elevates mitochondrial and non-mitochondrial sources of ROS. PMID:27327130

  16. Genotypic variation for phytic acid, inorganic phosphate and mineral contents in advanced breeding lines of wheat (Triticum aestivum L.

    A.S. Shitre, D.A. Gadekar1, V. Ramachandran, Vikas, S. Bakshi, V. Kumar, G. Vishwakarma and B.K. Das

    2015-06-01

    Full Text Available Wheat is a staple food of Indian population. Its nutritional and quality parameters have gained considerable importance over past few decades. In the present study, genotypic variation was studied in 100 advanced breeding lines developed for Indian peninsular zone by measuring phytic acid (PA, inorganic phosphate (IP, iron and zinc content in seeds and hundred kernel weight (HKW. Advanced breeding lines under investigation exhibited wide variation for the characters studied. The PA content ranged from 4.97 mg/g to 15.02 mg/g (mean of 9.58 mg/g. Iron and zinc content was in the range of 0.042 to 0.098 mg/g and 0.017 mg/g to 0.029 mg/g respectively. HKW ranged from 2.99 to 5.42 g. There was significant negative correlation between PA and HKW. Iron content showed very high genotypic coefficient of variation and heritability (h2bs as compared to zinc content and other traits. Low heritability of IP content indicated the environmental influence on the trait.

  17. DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals.

    Rin, K; Kawaguchi, K; Yamanaka, K; Tezuka, M; Oku, N; Okada, S

    1995-01-01

    We previously reported that dimethylarsinic acid (DMAA), a major metabolite of inorganic arsenics, induced DNA single-strand breaks (ssb) both in vivo and in cultured alveolar type II (L-132) cells in vitro, possibly via the production of dimethylarsenic peroxyl radicals. Here, the interaction of superoxide anion radicals (O2-) in the induction of ssb in L-132 cells was investigated using paraquat, an O2(-)-producing agent. A significant enhancement of ssb formation was observed in the DMAA-exposed cells when coexposed to paraquat. This enhancement occurred even when post-exposed to DMAA after washing, suggesting that the DMAA exposure caused some modification of DNA such as DNA-adducts, which was recognized by active oxygens to form ssb. An experiment with UV-irradiation, which was likely to induce ssb at the modified region, supported the possibility of DNA modification by DMAA exposure. An ESR study indicated that O2- produced by paraquat in DMAA-exposed cells was more consumed than in non-exposed cells, assumingly through the reaction with the dimethylarsenic-modified region of DNA. The species of active oxygens were estimated by using diethyldithiocarbamate, aminotriazole, diethylmaleate, hydrogen peroxide (H2O2), gamma-irradiation and ethanol. O2- but neither H2O2 nor hydroxyl radicals was very likely to contribute to the ssb-enhancing action of paraquat. PMID:7735248

  18. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    I. Trebs; Meixner, F. X.; J. Slanina; Otjes, R.; P. Jongejan; Andreae, M. O.

    2004-01-01

    We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2) and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3?), nitrite (NO2?), chloride (Cl?) and sulfate (SO42?), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia S...

  19. Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany

    Huang, J.-H.; Matzner, E.

    2006-04-01

    Wetland soils play a key role for the transformation of heavy metals in forested watersheds, influencing their mobility, and ecotoxicity. Our goal was to investigate the mechanisms of release from solid to solution phase, the mobility, and the transformation of arsenic species in a fen soil. In methanol-water extracts, monomethylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, and two unknown organic arsenic species were found with concentrations up to 14 ng As g -1 at the surface horizon. Arsenate is the dominant species at the 0-30 cm depth, whereas arsenite predominated at the 30-70 cm depth. Only up to 2.2% of total arsenic in fen was extractable with methanol-water. In porewaters, depth gradient spatial variation of arsenic species, pH, redox potentials, and the other chemical parameters along the profile was observed in June together with high proportion of organic arsenic species (up to 1.2 μg As L -1, 70% of total arsenic). Tetramethylarsonium ion and an unknown organic arsenic species were additionally detected in porewaters at deeper horizons. In comparison, the arsenic speciation in porewaters in April was homogeneous with depth and no organic arsenic species were found. Thus, the occurrence of microbial methylation of arsenic in fen was demonstrated for the first time. The 10 times elevated total arsenic concentrations in porewaters in June compared to April were accompanied by elevated concentrations of total iron, lower concentrations of sulfate and the presence of ammonium and phosphate. The low proportion of methanol-water extractable total arsenic suggests a generally low mobility of arsenic in fen soils. The release of arsenic from solid to solution phases in fen is dominantly controlled by dissolution of iron oxides, redox transformation, and methylation of arsenic, driven by microbial activity in the growing season. As a result, increased concentrations of total arsenic and potentially toxic arsenic species in fen

  20. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l-1 in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l-1 for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min

  1. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es

    2006-03-15

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.

  2. Effects of Organic and Inorganic Nitrogen on the Growth and Production of Domoic Acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae) in Culture

    Véronique Martin-Jézéquel; Guillaume Calu; Leo Candela; Zouher Amzil; Thierry Jauffrais; Véronique Séchet; Pierre Weigel

    2015-01-01

    Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth...

  3. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.

    Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2015-01-01

    Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. PMID:25919350

  4. Studies on inorganic ion-exchangers. Part I : application of polyantimonic acid for the polishing of uranium product of reprocessing stream

    A systematic study has been initiated to investigate the feasibility of applying various inorganic exchangers to specific problems in nuclear fuel reprocessing industry and related spheres of activity. An investigation has been carried out to select a suitable exchanger for the polishing of tail-end uranium product of reprocessing stream free of residual plutonium activity. It includes determination of distribution ratios of uranium and plutonium on the exchangers like zirconium phosphate (ZrP), ammonium phosphomolybdate (AMP), ammonium phosphotungstate (APW), polyantimonic acid (PA), polyphosphoantimonic acid (PPA) and breakthrough capacities of plutonium on some of these exchangers. The inhibition studies of sodium on plutonium uptake on polyantimonic acid and the effective decontamination factors achieved using uranium tanker solution from the plant for recycling work have been described. These results indicated the usefulness of the polyantimonic acid exchanger for this purpose. (author)

  5. Effects of Organic and Inorganic Nitrogen on the Growth and Production of Domoic Acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae in Culture

    Véronique Martin-Jézéquel

    2015-11-01

    Full Text Available Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine. Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment.

  6. Effects of Organic and Inorganic Nitrogen on the Growth and Production of Domoic Acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae) in Culture.

    Martin-Jézéquel, Véronique; Calu, Guillaume; Candela, Leo; Amzil, Zouher; Jauffrais, Thierry; Séchet, Véronique; Weigel, Pierre

    2015-12-01

    Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine). Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment. PMID:26703627

  7. Dissolved inorganic carbon evolution and stable carbon isotope fractionation in acid mine drainage contaminated streams: Insights from a laboratory study

    Samples of groundwater, spring water and stream water contaminated by acid mine drainage (AMD), and uncontaminated stream water were collected and allowed to evolve in contact with air in the laboratory for 15-88 days. The objective of this study was to (1) document temporal changes in dissolved inorganic C (DIC) concentrations and stable isotopic composition (δ13CDIC) and (2) to determine the reaction mechanism and resulting isotopic fractionation (13C/12C) accompanying the chemical evolution of AMD. The contaminated spring and stream samples and one groundwater sample (with no HCO3-) showed temporal decreases in pH, Fe2+, alkalinity, and DIC, and enrichment in δ13CDIC. One contaminated groundwater sample (with HCO3- between 529 and 630 mg/L) showed a temporal increase in pH despite observed decreases in Fe2+, alkalinity and DIC, and enrichment in δ13CDIC. The uncontaminated stream samples showed a continuous temporal increase in pH, relatively constant alkalinity and DIC, and enrichment in δ13CDIC. The results suggest that proton production related to Fe2+ transformation is the driving force for DIC loss in AMD-contaminated samples, and that DIC loss can be described by first order kinetics. The C isotope enrichment rates associated with DIC loss in the contaminated samples varied between 1.0 per mille and 1.8 per mille for stream water, 2.1 per mille and 2.6 per mille for the spring, 1.0 per mille and 1.2 per mille for groundwater with no HCO3-, and 7.6 per mille and 9.3 per mille for groundwater with high HCO3-. Variations in 13C enrichment in the contaminated samples are attributed to differences in the initial Fe2+:HCO3- ratio. The effect of proton production on 13C enrichment in the AMD-contaminated samples was modeled as a Rayleigh-type distillation, whereby isotope fractionation was constant and occurred in an 'equilibrium closed system'. In the uncontaminated stream samples, C exchange between DIC and atmospheric CO2 resulted in an overall enrichment

  8. Renal, hepatic, pulmonary and adrenal tumors induced by prenatal inorganic arsenic followed by dimethylarsinic acid in adulthood in CD1 mice

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic, an early life carcinogen in humans and mice, can initiate lesions promotable by other agents in later life. The biomethylation product of arsenic, dimethylarsinic acid (DMA), is a multi-site tumor promoter. Thus, pregnant CD1 mice were given drinking water (0 or 85 ppm arsenic) from gestation day 8 to 18 and after weaning male offspring received DMA (0 or 200 ppm; drinking water) for up to 2 years. No renal tumors occurred in controls or DMA alone treated mice while gestati...

  9. Metabolic responses, performance, and reticuloruminal pH of early-lactating cows fed concentrates treated with lactic acid, with or without inorganic phosphorus supplementation.

    Khol-Parisini, A; Humer, E; Harder, H; Mickdam, E; Zebeli, Q

    2016-08-01

    Recent data indicate beneficial effects of treating grains with lactic acid (LA) in alleviating the need for inorganic phosphorus supplementation during ruminal fermentation in vitro. The aim of this study was to evaluate the effects of feeding concentrates treated with LA with or without inorganic phosphorus supplementation on feed intake, performance, blood variables, and reticuloruminal pH in dairy cows. A total of 16 early-lactating cows (12 Simmental and 4 Brown Swiss) were included in this study from d 1 until d 37 postpartum. Cows were fed 3 total mixed rations differing in supplementation of inorganic phosphorus and treatment of concentrates. The control (CON) and LA (+P) diets included a concentrate mixture containing 0.8% monocalcium phosphate, and the LA (-P) diet contained no inorganic phosphorus source. The concentrates of the LA (+P) and LA (-P) diets were treated with 5% LA for 24h before feeding, and the concentrate of the CON diet was not treated. Dry matter intake and milk yield were recorded daily, and milk composition and blood variables were determined on several occasions during the trial. Reticuloruminal pH was measured using indwelling sensors that allowed for continuous measurement during the experimental period. Data showed depressed dry matter intake in cows receiving LA-treated concentrates, but milk yield, body weight, and body weight changes remained similar among treatment groups. Cows receiving the LA-treated diets had lower concentrations of serum nonesterified fatty acids, cholesterol, and insulin, and they tended to have higher serum phosphorus levels. On the other hand, reticuloruminal pH was lower and duration of the pH being metabolism, insulin sensitivity, and liver variables, as well as the tendency for greater systemic phosphorus circulation, suggest that diets including concentrates treated with 5% LA may allow for savings of inorganic phosphorus supplementation in dairy cows. Treatment with 5% LA enhanced cows' risk of

  10. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil.

    Tang, Xianjin; Li, Xia; Liu, Xingmei; Hashmi, Muhammad Z; Xu, Jianming; Brookes, Philip C

    2015-01-01

    A greenhouse study was conducted to investigate the effects of inorganic (phosphate rock, single superphosphate and calcium magnesium phosphate) and organic amendments (peat, straw manure and pig manure) on the uptake of lead (Pb) and trace elements by Chinese Cabbage (Brassica chinensis) grown in an acidic red soil. The application of all organic amendments increased the soil pH while inorganic amendments such as single superphosphate did not. Both inorganic and organic amendments decreased the availability and uptake of Pb while the organic amendments were superior to the inorganic (phosphate) amendments in reducing the availability of the more labile (soluble and exchangeable Pb) forms of soil Pb. More Pb was taken up by roots than shoots with all soil amendments. Among the organic amendments, straw manure and pig manure caused the largest decrease in Pb availability at 456.5 and 457.3 mg kg(-1), respectively, when a high level of 30 g organic amendments kg(-1) was applied. The organic amendments greatly increased the fraction D targeted to Fe-Mn oxides bound Pb, and decreased the fraction A (water-soluble), B (exchangeable), and C (carbonate-bound), thereby decreasing the solubility and mobility of Pb in soil. The organic amendments also significantly improved the concentrations of Fe, Mn, Cu and Zn in the soil and shoots (except Fe in shoots and/or roots), which are essential for plant nutrition. The organic amendments of straw and pig manure lowered the availability and uptake of Pb but not that of other trace metals. Thus, these amendments have the potential to remediate Pb-contaminated soils in situ. PMID:24992219

  11. Chemical characterization of the inorganic fraction of aerosols and mechanisms of the neutralization of atmospheric acidity in Athens, Greece

    E. T. Karageorgos

    2007-06-01

    + and Cl, while SO42−, Ca2+ and NH4+ were the major ionic components of the fine fraction. In the fine particles, a low molar ratio of NH4+/SO42− indicated an ammonium-poor ambient air, and together with inter-ionic correlations suggested that atmospheric ammonia is the major neutralizing agent of sulfate, while being insufficient to neutralize it to full extend. The formation of NH4NO3 is therefore not favored and additional contribution to the neutralization of acidity has been shown to be provided by Ca2+ and Mg2+. In the coarse particle fraction, the predominantly abundant Ca2+ has been found to correlate well with NO3 and SO42−, indicating its role as important neutralizing agent in this particle size range. The proximity of the location under study to the sea explains the important concentrations of salts with marine origin like NaCl and MgCl2 that were found in the coarse fraction, while chloride depletion in the gaseous phase was found to be limited to the fine particulate fraction. Total analyzed inorganic mass (elemental+ionic was found to be ranging between approximately 25–33% of the total coarse particle mass and 35–42% of the total fine particle mass.

  12. Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

    We investigated the water durability of the inorganic-organic hybrid tin-silico-phosphate glasses Me2SiO-SnO-P2O5 (Me designs the organic methyl group) doped with organic acids (salicylic acid (SA), tartaric acid (TA), citric acid (Canada) and butane tetracarboxylic acid (BTCA)) containing one or more of carboxylic groups per molecule. The structure, thermal properties and durability of the final glasses obtained via a non-aqueous acid-base reaction were discussed owing to the nature and the concentration of the acid added. 29Si magic angle spinning (MAS) NMR and 31P MAS NMR spectra, respectively, showed clearly a modification of the network in the host glass matrix of the Me2SiO-SnO-P2O5 system. The polycondensation enhancement to form -P-O-Si-O-P- linkages (PSP) and the increase of the Q 2 unit (two bridging oxygens per phosphorus atom) over the Q 3 unit (three bridging oxygens per phosphorus atom) as a function of the acid in the order SA2SiO-SnO-P2O5 matrix. In addition, this structural change is accompanied by a decrease of the coefficient of thermal expansion and an increase of the water durability of the glasses with the acids containing a large number of carboxylic groups per molecule. The presence of carboxylic groups of the acid acting as network modifier may retard the movement of water molecules through the glasses due to the steric hindrance strengthening the PSP connections in a chain-like structure

  13. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from seeds

    Dragičević Vesna D.; Sredojević Slobodanka D.; Perić Vesna A.; Nišavić Anika R.; Srebrić Mirjana B.

    2011-01-01

    Phytate, as an important mineral storage compound in seeds, is vital for seed/grain development; it is often considered to be an antinutritional substance. The objective of this study was to develop a rapid and inexpensive colorimetric method of measuring phytate and inorganic P (Pi) concentrations from maize, soybean and sunflower seed/grain extracts, by combining adequate precision and simplicity, ideal for breeders interested in improving simultaneously Pi and phytate levels. The inv...

  14. Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit

    Mardad, Illham; Serrano, Aurelio; Soukri, Abdelaziz

    2013-01-01

    Three efficient inorganic-phosphate solubilizing bacteria (PSB) were isolated from a phosphate rock deposit of a Moroccan mine. The phosphate solubilization index of these isolates, determined in National Botanical Research Institute's phosphate (NBRIP) medium supplemented with tribasic calcium phosphate, ranging from 2.8 to 4.4. The medium pH dropped from 7.0 to 3.5 units after growth under continuous agitation for seven days. PSB6, the most efficient PSB, closely related to Enterobacter hor...

  15. Research Progress of Surface Modification of Inorganic Powder Modified by Stearic Acid in China%国内硬脂酸对无机粉体表面改性的研究进展

    樊斌斌

    2011-01-01

    介绍了硬脂酸改性无机粉体的机理,综述了近年来硬脂酸在无机粉体改性中的研究进展,最后展望了硬脂酸在无机粉体改性中的发展前景。%The stearic acid and the mechanism of stearic acid modified inorganic powder materials was introduced. Researches of stearic acid on the surface modification of inorganic powder were reviewed, and the development trend of surface modification was put forward.

  16. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 1: sampling hydrochloric acid (HCl) and nitric acid (HNO₃) from a test gas atmosphere.

    Howe, Alan; Musgrove, Darren; Breuer, Dietmar; Gusbeth, Krista; Moritz, Andreas; Demange, Martine; Oury, Véronique; Rousset, Davy; Dorotte, Michel

    2011-08-01

    Historically, workplace exposure to the volatile inorganic acids hydrochloric acid (HCl) and nitric acid (HNO(3)) has been determined mostly by collection on silica gel sorbent tubes and analysis of the corresponding anions by ion chromatography (IC). However, HCl and HNO(3) can be present in workplace air in the form of mist as well as vapor, so it is important to sample the inhalable fraction of airborne particles. As sorbent tubes exhibit a low sampling efficiency for inhalable particles, a more suitable method was required. This is the first of two articles on "Evaluation of Sampling Methods for Measuring Exposure to Volatile Inorganic Acids in Workplace Air" and describes collaborative sampling exercises carried out to evaluate an alternative method for sampling HCl and HNO(3) using sodium carbonate-impregnated filters. The second article describes sampling capacity and breakthrough tests. The method was found to perform well and a quartz fiber filter impregnated with 500 μL of 1 M Na(2)CO(3) (10% (m/v) Na(2)CO(3)) was found to have sufficient sampling capacity for use in workplace air measurement. A pre-filter is required to remove particulate chlorides and nitrates that when present would otherwise result in a positive interference. A GSP sampler fitted with a plastic cone, a closed face cassette, or a plastic IOM sampler were all found to be suitable for mounting the pre-filter and sampling filter(s), but care has to be taken with the IOM sampler to ensure that the sampler is tightly closed to avoid leaks. HCl and HNO(3) can react with co-sampled particulate matter on the pre-filter, e.g., zinc oxide, leading to low results, and stronger acids can react with particulate chlorides and nitrates removed by the pre-filter to liberate HCl and HNO(3), which are subsequently collected on the sampling filter, leading to high results. However, although there is this potential for both positive and negative interferences in the measurement, these are unavoidable

  17. Nitrous oxide emissions and soil mineral nitrogen status following application of hog slurry and inorganic fertilisers to acidic soils under forage grass

    This paper examined the influence of hog slurry and inorganic fertilizers on nitrous oxide (N2O) emissions and soil inorganic nitrogen (N) composition. Factors controlling N2O production were also identified. The study was comprised of 3 field experiments conducted during the summer months of 2005 on 2 acidic soils seeded with forage grass at a site in Nova Scotia. Treatments included hog slurry; ammonium sulphate; potassium nitrate; and an unamended control site. Emissions were measured using vented polyvinyl chloride static chambers. Gas fluxes and NO2 measurements were analyzed using gas chromatography. Data were then subjected to analysis of variance (ANOVA). N2O flux and soil mineral N data from each sampling day were analyzed separately. Cumulative N2O losses were also calculated. Results demonstrated that the addition of hog slurry resulted in lower N2O emissions than the samples containing potassium nitrate fertilizer. The study also demonstrated that nitrate (NO3) production drives NO2 production in acidic soils. It was concluded that further research is needed to verify results obtained during the study. 29 refs., 3 tabs., 3 figs

  18. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  19. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.;

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC...... acid extract of Chlorella algae contained dimethylselenonium propionate (DMSeP), which was verified by HPLC-ES-MS. Se-allylselenocysteine and selenoethionine was detected at the low ng g(-1) concentration level based on co-chromatography with the standard substances spiked to the algal extract....

  20. Study of the influence of humic acids (in solution or bound to a silica gel) on the migration of europium in a porous medium. Comparison with inorganic colloids

    After having been reprocessed, radioactive wastes are stored in conditions which depend on the toxicity of the radioelements. In particular, for the actinides, the packaging has to be sure for several thousands years. In the case of a defective storage, phenomena which favour or diminish the migration of radioelements in the environment have to be identified. In water, organic or inorganic colloids able to bind radioelements can migrate. Among these colloids, are found the humic acids (HA), macromolecules (poly-electrolytes and poly-dispersed) known for their affinity towards some radioelements. These HA are either present on a soluble state or bound to mineral supports. Humic acids have then been studied in these two states and their influence on the europium migration in dynamical system have been observed (ion exchange and affinity chromatography). When HA are bound by covalent bonds to silica gel, they strongly retain the radioelement, whatever be the conditions of pH, flow rate or ionic strength, and either if phosphate ions are present. The study of HA in solution has shown that, on the one hand the formation of a Eu-HA complex alters the adsorption of the radioelement on sand and that the influence of the humic acids on the europium retention is superior to those of the inorganic colloids (silicon oxide, bentonite). On the other hand, the study has revealed that a solution containing HA desorbs almost entirely the europium beforehand bound to the sand. This desorption depends on the pH and on the flow rate but not on the presence of competitive ions as for instance phosphate ions. (O.M.)

  1. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  2. Surfactant mediated synthesis of poly(acrylic acid) grafted xanthan gum and its efficient role in adsorption of soluble inorganic mercury from water.

    Pal, Abhijit; Majumder, Kunal; Bandyopadhyay, Abhijit

    2016-11-01

    Noble copolymers from xanthan gum (XG) and poly(acrylic acid) (PAA) were synthesised through surfactant mediated graft copolymerization. The copolymers were applied as a biosorbent for inorganic Hg(II) at higher concentration level (300ppm). The copolymers were characterized using different analytical techniques which showed, the grafting principally occurred across the amorphous region of XG. Measurement of zeta potential and hydrodynamic size indicated, the copolymers were strong polyanion and possessed greater hydrodynamic size (almost in all cases) than XG, despite a strong molecular degradation that took place simultaneously during grafting. In the dispersed form, all grades of the copolymer displayed higher adsorption capability than XG, however, the grade with maximum grafting produced the highest efficiency (68.03%). Manipulation produced further improvement in efficiency to 72.17% with the same copolymer after 75min at a pH of 5.0. The allowable biosorbent dose, however, was 1000ppm as determined from the experimental evidences. PMID:27516248

  3. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    I. Trebs

    2004-02-01

    Full Text Available We measured the mixing ratios of ammonia (NH3, nitric acid (HNO3, nitrous acid (HONO, hydrochloric acid (HCl, sulfur dioxide (SO2 and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+, nitrate (NO3, nitrite (NO2, chloride (Cl and sulfate (SO42−, and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil. This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia Smoke Aerosols, Clouds, Rainfall and Climate. Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity, through the transition period to the wet season (background conditions. Measurements were made continuously using a wet-annular denuder in combination with a Steam-Jet Aerosol Collector (SJAC followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition were ≤0.015 ppb for acidic trace gases and aerosol anions and ≤0.118 ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning

  4. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    I. Trebs

    2004-01-01

    Full Text Available We measured the mixing ratios of ammonia (NH3, nitric acid (HNO3, nitrous acid (HONO, hydrochloric acid (HCl, sulfur dioxide (SO2 and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+, nitrate (NO3-, nitrite (NO2-, chloride (Cl- and sulfate (SO42-, and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil. This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate. Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity, through the transition period to the wet season (background conditions. Measurements were made continuously using a wet-annular denuder (WAD in combination with a Steam-Jet Aerosol Collector (SJAC followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition were ≤0.015ppb for acidic trace gases and aerosol anions and ≤0.118ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong

  5. Combining pH and electrical conductivity measurements to improve titrimetric methods to determine ammonia nitrogen, volatile fatty acids and inorganic carbon concentrations.

    Charnier, C; Latrille, E; Lardon, L; Miroux, J; Steyer, J P

    2016-05-15

    Volatile fatty acids (VFA), inorganic carbon (IC) and total ammonia nitrogen (TAN) are key variables in the current context of anaerobic digestion (AD). Accurate measurements like gas chromatography and infrared spectrometry have been developed to follow the concentration of these compounds but none of these methods are affordable for small AD units. Only titration methods answer the need for small plant monitoring. The existing methods accuracy was assessed in this study and reveals a lack of accuracy and robustness to control AD plants. To solve these issues, a new titrimetric device to estimate the VFA, IC and TAN concentrations with an improved accuracy was developed. This device named SNAC (System of titration for total ammonia Nitrogen, volatile fatty Acids and inorganic Carbon) has been developed combining the measurement of electrical conductivity and pH. SNAC were tested on 24 different plant samples in a range of 0-0.16 mol.L(-1) TAN, 0.01-0.21 mol.L(-1) IC and 0-0.04 mol.L(-1) VFA. The standard error was about 0.012 mol.L(-1) TAN, 0.015 mol.L(-1) IC and 0.003 mol.L(-1) VFA. The coefficient of determination R(2) between the estimated and reference data was 0.95, 0.94 and 0.95 for TAN, IC and VFA respectively. Using the same data, current methods based on key pH points lead to standard error more than 14.5 times higher on VFA and more than 1.2 times higher on IC. These results show that SNAC is an accurate tool to improve the management of AD plant. PMID:27010787

  6. Nitric acid-based partial-digestion method for selective determination of inorganic arsenic in hijiki and application to soaked hijiki.

    Hamano-Nagaoka, Megumi; Hanaoka, Ken'ichi; Usui, Masakatsu; Nishimura, Tsutomu; Maitani, Tamio

    2008-04-01

    Because there is a great difference between the toxicity of inorganic arsenic (As) and organic As in food, the JECFA has set a PTWI value for inorganic As (iAs) rather than for total As. The difference in As toxicity makes it necessary to extract iAs completely from food samples for toxicological analysis, but complete extraction of As from most foods including seaweed has not been achieved to date. We developed a partial-digestion method that uses nitric acid as a solvent in order to extract almost all arsenicals from the solid matrix of hijiki (Hizikia fusiforme, a brown alga) samples. In this method, organic As species were not converted into iAs. HPLC/ICP-MS was then used to determine the concentration of iAs. Total As was measured by hydride generation-atomic absorption spectrometry. The adopted conditions for 0.1 g of ground fine powder sample were: 2 mL of 0.3 mol/L nitric acid; heating, 80 degrees C for 1 hr. Intra-laboratory validation of the method showed good precision and accuracy. The repeatability and intermediate precision for iAs were 1.5% and 1.5%, respectively. The LOD and LOQ for iAs were 0.14 and 0.46 mg/kg dry weight, respectively. Recovery studies performed by spiking 0.5 mg/kg dry weight as the LOQ level and by spiking 3 mg/kg dry weight as the iAs concentration of an un-spiked hijiki sample showed good accuracy. The method was applied to hijiki samples after a water soaking process and a water soaking and simmering process. The results suggested that the As concentration in hijiki after both processes was lower than that before the treatments and that the water soaking and simmering process reduced the iAs concentration much more effectively than the water soaking process. PMID:18503244

  7. Pattern of accumulation of inorganic elements in sunflower (helianthus annuus l.) plants subjected to salt stress and exogenous application of 5-aminolevulinic acid

    Influence of a potential plant growth regulator, 5-aminolevulinic acid (5-ALA) on the pattern of accumulation of some key inorganic elements in salt-stressed sunflower plants was observed under greenhouse conditions. Two cultivars of sunflower viz., Hysun-33 and S-278 were grown under non-saline and saline (150 mM NaCl) regimes in sand culture. After two weeks of salt treatment, all plants were subjected to four (0 (no spray), 20, 50 and 80 mg L/sup -1/) levels of 5-ALA as a foliar spray for 14 days. Shoot fresh and dry matter of both sunflower cultivars was markedly reduced due to salt stress. Of different inorganic ions, Na/sup +/ and Cl/sup -/ in leaf, stem and root tissues increased markedly while, K/sup +/, and Ca/sup 2+/ in all these tissues reduced under the saline regime. However, salt stress did not alter the leaf, stem or root P as well as root K/sup +/ /Na//sup +/ ratio. Foliar-applied ALA improved growth under normal (non-saline) and saline conditions, and 20 and 80 mg L/sup -1/ levels of 5-ALA were relatively more effective than the other levels used in this study. Of nutrient accumulation, 5-ALA altered only root Na/sup +/ and K/sup +/ and root K/sup +//Na/sup +/ ratio e.g., root Na/sup +/ was lower at 50 mg L/sup -1/, while root K/sup +/and K/sup +//Na/sup +/ ratio were higher at 80 mg L/sup -1/. In contrast, accumulation of all other ions in plant organs remained unaffected. Overall, foliar-applied 5-ALA did not alter the accumulation of different nutrients in different plant parts except root Na/sup +/, K/sup +/ and K/sup +//Na/sup +/ ratio in both sunflower cultivars. (author)

  8. Improving the mining soil quality for a vegetation cover after addition of sewage sludges: inorganic ions and low-molecular-weight organic acids in the soil solution.

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán-Carrizosa, Ignacio; Fernández-Espinosa, Antonio J

    2015-03-01

    We assessed the effects of applying stabilized sewage sludge (SSL) and composted sewage sludge (CLV), at 5 and 10% to an acid mining soil. Limed soil (NCL) amended or not with SSL and CLV was incubated for 47 days. We studied the cations and organic and inorganic anions in the soil solution by means of ion chromatography. Liming led to big increases in Ca(2+) and SO4(2-) and to significant decreases in K(+), Mg(2+), NH4(+) and NO3(-). Addition of both organic amendments increased some cations (NH4(+), K(+), Mg(2+), Na(+)) and anions (Cl(-), NO3(-) only with CLV and PO4(3-) only with SSL) and provided a greater amount of low-molecular-weight organic acids (LMWOAs) (SSL more than CLV). Incubation led to decreases in all cations, particularly remarkable for Ca(2+) and Mg(2+) in SSL-10. A decrease in NH4(+) was associated with variations in NO2(-) and NO3(-) resulting from nitrification reactions. During incubation the LMWOAs content tended to decrease similarly to the cations, especially in SSL-10. Chemometric tools revealed a clear discrimination between SSL, CLV and NCL. Furthermore, treatment effects depended upon dose, mainly in SSL. Amendment nature and dose affect the quality of a mining soil and improve conditions for plant establishment. PMID:25506677

  9. Phytochemical and Morphological Attributes of St. John’s Wort (Hypericum perforatum Affected by Organic and Inorganic Fertilizers; Humic Acid and Potassium Sulphate

    Helaleh Sadat KABOLI FARSHCHI

    2014-09-01

    Full Text Available This experiment was designed to evaluate the effects of organic (liquid humic acid and inorganic (potassium sulphate on phytochemical and morphological attributes of St. John’s Wort (Hypericum perforatum. Thus, a research was conducted in a factorial experiment (3×3 based on completely randomized design with three replications. Treatments consisted of potassium sulphate (Kx at three concentrations (0, 60 and 100 Kg/h which were treated before flowering and humic acid (Hx at three concentrations (0, 20 and 40 L/h which were fertigated four times of 15-days intervals. Results showed that the plant stem height, number of flowering stems and number of flowers were significantly affected by simple effect of each fertilizers (p<0.01, while their interaction effect was not significant for the plants height. The highest contents of fresh and dry weight were achieved under the highest amounts of fertilizers (K100 and H40. The highest stem height, number of flowers and number of flowering stems also belonged to these treatments. Increment of applied fertilizers led to increase of obtained essential oils, so that application of these fertilizers simultaneously increased the essential oil content up to 6-fold. Regarding the antioxidant activity, applied fertilizers at their high levels showed significant effects on decrease of EC50, which means the increment of antioxidant activity of H. perforatum.

  10. An investigation of proton conductivity of binary matrices sulfonated polysulfone/polyvinyltriazole after doping with inorganic acids

    Serkan Sevinç; Sevim Ünügür Çelik; Ayhan Bozkurt

    2015-04-01

    As anhydrous proton conductive membranes, sulfonated polysulfone (SPSU) and polyvinyl triazole were studied as binary matrices. The sulfonation of polysulfone was performed with trimethylsilylchlorosulfonate and high degree of sulfonation (140%) was obtained. Ion exchange capacity of SPSU was determined as 3.05 mmol−1/g. The polymer electrolyte membranes were prepared by blending of sulfonated polysulfone with polyvinyl triazole and phosphoric acid. Fourier transform infrared spectroscopy confirmed the sulfonation of the polysulfone and the ionic interaction between sulfonic acid and triazole units. Thermogravimetric analysis showed that the polymer electrolyte membranes are thermally stable up to at least 150° C. Scanning electron microscopy analysis indicated the homogeneity of the ternary composites. The maximum proton conductivity has been measured as 3.63 × 10−4S cm−1 at 150° C.

  11. Mechanical properties of PET composites using multi-walled carbon nanotubes functionalized by inorganic and itaconic acids

    A. May-Pat

    2012-02-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were oxidized by two different acid treatments and further functionalized with itaconic acid (IA. The functionalized MWCNTs were used to fabricate Poly(ethylene terephthalate (PET composites by melt mixing. The presence of functional groups on the surface of the treated MWCNTs was confirmed by infrared spectroscopy and thermogravimetric analysis. The MWCNTs oxidized with a concentrated mixture of HNO3 and H2SO4 exhibited more oxygen containing functional groups (OH, COOH but also suffer larger structural degradation than those oxidized by a mild treatment based on diluted HNO3 followed by H2O2. PET composites were fabricated using the oxidized-only and oxidized followed by functionalization with IA MWCNTs. PET composites fabricated with MWCNT oxidized by mild conditions showed improved tensile strength and failure strain, while harsh MWCNT oxidation render them overly brittle.

  12. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.

    Erust, Ceren; Akcil, Ata; Bedelova, Zyuldyz; Anarbekov, Kuanysh; Baikonurova, Aliya; Tuncuk, Aysenur

    2016-03-01

    Catalysts are used extensively in industry to purify and upgrade various feeds and to improve process efficiency. These catalysts lose their activity with time. Spent catalysts from a sulfuric acid plant (main elemental composition: 5.71% V2O5, 1.89% Al2O3, 1.17% Fe2O3 and 61.04% SiO2; and the rest constituting several other oxides in traces/minute quantities) were used as a secondary source for vanadium recovery. Experimental studies were conducted by using three different leaching systems (citric acid with hydrogen peroxide, oxalic acid with hydrogen peroxide and sulfuric acid with hydrogen peroxide). The effects of leaching time, temperature, concentration of reagents and solid/liquid (S/L) ratio were investigated. Under optimum conditions (1:25 S/L ratio, 0.1M citric acid, 0.1M hydrogen peroxide, 50°C and 120min), 95% V was recovered in the presence of hydrogen peroxide in citric acid leaching. PMID:26711187

  13. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Li, J.

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  14. A field-deployable, chemical ionization time-of-flight mass spectrometer: application to the measurement of gas-phase organic and inorganic acids

    T. H. Bertram

    2011-03-01

    Full Text Available We report a new field-deployable chemical ionization time-of-flight mass spectrometer (CI-TOFMS for the direct measurement of trace gases in the atmosphere. We apply the technique to the measurement of gas-phase inorganic and organic acids via negative-ion proton transfer, using acetate as the reagent ion. A novel high pressure interface, incorporating two RF-only quadrupoles is used to efficiently focus ions through four stages of differential pumping before analysis with a compact TOFMS. The high ion-duty cycle (>20% of the TOFMS, coupled to efficient production and transmission of ions in the high pressure interface results in a highly sensitive (>300 ions s−1 pptv−1 instrument capable of the fast measurement of atmospheric gases at trace levels. We demonstrate the efficient transfer and detection of both bare ions and ion-molecule clusters, and characterize the instrument during field measurements aboard the R/V Atlantis as part of the CalNex campaign during the spring of 2010. The in-field short-term precision is better than 5% at 1 pptv (pL/L, for 1-second averages. The detection limit (3σ, 1-second averages of the current version of the CI-TOFMS, as applied to the in situ detection of gas-phase acids, is limited by the magnitude and variability in the background determination and was determined to be 4 pptv.

  15. 玉蜀黍叶中氨基酸及无机元素的含量测定%Determination of Amino Acids and Inorganic Elements in the leaves of Zea mays L.

    刘银燕; 杨晓虹; 陈滴; 王文娜; 孙琦; 杨锦竹

    2012-01-01

    对玉蜀黍叶中氨基酸和无机元素进行研究.采用日立835-50型氨基酸分析仪和ICP - AES法对玉蜀黍叶中氨基酸和无机元素进行了研究.结果表明,玉蜀黍叶中含有17种氨基酸和12种人体必需的无机元素.本研究为玉蜀黍叶的药用开发提供了参考依据.%To determine amino acids and inorganic elements in the leaves of zea mays L., amino acids in leaves of zea mays L. Were determined by the amino acid analyzer, and inorganic elements in leaves of zea mays L. Were determined by ICP-AES. The result showed thai there were 17 amino acids and 12 kind of inorganic elements in leaves of zea mays L., and it provide a basis for the medical exploitation oi the leaves of zea mays L..

  16. Science Update: Inorganic Chemistry.

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  17. Inorganic Sunscreens

    Inorganic sunscreens, based on TiO2 and ZnO, are a rapidly growing segment of the overall UV protection market. They offer the advantages of high SPF, broad-spectrum coverage and reduced potential irritancy to users. Lack of transparency has traditionally been a drawback regarding acceptance of these products. Recent development work has therefore prioritised the achievement of transparency through superior control of particle size, shape and particle size distribution. The properties of TiO2 and ZnO are discussed as sunscreen actives, and the key factors affecting efficacy and cosmetic elegance. The pros and cons of different product forms (powders and dispersions) are discussed. physical sunscreens can be used either as the sole active in a formulation, or in combination with each other or with organic sunscreens; the relative benefits of these approaches are assessed. The paper concludes with a review of work undertaken to achieve transparency along with developments to improve efficacy (SPF and UVA coverage) and photostability. (author)

  18. Inorganic Sunscreens

    Dransfield, G.P

    2000-07-01

    Inorganic sunscreens, based on TiO{sub 2} and ZnO, are a rapidly growing segment of the overall UV protection market. They offer the advantages of high SPF, broad-spectrum coverage and reduced potential irritancy to users. Lack of transparency has traditionally been a drawback regarding acceptance of these products. Recent development work has therefore prioritised the achievement of transparency through superior control of particle size, shape and particle size distribution. The properties of TiO{sub 2} and ZnO are discussed as sunscreen actives, and the key factors affecting efficacy and cosmetic elegance. The pros and cons of different product forms (powders and dispersions) are discussed. physical sunscreens can be used either as the sole active in a formulation, or in combination with each other or with organic sunscreens; the relative benefits of these approaches are assessed. The paper concludes with a review of work undertaken to achieve transparency along with developments to improve efficacy (SPF and UVA coverage) and photostability. (author)

  19. Non-Isothermal Cold-Crystallization Behavior and Kinetics of Poly(l-Lactic Acid/WS2 Inorganic Nanotube Nanocomposites

    Mohammed Naffakh

    2015-10-01

    Full Text Available In order to accelerate the crystallization of poly(l-lactic acid (PLLA biopolymer and enhance its crystallizability, biocompatible and environmentally friendly tungsten disulphide inorganic nanotubes (INT-WS2 were introduced into the polymer matrix. The non-isothermal cold-crystallization and subsequent melting behaviour of pure PLLA and PLLA/INT-WS2 nanocomposites were investigated in detail by varying both the heating rate and INT-WS2 loading. The kinetic parameters of the cold-crystallization process of PLLA chains under confined conditions, successfully described using Liu model, shows that the addition of INT-WS2 significantly increased the crystallization rate and reduced the total cold-crystallinity of PLLA, while the crystallization mechanism and crystal structure of PLLA remained unchanged in spite of the INT-WS2 loading. Similarly, the final crystallinity and melting behaviour of PLLA were controlled by both the incorporation INT-WS2 and variation of the heating rate. The differential isoconversional method of Friedman was applied to estimate the dependence of the effective activation energy on the relative crystallinity and temperature for PLLA and PLLA/INT-WS2. On the other hand, the double-melting peaks, mainly derived from melting-recrystallization-melting processes upon heating, and their dynamic behaviour is coherent with a remarkable nucleation-promoting effect of INT-WS2 involved in accelerating the cold-crystallization of PLLA. These observations have considerable practical significance for the future sustainable, economic and effective technological utilisation of PLLA, as it will enable the development of novel melt-processable biopolymer nanocomposite materials.

  20. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES)

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima, 739-8526 (Japan); Fujiwara, Terufumi [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima, 739-8526 (Japan)], E-mail: tfuji@sci.hiroshima-u.ac.jp; Ito, Kazuaki [School of Engineering, Kinki University, Takaya, Higashihiroshima, 739-2116 (Japan)

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me{sub 4}NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B{sub 4}C), etc. but also boric acid (B(OH){sub 3}) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described.

  1. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES)

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me4NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B4C), etc. but also boric acid (B(OH)3) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described

  2. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi; Fujiwara, Terufumi; Ito, Kazuaki

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me(4)NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B(4)C), etc. but also boric acid (B(OH)(3)) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described. PMID:18291127

  3. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    H. M. Allen; D. C. Draper; B. R. Ayres; A. Ault; A. Bondy; Takahama, S; Modini, R. L.; K. Baumann; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B; Fry, J. L

    2015-01-01

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea ...

  4. Nomenclature on an inorganic compound

    This book contains eleven chapters : which mention nomenclature of an inorganic compound with introduction and general principle on nomenclature of compound. It gives the description of grammar for nomenclature such as brackets, diagonal line, asterisk, and affix, element, atom and groups of atom, chemical formula, naming by stoichiometry, solid, neutral molecule compound, ion, a substituent, radical and name of salt, oxo acid and anion on introduction and definition of oxo acid, coordination compound like symbol of stereochemistry , boron and hydrogen compound and related compound.

  5. Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements

    Behera, Sailesh N.; Cheng, Jinping; Huang, Xian; Zhu, Qiongyu; Liu, Ping; Balasubramanian, Rajasekhar

    2015-12-01

    The severe winter haze episode that occurred in Shanghai from December 2013 to January 2014, characterized by elevated levels of particulate matter (PM), received considerable international attention because of its impacts on public health and disruption of day-to-day activities. To examine the characteristics of PM during this haze episode and to assess the chemistry behind formation of secondary inorganic aerosols (SIA) and associated health impacts due to exposure of toxic elements, we characterized eight water soluble inorganic (WSI) ions and twenty four trace elements in twelve size-fractionated PM (10 nm-9.9 μm). The average mass concentrations of coarse (1.8 μm events increased significantly (P < 0.05) to 69 ± 18 × 10-6 compared to non-hazy days (34 ± 10 × 10-6). The qualitative source attribution analysis suggested that the occurrence of haze could be due to a combination of increased emissions of PM from multiple anthropogenic sources followed by its accumulation under unfavourable meteorological conditions with lower mixing heights and less wind speeds and the formation of secondary aerosols.

  6. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols

    Z. Shi

    2012-02-01

    Full Text Available Aerosol acidity is one of the most important parameters influencing atmospheric chemistry and physics. Based on continuous field observations from January 2005 to May 2006 and thermodynamic modeling, we investigated the spatial and seasonal variations in PM2.5 acidity in two megacities in China, Beijing and Chongqing. Spatially, PM2.5 was generally more acidic in Chongqing than in Beijing, but a reverse spatial pattern was found within the two cities, with more acidic PM2.5 at the urban site in Beijing whereas the rural site in Chongqing. Ionic compositions of PM2.5 revealed that it was the higher concentrations of NO3− at the urban site in Beijing and the lower concentrations of Ca2+ within the rural site in Chongqing that made their PM2.5 more acidic. Temporally, PM2.5 was more acidic in summer and fall than in winter, while in the spring of 2006, the acidity of PM2.5 was higher in Beijing but lower in Chongqing than that in 2005. These were attributed to the more efficient formation of nitrate relative to sulfate as a result of the influence of Asian desert dust in 2006 in Beijing and the greater wet deposition of ammonium compared to sulfate and nitrate in 2005 in Chongqing. Furthermore, simultaneous increase of PM2.5 acidity was observed from spring to early summer of 2005 in both cities. This synoptic-scale evolution of PM2.5 acidity was accompanied by the changes in air masses origins, which were influenced by the movements of a subtropical high over the northwestern Pacific in early summer. Finally, the correlations between [NO3−]/[SO42−] and [NH4+]/[SO42−] suggests that under conditions of high aerosol acidity, heterogeneous reactions became one of the major pathways for the formation of nitrate at both cities. These findings provided new insights in our understanding of the spatial and temporal variations in aerosol acidity in Beijing and Chongqing, as well as those reported in other cities in China.

  7. Comparing the effects of inorganic nitrate and allopurinol in renovascular complications of metabolic syndrome in rats: role of nitric oxide and uric acid

    Essawy, Soha S.; Abdel-Sater, Khaled A.; Elbaz, Amani A.

    2013-01-01

    Introduction The epidemic of metabolic syndrome is increasing worldwide and correlates with elevation in serum uric acid and marked increase in total fructose intake. Fructose raises uric acid and the latter inhibits nitric oxide bioavailability. We hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome and treatment of hyperuricemia or increased nitric oxide may improve it. Material and methods Two experiments were performed. Male Sprague-Dawley rat...

  8. Artificial cytoskeletal structures within enzymatically active bio-inorganic protocells.

    Kumar, Ravinash Krishna; Li, Mei; Olof, Sam N; Patil, Avinash J; Mann, Stephen

    2013-02-11

    The fabrication of enzymatically active, semi-permeable bio-inorganic protocells capable of self-assembling a cytoskeletal-like interior and undergoing small-molecule dephosphorylation reactions is described. Reversible disassembly of an amino acid-derived supramolecular hydrogel within the internalized reaction space is used to tune the enzymatic activity of the nanoparticle-bounded inorganic compartments. PMID:23027575

  9. Science Update: Inorganic Chemistry

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  10. Inorganic Coatings Laboratory

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  11. Layered inorganic solids

    Čejka, Jiří; Morris, R. E.; Nachtigall, P.; Roth, Wieslaw Jerzy

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10274-10275. ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : layered inorganic solids * physical chemistry * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  12. Separating cesium 137 from liquid radioactive wastes by using inorganic exchangers using static and dynamic procedures at various concentration of nitric acid and sodium nitrate

    Cesium 137 was separated from liquid wastes by ion exchange using ammonium molybdenum phosphate, potassium hexa cyano cobalt ferrate, zirconium hydro phosphate and antimony penta oxy hydrate ion exchangers. The investigation was done by static and dynamic procedures. In static procedure required time for reaching the system to equilibrium or ion exchange completion, the measurement of each exchanger, the effect of nitric acid and concentration of sodium nitrate on the capacity of ion exchangers was investigated. Also in dynamic procedure nitric acid and sodium nitrate concentration ratio on the power of and thereof the capacity of each ion exchanger was determined

  13. 工业级己二酸无机杂质元素的光谱研究%Study on Determination of Inorganic Impurity Elements in Industrial Grade Adipic Acid by Inductively Coupled Plasma Optical Emission Spectrometry

    马宁; 谢华林; 欧竞; 符靓

    2014-01-01

    An analytical method for determination of Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Cu, Zn and Pb in industrial grade adipic acid by using inductively coupled plasma optical emission spectrometry (ICP-OES) was established. The adipic acid was dissolved with HNO3, then the above 12 inorganic impurity elements in the solution were analyzed directly by ICP-OES. The working parameters of the instrument were optimized. Appropriate analysis line of various elements was selected. Y as internal standard element was used to compensate matrix effect and signal drift. Under the optimal conditions, the detection limits was 0.56~18.20µg/L, the recoveries of standard addition was in the range of 92.96%~107.90%and the RSD was 0.8%~3.3%. This method was simple, sensitive and precise, and was suitable for the determination of inorganic impurity elements in industrial grade adipic acid.%建立工业级己二酸中多个无机杂质元素的快速光谱分析方法。己二酸样品经硝酸溶解后直接用电感耦合等离子体发射光谱(ICP-OES)法测定其中的Na、Mg、Al、K、Ca、V、Cr、Mn、Fe、Cu、Zn、Pb等12种无机杂质元素。通过优化仪器工作参数,选择最佳的分析波长,并以Y为内标元素消除了测定过程中的光谱干扰和基体效应。在优化的实验条件下,方法的检出限为0.56~18.20µg·L-1,各元素的加标回收率为92.96%~107.90%,RSD为0.8%~3.3%。方法可实现工业级己二酸中无机杂质元素的快速准确测定。

  14. Inorganic contaminants attenuation in acid mine drainage by fly ash and fly ash-ordinary Portland cement (OPC) blends : column experiments

    The infiltration of acid mine drainage (AMD) material into mine voids is one of the environmental impacts of underground coal mining. In this study, the mitigation of AMD in a mine void was simulated in laboratory conditions. Various mixtures of fly ash, solid residues, and Portland cement were added to packed columns over a 6-month period. The fly ash additions generated near-neutral to alkaline pH levels, which in turn induced precipitation, co-precipitation, and adsorption contaminant attenuation mechanisms. A modelling study demonstrated that the precipitation of ferrihydrite, Al-hydroxides, Al-oxyhydroxysulphates, gypsum, ettringite, manganite, and rhodochrosite lowered contaminant levels. Results of the study indicated that the pH regime and acidity level of the AMD strongly influenced both the leaching of the toxic trace elements as well as the attenuation of the AMD. 3 refs., 2 figs.

  15. Intercalation compounds involving inorganic layered structures

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  16. First Principles Calculations of Aqueous pKa Values for Organic and Inorganic Acids Using COSMO-RS Reveal an Inconsistency in the Slope of the pKa Scale.

    Klamt, Andreas; Eckert, Frank; Diedenhofen, Michael; Beck, Michael E

    2003-11-01

    The COSMO-RS method, a combination of the quantum chemical dielectric continuum solvation model COSMO with a statistical thermodynamics treatment for more realistic solvation (RS) simulations, has been used for the direct prediction of pKa constants of a large variety of 64 organic and inorganic acids. A highly significant correlation of r(2) = 0.984 with a standard deviation of only 0.49 between the calculated values of the free energies of dissociation and the experimental pKa values was found, without any special adjustment of the method. Thus, we have a theoretical a priori prediction method for pKa, which has the regression constant and the slope as only adjusted parameters. Such a method can be of great value in many areas of physical chemistry, especially in pharmaceutical and agrochemical industry. To our surprise, the slope of pKa vs ΔGdiss is only 58% of the theoretically expected value of 1/RTln(10). A careful analysis with respect to different contributions as well as a comparison with the work of other authors excludes the possibility that the discrepancy is due to weaknesses of the calculation method. Hence, we must conclude that the experimental pKa scale depends differently on the free energy of dissociation than generally assumed. PMID:26313337

  17. Simulation and analysis of the loss of inorganic ions from foliage under the influence of acid precipitations and air pollutants. Final report. Simulation und Analyse des Verlustes anorganischer Ionen aus Blaettern unter dem Einfluss von sauren Niederschlaegen und Luftschadstoffen. Abschlussbericht

    Riederer, M.

    1989-05-01

    The project had the objective to simulate the loss of inorganic nutrients from leaves under controlled conditions and to analyse processes during the transport of ions through the cuticles. To be considered were both uninfluenced conditions and the changes possibly brought about by acid precipitations or the effects of toxic substances on the cuticles. Making use of isolated cuticular membranes of Citrus aurantium and slices of leaves of Quercus robur, Fagus sylvatica and Robinia pseudoacacia, leaching of K{sup +}, Cs{sup +}, Mg{sup 2+}, and Ca{sup 2+} was simulated under controlled conditions. The steady-state flow of cations through the cuticles depended on the proton concentration in the rinsing solution. Consequently, this is a counter-ion-exchange process. In addition, a ph-independent process was observed by which ions that diffused through the cuticles during periods free of precipitation are rendered soluble. Ozone in high doses entailed an increase in cation flow rates. (orig./MG).

  18. Prolonged oral treatment with two monoesters of meso-2,3-dimercaptosuccinic acid for depleting inorganic mercury retention in suckling rats

    Two monoesters of meso-2,3-dimercaptosuccinic acid (DMSA), monoisoamyl meso-2,3-dimercaptosuccinate (Mi-ADMS) and mono-n-hexyl meso-2,3-dimercaptosuccinate (Mn-HDMS) were compared to DMSA in their efficiency to mobilize 203Hg in mercury-laden suckling rats. Seven-day-old pups were given 203Hg (18.5 kBq) with a dose of 0.5 mg Hg/kg/day as HgCl2 for five days. Seven days after the beginning of Hg loading a ten-day oral treatment with DMSA, Mi-ADMS, or Mn-HDMS was administered at a dose of 0.25 mmol/kg/day. At the end of experiment, radioactivity was measured in the whole body, liver, both kidneys, and brain. Monoesters of DMSA were superior to DMSA in decreasing body and organ Hg retention. The highest reduction in comparison to controls in groups treated with DMSA, Mi-ADMS, or Mn-HDMS occurred in the kidneys (48%, 97%, and 96%), followed by reduction in the liver (24%, 84%, and 83%), and in the brain (8%, 23%, respectively). For both, Mi-ADMS and Mn-HDMS, the reductions in the whole body and organs were significantly greater than in controls or DMSA-treated rats. No difference between the efficiency of the two DMSA-monoesters was found. (au) 20 refs

  19. Inorganic Constituents in Coal

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  20. Inorganic Analytical Chemistry

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W...

  1. Inorganic Constituents in Coal

    Rađenović A.

    2006-01-01

    Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates),minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fract...

  2. 无机金属盐对微波辅助酸预处理毛竹酶解的影响%Effect of Inorganic Salts on Enzymatic Saccharification of Moso Bamboo Pretreated by Microwave-Dilute Acid

    李志强; 费本华; 江泽慧

    2014-01-01

    采用加入无机金属盐的稀酸溶液预处理毛竹,分析预处理后底物的化学组成、预处理后的废液组成、糖降解发酵抑制物的生成量等。结果表明:稀酸预处理主要以脱除半纤维素为主,而对木质素的脱除没有明显效果。当硫酸用量为2%( w/w)、预处理温度为180℃时,竹材中绝大部分半纤维素已被脱除,底物纤维素转化为葡萄糖的收率可达52.72%。加入硫酸铁催化后的稀酸预处理能提高底物的酶水解性能,可使纤维素转化为葡萄糖的收率提高到72.15%。硫酸钠、硫酸亚铁、硫酸铜和硼砂等催化后的稀酸预处理底物的酶水解性能均有不同程度的下降,其中以硫酸铜催化预处理底物的酶水解性能最差。铜离子在预处理中可以被竹材底物吸附,并且在酶水解过程中可以脱附进入水解液中。%Global warming and energy shortage are the main challenges and puzzles that government and the public around the world are facing. It is believed that one of the solutions is to use biomass as a potential renewable energy resource for producing liquid fuels such as bioethanol and biodiesel. Bamboo,with cellulose and hemicellulose as its main components,is a kind of fast growth and cheap renewable resource for bioethanol production. In the study,inorganic salts were studied as promoter in the dilute acid pretreatment of moso bamboo for the enzymatic saccharification. The chemical composition of the substrates and spent liquors,the enzymatic hydrolyability of substrates were analyzed. The results showed that dilute acid pretreatment ( DA) enhances the digestibility of lignocellulose mainly by dissolving hemicellulose and partially prehydrolyzing cellulose. DA has no delignified. The cellulose-to-glucose conversion yield of 2% sulfuric acid( w/w) pretreated substrate was 52. 72%. Sulfuric acid with Fe2 ( SO4 ) 3 pretreated substrate had the higher cellulose-to-glucose conversion yield

  3. Ionic Transfer in Hybrid Inorganic/Organic Membranes

    A.B.Yaroslavtsev; I.A.Stenina; A.S.Shalimov

    2007-01-01

    1 Results In last years increasing interest has been devoted to the development and research of transport properties of hybrid organic/inorganic membranes. Traditionally, these membranes are used as electrolyte in fuel cells. However a number of their properties allow considering them as perspective materials for water treatment and substance purification. In this work transport properties of some ion exchange membranes modified by inorganic nanoparticles (hydrated oxides or solid acids) are discussed. ...

  4. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Reshef Tenne; Enyashin, Andrey N.

    2014-01-01

    Fullerene-like nanoparticles (inorganic fullerenes; IF) and nanotubes of inorganic layered compounds (inorganic nanotubes; INT) combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects...

  5. Inorganic Crystal Structure Database (ICSD)

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  6. Selective inorganic thin films

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  7. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  8. Ion-Conducting Organic/Inorganic Polymers

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  9. Selective inorganic thin films

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  10. Cancer risk from inorganics

    Inorganic metals and minerals for which there is evidence of carcinogenicity are identified. The risk of cancer from contact with them in the work place, the general environment, and under conditions of clinical (medical) exposure is discussed. The evidence indicates that minerals and metals most often influence cancer development through their action as cocarcinogens. The relationship between the physical form of mineral fibers, smoking and carcinogenic risk is emphasized. Metals are categorized as established (As, Be, Cr, Ni), suspected (Cd, Pb) and possible carcinogens, based on the existing in vitro, animal experimental and human epidemiological data. Cancer risk and possible modes of action of elements in each class are discussed. Views on mechanisms that may be responsible for the carcinogenicity of metals are updated and analysed. Some specific examples of cancer risks associated with the clinical use of potentially carcinogenic metals and from radioactive pharmaceuticals used in therapy and diagnosis are presented. Questions are raised as to the effectiveness of conventional dosimetry in accurately measuring risk from radiopharmaceuticals. 302 references

  11. CYCLIC VOLTAMMETRY OF ORGANIC AND INORGANIC N-CHLORAMINES IN AQUEOUS SOLUTION

    Aqueous solutions or organic and inorganic N-chloramines as well as hypochlorite were examined by cyclic voltammetry at DH 8 and in strong acid (pH<2) with platinum and glassy carbon electrodes. The inorganic N-chloramines were characterized in 1 M HC104. NHC12 is reduced at abou...

  12. Quest for new materials: Inorganic chemistry plays a crucial role

    J Gopalakrishnan; Rohini Mani

    2009-05-01

    There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of -electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature as well as from the research work of my group.

  13. Essentials of inorganic materials synthesis

    Rao, C N R

    2015-01-01

    This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

  14. Possibility of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers

    Present work is devoted to possibilities of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers. Thus, the comparative study of sorption of chromium ions on anion exchanger A B-17 and on inorganic ion exchangers on the basis of hydrated titanium and zirconium dioxides in static and dynamic conditions is conducted. The influence of chromium ions concentration, solutions acidity (ph=1÷12) and presence of base electrolyte on sorption is studied. The state of chromium ions sorbed by inorganic ion exchangers is studied by means of infrared spectroscopy and spectroscopy. It is defined that inorganic sorbents could be used for chromium extraction from different solutions.

  15. Organic/inorganic hybrid coatings for anticorrosion

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  16. Exposure to inorganic arsenic in pregnancy and metabolism-nutrition interaction

    Li, Li

    2006-01-01

    Inorganic arsenic is metabolized by most mammals, including humans, via alternating reduction and oxidative methylation with S-adenosylmethionine as main methyl donor. Thus, it seems likely that it is influenced by the availability of methyl groups. The main arsenic metabolites excreted in human urine are monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), besides un-methylated inorganic arsenic (arsenate [As(V)] and arsenite [As(III)]). The aim of the present study wa...

  17. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-01

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by

  18. 2D-network of inorganic-organic hybrid material built on Keggin type polyoxometallate and amino acid: [L-C2H6NO2]3[(PO4)Mo12O36].5H2O

    A new inorganic-organic hybrid material based on polyoxometallate, [L-C2H6NO2]3[(PO4)Mo12O36].5H2O, has been successfully synthesized and characterized by single-crystal X-ray analysis, elemental analysis, infrared and ultraviolet spectroscopy, proton nuclear magnetic resonance and differential thermal analysis techniques. The title compound crystallizes in the monoclinic space group, P21/c, with a = 12.4938 (8) A, b = 19.9326 (12) A, c = 17.9270 (11) A, β = 102.129 (1)o, V = 4364.8 (5) A3, Z = 4 and R1(wR2) = 0.0513, 0.0877. The most remarkable structural feature of this hybrid can be described as two-dimensional inorganic infinite plane-like (2D/∞ [(PO4)Mo12O36]3-) which forming via weak Van der Waals interactions along the z axis. The characteristic band of the Keggin anion [(PO4)Mo12O36]3- appears at 210 nm in the UV spectrum. Thermal analysis indicates that the Keggin anion skeleton begins to decompose at 520 deg. C

  19. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  20. Recent developments in Inorganic polymers: A Review with focus on Si-Al based inorganic polymers

    Shrray Srivastava; Ravindra Gadhave

    2015-01-01

    Inorganic polymers are a unique classification of polymers. They contain inorganic atoms in the main chain. Hybrids with organic polymers as well as those chains that contain metals as pendant groups are considered in a special sub-classification as organo-metallic polymers. The networks containing only inorganic elements in main chain are called inorganic polymers. The silicone rubber is the most commercial inorganic polymer. The organo-metallic and inorganic polymers have a different set of...

  1. Recent developments in Inorganic polymers: A Review with focus on Si-Al based inorganic polymers

    Shrray Srivastava

    2015-12-01

    Full Text Available Inorganic polymers are a unique classification of polymers. They contain inorganic atoms in the main chain. Hybrids with organic polymers as well as those chains that contain metals as pendant groups are considered in a special sub-classification as organo-metallic polymers. The networks containing only inorganic elements in main chain are called inorganic polymers. The silicone rubber is the most commercial inorganic polymer. The organo-metallic and inorganic polymers have a different set of applications. The current paper is a review of current applications of polymers with inorganic back-bone networks, especially focusing on Si and Al based inorganic polymeric materials.

  2. Inorganic Fullerenes, Onions, and Tubes

    York, Andrew P. E.

    2004-01-01

    Buckminsterfullerene, which is in the shape of a soccer-ball was first discovered in 1985, has many applications as a good lubricant, or as a new superconductor. The synthesis of these inorganic fullerenes involves a great deal of interdisciplinary research between physicists, material scientists, engineers and chemists from various fields.

  3. Inorganic ion composition in Tardigrada

    Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak;

    2013-01-01

    Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion...

  4. Carbon dioxide removal with inorganic membranes

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  5. Organic/inorganic nanocomposite polymer electrolyte

    Li Qi; Shao Jun Dong

    2007-01-01

    The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocom posites membrane materials and their lithium salt complexes have been found thermally stable below 200 ℃. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10-6 S/cm.

  6. Inorganic ion exchangers. Application to liquid effluent processing

    Main inorganic ion exchangers used for radioactive liquid effluents presented in this report are: synthetic and natural zeolites, in titanium oxides, titanates, niobates, tantalates, zirconates, some insoluble salts of zirconium, molybdenum and tin, heteropolyacids and polyantimonic acid. Properties of these ion exchangers are described: structure, adsoption, radiation effects and thermal stability, application to waste processing, radioactive waste storage uranium and cesium 137 recovery are evoked

  7. Problems in structural inorganic chemistry

    Li, Wai-Kee; Mak, Thomas Chung Wai; Mak, Kendrew Kin Wah

    2013-01-01

    This book consists of over 300 problems (and their solutions) in structural inorganic chemistry at the senior undergraduate and beginning graduate level. The topics covered comprise Atomic and Molecular Electronic States, Atomic Orbitals, Hybrid Orbitals, Molecular Symmetry, Molecular Geometry and Bonding, Crystal Field Theory, Molecular Orbital Theory, Vibrational Spectroscopy, and Crystal Structure. The central theme running through these topics is symmetry, molecular or crystalline. The problems collected in this volume originate in examination papers and take-home assignments that have been part of the teaching of the book's two senior authors' at The Chinese University of Hong Kong over the past four decades. The authors' courses include Chemical Bonding, Elementary Quantum Chemistry, Advanced Inorganic Chemistry, X-Ray Crystallography, etc. The problems have been tested by generations of students taking these courses.

  8. Total and inorganic arsenic in dietary supplement supplies in northern Mexico.

    García-Rico, Leticia; Tejeda-Valenzuela, Lourdes

    2013-07-01

    The aim of this study was to evaluate the presence of total and inorganic arsenic in dietary supplements composed of herbal plants and seaweed, and to determine the potential toxicological risk. Total arsenic was determined by dry ashing and hydride generation atomic absorption spectrometry, and inorganic arsenic was determined by acid digestion, solvent extraction, and hydride generation atomic absorption spectrometry. Total and inorganic arsenic in the supplements ranged from 0.07 to 8.31 mg kg(-1) dry weight and from 0.14 to 0.28 mg kg(-1) dry weight, respectively. Daily intake of total arsenic ranged from 0.05 to 12.46 μg day(-1). Inorganic arsenic intake ranged from 0.21 to 0.83 μg day(-1), values that are below the Benchmark Dose Lower Confidence Limit recommended by the Word Health Organization. Therefore, there appears to be a low risk of adverse effects resulting from excess inorganic arsenic intake from these supplements. This is the first study conducted in Mexico that investigates total and inorganic arsenic in dietary supplements. Although the results do not suggest toxicological risk, it is nonetheless important considering the toxicity of inorganic arsenic and the increasing number consumer preferences for dietary supplements. Moreover, it is important to improve and ensure the safety of dietary supplements containing inorganic arsenic. PMID:23196407

  9. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  10. Separation of radionuclides from spent decontamination solutions onto selective inorganic-organic composite absorbers

    The experiments were performed to verify the possibility of the direct separation of radionuclides from a liquid decontamination waste. The solutions tested were an acidic decontamination solution from the modified AP-Citrox process and a model solution simulating liquid waste from electrochemical decontamination. The efficiency of a set of inorganic absorbers was tested in both batch and dynamic column sorption tests. For the comparison, a strongly acidic cation exchanger (OSTION KS 806) was also tested. From the results obtained it was concluded that neither composite inorganic absorbers nor strongly acidic cation exchanger can be used for the direct separation of radionuclides from either of both the solutions tested. (author)

  11. Survey of total and inorganic arsenic content in blue mussels (Mytilus edulis L.) from Norwegian fiords: Revelation of unusual high levels of inorganic arsenic

    Sloth, Jens Jørgen; Julshamn, Kåre

    2008-01-01

    The present study reports the findings of unusual high levels of inorganic arsenic in samples of blue mussels (Mytilus edulis L.). A total of 175 pooled samples of blue mussels from various locations along the Norwegian coastline were analyzed for their content of total arsenic and inorganic...... arsenic. Total arsenic was determined using inductively coupled plasma mass spectrometry (ICPMS) following microwave-assisted acidic digestion of the samples. Inorganic arsenic was determined using an anion-exchange HPLC-ICPMS method following microwave-assisted alkaline solubilization of the samples....... For the majority of the samples (78%) the concentration of total arsenic was below 3 mg kg(-1) wet weight (ww) and inorganic arsenic constituted...

  12. Inorganic Nanoparticle Nucleation on Polymer Matrices

    Kosteleski, Adrian John

    The introduction of inorganic nanoparticles into organic materials enhances both the mechanical and chemical properties of the material. Metallic nanoparticles, like silver and gold, have been introduced into polymers for use as antimicrobial coatings or dielectric materials, respectively. The challenge in creating these materials currently is the difficulty to homogeneously disperse the particles throughout the polymer matrix. The uneven dispersion of nanoparticles can lead to less than optimal quality and undesired properties. By creating a polymer nanocomposite material with well-controlled size inorganic materials that are evenly dispersed throughout the polymer matrix; we can improve the materials performance and properties. The objective for this research is to use polymer networks for the in situ mineralization of silver and other metallic materials to create intricate inorganic structures. The work performed here studied the ability to nucleate silver nanoparticles using poly (acrylic acid) (PAA) as the templating agent. Ionic silver was chemically reduced by sodium borohydride (NaBH4) in the presence of PAA. The effect of varying reactant concentrations of silver, NaBH 4, and PAA on particle size was studied. Reaction conditions in terms of varying temperature and pH levels of the reaction solution were monitored to observe the effect of silver nanoparticle size, shape, and concentration. By monitoring the UV spectra over time the reaction mechanism of the silver reduction process was determined to be an autocatalytic process: a period of slow, continuous nucleation followed by rapid, autocatalytic growth. The reaction kinetics for this autocatalytic process is also reported. PAA was crosslinked both chemically and physically to 3 biopolymers; ELP, an elastin like peptide, cotton fabrics, and calcium alginate hydrogels. Various compositions of PAA were physically crosslinked with calcium alginate gels to design an antimicrobial hydrogel for use in wound

  13. Thorium inorganic gels and phosphoric complexes

    To get a better understanding of inorganic transparent gels formation in phosphonitric aqueous solutions obtained by mixing a thorium nitrate solution (10-2 to 5 x 10-1 M) with a phosphoric acid solution (1.33 more concentrated) at pH 0.5 to 1, we investigated the complexing of thorium in this medium. As nitrate ions are very weak complexing agents, only phosphate ions have been studied in the thorium phosphate complexes formation. The phosphoric medium have been defined by two independant parameters CTh and pH. The actual H3PO4 concentration at the equilibrium: [H3PO4] determines, with the pH conditions, the thorium complexes formation. Nevertheless, this free phosphoric acid concentration is less than 0.5 M, which corresponds to the upper value that could be reach by [H3PO4] if thorium ions were not complexed at pH 1.5. Thorium complexes have been identified and their equilibrium constant formation have been calculated from extrapolated data obtained at tracers scale with a radioactive thorium isotope: Th-227. These data have been obtained in phosphoric medium defined by [H3PO4]=2 M and 0.7Th and pH values

  14. The essential activated carboxyl group of inorganic pyrophosphatase.

    Avaeva, S M; Bakuleva, N P; Baratova, L A; Nazarova, T I; Fink, N Y

    1977-05-12

    1. A carboxyl group of high reactivity has been found in inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from yeast. This group interacts with agents which react neither with carboxyl groups of low molecular weight compounds nor with other carboxyl groups of the protein. 2. The reaction of this activated carboxyl group with inorganic phosphate, hydroxylamine, N-methyl- and O-methylhydroxylamines, and glycine methyl ester has been studied. 3. Homoserine and homoserine lactone were found in the hydrolyzate of phosphorylated and NaBH4-reduced pyrophosphatase, indicating that an aspartyl residue is phosphorylated. 4. Hydroxylamine and other nucleophilic agents cause inactivation of pyrophosphatase as a result of interaction with a carboxyl group. Both diaminobutyric and diaminopropionic acids were seen in the acid hydrolyzate of the protein treated with hydroxylamine and subjected to rearrangement in the presence of carbodiimide. 5. The ways in which the activation of a carboxyl group in the enzyme is achieved and the presumed mechanism of action of inorganic pyrophosphatase are discussed. PMID:16652

  15. Influence of inorganic acids on the dehydration of fructose to 5-hydroxymethylfurfural over AlCl3 catalyst%无机酸对 AlCl3催化果糖脱水制备5-羟甲基糠醛的影响

    李振斌; 顾运江; 王维; 魏作君; 刘迎新

    2014-01-01

    The dehydration of fructose to 5-hydroxymethylfurfural is the research hotspot of the compre-hensive utilization of biomass resources. Using AlCl3 as the catalyst,the influence of reaction conditions on the dehydration of fructose to 5-hydroxymethylfurfural,especially the addition of different inorganic acids on the catalytic performance of AlCl3 was investigated. Using inorganic acid and AlCl3 as the co-catalyst, the effects of different solvents(1,4-dioxane,N,N-dimethylformamide,2-dimethyl sulfoxide),reaction temperature and the mass ratio of sulphuric acid to phosphoric acid(1: 2、2: 3、3: 2、2: 1)were tested. The results showed that 5-hydroxymethylfurfural yield of 92. 1% was attained under the condition as follows:N,N-dimethylformamide as the solvent,AlCl3 dosage 7. 5 mmol,sulphuric acid concentration 20 mmol·L -1 , phosphoric acid concentration 30 mmol·L - 1 and reaction temperature 120 ℃.%果糖脱水降解为5-羟甲基糠醛是生物质资源综合利用的研究热点。以 AlCl3为催化剂,考察反应条件对果糖脱水制备5-羟甲基糠醛的影响,重点研究不同无机酸对 AlCl3催化果糖降解生成5-羟甲基糠醛反应的影响。以 AlCl3和无机酸为共催化剂,考察在不同溶剂(1,4-二氧六环、N,N -二甲基甲酰胺、2-甲基亚砜)、反应温度和硫酸与磷酸质量比(1:2、2:3、3:2、2:1)条件下对果糖脱水降解制5-羟甲基糠醛的影响。结果表明,以温和的 N,N -二甲基甲酰胺为溶剂,在反应温度120℃、AlCl3用量为7.5 mmol、硫酸为20 mmol·L -1和磷酸为30 mmol·L -1共催化剂条件下,5-羟甲基糠醛收率达92.1%。

  16. Inorganic Phosphor Materials for Lighting.

    Lin, Yuan-Chih; Karlsson, Maths; Bettinelli, Marco

    2016-04-01

    This chapter addresses the development of inorganic phosphor materials capable of converting the near UV or blue radiation emitted by a light emitting diode to visible radiation that can be suitably combined to yield white light. These materials are at the core of the new generation of solid-state lighting devices that are emerging as a crucial clean and energy saving technology. The chapter introduces the problem of white light generation using inorganic phosphors and the structure-property relationships in the broad class of phosphor materials, normally containing lanthanide or transition metal ions as dopants. Radiative and non-radiative relaxation mechanisms are briefly described. Phosphors emitting light of different colors (yellow, blue, green, and red) are described and reviewed, classifying them in different chemical families of the host (silicates, phosphates, aluminates, borates, and non-oxide hosts). This research field has grown rapidly and is still growing, but the discovery of new phosphor materials with optimized properties (in terms of emission efficiency, chemical and thermal stability, color, purity, and cost of fabrication) would still be of the utmost importance. PMID:27573146

  17. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  18. 酒石酸为催化剂合成无机高分子材料硅气凝胶%Synthesis of Inorganic Polymer Material Silica Aerogels Using Tartaric Acid as Catalyst

    刘祖武; 李群林; 张平; 黄舸

    2001-01-01

    Silica aerogels of crackfree and low density were synthesized by differential-drying method with tartaric acid as catalyst in normal condition. The adulterating experiments were also proceeded with Ni2+, Cu2+ etc.%以洒石酸为催化剂,采用微分干燥法,在通常条件下合成了无裂纹、低密度的无机高分子材料硅气凝胶,并进行了Ni2+、Cu2+等的掺杂试验,使气凝胶的电阻明显降低.

  19. Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials

    Bergamonti, Laura

    2015-01-01

    Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials The research has focused on the synthesis, characterization and application of inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood. The wood preservatives synthesized and tested for biocidal activity are polyamidoamines functionalized with hydroxyl and siloxane groups, while the coatings applied on the stones are water based TiO2 nanosols with ...

  20. Welcome to Inorganics: a new open access, inclusive forum for inorganic chemistry

    Gregory, Duncan H.

    2013-01-01

    One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a ...

  1. Lysis of Streptococcus mutans by hen egg white lysozyme and inorganic sodium salts.

    Goodman, H; Pollock, J J; Katona, L I; Iacono, V J; Cho, M I; Thomas, E.

    1981-01-01

    Streptococcus mutans BHT was grown in a synthetic medium containing radioactive thymidine to monitor deoxyribonucleic acid release. Kinetic experiments demonstrated that although lysozyme alone could not liberate deoxyribonucleic acid, cellular deoxyribonucleic acid was liberated from lysozyme-treated cells by addition of low concentrations of inorganic sodium salts. When the salts were tested for their ability to dislodge cell-bound tritiated lysozyme, the extent of the initial release of en...

  2. Natural hybrid organic-inorganic photovoltaic devices

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  3. Inorganic ion exchangers for nuclear waste remediation

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  4. Ultrasound exfoliation of inorganic analogues of graphene

    Štengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra

    2014-01-01

    Roč. 9, APR (2014), s. 1-14. ISSN 1556-276X R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 Keywords : Ultrasound * Exfoliation * Graphene inorganic analogues Subject RIV: CA - Inorganic Chemistry Impact factor: 2.779, year: 2014

  5. 29 CFR 1915.1018 - Inorganic arsenic.

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  6. 29 CFR 1926.1118 - Inorganic arsenic.

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  7. Inorganic materials synthesis in ionic liquids

    Christoph Janiak

    2014-01-01

    Full Text Available The field of "inorganic materials from ionic liquids" (ILs is a young and dynamically growing research area for less than 10 years. The ionothermal synthesis in ILs is often connected with the preparation of nanomaterials, the use of microwave heating and in part also ultrasound. Inorganic material synthesis in ILs allows obtaining phases which are not accessible in conventional organic or aqueous solvents or with standard methods of solid-state chemistry or under such mild conditions. Cases at hand include "ligand-free" metal nanoparticles without added stabilizing capping ligands, inorganic or inorganic-organic hybrid solid-state compounds, large polyhedral clusters and exfoliated graphene from low-temperature synthesis. There are great expectations that ILs open routes towards new, possibly unknown, inorganic materials with advantageous properties that cannot (or only with great difficulty be made via conventional processes.

  8. Single and multi-component adsorptive removal of bisphenol A and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganic-organic pillared clay composites: Effect of pH and presence of humic acid.

    Ortiz-Martínez, Krisiam; Reddy, Pratap; Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2016-07-15

    Pillared clay based composites containing transition metals and a surfactant, namely MAlOr-NaBt (Bt=bentonite; Or=surfactant; M=Ni(2+), Cu(2+)or Co(2+)), were prepared to study selectivity and capacity toward single and multiple-component adsorption of bisphenol A (BPA) and 2,4-diclorophenol (DCP) from water. Tests were also performed to account for the presence of natural organic matter in the form of humic acid (HA). Equilibrium adsorption capacities for single components increased as follows: NaBtmetal brought an increase of nearly two-fold in adsorption capacity over the materials modified only with surfactant. The MAlOr-NaBt adsorbents displayed remarkable selectivity for BPA. Multi-component fixed-bed tests, however, revealed competition between the adsorbates, with the exception of the CuAlOr-NaBt beds. Inclusion of HA, surprisingly, enhanced the phenols adsorption capacity. Preliminary regeneration tests suggested that the adsorbent capacity can be recovered via thermal treatment or by washing with alkaline solutions. The former strategy, however, requires surfactant replenishment. More complex schemes would be needed to deal with absorbed HA. PMID:27037481

  9. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  10. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  11. Synthesis and characterization of nanoscale magnetic drug-inorganic composites

    SUN Hui; ZHANG Hui; David G. Evans; DUAN Xue

    2005-01-01

    The synthesis by direct coprecipitation and characterization of captopril (Cpl) and 5-aminosalicylic acid (5-ASA) intercalated ZnAl layered double hydroxides coated on MgFe2O4 magnetic core particles are reported. Powder XRD analysis shows the well-defined crystallite structure of the composites. TEM and XPS results reveal that a core-shell structure involving a drug-LDHs layer coated on MgFe2O4 particles is formed through Zn-O-Mg and/or Al-O-Mg linkages. VSM measurements demonstrate that the novel magnetic drug-inorganic composites possess considerable magnetization.

  12. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  13. Tritium release from neutron irradiated lithium inorganic compounds

    Tritium release from irradiated lithium inorganic compounds Li/sub 2/O, Li/sub 2/SO/sub 4/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/, LiA10/sub 2/, Li/sub 2/TiO/sub 3/, LiNbO/sub 3/ was studied in isochronic and isothermal conditions in the temperature range 200-9000C. The samples were prepared by outgassing at 600-6500 in quartz ampules, sealed and then irradiated under thermal neutron flux about 1.10/sup 13/n cm/sup -2/s/sup -1/ with tritium concentration ≅3.7 10/sup 8/-3.7 10/sup 9/Bq/g. The initial stage of the tritiated water recovery from complex lithium inorganic compounds is characterized by a rapid tritium release accompanied by defect annealing and release energy accumulated by a solid state during irradiation. The two temperature ranges were observed as a result of the OT' groups formation which are in two energy states due to the formation of bonds M-O-T(H) (where M-Si, A1, Ti, Nb...) and Li-O-T(h). Symbol H emphasizes the importance of the residual content of the OH groups in the initial materials which should be considered as an inorganic polymers having the properties of solid acids and bases. The process of tritium release from irradiated lithium inorganic compounds is a many stage process including the following steps: tritium (ion) diffusion inside a crystal lattice; formation of OT groups on the surface of oxygen compounds, recombination of OT and OH groups to form a water molecule that is detected in a gas phase as a product of the annealing process

  14. Inorganic elements in sugar samples

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k0 method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  15. The quest for inorganic fullerenes

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  16. Inorganic elements in sugar samples

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de, E-mail: pauladesalles@yahoo.com.br, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k{sub 0} method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  17. Inorganic chemically active adsorbents (ICAAs)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  18. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    In-Yup Jeon

    2010-06-01

    Full Text Available Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  19. Inorganic Nanoparticles Conjugated with Biofunctional Molecules

    J.H.Choy

    2007-01-01

    1 Results We have attempted to conjugate inorganic nanoparticles with biofunctional molecules.Recently we were quite successful in demonstrating that a two-dimensional inorganic compound like layered double hydroxide (LDH),and natural and synthetic clays can be used as gene or drug delivery carriers1-4.To the best of our knowledge,such inorganic vectors are completely new and different from conventionally developed ones such as viruses and cationic liposomes,those which are limited in certain cases of ap...

  20. Inorganic biomaterials structure, properties and applications

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  1. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  2. High-capacity, selective solid sequestrants for innovative chemical separation: Inorganic ion exchange approach

    The approach of this task is to develop high-capacity, selective solid inorganic ion exchangers for the recovery of cesium and strontium from nuclear alkaline and acid wastes. To achieve this goal, Pacific Northwest Laboratories (PNL) is collaborating with industry and university participants to develop high capacity, selective, solid ion exchangers for the removal of specific contaminants from nuclear waste streams

  3. Inorganic carbon acquisition in some synurophyte algae.

    Bhatti, Shabana; Colman, Brian

    2008-05-01

    Some characteristics of photosynthesis of three synurophyte algae, Synura petersenii, Synura uvella and Tessellaria volvocina were investigated to determine the mechanism of inorganic carbon (C(i)) uptake. All three species were found to have no external carbonic anhydrase, no capacity for direct bicarbonate uptake and a low whole-cell affinity for C(i). The internal pH of S. petersenii determined using (14)C-benzoic acid and [2-(14)C]-5,5-dimethyloxazolidine-2,4-dione was pH 7.0-7.5, over an external pH range of 5.0-7.5. Thus, the pH difference between the cell interior of S. petersenii and the external medium was large enough, over the alga's growth range, to allow the accumulation of C(i) by the diffusive uptake of CO(2). Monitoring O(2) evolution and CO(2) uptake by suspensions of S. petersenii at pH 7.0 by mass spectrometry did not indicate a rapid uptake of CO(2), and the final CO(2) compensation concentration reached was 24 +/- 0.7 microM. Furthermore, when the cells were darkened, a brief burst of CO(2) occurred before a steady rate of dark respiration was established, suggesting a loss of CO(2) by photorespiration. An examination of the kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in homogenates of cells of S. petersenii, S. uvella and Mallomonas papillosa showed that values of the K(m) (CO(2)) were 28.4, 41.8 and 18.2 microM, respectively. These species lack the characteristics of cells with a CO(2)-concentrating mechanism because the cell affinity for C(i) appears to be determined by the relatively high CO(2) affinity of the Rubisco of these algae. PMID:18298411

  4. Inorganic sorbents for concentration of hydrogen sulfide

    Present work is devoted to application of inorganic sorbents for concentration of hydrogen sulfide. The elaboration of method is conducted under controlled concentrations of hydrogen sulphide from 1.00 til 0.01 mg/l.

  5. Inorganic protocells: Gated access to microreactors

    Keating, Christine D.

    2013-06-01

    A pH-responsive inorganic membrane has been devised that acts as a gatekeeper for the transport of charged solutes into and out of its interior volume. This behaviour was further used to regulate an enzymatic reaction.

  6. Inorganic nanolayers: structure, preparation, and biomedical applications

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  7. Utility of inorganic oxidants for the spectrophotometric determination of ganciclovir in dosage forms

    Ayman A. Gouda; Amin, Alaa S.

    2011-01-01

    Eight direct spectrophotometric methods for determination of ganciclovir has been developed and validated. These methods were based on the oxidation of the drug by different inorganic oxidants: ceric ammonium sulphate, potassium permanganate, ammonium molybdate, ammonium metavanadate, chromium trioxide, potassium dichromate, potassium iodate and potassium periodate. The oxidation reaction were performed in perchloric acid medium for ceric ammonium sulphate and in sulfuric acid medium for the ...

  8. Biological treatment of inorganic ion contamination including radionuclides

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III)

  9. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  10. Inorganic Janus particles for biomedical applications

    Isabel Schick

    2014-12-01

    Full Text Available Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum.

  11. RIVERINE INORGANIC CARBON DYNAMICS: OVERVIEW AND PERSPECTIVE

    YAO Guan-rong; GAO Quan-zhou

    2006-01-01

    Inorganic carbon, the great part of the riverine carbon exported to the ocean, plays an important role in the global carbon cycle and ultimately impacts the coupled carbon-climate system. An overview was made on both methods and results of the riverine inorganic carbon researches. In addition to routine in situ survey, measurement and calculation,the direct precipitation method and the gas evolution technique were commonly used to analyze dissolved inorganic carbon in natural water samples. Soil CO2, carbonate minerals and atmospheric CO2 incorporated into riverine inorganic carbon pool via different means, with bicarbonate ion being the dominant component. The concentration of inorganic carbon, the composition of carbon isotopes (δ13C and △14C), and their temporal or spatial variations in the streams were controlled by carbon input, output and changes of carbon biogeochemistry within the riverine system. More accurate flux estimation, better understanding of different influential processes, and quantitative determination of various inputs or outputs need to be well researched in future.

  12. IR studies of EDTA alkaline salts interaction with the surface of inorganic oxides

    Ryczkowski, J.

    2005-10-01

    The adsorption of alkaline salts of ethylenediaminetetraacetic acid (EDTA) on inorganic supports characterized by the different value of the isoelectric point of the surface (IEPS) has been investigated by transmission and photoacoustic (PA) FT-IR. The IR spectra in the 1800-1200 cm -1 region of the supported complexones are different from those of the unsupported compounds. The results obtained imply that the observed changes in the properties of adsorbed complexones are mainly due to interaction of the carboxyl groups of chelate molecule with inorganic oxide hydroxyl groups. The models of those interactions have been proposed. The IEPS value has a noticeable influence on the nature of the interactions observed. Based on the experimental data the ability of inorganic oxide interaction with the chelate molecule can be presented as follows: V 2O 5 < SiO 2 < TiO 2 < MgO < Al 2O 3 < ZrO 2-La < ZrO 2.

  13. Leaching of DOC, DN, and inorganic constituents from scrap tires.

    Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju

    2015-11-01

    One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. PMID:25712610

  14. Inorganic nanocarriers for platinum drug delivery

    Ping’an Ma

    2015-12-01

    Full Text Available Nowadays platinum drugs take up almost 50% of all the clinically used anticancer drugs. Besides cisplatin, novel platinum agents including sterically hindered platinum (II drugs, chemically reductive platinum (IV drugs, photosensitive platinum (IV drugs, and multinuclear platinum drugs have been developed recently, with a few entering clinic trials. Rapid development of nanobiotechnology makes targeted delivery of anticancer platinum agents to the tumor site possible, while simultaneously minimizing toxicity and maximizing the drug efficacy. Being versatile drug carriers to deliver platinum drugs, inorganic nanovehicles such as gold nanoparticles, iron oxide nanomaterials, carbon nanotubes, mesoporous nanosilica, metal-organic frameworks (MOFs, have been extensively studied over the past decades. In contrast to conventional polymeric and lipid nanoparticles, inorganic nanoparticles based drug carriers are peculiar as they have shown excellent theranostic effects, revealing themselves an indispensable part of future nanomedicine. Here, we will elaborate recent research advances on fabrication of inorganic nanoparticles for platinum drug delivery.

  15. Engineered inorganic core/shell nanoparticles

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed

  16. Utilising inorganic nanocarriers for gene delivery.

    Loh, Xian Jun; Lee, Tung-Chun; Dou, Qingqing; Deen, G Roshan

    2016-01-01

    The delivery of genetic materials into cells to elicit cellular responses has been extensively studied by biomaterials scientists globally. Many materials such as lipids, peptides, viruses, synthetically modified cationic polymers and certain inorganic nanomaterials could be used to complex the negatively charged plasmids and deliver the formed package into cells. The recent literature on the delivery of genetic materials utilising inorganic nanoparticles is carefully examined in this review. We have picked out the most relevant references and concisely summarised the findings with illustrated examples. We further propose alternative approaches and suggest future pathways towards the practical use of multifunctional nanocarriers. PMID:26484365

  17. Inorganic caesium lead iodide perovskite solar cells

    Eperon, GE; Paterno', GM; Sutton, RJ; Zampetti, A.; Haghighirad, A; Cacialli, F.; Snaith, H.

    2015-01-01

    The vast majority of perovskite solar cell research has focused on organic-inorganic lead trihalide perovskites. Herein, we present working inorganic CsPbI3 perovskite solar cells for the first time. CsPbI3 normally resides in a yellow non-perovskite phase at room temperature, but by careful processing control and development of a low-temperature phase transition route we have stabilised the material in the black perovskite phase at room temperature. As such, we have fabricated solar cell dev...

  18. Microbiological disproportionation of inorganic sulfur compounds

    Finster, Kai

    2008-01-01

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide...... and sulfate. Thus the overall process is comparable to the fermentation of organic compounds such as glucose and is consequently often described as 'inorganic fermentation'. The process is primarily carried out by microorganisms with phylogenetic affiliation to the so called sulfate-reducing bacteria within...

  19. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen;

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced......Direct plant uptake of organic nitrogen (N) is often studied using the dual-labeling approach (15N + 13C or 15N + 14C). However, the method might be hampered by uptake of labeled inorganic carbon (C) produced by mineralization of labeled organic compounds. Here we report the results from a triple...... labeling experiment (15N + 13C + 14C) investigating whether root uptake of labeled inorganic C can bias the results obtained in studies of organic N uptake using dual-labeled amino acids (15N, 13C). In a rhizosphere tube experiment we investigated 13C and 14C uptake by maize either supplied with labeled...

  20. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.

    Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon

    2016-06-01

    The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs. PMID:27174015

  1. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  2. New developments in radionuclide separation using inorganic materials

    Selective ion media, e.g. inorganic adsorbents and ion exchangers, are increasingly used for the removal of key radionuclides such as 60Co, 90Sr, and 137Cs from nuclear waste effluents due to their radiation stability, high processing capacity, and high decontamination efficiency. The applications of materials that are commercially available (e.g. zeolites, titanates, silicotitanates, hexacyanoferrates) will be reviewed in the first part of the presentation. New ways of the inorganic materials use in special contactors (Cartridge filters, Funda filters) as fine powders, to increase radionuclide uptake rate, will also be described. Such novel application has been used, e.g., in UK (Sellafield) and in several nuclear power plants in the USA. Main emphasis is on materials (CsTreat, SrTreat and CoTreat) developed at the University of Helsinki. Many commercial materials available have limitations, e.g., poor performance in acidic solutions and in the presence of Ca ions. In the second part, development of new materials that overcome these problems will be described. These materials include mixed oxide pyrochlores, which can be tailored for special separation tasks. (author)

  3. Impact of Organic and Inorganic Fertilizers on Nematode Reproduction and Biochemical Alterations on Tomato

    Ahmed A. FARAHAT

    2012-02-01

    Full Text Available The organic amendments, compost, neem and poultry as well as inorganic fertilizer, N P K and nematicide Nemacur 10% G applied singly at two different doses were effective in reducing M. incognita number of galls, nematode reproduction and fecundity. Also, they ameliorated growth criteria of treated tomato plants. The effectiveness seemed to be material origin and concentration dependent. Neem, compost 1, 3 at higher doses (5 g/pot gave the best results. Yet, achieved results were less than those of nemacur 10% G which overmatched all the organic and inorganic fertilizers. Nematode infection reduced total soluble sugars in roots but the opposite was the case in all treatments. Nematode infection supported root contents of amino acids, total phenols and tannins but they were diminished as a result of almost all treatments. Total soluble sugars and total carbohydrates in shoots decreased as a result of nematode infection but they were regained only by application of inorganic fertilizer. Total amino acids increased in shoots of infected plants and more increase was observed in almost all treatments. Nematode infection impaired tomato uptake of N P K; organic and inorganic fertilizers provoked plants up take, however nemacur improved plants up take of nitrogen only.

  4. Molecular architecture of organic-inorganic polymers

    Matějka, Libor

    Dresden : Max Planck Institute for the Physic of Complex Systems, 2005. [MPG-MOEL– Symposium: Science and Art in Europe, Polymers: Materials in Nature and in Advanced Technologies. 23.5.2005-25.5.2005, Dresden] R&D Projects: GA ČR(CZ) GA203/05/2252 Keywords : organic-inorganic polymers * morphology Subject RIV: CD - Macromolecular Chemistry

  5. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes

    Mohammed Naffakh

    2014-06-01

    Full Text Available Using inorganic fullerene-like (IF nanoparticles and inorganic nanotubes (INT in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1–4 wt.% of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2 generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

  6. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  7. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1961

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1961. The estimates were derived from inorganic nitrogen...

  8. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1962

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1962. The estimates were derived from inorganic nitrogen...

  9. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1964

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1964. The estimates were derived from inorganic nitrogen...

  10. Reactivity Network: Secondary Sources for Inorganic Reactivity Information.

    Mellon, E. K.

    1989-01-01

    Provides an eclectic annotated bibliography of secondary sources for inorganic reactivity information of interest to reactivity network review authors and to anyone seeking information about simple inorganic reactions in order to develop experiments and demonstrations. Gives 119 sources. (MVL)

  11. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1982

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1982. The estimates were derived from inorganic nitrogen...

  12. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1981

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1981. The estimates were derived from inorganic nitrogen...

  13. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1984

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1984. The estimates were derived from inorganic nitrogen...

  14. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1965

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1965. The estimates were derived from inorganic nitrogen...

  15. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1983

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1983. The estimates were derived from inorganic nitrogen...

  16. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1963

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1963. The estimates were derived from inorganic nitrogen...

  17. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    A. A. Zardini

    2008-03-01

    Full Text Available Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity. We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid in parallel with an electrodynamic balance (EDB and a hygroscopicity tandem differential mobility analyzer (HTDMA. The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  18. Charge-density matching in organic-inorganic uranyl compounds

    Single crystals of [C10H26N2][(UO2)(SeO4)2(H2O)](H2SeO4)0.85(H2O)2 (1), [C10H26N2][(UO2)(SeO4)2] (H2SeO4)0.50(H2O) (2), and [C8H20N]2[(UO2)(SeO4)2(H2O)] (H2O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO7 and SeO4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO2(SeO4)2(H2O)]2- chains are separated by mixed organic-inorganic layers comprising from [NH3(CH2)10NH3]2+ molecules, H2O molecules, and disordered electroneutral (H2SeO4) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO2(SeO4)2]2- sheet. The structure of 3 does not contain disordered (H2SeO4) groups but is based upon alternating [UO2(SeO4)2(H2O)]2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH3(CH2)7CH3]+. The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into an organic substructure is necessary; (c) the inclination angle of the amine chains may vary in order to modify

  19. UV-C photolysis of endocrine disruptors. The influence of inorganic peroxides

    Norfloxacin, doxycycline and mefenamic acid have been photolysed with UV-C radiation (254 nm) in the presence and absence of inorganic peroxides (hydrogen peroxide or sodium monopersulfate). Quantum yields in the range (1.1-4.5) x 10-3 mol Einstein-1 indicate the low photo-reactivity of these pharmaceuticals. Inorganic peroxides considerably enhanced the contaminants conversion, although no appreciable mineralization could be obtained. A simplistic reaction mechanism for the hydrogen peroxide promoted experiments allowed for a rough estimation of the rate constant between hydroxyl radicals and norfloxacin (k > 1 x 109 M-1 s-1), doxycycline (k > 1.5 x 109 M-1 s-1) and mefenamic acid (k > 11.0 x 109 M-1 s-1).

  20. UV-C photolysis of endocrine disruptors. The influence of inorganic peroxides

    Rivas, Javier, E-mail: fjrivas@unex.es [Departamento de Ingenieria Quimica y Quimica Fisica, Facultad de Ciencias, Avenida de Elvas S/N, 06071 Badajoz (Spain); Gimeno, Olga; Borralho, Teresa; Carbajo, Maria [Departamento de Ingenieria Quimica y Quimica Fisica, Facultad de Ciencias, Avenida de Elvas S/N, 06071 Badajoz (Spain)

    2010-02-15

    Norfloxacin, doxycycline and mefenamic acid have been photolysed with UV-C radiation (254 nm) in the presence and absence of inorganic peroxides (hydrogen peroxide or sodium monopersulfate). Quantum yields in the range (1.1-4.5) x 10{sup -3} mol Einstein{sup -1} indicate the low photo-reactivity of these pharmaceuticals. Inorganic peroxides considerably enhanced the contaminants conversion, although no appreciable mineralization could be obtained. A simplistic reaction mechanism for the hydrogen peroxide promoted experiments allowed for a rough estimation of the rate constant between hydroxyl radicals and norfloxacin (k > 1 x 10{sup 9} M{sup -1} s{sup -1}), doxycycline (k > 1.5 x 10{sup 9} M{sup -1} s{sup -1}) and mefenamic acid (k > 11.0 x 10{sup 9} M{sup -1} s{sup -1}).

  1. Information-Analytical System for Design of New Inorganic Compounds

    Kiselyova, Nadezhda; Stolyarenko, Andrey; Ryazanov, Vladimir; Podbel’skii, Vadim

    2008-01-01

    The principles of design of information-analytical system (IAS) intended for design of new inorganic compounds are considered. IAS includes the integrated system of databases on properties of inorganic substances and materials, the system of the programs of pattern recognition, the knowledge base and managing program. IAS allows a prediction of inorganic compounds not yet synthesized and estimation of their some properties.

  2. Blue laser dye spectroscopic properties in solgel inorganic-organic hybrid films

    Saraidarov, Tsiala; Reisfeld, Renata; Kazes, Miri; Banin, Uri

    2006-02-01

    A blue solid-state laser material based on 4,4‧ dibenzyl carbamido stilbene-2,2‧ disulfonic acid incorporated into solgel zirconia and inorganic-organic hybrid matrices is presented. The absorption maxima of the dye in various matrices are around 339-361 nm, and the broad fluorescence peaks are at 411-413 nm. Optical gain measurements using the variable stripe method show amplified spontaneous emission peaking at 437 nm.

  3. Preliminary Tests Concerning Zero-Valent Iron Efficiency in Inorganic Pollutants Remediation

    Silvia Fiore; Maria C.   Zanetti

    2009-01-01

    Problem statement: This study was aimed to a preliminary evaluation of the applicability of granular Zero-Valent Iron (ZVI) to the on site remediation of groundwater polluted by inorganic contaminants by means of a Permeable Reactive Barrier (PRB). A particular interest was devoted to groundwater impacted by Acid Mine Drainage (AMD) that was caused by the oxidation of metal sulphide minerals contained in mine wastes, especially iron disulphide pyrite. Although AMD consequences were particular...

  4. The variation of phytic and inorganic phosphorus in leaves and grain in maize populations

    Dragićević Vesna; Kovačević Dragan; Sredojević Slobodanka; Dumanović Zoran; Mladenović-Drinić Snežana

    2010-01-01

    The phytate function in plants is still not completely understood: it is the primary storage P form in seeds that is utilized during germination and early seedling development. Approaches to resolve problem of the bad nutritive quality of grain phytate include engineering of crops with reduced levels of seed phytic acid. The objective of this study was to investigate genetic variability and correlation of phytic (Pphy) and inorganic phosphorus (Pi) and solu...

  5. The application of inorganic ion exchangers to the decontamination of radioactive liquid effluents

    A generic programme of work at Harwell has been investigating the potential application of inorganic exchangers in effluent treatment. Hydrous titanium oxide, manganese dioxide titanium and zirconium phosphates, polyantimonic acid and copper hexacyanoferrate were selected for experimental investigation. An extensive experimental programme has examined the performance of these six materials for the removal of a variety of radionuclides from a wide range of different simulated waste effluents. (author)

  6. Preparation of peat samples for inorganic geochemistry used as palaeoenvironmental proxies

    G. Le Roux

    2010-07-01

    Full Text Available This article provides a brief review of protocols used in peat inorganic geochemistry. We emphasise the key issues that could lead to inter-comparison problems. For each section (drying, grinding, non-destructive analyses, acid digestions and destructive analyses, recommendations are provided to guide the reader through an idealised protocol, which is the only workable approach for studies incorporating long-term comparisons.

  7. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes

    Martínez Sánchez, Mª Cristina; Corma Canós, Avelino

    2011-01-01

    The increasing environmental concern and promotion of “green processes” are forcing the substitution of traditional acid and base homogeneous catalysts by solid ones. Among these heterogeneous catalysts, zeolites and zeotypes can be considered as real “green” catalysts, due to their benign nature from an environmental point of view. The importance of these inorganic molecular sieves within the field of heterogeneous catalysis relies not only on their microporous structure and the related shap...

  8. Inorganic phosphate in the development and treatment of cancer: A Janus Bifrons?

    Sapio, Luigi; NAVIGLIO, SILVIO

    2015-01-01

    Inorganic phosphate (Pi) is an essential nutrient to living organisms. It is required as a component of the energy metabolism, kinase/phosphatase signaling and in the formation and function of lipids, carbohydrates and nucleic acids and, at systemic level, it plays a key role for normal skeletal and dentin mineralization. Pi represents an abundant dietary element and its intestinal absorption is efficient, minimally regulated and typically extends to approximately 70%. Maintenance of proper P...

  9. Hygroscopic properties of organic and inorganic aerosols[Dissertation 17260

    Sjoegren, N.O.Staffan

    2007-07-01

    The atmosphere contains gases and particulate matter (aerosol). Organic material is present both in the gas phase and in the aerosol phase. Biogenic sources such as vegetation and anthropogenic sources such as biomass burning, fossil fuel use and various industries contribute to their emissions. The study of organic compounds in aerosol particles is of importance because they affect the water uptake (hygroscopicity) of inorganic aerosol, and hence the radiation budget of the Earth through the direct and indirect aerosol effects. The hygroscopicity of mixed organic/inorganic aerosol particles produced in the laboratory was characterized. This work reports on the following substances, and mixtures of them with ammonium sulfate (AS): adipic acid (AA), citric acid (CA), glutaric acid (GA) and humic acid sodium salt (NaHA). The AA and NaHA mixtures with AS were found to require up to tens of seconds for equilibrium water content to be reached. Therefore, measurements carried out on timescales shorter than a few seconds underestimate the hygroscopic growth factor (GF) with up to 10%, for samples containing a solid phase. Conversely, the GA and CA mixtures with AS were found to take up water readily and were well described by the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. The distinct deliquescence and efflorescence points of AS could be seen to gradually disappear as the CA content was increased. Furthermore mineral dust (standard Arizona test dust) was investigated, as well as the influence of nitric acid (HNO{sub 3}) uptake thereon. Mineral dust is hydrophobic, but after processing with HNO{sub 3} turns slightly hygroscopic. Large amounts of dust are injected to the atmosphere (largely from the Sahara and the Gobi deserts, but also from human land-use). Mineral dust is important as ice nuclei, and due to its larger sizes it can also contribute as cloud condensation nuclei. Mineral dust also offers surface for heterogeneous chemistry, and can play an important role

  10. Net transformation of phosphorus forms applied as inorganic and organic amendments to a calcareous soil

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    The forms of phosphorus (P) in animal manure composts are different from that of synthetic P fertilizers, and this could affect how soil P chemistry will be altered when they are used as P amendments. The objective of this study was to analyze the net changes in the nature and dynamics of plant available P forms applied either as inorganic P (KH2PO4) or turkey litter compost (TLC) in calcareous soil with and without plant growth. Forms of TLC-P were characterized by x-ray diffraction and solution 31P NMR spectroscopy techniques. The amounts of various P forms in soils were measured by a sequential fractionation method after 4, 8, 12 and 16 weeks incubation. Brushite (Ca-P) and newberyite (Mg-P) were the major forms of inorganic P, and phosphate monoester was the major form of organic P present in TLC. The addition of inorganic P fertilizer increased the labile/moderately labile P, whereas the compost increased the moderately labile P extractable with weak acid (pH 4.2). Even though the amount of the labile P fraction in the compost-treated soil was smaller than that in the fertilizer-treated soils, ryegrass growth and plant P uptake were greater. The net transformation of the labile/moderately labile P was slower in the compost-treated soil without plant growth, however it was faster with plant growth. This study showed that P applied either as an inorganic or an organic amendment was recovered in different P fractions in a calcareous soil, and therefore it is expected that the P source would affect soil P chemistry. A weak acid extractable inorganic P fraction should be considered as plant available P especially in the compost-treated soil, that is converted into plant available P through direct and/or indirect root-induced acidification in the rhizosphere.

  11. Inorganic and hybrid insulation materials for ITER

    Insulation systems are a critical component in superconducting fusion magnet systems, such as the International Thermonuclear Experimental Reactor (ITER). Past cryogenic magnet systems have often relied on organic composite (e.g., glass/epoxy) materials for insulation. Concerns regarding reliability, radiation resistance, and electrical properties of organic systems have prompted the search for alternate materials, particularly hybrids which incorporate an inorganic barrier. Fabricability, mechanical, and electrical performance of various inorganic and hybrid materials are investigated. Materials include mica based sheets, plasma-sprayed and porcelain-enamel ceramic coatings, polyimide films and coatings, reinforced cement, and polymer conversion ceramic prepregs. Radiation resistance of selected candidate material systems will be evaluated in subsequent investigations

  12. Electrostatically gated membrane permeability in inorganic protocells

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  13. NUTRITIONAL AND BAKING QUALITY OF LOW PHYTIC ACID WHEAT

    Phytic acid is the major storage form of phosphorus in wheat grain. Non-ruminant animals cannot utilize phytic acid phosphorus, and phytic acid reduces the nutritional availability of important minerals. We have identified a wheat mutant (Lpa1-1) with reduced phytic acid P and increased inorganic ...

  14. Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments

    Nozière, B.; Dziedzic, P.; Córdova, A.

    2009-01-01

    In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32-, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth's surface. These reactions include the formation of C-C and C-O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary ''fulvic'' compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.

  15. Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments

    B. Nozière

    2009-01-01

    Full Text Available In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32−, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth's surface. These reactions include the formation of C–C and C–O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary ''fulvic'' compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.

  16. Graphene and inorganic analogous of graphene

    Ecorchard, Petra; Štengl, Václav; Slušná, Michaela; Henych, Jiří

    Praha : Ústav fyzikální chemie J. Heyrovského AV ČR, v.v.i, 2014. RP12. ISBN 978-80-87351-32-1. [Pokroky anorganické chemie /1./. 22.6.2014-26.6.2014, Třešť] R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 Keywords : graphene * analogues of graphene Subject RIV: CA - Inorganic Chemistry

  17. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    In-Yup Jeon; Jong-Beom Baek

    2010-01-01

    Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organ...

  18. Inorganic Photovoltaics - Planar and Nanostructured Devices

    Ramanujam, J.; Verma, A.; González-Díaz, B.; Guerrero-Lemus, R; Cañizo Nadal, Carlos del; García-Tabarés, E.; Rey-Stolle Prado, Ignacio; Granek, F.; Korte, L.; Tucci, M.; Rath, J.; Singh, U. P.; Todorov, T.; Gunawan, O.; Rubioara, S.S.

    2016-01-01

    Since its invention in the 1950s, semiconductor solar cell technology has evolved in great leaps and bounds. Solar power is now being considered as a serious leading contender for replacing fossil fuel based power generation. This article reviews the evolution and current state, and potential areas of near future research focus, of leading inorganic materials based solar cells, including bulk crystalline, amorphous thin-films, and nanomaterials based solar cells. Bulk crystalline silicon sola...

  19. Molten salt battery having inorganic paper separator

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  20. Application of inorganic scintillator for neutron detector

    Niki, N; Nakayama, S; Fushimi, K

    2003-01-01

    In a nuclear reactor institution, the neutron monitoring is indispensable in order to find an unusual neutron event which may be the signal of an accident or damage of a reactor. In this work, the possibility of a neutron monitor by means of an inorganic scintillator was researched. The detection efficiency and the intrinsic background of GSO scintillator and its sensitivity for neutrons have been studied.

  1. Biodegradation of leather tanned with inorganic salts

    Bacardit Dalmases, Anna; Jorba, Montse; Font Vallès, Joaquim; Shendrik, Alexander; Ollé Otero, Lluís

    2011-01-01

    This paper aims to evaluate the physical, chemical and biological processes associated with the deterioration of leather tanned with inorganic salts. The samples of leather were exposed during eight months to outdoor weathering, and then their properties were evaluated. The results indicate that biodegration starts with dehydration, a partial scission of the protein chain of the collagen, detanning and a loss of oils due to volatilization and/or decomposition.

  2. Electrostatically gated membrane permeability in inorganic protocells

    Li, Mei; Harbron, Rachel; Weaver, Jonathan; Binks, Bernard; Mann, Stephen.

    2013-01-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covale...

  3. Flexible Hybrid Organic-Inorganic Perovskite Memory.

    Gu, Chungwan; Lee, Jang-Sik

    2016-05-24

    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices. PMID:27093096

  4. Inorganic particle analysis of dental impression elastomers.

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties. PMID:21271042

  5. Inorganic nanomaterials for tumor angiogenesis imaging

    Tumor angiogenesis plays an important role in cancer development and metastasis. Noninvasive detection of angiogenic activities is thus of great importance in cancer diagnosis as well as evaluation of cancer therapeutic responses. Various angiogenesis-related molecular targets have been identified and used in tumor vasculature targeting and imaging. Recently, inorganic nanomaterials with various unique intrinsic physical properties have attracted growing interest in biomedical imaging applications. This article will review current progresses in the applications of inorganic nanoprobes in molecular angiogenesis imaging. Several types of nanomaterials with various optical properties, including semiconductor quantum dots (QDs), single-walled carbon nanotubes (SWNTs), upconversion nanoparticles (UCNPs), and surface-enhanced Raman scattering (SERS) nanoparticles, have been used as novel optical probes to image angiogenic events. Besides optical imaging, magnetic resonance imaging (MRI) of angiogenesis using magnetic nanoparticles has also been intensively investigated. Moreover, nanomaterials provide unique platforms for the integration of various imaging modalities together with therapeutic functionalities for multi-modality imaging and therapy. Although the application of inorganic nanomaterials in clinical imaging and diagnosis is still facing many challenges, the unique properties and functions of these novel nanoprobes make them very promising agents in angiogenesis imaging and could bring great opportunities to this fast-growing field. (orig.)

  6. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  7. Influence of additives (inorganic/organic on the clouding behavior of amphiphilic drug solutions: Some thermodynamic studies

    Malik Abdul Rub

    2015-05-01

    Full Text Available Herein we provide a detailed result about the effect of various additives, viz. inorganic salts, quaternary ammonium bromides (QABs and amino acids on clouding behavior of amphiphilic drug amitriptyline hydrochloride (AMT. The continuous increase in the cloud point (CP of drug by increase in inorganic salt concentration and the magnitude of increases rely upon the position of the salts in Hofmeister series and hydrated radii. The QABs also influence continuous increase in the CP, which is illustrated in terms of the alkyl chain length of peculiar QAB. The effect of amino acids on CP of the drug solution is dependent upon the characteristics (acidic, basic, polar or nonpolar of particular amino acids. The overall behavior of additives has been analyzed and discussed on the basis of electrostatic repulsion or interaction, micellar growth, and mixed micelle formation between the ingredients. In addition to this, thermodynamic parameters are also evaluated.

  8. Bioefficacy comparison of organic manganese with inorganic manganese for eggshell quality in Hy-Line Brown laying hens.

    Xiao, J F; Wu, S G; Zhang, H J; Yue, H Y; Wang, J; Ji, F; Qi, G H

    2015-08-01

    This study was aimed at investigating the bioefficacy of organic compared with inorganic manganese (Mn) for eggshell quality. An amino acid-Mn complex or Mn sulfate monohydrate was used as the organic or inorganic Mn source. A total of six hundred forty-eight 50-wk-old layers (Hy-Line Brown) were divided into 9 groups; each group consisted of 6 replicates with 12 layers each. The feeding trial lasted 12 wk. During the first 4 wk of the feeding trial, the groups were fed a basal diet, which met the nutrient requirements of the layers, except for Mn. During the following 8 wk, 9 levels of Mn (inorganic Mn: 0, 25, 50, 100, and 200 mg/kg; organic Mn: 25, 50, 100, and 200 mg/kg) were used to supplement, respectively, in the basal diet on an equimolar basis. An exponential regression model was applied to calculate the bioefficacy of organic Mn compared with the inorganic Mn. Dietary supplementation with either organic or inorganic Mn did not influence egg production and feed efficiency of (P > 0.05), and eggshell quality did not exhibit a significant response to dietary supplementation with Mn sources at 56 and 58 wk (P > 0.05). Dietary supplementation with either organic Mn or inorganic Mn significantly enhanced the thickness, breaking strength, and elastic modulus of the eggshells compared with the control group at the end of 62 wk (P organic Mn was 357% (shell thickness), 406% (breaking strength), 458% (elastic modulus), and 470% (eggshell Mn), as efficacious as inorganic Mn at equimolar levels. This study suggests that organic Mn enhances eggshell quality in aged laying hens compared with inorganic Mn. PMID:26047673

  9. Conjunctive and mineralization impact of municipal solid waste compost and inorganic fertilizer on lysimeter and pot studies.

    Khalid, Iqbal; Nadeem, Amana; Ahmed, Rauf; Husnain, Anwer

    2014-01-01

    Objectives of the present study were to investigate the physico-chemical properties of municipal solid waste (MSW)-enriched compost and its effect on nutrient mineralization and subsequent plant growth. The enrichment of MSW compost by inorganic salts enhanced the humification rate and reduced the carbon nitrogen (C/N) ratio in less time than control compost. The chemical properties of compost, C/N ratio, humic acid, fulvic acid, degree of polymerization and humification index revealed the significant correlation amid properties. A laboratory-scale experiment evaluated the conjunctive effect of MSW compost and inorganic fertilizer on tomato plants in a pot experiment. In the pot experiment five treatments, Inorganic fertilizer (T1), enriched compost (T2), enriched compost 80% + 20% inorganic fertilizer (T3), enriched compost 60% + 40% inorganic fertilizer (T4) were defined including control (Ts), applied at the rate of 110 kg-N/ha and results revealed that all treatments significantly enhanced horticultural production of tomato plant; however T4 was most effectual as compared with control, T1, T2 and T3. Augmentation in organic matter and available phosphorus (P) potassium (K) and nitrogen (N) were also observed in compost treatments. The leachability and phytoavailability of phosphorus (P), potassium (K) and nitrogen (N) from sandy soil, amended with enriched, control compost and inorganic fertilizer at rates of 200, 400 and 600 kg-N/ha were evaluated in a lysimeter study. Results illustrated that concentration of mineral nitrogen was elevated in the leachate of inorganic fertilizer than enriched and control composts; therefore compost fortifies soil with utmost nutrients for plants' growth. PMID:24600889

  10. Fouling of inorganic membrane and flux enhancement in membrane-coupled anaerobic bioreactor

    Yoon, S.H.; Kang, I.J.; Lee, C.H. [Seoul National Univ. (Korea, Republic of). Dept. of Chemical Technology

    1999-03-01

    The fouling mechanism of an inorganic membrane was studied during the operation of a membrane-coupled anaerobic bioreactor (MCAB) when alcohol distillery wastewater was used as a digester feed. It was observed that the fouling mechanism of an inorganic membrane was significantly different from that of conventional membrane filtration processes. The main foulant was identified to be an inorganic precipitate, struvite (MgNH{sub 4}PO{sub 4}{center_dot}6H{sub 2}O), rather than anaerobic microbial flocs. Struvite appears to be precipitated not only on the membrane surface but also inside the membrane pores. The amount of struvite generated during the bioreaction was estimated to be about 2 g/L alcohol distillery wastewater. The inorganic foulant was not easily removed by general physical cleaning such as depressurization, lumen flushing, and backflushing. Based on these findings, the membrane fouling was alleviated and thus flux was enhanced by adopting a backfeeding mode which has dual purpose of feeding and backflushing with particle-free acidic wastewater used as the feed for anaerobic digestion.